101
|
Mollah MMI, Ahmed S, Kim Y. Immune mediation of HMG-like DSP1 via Toll-Spätzle pathway and its specific inhibition by salicylic acid analogs. PLoS Pathog 2021; 17:e1009467. [PMID: 33765093 PMCID: PMC8023496 DOI: 10.1371/journal.ppat.1009467] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/06/2021] [Accepted: 03/11/2021] [Indexed: 12/22/2022] Open
Abstract
Xenorhabdus hominickii, an entomopathogenic bacterium, inhibits eicosanoid biosynthesis of target insects to suppress their immune responses by inhibiting phospholipase A2 (PLA2) through binding to a damage-associated molecular pattern (DAMP) molecule called dorsal switch protein 1 (DSP1) from Spodoptera exigua, a lepidopteran insect. However, the signalling pathway between DSP1 and PLA2 remains unknown. The objective of this study was to determine whether DSP1 could activate Toll immune signalling pathway to activate PLA2 activation and whether X. hominickii metabolites could inhibit DSP1 to shutdown eicosanoid biosynthesis. Toll-Spätzle (Spz) signalling pathway includes two Spz (SeSpz1 and SeSpz2) and 10 Toll receptors (SeToll1-10) in S. exigua. Loss-of-function approach using RNA interference showed that SeSpz1 and SeToll9 played crucial roles in connecting DSP1 mediation to activate PLA2. Furthermore, a deletion mutant against SeToll9 using CRISPR/Cas9 abolished DSP1 mediation and induced significant immunosuppression. Organic extracts of X. hominickii culture broth could bind to DSP1 at a low micromolar range. Subsequent sequential fractionations along with binding assays led to the identification of seven potent compounds including 3-ethoxy-4-methoxyphenol (EMP). EMP could bind to DSP1 and prevent its translocation to plasma in response to bacterial challenge and suppress the up-regulation of PLA2 activity. These results suggest that X. hominickii inhibits DSP1 and prevents its DAMP role in activating Toll immune signalling pathway including PLA2 activation, leading to significant immunosuppression of target insects. Immune responses of insects are highly effective in defending various entomopathogens. Xenorhabdus hominickii is an entomopathogenic bacterium that uses a pathogenic strategy of suppressing host insect immunity by inhibiting phospholipase A2 (PLA2) which catalyzes the committed step for eicosanoid biosynthesis. Eicosanoids mediate both cellular and humoral immune responses in insects. This study discovers an upstream signalling pathway to activate PLA2 in response to bacterial challenge. Se-DSP1 is an insect homolog of vertebrate HMGB1 that acts as a damage-associated molecular pattern. Upon bacterial infection, Se-DSP1 is released to the circulatory system to activate Spätzle, an insect cytokine that can bind to Toll receptor. Toll immune signalling pathway can activate antimicrobial peptide gene expression and PLA2. A deletion mutant against a Toll gene abolished immune responses mediated by Se-DSP1. Indeed, X. hominickii can produce and secrete secondary metabolites including salicylic acid analogs that can strongly bind to Se-DSP1. These bacterial metabolites prevented the release of Se-DSP1, which impaired the activation of PLA2 and resulted in a significant immunosuppression of target insects against bacterial infection.
Collapse
Affiliation(s)
- Md. Mahi Imam Mollah
- Department of Plant Medicals, College of Life Sciences, Andong National University, Andong, Korea
| | - Shabbir Ahmed
- Department of Plant Medicals, College of Life Sciences, Andong National University, Andong, Korea
| | - Yonggyun Kim
- Department of Plant Medicals, College of Life Sciences, Andong National University, Andong, Korea
- * E-mail:
| |
Collapse
|
102
|
Zamyatin A, Avdeyev P, Liang J, Sharma A, Chen C, Lukyanchikova V, Alexeev N, Tu Z, Alekseyev MA, Sharakhov IV. Chromosome-level genome assemblies of the malaria vectors Anopheles coluzzii and Anopheles arabiensis. Gigascience 2021; 10:giab017. [PMID: 33718948 PMCID: PMC7957348 DOI: 10.1093/gigascience/giab017] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/01/2021] [Accepted: 01/23/2021] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Anopheles coluzzii and Anopheles arabiensis belong to the Anopheles gambiae complex and are among the major malaria vectors in sub-Saharan Africa. However, chromosome-level reference genome assemblies are still lacking for these medically important mosquito species. FINDINGS In this study, we produced de novo chromosome-level genome assemblies for A. coluzzii and A. arabiensis using the long-read Oxford Nanopore sequencing technology and the Hi-C scaffolding approach. We obtained 273.4 and 256.8 Mb of the total assemblies for A. coluzzii and A. arabiensis, respectively. Each assembly consists of 3 chromosome-scale scaffolds (X, 2, 3), complete mitochondrion, and unordered contigs identified as autosomal pericentromeric DNA, X pericentromeric DNA, and Y sequences. Comparison of these assemblies with the existing assemblies for these species demonstrated that we obtained improved reference-quality genomes. The new assemblies allowed us to identify genomic coordinates for the breakpoint regions of fixed and polymorphic chromosomal inversions in A. coluzzii and A. arabiensis. CONCLUSION The new chromosome-level assemblies will facilitate functional and population genomic studies in A. coluzzii and A. arabiensis. The presented assembly pipeline will accelerate progress toward creating high-quality genome references for other disease vectors.
Collapse
Affiliation(s)
- Anton Zamyatin
- Computer Technologies Laboratory, ITMO University, Kronverkskiy Prospekt 49-A, Saint Petersburg 197101, Russia
| | - Pavel Avdeyev
- Department of Mathematics, The George Washington University, 801 22nd Street NW, Washington, DC 20052, USA
- Computational Biology Institute, Milken Institute School of Public Health, The George Washington University, 800 22nd Street NW, Washington, DC 20052, USA
| | - Jiangtao Liang
- Department of Entomology, Virginia Polytechnic Institute and State University, 170 Drillfield Drive, Blacksburg, VA 24061, USA
- Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, 360 West Campus Drive, Blacksburg, VA 24061, USA
| | - Atashi Sharma
- Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, 360 West Campus Drive, Blacksburg, VA 24061, USA
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Chujia Chen
- Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, 360 West Campus Drive, Blacksburg, VA 24061, USA
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Varvara Lukyanchikova
- Department of Entomology, Virginia Polytechnic Institute and State University, 170 Drillfield Drive, Blacksburg, VA 24061, USA
- Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, 360 West Campus Drive, Blacksburg, VA 24061, USA
- Institute of Cytology and Genetics the Siberian Division of the Russian Academy of Sciences, Prospekt Lavrentyeva 10, Novosibirsk 630090, Russia
| | - Nikita Alexeev
- Computer Technologies Laboratory, ITMO University, Kronverkskiy Prospekt 49-A, Saint Petersburg 197101, Russia
| | - Zhijian Tu
- Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, 360 West Campus Drive, Blacksburg, VA 24061, USA
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Max A Alekseyev
- Department of Mathematics, The George Washington University, 801 22nd Street NW, Washington, DC 20052, USA
- Computational Biology Institute, Milken Institute School of Public Health, The George Washington University, 800 22nd Street NW, Washington, DC 20052, USA
| | - Igor V Sharakhov
- Department of Entomology, Virginia Polytechnic Institute and State University, 170 Drillfield Drive, Blacksburg, VA 24061, USA
- Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, 360 West Campus Drive, Blacksburg, VA 24061, USA
| |
Collapse
|
103
|
Ngowo HS, Hape EE, Matthiopoulos J, Ferguson HM, Okumu FO. Fitness characteristics of the malaria vector Anopheles funestus during an attempted laboratory colonization. Malar J 2021; 20:148. [PMID: 33712003 PMCID: PMC7955623 DOI: 10.1186/s12936-021-03677-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/01/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The malaria vector Anopheles funestus is increasingly recognized as a dominant vector of residual transmission in many African settings. Efforts to better understand its biology and control are significantly impeded by the difficulties of colonizing it under laboratory conditions. To identify key bottlenecks in colonization, this study compared the development and fitness characteristics of wild An. funestus from Tanzania (FUTAZ) and their F1 offspring during colonization attempts. The demography and reproductive success of wild FUTAZ offspring were compared to that of individuals from one of the only An. funestus strains that has been successfully colonized (FUMOZ, from Mozambique) under similar laboratory conditions. METHODS Wild An. funestus (FUTAZ) were collected from three Tanzanian villages and maintained inside an insectary at 70-85% RH, 25-27 °C and 12 h:12 h photoperiod. Eggs from these females were used to establish three replicate F1 laboratory generations. Larval development, survival, fecundity, mating success, percentage pupation and wing length were measured in the F1 -FUTAZ offspring and compared with wild FUTAZ and FUMOZ mosquitoes. RESULTS Wild FUTAZ laid fewer eggs (64.1; 95% CI [63.2, 65.0]) than FUMOZ females (76.1; 95% CI [73.3, 79.1]). Survival of F1-FUTAZ larvae under laboratory conditions was low, with an egg-to-pupae conversion rate of only 5.9% compared to 27.4% in FUMOZ. The median lifespan of F1-FUTAZ females (32 days) and males (33 days) was lower than FUMOZ (52 and 49 for females and males respectively). The proportion of female F1-FUTAZ inseminated under laboratory conditions (9%) was considerably lower than either FUMOZ (72%) or wild-caught FUTAZ females (92%). This resulted in nearly zero viable F2-FUTAZ eggs produced. Wild FUTAZ wings appear to be larger compared to the lab reared F1-FUTAZ and FUMOZ. CONCLUSIONS This study indicates that poor larval survival, mating success, low fecundity and shorter survival under laboratory conditions all contribute to difficulties in colonizing of An. funestus. Future studies should focus on enhancing these aspects of An. funestus fitness in the laboratory, with the biggest barrier likely to be poor mating.
