101
|
Campbell EJ, Barker DJ, Nasser HM, Kaganovsky K, Dayas CV, Marchant NJ. Cue-induced food seeking after punishment is associated with increased Fos expression in the lateral hypothalamus and basolateral and medial amygdala. Behav Neurosci 2017; 131:155-167. [PMID: 28221079 DOI: 10.1037/bne0000185] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In humans, relapse to unhealthy eating habits following dieting is a significant impediment to obesity treatment. Food-associated cues are one of the main triggers of relapse to unhealthy eating during self-imposed abstinence. Here we report a behavioral method examining cue-induced relapse to food seeking following punishment-induced suppression of food taking. We trained male rats to lever press for food pellets that were delivered after a 10-s conditional stimulus (CS) (appetitive). Following training, 25% of reinforced lever presses resulted in the presentation of a compound stimulus consisting of a novel CS (aversive) and the appetitive CS followed by a pellet and footshock. After punishment-imposed abstinence, we tested the rats in an extinction test where lever pressing resulted in the presentation of either the appetitive or aversive CS. We then compared activity of lateral hypothalamus (LH) and associated extrahypothalamic regions following this test. We also assessed Fos expression in LH orexin and GABA neurons. We found that cue-induced relapse of food seeking on test was higher in rats tested with the appetitive CS compared to the aversive CS. Relapse induced by the appetitive CS was associated with increased Fos expression in LH, caudal basolateral amygdala (BLA), and medial amygdala (MeA). This relapse was also associated with increased Fos expression in LH orexin and VGAT-expressing neurons. These data show that relapse to food seeking can be induced by food-associated cues after punishment-imposed abstinence, and this relapse is associated with increased activity in LH, caudal BLA, and MeA. (PsycINFO Database Record
Collapse
Affiliation(s)
- Erin J Campbell
- Neurobiology of Addiction Laboratory, School of Biomedical Sciences and Pharmacy, University of Newcastle
| | - David J Barker
- Integrative Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse
| | - Helen M Nasser
- Department of Anatomy and Neurobiology, University of Maryland, Baltimore
| | - Konstantin Kaganovsky
- Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse
| | - Christopher V Dayas
- Neurobiology of Addiction Laboratory, School of Biomedical Sciences and Pharmacy, University of Newcastle
| | - Nathan J Marchant
- Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse
| |
Collapse
|
102
|
Edwards NJ, Tejeda HA, Pignatelli M, Zhang S, McDevitt RA, Wu J, Bass CE, Bettler B, Morales M, Bonci A. Circuit specificity in the inhibitory architecture of the VTA regulates cocaine-induced behavior. Nat Neurosci 2017; 20:438-448. [DOI: 10.1038/nn.4482] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 12/20/2016] [Indexed: 12/17/2022]
|
103
|
Morales M, Margolis EB. Ventral tegmental area: cellular heterogeneity, connectivity and behaviour. Nat Rev Neurosci 2017; 18:73-85. [DOI: 10.1038/nrn.2016.165] [Citation(s) in RCA: 594] [Impact Index Per Article: 74.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
104
|
Yoo JH, Zell V, Gutierrez-Reed N, Wu J, Ressler R, Shenasa MA, Johnson AB, Fife KH, Faget L, Hnasko TS. Ventral tegmental area glutamate neurons co-release GABA and promote positive reinforcement. Nat Commun 2016; 7:13697. [PMID: 27976722 PMCID: PMC5171775 DOI: 10.1038/ncomms13697] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 10/26/2016] [Indexed: 02/08/2023] Open
Abstract
In addition to dopamine neurons, the ventral tegmental area (VTA) contains GABA-, glutamate- and co-releasing neurons, and recent reports suggest a complex role for the glutamate neurons in behavioural reinforcement. We report that optogenetic stimulation of VTA glutamate neurons or terminals serves as a positive reinforcer on operant behavioural assays. Mice display marked preference for brief over sustained VTA glutamate neuron stimulation resulting in behavioural responses that are notably distinct from dopamine neuron stimulation and resistant to dopamine receptor antagonists. Whole-cell recordings reveal EPSCs following stimulation of VTA glutamate terminals in the nucleus accumbens or local VTA collaterals; but reveal both excitatory and monosynaptic inhibitory currents in the ventral pallidum and lateral habenula, though the net effects on postsynaptic firing in each region are consistent with the observed rewarding behavioural effects. These data indicate that VTA glutamate neurons co-release GABA in a projection-target-dependent manner and that their transient activation drives positive reinforcement.
Ventral tegmental area (VTA) is involved in reward behaviours, but the precise contribution of VTA glutamatergic neurons to this process is not known. Here the authors show that phasic but not sustained optogenetic stimulation of VTA glutamatergic neurons is rewarding and involves co-release of GABA.
Collapse
Affiliation(s)
- Ji Hoon Yoo
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093, USA
| | - Vivien Zell
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093, USA
| | - Navarre Gutierrez-Reed
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, California 92093, USA
| | - Johnathan Wu
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093, USA
| | - Reed Ressler
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093, USA
| | - Mohammad Ali Shenasa
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093, USA
| | - Alexander B Johnson
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093, USA
| | - Kathryn H Fife
- Neuroscience Graduate Program, University of California, San Diego, La Jolla, California 92093, USA
| | - Lauren Faget
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093, USA
| | - Thomas S Hnasko
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
105
|
Bariselli S, Glangetas C, Tzanoulinou S, Bellone C. Ventral tegmental area subcircuits process rewarding and aversive experiences. J Neurochem 2016; 139:1071-1080. [DOI: 10.1111/jnc.13779] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 08/15/2016] [Accepted: 08/15/2016] [Indexed: 01/07/2023]
Affiliation(s)
- Sebastiano Bariselli
- Department of Fundamental Neuroscience; University of Lausanne; Lausanne Switzerland
| | - Christelle Glangetas
- Department of Fundamental Neuroscience; University of Lausanne; Lausanne Switzerland
| | - Stamatina Tzanoulinou
- Department of Fundamental Neuroscience; University of Lausanne; Lausanne Switzerland
| | - Camilla Bellone
- Department of Fundamental Neuroscience; University of Lausanne; Lausanne Switzerland
| |
Collapse
|
106
|
Vogt Weisenhorn DM, Giesert F, Wurst W. Diversity matters - heterogeneity of dopaminergic neurons in the ventral mesencephalon and its relation to Parkinson's Disease. J Neurochem 2016; 139 Suppl 1:8-26. [PMID: 27206718 PMCID: PMC5096020 DOI: 10.1111/jnc.13670] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/25/2016] [Accepted: 05/17/2016] [Indexed: 12/25/2022]
Abstract
Dopaminergic neurons in the ventral mesencephalon (the ventral mesencephalic dopaminergic complex) are known for their role in a multitude of behaviors, including cognition, reward, addiction and voluntary movement. Dysfunctions of these neurons are the underlying cause of various neuropsychiatric disorders, such as depression, addiction and schizophrenia. In addition, Parkinson's disease (PD), which is the second most common degenerative disease in developed countries, is characterized by the degeneration of dopaminergic neurons, leading to the core motor symptoms of the disease. However, only a subset of dopaminergic neurons in the ventral mesencephalon is highly vulnerable to the disease process. Indeed, research over several decades revealed that the neurons in the ventral mesencephalic dopaminergic complex do not form a homogeneous group with respect to anatomy, physiology, function, molecular identity or vulnerability/dysfunction in different diseases. Here, we review how the concept of dopaminergic neuron diversity, assisted by the advent and application of new technologies, evolved and was refined over time and how it shaped our understanding of PD pathogenesis. Understanding this diversity of neurons in the ventral mesencephalic dopaminergic complex at all levels is imperative for the development of new and more selective drugs for both PD and various other neuropsychiatric diseases. Several decades of research revealed that the neurons in the ventral mesencephalic dopaminergic complex do not form a homogeneous group in respect to anatomy, physiology, function, molecular identity or vulnerability/dysfunction in diseases like Parkinson's disease (PD). Here, we review how this concept evolved and was refined over time and how it shaped our understanding of the pathogenesis of PD. Source of the midbrain image: www.wikimd.org/wiki/index.php/The_Midbrain_or_Mesencephalon; downloaded 28.01.2016. See also Figures and of the paper. This article is part of a special issue on Parkinson disease.
Collapse
Affiliation(s)
- Daniela Maria Vogt Weisenhorn
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Developmental Genetics, Neuherberg, Germany
- Technische Universität München-Weihenstephan, Lehrstuhl für Entwicklungsgenetik, c/o Helmholtz Zentrum München, Neuherberg, Germany
| | - Florian Giesert
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Developmental Genetics, Neuherberg, Germany
- Technische Universität München-Weihenstephan, Lehrstuhl für Entwicklungsgenetik, c/o Helmholtz Zentrum München, Neuherberg, Germany
| | - Wolfgang Wurst
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Developmental Genetics, Neuherberg, Germany.
- Technische Universität München-Weihenstephan, Lehrstuhl für Entwicklungsgenetik, c/o Helmholtz Zentrum München, Neuherberg, Germany.
- Deutsches Zentrum für Neurodegenerative Erkrankungen e. V. (DZNE), Standort München, München, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Adolf-Butenandt-Institut, Ludwig-Maximilians-Universität München, München, Germany.
| |
Collapse
|
107
|
Peris J, MacFadyen K, Smith JA, de Kloet AD, Wang L, Krause EG. Oxytocin receptors are expressed on dopamine and glutamate neurons in the mouse ventral tegmental area that project to nucleus accumbens and other mesolimbic targets. J Comp Neurol 2016; 525:1094-1108. [PMID: 27615433 DOI: 10.1002/cne.24116] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/24/2016] [Accepted: 09/04/2016] [Indexed: 12/25/2022]
Abstract
The mesolimbic dopamine (DA) circuitry determines which behaviors are positively reinforcing and therefore should be encoded in the memory to become a part of the behavioral repertoire. Natural reinforcers, like food and sex, activate this pathway, thereby increasing the likelihood of further consummatory, social, and sexual behaviors. Oxytocin (OT) has been implicated in mediating natural reward and OT-synthesizing neurons project to the ventral tegmental area (VTA) and nucleus accumbens (NAc); however, direct neuroanatomical evidence of OT regulation of DA neurons within the VTA is sparse. To phenotype OT-receptor (OTR) expressing neurons originating within the VTA, we delivered Cre-inducible adeno-associated virus that drives the expression of fluorescent marker into the VTA of male mice that had Cre-recombinase driven by OTR gene expression. OTR-expressing VTA neurons project to NAc, prefrontal cortex, the extended amygdala, and other forebrain regions but less than 10% of these OTR-expressing neurons were identified as DA neurons (defined by tyrosine hydroxylase colocalization). Instead, almost 50% of OTR-expressing cells in the VTA were glutamate (GLU) neurons, as indicated by expression of mRNA for the vesicular GLU transporter (vGluT). About one-third of OTR-expressing VTA neurons did not colocalize with either DA or GLU phenotypic markers. Thus, OTR expression by VTA neurons implicates that OT regulation of reward circuitry is more complex than a direct action on DA neurotransmission. J. Comp. Neurol. 525:1094-1108, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Joanna Peris
- Department of Pharmacodynamics, University of Florida, Gainesville, Florida, USA
| | - Kaley MacFadyen
- Department of Pharmacodynamics, University of Florida, Gainesville, Florida, USA
| | - Justin A Smith
- Department of Pharmacodynamics, University of Florida, Gainesville, Florida, USA
| | - Annette D de Kloet
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
| | - Lei Wang
- Department of Pharmacodynamics, University of Florida, Gainesville, Florida, USA
| | - Eric G Krause
- Department of Pharmacodynamics, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
108
|
Immunohistochemical investigation of the internal structure of the mouse subiculum. Neuroscience 2016; 337:242-266. [PMID: 27664459 DOI: 10.1016/j.neuroscience.2016.09.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/13/2016] [Accepted: 09/14/2016] [Indexed: 12/27/2022]
Abstract
The subiculum is the output component of the hippocampal formation and holds a key position in the neural circuitry of memory. Previous studies have demonstrated the subiculum's connectivity to other brain areas in detail; however, little is known regarding its internal structure. We investigated the cytoarchitecture of the temporal and mid-septotemporal parts of the subiculum using immunohistochemistry. The border between the CA1 region and subiculum was determined by both cytoarchitecture and zinc transporter 3 (ZnT3)-immunoreactivity (IR), whereas the border between the subiculum and presubiculum (PreS) was partially indicated by glutamate receptor 1 (GluR1)-IR. The subiculum was divided into proximal and distal subfields based on cytoarchitecture and immunohistochemistry for calbindin (CB), nitric oxide synthase (NOS) and Purkinje cell protein 4 (PCP4). The proximal subiculum (defined here as subiculum 2) was composed of five layers: the molecular layer (layer 1), the medium-sized pyramidal cell layer (layer 2) that contained NOS- and PCP4-positive neurons, the large pyramidal cell layer (layer 3) characterized by the accumulation of ZnT3- (more proximally) and vesicular glutamate transporter 2-positive (more distally) boutons, layer 4 containing polymorphic cells, and the deepest layer 5 composed of PCP4-positive cells with long apical dendrites that reached layer 1. The distal subiculum (subiculum 1) consisting of smaller neurons did not show these features. Quantitative analyses of the size and numerical density of somata substantiated this delineation. Both the proximal-distal division and five-layered structure in the subiculum 2 were confirmed throughout the temporal two-thirds of the subiculum. These findings will provide a new structural basis for hippocampal investigations.
