101
|
Doane DF, Lawson MA, Meade JR, Kotz CM, Beverly JL. Orexin-induced feeding requires NMDA receptor activation in the perifornical region of the lateral hypothalamus. Am J Physiol Regul Integr Comp Physiol 2007; 293:R1022-6. [PMID: 17537834 DOI: 10.1152/ajpregu.00282.2007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Food intake is stimulated following administration of orexin-A into the perifornical region of the lateral hypothalamus (LH/PFA). Orexin neurons originating in the LH/PFA interact with a number of hypothalamic systems known to influence food intake, including glutamatergic neurons. Glutamatergic systems in the LH/PFA were demonstrated to initiate feeding through N-methyl-d-aspartic acid (NMDA) receptors. Male Sprague-Dawley rats fitted with brain guide cannulas to the LH/PFA were used in two experiments. In the first experiment, a combination microdialysis/microinjection probe was used to deliver artificial cerebrospinal fluid (aCSF) or 500 pmol of orexin-A into the LH/PFA. Orexin-A increased interstitial glutamate to 143 ± 12% of baseline ( P < 0.05), which remained elevated over the 120-min collection period. In the second experiment, the NMDA receptor antagonist d-2-amino-5-phosphonopentanoic acid (d-AP5; 10 nmol) was administered before orexin-A. The orexin-induced increase in food intake (from 1.1 ± 0.4 to 3.2 ± 0.5 g, P < 0.05) during the first hour was absent in rats receiving d-AP5 + orexin-A (1.2 ± 0.5 g). There was no effect of d-AP5 alone on food intake. These data support glutamatergic systems in the LH/PFA mediating the feeding response to orexin-A through NMDA receptors.
Collapse
Affiliation(s)
- Dolores F Doane
- University of Illinois at Urbana-Champaign, 1207 W. Gregory Drive, Urbana, IL 61801, USA
| | | | | | | | | |
Collapse
|
102
|
Sarkissian JS, Galoyan AA, Kamalyan RG, Chavushyan VA, Meliksetyan IB, Poghosyan MV, Gevorkyan OV, Hovsepyan AS, Avakyan ZE, Kazaryan SA, Manucharyan MK. The effect of bacterial melanin on electrical activity of neurons of the substantia nigra under conditions of GABA generation. NEUROCHEM J+ 2007. [DOI: 10.1134/s1819712407030099] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
103
|
Sano H, Yokoi M. Striatal medium spiny neurons terminate in a distinct region in the lateral hypothalamic area and do not directly innervate orexin/hypocretin- or melanin-concentrating hormone-containing neurons. J Neurosci 2007; 27:6948-55. [PMID: 17596443 PMCID: PMC6672219 DOI: 10.1523/jneurosci.0514-07.2007] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neuronal circuits including medium spiny neurons (MSNs) in the nucleus accumbens (NAc) and melanin-concentrating hormone (MCH)-containing neurons in the lateral hypothalamic area (LHA) are hypothesized to play an important role in hedonic feeding. A reciprocal connection between NAc MSNs and MCH-containing neurons is proposed to form a neuronal circuit that is involved in hedonic feeding. Although NAc MSNs have been shown to receive projection from MCH-containing neurons, it is not known whether MCH-containing neurons in the LHA also receive direct inputs from NAc MSNs. Here, we developed a genetic approach that allows us to visualize almost all striatal MSNs including NAc MSNs. We demonstrate that striatal MSNs terminate in a distinct region within the anterior LHA, and that the terminal area of striatal MSNs in this region contains glutamatergic neurons and is distinctly separate from orexin/hypocretin- or MCH-containing neurons. These observations suggest that NAc MSNs do not directly innervate MCH-containing neurons, but may indirectly signal MCH-containing neurons via glutamatergic neurons in the anterior LHA.
Collapse
Affiliation(s)
- Hiromi Sano
- Molecular Neurogenetics Unit, Horizontal Medical Research Organization, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan, and Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, 332-0012 Japan
| | - Mineto Yokoi
- Molecular Neurogenetics Unit, Horizontal Medical Research Organization, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan, and Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, 332-0012 Japan
| |
Collapse
|
104
|
Trinko R, Sears RM, Guarnieri DJ, DiLeone RJ. Neural mechanisms underlying obesity and drug addiction. Physiol Behav 2007; 91:499-505. [PMID: 17292426 DOI: 10.1016/j.physbeh.2007.01.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Revised: 01/08/2007] [Accepted: 01/08/2007] [Indexed: 11/29/2022]
Abstract
Increasing rates of obesity have alarmed health officials and prompted much public dialogue. While the factors leading to obesity are numerous, an inability to control intake of freely available food is central to the problem. In order to understand this, we need to better define the mechanisms by which the brain regulates food intake, and why it is often difficult to control consumption. From this point of view, it seems valuable to consider the commonalities between food intake and drug abuse. While research in the two fields has historically emphasized different neural substrates, recent data have increased interest in better defining elements that may underlie both drug addiction and obesity. Here we discuss some of these shared elements with an emphasis on emerging areas of research that better define common mechanisms leading to overconsumption.
Collapse
Affiliation(s)
- Richard Trinko
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, USA
| | | | | | | |
Collapse
|
105
|
Luppi PH, Gervasoni D, Verret L, Goutagny R, Peyron C, Salvert D, Leger L, Fort P. Paradoxical (REM) sleep genesis: the switch from an aminergic-cholinergic to a GABAergic-glutamatergic hypothesis. ACTA ACUST UNITED AC 2007; 100:271-83. [PMID: 17689057 DOI: 10.1016/j.jphysparis.2007.05.006] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In the middle of the last century, Michel Jouvet discovered paradoxical sleep (PS), a sleep phase paradoxically characterized by cortical activation and rapid eye movements and a muscle atonia. Soon after, he showed that it was still present in "pontine cats" in which all structures rostral to the brainstem have been removed. Later on, it was demonstrated that the pontine peri-locus coeruleus alpha (peri-LCalpha in cats, corresponding to the sublaterodorsal nucleus, SLD, in rats) is responsible for PS onset. It was then proposed that the onset and maintenance of PS is due to a reciprocal inhibitory interaction between neurons presumably cholinergic specifically active during PS localized in this region and monoaminergic neurons. In the last decade, we have tested this hypothesis with our model of head-restrained rats and functional neuroanatomical studies. Our results confirmed that the SLD in rats contains the neurons responsible for the onset and maintenance of PS. They further indicate that (1) these neurons are non-cholinergic possibly glutamatergic neurons, (2) they directly project to the glycinergic premotoneurons localized in the medullary ventral gigantocellular reticular nucleus (GiV), (3) the main neurotransmitter responsible for their inhibition during waking (W) and slow wave sleep (SWS) is GABA rather than monoamines, (4) they are constantly and tonically excited by glutamate and (5) the GABAergic neurons responsible for their tonic inhibition during W and SWS are localized in the deep mesencephalic reticular nucleus (DPMe). We also showed that the tonic inhibition of locus coeruleus (LC) noradrenergic and dorsal raphe (DRN) serotonergic neurons during sleep is due to a tonic GABAergic inhibition by neurons localized in the dorsal paragigantocellular reticular nucleus (DPGi) and the ventrolateral periaqueductal gray (vlPAG). We propose that these GABAergic neurons also inhibit the GABAergic neurons of the DPMe at the onset and during PS and are therefore responsible for the onset and maintenance of PS.
Collapse
Affiliation(s)
- Pierre-Hervé Luppi
- UMR5167 CNRS, Faculté de Médecine Laennec, Institut Fédératif des Neurosciences de Lyon (IFR 19), Université Claude Bernard Lyon I, 7, Rue Guillaume Paradin, 69372 Lyon cedex 08, France.
| | | | | | | | | | | | | | | |
Collapse
|
106
|
Tallent MK. Presynaptic inhibition of glutamate release by neuropeptides: use-dependent synaptic modification. Results Probl Cell Differ 2007; 44:177-200. [PMID: 17554500 DOI: 10.1007/400_2007_037] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Neuropeptides are signaling molecules that interact with G-protein coupled receptors located both pre- and postsynaptically. Presynaptically, these receptors are localized in axons and terminals away from presynaptic specializations. Neuropeptides are stored in dense core vesicles that are distinct from the clear synaptic vesicles containing classic neurotransmitters such as glutamate and GABA. Because they require a stronger Ca(2+) signal than synaptic vesicles, dense core vesicles do not release neuropeptides with single action potentials but rather require high-frequency trains. Thus, neuropeptides only modulate strongly stimulated synapses, providing negative or positive feedback. Many neuropeptides have been found to inhibit glutamate release from presynaptic terminals, and the major mechanism is likely direct interaction of betagamma G-protein subunits with presynaptic proteins such as SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor). The use of mouse genetic models and specific receptor antagonists are beginning to unravel the function of inhibitory neuropeptides. The opioid receptors kappa and mu, which are activated by endogenous opioid peptides such as dynorphin, enkephalin, and possibly the endomorphins, are important in modulating pain transmission. Dynorphin, nociceptin/orphanin FQ, and somatostatin and its related peptide cortistatin appear to play a role in modulation of learning and memory. Neuropeptide Y has important functions in ingestive behavior and also in entraining circadian rhythms. The existence of neuropeptides greatly expands the computational ability of the brain by providing additional levels of modulation.
Collapse
Affiliation(s)
- Melanie K Tallent
- Department of Pharmacology and Physiology, Philadelphia, PA 19102, USA.
| |
Collapse
|
107
|
Huang H, Acuna-Goycolea C, Li Y, Cheng HM, Obrietan K, van den Pol AN. Cannabinoids excite hypothalamic melanin-concentrating hormone but inhibit hypocretin/orexin neurons: implications for cannabinoid actions on food intake and cognitive arousal. J Neurosci 2007; 27:4870-81. [PMID: 17475795 PMCID: PMC6672093 DOI: 10.1523/jneurosci.0732-07.2007] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cannabinoids modulate energy homeostasis and decrease cognitive arousal, possibly by acting on hypothalamic neurons including those that synthesize melanin-concentrating hormone (MCH) or hypocretin/orexin. Using patch-clamp recordings, we compared the actions of cannabinoid agonists and antagonists on identified MCH or hypocretin neurons in green fluorescent protein-expressing transgenic mice. The cannabinoid type-1 receptor (CB1R) agonist R-(+)-[2,3-dihydro-5-methyl-3-(4-morpho linylmethyl)pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl]-1-naphthalenylmethanone mesylate (WIN55,212,2) depolarized MCH cells and increased spike frequency; in contrast, WIN55,212,2 hyperpolarized and reduced spontaneous firing of the neighboring hypocretin cells, both results consistent with reduced activity seen with intracerebral cannabinoid infusions. These effects were prevented by AM251 [N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide], a CB1R antagonist, and by tetrodotoxin, suggesting no postsynaptic effect on either neuron type. In MCH cells, depolarizing WIN55,212,2 actions were abolished by the GABA(A) receptor antagonist bicuculline, suggesting that the CB1R-mediated depolarization was attributable to reduced synaptic GABA release. WIN55,212,2 decreased spontaneous IPSCs, reduced the frequency but not amplitude of miniature IPSCs, and reduced electrically evoked synaptic currents in MCH cells. Glutamate microdrop experiments suggest that WIN55,212,2 acted on axons arising from lateral hypothalamus local inhibitory cells that innervate MCH neurons. In hypocretin neurons, the reduced spike frequency induced by WIN55,212,2 was attributable to presynaptic attenuation of glutamate release; CB1R agonists depressed spontaneous and evoked glutamatergic currents and reduced the frequency of miniature EPSCs. Cannabinoid actions on hypocretin neurons were abolished by ionotropic glutamate receptor antagonists. Together, these results show that cannabinoids have opposite effects on MCH and hypocretin neurons. These opposing actions could help explain the increase in feeding and reduction in arousal induced by cannabinoids.