Collapse
Affiliation(s)
- Halfan S Ngowo
- Department of Environmental Health and Ecological Sciences, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania. .,Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12, 8QQ, UK.
| | - Emmanuel E Hape
- Department of Environmental Health and Ecological Sciences, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania.,Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12, 8QQ, UK
| | - Jason Matthiopoulos
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12, 8QQ, UK
| | - Heather M Ferguson
- Department of Environmental Health and Ecological Sciences, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania.,Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12, 8QQ, UK
| | - Fredros O Okumu
- Department of Environmental Health and Ecological Sciences, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania.,Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12, 8QQ, UK.,School of Public Health, University of the Witwatersrand, 1 Smuts Avenue, Braamfontein, 2000, Republic of South Africa.,School of Life Science and Bioengineering, Nelson Mandela African Institution of Science and Technology, P.O. Box 447, Arusha, Tanzania
| |
Collapse
|
104
|
Fogaça AC, Sousa G, Pavanelo DB, Esteves E, Martins LA, Urbanová V, Kopáček P, Daffre S. Tick Immune System: What Is Known, the Interconnections, the Gaps, and the Challenges. Front Immunol 2021; 12:628054. [PMID: 33737931 PMCID: PMC7962413 DOI: 10.3389/fimmu.2021.628054] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/11/2021] [Indexed: 12/13/2022] Open
Abstract
Ticks are ectoparasitic arthropods that necessarily feed on the blood of their vertebrate hosts. The success of blood acquisition depends on the pharmacological properties of tick saliva, which is injected into the host during tick feeding. Saliva is also used as a vehicle by several types of pathogens to be transmitted to the host, making ticks versatile vectors of several diseases for humans and other animals. When a tick feeds on an infected host, the pathogen reaches the gut of the tick and must migrate to its salivary glands via hemolymph to be successfully transmitted to a subsequent host during the next stage of feeding. In addition, some pathogens can colonize the ovaries of the tick and be transovarially transmitted to progeny. The tick immune system, as well as the immune system of other invertebrates, is more rudimentary than the immune system of vertebrates, presenting only innate immune responses. Although simpler, the large number of tick species evidences the efficiency of their immune system. The factors of their immune system act in each tick organ that interacts with pathogens; therefore, these factors are potential targets for the development of new strategies for the control of ticks and tick-borne diseases. The objective of this review is to present the prevailing knowledge on the tick immune system and to discuss the challenges of studying tick immunity, especially regarding the gaps and interconnections. To this end, we use a comparative approach of the tick immune system with the immune system of other invertebrates, focusing on various components of humoral and cellular immunity, such as signaling pathways, antimicrobial peptides, redox metabolism, complement-like molecules and regulated cell death. In addition, the role of tick microbiota in vector competence is also discussed.
Collapse
Affiliation(s)
- Andréa C. Fogaça
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Géssica Sousa
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Daniel B. Pavanelo
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Eliane Esteves
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Larissa A. Martins
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czechia
- Laboratory of Bacteriology, Tick-Pathogen Transmission Unit, National Institute of Allergy and Infectious Diseases, Hamilton, MT, United States
| | - Veronika Urbanová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czechia
| | - Petr Kopáček
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czechia
| | - Sirlei Daffre
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
105
|
Tikhe CV, Dimopoulos G. Mosquito antiviral immune pathways. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 116:103964. [PMID: 33301792 DOI: 10.1016/j.dci.2020.103964] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
Mosquitoes are vectors of a large number of viral pathogens. In recent years, increased urbanization and climate change has expanded the range of many vector mosquitoes. The lack of effective medical interventions has made the control of mosquito-borne viral diseases very difficult. Understanding the interactions between the mosquito immune system and viruses is critical if we are to develop effective control strategies against these diseases. Mosquitoes harbor multiple conserved immune pathways that curb invading viral pathogens. Despite the conservation of these pathways, the activation and intensity of the mosquito immune response varies with the mosquito species, tissue, and the infecting virus. This article reviews major conserved antiviral immune pathways in vector mosquitoes, their interactions with invading viral pathogens, and how these interactions restrict or promote infection of these medically important viruses.
Collapse
Affiliation(s)
- Chinmay V Tikhe
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States; Johns Hopkins Malaria Research Institute, United States.
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States; Johns Hopkins Malaria Research Institute, United States.
| |
Collapse
|
106
|
Boonchuen P, Jaree P, Somboonviwat K, Somboonwiwat K. Regulation of shrimp prophenoloxidase activating system by lva-miR-4850 during bacterial infection. Sci Rep 2021; 11:3821. [PMID: 33589707 PMCID: PMC7884684 DOI: 10.1038/s41598-021-82881-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 01/15/2021] [Indexed: 01/31/2023] Open
Abstract
MicroRNAs (miRNAs) suppress gene expression and regulate biological processes. Following small RNA sequencing, shrimp hemocytes miRNAs differentially expressed in response to acute hepatopancreatic necrosis disease (AHPND) caused by Vibrio parahaemolyticus (VPAHPND) were discovered and some were confirmed by qRT-PCR. VPAHPND-responsive miRNAs were predicted to target several genes in various immune pathways. Among them, lva-miR-4850 is of interest because its predicted target mRNAs are two important genes of the proPO system; proPO2 (PO2) and proPO activating factor 2 (PPAF2). The expression of lva-miR-4850 was significantly decreased after VPAHPND infection, whereas those of the target mRNAs, PO2 and PPAF2, and PO activity were significantly upregulated. Introducing the lva-miR-4850 mimic into VPAHPND-infected shrimps caused a reduction in the PO2 and PPAF2 transcript levels and the PO activity, but significantly increased the number of bacteria in the VPAHPND targeted tissues. This result inferred that lva-miR-4850 plays a crucial role in regulating the proPO system via suppressing expression of PPAF2 and PO2. To fight against VPAHPND infection, shrimp downregulated lva-miR-4850 expression resulted in proPO activation.
Collapse
Affiliation(s)
- Pakpoom Boonchuen
- grid.7922.e0000 0001 0244 7875Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Phattarunda Jaree
- grid.10223.320000 0004 1937 0490Center of Applied Shrimp Research and Innovation, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom Thailand
| | - Kulwadee Somboonviwat
- grid.9723.f0000 0001 0944 049XFaculty of Engineering at Sriracha, Kasetsart University Sriracha Campus, Sriracha, Chonburi Thailand
| | - Kunlaya Somboonwiwat
- grid.7922.e0000 0001 0244 7875Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand ,grid.7922.e0000 0001 0244 7875Omics Science and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
107
|
Rosche KL, Sidak-Loftis LC, Hurtado J, Fisk EA, Shaw DK. Arthropods Under Pressure: Stress Responses and Immunity at the Pathogen-Vector Interface. Front Immunol 2021; 11:629777. [PMID: 33659000 PMCID: PMC7917218 DOI: 10.3389/fimmu.2020.629777] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 12/30/2020] [Indexed: 12/14/2022] Open
Abstract
Understanding what influences the ability of some arthropods to harbor and transmit pathogens may be key for controlling the spread of vector-borne diseases. Arthropod immunity has a central role in dictating vector competence for pathogen acquisition and transmission. Microbial infection elicits immune responses and imparts stress on the host by causing physical damage and nutrient deprivation, which triggers evolutionarily conserved stress response pathways aimed at restoring cellular homeostasis. Recent studies increasingly recognize that eukaryotic stress responses and innate immunity are closely intertwined. Herein, we describe two well-characterized and evolutionarily conserved mechanisms, the Unfolded Protein Response (UPR) and the Integrated Stress Response (ISR), and examine evidence that these stress responses impact immune signaling. We then describe how multiple pathogens, including vector-borne microbes, interface with stress responses in mammals. Owing to the well-conserved nature of the UPR and ISR, we speculate that similar mechanisms may be occurring in arthropod vectors and ultimately impacting vector competence. We conclude this Perspective by positing that novel insights into vector competence will emerge when considering that stress-signaling pathways may be influencing the arthropod immune network.