Collapse
|
109
|
Yau HJ, Wang DV, Tsou JH, Chuang YF, Chen BT, Deisseroth K, Ikemoto S, Bonci A. Pontomesencephalic Tegmental Afferents to VTA Non-dopamine Neurons Are Necessary for Appetitive Pavlovian Learning. Cell Rep 2016; 16:2699-2710. [PMID: 27568569 DOI: 10.1016/j.celrep.2016.08.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/28/2016] [Accepted: 07/31/2016] [Indexed: 12/23/2022] Open
Abstract
The ventral tegmental area (VTA) receives phenotypically distinct innervations from the pedunculopontine tegmental nucleus (PPTg). While PPTg-to-VTA inputs are thought to play a critical role in stimulus-reward learning, direct evidence linking PPTg-to-VTA phenotypically distinct inputs in the learning process remains lacking. Here, we used optogenetic approaches to investigate the functional contribution of PPTg excitatory and inhibitory inputs to the VTA in appetitive Pavlovian conditioning. We show that photoinhibition of PPTg-to-VTA cholinergic or glutamatergic inputs during cue presentation dampens the development of anticipatory approach responding to the food receptacle during the cue. Furthermore, we employed in vivo optetrode recordings to show that photoinhibition of PPTg cholinergic or glutamatergic inputs significantly decreases VTA non-dopamine (non-DA) neural activity. Consistently, photoinhibition of VTA non-DA neurons disrupts the development of cue-elicited anticipatory approach responding. Taken together, our study reveals a crucial regulatory mechanism by PPTg excitatory inputs onto VTA non-DA neurons during appetitive Pavlovian conditioning.
Collapse
Affiliation(s)
- Hau-Jie Yau
- Synaptic Plasticity Section, Intramural Research Program, National Institute on Drug Abuse, NIH, U.S. Department of Health and Human Services, Baltimore, MD 21224, USA; Graduate Institute of Brain and Mind Sciences, National Taiwan University, Taipei 10051, Taiwan
| | - Dong V Wang
- Neurocircuitry of Motivation Section, Intramural Research Program, National Institute on Drug Abuse, NIH, U.S. Department of Health and Human Services, Baltimore, MD 21224, USA
| | - Jen-Hui Tsou
- Synaptic Plasticity Section, Intramural Research Program, National Institute on Drug Abuse, NIH, U.S. Department of Health and Human Services, Baltimore, MD 21224, USA
| | - Yi-Fang Chuang
- Institute of Public Health, National Yang-Ming University, Taipei 112, Taiwan
| | - Billy T Chen
- Synaptic Plasticity Section, Intramural Research Program, National Institute on Drug Abuse, NIH, U.S. Department of Health and Human Services, Baltimore, MD 21224, USA; Ionis Pharmaceuticals Inc., Carlsbad, CA 92010, USA
| | - Karl Deisseroth
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Department of Bioengineering and Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Satoshi Ikemoto
- Neurocircuitry of Motivation Section, Intramural Research Program, National Institute on Drug Abuse, NIH, U.S. Department of Health and Human Services, Baltimore, MD 21224, USA
| | - Antonello Bonci
- Synaptic Plasticity Section, Intramural Research Program, National Institute on Drug Abuse, NIH, U.S. Department of Health and Human Services, Baltimore, MD 21224, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Psychiatry, Johns Hopkins University, Baltimore, MD 21287, USA.
| |
Collapse
|
110
|
Root DH, Wang HL, Liu B, Barker DJ, Mód L, Szocsics P, Silva AC, Maglóczky Z, Morales M. Glutamate neurons are intermixed with midbrain dopamine neurons in nonhuman primates and humans. Sci Rep 2016; 6:30615. [PMID: 27477243 PMCID: PMC4967922 DOI: 10.1038/srep30615] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 07/05/2016] [Indexed: 01/08/2023] Open
Abstract
The rodent ventral tegmental area (VTA) and substantia nigra pars compacta (SNC) contain dopamine neurons intermixed with glutamate neurons (expressing vesicular glutamate transporter 2; VGluT2), which play roles in reward and aversion. However, identifying the neuronal compositions of the VTA and SNC in higher mammals has remained challenging. Here, we revealed VGluT2 neurons within the VTA and SNC of nonhuman primates and humans by simultaneous detection of VGluT2 mRNA and tyrosine hydroxylase (TH; for identification of dopamine neurons). We found that several VTA subdivisions share similar cellular compositions in nonhuman primates and humans; their rostral linear nuclei have a high prevalence of VGluT2 neurons lacking TH; their paranigral and parabrachial pigmented nuclei have mostly TH neurons, and their parabrachial pigmented nuclei have dual VGluT2-TH neurons. Within nonhuman primates and humans SNC, the vast majority of neurons are TH neurons but VGluT2 neurons were detected in the pars lateralis subdivision. The demonstration that midbrain dopamine neurons are intermixed with glutamate or glutamate-dopamine neurons from rodents to humans offers new opportunities for translational studies towards analyzing the roles that each of these neurons play in human behavior and in midbrain-associated illnesses such as addiction, depression, schizophrenia, and Parkinson's disease.
Collapse
Affiliation(s)
- David H Root
- Neuronal Networks Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, 251 Bayview Blvd Suite 200, Baltimore, MD 21224, USA
| | - Hui-Ling Wang
- Neuronal Networks Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, 251 Bayview Blvd Suite 200, Baltimore, MD 21224, USA
| | - Bing Liu
- Neuronal Networks Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, 251 Bayview Blvd Suite 200, Baltimore, MD 21224, USA
| | - David J Barker
- Neuronal Networks Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, 251 Bayview Blvd Suite 200, Baltimore, MD 21224, USA
| | - László Mód
- Department of Psychology, Szent Borbála Hospital, H-2800, Tatabánya, Hungary
| | - Péter Szocsics
- Laboratory of Cerebral Cortex Research, Institute of Experimental Medicine of the Hungarian Academy of Sciences, H-1083, Budapest, Hungary
| | - Afonso C Silva
- Cerebral Microcirculation Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, 49 Convent Drive Bldg 49 Room 3A72, Bethesda, MD 20892-4478, USA
| | - Zsófia Maglóczky
- Laboratory of Cerebral Cortex Research, Institute of Experimental Medicine of the Hungarian Academy of Sciences, H-1083, Budapest, Hungary
| | - Marisela Morales
- Neuronal Networks Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, 251 Bayview Blvd Suite 200, Baltimore, MD 21224, USA
| |
Collapse
|
111
|
Pearlstein E, Michel FJ, Save L, Ferrari DC, Hammond C. Abnormal Development of Glutamatergic Synapses Afferent to Dopaminergic Neurons of the Pink1(-/-) Mouse Model of Parkinson's Disease. Front Cell Neurosci 2016; 10:168. [PMID: 27445695 PMCID: PMC4917553 DOI: 10.3389/fncel.2016.00168] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/09/2016] [Indexed: 11/13/2022] Open
Abstract
In a preceding study, we showed that in adult pink1−/− mice, a monogenic animal model of Parkinson’s disease (PD), striatal neurons display aberrant electrical activities that precede the onset of overt clinical manifestations. Here, we tested the hypothesis that the maturation of dopaminergic (DA) neurons of the pink1−/− substantia nigra compacta (SNc) follows, from early stages on, a different developmental trajectory from age-matched wild type (wt) SNc DA neurons. We used immature (postnatal days P2–P10) and young adult (P30–P90) midbrain slices of pink1−/− mice expressing the green fluorescent protein in tyrosine hydroxylase (TH)-positive neurons. We report that the developmental sequence of N-Methyl-D-aspartic acid (NMDA) spontaneous excitatory postsynaptic currents (sEPSCs) is altered in pink1−/− SNc DA neurons, starting from shortly after birth. They lack the transient episode of high NMDA receptor-mediated neuronal activity characteristic of the immature stage of wt SNc DA neurons. The maturation of the membrane resistance of pink1−/− SNc DA neurons is also altered. Collectively, these observations suggest that electrical manifestations occurring shortly after birth in SNc DA neurons might lead to dysfunction in dopamine release and constitute an early pathogenic mechanism of PD.
Collapse
Affiliation(s)
- Edouard Pearlstein
- UMR901, Aix-Marseille UniversitéMarseille, France; Institut de Neurobiologie de la Méditerranée (INMED), Inserm UMR 901Marseille, France
| | - François J Michel
- UMR901, Aix-Marseille UniversitéMarseille, France; Institut de Neurobiologie de la Méditerranée (INMED), Inserm UMR 901Marseille, France
| | - Laurène Save
- UMR901, Aix-Marseille UniversitéMarseille, France; Institut de Neurobiologie de la Méditerranée (INMED), Inserm UMR 901Marseille, France
| | - Diana C Ferrari
- UMR901, Aix-Marseille UniversitéMarseille, France; Institut de Neurobiologie de la Méditerranée (INMED), Inserm UMR 901Marseille, France
| | - Constance Hammond
- UMR901, Aix-Marseille UniversitéMarseille, France; Institut de Neurobiologie de la Méditerranée (INMED), Inserm UMR 901Marseille, France
| |
Collapse
|
112
|
Edwards A, Abizaid A. Driving the need to feed: Insight into the collaborative interaction between ghrelin and endocannabinoid systems in modulating brain reward systems. Neurosci Biobehav Rev 2016; 66:33-53. [PMID: 27136126 DOI: 10.1016/j.neubiorev.2016.03.032] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 03/08/2016] [Accepted: 03/31/2016] [Indexed: 01/29/2023]
Abstract
Independent stimulation of either the ghrelin or endocannabinoid system promotes food intake and increases adiposity. Given the similar distribution of their receptors in feeding associated brain regions and organs involved in metabolism, it is not surprising that evidence of their interaction and its importance in modulating energy balance has emerged. This review documents the relationship between ghrelin and endocannabinoid systems within the periphery and hypothalamus (HYP) before presenting evidence suggesting that these two systems likewise work collaboratively within the ventral tegmental area (VTA) to modulate non-homeostatic feeding. Mechanisms, consistent with current evidence and local infrastructure within the VTA, will be proposed.