Collapse
Affiliation(s)
- Hao Huang
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06520, and
| | - Claudio Acuna-Goycolea
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06520, and
| | - Ying Li
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06520, and
| | - H. M. Cheng
- Department of Neuroscience, Ohio State University, Columbus, Ohio 43210
| | - Karl Obrietan
- Department of Neuroscience, Ohio State University, Columbus, Ohio 43210
| | - Anthony N. van den Pol
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06520, and
| |
Collapse
|
108
|
Suntsova N, Guzman-Marin R, Kumar S, Alam MN, Szymusiak R, McGinty D. The median preoptic nucleus reciprocally modulates activity of arousal-related and sleep-related neurons in the perifornical lateral hypothalamus. J Neurosci 2007; 27:1616-30. [PMID: 17301170 PMCID: PMC2770377 DOI: 10.1523/jneurosci.3498-06.2007] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Revised: 01/08/2007] [Accepted: 01/09/2007] [Indexed: 11/21/2022] Open
Abstract
The perifornical-lateral hypothalamic area (PF/LH) contains neuronal groups playing an important role in control of waking and sleep. Among the brain regions that regulate behavioral states, one of the strongest sources of projections to the PF/LH is the median preoptic nucleus (MnPN) containing a sleep-active neuronal population. To evaluate the role of MnPN afferents in the control of PF/LH neuronal activity, we studied the responses of PF/LH cells to electrical stimulation or local chemical manipulation of the MnPN in freely moving rats. Single-pulse electrical stimulation evoked responses in 79% of recorded PF/LH neurons. No cells were activated antidromically. Direct and indirect transsynaptic effects depended on sleep-wake discharge pattern of PF/LH cells. The majority of arousal-related neurons, that is, cells discharging at maximal rates during active waking (AW) or during AW and rapid eye movement (REM) sleep, exhibited exclusively or initially inhibitory responses to stimulation. Sleep-related neurons, the cells with elevated discharge during non-REM and REM sleep or selectively active in REM sleep, exhibited exclusively or initially excitatory responses. Activation of the MnPN via microdialytic application of L-glutamate or bicuculline resulted in reduced discharge of arousal-related and in excitation of sleep-related PF/LH neurons. Deactivation of the MnPN with muscimol caused opposite effects. The results indicate that the MnPN contains subset(s) of neurons, which exert inhibitory control over arousal-related and excitatory control over sleep-related PF/LH neurons. We hypothesize that MnPN sleep-active neuronal group has both inhibitory and excitatory outputs that participate in the inhibitory control of arousal-promoting PF/LH mechanisms.
Collapse
Affiliation(s)
- Natalia Suntsova
- Research Service, Veterans Affairs Greater Los Angeles Healthcare System, North Hills, California 91343
- Departments of Psychology and
- A. B. Kogan Research Institute for Neurocybernetics, Rostov State University, Rostov-on-Don 344091, Russia
| | - Ruben Guzman-Marin
- Research Service, Veterans Affairs Greater Los Angeles Healthcare System, North Hills, California 91343
- Departments of Psychology and
| | - Sunil Kumar
- Research Service, Veterans Affairs Greater Los Angeles Healthcare System, North Hills, California 91343
- Medicine, University of California Los Angeles, Los Angeles, California 90095, and
| | - Md. Noor Alam
- Research Service, Veterans Affairs Greater Los Angeles Healthcare System, North Hills, California 91343
- Departments of Psychology and
| | - Ronald Szymusiak
- Research Service, Veterans Affairs Greater Los Angeles Healthcare System, North Hills, California 91343
- Medicine, University of California Los Angeles, Los Angeles, California 90095, and
| | - Dennis McGinty
- Research Service, Veterans Affairs Greater Los Angeles Healthcare System, North Hills, California 91343
- Departments of Psychology and
| |
Collapse
|
109
|
Grigoriadis DE. The corticotropin-releasing factor receptor: a novel target for the treatment of depression and anxiety-related disorders. Expert Opin Ther Targets 2007; 9:651-84. [PMID: 16083336 DOI: 10.1517/14728222.9.4.651] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The treatment of mood disorders has been the subject of intense study for more than half a century and has resulted in the discovery and availability of a number of compounds that have seen tremendous success in the management of major depression and anxiety-related disorders. In spite of this success, these drugs have not provided a complete therapeutic solution for all patients and this has revitalised the need for a greater understanding of the underlying molecular mechanisms and targets involved in these disorders. Elucidation of these novel targets will enable the development of a better class of compounds which could benefit a greater majority of the patient population and be devoid of the current side effect liabilities. Towards that end, this review examines, in detail, the prospect of one such target, the corticotropin-releasing factor system, as having an enhanced therapeutic profile with the potential of a broader range of efficacy with reduced side effect liabilities.
Collapse
Affiliation(s)
- Dimitri E Grigoriadis
- Department of Pharmacology and Lead Discovery, Neurocrine Biosciences, Inc., 12790 El Camino Real, San Diego, CA 92130, USA.
| |
Collapse
|
110
|
Liu ZW, Gao XB. Adenosine inhibits activity of hypocretin/orexin neurons by the A1 receptor in the lateral hypothalamus: a possible sleep-promoting effect. J Neurophysiol 2006; 97:837-48. [PMID: 17093123 PMCID: PMC1783688 DOI: 10.1152/jn.00873.2006] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neurons in the lateral hypothalamus (LH) that contain hypocretin/orexin have been established as important promoters of arousal. Deficiencies in the hypocretin/orexin system lead to narcolepsy. The inhibition of hypocretin/orexin neurons by sleep-promoting neurotransmitters has been suggested as one part of the sleep regulation machinery. Adenosine has been identified as a sleep promoter and its role in sleep regulation in the basal forebrain has been well documented. However, the effect of adenosine on arousal-promoting hypocretin/orexin neurons has not been addressed, despite recent evidence that immunocytochemical visualization of adenosine receptors was detected in these neurons. In this study, we examined the hypothesis that adenosine inhibits the activity of hypocretin/orexin neurons by using electrophysiological methods in brain slices from mice expressing green fluorescent protein in hypocretin/orexin neurons. We found that adenosine significantly attenuated the frequency of action potentials without a change in membrane potential in hypocretin/orexin neurons. The adenosine-mediated inhibition arises from depression of excitatory synaptic transmission to hypocretin/orexin neurons because adenosine depresses the amplitude of evoked excitatory postsynaptic potential and the frequency of spontaneous and miniature excitatory postsynaptic currents in these neurons. At the cell body of the hypocretin/orexin neurons, adenosine inhibits voltage-dependent calcium currents without the induction of GIRK current. The inhibitory effect of adenosine is dose dependent, pertussis toxin sensitive, and mediated by A1 receptors. In summary, our data suggest that in addition to its effect in the basal forebrain, adenosine exerts its sleep-promoting effect in the LH by inhibition of hypocretin/orexin neurons.
Collapse
Affiliation(s)
- Zhong-Wu Liu
- Department of OB/GYN and Reproductive Science, Yale University School of Medicine, New Haven, CT 06520
- Department of Neurobiology, Yunyang Medical College, Shiyan, Hubei 442000, P. R. China
| | - Xiao-Bing Gao
- Department of OB/GYN and Reproductive Science, Yale University School of Medicine, New Haven, CT 06520
| |
Collapse
|
111
|
Abstract
The past decade has witnessed dramatic advancements regarding the neuroendocrine control of food intake and energy homeostasis and the effects of peripheral metabolic signals on the brain. The development of molecular and genetic tools to visualize and selectively manipulate components of homeostatic systems, in combination with well-established neuroanatomical, electrophysiological, behavioral, and pharmacological techniques, are beginning to provide a clearer picture of the intricate circuits and mechanisms of these complex processes. In this review, we attempt to provide some highlights of these advancements and pinpoint some of the shortcomings of the current understanding of the brain's involvement in the regulation of daily energy homeostasis.
Collapse
Affiliation(s)
- Alfonso Abizaid
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | |
Collapse
|
112
|
Pissios P, Bradley RL, Maratos-Flier E. Expanding the scales: The multiple roles of MCH in regulating energy balance and other biological functions. Endocr Rev 2006; 27:606-20. [PMID: 16788162 DOI: 10.1210/er.2006-0021] [Citation(s) in RCA: 165] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Melanin-concentrating hormone (MCH) is a cyclic peptide originally identified as a 17-amino-acid circulating hormone in teleost fish, where it is secreted by the pituitary in response to stress and environmental stimuli. In fish, MCH lightens skin color by stimulating aggregation of melanosomes, pigment-containing granules in melanophores, cells of neuroectodermal origin found in fish scales. Although the peptide structure between fish and mammals is highly conserved, in mammals, MCH has no demonstrable effects on pigmentation; instead, based on a series of pharmacological and genetic experiments, MCH has emerged as a critical hypothalamic regulator of energy homeostasis, having effects on both feeding behavior and energy expenditure.
Collapse
Affiliation(s)
- Pavlos Pissios
- Division of Endocrinology, Department of Medicine, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, Massachusetts 02215, USA
| | | | | |
Collapse
|
113
|
Hervieu GJ. Further insights into the neurobiology of melanin-concentrating hormone in energy and mood balances. Expert Opin Ther Targets 2006; 10:211-29. [PMID: 16548771 DOI: 10.1517/14728222.10.2.211] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Melanin-concentrating hormone (MCH) is a critical hypothalamic anabolic neuropeptide, with key central and peripheral actions on energy balance regulation. The actions of MCH are, so far, known to be transduced through two seven-transmembrane-like receptor paralogues, named MCH1R and MCH2R. MCH2R is not functional in rodents. MCH1R is an important receptor involved in mediating feeding behaviour modulation by MCH in rodents. Pharmacological antagonism at MCH1R in rodents diminishes food intake and results in significant and sustained weight loss in fat tissues, particularly in obese animals. Additionally, MCH1R antagonists have been shown to have anxiolytic and antidepressant properties. The purpose of this review is to highlight the recent numerous pieces of evidence showing that pharmacological blockade at MCH1R could be a potential treatment for obesity and its related metabolic syndrome, as well as for various psychiatric disorders.