Collapse
Affiliation(s)
- Kristin L Rosche
- Program in Vector-borne Disease, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
| | - Lindsay C Sidak-Loftis
- Program in Vector-borne Disease, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
| | - Joanna Hurtado
- Program in Vector-borne Disease, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
| | - Elizabeth A Fisk
- Program in Vector-borne Disease, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
| | - Dana K Shaw
- Program in Vector-borne Disease, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
| |
Collapse
|
108
|
Jia Z, Jiang S, Wang M, Wang X, Liu Y, Lv Z, Song X, Li Y, Wang L, Song L. Identification of a Novel Pattern Recognition Receptor DM9 Domain Containing Protein 4 as a Marker for Pro-Hemocyte of Pacific Oyster Crassostrea gigas. Front Immunol 2021; 11:603270. [PMID: 33643289 PMCID: PMC7907646 DOI: 10.3389/fimmu.2020.603270] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 12/22/2020] [Indexed: 11/13/2022] Open
Abstract
DM9 refers to an uncharacterized protein domain that is originally discovered in Drosophila melanogaster. Two proteins with DM9 repeats have been recently identified from Pacific oyster Crassostrea gigas as mannose-specific binding pattern-recognition receptors (PRRs). In the present study, a novel member of DM9 domain containing protein (designated as CgDM9CP-4) was identified from C. gigas. CgDM9CP-4, about 16 kDa with only two tandem DM9 domains, was highly enriched in hemocytes and gill. The transcripts level of CgDM9CP-4 in circulating hemocytes were decreased after LPS, PGN and Vibrio splendidus stimulations. The recombinant protein of CgDM9CP-4 (rCgDM9CP-4) displayed a broad binding spectrum towards various pathogen-associated molecular patterns (PAMPs) (LPS, PGN, β-glucan and Mannose) and microorganisms (Staphylococcus aureus, Micrococcus luteus, V. splendidus, V. anguillarum, Escherichia coli, Pichia pastoris and Yarrowia lipolytica). CgDM9CP-4 was mostly expressed in gill and some of the hemocytes. Flow cytometry analysis demonstrated that the CgDM9CP-4-positive hemocytes accounted for 7.3% of the total hemocytes, and they were small in size and less in granularity. CgDM9CP-4 was highly expressed in non-phagocytes (~82% of total hemocytes). The reactive oxygen species (ROS) and the expression levels of cytokines in CgDM9CP-4-positive hemocytes were much lower than that in CgDM9CP-4-negative hemocytes. The mRNA expression level of CgDM9CP-4 in hemocytes was decreased after RNAi of hematopoietic-related factors (CgGATA, CgRunt, CgSCL, and CgNotch). In addition, CgDM9CP-4-positive cells were found to be much more abundant in hemocytes from gill than that from hemolymph, with most of them located in the gill filament. All these results suggested that CgDM9CP-4 was a novel member of PRR that expressed in undifferentiated pro-hemocytes to mediate immune recognition of pathogens.
Collapse
Affiliation(s)
- Zhihao Jia
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China.,Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Shuai Jiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Mengqiang Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Xiudan Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Yu Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China.,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China
| | - Zhao Lv
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Xiaorui Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China.,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China
| | - Yiqun Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China.,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China.,Functional Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China.,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China.,Functional Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, China
| |
Collapse
|
109
|
Geng T, Lu F, Wu H, Lou D, Tu N, Zhu F, Wang S. Target antifungal peptides of immune signalling pathways in silkworm, Bombyx mori, against Beauveria bassiana. INSECT MOLECULAR BIOLOGY 2021; 30:102-112. [PMID: 33150694 DOI: 10.1111/imb.12681] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/12/2020] [Accepted: 10/28/2020] [Indexed: 06/11/2023]
Abstract
Antifungal innate immunity is an important defence used by insects against entomogenous fungi. However, the downstream target antifungal peptides of different immune signalling pathways are unknown. We found that the Toll, Janus kinase/signal transducer and activator of transcription (Jak/STAT) and Immunodeficiency (IMD) signalling pathways in the silkworm, Bombyx mori, can be activated by Beauveria bassiana. Inhibition of the Toll, IMD and Jak/STAT signalling pathways reduced the antifungal activities of silkworm haemolymph. We verified the target antifungal peptides of different immune signalling pathways. The expression patterns of five anti-fungal peptide genes in silkworm larvae and BmN cells were detected after blocking or over-expressing the immune signalling pathways. The Toll signalling pathways mediated the expression of Bmcecropin A, Bmattacin 1 and Bmgloverin 2; IMD signalling pathways mediated Bmenbocin 1, Bmgloverin 2 and Bmattacin 1; Jak/STAT signalling pathways mediated Bmstorage protein 30K-19G1 (Bmsp 1), Bmattacin 1 and Bmcecropin A. These data indicated that anti-microbial peptide genes in B. mori evolved through expansion and selection of existing genes to adapt to the challenge of invasive microorganisms such as fungi. This information provides insight into the antifungal immune responses in B. mori and aids understanding of insect immune regulation mechanisms.
Collapse
Affiliation(s)
- T Geng
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - F Lu
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - H Wu
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - D Lou
- College of Plant Protection, Hainan University, Haikou, China
| | - N Tu
- College of Tropical Crop, Hainan University, Haikou, China
| | - F Zhu
- College of Life Sciences, Zaozhuang University, Zaozhuang, China
| | - S Wang
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| |
Collapse
|
110
|
Zhang X, Li M, El Moussawi L, Saab S, Zhang S, Osta MA, Michel K. CLIPB10 is a Terminal Protease in the Regulatory Network That Controls Melanization in the African Malaria Mosquito Anopheles gambiae. Front Cell Infect Microbiol 2021; 10:585986. [PMID: 33520733 PMCID: PMC7843523 DOI: 10.3389/fcimb.2020.585986] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/30/2020] [Indexed: 12/19/2022] Open
Abstract
Humoral immune responses in animals are often tightly controlled by regulated proteolysis. This proteolysis is exerted by extracellular protease cascades, whose activation culminates in the proteolytic cleavage of key immune proteins and enzymes. A model for such immune system regulation is the melanization reaction in insects, where the activation of prophenoxidase (proPO) leads to the rapid formation of eumelanin on the surface of foreign entities such as parasites, bacteria and fungi. ProPO activation is tightly regulated by a network of so-called clip domain serine proteases, their proteolytically inactive homologs, and their serpin inhibitors. In Anopheles gambiae, the major malaria vector in sub-Saharan Africa, manipulation of this protease network affects resistance to a wide range of microorganisms, as well as host survival. However, thus far, our understanding of the molecular make-up and regulation of the protease network in mosquitoes is limited. Here, we report the function of the clip domain serine protease CLIPB10 in this network, using a combination of genetic and biochemical assays. CLIPB10 knockdown partially reversed melanotic tumor formation induced by Serpin 2 silencing in the absence of infection. CLIPB10 was also partially required for the melanization of ookinete stages of the rodent malaria parasite Plasmodium berghei in a refractory mosquito genetic background. Recombinant serpin 2 protein, a key inhibitor of the proPO activation cascade in An. gambiae, formed a SDS-stable protein complex with activated recombinant CLIPB10, and efficiently inhibited CLIPB10 activity in vitro at a stoichiometry of 1.89:1. Recombinant activated CLIPB10 increased PO activity in Manduca sexta hemolymph ex vivo, and directly activated purified M. sexta proPO in vitro. Taken together, these data identify CLIPB10 as the second protease with prophenoloxidase-activating function in An. gambiae, in addition to the previously described CLIPB9, suggesting functional redundancy in the protease network that controls melanization. In addition, our data suggest that tissue melanization and humoral melanization of parasites are at least partially mediated by the same proteases.
Collapse
Affiliation(s)
- Xin Zhang
- Division of Biology, Kansas State University, Manhattan, KS, United States
| | - Miao Li
- Division of Biology, Kansas State University, Manhattan, KS, United States
| | - Layla El Moussawi
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Sally Saab
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Shasha Zhang
- Division of Biology, Kansas State University, Manhattan, KS, United States.,Department of Entomology, China Agricultural University, Beijing, China
| | - Mike A Osta
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Kristin Michel
- Division of Biology, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
111
|
Schultz JH, Bu L, Kamel B, Adema CM. RNA-seq: The early response of the snail Physella acuta to the digenetic trematode Echinostoma paraensei. J Parasitol 2021; 106:490-505. [PMID: 32726421 DOI: 10.1645/19-36] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
To analyze the response of the snail Physella acuta to Echinostoma paraensei, a compatible digenetic trematode, Illumina RNA-seq data were collected from snails with early infection (5 snails at 2 days post-exposure [DPE]) and established infection (4 snails, 8 DPE), and 7 control (unexposed) snails. A reference transcriptome (325,563 transcripts, including 98% of eukaryotic universal single-copy orthologs; BUSCO) and a draft P. acuta genome (employing available genomic Illumina reads; 799,945 scaffolds, includes 88% BUSCO genes) were assembled to guide RNA-seq analyses. Parasite exposure of P. acuta led to 10,195 differentially expressed (DE) genes at 2 DPE and 8,876 DE genes at 8 DPE with only 18% of up-regulated and 22% of down-regulated sequences shared between these time points. Gene ontology (GO) analysis yielded functional annotation of only 1.2% of DE genes but did not indicate major changes in biological activities of P. acuta between 2 and 8 DPE. Increased insights were achieved by analysis of expression profiles of 460 immune-relevant DE transcripts, identified by BLAST and InterProScan. Physella acuta has expanded gene families that encode immune-relevant domains, including CD109/TEP, GTPase IMAP, Limulus agglutination factor (dermatopontin), FReD (≥82 sequences with fibrinogen-related domains), and transcripts that combine C-type lectin (C-LECT) and C1q domains, novel among metazoa. Notably, P. acuta expressed sequences from these immune gene families at all time points, but the assemblages of unique transcripts from particular immune gene families differed between 2 and 8 DPE. The shift in profiles of DE immune genes, from early exposure to parasite establishment, suggests that compatible P. acuta initially respond to infection but switch to express immune genes that likely are less effective against E. paraensei but counter other types of (opportunistic) pathogens and parasites. We propose that the latter expression profile is part of an extended phenotype of E. paraensei, imposed upon P. acuta through parasite manipulation of the host, following successful parasite establishment in the snail after 2 DPE.