Collapse
Affiliation(s)
- Alexander Edwards
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.
| | - Alfonso Abizaid
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.
| |
Collapse
|
113
|
Barker DJ, Root DH, Zhang S, Morales M. Multiplexed neurochemical signaling by neurons of the ventral tegmental area. J Chem Neuroanat 2016; 73:33-42. [PMID: 26763116 PMCID: PMC4818729 DOI: 10.1016/j.jchemneu.2015.12.016] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 12/31/2015] [Accepted: 12/31/2015] [Indexed: 12/15/2022]
Abstract
The ventral tegmental area (VTA) is an evolutionarily conserved structure that has roles in reward-seeking, safety-seeking, learning, motivation, and neuropsychiatric disorders such as addiction and depression. The involvement of the VTA in these various behaviors and disorders is paralleled by its diverse signaling mechanisms. Here we review recent advances in our understanding of neuronal diversity in the VTA with a focus on cell phenotypes that participate in 'multiplexed' neurotransmission involving distinct signaling mechanisms. First, we describe the cellular diversity within the VTA, including neurons capable of transmitting dopamine, glutamate or GABA as well as neurons capable of multiplexing combinations of these neurotransmitters. Next, we describe the complex synaptic architecture used by VTA neurons in order to accommodate the transmission of multiple transmitters. We specifically cover recent findings showing that VTA multiplexed neurotransmission may be mediated by either the segregation of dopamine and glutamate into distinct microdomains within a single axon or by the integration of glutamate and GABA into a single axon terminal. In addition, we discuss our current understanding of the functional role that these multiplexed signaling pathways have in the lateral habenula and the nucleus accumbens. Finally, we consider the putative roles of VTA multiplexed neurotransmission in synaptic plasticity and discuss how changes in VTA multiplexed neurons may relate to various psychopathologies including drug addiction and depression.
Collapse
Affiliation(s)
- David J Barker
- Neuronal Networks Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, 251 Bayview Blvd Suite 200, Baltimore, MD 21224, United States
| | - David H Root
- Neuronal Networks Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, 251 Bayview Blvd Suite 200, Baltimore, MD 21224, United States
| | - Shiliang Zhang
- Neuronal Networks Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, 251 Bayview Blvd Suite 200, Baltimore, MD 21224, United States
| | - Marisela Morales
- Neuronal Networks Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, 251 Bayview Blvd Suite 200, Baltimore, MD 21224, United States.
| |
Collapse
|
114
|
Combined approaches for the relief of spinal cord injury-induced neuropathic pain. Complement Ther Med 2016; 25:27-33. [DOI: 10.1016/j.ctim.2015.12.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 12/30/2015] [Accepted: 12/31/2015] [Indexed: 02/06/2023] Open
|
115
|
Qi J, Zhang S, Wang HL, Barker DJ, Miranda-Barrientos J, Morales M. VTA glutamatergic inputs to nucleus accumbens drive aversion by acting on GABAergic interneurons. Nat Neurosci 2016; 19:725-733. [PMID: 27019014 PMCID: PMC4846550 DOI: 10.1038/nn.4281] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 02/27/2016] [Indexed: 12/12/2022]
Abstract
The ventral tegmental area (VTA) is best known for its dopamine neurons, some of which project to nucleus accumbens (nAcc). However, the VTA also has glutamatergic neurons that project to nAcc. The function of the mesoaccumbens-glutamatergic pathway remains unknown. Here, we report that nAcc photoactivation of mesoaccumbens-glutamatergic fibers promotes aversion. Although we found that these mesoaccumbens-glutamate-fibers lack GABA, the aversion evoked by their photoactivation depends on glutamate and GABA receptor signaling, and not on dopamine receptor signaling. We found that mesoaccumbens-glutamatergic-fibers establish multiple asymmetric synapses on single parvalbumin-GABAergic interneurons, and that nAcc photoactivation of these fibers drives AMPA-mediated cellular firing of parvalbumin-GABAergic interneurons. These parvalbumin-GABAergic-interneurons, in turn, inhibit nAcc medium spiny output neurons, as such, controlling inhibitory neurotransmission within nAcc. The mesoaccumbens-glutamatergic pathway is the first glutamatergic input to nAcc shown to mediate aversion, instead of reward, and the first pathway shown to establish excitatory synapses on nAcc parvalbumin-GABAergic interneurons.
Collapse
Affiliation(s)
- Jia Qi
- Neuronal Networks Section, Integrative Neuroscience Research Branch, US National Institute on Drug Abuse, Baltimore, Maryland, USA
| | - Shiliang Zhang
- Neuronal Networks Section, Integrative Neuroscience Research Branch, US National Institute on Drug Abuse, Baltimore, Maryland, USA
| | - Hui-Ling Wang
- Neuronal Networks Section, Integrative Neuroscience Research Branch, US National Institute on Drug Abuse, Baltimore, Maryland, USA
| | - David J Barker
- Neuronal Networks Section, Integrative Neuroscience Research Branch, US National Institute on Drug Abuse, Baltimore, Maryland, USA
| | - Jorge Miranda-Barrientos
- Neuronal Networks Section, Integrative Neuroscience Research Branch, US National Institute on Drug Abuse, Baltimore, Maryland, USA
| | - Marisela Morales
- Neuronal Networks Section, Integrative Neuroscience Research Branch, US National Institute on Drug Abuse, Baltimore, Maryland, USA
| |
Collapse
|
116
|
Abstract
Ventral tegmental area (VTA) neurons play roles in reward and aversion. The VTA has three major neuronal phenotypes: dopaminergic, GABAergic, and glutamatergic. VTA glutamatergic neurons--expressing vesicular glutamate transporter-2 (VGluT2)--project to limbic and cortical regions, but also excite neighboring dopaminergic neurons. Here, we test whether local photoactivation of VTA VGluT2 neurons expressing Channelrhodopsin-2 (ChR2) under the VGluT2 promoter causes place preference and supports operant responding for the stimulation. By using a Cre-dependent viral vector, ChR2 (tethered to mCherry) was expressed in VTA glutamatergic neurons of VGluT2::Cre mice. The mCherry distribution was evaluated by immunolabeling. By confocal microscopy, we detected expression of mCherry in VTA cell bodies and local processes. In contrast, VGluT2 expression was restricted to varicosities, some of them coexpressing mCherry. By electron microscopy, we determined that mCherry-VGluT2 varicosities correspond to axon terminals, forming asymmetric synapses on neighboring dopaminergic neurons. These findings indicate that ChR2 was present in terminals containing glutamatergic synaptic vesicles and involved in local synaptic connections. Photoactivation of VTA slices from ChR2-expressing mice induced AMPA/NMDA receptor-dependent firing of dopaminergic neurons projecting to the nucleus accumbens. VTA photoactivation of ChR2-expressing mice reinforced instrumental behavior and established place preferences. VTA injections of AMPA or NMDA receptor antagonists blocked optical self-stimulation and place preference. These findings suggest a role in reward function for VTA glutamatergic neurons through local excitatory synapses on mesoaccumbens dopaminergic neurons.
Collapse
|
117
|
Mejias-Aponte CA. Specificity and impact of adrenergic projections to the midbrain dopamine system. Brain Res 2016; 1641:258-73. [PMID: 26820641 DOI: 10.1016/j.brainres.2016.01.036] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 01/11/2016] [Accepted: 01/20/2016] [Indexed: 12/18/2022]
Abstract
Dopamine (DA) is a neuromodulator that regulates different brain circuits involved in cognitive functions, motor coordination, and emotions. Dysregulation of DA is associated with many neurological and psychiatric disorders such as Parkinson's disease and substance abuse. Several lines of research have shown that the midbrain DA system is regulated by the central adrenergic system. This review focuses on adrenergic interactions with midbrain DA neurons. It discusses the current neuroanatomy including source of adrenergic innervation, type of synapses, and adrenoceptors expression. It also discusses adrenergic regulation of DA cell activity and neurotransmitter release. Finally, it reviews several neurological and psychiatric disorders where changes in adrenergic system are associated with dysregulation of the midbrain DA system. This article is part of a Special Issue entitled SI: Noradrenergic System.
Collapse
Affiliation(s)
- Carlos A Mejias-Aponte
- National Institute on Drug Abuse Histology Core, Neuronal Networks Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Biomedical Research Center, 251 Bayview Blvd, Suite 200, Baltimore, MD 21224, USA.
| |
Collapse
|
118
|
Oliva I, Wanat MJ. Ventral Tegmental Area Afferents and Drug-Dependent Behaviors. Front Psychiatry 2016; 7:30. [PMID: 27014097 PMCID: PMC4780106 DOI: 10.3389/fpsyt.2016.00030] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/23/2016] [Indexed: 01/10/2023] Open
Abstract
Drug-related behaviors in both humans and rodents are commonly thought to arise from aberrant learning processes. Preclinical studies demonstrate that the acquisition and expression of many drug-dependent behaviors involves the ventral tegmental area (VTA), a midbrain structure comprised of dopamine, GABA, and glutamate neurons. Drug experience alters the excitatory and inhibitory synaptic input onto VTA dopamine neurons, suggesting a critical role for VTA afferents in mediating the effects of drugs. In this review, we present evidence implicating the VTA in drug-related behaviors, highlight the diversity of neuronal populations in the VTA, and discuss the behavioral effects of selectively manipulating VTA afferents. Future experiments are needed to determine which VTA afferents and what neuronal populations in the VTA mediate specific drug-dependent behaviors. Further studies are also necessary for identifying the afferent-specific synaptic alterations onto dopamine and non-dopamine neurons in the VTA following drug administration. The identification of neural circuits and adaptations involved with drug-dependent behaviors can highlight potential neural targets for pharmacological and deep brain stimulation interventions to treat substance abuse disorders.
Collapse
Affiliation(s)
- Idaira Oliva
- Department of Biology, Neurosciences Institute, University of Texas at San Antonio , San Antonio, TX , USA
| | - Matthew J Wanat
- Department of Biology, Neurosciences Institute, University of Texas at San Antonio , San Antonio, TX , USA
| |
Collapse
|
119
|
Sommer S, Hauber W. N-methyl-D-aspartate receptors in the ventral tegmental area mediate the excitatory influence of Pavlovian stimuli on instrumental performance. Brain Struct Funct 2015; 221:4399-4409. [PMID: 26691586 DOI: 10.1007/s00429-015-1170-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 12/07/2015] [Indexed: 10/22/2022]
Abstract
Pavlovian stimuli predictive of food can markedly amplify instrumental responding for food. This effect is termed Pavlovian-instrumental transfer (PIT). The ventral tegmental area (VTA) plays a key role in mediating PIT, however, it is yet unknown whether N-methyl-D-aspartate (NMDA)-type glutamate receptors in the VTA are involved in PIT. Here, we examined the effects of an NMDA-receptor blockade in the VTA on PIT. Immediately prior to PIT testing, rats were subjected to intra-VTA infusions of vehicle or of the NMDA-receptor antagonist 2-amino-5-phosphonopentanoic acid (AP-5) (1, 5 µg/side). In rats that received AP-5 at the lower dose, the PIT effect was intact, i.e. presentation of the Pavlovian stimulus enhanced instrumental responding. By contrast, in rats that received AP-5 at the higher dose, the PIT effect was blocked. The data suggest that NMDA receptors in the VTA mediate the activating effects of Pavlovian stimuli on instrumental responding.