Collapse
Affiliation(s)
- Guillaume J Hervieu
- GlaxoSmithKline R&D, Neurology Centre of Excellence for Drug Discovery, NFSP-North, HW1713 Building H17, L1-130 C06 Third Avenue, Harlow, Essex CM19 5AW, UK.
| |
Collapse
|
114
|
Bjursell M, Gerdin AK, Ploj K, Svensson D, Svensson L, Oscarsson J, Snaith M, Törnell J, Bohlooly-Y M. Melanin-concentrating hormone receptor 1 deficiency increases insulin sensitivity in obese leptin-deficient mice without affecting body weight. Diabetes 2006; 55:725-33. [PMID: 16505236 DOI: 10.2337/diabetes.55.03.06.db05-1302] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The hypothalamic peptide melanin-concentrating hormone (MCH) plays important roles in energy homeostasis. Animals overexpressing MCH develop hyperphagia, obesity, and insulin resistance. In this study, mice lacking both the MCH receptor-1 (MCHr1 knockout) and leptin (ob/ob) double-null mice (MCHr1 knockout ob/ob) were generated to investigate whether the obesity and/or the insulin resistance linked to the obese phenotype of ob/ob mice was attenuated by ablation of the MCHr1 gene. In MCHr1 knockout ob/ob mice an oral glucose load resulted in a lower blood glucose response and markedly lower insulin levels compared with the ob/ob mice despite no differences in body weight, food intake, or energy expenditure. In addition, MCHr1 knockout ob/ob mice had higher locomotor activity and lean body mass, lower body fat mass, and altered body temperature regulation compared with ob/ob mice. In conclusion, MCHr1 is important for insulin sensitivity and/or secretion via a mechanism not dependent on decreased body weight.
Collapse
Affiliation(s)
- Mikael Bjursell
- Department of Physiology and Pharmacology, Gothenburg University, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Acuna-Goycolea C, Tamamaki N, Yanagawa Y, Obata K, van den Pol AN. Mechanisms of neuropeptide Y, peptide YY, and pancreatic polypeptide inhibition of identified green fluorescent protein-expressing GABA neurons in the hypothalamic neuroendocrine arcuate nucleus. J Neurosci 2006; 25:7406-19. [PMID: 16093392 PMCID: PMC6725307 DOI: 10.1523/jneurosci.1008-05.2005] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The fast inhibitory transmitter GABA is robustly expressed in the arcuate nucleus (ARC) and appears to play a major role in hypothalamic regulation of endocrine function and energy homeostasis. Previously, it has not been possible to record selectively from GABA cells, because they have no defining morphological or physiological characteristics. Using transgenic mice that selectively express GFP (green fluorescent protein) in GAD67 (glutamic acid decarboxylase 67)-synthesizing cells, we identified ARC GABA neurons (n > 300) and used whole-cell recording to study their physiological response to neuropeptide Y (NPY), the related peptide YY(3-36) (PYY(3-36)), and pancreatic polypeptide (PP), important modulators of ARC function. In contrast to other identified ARC cells in which NPY receptor agonists were reported to generate excitatory actions, we found that NPY consistently reduced the firing rate and hyperpolarized GABA neurons including neuroendocrine GABA neurons identified by antidromic median eminence stimulation. The inhibitory NPY actions were mediated by postsynaptic activation of G-protein-linked inwardly rectifying potassium (GIRK) and depression of voltage-gated calcium currents via Y1 and Y2 receptor subtypes. Additionally, NPY reduced spontaneous and evoked synaptic glutamate release onto GABA neurons by activation of Y1 and Y5 receptors. The peptide PYY(3-36), a peripheral endocrine signal that can act in the brain, also inhibited GABA neurons, including identified neuroendocrine cells, by activating GIRK conductances and depressing calcium currents. The endogenous Y4 agonist PP depressed the activity of GABA-expressing neurons mainly by presynaptic attenuation of glutamate release. Together, these results show that the family of neuropeptide Y modulators reduces the activity of inhibitory GABA neurons in the ARC by multiple presynaptic and postsynaptic mechanisms.
Collapse
|
116
|
Zheng H, Patterson LM, Morrison C, Banfield BW, Randall JA, Browning KN, Travagli RA, Berthoud HR. Melanin concentrating hormone innervation of caudal brainstem areas involved in gastrointestinal functions and energy balance. Neuroscience 2006; 135:611-25. [PMID: 16111819 DOI: 10.1016/j.neuroscience.2005.06.055] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2005] [Revised: 05/22/2005] [Accepted: 06/09/2005] [Indexed: 12/30/2022]
Abstract
Neural signaling by melanin-concentrating hormone and its receptor (SLC-1) has been implicated in the control of energy balance, but due to the wide distribution of melanin-concentrating hormone-containing fibers throughout the neuraxis, its critical sites of action for a particular effect have not been identified. The present study aimed to anatomically and functionally characterize melanin-concentrating hormone innervation of the rat caudal brainstem, as this brain area plays an important role in the neural control of ingestive behavior and autonomic outflow. Using retrograde tracing we demonstrate that a significant proportion (5-15%) of primarily perifornical and far-lateral hypothalamic melanin-concentrating hormone neurons projects to the dorsal vagal complex. In the caudal brainstem, melanin-concentrating hormone-ir axon profiles are distributed densely in most areas including the nucleus of the solitary tract, dorsal motor nucleus of the vagus, and sympathetic premotor areas in the ventral medulla. Close anatomical appositions can be demonstrated between melanin-concentrating hormone-ir axon profiles and tyrosine hydroxylase, GABA, GLP-1, NOS-expressing, and nucleus of the solitary tract neurons activated by gastric nutrient infusion. In medulla slice preparations, bath application of melanin-concentrating hormone inhibited in a concentration-dependent manner the amplitude of excitatory postsynaptic currents evoked by solitary tract stimulation via a pre-synaptic mechanism. Fourth ventricular administration of melanin-concentrating hormone (10 microg) in freely moving rats decreased core body temperature but did not change locomotor activity and food and water intake. We conclude that the rich hypothalamo-medullary melanin-concentrating hormone projections in the rat are mainly inhibitory to nucleus of the solitary tract neurons, but are not involved in the control of food intake. Projections to ventral medullary sites may play a role in the inhibitory effect of melanin-concentrating hormone on energy expenditure.
Collapse
Affiliation(s)
- H Zheng
- Neurobiology of Nutrition Laboratory, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA 70808, USA
| | | | | | | | | | | | | | | |
Collapse
|
117
|
Verret L, Fort P, Gervasoni D, Léger L, Luppi PH. Localization of the neurons active during paradoxical (REM) sleep and projecting to the locus coeruleus noradrenergic neurons in the rat. J Comp Neurol 2006; 495:573-86. [PMID: 16498678 DOI: 10.1002/cne.20891] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Locus coeruleus (LC) noradrenergic neurons are active during wakefulness, slow their discharge rate during slow wave sleep, and stop firing during paradoxical sleep (PS). A large body of data indicates that their inactivation during PS is due to a tonic GABAergic inhibition. To localize the neurons responsible for such inhibition, we first examined the distribution of retrogradely and Fos double-immunostained neurons following cholera toxin b subunit (CTb) injection in the LC of control rats, rats selectively deprived of PS for 3 days, and rats allowed to recover for 3 hours from such deprivation. We found a significant number of CTb/Fos double-labeled cells only in the recovery group. The largest number of CTb/Fos double-labeled cells was found in the dorsal paragigantocellular reticular nucleus (DPGi). It indeed contained 19% of the CTb/Fos double-labeled neurons, whereas the ventrolateral periaqueductal gray (vlPAG) contained 18.3% of these neurons, the lateral paragigantocellular reticular nucleus (LPGi) 15%, the lateral hypothalamic area 9%, the lateral PAG 6.7%, and the rostral PAG 6%. In addition, CTb/Fos double-labeled cells constituted 43% of all the singly CTb-labeled cells counted in the DPGi compared with 29% for the LPGi, 18% for the rostral PAG, and 10% or less for the other structures. Although all these populations of CTb/Fos double-labeled neurons could be GABAergic and tonically inhibit LC neurons during PS, our results indicate that neurons from the DPGi constitute the best candidate for this role.
Collapse
Affiliation(s)
- Laure Verret
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5167, Institut Fédératif des Neurosciences de Lyon (IFR19), Lyon F-69372, France
| | | | | | | | | |
Collapse
|
118
|
Francke F, Richter D, Bächner D. Immunohistochemical distribution of MIZIP and its co-expression with the Melanin-concentrating hormone receptor 1 in the adult rodent brain. ACTA ACUST UNITED AC 2005; 139:31-41. [PMID: 15950311 DOI: 10.1016/j.molbrainres.2005.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2004] [Revised: 05/04/2005] [Accepted: 05/06/2005] [Indexed: 10/25/2022]
Abstract
We have recently identified a Melanin-concentrating hormone receptor 1 interacting zinc-finger protein (MIZIP) from a human brain cDNA library. Here, we report the generation of a specific antibody against MIZIP and its distribution in rodent tissues using immunoblotting and immunohistochemical techniques. MIZIP was detected as a 27 kDa protein in brain, liver, and skeletal muscle, and to a lower extend, in lung, testis, and heart. Subcellular fractionation of adult mouse brain revealed the presence of MIZIP and MCHR1 in the cytoplasmic, membrane, and synaptosomal fraction, but not in a postsynaptic density preparation. In cultured rat, embryonic hippocampal neurons MIZIP is somatodendritically localized. In the adult rodent brain, MIZIP is widely distributed. High levels of expression were detected in brain regions involved in olfaction, feeding behavior, sensorimotor integration, and learning and memory, for example, the olfactory bulb, the olfactory tubercle, the caudate putamen, the thalamus and hypothalamus, the nucleus accumbens, the cerebral cortex, the hippocampus formation, and the cerebellum. Co-expression of MIZIP and MCHR1 was observed, for example, in pyramidal neurons of the cerebral cortex and hippocampus, in neurons of the olivary nucleus, lateral hypothalamus, nucleus accumbens, caudate putamen, pontine, and mesencephalic trigeminal nucleus. However, there are also differences in the expression patterns, for example, high expression of MCHR1 was detected in the lateral habenula, but no expression of MIZIP. These data support the notion that MIZIP might interact with MCHR1 in a cell type specific manner in vivo, suggesting a role in the regulation of MCH signalling in distinct regions of the mammalian brain.
Collapse
Affiliation(s)
- Felix Francke
- Institute for Cell Biochemistry and Clinical Neurobiology, University Hospital Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | | | | |
Collapse
|
119
|
McGregor R, Damián A, Fabbiani G, Torterolo P, Pose I, Chase M, Morales FR. Direct hypothalamic innervation of the trigeminal motor nucleus: a retrograde tracer study. Neuroscience 2005; 136:1073-81. [PMID: 16226839 DOI: 10.1016/j.neuroscience.2005.08.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2005] [Revised: 07/26/2005] [Accepted: 08/01/2005] [Indexed: 10/25/2022]
Abstract
It is currently thought that the hypothalamus influences motor output through connections with premotor structures which in turn project to motor nuclei. However, hypocretinergic/orexinergic projections to different motor pools have recently been demonstrated. The present study was undertaken to examine whether hypocretinergic/orexinergic neurons are the only source of projections from the hypothalamus to the trigeminal motor nucleus in the guinea-pig. Cholera toxin subunit b was injected into the trigeminal motor nucleus in order to retrogradely label premotor neurons. Two anatomically separated populations of labeled neurons were observed in the hypothalamus: one group was distributed along the dorsal zone of the lateral hypothalamic area, the lateral portion of the dorsomedial hypothalamic nucleus and the perifornical nucleus; the other was located within the periventricular portion of the dorsomedial hypothalamic nucleus. Numerous cholera toxin subunit b+ neurons in both populations displayed glutamate-like immunoreactivity. In addition, premotor neurons containing hypocretin/orexin were distributed throughout the lateral dorsomedial hypothalamic nucleus, perifornical nucleus and lateral hypothalamic area. Other premotor neurons were immunostained for melanin concentrating hormone; these cells, which were located within the lateral hypothalamic area and the perifornical nucleus, were intermingled with glutamatergic and hypocretinergic/orexinergic neurons. Nitrergic premotor neurons were located only in the periventricular zone of the dorsomedial hypothalamic nucleus. None of the hypothalamic premotor neurons were GABAergic, cholinergic or monoaminergic. The existence of diverse neurotransmitter systems projecting from the hypothalamus to the trigeminal motor pool indicates that this diencephalic structure may influence the numerous functions that are subserved by the trigeminal motor system.