Collapse
Affiliation(s)
- Jonathan H Schultz
- Center for Evolutionary and Theoretical Immunology (CETI), Department of Biology, University of New Mexico, Albuquerque, New Mexico 87131.,Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California 93106
| | - Lijing Bu
- Center for Evolutionary and Theoretical Immunology (CETI), Department of Biology, University of New Mexico, Albuquerque, New Mexico 87131
| | - Bishoy Kamel
- Center for Evolutionary and Theoretical Immunology (CETI), Department of Biology, University of New Mexico, Albuquerque, New Mexico 87131
| | - Coen M Adema
- Center for Evolutionary and Theoretical Immunology (CETI), Department of Biology, University of New Mexico, Albuquerque, New Mexico 87131
| |
Collapse
|
112
|
Evidence for Divergent Selection on Immune Genes between the African Malaria Vectors, Anopheles coluzzii and A. gambiae. INSECTS 2020; 11:insects11120893. [PMID: 33352887 PMCID: PMC7767042 DOI: 10.3390/insects11120893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/07/2020] [Accepted: 12/14/2020] [Indexed: 11/20/2022]
Abstract
Simple Summary A comparison of the genomes of the African malaria vectors, Anopheles gambiae and A. coluzzii, revealed that immune genes are highly diverged. Although these two species frequently co-occur within a single site, they occur in distinct larval habitats. Our results taken in the context of known differences in the larval habitats occupied by these taxa support the hypothesis that observed genetic divergence may be driven by immune response to microbial agents specific to these habitats. Strict within species mating may have subsequently evolved in part to maintain immunocompetence which might be compromised by dysregulation of immune pathways in hybrids. We conclude that the evolution of immune gene divergence among this important group of species may serve as a useful model to explore ecological speciation in general. Abstract During their life cycles, microbes infecting mosquitoes encounter components of the mosquito anti-microbial innate immune defenses. Many of these immune responses also mediate susceptibility to malaria parasite infection. In West Africa, the primary malaria vectors are Anopheles coluzzii and A. gambiae sensu stricto, which is subdivided into the Bamako and Savanna sub-taxa. Here, we performed whole genome comparisons of the three taxa as well as genotyping of 333 putatively functional SNPs located in 58 immune signaling genes. Genome data support significantly higher differentiation in immune genes compared with a randomly selected set of non-immune genes among the three taxa (permutation test p < 0.001). Among the 58 genes studied, the majority had one or more segregating mutations (72.9%) that were significantly diverged among the three taxa. Genes detected to be under selection include MAP2K4 and Raf. Despite the genome-wide distribution of immune genes, a high level of linkage disequilibrium (r2 > 0.8) was detected in over 27% of SNP pairs. We discuss the potential role of immune gene divergence as adaptations to the different larval habitats associated with A. gambiae taxa and as a potential force driving ecological speciation in this group of mosquitoes.
Collapse
|
113
|
Bai J, Xu Z, Li L, Ma W, Xu L, Ma L. Temporospatial modulation of Lymantria dispar immune system against an entomopathogenic fungal infection. PEST MANAGEMENT SCIENCE 2020; 76:3982-3989. [PMID: 32506667 DOI: 10.1002/ps.5947] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 05/21/2020] [Accepted: 06/07/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Lymantria dispar is an economically impactful forest pest worldwide. The entomopathogenic fungi Beauveria bassiana shows great promise in pest management due to its high lethality in Lymantria dispar. A complete understanding of the immune interactions between the pest and the pathogenic fungus is essential to actualizing biological pest management. RESULTS Following the infection of Lymantria dispar by Beauveria bassiana spores, we performed a time-course analysis of transcriptome in Lymantria dispar fat bodies and hemocytes to explore host immune response. A total of 244 immunity-related genes including pattern recognition receptors, extracellular signal modulators, immune pathways (Toll, IMD, JNK and JAK/STAT), and response effectors were identified. We observed contrasting tissue and time-specific differences in the expression of immune genes. At the early stage of infection, several recognition receptors and effector genes were activated, while the signal modulation and effector genes were suppressed at later stages. Further enzyme activity-based assays coupled with gene expression analysis of prophenoloxidase revealed a significant upregulation of phenoloxidase activity at 48- and 72-h post-infection. Moreover, fungal infection led to dysbiosis in gut microbiota that seems to be partially attributed to reduced gut hydrogen peroxide (H2 O2 ) amount, which indicates a significant impact of fungal infection on host gut microbes. CONCLUSION Our study provides a comprehensive sequence resource and crucial new insights about an economically important forest pest. Specifically, we elucidate the complicated multipartite interaction between host and fungal pathogen and contribute to a better understanding of Lymantria dispar anti-fungal immunity, resulting in better tools for biological pest control. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jianyang Bai
- Department of Forest Protection, College of Forestry, Northeast Forestry University, Harbin, China
| | - Zhe Xu
- Department of Forest Protection, College of Forestry, Northeast Forestry University, Harbin, China
| | - Lu Li
- Department of Forest Protection, College of Forestry, Northeast Forestry University, Harbin, China
| | - Wei Ma
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Letian Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Ling Ma
- Department of Forest Protection, College of Forestry, Northeast Forestry University, Harbin, China
- Forest Protection Technology Innovation Center, Harbin, China
| |
Collapse
|
114
|
Li L, Tan K, Zhang H, Li S, Ma H, Zheng H. Effects of high stocking density on the galectin gene expression in noble scallop Chalmys nobilis under bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2020; 105:263-269. [PMID: 32569713 DOI: 10.1016/j.fsi.2020.06.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/07/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
High stocking densities have been shown to have adverse effects on the physiology of bivalves. The noble scallop Chlamys nobilis is one of the most important cultured shellfish in Southern China. However, the effects of scallop stocking density on its immunity is not well understood. In this context, this study was conducted to assess the effect of high stocking density on the galectin (an important protein in innate immunity) gene expression of C. nobilis during bacterial infection. A full-length galectin (CnGal) gene was cloned. The ORF of the CnGal cDNA encodes a predicted protein containing 549 aa with four CRDs and no signal peptide. Our results reveal that high stocking density in the scallop not only led to high mortality and slow growth, but also changed tissue distribution of the CnGal expression. The individuals from the high stocking density group exhibited more differences among tissues than those from the control group, but the highest expression were both recorded in hemolymph. After the Vibrio parahaeomlyticus challenge, the gene's expression levels were all significantly up-regulated in the hemolymph and gill, but the time up to peak was different between the two tissues. The findings of this study could fill a gap in knowledge about how high stocking density affect scallop immunity at the molecular level.
Collapse
Affiliation(s)
- Li Li
- Key Laboratory of Marine Biotechnology of Guangdong Province, Institute of Marine Science, Shantou University, Shantou, 515063, China; Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Karsoon Tan
- Key Laboratory of Marine Biotechnology of Guangdong Province, Institute of Marine Science, Shantou University, Shantou, 515063, China; Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Hongkuan Zhang
- Key Laboratory of Marine Biotechnology of Guangdong Province, Institute of Marine Science, Shantou University, Shantou, 515063, China; Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Shengkang Li
- Key Laboratory of Marine Biotechnology of Guangdong Province, Institute of Marine Science, Shantou University, Shantou, 515063, China; Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Hongyu Ma
- Key Laboratory of Marine Biotechnology of Guangdong Province, Institute of Marine Science, Shantou University, Shantou, 515063, China; Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Huaiping Zheng
- Key Laboratory of Marine Biotechnology of Guangdong Province, Institute of Marine Science, Shantou University, Shantou, 515063, China; Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China.