Collapse
Affiliation(s)
- Susanne Sommer
- Department Animal Physiology, University of Stuttgart, Pfaffenwaldring 57, 70550, Stuttgart, Germany
| | - Wolfgang Hauber
- Department Animal Physiology, University of Stuttgart, Pfaffenwaldring 57, 70550, Stuttgart, Germany.
| |
Collapse
|
120
|
Wood J, Ahmari SE. A Framework for Understanding the Emerging Role of Corticolimbic-Ventral Striatal Networks in OCD-Associated Repetitive Behaviors. Front Syst Neurosci 2015; 9:171. [PMID: 26733823 PMCID: PMC4681810 DOI: 10.3389/fnsys.2015.00171] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 11/23/2015] [Indexed: 11/13/2022] Open
Abstract
Significant interest in the mechanistic underpinnings of obsessive-compulsive disorder (OCD) has fueled research on the neural origins of compulsive behaviors. Converging clinical and preclinical evidence suggests that abnormal repetitive behaviors are driven by dysfunction in cortico-striatal-thalamic-cortical (CSTC) circuits. These findings suggest that compulsive behaviors arise, in part, from aberrant communication between lateral orbitofrontal cortex (OFC) and dorsal striatum. An important body of work focused on the role of this network in OCD has been instrumental to progress in the field. Disease models focused primarily on these regions, however, fail to capture an important aspect of the disorder: affective dysregulation. High levels of anxiety are extremely prevalent in OCD, as is comorbidity with major depressive disorder. Furthermore, deficits in processing rewards and abnormalities in processing emotional stimuli are suggestive of aberrant encoding of affective information. Accordingly, OCD can be partially characterized as a disease in which behavioral selection is corrupted by exaggerated or dysregulated emotional states. This suggests that the networks producing OCD symptoms likely expand beyond traditional lateral OFC and dorsal striatum circuit models, and highlights the need to cast a wider net in our investigation of the circuits involved in generating and sustaining OCD symptoms. Here, we address the emerging role of medial OFC, amygdala, and ventral tegmental area projections to the ventral striatum (VS) in OCD pathophysiology. The VS receives strong innervation from these affect and reward processing regions, and is therefore poised to integrate information crucial to the generation of compulsive behaviors. Though it complements functions of dorsal striatum and lateral OFC, this corticolimbic-VS network is less commonly explored as a potential source of the pathology underlying OCD. In this review, we discuss this network's potential role as a locus of OCD pathology and effective treatment.
Collapse
Affiliation(s)
- Jesse Wood
- Translational Neuroscience Program, Department of Psychiatry, University of PittsburghPittsburgh, PA, USA
- Center for Neuroscience, University of PittsburghPittsburgh, PA, USA
| | - Susanne E. Ahmari
- Translational Neuroscience Program, Department of Psychiatry, University of PittsburghPittsburgh, PA, USA
- Center for Neuroscience, University of PittsburghPittsburgh, PA, USA
- Center for the Neural Basis of Cognition, University of PittsburghPittsburgh, PA, USA
| |
Collapse
|
121
|
Deehan GA, Hauser SR, Waeiss RA, Knight CP, Toalston JE, Truitt WA, McBride WJ, Rodd ZA. Co-administration of ethanol and nicotine: the enduring alterations in the rewarding properties of nicotine and glutamate activity within the mesocorticolimbic system of female alcohol-preferring (P) rats. Psychopharmacology (Berl) 2015; 232:4293-302. [PMID: 26306917 PMCID: PMC4899841 DOI: 10.1007/s00213-015-4056-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 08/17/2015] [Indexed: 12/21/2022]
Abstract
RATIONALE The co-abuse of ethanol (EtOH) and nicotine (NIC) increases the likelihood that an individual will relapse to drug use while attempting to maintain abstinence. There is limited research examining the consequences of long-term EtOH and NIC co-abuse. OBJECTIVES The current experiments determined the enduring effects of chronic EtOH, NIC, or EtOH + NIC intake on the reinforcing properties of NIC and glutamate (GLU) activity within the mesocorticolimbic (MCL) system. METHODS Alcohol-preferring (P) rats self-administered EtOH, Sacc + NIC, or EtOH + NIC combined for 10 weeks. The reinforcing properties of 0.1-3.0 μM NIC within the nucleus accumbens shell (AcbSh) were assessed following a 2-3-week drug-free period using intracranial self-administration (ICSA) procedures. The effects of EtOH, Sacc, Sacc + NIC, or EtOH + NIC intake on extracellular levels and clearance of glutamate (GLU) in the medial prefrontal cortex (mPFC) were also determined. RESULTS Binge intake of EtOH (96-100 mg%) and NIC (21-27 mg/mL) were attained. All groups of P rats self-infused 3.0 μM NIC directly into the AcbSh, whereas only animals in the EtOH + NIC co-abuse group self-infused the 0.3 and 1.0 μM NIC concentrations. Additionally, self-administration of EtOH + NIC, but not EtOH, Sacc or Sacc + NIC, resulted in enduring increases in basal extracellular GLU levels in the mPFC. CONCLUSIONS Overall, the co-abuse of EtOH + NIC produced enduring neuronal alterations within the MCL which enhanced the rewarding properties of NIC in the AcbSh and elevated extracellular GLU levels within the mPFC.
Collapse
Affiliation(s)
- Gerald A Deehan
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Neuroscience Research Building, 320 West 15th St, Indianapolis, IN, 46202-2266, USA.
| | - Sheketha R Hauser
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Neuroscience Research Building, 320 West 15th St, Indianapolis, IN, 46202-2266, USA
| | - R Aaron Waeiss
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Neuroscience Research Building, 320 West 15th St, Indianapolis, IN, 46202-2266, USA
| | - Christopher P Knight
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Neuroscience Research Building, 320 West 15th St, Indianapolis, IN, 46202-2266, USA
| | - Jamie E Toalston
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Neuroscience Research Building, 320 West 15th St, Indianapolis, IN, 46202-2266, USA
| | - William A Truitt
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Neuroscience Research Building, 320 West 15th St, Indianapolis, IN, 46202-2266, USA
| | - William J McBride
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Neuroscience Research Building, 320 West 15th St, Indianapolis, IN, 46202-2266, USA
| | - Zachary A Rodd
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Neuroscience Research Building, 320 West 15th St, Indianapolis, IN, 46202-2266, USA
| |
Collapse
|
122
|
Morello F, Partanen J. Diversity and development of local inhibitory and excitatory neurons associated with dopaminergic nuclei. FEBS Lett 2015; 589:3693-701. [PMID: 26453835 DOI: 10.1016/j.febslet.2015.10.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 09/28/2015] [Accepted: 10/01/2015] [Indexed: 12/18/2022]
Abstract
For regulation of voluntary movement and motivation the midbrain dopaminergic system receives input from a variety of brain regions. Often this input is mediated by local non-dopaminergic neurons within or closely associated with the dopaminergic nuclei. In addition to the dopaminergic neurons, some of these non-dopaminergic neurons also send functionally important output from the ventral midbrain to forebrain targets. The aim of this review is to introduce subtypes of GABAergic and glutamatergic neurons, which are located in the dopaminergic nuclei or the adjacent brainstem and are important for the regulation of the dopaminergic pathways. In addition, we discuss recent studies beginning to reveal mechanisms for their development, which may hold the key to understanding the diversity of these neurons.
Collapse
Affiliation(s)
- Francesca Morello
- Department of Biosciences, Division of Genetics, P.O. Box 56, Viikinkaari 9, 00014 University of Helsinki, Helsinki, Finland
| | - Juha Partanen
- Department of Biosciences, Division of Genetics, P.O. Box 56, Viikinkaari 9, 00014 University of Helsinki, Helsinki, Finland.
| |
Collapse
|
123
|
Persistent Adaptations in Afferents to Ventral Tegmental Dopamine Neurons after Opiate Withdrawal. J Neurosci 2015; 35:10290-303. [PMID: 26180204 DOI: 10.1523/jneurosci.0715-15.2015] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
UNLABELLED Protracted opiate withdrawal is accompanied by altered responsiveness of midbrain dopaminergic (DA) neurons, including a loss of DA cell response to morphine, and by behavioral alterations, including affective disorders. GABAergic neurons in the tail of the ventral tegmental area (tVTA), also called the rostromedial tegmental nucleus, are important for behavioral responses to opiates. We investigated the tVTA-VTA circuit in rats after chronic morphine exposure to determine whether tVTA neurons participate in the loss of opiate-induced disinhibition of VTA DA neurons observed during protracted withdrawal. In vivo recording revealed that VTA DA neurons, but not tVTA GABAergic neurons, are tolerant to morphine after 2 weeks of withdrawal. Optogenetic stimulation of tVTA neurons inhibited VTA DA neurons similarly in opiate-naive and long-term withdrawn rats. However, tVTA inactivation increased VTA DA activity in opiate-naive rats, but not in withdrawn rats, resembling the opiate tolerance effect in DA cells. Thus, although inhibitory control of DA neurons by tVTA is maintained during protracted withdrawal, the capacity for disinhibitory control is impaired. In addition, morphine withdrawal reduced both tVTA neural activity and tonic glutamatergic input to VTA DA neurons. We propose that these changes in glutamate and GABA inputs underlie the apparent tolerance of VTA DA neurons to opiates after chronic exposure. These alterations in the tVTA-VTA DA circuit could be an important factor in opiate tolerance and addiction. Moreover, the capacity of the tVTA to inhibit, but not disinhibit, DA cells after chronic opiate exposure may contribute to long-term negative affective states during withdrawal. SIGNIFICANCE STATEMENT Dopaminergic (DA) cells of the ventral tegmental area (VTA) are the origin of a brain reward system and are critically involved in drug abuse. Morphine has long been known to affect VTA DA cells via GABAergic interneurons. Recently, GABAergic neurons caudal to the VTA were discovered and named the tail of VTA (tVTA). Here, we show that tVTA GABA neurons lose their capacity to disinhibit, but not to inhibit, VTA DA cells after chronic opiate exposure. The failure of disinhibition was associated with a loss of glutamatergic input to DA neurons after chronic morphine. These findings reveal mechanisms by which the tVTA may play a key role in long-term negative affective states during opiate withdrawal.
Collapse
|
124
|
Pignatelli M, Bonci A. Role of Dopamine Neurons in Reward and Aversion: A Synaptic Plasticity Perspective. Neuron 2015; 86:1145-57. [PMID: 26050034 DOI: 10.1016/j.neuron.2015.04.015] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The brain is wired to predict future outcomes. Experience-dependent plasticity at excitatory synapses within dopamine neurons of the ventral tegmental area, a key region for a broad range of motivated behaviors, is thought to be a fundamental cellular mechanism that enables adaptation to a dynamic environment. Thus, depending on the circumstances, dopamine neurons are capable of processing both positive and negative reinforcement learning strategies. In this review, we will discuss how changes in synaptic plasticity of dopamine neurons may affect dopamine release, as well as behavioral adaptations to different environmental conditions falling at opposite ends of a saliency spectrum ranging from reward to aversion.