Collapse
Affiliation(s)
- R McGregor
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Gral Flores 2125, Montevideo-11800, Uruguay
| | | | | | | | | | | | | |
Collapse
|
120
|
Haxhiu MA, Rust CF, Brooks C, Kc P. CNS determinants of sleep-related worsening of airway functions: implications for nocturnal asthma. Respir Physiol Neurobiol 2005; 151:1-30. [PMID: 16198640 DOI: 10.1016/j.resp.2005.07.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Revised: 07/22/2005] [Accepted: 07/26/2005] [Indexed: 11/19/2022]
Abstract
This review summarizes the recent neuroanatomical and physiological studies that form the neural basis for the state-dependent changes in airway resistance. Here, we review only the interactions between the brain regions generating quiet (non-rapid eye movement, NREM) and active (rapid eye movement, REM) sleep stages and CNS pathways controlling cholinergic outflow to the airways. During NREM and REM sleep, bronchoconstrictive responses are heightened and conductivity of the airways is lower as compared to the waking state. The decrease in conductivity of the lower airways parallels the sleep-induced decline in the discharge of brainstem monoaminergic cell groups and GABAergic neurons of the ventrolateral periaqueductal midbrain region, all of which provide inhibitory inputs to airway-related vagal preganglionic neurons (AVPNs). Withdrawal of central inhibitory influences to AVPNs results in a shift from inhibitory to excitatory transmission that leads to an increase in airway responsiveness, cholinergic outflow to the lower airways and consequently, bronchoconstriction. In healthy subjects, these changes are clinically unnoticed. However, in patients with bronchial asthma, sleep-related alterations in lung functions are troublesome, causing intensified bronchopulmonary symptoms (nocturnal asthma), frequent arousals, decreased quality of life, and increased mortality. Unquestionably, the studies revealing neural mechanisms that underlie sleep-related alterations of airway function will provide new directions in the treatment and prevention of sleep-induced worsening of airway diseases.
Collapse
Affiliation(s)
- Musa A Haxhiu
- Department of Physiology and Biophysics, Specialized Neuroscience Research Program, Howard University College of Medicine, 520 W. St., NW, Washington, DC 20059, USA.
| | | | | | | |
Collapse
|
121
|
Abizaid A, Horvath TL. Unraveling neuronal circuitry regulating energy homeostasis: Plasticity in feeding circuits. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/j.ddmod.2005.08.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
122
|
Wollmann G, Acuna-Goycolea C, van den Pol AN. Direct Excitation of Hypocretin/Orexin Cells by Extracellular ATP at P2X Receptors. J Neurophysiol 2005; 94:2195-206. [PMID: 15958604 DOI: 10.1152/jn.00035.2005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hypocretin/orexin (hcrt) neurons play an important role in hypothalamic arousal and energy homeostasis. ATP may be released by neurons or glia or by pathological conditions. Here we studied the effect of extracellular ATP on hypocretin cells using whole cell patch-clamp recording in hypothalamic slices of transgenic mice expressing green fluorescent protein (GFP) exclusively in hcrt-producing cells. Local application of ATP induced a dose-dependent increase in spike frequency. In the presence of TTX, ATP (100 μM) depolarized the cells by 7.8 ± 1.2 mV. In voltage clamp under blockade of synaptic activity with the GABAA receptor antagonist bicuculline, and ionotropic glutamate receptor antagonists dl-2-amino-5-phosphonopentanoic acid (AP-5) and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), ATP (100 μM) evoked an 18 pA inward current. The inward current was blocked by extracellular choline substitution for Na+, had a reversal potential of −27 mV, and was not affected by nominally Ca2+-free external buffer, suggesting that ATP activated a nonselective cation current. All excitatory effects of ATP showed rapid attenuation. ATP-induced excitatory actions were mimicked by nonhydrolyzable ATP-γ-S but not by α,β-MeATP and inhibited by the purinoceptor antagonists suramin and pyridoxal phosphate-6-azo(benzene-2,4-disulfonic acid) tetrasodium salt (PPADS). The current was potentiated by a decrease in bath pH, suggesting P2X2 subunit involvement. Frequency and amplitude of spontaneous and miniature synaptic events were not altered by ATP. Suramin, but not PPADS, caused a small suppression of evoked excitatory synaptic potentials. Together, these results show a depolarizing response to extracellular ATP that would lead to an increased activity of the hypocretin arousal system.
Collapse
Affiliation(s)
- Guido Wollmann
- Department of Neurosurgery, Yale University School of Medicine, 333 Cedar St., New Haven, Connecticut 06520, USA
| | | | | |
Collapse
|
123
|
Modirrousta M, Mainville L, Jones BE. Orexin and MCH neurons express c-Fos differently after sleep deprivation vs. recovery and bear different adrenergic receptors. Eur J Neurosci 2005; 21:2807-16. [PMID: 15926928 DOI: 10.1111/j.1460-9568.2005.04104.x] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Though overlapping in distribution within the posterior hypothalamus, neurons containing orexin (Orx) and melanin concentrating hormone (MCH) may play different roles in the regulation of behavioural state. In the present study in rats, we tested whether they express c-Fos differently after total sleep deprivation (SD) vs. sleep recovery (SR). Whereas c-Fos expression was increased in Orx neurons after SD, it was increased in MCH neurons after SR. We reasoned that Orx and MCH neurons could be differently modulated by noradrenaline (NA) and accordingly bear different adrenergic receptors (ARs). Of all Orx neurons (estimated at approximately 6700), substantial numbers were immunostained for the alpha1A-AR, including cells expressing c-Fos after SD. Yet, substantial numbers were also immunostained for the alpha2A-AR, also including cells expressing c-Fos after SD. Of all MCH neurons (estimated at approximately 12,300), rare neurons were immunostained for the alpha1A-AR, whereas significant numbers were immunostained for the alpha2A-AR, including cells expressing c-Fos after SR. We conclude that Orx neurons may act to sustain waking during sleep deprivation, whereas MCH neurons may act to promote sleep following sustained waking. Some Orx neurons would participate in the maintenance of waking during deprivation when excited by NA through alpha1-ARs, whereas MCH neurons would participate in sleep recovery after deprivation when released from inhibition by NA through alpha2-ARs. On the other hand, under certain conditions, Orx neurons may also be submitted to an inhibitory influence by NA through alpha2-ARs.
Collapse
Affiliation(s)
- Mandana Modirrousta
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada H3A 2B4
| | | | | |
Collapse
|
124
|
Acuna-Goycolea C, van den Pol A. Glucagon-like peptide 1 excites hypocretin/orexin neurons by direct and indirect mechanisms: implications for viscera-mediated arousal. J Neurosci 2005; 24:8141-52. [PMID: 15371515 PMCID: PMC6729787 DOI: 10.1523/jneurosci.1607-04.2004] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Glucagon-like peptide 1 (GLP-1) is produced by neurons in the caudal brainstem that receive sensory information from the gut and project to several hypothalamic regions involved in arousal, interoceptive stress, and energy homeostasis. GLP-1 axons and receptors have been detected in the lateral hypothalamus, where hypocretin neurons are found. The electrophysiological actions of GLP-1 in the CNS have not been studied. Here, we explored the GLP-1 effects on GFP (green fluorescent protein)-expressing hypocretin neurons in mouse hypothalamic slices. GLP-1 receptor agonists depolarized hypocretin neurons and increased their spike frequency; the antagonist exendin (9-39) blocked this depolarization. Direct GLP-1 agonist actions on membrane potential were abolished by choline substitution for extracellular Na+, and dependent on intracellular GDP, suggesting that they were mediated by sodium-dependent conductances in a G-protein-dependent manner. In voltage clamp, the GLP-1 agonist Exn4 (exendin-4) induced an inward current that reversed near -28 mV and persisted in nominally Ca2+-free extracellular solution, consistent with a nonselective cationic conductance. GLP-1 decreased afterhyperpolarization currents. GLP-1 agonists enhanced the frequency of miniature and spontaneous EPSCs with no effect on their amplitude, suggesting presynaptic modulation of glutamate axons innervating hypocretin neurons. Paraventricular hypothalamic neurons were also directly excited by GLP-1 agonists. In contrast, GLP-1 agonists had no detectable effect on neurons that synthesize melanin-concentrating hormone (MCH). Together, our results show that GLP-1 agonists modulate the activity of hypocretin, but not MCH, neurons in the lateral hypothalamus, suggesting a role for GLP-1 in the excitation of the hypothalamic arousal system possibly initiated by activation by viscera sensory input.
Collapse
Affiliation(s)
- Claudio Acuna-Goycolea
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | |
Collapse
|
125
|
Horvath TL, Gao XB. Input organization and plasticity of hypocretin neurons: possible clues to obesity's association with insomnia. Cell Metab 2005; 1:279-86. [PMID: 16054072 DOI: 10.1016/j.cmet.2005.03.003] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2004] [Revised: 12/21/2004] [Accepted: 03/16/2005] [Indexed: 10/25/2022]
Abstract
The lateral hypothalamic hypocretin (also called orexin) neurons have emerged as instrumental in triggering arousal and regulating energy metabolism. The lack of hypocretin signaling is the cause of narcolepsy while elevated hypocretin levels induce arousal, elevated food intake, and adiposity. Here, we report an unorthodox synaptic organization on the hypocretin neurons in which excitatory synaptic currents and asymmetric synapses exert control on the cell bodies of these long-projective neurons with minimal inhibitory input. Overnight food deprivation promotes the formation of more excitatory synapses and synaptic currents onto hypocretin cells; this is reversed by re-feeding and blocked by leptin administration. This unique wiring and acute stress-induced plasticity of the hypocretin neurons correlates well with their being involved in the control of arousal and alertness that are so vital to survival, but this circuitry may also be an underlying cause of insomnia and associated metabolic disturbances, including obesity.