| |
Collapse
|
115
|
Hou HX, Guo MY, Geng J, Wei XQ, Huang DW, Xiao JH. Genome-Wide Analysis of Peptidoglycan Recognition Protein Genes in Fig Wasps (Hymenoptera, Chalcidoidea). INSECTS 2020; 11:insects11090597. [PMID: 32899607 PMCID: PMC7565001 DOI: 10.3390/insects11090597] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 08/27/2020] [Accepted: 09/02/2020] [Indexed: 11/20/2022]
Abstract
Simple Summary Insects live in a complex and diverse environment, threatened by a variety of microorganisms, and the innate immunity of which plays an important role in defending the invasion of pathogens. From an evolutionary perspective, different living environments and lifestyles drive the different evolutionary patterns of immune systems of insects. Fig wasps are closely associated with the fig syconia, divided into pollinators and non-pollinators according to whether they pollinate the figs. The pollinators are all herbivorous, and fulfil their development within the fig syconia, presenting different lifestyles and diets to non-pollinators, which lead to the chances of exposure to the pathogens varying greatly. The recognition of pathogens is the first step in innate immunity. Therefore, we focused on the different evolutionary patterns of peptidoglycan recognition protein genes between pollinators and non-pollinators, and found that the number of peptidoglycan recognition protein genes was significantly smaller than that of non-pollinators, and the initiation of Toll pathway of pollinators was simpler than that of non-pollinators. All the results suggested a streamlined innate immune recognition system of pollinators, and this information will provide more insights into the adaptive evolution of innate immunity in insects of host specificity. Abstract The innate immunity is the most important defense against pathogen of insects, and the peptidoglycan recognition proteins (PGRPs) play an important role in the processes of immune recognition and initiation of Toll, IMD and other signal pathways. In fig wasps, pollinators and non-pollinators present different evolutionary histories and lifestyles, even though both are closely associated with fig syconia, which may indicate their different patterns in the evolution of PGRPs. By manual annotation, we got all the PGRP genes of 12 fig wasp species, containing seven pollinators and five non-pollinators, and investigated their putative different evolutionary patterns. We found that the number of PGRP genes in pollinators was significantly lower than in non-pollinators, and the number of catalytic PGRP presented a declining trend in pollinators. More importantly, PGRP-SA is associated with initiating the Toll pathway, as well as gram-negative bacteria-binding proteins (GNBPs), which were completely lost in pollinators, which led us to speculate that the initiation of Toll pathway was simpler in pollinators than in non-pollinators. We concluded that fig pollinators owned a more streamlined innate immune recognition system than non-pollinators. Our results provide molecular evidence for the adaptive evolution of innate immunity in insects of host specificity.
Collapse
Affiliation(s)
- Hong-Xia Hou
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin 300071, China; (H.-X.H.); (M.-Y.G.); (J.G.); (X.-Q.W.)
| | - Meng-Yuan Guo
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin 300071, China; (H.-X.H.); (M.-Y.G.); (J.G.); (X.-Q.W.)
| | - Jin Geng
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin 300071, China; (H.-X.H.); (M.-Y.G.); (J.G.); (X.-Q.W.)
| | - Xian-Qin Wei
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin 300071, China; (H.-X.H.); (M.-Y.G.); (J.G.); (X.-Q.W.)
| | - Da-Wei Huang
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin 300071, China; (H.-X.H.); (M.-Y.G.); (J.G.); (X.-Q.W.)
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Correspondence: (D.-W.H.); (J.-H.X.); Tel.: +86-139-1025-6670 (D.-W.H.); +86-185-2245-2108 (J.-H.X.)
| | - Jin-Hua Xiao
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin 300071, China; (H.-X.H.); (M.-Y.G.); (J.G.); (X.-Q.W.)
- Correspondence: (D.-W.H.); (J.-H.X.); Tel.: +86-139-1025-6670 (D.-W.H.); +86-185-2245-2108 (J.-H.X.)
| |
Collapse
|
116
|
A Toll-Spätzle Pathway in the Immune Response of Bombyx mori. INSECTS 2020; 11:insects11090586. [PMID: 32882853 PMCID: PMC7564906 DOI: 10.3390/insects11090586] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 01/12/2023]
Abstract
The Toll-Spätzle pathway is a crucial defense mechanism in insect innate immunity, it plays an important role in fighting against pathogens through the regulation of antimicrobial peptide gene expression. Although Toll and Spätzle (Spz) genes have been identified in Bombyx mori, little is known regarding the specific Spz and Toll genes members involved in innate immunity. There is also limited direct evidence of the interaction between Spz and Toll. In this study, the dual-luciferase reporter assay results showed that BmToll11 and BmToll9-1 could activate both drosomycin and diptericin promoters in S2 cells. Furthermore, BmToll11, BmToll9-1, and five BmSpzs genes were found to be significantly upregulated in B. mori infected by Escherichia coli and Staphylococcus aureus. Additionally, the yeast two-hybrid assay results confirmed that BmSpz2, but not other BmSpzs, could interact with both BmToll11 and BmToll9-1. These findings suggest that the activated BmSpz2 can bind with BmToll11 and BmToll9-1 to induce the expression of AMPs after the silkworm is infected by pathogens.
Collapse
|
117
|
Xu X, Liao K, Shi P, Xu J, Ran Z, Zhou C, Zhang L, Cao J, Yan X. Involvement of a novel Ca 2+-independent C-type lectin from Sinonovacula constricta in food recognition and innate immunity. FISH & SHELLFISH IMMUNOLOGY 2020; 104:374-382. [PMID: 32492464 DOI: 10.1016/j.fsi.2020.05.074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
Bivalve lectins perform a crucial function in recognition of foreign particles, such as microalgae and pathogenic bacteria. In this study, a novel C-type lectin form Sinonovacula constricta (ScCL) was characterized. The full-length cDNA of ScCL was 1645 bp, encoding a predicted polypeptide of 273 amino acids with one typical carbohydrate-recognition domain. ScCL has the highest similarity and closest phylogenetic relationship with the C-type lectin from Solen grandis. Real-time PCR analysis showed that ScCL was expressed in all tested tissues, with the highest expression in the foot and the lowest expression in hemocytes. Agglutination activity of ScCL was Ca2+-independent. ScCL showed the strongest agglutination on Chlorella vulgaris, the modest agglutination on Platymonas subcordiformis, Nannochloropsis sp., and Thalassiosira pseudonana, the weakest agglutination on Chaetoceros sp., and no agglutination on Isochrysis zhanjiangensis. Meanwhile, agglutination tests and western blot analysis revealed that the recombinant ScCL protein could agglutinate Staphylococcus aureus and Vibrio harveyi, but could not agglutinate Vibrio anguillarum, Bacillus cereus, or Vibrio parahaemolyticus. Furthermore, ScCL had a high binding activity with LPS and mannose, a low binding activity with LTA, and no binding activity with PGN. The expression of ScCL in the gill of S. constricta fed with C. vulgaris and T. pseudonana was significantly increased at 1 and/or 3 h. After injection with S. aureus, the expression of ScCL in the gill was significantly increased at 3, 6, and 24 h. These results indicated that ScCL was involved in food particle recognition and immunity of S. constricta.
Collapse
Affiliation(s)
- Xiaorong Xu
- School of Marine Sciences, Ningbo University, China
| | - Kai Liao
- School of Marine Sciences, Ningbo University, China.
| | - Peng Shi
- School of Marine Sciences, Ningbo University, China
| | - Jilin Xu
- School of Marine Sciences, Ningbo University, China.
| | - Zhaoshou Ran
- School of Marine Sciences, Ningbo University, China
| | - Chengxu Zhou
- College of Food and Pharmaceutical Sciences, Ningbo University, China
| | - Lin Zhang
- School of Marine Sciences, Ningbo University, China
| | - Jiayi Cao
- School of Marine Sciences, Ningbo University, China
| | - Xiaojun Yan
- School of Marine Sciences, Ningbo University, China
| |
Collapse
|
118
|
Bi J, Ning M, Xie X, Fan W, Huang Y, Gu W, Wang W, Wang L, Meng Q. A typical C-type lectin, perlucin-like protein, is involved in the innate immune defense of whiteleg shrimp Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2020; 103:293-301. [PMID: 32442499 DOI: 10.1016/j.fsi.2020.05.046] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/09/2020] [Accepted: 05/15/2020] [Indexed: 06/11/2023]
Abstract
C-type lectins are a large group of the pattern-recognition proteins, and have been reported to be involved in invertebrate innate immunity, such as cell adhesion, bacterial clearance, phagocytosis, prophenoloxidase activation and encapsulation. Here, a perlucin-like protein (PLP), a typical C-type lectin, was identified from the cDNA library of the shrimp, Litopenaeus vannamei. LvPLP contains a 540 bp open reading frame, encoding a protein of 179 amino acids that includes a single carbohydrate-recognition domain. Phylogenetic analysis showed that LvPLP was clustered into a single group together with other perlucins from molluscs. Quantitative real-time PCR revealed that LvPLP was expressed mainly in the hemocytes, hemolymph, heart and gills. The transcription of LvPLP was significantly induced at 9 h by both Gram- bacteria Vibrio parahaemolyticus and Vibrio anguillarum. Meanwhile, recombinant LvPLP (rLvPLP) bound directly to lipopolysaccharide and peptidoglycan with different affinity. rLvPLP showed a strong ability to bind to Gram+ (Staphylococcus aureus and Bacillus subtilis) and Gram- bacteria (V. parahaemolyticus and V. anguillarum), and could induce agglutination of V. parahaemolyticus and V. anguillarum, but not S. aureus and B. subtilis in the presence Ca2+. Further study showed that when LvPLP was knocked down by RNAi, three phagocytosis-related genes (peroxinectin, mas-like protein and dynamin) and four antimicrobial peptide (AMP) genes (crustin, ALF1, ALF2 and ALF3) were significantly decreased. Altogether, these results demonstrated that LvPLP played a vital role in L. vannamei immune response towards bacterial challenge by binding and agglutinating bacteria and influencing phagocytosis and AMP expression.