Collapse
Affiliation(s)
- Marco Pignatelli
- Intramural Research Program, Synaptic Plasticity Section, National Institute on Drug Abuse, Baltimore, MD 21224, USA
| | - Antonello Bonci
- Intramural Research Program, Synaptic Plasticity Section, National Institute on Drug Abuse, Baltimore, MD 21224, USA; Solomon H. Snyder Neuroscience Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
125
|
GIRK Channels Modulate Opioid-Induced Motor Activity in a Cell Type- and Subunit-Dependent Manner. J Neurosci 2015; 35:7131-42. [PMID: 25948263 DOI: 10.1523/jneurosci.5051-14.2015] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
G-protein-gated inwardly rectifying K(+) (GIRK/Kir3) channel activation underlies key physiological effects of opioids, including analgesia and dependence. GIRK channel activation has also been implicated in the opioid-induced inhibition of midbrain GABA neurons and consequent disinhibition of dopamine (DA) neurons in the ventral tegmental area (VTA). Drug-induced disinhibition of VTA DA neurons has been linked to reward-related behaviors and underlies opioid-induced motor activation. Here, we demonstrate that mouse VTA GABA neurons express a GIRK channel formed by GIRK1 and GIRK2 subunits. Nevertheless, neither constitutive genetic ablation of Girk1 or Girk2, nor the selective ablation of GIRK channels in GABA neurons, diminished morphine-induced motor activity in mice. Moreover, direct activation of GIRK channels in midbrain GABA neurons did not enhance motor activity. In contrast, genetic manipulations that selectively enhanced or suppressed GIRK channel function in midbrain DA neurons correlated with decreased and increased sensitivity, respectively, to the motor-stimulatory effect of systemic morphine. Collectively, these data support the contention that the unique GIRK channel subtype in VTA DA neurons, the GIRK2/GIRK3 heteromer, regulates the sensitivity of the mouse mesolimbic DA system to drugs with addictive potential.
Collapse
|
126
|
A proposed resolution to the paradox of drug reward: Dopamine's evolution from an aversive signal to a facilitator of drug reward via negative reinforcement. Neurosci Biobehav Rev 2015; 56:50-61. [PMID: 26116542 DOI: 10.1016/j.neubiorev.2015.06.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 06/09/2015] [Accepted: 06/19/2015] [Indexed: 11/21/2022]
Abstract
The mystery surrounding how plant neurotoxins came to possess reinforcing properties is termed the paradox of drug reward. Here we propose a resolution to this paradox whereby dopamine - which has traditionally been viewed as a signal of reward - initially signaled aversion and encouraged escape. We suggest that after being consumed, plant neurotoxins such as nicotine activated an aversive dopaminergic pathway, thereby deterring predatory herbivores. Later evolutionary events - including the development of a GABAergic system capable of modulating dopaminergic activity - led to the ability to down-regulate and 'control' this dopamine-based aversion. We speculate that this negative reinforcement system evolved so that animals could suppress aversive states such as hunger in order to attend to other internal drives (such as mating and shelter) that would result in improved organismal fitness.
Collapse
|
127
|
Pearlstein E, Gouty-Colomer LA, Michel FJ, Cloarec R, Hammond C. Glutamatergic synaptic currents of nigral dopaminergic neurons follow a postnatal developmental sequence. Front Cell Neurosci 2015; 9:210. [PMID: 26074777 PMCID: PMC4448554 DOI: 10.3389/fncel.2015.00210] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 05/15/2015] [Indexed: 01/20/2023] Open
Abstract
The spontaneous activity pattern of adult dopaminergic (DA) neurons of the substantia nigra pars compacta (SNc) results from interactions between intrinsic membrane conductances and afferent inputs. In adult SNc DA neurons, low-frequency tonic background activity is generated by intrinsic pacemaker mechanisms, whereas burst generation depends on intact synaptic inputs in particular the glutamatergic ones. Tonic DA release in the striatum during pacemaking is required to maintain motor activity, and burst firing evokes phasic DA release, necessary for cue-dependent learning tasks. However, it is still unknown how the firing properties of SNc DA neurons mature during postnatal development before reaching the adult state. We studied the postnatal developmental profile of spontaneous and evoked AMPA and NMDA (N-Methyl-D-aspartic acid) receptor-mediated excitatory postsynaptic currents (EPSCs) in SNc DA neurons in brain slices from immature (postnatal days P4–P10) and young adult (P30–P50) tyrosine hydroxylase (TH)-green fluorescent protein mice. We found that somato-dendritic fields of SNc DA neurons are already mature at P4–P10. In contrast, spontaneous glutamatergic EPSCs show a developmental sequence. Spontaneous NMDA EPSCs in particular are larger and more frequent in immature SNc DA neurons than in young adult ones and have a bursty pattern. They are mediated by GluN2B and GluN2D subunit-containing NMDA receptors. The latter generate long-lasting, DQP 1105-sensitive, spontaneous EPSCs, which are transiently recorded during this early period. Due to high NMDA activity, immature SNc DA neurons generate large and long lasting NMDA receptor-dependent (APV-sensitive) bursts in response to the stimulation of the subthalamic nucleus. We conclude that the transient high NMDA activity allows calcium influx into the dendrites of developing SNc DA neurons.
Collapse
Affiliation(s)
- Edouard Pearlstein
- UMR 901, Aix-Marseille Université Marseille, France ; Institut de Neurobiologie de la Méditerranée, Inserm UMR 901 Marseille, France
| | - Laurie-Anne Gouty-Colomer
- UMR 901, Aix-Marseille Université Marseille, France ; Institut de Neurobiologie de la Méditerranée, Inserm UMR 901 Marseille, France
| | - François J Michel
- UMR 901, Aix-Marseille Université Marseille, France ; Institut de Neurobiologie de la Méditerranée, Inserm UMR 901 Marseille, France
| | - Robin Cloarec
- UMR 901, Aix-Marseille Université Marseille, France ; Institut de Neurobiologie de la Méditerranée, Inserm UMR 901 Marseille, France
| | - Constance Hammond
- UMR 901, Aix-Marseille Université Marseille, France ; Institut de Neurobiologie de la Méditerranée, Inserm UMR 901 Marseille, France
| |
Collapse
|
128
|
Early‐life stress increases the survival of midbrain neurons during postnatal development and enhances reward‐related and anxiolytic‐like behaviors in a sex‐dependent fashion. Int J Dev Neurosci 2015; 44:33-47. [DOI: 10.1016/j.ijdevneu.2015.05.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 05/07/2015] [Accepted: 05/08/2015] [Indexed: 01/30/2023] Open
|
129
|
Nieh EH, Matthews GA, Allsop SA, Presbrey KN, Leppla CA, Wichmann R, Neve R, Wildes CP, Tye KM. Decoding neural circuits that control compulsive sucrose seeking. Cell 2015; 160:528-41. [PMID: 25635460 DOI: 10.1016/j.cell.2015.01.003] [Citation(s) in RCA: 285] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 11/02/2014] [Accepted: 12/23/2014] [Indexed: 11/19/2022]
Abstract
The lateral hypothalamic (LH) projection to the ventral tegmental area (VTA) has been linked to reward processing, but the computations within the LH-VTA loop that give rise to specific aspects of behavior have been difficult to isolate. We show that LH-VTA neurons encode the learned action of seeking a reward, independent of reward availability. In contrast, LH neurons downstream of VTA encode reward-predictive cues and unexpected reward omission. We show that inhibiting the LH-VTA pathway reduces "compulsive" sucrose seeking but not food consumption in hungry mice. We reveal that the LH sends excitatory and inhibitory input onto VTA dopamine (DA) and GABA neurons, and that the GABAergic projection drives feeding-related behavior. Our study overlays information about the type, function, and connectivity of LH neurons and identifies a neural circuit that selectively controls compulsive sugar consumption, without preventing feeding necessary for survival, providing a potential target for therapeutic interventions for compulsive-overeating disorder.
Collapse
Affiliation(s)
- Edward H Nieh
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Gillian A Matthews
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Stephen A Allsop
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kara N Presbrey
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Christopher A Leppla
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Romy Wichmann
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Rachael Neve
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Craig P Wildes
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kay M Tye
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
130
|
A subpopulation of neurochemically-identified ventral tegmental area dopamine neurons is excited by intravenous cocaine. J Neurosci 2015; 35:1965-78. [PMID: 25653355 DOI: 10.1523/jneurosci.3422-13.2015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Systemic administration of cocaine is thought to decrease the firing rates of ventral tegmental area (VTA) dopamine (DA) neurons. However, this view is based on categorizations of recorded neurons as DA neurons using preselected electrophysiological characteristics lacking neurochemical confirmation. Without applying cellular preselection, we recorded the impulse activity of VTA neurons in response to cocaine administration in anesthetized adult rats. The phenotype of recorded neurons was determined by their juxtacellular labeling and immunohistochemical detection of tyrosine hydroxylase (TH), a DA marker. We found that intravenous cocaine altered firing rates in the majority of recorded VTA neurons. Within the cocaine-responsive neurons, half of the population was excited and the other half was inhibited. Both populations had similar discharge rates and firing regularities, and most neurons did not exhibit changes in burst firing. Inhibited neurons were more abundant in the posterior VTA, whereas excited neurons were distributed evenly throughout the VTA. Cocaine-excited neurons were more likely to be excited by footshock. Within the subpopulation of TH-positive neurons, 36% were excited by cocaine and 64% were inhibited. Within the subpopulation of TH-negative neurons, 44% were excited and 28% were inhibited. Contrary to the prevailing view that all DA neurons are inhibited by cocaine, we found a subset of confirmed VTA DA neurons that is excited by systemic administration of cocaine. We provide evidence indicating that DA neurons are heterogeneous in their response to cocaine and that VTA non-DA neurons play an active role in processing systemic cocaine.
Collapse
|
131
|
Taylor SR, Badurek S, Dileone RJ, Nashmi R, Minichiello L, Picciotto MR. GABAergic and glutamatergic efferents of the mouse ventral tegmental area. J Comp Neurol 2015; 522:3308-34. [PMID: 24715505 DOI: 10.1002/cne.23603] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 04/02/2014] [Accepted: 04/03/2014] [Indexed: 12/11/2022]
Abstract
The role of dopaminergic (DA) projections from the ventral tegmental area (VTA) in appetitive and rewarding behavior has been widely studied, but the VTA also has documented DA-independent functions. Several drugs of abuse, act on VTA GABAergic neurons, and most studies have focused on local inhibitory connections. Relatively little is known about VTA GABA projection neurons and their connections to brain sites outside the VTA. This study employed viral-vector-mediated cell-type-specific anterograde tracing, classical retrograde tracing, and immunohistochemistry to characterize VTA GABA efferents throughout the brain. We found that VTA GABA neurons project widely to forebrain and brainstem targets, including the ventral pallidum, lateral and magnocellular preoptic nuclei, lateral hypothalamus, and lateral habenula. Minor projections also go to central amygdala, mediodorsal thalamus, dorsal raphe, and deep mesencephalic nuclei, and sparse projections go to prefrontal cortical regions and to nucleus accumbens shell and core. These projections differ from the major VTA DA target regions. Retrograde tracing studies confirmed results from the anterograde experiments and differences in projections from VTA subnuclei. Retrogradely labeled GABA neurons were not numerous, and most non-tyrosine hydroxylase/retrogradely labeled cells lacked GABAergic markers. Many non-TH/retrogradely labeled cells projecting to several areas expressed VGluT2. VTA GABA and glutamate neurons project throughout the brain, most prominently to regions with reciprocal connections to the VTA. These data indicate that VTA GABA and glutamate neurons may have more DA-independent functions than previously recognized.
Collapse
Affiliation(s)
- Seth R Taylor
- Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut, 06519
| | | | | | | | | | | |
Collapse
|
132
|
Stuber GD, Stamatakis AM, Kantak PA. Considerations when using cre-driver rodent lines for studying ventral tegmental area circuitry. Neuron 2015; 85:439-45. [PMID: 25611514 DOI: 10.1016/j.neuron.2014.12.034] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2014] [Indexed: 01/20/2023]
Abstract
The use of Cre-driver rodent lines for targeting ventral tegmental area (VTA) cell types has generated important and novel insights into how precise neurocircuits regulate physiology and behavior. While this approach generally results in enhanced cellular specificity, an important issue has recently emerged related to the selectivity and penetrance of viral targeting of VTA neurons using several Cre-driver transgenic mouse lines. Here, we highlight several considerations when utilizing these tools to study the function of genetically defined neurocircuits. While VTA dopaminergic neurons have previously been targeted and defined by the expression of single genes important for aspects of dopamine neurotransmission, many VTA and neighboring cells display dynamic gene expression phenotypes that are partially consistent with both classically described dopaminergic and non-dopaminergic neurons. Thus, in addition to varying degrees of selectivity and penetrance, distinct Cre lines likely permit targeting of partially overlapping, but not identical VTA cell populations. This Matters Arising Response paper addresses the Lammel et al. (2015) Matters Arising paper, published concurrently in Neuron.