Collapse
Affiliation(s)
- Tamas L Horvath
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut 06520, USA.
| | | |
Collapse
|
126
|
Alam MN, Kumar S, Bashir T, Suntsova N, Methippara MM, Szymusiak R, McGinty D. GABA-mediated control of hypocretin- but not melanin-concentrating hormone-immunoreactive neurones during sleep in rats. J Physiol 2005; 563:569-82. [PMID: 15613374 PMCID: PMC1665577 DOI: 10.1113/jphysiol.2004.076927] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2004] [Accepted: 12/17/2004] [Indexed: 11/08/2022] Open
Abstract
The perifornical-lateral hypothalamic area (PF-LHA) has been implicated in the regulation of behavioural arousal. The PF-LHA contains several cell types including neurones expressing the peptides, hypocretin (HCRT; also called orexin) and melanin-concentrating hormone (MCH). Evidence suggests that most of the PF-LHA neurones, including HCRT neurones, are active during waking and quiescent during non-rapid eye movement (non-NREM) sleep. The PF-LHA contains local GABAergic interneurones and also receives GABAergic inputs from sleep-promoting regions in the preoptic area of the hypothalamus. We hypothesized that increased GABA-mediated inhibition within PF-LHA contributes to the suppression of neuronal activity during non-REM sleep. EEG and EMG activity of rats were monitored for 2 h during microdialytic delivery of artificial cerebrospinal fluid (aCSF) or bicuculline, a GABAA receptor antagonist, into the PF-LHA in spontaneously sleeping rats during the lights-on period. At the end of aCSF or bicuculline perfusion, rats were killed and c-Fos immunoreactivity (Fos-IR) in HCRT, MCH and other PF-LHA neurones was quantified. In response to bicuculline perfusion into the PF-LHA, rats exhibited a dose-dependent decrease in non-REM and REM sleep time and an increase in time awake. The number of HCRT, MCH and non-HCRT/non-MCH neurones exhibiting Fos-IR adjacent to the microdialysis probe also increased dose-dependently in response to bicuculline. However, significantly fewer MCH neurones exhibited Fos-IR in response to bicuculline as compared to HCRT and other PF-LHA neurones. These results support the hypothesis that PF-LHA neurones, including HCRT neurones, are subject to increased endogenous GABAergic inhibition during sleep. In contrast, MCH neurones appear to be subject to weaker GABAergic control during sleep.
Collapse
Affiliation(s)
- Md Noor Alam
- Research Service (151A3), Veteran Affairs Greater Los Angeles Healthcare System, Sepulveda, CA 91343, USA.
| | | | | | | | | | | | | |
Collapse
|
127
|
Bayer L, Eggermann E, Serafin M, Grivel J, Machard D, Muhlethaler M, Jones BE. Opposite effects of noradrenaline and acetylcholine upon hypocretin/orexin versus melanin concentrating hormone neurons in rat hypothalamic slices. Neuroscience 2005; 130:807-11. [PMID: 15652980 DOI: 10.1016/j.neuroscience.2004.10.032] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2004] [Indexed: 11/19/2022]
Abstract
Hypocretin/orexin (Hcrt/Orx) and melanin concentrating hormone (MCH) are peptides contained in overlapping cell groups of the lateral hypothalamus and commonly involved in regulating sleep-wake states and energy balance, though likely in different ways. To see if these neurons are similarly or differentially modulated by neurotransmitters of the major brainstem arousal systems, the effects of noradrenaline (NA) and carbachol, a cholinergic agonist, were examined on identified Hcrt/Orx and MCH neurons in rat hypothalamic slices. Whereas both agonists depolarized and excited Hcrt/Orx neurons, they both hyperpolarized MCH neurons by direct postsynaptic actions. According to the activity profiles of the noradrenergic locus coeruleus and cholinergic pontomesencephalic neurons across the sleep-waking cycle, the Hcrt/Orx neurons would be excited by NA and acetylcholine (ACh) and thus active during arousal, whereas the MCH neurons would be inhibited by NA and ACh and thus inactive during arousal while disinhibited and possibly active during slow wave sleep. According to the present pharmacological results, Hcrt/Orx neurons may thus stimulate arousal in tandem with other arousal systems, whereas MCH neurons may function in opposition with other arousal systems and thus potentially dampen arousal to promote sleep.
Collapse
Affiliation(s)
- L Bayer
- Département de Neurosciences Fondamentales, Centre Médical Universitaire, Université de Genève, 1 rue Michel-Servet 1211, Genève 4, Switzerland
| | | | | | | | | | | | | |
Collapse
|
128
|
|
129
|
van den Pol AN, Acuna-Goycolea C, Clark KR, Ghosh PK. Physiological properties of hypothalamic MCH neurons identified with selective expression of reporter gene after recombinant virus infection. Neuron 2004; 42:635-52. [PMID: 15157424 DOI: 10.1016/s0896-6273(04)00251-x] [Citation(s) in RCA: 166] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2003] [Revised: 03/11/2004] [Accepted: 04/06/2004] [Indexed: 11/30/2022]
Abstract
Neurons that synthesize melanin-concentrating hormone (MCH) may modulate arousal and energy homeostasis. The scattered MCH neurons have been difficult to study, as they have no defining morphological characteristics. We have developed a viral approach with AAV for selective long-term reporter gene (GFP) expression in MCH neurons, allowing the study of their cellular physiology in hypothalamic slices. MCH neurons showed distinct membrane properties compared to other neurons infected with the same virus with a cytomegalovirus promoter. Transmitters of extrahypothalamic arousal systems, including norepinephrine, serotonin, and the acetylcholine agonist muscarine, evoked direct inhibitory actions. Orexigenic neuropeptide Y was inhibitory by pre- and postsynaptic mechanisms; an anorexigenic melanocortin agonist had no effect. In contrast, the hypothalamic arousal peptide hypocretin/orexin evoked a direct inward current and increased excitatory synaptic activity and spike frequency in the normally silent MCH neurons. Together, these data support the view that MCH neurons may integrate information within the arousal system in favor of energy conservation.
Collapse
Affiliation(s)
- Anthony N van den Pol
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06520, USA.
| | | | | | | |
Collapse
|
130
|
Bartsch T, Levy MJ, Knight YE, Goadsby PJ. Differential modulation of nociceptive dural input to [hypocretin] orexin A and B receptor activation in the posterior hypothalamic area. Pain 2004; 109:367-378. [PMID: 15157698 DOI: 10.1016/j.pain.2004.02.005] [Citation(s) in RCA: 196] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2003] [Revised: 01/16/2004] [Accepted: 02/02/2004] [Indexed: 11/19/2022]
Abstract
The novel neuropeptides orexin A and B are selectively synthesised in the lateral and posterior hypothalamus and are involved in hypothalamic regulation of autonomic and neuroendocrine functions. Recent findings point also to a role in nociception. As the posterior hypothalamus is involved in the central modulation of nociception we studied the effects of hypocretin/orexin receptor activation in the posterior hypothalamic area (PH) of the rat on dural nociceptive input. Orexins were microinjected into the PH and the effects on responses of neurones in the caudal trigeminal nucleus studied. Injection of orexin A decreased the A- and C-fibre responses to dural electrical stimulation as well as spontaneous activity. Responses to noxious thermal stimulation of the facial skin were also decreased by orexin A. Injection of orexin B into the PH, however, elicited increased responses to dural stimulation in A- and C-fibre responses and resulted in increased spontaneous activity. Responses to facial thermal stimulation were also increased by orexin B. Control injection of saline into the PH had no significant effect. The results show a differential modulation of dural nociceptive input by orexin A and B receptor activation in the PH. The results support the role of the PH in the nociceptive processing of meningeal input. As both peptides are also involved in hypothalamic regulation of neuroendocrine and autonomic functions, orexinergic mechanisms in the PH may provide a link for endocrine and autonomic changes as well as nociceptive phenomena seen in primary headache disorders.
Collapse
MESH Headings
- Action Potentials/drug effects
- Action Potentials/physiology
- Animals
- Carrier Proteins/metabolism
- Carrier Proteins/pharmacology
- Dura Mater/physiopathology
- GABA Antagonists/pharmacology
- Headache/physiopathology
- Hypothalamus, Posterior/cytology
- Hypothalamus, Posterior/drug effects
- Hypothalamus, Posterior/metabolism
- Intracellular Signaling Peptides and Proteins
- Male
- Nerve Fibers, Myelinated/drug effects
- Nerve Fibers, Myelinated/physiology
- Nerve Fibers, Unmyelinated/drug effects
- Nerve Fibers, Unmyelinated/physiology
- Neural Inhibition/drug effects
- Neural Inhibition/physiology
- Neural Pathways/drug effects
- Neural Pathways/physiology
- Neurons/drug effects
- Neurons/physiology
- Neuropeptides/metabolism
- Neuropeptides/pharmacology
- Nociceptors/physiology
- Orexin Receptors
- Orexins
- Physical Stimulation
- Rats
- Rats, Sprague-Dawley
- Receptors, G-Protein-Coupled
- Receptors, Neuropeptide/agonists
- Receptors, Neuropeptide/metabolism
- Trigeminal Caudal Nucleus/cytology
- Trigeminal Caudal Nucleus/physiology
- Trigeminal Nerve/physiology
Collapse
Affiliation(s)
- T Bartsch
- Headache Group, Institute of Neurology and National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | | | | | | |
Collapse
|
131
|
White BD, Du F, Higginbotham DA. Low dietary protein is associated with an increase in food intake and a decrease in the in vitro release of radiolabeled glutamate and GABA from the lateral hypothalamus. Nutr Neurosci 2004; 6:361-7. [PMID: 14744040 DOI: 10.1080/10284150310001640365] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Moderately low-protein diets lead to a rapid increase in food intake and body fat. The increase in feeding is associated with a decrease in the concentration of serum urea nitrogen, suggesting that the low-protein-induced increase in food intake may be related to the decreased metabolism of nitrogen from amino acids. We hypothesized that low dietary protein would be associated with a decrease in the synaptic release of two nitrogen-containing neurotransmitters, GABA and glutamate, whose nitrogen can be derived from amino acids. In this study, we examined the effects of a low-protein diet (10% casein) in Sprague-Dawley rats on the in vitro release of 3H-GABA and 14C-glutamate from the lateral and medial hypothalamus. The low-protein diet increased food intake by about 25% after one day. After four days, the in vitro release of radiolabeled GABA and glutamate was assessed. The calcium-dependent, potassium-stimulated release of radiolabeled GABA and glutamate from the lateral hypothalamus was decreased in rats fed the low-protein diet. The magnitude of neurotransmitter release from the lateral hypothalamus inversely correlated with food intake. No dietary differences in the release of neurotransmitters from the medial hypothalamus were observed. These results support the contention that alterations in nitrogen metabolism are associated with low-protein-induced feeding.