Collapse
Affiliation(s)
- Jingxiu Bi
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences & College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210046, China
| | - Mingxiao Ning
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences & College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210046, China
| | - Xiaojun Xie
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences & College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210046, China
| | - Weifeng Fan
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences & College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210046, China
| | - Yanlan Huang
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences & College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210046, China
| | - Wei Gu
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences & College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210046, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu, 222005, China
| | - Wen Wang
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences & College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210046, China
| | - Li Wang
- College of Life Science and Technology, Southwest Minzu University, Chengdu, 610041, China.
| | - Qingguo Meng
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences & College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210046, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu, 222005, China.
| |
Collapse
|
119
|
Lin Z, Wang JL, Cheng Y, Wang JX, Zou Z. Pattern recognition receptors from lepidopteran insects and their biological functions. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 108:103688. [PMID: 32222357 DOI: 10.1016/j.dci.2020.103688] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 03/03/2020] [Accepted: 03/20/2020] [Indexed: 05/08/2023]
Abstract
Lepidopteran insects have potent innate immunity to fight against the invading pathogens. As the initiation step, pattern recognition receptors (PRRs) recognize and bind microbial surface configurations known as pathogen-associated molecular patterns (PAMPs). Aftermath, they initiate both cellular and humoral immune responses, including phagocytosis, agglutination, nodulation, encapsulation, prophenoloxidase activation, and synthesis of antimicrobial peptides. In this review, we summarize the recent findings concerning PRRs in lepidoptaeran insects, mostly agriculture pests including Helicoverpa armigera, Plutella xylostella, and Spodoptera exigua. We mainly focus on the function and phylogeny of C-type lectins (CTLs), peptidoglycan recognition proteins (PGRPs), β-1,3-glucan recognition proteins (βGRPs), and galectins (GALEs). It enriches our understanding of the immune system of lepidopteran insects and provides directions in the future research.
Collapse
Affiliation(s)
- Zhe Lin
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jia-Lin Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Central China Normal University, Wuhan, 430079, China
| | - Yang Cheng
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong, 250100, China
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou, 311300, China.
| |
Collapse
|
120
|
Huang Y, Ren Q. Molecular cloning and functional analysis of three STAT isoforms in red swamp crayfish Procambarus clarkii. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 108:103670. [PMID: 32156508 DOI: 10.1016/j.dci.2020.103670] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 06/10/2023]
Abstract
The Janus kinase (JAK)/signal transducers and activators of transcription (STAT) signaling pathway is associated with the innate immune system and plays crucial roles in the mediation of immune response to viral infections. In this study, three STAT isoform cDNAs were cloned from the red swamp crayfish Procambarus clarkii, and they were designated as PcSTATa, PcSTATb, and PcSTATc. PcSTATa and PcSTATb were generated through the alternative splicing of the last exon, and PcSTATc was produced by intron retention. PcSTATa, PcSTATb, and PcSTATc contained 2382, 2337, and 2274 bp open reading frames encoding proteins with 793, 778, and 757 amino acid residues, respectively. Domain prediction analysis revealed that three isoforms of PcSTATs contain a STAT interaction domain, a STAT all-alpha domain, a STAT DNA binding domain, and a Src-homology 2 domain. The mRNA transcripts of three PcSTAT isoforms were detected in all examined tissues of male and female crayfish. The expression levels of the three PcSTAT isoforms in the hemocytes, gills, and intestines significantly changed after the white spot syndrome virus (WSSV) challenge. PcSTAT silencing by dsRNA interference could positively regulate the expression levels of three anti-lipopolysaccharide factors (PcALF1, PcALF2, and PcALF6) and two crustins (PcCrus1 and PcCrus2) and negatively regulate the expression levels of three ALFs (PcALF3, PcALF4, and PcALF5) and two crustins (PcCrus3 and PcCrus4). These results suggest that all three PcSTAT isoforms are involved in the host defense against WSSV infection.
Collapse
Affiliation(s)
- Ying Huang
- College of Oceanography, Hohai University, 1 Xikang Road, Nanjing, Jiangsu, 210098, China; Postdoctoral Innovation Practice Base, Jiangsu Shuixian Industrial Company Limited, 40 Tonghu Road, Baoying, Yangzhou, Jiangsu, 225800, China
| | - Qian Ren
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu, 222005, China; College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, Jiangsu, 210023, China.
| |
Collapse
|
121
|
Keshavarz M, Jo YH, Edosa TT, Han YS. Tenebrio molitor PGRP-LE Plays a Critical Role in Gut Antimicrobial Peptide Production in Response to Escherichia coli. Front Physiol 2020; 11:320. [PMID: 32372972 PMCID: PMC7179671 DOI: 10.3389/fphys.2020.00320] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/20/2020] [Indexed: 12/15/2022] Open
Abstract
Invading pathogens are recognized by peptidoglycan recognition proteins (PGRPs) that induce translocation of NF-κB transcription proteins and expression of robust antimicrobial peptides (AMPs). Tenebrio molitor PGRP-LE (TmPGRP-LE) has been previously identified as a key sensor of Listeria monocytogenes infection. Here, we present that TmPGRP-LE is highly expressed in the gut of T. molitor larvae and 5-day-old adults in the absence of microbial infection. In response to Escherichia coli and Candida albicans infections, TmPGRP-LE mRNA levels are significantly upregulated in both the fat body and gut. Silencing of TmPGRP-LE by RNAi rendered T. molitor significantly more susceptible to challenge by E. coli infection and, to a lesser extent, Staphylococcus aureus and C. albicans infections. Reduction of TmPGRP-LE levels in the larval gut resulted in downregulation of eight AMP genes following exposure to E. coli, S. aureus, and C. albicans. However, the transcriptional levels of AMPs more rapidly reached a higher level in the dsEGFP-treated larval gut after challenge with E. coli, which may suggest that AMPs induction were more sensitive to E. coli than S. aureus and C. albicans. In addition, TmPGRP-LE RNAi following E. coli and C. albicans challenges had notable effects on TmRelish, TmDorsal X1 isoform (TmDorX1), and TmDorX2 expression level in the fat body and gut. Taken together, TmPGRP-LE acts as an important gut microbial sensor that induces AMPs via Imd activation in response to E. coli, whereas involvement of TmPGRP-LE in AMPs synthesize is barely perceptible in the hemocytes and fat body.
Collapse
Affiliation(s)
- Maryam Keshavarz
- Department of Applied Biology, College of Agriculture and Life Sciences, Institute of Environmentally-Friendly Agriculture (IEFA), Chonnam National University, Gwangju, South Korea
| | - Yong Hun Jo
- Department of Applied Biology, College of Agriculture and Life Sciences, Institute of Environmentally-Friendly Agriculture (IEFA), Chonnam National University, Gwangju, South Korea
| | - Tariku Tesfaye Edosa
- Department of Applied Biology, College of Agriculture and Life Sciences, Institute of Environmentally-Friendly Agriculture (IEFA), Chonnam National University, Gwangju, South Korea
| | - Yeon Soo Han
- Department of Applied Biology, College of Agriculture and Life Sciences, Institute of Environmentally-Friendly Agriculture (IEFA), Chonnam National University, Gwangju, South Korea
| |
Collapse
|
122
|
Zhang C, Xue Z, Yu Z, Wang H, Liu Y, Li H, Wang L, Li C, Song L. A tandem-repeat galectin-1 from Apostichopus japonicus with broad PAMP recognition pattern and antibacterial activity. FISH & SHELLFISH IMMUNOLOGY 2020; 99:167-175. [PMID: 32044463 DOI: 10.1016/j.fsi.2020.02.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/31/2020] [Accepted: 02/05/2020] [Indexed: 06/10/2023]
Abstract
Galectins belong to the family of carbohydrate-binding proteins and play major roles in the immune and inflammatory responses of both vertebrates and invertebrates. In the present study, one novel galectin-1 protein named AjGal-1 was identified from Apostichopus japonicas with an open reading frame of 1179 bp encoding a polypeptide of 392 amino acids. The deduced amino acids sequence of AjGal-1 contained three carbohydrate recognition domains (CRDs) which shared 34-37% identity with that of other galectin proteins from echinodermata, fishes, and birds. In the phylogenetic tree, AjGal-1 was closely clustered with galectins from Mesocentrotus nudus and Paracentrotus lividus. The mRNA transcripts of AjGal-1 were ubiquitously expressed in all the detected tissues, including gut, longitudinal muscle, gonad, coelomocytes, respiratory tree, tentacle and body wall, with the highest expression level in coelomocytes. After Vibrio splendidus stimulation, the mRNA expression levels of AjGal-1 in coelomocytes were significantly increased at 6 and 12 h (P < 0.01) compared with that in control group, and went back to normal level at 72 h. The recombinant protein of AjGal-1 (rAjGal-1) could bind various PAMPs including d-galactose, lipopolysaccharide (LPS), peptidoglycan (PGN) and mannose (Man), and exhibited the highest affinity to d-galactose. Meanwhile, rAjGal-1 could also bind and agglutinate different kinds of microorganisms, including gram-negative bacteria (V. splendidus and Escherichia coli), gram-positive bacteria (Micrococus leteus), and fungi (Pichia pastoris). rAjGal-1 also exhibited anti-microbial activity against V. splendidus and E. coli. All these results suggested that AjGal-1 could function as an important PRR with broad spectrum of microbial recognition and anti-microbial activity against the invading pathogen in A. japonicas.