Collapse
Affiliation(s)
- Garret D Stuber
- Departments of Psychiatry and Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, USA; Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - Alice M Stamatakis
- Curriculum in Neurobiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Pranish A Kantak
- Departments of Psychiatry and Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
133
|
Homeostatic regulation of excitatory synapses on striatal medium spiny neurons expressing the D2 dopamine receptor. Brain Struct Funct 2015; 221:2093-107. [PMID: 25782435 DOI: 10.1007/s00429-015-1029-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 03/06/2015] [Indexed: 10/23/2022]
Abstract
Striatal medium spiny neurons (MSNs) are contacted by glutamatergic axon terminals originating from cortex, thalamus and other regions. The striatum is also innervated by dopaminergic (DAergic) terminals, some of which release glutamate as a co-transmitter. Despite evidence for functional DA release at birth in the striatum, the role of DA in the establishment of striatal circuitry is unclear. In light of recent work suggesting activity-dependent homeostatic regulation of glutamatergic terminals on MSNs expressing the D2 DA receptor (D2-MSNs), we used primary co-cultures to test the hypothesis that stimulation of DA and glutamate receptors regulates the homeostasis of glutamatergic synapses on MSNs. Co-culture of D2-MSNs with mesencephalic DA neurons or with cortical neurons produced an increase in spines and functional glutamate synapses expressing VGLUT2 or VGLUT1, respectively. The density of VGLUT2-positive terminals was reduced by the conditional knockout of this gene from DA neurons. In the presence of both mesencephalic and cortical neurons, the density of synapses reached the same total, compatible with the possibility of a homeostatic mechanism capping excitatory synaptic density. Blockade of D2 receptors increased the density of cortical and mesencephalic glutamatergic terminals, without changing MSN spine density or mEPSC frequency. Combined blockade of AMPA and NMDA glutamate receptors increased the density of cortical terminals and decreased that of mesencephalic VGLUT2-positive terminals, with no net change in total excitatory terminal density or in mEPSC frequency. These results suggest that DA and glutamate signaling regulate excitatory inputs to striatal D2-MSNs at both the pre- and postsynaptic level, under the influence of a homeostatic mechanism controlling functional output of the circuit.
Collapse
|
134
|
Yamaguchi T, Qi J, Wang HL, Zhang S, Morales M. Glutamatergic and dopaminergic neurons in the mouse ventral tegmental area. Eur J Neurosci 2015; 41:760-72. [PMID: 25572002 PMCID: PMC4363208 DOI: 10.1111/ejn.12818] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 12/02/2014] [Indexed: 12/31/2022]
Abstract
The ventral tegmental area (VTA) comprises dopamine (DA), γ-aminobutyric acid (GABA) and glutamate (Glu) neurons. Some rat VTA Glu neurons, expressing vesicular glutamate transporter 2 (VGluT2), co-express tyrosine hydroxylase (TH). While transgenic mice are now being used in attempts to determine the role of VGluT2/TH neurons in reward and neuronal signaling, such neurons have not been characterized in mouse tissue. By cellular detection of VGluT2 mRNA and TH immunoreactivity (TH-IR), we determined the cellular expression of VGluT2 mRNA within VTA TH-IR neurons in the mouse. We found that some mouse VGluT2 neurons coexpressed TH-IR, but their frequency was lower than in the rat. To determine whether low expression of TH mRNA or TH-IR accounts for this low frequency, we evaluated VTA cellular coexpression of TH transcripts and TH protein. Within the medial aspects of the VTA, some neurons expressed TH mRNA but lacked TH-IR; among them a subset coexpressed VGluT2 mRNA. To determine if lack of VTA TH-IR was due to TH trafficking, we tagged VTA TH neurons by Cre-inducible expression of mCherry in TH::Cre mice. By dual immunofluorescence, we detected axons containing mCherry, but lacking TH-IR, in the lateral habenula, indicating that low frequency of VGluT2 mRNA (+)/TH-IR (+) neurons in the mouse is due to lack of synthesis of TH protein, rather than TH protein trafficking. In conclusion, VGluT2 neurons are present in the rat and mouse VTA, but they differ in the populations of VGluT2/TH and TH neurons. Under normal conditions, the translation of TH protein is suppressed in the mouse mesohabenular TH neurons.
Collapse
Affiliation(s)
- Tsuyoshi Yamaguchi
- TY. Current address, Department of Histology and Neurobiology, Dokkyo Medical University, 880 Kitakobayashi, Mibu-machi, Shimotsuga-gun, Tochigi, 321-0293 JAPAN,
| | | | - Hui-Ling Wang
- National Institutes of Health. National Institute on Drug Abuse, Intramural Research Program. Neuronal Networks Section. 251 Bayview Boulevard, Baltimore, MD 21224
| | - Shiliang Zhang
- National Institutes of Health. National Institute on Drug Abuse, Intramural Research Program. Neuronal Networks Section. 251 Bayview Boulevard, Baltimore, MD 21224
| | - Marisela Morales
- National Institutes of Health. National Institute on Drug Abuse, Intramural Research Program. Neuronal Networks Section. 251 Bayview Boulevard, Baltimore, MD 21224
| |
Collapse
|
135
|
Role of glutamatergic projections from ventral tegmental area to lateral habenula in aversive conditioning. J Neurosci 2015; 34:13906-10. [PMID: 25319687 DOI: 10.1523/jneurosci.2029-14.2014] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The ventral tegmental area (VTA) plays roles in both reward and aversion. The participation of VTA in diverse behaviors likely reflects its heterogeneous neuronal phenotypes and circuits. Recent findings indicate that VTA GABAergic neurons that coexpress tyrosine hydroxylase (TH) projecting to lateral habenula (LHb) play a role in reward. In addition to these mesohabenular TH-GABAergic neurons, the VTA has many neurons expressing vesicular glutamate transporter 2 (VGluT2) that also project to LHb. To determine the behavioral role of mesohabenular VGluT2 neurons, we targeted channelrhodopsin2 to VTA VGluT2 neurons of VGluT2::Cre mice. These mice were tested in an apparatus where moving into one chamber stimulated VTA VGluT2 projections within the LHb, and exiting the chamber inactivated the stimulation. We found that mice spent significantly less time in the chamber where VGluT2 mesohabenular fiber stimulation occurred. Mice that received injections of mixed AMPA and NMDA glutamate receptor antagonists in LHb were unresponsive to VGluT2-mesohabenular fiber stimulation, demonstrating the participation of LHb glutamate receptors in mesohabenular stimulation-elicited aversion. In the absence of light stimulation, mice showed a conditioned place aversion to the chamber that was previously associated with VGluT2-mesohabenular fiber stimulation. We conclude that there is a glutamatergic signal from VTA VGluT2-mesohabenular neurons that plays a role in aversion by activating LHb glutamatergic receptors.
Collapse
|
136
|
Sego C, Gonçalves L, Lima L, Furigo IC, Donato J, Metzger M. Lateral habenula and the rostromedial tegmental nucleus innervate neurochemically distinct subdivisions of the dorsal raphe nucleus in the rat. J Comp Neurol 2014; 522:1454-84. [PMID: 24374795 DOI: 10.1002/cne.23533] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 12/23/2013] [Accepted: 12/23/2013] [Indexed: 02/06/2023]
Abstract
The lateral habenula (LHb) is an epithalamic structure differentiated in a medial (LHbM) and a lateral division (LHbL). Together with the rostromedial tegmental nucleus (RMTg), the LHb has been implicated in the processing of aversive stimuli and inhibitory control of monoamine nuclei. The inhibitory LHb influence on midbrain dopamine neurons has been shown to be mainly mediated by the RMTg, a mostly GABAergic nucleus that receives a dominant input from the LHbL. Interestingly, the RMTg also projects to the dorsal raphe nucleus (DR), which also receives direct LHb projections. To compare the organization and transmitter phenotype of LHb projections to the DR, direct and indirect via the RMTg, we first placed injections of the anterograde tracer Phaseolus vulgaris leucoagglutinin into the LHb or the RMTg. We then confirmed our findings by retrograde tracing and investigated a possible GABAergic phenotype of DR-projecting RMTg neurons by combining retrograde tracing with in situ hybridization for GAD67. We found only moderate direct LHb projections to the DR, which mainly emerged from the LHbM and were predominantly directed to the serotonin-rich caudal DR. In contrast, RMTg projections to the DR were more robust, emerged from RMTg neurons enriched in GAD67 mRNA, and were focally directed to a distinctive DR subdivision immunohistochemically characterized as poor in serotonin and enriched in presumptive glutamatergic neurons. Thus, besides its well-acknowledged role as a GABAergic control center for the ventral tegmental area (VTA)-nigra complex, our findings indicate that the RMTg is also a major GABAergic relay between the LHb and the DR.
Collapse
Affiliation(s)
- Chemutai Sego
- Department of Physiology & Biophysics, Institute of Biomedical Sciences, University of São Paulo, 05508-900, São Paulo, Brazil; Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, 05508-900, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
137
|
Qi J, Zhang S, Wang HL, Wang H, de Jesus Aceves Buendia J, Hoffman AF, Lupica CR, Seal RP, Morales M. A glutamatergic reward input from the dorsal raphe to ventral tegmental area dopamine neurons. Nat Commun 2014; 5:5390. [PMID: 25388237 PMCID: PMC4231541 DOI: 10.1038/ncomms6390] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 09/26/2014] [Indexed: 02/07/2023] Open
Abstract
Electrical stimulation of the dorsal raphe (DR) and ventral tegmental area (VTA) activates the fibres of the same reward pathway but the phenotype of this pathway and the direction of the reward-relevant fibres have not been determined. Here we report rewarding effects following activation of a DR-originating pathway consisting of vesicular glutamate transporter 3 (VGluT3) containing neurons that form asymmetric synapses onto VTA dopamine neurons that project to nucleus accumbens. Optogenetic VTA activation of this projection elicits AMPA-mediated synaptic excitatory currents in VTA mesoaccumbens dopaminergic neurons and causes dopamine release in nucleus accumbens. Activation also reinforces instrumental behaviour and establishes conditioned place preferences. These findings indicate that the DR-VGluT3 pathway to VTA utilizes glutamate as a neurotransmitter and is a substrate linking the DR-one of the most sensitive reward sites in the brain--to VTA dopaminergic neurons.