Collapse
Affiliation(s)
- B D White
- Department of Nutrition and Food Science, 328 Spidle Hall, Auburn University, AL 36849, USA.
| | | | | |
Collapse
|
132
|
Gao XB, Ghosh PK, van den Pol AN. Neurons Synthesizing Melanin-Concentrating Hormone Identified by Selective Reporter Gene Expression After Transfection In Vitro: Transmitter Responses. J Neurophysiol 2003; 90:3978-85. [PMID: 14573562 DOI: 10.1152/jn.00593.2003] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neurons from the lateral hypothalamus that synthesize melanin-concentrating hormone (MCH) play an important role in the regulation of energy homeostasis. Relatively little is known of the cellular physiology and transmitter responses of these neurons, in part because of the difficulty in identifying live MCH cells. Here we use a novel approach of transfection of specific gene constructs with the MCH promoter driving green fluorescent protein (GFP) or red fluorescent protein (dsRed2) in CNS cultures to identify live rat MCH neurons; all neurons expressing the reporter gene showed MCH immunoreactivity, indicating selective expression. MCH neurons had a resting membrane potential of –57.5 ± 0.6 mV, a linear current-voltage relation and a mean input resistance of 1,013 MΩ. Long depolarizing pulses revealed significant spike frequency adaptation. Functional glutamate and GABA receptors were expressed by MCH neurons. MCH neurons were hyperpolarized by norepinephrine in the presence or absence of tetrodotoxin, suggesting direct inhibition. Orexigenic peptides neuropeptide Y (NPY) and MCH showed no direct effect on membrane potential, input resistance, action potential width, or afterhyperpolarization potential, but inhibited voltage-dependent calcium channels, indicating that MCH neurons expressed both MCH and NPY receptors.
Collapse
Affiliation(s)
- Xiao-Bing Gao
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | |
Collapse
|
133
|
Verret L, Goutagny R, Fort P, Cagnon L, Salvert D, Léger L, Boissard R, Salin P, Peyron C, Luppi PH. A role of melanin-concentrating hormone producing neurons in the central regulation of paradoxical sleep. BMC Neurosci 2003; 4:19. [PMID: 12964948 PMCID: PMC201018 DOI: 10.1186/1471-2202-4-19] [Citation(s) in RCA: 290] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2003] [Accepted: 09/09/2003] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Peptidergic neurons containing the melanin-concentrating hormone (MCH) and the hypocretins (or orexins) are intermingled in the zona incerta, perifornical nucleus and lateral hypothalamic area. Both types of neurons have been implicated in the integrated regulation of energy homeostasis and body weight. Hypocretin neurons have also been involved in sleep-wake regulation and narcolepsy. We therefore sought to determine whether hypocretin and MCH neurons express Fos in association with enhanced paradoxical sleep (PS or REM sleep) during the rebound following PS deprivation. Next, we compared the effect of MCH and NaCl intracerebroventricular (ICV) administrations on sleep stage quantities to further determine whether MCH neurons play an active role in PS regulation. RESULTS Here we show that the MCH but not the hypocretin neurons are strongly active during PS, evidenced through combined hypocretin, MCH, and Fos immunostainings in three groups of rats (PS Control, PS Deprived and PS Recovery rats). Further, we show that ICV administration of MCH induces a dose-dependent increase in PS (up to 200%) and slow wave sleep (up to 70%) quantities. CONCLUSION These results indicate that MCH is a powerful hypnogenic factor. MCH neurons might play a key role in the state of PS via their widespread projections in the central nervous system.
Collapse
Affiliation(s)
- Laure Verret
- CNRS UMR5167, Institut Fédératif des Neurosciences de Lyon (IFR 19), Université Claude Bernard Lyon I, 7 Rue Guillaume Paradin, 69372 LYON Cedex 08, FRANCE
| | - Romain Goutagny
- CNRS UMR5167, Institut Fédératif des Neurosciences de Lyon (IFR 19), Université Claude Bernard Lyon I, 7 Rue Guillaume Paradin, 69372 LYON Cedex 08, FRANCE
| | - Patrice Fort
- CNRS UMR5167, Institut Fédératif des Neurosciences de Lyon (IFR 19), Université Claude Bernard Lyon I, 7 Rue Guillaume Paradin, 69372 LYON Cedex 08, FRANCE
| | - Laurène Cagnon
- CNRS UMR5167, Institut Fédératif des Neurosciences de Lyon (IFR 19), Université Claude Bernard Lyon I, 7 Rue Guillaume Paradin, 69372 LYON Cedex 08, FRANCE
| | - Denise Salvert
- CNRS UMR5167, Institut Fédératif des Neurosciences de Lyon (IFR 19), Université Claude Bernard Lyon I, 7 Rue Guillaume Paradin, 69372 LYON Cedex 08, FRANCE
| | - Lucienne Léger
- CNRS UMR5167, Institut Fédératif des Neurosciences de Lyon (IFR 19), Université Claude Bernard Lyon I, 7 Rue Guillaume Paradin, 69372 LYON Cedex 08, FRANCE
| | - Romuald Boissard
- CNRS UMR5167, Institut Fédératif des Neurosciences de Lyon (IFR 19), Université Claude Bernard Lyon I, 7 Rue Guillaume Paradin, 69372 LYON Cedex 08, FRANCE
| | - Paul Salin
- CNRS UMR5167, Institut Fédératif des Neurosciences de Lyon (IFR 19), Université Claude Bernard Lyon I, 7 Rue Guillaume Paradin, 69372 LYON Cedex 08, FRANCE
| | - Christelle Peyron
- CNRS UMR5167, Institut Fédératif des Neurosciences de Lyon (IFR 19), Université Claude Bernard Lyon I, 7 Rue Guillaume Paradin, 69372 LYON Cedex 08, FRANCE
| | - Pierre-Hervé Luppi
- CNRS UMR5167, Institut Fédératif des Neurosciences de Lyon (IFR 19), Université Claude Bernard Lyon I, 7 Rue Guillaume Paradin, 69372 LYON Cedex 08, FRANCE
| |
Collapse
|
134
|
Davidowa H, Li Y, Plagemann A. Altered responses to orexigenic (AGRP, MCH) and anorexigenic (alpha-MSH, CART) neuropeptides of paraventricular hypothalamic neurons in early postnatally overfed rats. Eur J Neurosci 2003; 18:613-21. [PMID: 12911757 DOI: 10.1046/j.1460-9568.2003.02789.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Food intake and energy expenditure are regulated by neuropeptides in the hypothalamus. While cocaine- and amphetamine-regulated transcript (CART) peptide and melanocortins such as alpha-melanocyte-stimulating hormone (alpha-MSH) are anorexigenic and increase energy expenditure, the endogenous melanocortin receptor antagonist agouti gene-related protein (AGRP), melanin-concentrating hormone (MCH) and neuropeptide Y (NPY) are orexigenic, anabolic peptides. Alterations in the regulatory balance may promote excessive weight gain. The action of these peptides on paraventricular hypothalamic neurons was studied in brain slices of overweight, adult rats previously subjected to early postnatal overfeeding in small litters of only three pups per mother, compared to 12 pups per dam in control litters. CART, melanocortins and NPY significantly excited paraventricular neurons of controls, whereas neurons of small-litter rats were mainly inhibited. Inhibition was dominant following administration of AGRP, MCH and NPY. The altered responses of paraventricular neurons in adult small-litter rats might reflect a general mechanism of neurochemical plasticity and 'malprogramming' of hypothalamic neuropeptidergic systems acquired during the postnatal critical differentiation period, thus leading to permanently altered function of these regulatory systems of body weight.
Collapse
Affiliation(s)
- Helga Davidowa
- Johannes-Mueller-Institute of Physiology, Faculty of Medicine (Charité), Humboldt University Berlin, Tucholskystr. 2, D-10117 Berlin, Germany.
| | | | | |
Collapse
|
135
|
Hervieu G. Melanin-concentrating hormone functions in the nervous system: food intake and stress. Expert Opin Ther Targets 2003; 7:495-511. [PMID: 12885269 DOI: 10.1517/14728222.7.4.495] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Melanin-concentrating hormone (MCH) is a cyclic neuropeptide, which centrally regulates food intake and stress. MCH induces food intake in rodents and, more generally, acts as an anabolic signal in energy regulation. In addition, MCH seems to be activatory on the stress axis. Two receptors for MCH in humans have very recently been characterised, namely, MCH-R1 and MCH-R2. MCH-R1 has received considerable attention, as potent and selective antagonists acting at that receptor display anxiolytic, antidepressant and/or anorectic properties. Feeding and affective disorders are both debilitating conditions that have become serious worldwide health threats. There are as yet no efficient and/or safe cures that could contain the near-pandemia phenomen of both diseases. Thus, the discovery of MCH-R1 antagonists may lead to the development of valuable drugs to treat obesity, anxiety and depressive syndromes. In addition, it opens wide avenues to probe additional functions of the peptide, both in the brain and in the peripheral nervous system.
Collapse
Affiliation(s)
- Guillaume Hervieu
- GlaxoSmithKline R&D, Drug Discovery, Neurology Centre of Excellence for Drug Discovery, New Frontiers Science Park - North, HW1713 Building H17, L1-130 C06 Third Avenue, Harlow, Essex CM19 5AW, UK.
| |
Collapse
|
136
|
Abstract
The hypothalamus has been long considered important in feeding and other motivated behaviors. The identification of neuropeptides expressed in the hypothalamus has initiated efforts to better elucidate the underlying molecular mechanisms involved. The neuropeptides orexin and melanin-concentrating hormone (MCH) are expressed in the lateral hypothalamus (LH) and have been implicated in regulation of feeding behavior. Neurons expressing these neuropeptides have extensive projections to regions of the brain important for behavioral responses to drugs of abuse, raising the possibility that the pathways may also be important in addiction. Regulation of LH intracellular signaling pathways in response to drugs of abuse supports a role for the LH neuropeptides in addiction.
Collapse
Affiliation(s)
- Ralph J DiLeone
- Department of Psychiatry and Center for Basic Neuroscience, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas 75390-9070, USA.
| | | | | |
Collapse
|
137
|
Sita LV, Elias CF, Bittencourt JC. Dopamine and melanin-concentrating hormone neurons are distinct populations in the rat rostromedial zona incerta. Brain Res 2003; 970:232-7. [PMID: 12706266 DOI: 10.1016/s0006-8993(03)02345-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Zona incerta (ZI) is a controversial diencephalic area with a variety of cytoarchitectonic subdivisions, neurotransmitters and related functions. Medial ZI synthesizes dopamine (A13 group) and tyrosine hydroxylase (TH, a catecholamine synthesizing enzyme), which has been considered a neurochemical marker for this region. The rostromedial ZI also expresses melanin-concentrating hormone (MCH), but it is not known whether dopamine and MCH are colocalized. By using double label immunohistochemistry we analyzed the distribution of TH and MCH in the rat ZI. We found that MCH and TH neurons are intermingled but are not colocalized.