Collapse
Affiliation(s)
- Chi Zhang
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Zhuang Xue
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Zichao Yu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Hui Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Yu Liu
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Huan Li
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Chenghua Li
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Linsheng Song
- Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
123
|
TmSpz4 Plays an Important Role in Regulating the Production of Antimicrobial Peptides in Response to Escherichia coli and Candida albicans Infections. Int J Mol Sci 2020; 21:ijms21051878. [PMID: 32182940 PMCID: PMC7084639 DOI: 10.3390/ijms21051878] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/19/2020] [Accepted: 03/07/2020] [Indexed: 12/20/2022] Open
Abstract
Spätzle family proteins activate the Toll pathway and induce antimicrobial peptide (AMP) production against microbial infections. However, the functional importance of Tmspätzle4 (TmSpz4) in the immune response of Tenebrio molitor has not been reported. Therefore, here, we have identified and functionally characterized the role of TmSpz4 against bacterial and fungal infections. We showed that TmSpz4 expression was significantly induced in hemocytes at 6 h post-injection with Escherichia coli, Staphylococcus aureus, and Candida albicans. TmSpz4 knock-down significantly reduced larval survival against E. coli and C. albicans. To understand the reason for the survivability difference, the role of TmSpz4 in AMP production was examined in TmSpz4-silenced larvae following microbe injection. The AMPs that are active against Gram-negative bacteria, including TmTenecin-2, TmTenecin-4, TmAttacin-1a, TmDefensin-2, and TmCecropin-2, were significantly downregulated in response to E. coli in TmSpz4-silenced larvae. Similarly, the expression of TmTenecin-1, TmTenecin-3, TmThaumatin-like protein-1 and -2, TmDefensin-1, TmDefensin-2, and TmCecropin-2 were downregulated in response to C. albicans in TmSpz4-silenced larvae. In addition, the transcription factor NF-κB (TmDorX1 and TmDorX2) expression was significantly suppression in TmSpz4-silenced larvae. In conclusion, these results suggest that TmSpz4 plays a key role in regulating immune responses of T. molitor against to E. coli and C. albicans.
Collapse
|
124
|
Zhang Z, Zhang W, Mu C, Li R, Song W, Ye Y, Shi C, Liu L, Wang H, Wang C. Identification and characterization of a novel galectin from the mud crab Scylla paramamosain. FISH & SHELLFISH IMMUNOLOGY 2020; 98:699-709. [PMID: 31726099 DOI: 10.1016/j.fsi.2019.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/24/2019] [Accepted: 11/01/2019] [Indexed: 06/10/2023]
Abstract
Galectins are a family of β-galactoside-binding lectins that play key roles in the invertebrate innate immunity system, but no galectin genes have been identified in the mud crab (Scylla paramamosain) so far. The present study is the first to clone a galectin gene (SpGal) from S. paramamosain, by the rapid amplification of cDNA ends technique based on expressed sequence tags. The full-length cDNA of SpGal was 3142 bp. Its open reading frame encoded a polypeptide of 280 amino acids containing a GLECT/Gal-bind lectin domain and a potential N-glycosylation site. The deduced amino acid sequence and multi-domain organization of SpGal were highly similar to those of invertebrate galectins, and phylogenetic analysis showed that SpGal was closely related to galectin isolated from Portunus trituberculatus. The mRNA transcripts of SpGal were found to be constitutively expressed in a wide range of tissues, with its expression level being higher in the hepatopancreas, gill, and hemocytes. The mRNA expression level of SpGal increased rapidly after the crabs were stimulated by Vibrio alginolyticus, and the maximum expression appeared at 6 h after the challenge. The lipopolysaccharide-binding ability of SpGal was dependent on its concentration, and it also exhibited agglutination activity with three Gram-negative (Aeromonas hydrophila, Chryseobacterium indologenes and Vibrio alginolyticus) and three Gram-positive (Bacillus aquimaris, Staphylococcus aureus and Micrococcus lysodeik) bacterial strains. In addition, hemagglutination activity with rabbit erythrocytes was observed in the absence of d-galactose. These results indicate that SpGal in S. paramamosain acts as a pattern recognition receptor to recognize a broad spectrum of microbes. The findings together indicate that SpGal plays an important role in the innate immune mechanisms of S. paramamosain against pathogenic infection.
Collapse
Affiliation(s)
- Zhouyi Zhang
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo, 315211, China
| | - Weijia Zhang
- Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo, 315211, China
| | - Changkao Mu
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211, China.
| | - Ronghua Li
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Weiwei Song
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Yangfang Ye
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Ce Shi
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Lei Liu
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Huan Wang
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Chunlin Wang
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
125
|
Julca I, Marcet-Houben M, Cruz F, Vargas-Chavez C, Johnston JS, Gómez-Garrido J, Frias L, Corvelo A, Loska D, Cámara F, Gut M, Alioto T, Latorre A, Gabaldón T. Phylogenomics Identifies an Ancestral Burst of Gene Duplications Predating the Diversification of Aphidomorpha. Mol Biol Evol 2020; 37:730-756. [PMID: 31702774 PMCID: PMC7038657 DOI: 10.1093/molbev/msz261] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aphids (Aphidoidea) are a diverse group of hemipteran insects that feed on plant phloem sap. A common finding in studies of aphid genomes is the presence of a large number of duplicated genes. However, when these duplications occurred remains unclear, partly due to the high relatedness of sequenced species. To better understand the origin of aphid duplications we sequenced and assembled the genome of Cinara cedri, an early branching lineage (Lachninae) of the Aphididae family. We performed a phylogenomic comparison of this genome with 20 other sequenced genomes, including the available genomes of five other aphids, along with the transcriptomes of two species belonging to Adelgidae (a closely related clade to the aphids) and Coccoidea. We found that gene duplication has been pervasive throughout the evolution of aphids, including many parallel waves of recent, species-specific duplications. Most notably, we identified a consistent set of very ancestral duplications, originating from a large-scale gene duplication predating the diversification of Aphidomorpha (comprising aphids, phylloxerids, and adelgids). Genes duplicated in this ancestral wave are enriched in functions related to traits shared by Aphidomorpha, such as association with endosymbionts, and adaptation to plant defenses and phloem-sap-based diet. The ancestral nature of this duplication wave (106-227 Ma) and the lack of sufficiently conserved synteny make it difficult to conclude whether it originated from a whole-genome duplication event or, alternatively, from a burst of large-scale segmental duplications. Genome sequencing of other aphid species belonging to different Aphidomorpha and related lineages may clarify these findings.