Collapse
Affiliation(s)
- Jia Qi
- National Institute on Drug Abuse, Neuronal Networks Section, National Institutes of Health, Baltimore, Maryland, USA
| | - Shiliang Zhang
- National Institute on Drug Abuse, Neuronal Networks Section, National Institutes of Health, Baltimore, Maryland, USA
| | - Hui-Ling Wang
- National Institute on Drug Abuse, Neuronal Networks Section, National Institutes of Health, Baltimore, Maryland, USA
| | - Huikun Wang
- National Institute on Drug Abuse, Electrophysiology Research Section, National Institutes of Health, Baltimore, Maryland, USA
| | - Jose de Jesus Aceves Buendia
- National Institute on Drug Abuse, Neuronal Networks Section, National Institutes of Health, Baltimore, Maryland, USA
| | - Alexander F. Hoffman
- National Institute on Drug Abuse, Electrophysiology Research Section, National Institutes of Health, Baltimore, Maryland, USA
| | - Carl R. Lupica
- National Institute on Drug Abuse, Electrophysiology Research Section, National Institutes of Health, Baltimore, Maryland, USA
| | - Rebecca P. Seal
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Marisela Morales
- National Institute on Drug Abuse, Neuronal Networks Section, National Institutes of Health, Baltimore, Maryland, USA
| |
Collapse
|
138
|
Xu L. Leptin action in the midbrain: From reward to stress. J Chem Neuroanat 2014; 61-62:256-65. [DOI: 10.1016/j.jchemneu.2014.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 06/13/2014] [Accepted: 06/25/2014] [Indexed: 12/11/2022]
|
139
|
Single rodent mesohabenular axons release glutamate and GABA. Nat Neurosci 2014; 17:1543-51. [PMID: 25242304 PMCID: PMC4843828 DOI: 10.1038/nn.3823] [Citation(s) in RCA: 254] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 08/27/2014] [Indexed: 02/08/2023]
Abstract
The lateral habenula (LHb) is involved in reward, aversion, addiction and depression through descending interactions with several brain structures, including the ventral tegmental area (VTA). The VTA provides reciprocal inputs to LHb, but their actions are unclear. Here we show that the majority of rat and mouse VTA neurons innervating LHb coexpress markers for both glutamate signaling (vesicular glutamate transporter 2; VGluT2) and GABA signaling (glutamic acid decarboxylase; GAD, and vesicular GABA transporter; VGaT). A single axon from these mesohabenular neurons coexpresses VGluT2 protein and VGaT protein and, surprisingly, establishes symmetric and asymmetric synapses on LHb neurons. In LHb slices, light activation of mesohabenular fibers expressing channelrhodopsin2 driven by VGluT2 (Slc17a6) or VGaT (Slc32a1) promoters elicits release of both glutamate and GABA onto single LHb neurons. In vivo light activation of mesohabenular terminals inhibits or excites LHb neurons. Our findings reveal an unanticipated type of VTA neuron that cotransmits glutamate and GABA and provides the majority of mesohabenular inputs.
Collapse
|
140
|
Del Cid-Pellitero E, Garzón M. Hypocretin1/orexinA-immunoreactive axons form few synaptic contacts on rat ventral tegmental area neurons that project to the medial prefrontal cortex. BMC Neurosci 2014; 15:105. [PMID: 25194917 PMCID: PMC4167264 DOI: 10.1186/1471-2202-15-105] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Accepted: 08/28/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hypocretins/orexins (Hcrt/Ox) are hypothalamic neuropeptides involved in sleep-wakefulness regulation. Deficiency in Hcrt/Ox neurotransmission results in the sleep disorder narcolepsy, which is characterized by an inability to maintain wakefulness. The Hcrt/Ox neurons are maximally active during wakefulness and project widely to the ventral tegmental area (VTA). A dopamine-containing nucleus projecting extensively to the cerebral cortex, the VTA enhances wakefulness. In the present study, we used retrograde tracing from the medial prefrontal cortex (mPFC) to examine whether Hcrt1/OxA neurons target VTA neurons that could sustain behavioral wakefulness through their projections to mPFC. RESULTS The retrograde tracer Fluorogold (FG) was injected into mPFC and, after an optimal survival period, sections through the VTA were processed for dual immunolabeling of anti-FG and either anti-Hcrt1/OxA or anti-TH antisera. Most VTA neurons projecting to the mPFC were located in the parabrachial nucleus of the ipsilateral VTA and were non-dopaminergic. Only axonal profiles showed Hcrt1/OxA-immunoreactivity in VTA. Hcrt1/OxA reactivity was observed in axonal boutons and many unmyelinated axons. The Hcrt1/OxA immunoreactivity was found filling axons but it was also observed in parts of the cytoplasm and dense-core vesicles. Hcrt1/OxA-labeled boutons frequently apposed FG-immunolabeled dendrites. However, Hcrt1/OxA-labeled boutons rarely established synapses, which, when they were established, were mainly asymmetric (excitatory-type), with either FG-labeled or unlabeled dendrites. CONCLUSIONS Our results provide ultrastructural evidence that Hcrt1/OxA neurons may exert a direct synaptic influence on mesocortical neurons that would facilitate arousal and wakefulness. The paucity of synapses, however, suggest that the activity of VTA neurons with cortical projections might also be modulated by Hcrt1/OxA non-synaptic actions. In addition, Hcrt1/OxA could modulate the postsynaptic excitatory responses of VTA neurons with cortical projections to a co-released excitatory transmitter from Hcrt1/OxA axons. Our observation of Hcrt1/OxA targeting of mesocortical neurons supports Hcrt1/OxA wakefulness enhancement in the VTA and could help explain the characteristic hypersomnia present in narcoleptic patients.
Collapse
Affiliation(s)
| | - Miguel Garzón
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid, Arzobispo Morcillo 4, 28029 Madrid, Spain.
| |
Collapse
|
141
|
Marchant NJ, Kaganovsky K, Shaham Y, Bossert JM. Role of corticostriatal circuits in context-induced reinstatement of drug seeking. Brain Res 2014; 1628:219-32. [PMID: 25199590 DOI: 10.1016/j.brainres.2014.09.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 08/28/2014] [Accepted: 09/01/2014] [Indexed: 12/21/2022]
Abstract
Drug addiction is characterized by persistent relapse vulnerability during abstinence. In abstinent drug users, relapse is often precipitated by re-exposure to environmental contexts that were previously associated with drug use. This clinical scenario is modeled in preclinical studies using the context-induced reinstatement procedure, which is based on the ABA renewal procedure. In these studies, context-induced reinstatement of drug seeking is reliably observed in laboratory animals that were trained to self-administer drugs abused by humans. In this review, we summarize neurobiological findings from preclinical studies that have focused on the role of corticostriatal circuits in context-induced reinstatement of heroin, cocaine, and alcohol seeking. We also discuss neurobiological similarities and differences in the corticostriatal mechanisms of context-induced reinstatement across these drug classes. We conclude by briefly discussing future directions in the study of context-induced relapse to drug seeking in rat models. Our main conclusion from the studies reviewed is that there are both similarities (accumbens shell, ventral hippocampus, and basolateral amygdala) and differences (medial prefrontal cortex and its projections to accumbens) in the neural mechanisms of context-induced reinstatement of cocaine, heroin, and alcohol seeking.
Collapse
Affiliation(s)
- Nathan J Marchant
- Behavioral Neuroscience Branch, IRP, NIDA, Baltimore, MD, USA; Florey Institute of Neuroscience & Mental Health, University of Melbourne, Parkville, VIC, Australia.
| | | | - Yavin Shaham
- Behavioral Neuroscience Branch, IRP, NIDA, Baltimore, MD, USA
| | | |
Collapse
|
142
|
Schweimer JV, Coullon GSL, Betts JF, Burnet PWJ, Engle SJ, Brandon NJ, Harrison PJ, Sharp T. Increased burst-firing of ventral tegmental area dopaminergic neurons in D-amino acid oxidase knockout mice in vivo. Eur J Neurosci 2014; 40:2999-3009. [PMID: 25040393 DOI: 10.1111/ejn.12667] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 05/19/2014] [Accepted: 06/10/2014] [Indexed: 01/19/2023]
Abstract
d-Amino acid oxidase (DAO) degrades the N-methyl-d-aspartate (NMDA) receptor co-agonist d-serine, and is implicated in schizophrenia as a risk gene and therapeutic target. In schizophrenia, the critical neurochemical abnormality affects dopamine, but to date there is little evidence that DAO impacts on the dopamine system. To address this issue, we measured the electrophysiological properties of dopaminergic (DA) and non-DA neurons in the ventral tegmental area (VTA) of anaesthetised DAO knockout (DAO(-/-) ) and DAO heterozygote (DAO(+/-) ) mice as compared with their wild-type (DAO(+/+) ) littermates. Genotype was confirmed at the protein level by western blotting and immunohistochemistry. One hundred and thirty-nine VTA neurons were recorded in total, and juxtacellular labelling of a subset revealed that neurons immunopositive for tyrosine hydroxylase had DA-like electrophysiological properties that were distinct from those of neurons that were tyrosine hydroxylase-immunonegative. In DAO(-/-) mice, approximately twice as many DA-like neurons fired in a bursting pattern than in DAO(+/-) or DAO(+/+) mice, but other electrophysiological properties did not differ between genotypes. In contrast, non-DA-like neurons had a lower firing rate in DAO(-/-) mice than in DAO(+/-) or DAO(+/+) mice. These data provide the first direct evidence that DAO modulates VTA DA neuron activity, which is of interest for understanding both the glutamatergic regulation of dopamine function and the therapeutic potential of DAO inhibitors. The increased DA neuron burst-firing probably reflects increased availability of d-serine at VTA NMDA receptors, but the site, mechanism and mediation of the effect requires further investigation, and may include both direct and indirect processes.
Collapse
Affiliation(s)
- Judith V Schweimer
- University Department of Pharmacology, Mansfield Road, Oxford, OX1 3QT, UK; University Department of Psychiatry, Warneford Hospital, Oxford, OX3 7JX, UK
| | | | | | | | | | | | | | | |
Collapse
|
143
|
McCollum LA, Roberts RC. Ultrastructural localization of tyrosine hydroxylase in tree shrew nucleus accumbens core and shell. Neuroscience 2014; 271:23-34. [PMID: 24769226 PMCID: PMC4060433 DOI: 10.1016/j.neuroscience.2014.04.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/21/2014] [Accepted: 04/15/2014] [Indexed: 10/25/2022]
Abstract
Many behavioral, physiological, and anatomical studies utilize animal models to investigate human striatal pathologies. Although commonly used, rodent striatum may not present the optimal animal model for certain studies due to a lesser morphological complexity than that of non-human primates, which are increasingly restricted in research. As an alternative, the tree shrew could provide a beneficial animal model for studies of the striatum. The gross morphology of the tree shrew striatum resembles that of primates, with separation of the caudate and putamen by the internal capsule. The neurochemical anatomy of the ventral striatum, specifically the nucleus accumbens, has never been examined. This major region of the limbic system plays a role in normal physiological functioning and is also an area of interest for human striatal disorders. The current study uses immunohistochemistry of calbindin and tyrosine hydroxylase (TH) to determine the ultrastructural organization of the nucleus accumbens core and shell of the tree shrew (Tupaia glis belangeri). Stereology was used to quantify the ultrastructural localization of TH, which displays weaker immunoreactivity in the core and denser immunoreactivity in the shell. In both regions, synapses with TH-immunoreactive axon terminals were primarily symmetric and showed no preference for targeting dendrites versus dendritic spines. The results were compared to previous ultrastructural studies of TH and dopamine in rat and monkey nucleus accumbens. Tree shrews and monkeys show no preference for the postsynaptic target in the shell, in contrast to rats which show a preference for synapsing with dendrites. Tree shrews have a ratio of asymmetric to symmetric synapses formed by TH-immunoreactive terminals that is intermediate between rats and monkeys. The findings from this study support the tree shrew as an alternative model for studies of human striatal pathologies.