Collapse
Affiliation(s)
- Luciane V Sita
- Center for Neuroscience and Behavior, Institute of Psychology, University of São Paulo, Brazil
| | | | | |
Collapse
|
138
|
Casatti CA, Elias CF, Sita LV, Frigo L, Furlani VCG, Bauer JA, Bittencourt JC. Distribution of melanin-concentrating hormone neurons projecting to the medial mammillary nucleus. Neuroscience 2003; 115:899-915. [PMID: 12435428 DOI: 10.1016/s0306-4522(02)00508-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The melanin-concentrating hormone and neuropeptide glutamic acid-isoleucine are expressed in neurons located mainly in the hypothalamus that project widely throughout the CNS. One of the melanin-concentrating hormone main targets is the medial mammillary nucleus, but the exact origin of these fibers is unknown. We observed melanin-concentrating hormone and neuropeptide glutamic acid-isoleucine immunoreactive fibers coursing throughout the mammillary complex, showing higher density in the pars lateralis of the medial mammillary nucleus, while the lateral mammillary nucleus showed sparse melanin-concentrating hormone innervation. The origins of these afferents were determined by using implant of the retrograde tracer True Blue in the medial mammillary nucleus. Double-labeled neurons were observed in the lateral hypothalamic area, rostromedial zona incerta and dorsal tuberomammillary nucleus. A considerable population of retrogradely labeled melanin-concentrating hormone perikaryal profiles was also immunoreactive to neuropeptide glutamic acid-isoleucine (74+/-15% to 85+/-15%). The afferents from the lateral hypothalamic area, rostromedial zona incerta and dorsal tuberomammillary nucleus to the medial mammillary nucleus were confirmed using implant of the anterograde tracer Phaseolus vulgaris leucoagglutinin. In addition, using double-labeled immunohistochemistry, we found no co-localization between neurons expressing melanin-concentrating hormone and adenosine deaminase (histaminergic marker) in the dorsal tuberomammillary nucleus. We hypothesize that these melanin-concentrating hormone projections participate in spatial memory process mediated by the medial mammillary nucleus. These pathways would enable the animal to look for food during the initial moments of appetite stimulation.
Collapse
Affiliation(s)
- C A Casatti
- Department of Basic Sciences, School of Dentistry of Araçatuba, University of Sao Paulo State - UNESP, 16015-050, Sao Paulo, Araçatuba, Brazil
| | | | | | | | | | | | | |
Collapse
|
139
|
Peineau S, Potier B, Petit F, Dournaud P, Epelbaum J, Gardette R. AMPA-sst2 somatostatin receptor interaction in rat hypothalamus requires activation of NMDA and/or metabotropic glutamate receptors and depends on intracellular calcium. J Physiol 2003; 546:101-17. [PMID: 12509482 PMCID: PMC2342459 DOI: 10.1113/jphysiol.2002.025890] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Modulation of glutamatergic transmission by neuropeptides is an essential aspect of neuronal network activity. Activation of the hypothalamic somatostatin sst2 receptor subtype by octreotide decreases AMPA glutamate responses, indicating a central link between a neurohormonal and neuromodulatory peptide and the main hypothalamic fast excitatory neurotransmitter. In mediobasal hypothalamic slices, sst2 activation inhibits the AMPA component of glutamatergic synaptic responses but is ineffective when AMPA currents are pharmacologically isolated. In mediobasal hypothalamic cultures, the decrease of AMPA currents induced by octreotide requires a concomitant activation of sst2 receptors with either NMDA and/or metabotropic glutamate receptors. This modulation depends on changes in intracellular calcium concentration induced by calcium flux through NMDA receptors or calcium release from intracellular stores following metabotropic glutamate receptor activation. These results highlight an unusual regulatory mechanism in which the simultaneous activation of at least three different types of receptor is necessary to allow somatostatin-induced modulation of fast synaptic glutamatergic transmission in the hypothalamus.
Collapse
Affiliation(s)
- Stéphane Peineau
- INSERM U549, IFR Broca Sainte Anne, 2ter rue d'Alésia, 75014 Paris, France
| | | | | | | | | | | |
Collapse
|
140
|
Mellem JE, Brockie PJ, Zheng Y, Madsen DM, Maricq AV. Decoding of polymodal sensory stimuli by postsynaptic glutamate receptors in C. elegans. Neuron 2002; 36:933-44. [PMID: 12467596 DOI: 10.1016/s0896-6273(02)01088-7] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The C. elegans polymodal ASH sensory neurons detect mechanical, osmotic, and chemical stimuli and release glutamate to signal avoidance responses. To investigate the mechanisms of this polymodal signaling, we have characterized the role of postsynaptic glutamate receptors in mediating the response to these distinct stimuli. By studying the behavioral and electrophysiological properties of worms defective for non-NMDA (GLR-1 and GLR-2) and NMDA (NMR-1) receptor subunits, we show that while the osmotic avoidance response requires both NMDA and non-NMDA receptors, the response to mechanical stimuli only requires non-NMDA receptors. Furthermore, analysis of the EGL-3 proprotein convertase provides additional evidence that polymodal signaling in C. elegans occurs via the differential activation of postsynaptic glutamate receptor subtypes.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Behavior, Animal/physiology
- Caenorhabditis elegans/physiology
- Caenorhabditis elegans Proteins/genetics
- Caenorhabditis elegans Proteins/metabolism
- Cations/metabolism
- Electrophysiology
- Excitatory Amino Acid Agonists/pharmacology
- Ion Channel Gating/physiology
- Luminescent Proteins/genetics
- Luminescent Proteins/metabolism
- Models, Biological
- Molecular Sequence Data
- Mutation
- N-Methylaspartate/pharmacology
- Neurons, Afferent/cytology
- Neurons, Afferent/drug effects
- Neurons, Afferent/metabolism
- Physical Stimulation
- Protein Subunits/genetics
- Protein Subunits/metabolism
- Receptors, AMPA/genetics
- Receptors, AMPA/metabolism
- Receptors, N-Methyl-D-Aspartate/genetics
- Receptors, N-Methyl-D-Aspartate/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Signal Transduction/physiology
- Stimulation, Chemical
- alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/pharmacology
Collapse
Affiliation(s)
- Jerry E Mellem
- Department of Biology, University of Utah, Salt Lake City 84112, USA
| | | | | | | | | |
Collapse
|
141
|
Jo YH, Talmage DA, Role LW. Nicotinic receptor-mediated effects on appetite and food intake. JOURNAL OF NEUROBIOLOGY 2002; 53:618-32. [PMID: 12436425 PMCID: PMC2367209 DOI: 10.1002/neu.10147] [Citation(s) in RCA: 230] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
It is well known, although not well understood, that smoking and eating just do not go together. Smoking is associated with decreased food intake and lower body weight. Nicotine, administered either by smoking or by smokeless routes, is considered the major appetite-suppressing component of tobacco. Perhaps the most renowned example of nicotine's influence on appetite and feeding behavior is the significant weight gain associated with smoking cessation. This article presents an overview of the literature at, or near, the interface of nicotinic receptors and appetite regulation. We first consider some of the possible sites of nicotine's action along the complex network of neural and non-neural regulators of feeding. We then present the hypothesis that the lateral hypothalamus is a particularly important locus of the anorectic effects of nicotine. Finally, we discuss the potential role of endogenous cholinergic systems in motivational feeding, focusing on cholinergic pathways in the lateral hypothalamus.
Collapse
Affiliation(s)
- Young-Hwan Jo
- Department of Anatomy and Cell Biology, in the Center for Neurobiology and Behavior, Columbia, University, New York, NY 10032, USA
| | | | | |
Collapse
|
142
|
Kukkonen JP, Holmqvist T, Ammoun S, Akerman KEO. Functions of the orexinergic/hypocretinergic system. Am J Physiol Cell Physiol 2002; 283:C1567-91. [PMID: 12419707 DOI: 10.1152/ajpcell.00055.2002] [Citation(s) in RCA: 225] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Orexin A and orexin B are hypothalamic peptides that act on their targets via two G protein-coupled receptors (OX1 and OX2 receptors). In the central nervous system, the cell bodies producing orexins are localized in a narrow region within the lateral hypothalamus and project mainly to regions involved in feeding, sleep, and autonomic functions. Via putative pre- and postsynaptic effects, orexins increase synaptic activity in these regions. In isolated neurons and cells expressing recombinant receptors orexins cause Ca2+ elevation, which is mainly dependent on influx. The activity of orexinergic cells appears to be controlled by feeding- and sleep-related signals via a variety of neurotransmitters/hormones from the brain and other tissues. Orexins and orexin receptors are also found outside the central nervous system, particularly in organs involved in feeding and energy metabolism, e.g., gastrointestinal tract, pancreas, and adrenal gland. In the present review we focus on the physiological properties of the cells that secrete or respond to orexins.
Collapse
Affiliation(s)
- Jyrki P Kukkonen
- Laboratory of Cell Physiology, Department of Neuroscience, Division of Physiology, Uppsala University, Biomedical Center, SE-75123 Uppsala, Sweden.
| | | | | | | |
Collapse
|
143
|
Jo YH, Role LW. Cholinergic modulation of purinergic and GABAergic co-transmission at in vitro hypothalamic synapses. J Neurophysiol 2002; 88:2501-8. [PMID: 12424289 DOI: 10.1152/jn.00352.2002] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The lateral hypothalamus (LH) is an important center for the integration of autonomic and limbic information and is implicated in the modulation of visceral motor and sensory pathways, including those underlying feeding and arousal behaviors. LH neurons in vitro release both ATP and GABA. The control of ATP and GABA co-transmission in LH may underlie the participation of LH in basic aspects of arousal and reinforcement. LH neurons receive cholinergic input from the pedunculopontine and laterodorsal tegmental nuclei as well as from cholinergic interneurons within the LH per se. This study presents evidence for nicotinic acetylcholine receptor (nAChR)-mediated enhancement of GABAergic, but not of purinergic, transmission despite the co-transmission of ATP and GABA at LH synapses in vitro. Facilitation of GABAergic transmission by nicotine is inhibited by antagonists of (alphabeta)*-containing nAChRs, but is unaffected by an alpha7-selective antagonist, consistent with a nAChR-mediated enhancement of GABA release mediated by non-alpha7-containing nAChRs. Activation of muscarinic ACh receptors enhances the release of ATP while concomitantly depressing GABAergic transmission. The independent modulation of ATP/GABAergic transmission may provide a new level of synaptic flexibility in which individual neurons utilize more than one neurotransmitter but retain independent control over their synaptic activity.
Collapse
Affiliation(s)
- Young-Hwan Jo
- Department of Anatomy and Cell Biology in the Center for Neurobiology and Behavior, Columbia University, College of Physicians and Surgeons, New York, New York 10032, USA
| | | |
Collapse
|
144
|
Davidowa H, Li Y, Plagemann A. Hypothalamic ventromedial and arcuate neurons of normal and postnatally overnourished rats differ in their responses to melanin-concentrating hormone. REGULATORY PEPTIDES 2002; 108:103-11. [PMID: 12220733 DOI: 10.1016/s0167-0115(02)00153-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Melanin-concentrating hormone (MCH) is a neuropeptide involved in regulation of food intake and body weight. The study aimed to detect possible differences in responses of hypothalamic ventromedial and arcuate neurons to MCH, depending on the short-term nutritional state (fed versus food-deprived) and on the long-term state in overweight rats due to early postnatal overnutrition. The effect of MCH on a single-unit activity was studied in brain slices of normal and overweight rats. The latter (n=16) were raised till weaning in small litters (SL) of 3 pups compared to 10 pups in control litters (CL) and gained significantly greater body mass. Whereas MCH in effective concentrations in the pico- to nanomolar range could increase or suppress the activity of ventromedial or arcuate neurons studied in male normal fed or food-deprived (24 h) rats, its action became shaped in an unidirectional way in overweight, hyperphagic rats. Medial arcuate neurons (n=25) from hyperphagic rats were predominantly activated by MCH (p<0.05, paired t-test). This effect differed significantly from that induced on neurons (n=27) of control rats. Ventromedial neurons (n=34) of overweight rats were predominantly inhibited. Activation of arcuate neurons may induce feeding in particular through release of neuropeptide Y (NPY). Inhibition of ventromedial neurons may contribute to reduced energy expenditure. The increased expression of one response type to MCH by a neuronal population in overweight, hyperphagic rats might reflect a general mechanism of neurochemical plasticity and also suggest a participation of the peptide in long-term regulation of food intake and body weight in this model of obesity.