Collapse
Affiliation(s)
- L A McCollum
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - R C Roberts
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
144
|
Walsh JJ, Han MH. The heterogeneity of ventral tegmental area neurons: Projection functions in a mood-related context. Neuroscience 2014; 282:101-8. [PMID: 24931766 DOI: 10.1016/j.neuroscience.2014.06.006] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 06/04/2014] [Accepted: 06/05/2014] [Indexed: 11/18/2022]
Abstract
The ventral tegmental area (VTA) in the brain's reward circuitry is composed of a heterogeneous population of dopamine, GABA, and glutamate neurons that play important roles in mediating mood-related functions including depression. These neurons project to different brain regions, including the nucleus accumbens (NAc), the medial prefrontal cortex (mPFC), and the amygdala. The functional understanding of these projection pathways has been improved since the extensive use of advanced techniques such as viral-mediated gene transfer, cell-type-specific neurophysiology and circuit-probing optogenetics. In this article, we will discuss the recent progress in understanding these VTA projection-specific functions, focusing on mood-related disorders.
Collapse
Affiliation(s)
- J J Walsh
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Neuroscience Program, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - M H Han
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
145
|
Nikulina EM, Johnston CE, Wang J, Hammer RP. Neurotrophins in the ventral tegmental area: Role in social stress, mood disorders and drug abuse. Neuroscience 2014; 282:122-38. [PMID: 24875178 DOI: 10.1016/j.neuroscience.2014.05.028] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 05/04/2014] [Accepted: 05/11/2014] [Indexed: 01/19/2023]
Abstract
This review discusses the impact of neurotrophins and other trophic factors, including fibroblast growth factor and glial cell line-derived neurotrophic factor, on mood disorders, weight regulation and drug abuse, with an emphasis on stress- and drug-induced changes in the ventral tegmental area (VTA). Neurotrophins, comprising nerve growth factor, brain-derived neurotrophic factor (BDNF), and neurotrophins 3 and 4/5 play important roles in neuronal plasticity and the development of different psychopathologies. In the VTA, most research has focused on the role of BDNF, because other neurotrophins are not found there in significant quantities. BDNF originating in the VTA provides trophic support to dopamine neurons. The diverse intracellular signaling pathways activated by BDNF may underlie precise physiological functions specific to the VTA. In general, VTA BDNF expression increases after psychostimulant exposures, and enhanced BDNF level in the VTA facilitates psychostimulant effects. The impact of VTA BDNF on the behavioral effects of psychostimulants relies primarily on its action within the mesocorticolimbic circuit. In the case of opiates, VTA BDNF expression and effects seem to be dependent on whether an animal is drug-naïve or has a history of drug use, only the latter of which is related to dopamine mechanisms. Social defeat stress that is continuous in mice or intermittent in rats increases VTA BDNF expression, and is associated with depressive and social avoidance behaviors. Intermittent social defeat stress induces persistent VTA BDNF expression that triggers psychostimulant cross-sensitization. Understanding the cellular and molecular substrates of neurotrophin effects may lead to novel therapeutic approaches for the prevention and treatment of substance use and mood disorders.
Collapse
Affiliation(s)
- E M Nikulina
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ, USA.
| | - C E Johnston
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ, USA; Interdisciplinary Neuroscience Program, Arizona State University, Tempe, AZ, USA
| | - J Wang
- Interdisciplinary Neuroscience Program, Arizona State University, Tempe, AZ, USA
| | - R P Hammer
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ, USA; Interdisciplinary Neuroscience Program, Arizona State University, Tempe, AZ, USA; Department of Pharmacology and Department of Psychiatry, University of Arizona College of Medicine, Tucson, AZ, USA
| |
Collapse
|
146
|
Morales M, Root DH. Glutamate neurons within the midbrain dopamine regions. Neuroscience 2014; 282:60-8. [PMID: 24875175 DOI: 10.1016/j.neuroscience.2014.05.032] [Citation(s) in RCA: 181] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Revised: 05/15/2014] [Accepted: 05/18/2014] [Indexed: 12/26/2022]
Abstract
Midbrain dopamine systems play important roles in Parkinson's disease, schizophrenia, addiction, and depression. The participation of midbrain dopamine systems in diverse clinical contexts suggests these systems are highly complex. Midbrain dopamine regions contain at least three neuronal phenotypes: dopaminergic, GABAergic, and glutamatergic. Here, we review the locations, subtypes, and functions of glutamatergic neurons within midbrain dopamine regions. Vesicular glutamate transporter 2 (VGluT2) mRNA-expressing neurons are observed within each midbrain dopamine system. Within rat retrorubral field (RRF), large populations of VGluT2 neurons are observed throughout its anteroposterior extent. Within rat substantia nigra pars compacta (SNC), VGluT2 neurons are observed centrally and caudally, and are most dense within the laterodorsal subdivision. RRF and SNC rat VGluT2 neurons lack tyrosine hydroxylase (TH), making them an entirely distinct population of neurons from dopaminergic neurons. The rat ventral tegmental area (VTA) contains the most heterogeneous populations of VGluT2 neurons. VGluT2 neurons are found in each VTA subnucleus but are most dense within the anterior midline subnuclei. Some subpopulations of rat VGluT2 neurons co-express TH or glutamic acid decarboxylase (GAD), but most of the VGluT2 neurons lack TH or GAD. Different subsets of rat VGluT2-TH neurons exist based on the presence or absence of vesicular monoamine transporter 2, dopamine transporter, or D2 dopamine receptor. Thus, the capacity by which VGluT2-TH neurons may release dopamine will differ based on their capacity to accumulate vesicular dopamine, uptake extracellular dopamine, or be autoregulated by dopamine. Rat VTA VGluT2 neurons exhibit intrinsic VTA projections and extrinsic projections to the accumbens and to the prefrontal cortex. Mouse VTA VGluT2 neurons project to accumbens shell, prefrontal cortex, ventral pallidum, amygdala, and lateral habenula. Given their molecular diversity and participation in circuits involved in addiction, we hypothesize that individual VGluT2 subpopulations of neurons play unique roles in addiction and other disorders.
Collapse
Affiliation(s)
- M Morales
- Neuronal Networks Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, 251 Bayview Boulevard, Suite 200, Baltimore, MD 21224, United States.
| | - D H Root
- Neuronal Networks Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, 251 Bayview Boulevard, Suite 200, Baltimore, MD 21224, United States
| |
Collapse
|
147
|
Nordenankar K, Smith-Anttila CJA, Schweizer N, Viereckel T, Birgner C, Mejia-Toiber J, Morales M, Leao RN, Wallén-Mackenzie Å. Increased hippocampal excitability and impaired spatial memory function in mice lacking VGLUT2 selectively in neurons defined by tyrosine hydroxylase promoter activity. Brain Struct Funct 2014; 220:2171-90. [PMID: 24802380 PMCID: PMC4481332 DOI: 10.1007/s00429-014-0778-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 04/11/2014] [Indexed: 02/01/2023]
Abstract
Three populations of neurons expressing the vesicular glutamate transporter 2 (Vglut2) were recently described in the A10 area of the mouse midbrain, of which two populations were shown to express the gene encoding, the rate-limiting enzyme for catecholamine synthesis, tyrosine hydroxylase (TH).One of these populations ("TH-Vglut2 Class1") also expressed the dopamine transporter (DAT) gene while one did not ("TH-Vglut2 Class2"), and the remaining population did not express TH at all ("Vglut2-only"). TH is known to be expressed by a promoter which shows two phases of activation, a transient one early during embryonal development, and a later one which gives rise to stable endogenous expression of the TH gene. The transient phase is, however, not specific to catecholaminergic neurons, a feature taken to advantage here as it enabled Vglut2 gene targeting within all three A10 populations expressing this gene, thus creating a new conditional knockout. These knockout mice showed impairment in spatial memory function. Electrophysiological analyses revealed a profound alteration of oscillatory activity in the CA3 region of the hippocampus. In addition to identifying a novel role for Vglut2 in hippocampus function, this study points to the need for improved genetic tools for targeting of the diversity of subpopulations of the A10 area.
Collapse
Affiliation(s)
- Karin Nordenankar
- Unit of Functional Neurobiology and Unit of Developmental Genetics, Biomedical Center, Department of Neuroscience, Uppsala University, Box 593, S-751 24, Uppsala, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Hutson LW, Szczytkowski JL, Saurer TB, Lebonville C, Fuchs RA, Lysle DT. Region-specific contribution of the ventral tegmental area to heroin-induced conditioned immunomodulation. Brain Behav Immun 2014; 38:118-24. [PMID: 24462948 PMCID: PMC3989416 DOI: 10.1016/j.bbi.2014.01.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 01/09/2014] [Accepted: 01/10/2014] [Indexed: 01/29/2023] Open
Abstract
Dopamine receptor stimulation is critical for heroin-conditioned immunomodulation; however, it is unclear whether the ventral tegmental area (VTA) contributes to this phenomenon. Hence, rats received repeated pairings of heroin with placement into a distinct environmental context. At test, they were re-exposed to the previously heroin-paired environment followed by systemic lipopolysaccharide treatment to induce an immune response. Bilateral GABA agonist-induced neural inactivation of the anterior, but not the posterior VTA, prior to context re-exposure inhibited the ability of the heroin-paired environment to suppress peripheral nitric oxide and tumor necrosis factor-α expression, suggesting a role for the anterior VTA in heroin-conditioned immunomodulation.
Collapse
Affiliation(s)
| | | | | | | | | | - Donald T. Lysle
- Corresponding Author: , Telephone: +1-919-537-3748, Fax: +1-919-962-2537
| |
Collapse
|
149
|
Blockade of arginine vasotocin signaling reduces aggressive behavior and c-Fos expression in the preoptic area and periventricular nucleus of the posterior tuberculum in male Amphiprion ocellaris. Neuroscience 2014; 267:205-18. [DOI: 10.1016/j.neuroscience.2014.02.045] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 02/22/2014] [Accepted: 02/28/2014] [Indexed: 12/28/2022]
|
150
|
Yetnikoff L, Lavezzi HN, Reichard RA, Zahm DS. An update on the connections of the ventral mesencephalic dopaminergic complex. Neuroscience 2014; 282:23-48. [PMID: 24735820 DOI: 10.1016/j.neuroscience.2014.04.010] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 04/03/2014] [Accepted: 04/04/2014] [Indexed: 12/21/2022]
Abstract
This review covers the intrinsic organization and afferent and efferent connections of the midbrain dopaminergic complex, comprising the substantia nigra, ventral tegmental area and retrorubral field, which house, respectively, the A9, A10 and A8 groups of nigrostriatal, mesolimbic and mesocortical dopaminergic neurons. In addition, A10dc (dorsal, caudal) and A10rv (rostroventral) extensions into, respectively, the ventrolateral periaqueductal gray and supramammillary nucleus are discussed. Associated intrinsic and extrinsic connections of the midbrain dopaminergic complex that utilize gamma-aminobutyric acid (GABA), glutamate and neuropeptides and various co-expressed combinations of these compounds are considered in conjunction with the dopamine-containing systems. A framework is provided for understanding the organization of massive afferent systems descending and ascending to the midbrain dopaminergic complex from the telencephalon and brainstem, respectively. Within the context of this framework, the basal ganglia direct and indirect output pathways are treated in some detail. Findings from rodent brain are briefly compared with those from primates, including humans. Recent literature is emphasized, including traditional experimental neuroanatomical and modern gene transfer and optogenetic studies. An attempt was made to provide sufficient background and cite a representative sampling of earlier primary papers and reviews so that people new to the field may find this to be a relatively comprehensive treatment of the subject.
Collapse
Affiliation(s)
- L Yetnikoff
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, 1402 S. Grand Boulevard, Saint Louis, MO 63104, United States.
| | - H N Lavezzi
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, 1402 S. Grand Boulevard, Saint Louis, MO 63104, United States
| | - R A Reichard
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, 1402 S. Grand Boulevard, Saint Louis, MO 63104, United States
| | - D S Zahm
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, 1402 S. Grand Boulevard, Saint Louis, MO 63104, United States.
| |
Collapse
|