Collapse
Affiliation(s)
- Helga Davidowa
- Johannes-Mueller-Institute of Physiology, Faculty of Medicine (Charité), Humboldt University Berlin, Tucholskystr 2, D-10117, Berlin, Germany.
| | | | | |
Collapse
|
145
|
Reti IM, Reddy R, Worley PF, Baraban JM. Selective expression of Narp, a secreted neuronal pentraxin, in orexin neurons. J Neurochem 2002; 82:1561-5. [PMID: 12354306 DOI: 10.1046/j.1471-4159.2002.01141.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recent studies have provided compelling evidence demonstrating that orexin (also known as hypocretin) neurons play a central role in the pathophysiology of narcolepsy. However, targeted deletion of orexin does not fully mimic the functional deficits induced by selective ablation of these neurons; implying that other secreted signaling molecules expressed in these neurons mediate key aspects of their function. In this study, we demonstrate that orexin neurons display robust expression of neuronal activity-regulated pentraxin (Narp), a secreted neuronal pentraxin, implicated in regulating clustering of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptors. Furthermore, we have found that hypothalamic melanin-concentrating hormone (MCH) neurons, which form a peptidergic pathway thought to oppose the effects of the orexin system, express another neuronal pentraxin, NP1. Thus, these findings suggest that these pathways utilize neuronal pentraxins, in addition to neuropeptides, as synaptic signaling molecules.
Collapse
Affiliation(s)
- Irving M Reti
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | | | | | |
Collapse
|
146
|
Abstract
Autonomic and limbic information is integrated within the lateral hypothalamus (LH), and excitability of LH neurons is important in the control of feeding and behavioral arousal. Despite the prominent expression of P2X-type ATP receptors throughout the hypothalamus, the role of ATP in LH excitability is not known. Perforated-patch-clamp recordings of synaptically coupled neurons from both embryonic chick and postnatal mouse lateral hypothalamus in vitro reveal robust stimulus-evoked purinergic synaptic transmission. Suprathreshold activation elicits reliable and concurrent release of ATP with GABA. Tetrodotoxin-resistant P2X receptor-mediated events are readily observed at LH synapses from the embryonic chick, whereas GABA miniature postsynaptic currents (mPSCs) are recorded in innervated LH neurons from either embryonic chicks or postnatal mice. Two distinct mPSCs are recorded at ATP-GABA cosynapses; one has a monoexponential decay phase and is modulated by flunitrazepam, and the other has a decay phase that is best fit by a sum of two exponential functions (tau(fast) and tau(slow)), and only the tau(slow) component is affected by flunitrazepam. Bicuculline does not completely inhibit all mPSCs. The remaining bicuculline-resistant mPSCs are blocked by suramin, and their decay phase is briefer than that of GABAergic mPSCs. Furthermore, at a holding potential intermediate for the reversal potentials of GABA(A) and P2X receptors, little or no current is observed, consistent with concomitant release (and detection) of GABA and ATP. Together, our data suggest that a subset of spontaneous and evoked PSCs arise from the concurrent activation of both GABA(A) and P2X receptors.
Collapse
|
147
|
Gao XB, van den Pol AN. Melanin-concentrating hormone depresses L-, N-, and P/Q-type voltage-dependent calcium channels in rat lateral hypothalamic neurons. J Physiol 2002; 542:273-86. [PMID: 12096069 PMCID: PMC2290404 DOI: 10.1113/jphysiol.2002.019372] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Melanin-concentrating hormone (MCH), a cyclic 19-amino-acid peptide, is synthesized exclusively by neurons in the lateral hypothalamic (LH) area. It is involved in a number of brain functions and recently has raised interest because of its role in energy homeostasis. MCH axons and receptors are found throughout the brain. Previous reports set the foundation for understanding the cellular actions of MCH by using non-neuronal cells transfected with the MCH receptor gene; these cells exhibited an increase in cytoplasmic calcium in response to MCH, suggesting an excitatory action for the peptide. In the study presented here, we have used whole-cell recording in 117 neurons from LH cultures and brain slices to examine the actions of MCH. MCH decreased the amplitude of voltage-dependent calcium currents in almost all tested neurons. The inhibition desensitized rapidly (18 s to half maximum at 100 nM concentration) and was dose-dependent (IC(50) = 7.8 nM) when activated with a pulse from -80 mV to 0 mV. A priori activation of G-proteins with GTPgammaS completely eliminated the MCH-induced effect at low MCH concentrations and reduced the MCH-induced effect at high MCH concentrations. Inhibition of G-proteins with pertussis toxin (PTX) blocked the MCH-induced inhibitory effect at high MCH concentrations. Pre-pulse depolarization resulted in an attenuation of the MCH-induced inhibition of calcium currents in most neurons. These data suggest that MCH exerts an inhibitory effect on calcium currents via PTX-sensitive G-protein pathways, probably the G(i)/G(o) pathway, in LH neurons. L-, N- and P/Q-type calcium channels were identified in LH neurons, with L- and N-type channels accounting for most of the voltage-activated current (about 40 % each); MCH attenuated each of the three types (mean 50 % depression), with the greatest inhibition found for N-type currents. In contrast to previous data on non-neuronal cells showing an MHC-evoked increase in calcium, our data suggest that the reverse occurs in LH neurons. The attenuation of calcium currents is consistent with an inhibitory action for the peptide in neurons.
Collapse
Affiliation(s)
- Xiao-Bing Gao
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06520, USA
| | | |
Collapse
|
148
|
Jo YH, Role LW. Coordinate release of ATP and GABA at in vitro synapses of lateral hypothalamic neurons. J Neurosci 2002; 22:4794-804. [PMID: 12077176 PMCID: PMC6757749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
Autonomic and limbic information is integrated within the lateral hypothalamus (LH), and excitability of LH neurons is important in the control of feeding and behavioral arousal. Despite the prominent expression of P2X-type ATP receptors throughout the hypothalamus, the role of ATP in LH excitability is not known. Perforated-patch-clamp recordings of synaptically coupled neurons from both embryonic chick and postnatal mouse lateral hypothalamus in vitro reveal robust stimulus-evoked purinergic synaptic transmission. Suprathreshold activation elicits reliable and concurrent release of ATP with GABA. Tetrodotoxin-resistant P2X receptor-mediated events are readily observed at LH synapses from the embryonic chick, whereas GABA miniature postsynaptic currents (mPSCs) are recorded in innervated LH neurons from either embryonic chicks or postnatal mice. Two distinct mPSCs are recorded at ATP-GABA cosynapses; one has a monoexponential decay phase and is modulated by flunitrazepam, and the other has a decay phase that is best fit by a sum of two exponential functions (tau(fast) and tau(slow)), and only the tau(slow) component is affected by flunitrazepam. Bicuculline does not completely inhibit all mPSCs. The remaining bicuculline-resistant mPSCs are blocked by suramin, and their decay phase is briefer than that of GABAergic mPSCs. Furthermore, at a holding potential intermediate for the reversal potentials of GABA(A) and P2X receptors, little or no current is observed, consistent with concomitant release (and detection) of GABA and ATP. Together, our data suggest that a subset of spontaneous and evoked PSCs arise from the concurrent activation of both GABA(A) and P2X receptors.
Collapse
Affiliation(s)
- Young-Hwan Jo
- Department of Anatomy and Cell Biology, Center for Neurobiology and Behavior, Columbia University, College of Physicians and Surgeons, New York, New York 10032, USA
| | | |
Collapse
|
149
|
Lee DK, George SR, O'Dowd BF. Novel G-protein-coupled receptor genes expressed in the brain: continued discovery of important therapeutic targets. Expert Opin Ther Targets 2002; 6:185-202. [PMID: 12223080 DOI: 10.1517/14728222.6.2.185] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The rhodopsin family of G-protein-coupled receptors (GPCRs) is the largest known group of cell-surface mediators of signal transduction. The vast majority of these receptors were discovered by methods based upon shared sequence homologies found throughout this family. While such efforts identified a multitude of receptor subtypes for previously known ligands, numerous receptors have been discovered for which endogenous ligands were unknown. These receptors are commonly referred to as orphan receptors. One of the most important tasks of modern pharmacology lies in elucidating the functions of these receptors. Of particular interest are receptors with recognised expression in the central nervous system, given that many psychiatric and neurodegenerative disorders are mediated by unknown mechanisms. Hence, this collection of putative neurotransmitter and neuromodulator signal mediators represents a substantial and untapped resource for novel drug discovery. Recently, various methodologies have accelerated the discovery of novel ligands for these orphan receptors, identifying the basic components required for further physiological ligand/receptor system characterisation. Equipped with proven ligand identification strategies, the characterisation of all orphan GPCRs and the exploitation of their exciting potential as targets for the discovery of novel drugs is anticipated.
Collapse
Affiliation(s)
- Dennis K Lee
- Department of Pharmacology, University of Toronto, Medical Science Building, 8 Taddle Creek Rd. Rm. 4352, Toronto, Ontario M5S 1A8, Canada
| | | | | |
Collapse
|
150
|
Bayer L, Mairet-Coello G, Risold PY, Griffond B. Orexin/hypocretin neurons: chemical phenotype and possible interactions with melanin-concentrating hormone neurons. REGULATORY PEPTIDES 2002; 104:33-9. [PMID: 11830274 DOI: 10.1016/s0167-0115(01)00320-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We showed earlier that a specific neuron population of the rat lateral hypothalamus, differing from the codistributed melanin-concentrating hormone (MCH) neurons, express both dynorphin (DYN) and secretogranin II (SgII) genes. We demonstrated later that this population corresponds in fact to the newly identified orexin/hypocretin (OX/Hcrt) neurons. In the present study, by revisiting the chemical phenotype of these neurons, we confirm that all of them contain DYN B- and SgII-immunoreactive materials. The roles played by these peptide/protein in OX/Hcrt neurons are still unclear. Double immunocytochemical stainings highlight putative somasomatic, axosomatic and axodendritic contacts between OX/Hcrt and MCH neurons. Adding OX/Hcrt to the culture medium of hypothalamic slices from 8-day-old rats results either in a significant increase of MCH mRNA after 24 h survival or a strong fall after 10 days culture. These results taken together suggest that OX/Hcrt can directly and/or indirectly affect MCH expression, and that both OX/Hcrt and MCH neuron populations interact to respond in a coordinated manner to central and peripheral signals.
Collapse
Affiliation(s)
- Laurence Bayer
- CNRS FRE 2174, Laboratoire d'Histologie, Faculté de Médecine, Place Saint-Jacques, 25030 cedex, Besançon, France
| | | | | | | |
Collapse
|