Collapse
Affiliation(s)
- Irene Julca
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Marina Marcet-Houben
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Fernando Cruz
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Carlos Vargas-Chavez
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia and CSIC, Valencia, Spain
| | | | - Jèssica Gómez-Garrido
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Leonor Frias
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - André Corvelo
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- New York Genome Center, New York, NY
| | - Damian Loska
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Francisco Cámara
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Marta Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Department of Experimental and Health Sciences, Barcelona, Spain
| | - Tyler Alioto
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Department of Experimental and Health Sciences, Barcelona, Spain
| | - Amparo Latorre
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia and CSIC, Valencia, Spain
- Joint Unit in Genomics and Health, Foundation for the Promotion of Sanitary and Biomedical Research (FISABIO) and University of Valencia, Valencia, Spain
| | - Toni Gabaldón
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Department of Experimental and Health Sciences, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
126
|
Taking Insect Immunity to the Single-Cell Level. Trends Immunol 2020; 41:190-199. [DOI: 10.1016/j.it.2020.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 01/11/2020] [Accepted: 01/12/2020] [Indexed: 12/16/2022]
|
127
|
Zheng Y, Liu Z, Wang L, Li M, Zhang Y, Zong Y, Li Y, Song L. A novel tumor necrosis factor in the Pacific oyster Crassostrea gigas mediates the antibacterial response by triggering the synthesis of lysozyme and nitric oxide. FISH & SHELLFISH IMMUNOLOGY 2020; 98:334-341. [PMID: 31881330 DOI: 10.1016/j.fsi.2019.12.073] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 12/19/2019] [Accepted: 12/23/2019] [Indexed: 06/10/2023]
Abstract
Tumor necrosis factors (TNFs) are a group of multifunctional inflammatory cytokines involved in various pathological and immune processes. Recently, a few primitive TNFs have been characterized from molluscs, which play important roles in modulating cell apoptosis, phagocytosis and production of immune-related enzymes. In the present study, a novel TNF (named as CgTNF-2) with the activity to mediate antibacterial response was identified from the Pacific oyster Crassostrea gigas. The open reading frame of CgTNF-2 was of 783 bp encoding a putative polypeptide of 261 amino acids with a typical TNF domain. The deduced amino acid sequence of CgTNF-2 shared high identity with that of TNFs previously identified from other molluscs, such as 96.1% identity with that in oyster C. hongkongensis, 33.7% identity with that in scallop Mizuhopecten yessoensis and 33.0% identity with CgTNF-1 in oyster C. gigas. There were two distinct TNF branches of vertebrate and invertebrate in the phylogenetic tree, and CgTNF-2 was firstly clustered with TNF-14 from C. hongkongensis, and then clustered with other molluscan TNFs. The mRNA transcripts of CgTNF-2 were widely expressed in various oyster tissues, with the highest expression level in hemocytes. The expression level of CgTNF-2 increased significantly at 6 h (2.45-fold and 6.20-fold, respectively, p < 0.05) after peptidoglycan and lipopolysaccharides treatments, and peaked at 12 h (31.86-fold and 7.90-fold, respectively, p < 0.05). The recombinant protein of CgTNF-2 (rCgTNF-2) inhibited the growth of human alveolar basal epithelial (A549) cells at a concentration of 800 ng/mL. After the oysters received an injection of rCgTNF-2, the serum from those oysters exhibited significantly higher antibacterial activity compared to that from control group, evidenced by inhibiting the growth of Vibrio splendidus. Moreover, the lysozyme activity as well as the contents of nitric oxide in the oyster serum also increased significantly. The above results collectively suggested that CgTNF-2 was a novel member of bivalve TNF-α family, which could prompt the antibacterial activity by inducing the lysozyme activity and the production of nitric oxide in the innate immune response of oyster.
Collapse
Affiliation(s)
- Yan Zheng
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Zhaoqun Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| | - Meijia Li
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Yukun Zhang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Yanan Zong
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Yinan Li
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| |
Collapse
|
128
|
Song ZK, Tian ML, Dong YP, Ren CB, Du Y, Hu J. The C-type lectin IML-10 promotes hemocytic encapsulation by enhancing aggregation of hemocytes in the Asian corn borer Ostrinia furnacalis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 118:103314. [PMID: 31926881 DOI: 10.1016/j.ibmb.2020.103314] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/23/2019] [Accepted: 01/06/2020] [Indexed: 05/21/2023]
Abstract
C-type lectins participate in hemocytic encapsulation as pattern recognition receptors; however, the molecular mechanisms underlying their function remain unknown. In this study, we determined that the encapsulation-promoting function of a C-type lectin, IML-10, may be related to its interaction with hemocytes in the agricultural pest Ostrinia furnacalis. IML-10 possesses two carbohydrate-recognition domains (CRDs) containing EPN and QPD motifs with 4 and 6 conserved cysteine residues, respectively. IML-10 was found to mainly be secreted by the fat body into the larval plasma, and its expression was induced by Sephadex A-25 beads. Anti-IML-10 antibodies inhibited encapsulation-promoting function of IML-10 in the larval plasma. The encapsulation rate of Sephadex A-25 beads decreased from approximately 90%-30% when expression of IML-10 in O. furnacalis larvae was inhibited by RNAi. Moreover, the Sephadex bead-encapsulating ability of hemocytes decreased to almost zero in O. furnacalis larvae with IML-10 knocked out by CRISPR/Cas9, with IML-10 expression clearly decreasing compared to that of the control. Similar to the larval plasma, recombinant IML-10 promoted Sephadex bead encapsulation by hemocytes. Immunohistochemistry analysis showed that IML-10 was able to bind to the surface of both granulocytes and plasmatocytes but not to Sephadex beads as foreign objects. Furthermore, recombinant IML-10 promoted hemocyte aggregation but not adhesion. Therefore, we speculate that IML-10 binds to the surface of hemocytes to promote their aggregation and further improve their encapsulation capacity. These results contribute to clarifying the function of insect C-type lectins in encapsulation.
Collapse
Affiliation(s)
- Zhen-Kun Song
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, China
| | - Meng-Li Tian
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, China
| | - Yi-Pei Dong
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, China
| | - Chao-Bo Ren
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, China
| | - Yan Du
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, China
| | - Jian Hu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, China.
| |
Collapse
|
129
|
Yang L, Wang J, Jin H, Fang Q, Yan Z, Lin Z, Zou Z, Song Q, Stanley D, Ye G. Immune signaling pathways in the endoparasitoid, Pteromalus puparum. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 103:e21629. [PMID: 31599031 DOI: 10.1002/arch.21629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/20/2019] [Accepted: 09/20/2019] [Indexed: 06/10/2023]
Abstract
Parasitoids serve as effective biocontrol agents for agricultural pests. However, they face constant challenges from host immune defense and numerous pathogens and must develop potent immune defense against these threats. Despite the recent advances in innate immunity, little is known about the immunological mechanisms of parasitoids. Here, we identified and characterized potential immune-related genes of the endoparasitoid, Pteromalus puparum, which act in regulating populations of some members of the Pieridae. We identified 216 immune-related genes based on interrogating the P. puparum genome and transcriptome databases. We categorized the cognate gene products into recognition molecules, signal moieties and effector proteins operating in four pathways, Toll, IMD, JAK/STAT, and JNK. Comparative analyses of immune-related genes from seven insect species indicate that recognition molecules and effector proteins are more expanded and diversified than signaling genes in these signal pathways. There are common 1:1 orthologs between the endoparasitoid P. puparum and its relative, the ectoparasitoid Nasonia vitripennis. The developmental expression profiles of immune genes randomly selected from the transcriptome analysis were verified by a quantitative polymerase chain reaction. Our work provides comprehensive analyses of P. puparum immune genes, some of which may be exploited in advancing parasitoid-based biocontrol technologies.
Collapse
Affiliation(s)
- Lei Yang
- State Key Laboratory of Rice Biology & Ministry of Agriculturaland Rural Affairs, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jiale Wang
- State Key Laboratory of Rice Biology & Ministry of Agriculturaland Rural Affairs, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Hongxia Jin
- State Key Laboratory of Rice Biology & Ministry of Agriculturaland Rural Affairs, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Qi Fang
- State Key Laboratory of Rice Biology & Ministry of Agriculturaland Rural Affairs, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Zhichao Yan
- State Key Laboratory of Rice Biology & Ministry of Agriculturaland Rural Affairs, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Zhe Lin
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qisheng Song
- Division of Plant Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, Missouri, USA
| | - David Stanley
- USDA Agricultural Research Service, Biological Control of Insects Research Laboratory, 1503 S. Providence Rd, Columbia, Missouri, USA
| | - Gongyin Ye
- State Key Laboratory of Rice Biology & Ministry of Agriculturaland Rural Affairs, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
130
|
Yang WJ, Chen CX, Yan Y, Xu KK, Li C. Clip-Domain Serine Protease Gene ( LsCLIP3) Is Essential for Larval-Pupal Molting and Immunity in Lasioderma serricorne. Front Physiol 2020; 10:1631. [PMID: 32082184 PMCID: PMC7005593 DOI: 10.3389/fphys.2019.01631] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/26/2019] [Indexed: 12/18/2022] Open
Abstract
Clip-domain serine proteases (CLIPs) play crucial roles in insect development and innate immunity. In this study, we identified a CLIP gene (designated LsCLIP3) from the cigarette beetle Lasioderma serricorne. LsCLIP3 contains a 1,773-bp open reading frame (ORF) encoding a 390-amino-acid protein and shows a conserved clip domain and a trypsin-like serine protease domain. Phylogenetic analysis indicated that LsCLIP3 was orthologous to the CLIP-B subfamily. LsCLIP3 was prominently expressed in larva, pupa, and early adult stages. In larval tissues, it was highly expressed in the integument and fat body. The expression of LsCLIP3 was induced by 20-hydroxyecdysone. A similar induction was also found by peptidoglycans from Escherichia coli and Staphylococcus aureus. RNA interference (RNAi)-mediated silencing of LsCLIP3 disrupted larval–pupal molting and specifically reduced the expression of genes in 20-hydroxyecdysone synthesis and signaling pathway. The chitin amounts of LsCLIP3 RNAi larvae were greatly decreased, and expressions of six chitin metabolic-related genes were significantly reduced. Knockdown of LsCLIP3 increased larval sensitivity to Gram-negative and Gram-positive bacteria. There was significantly decreased expression of four antimicrobial peptide (AMP) genes. The results suggest that LsCLIP3 is an important component of the larva to pupa molt and for the immunity of L. serricorne.
Collapse
Affiliation(s)
- Wen-Jia Yang
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
| | - Chun-Xu Chen
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
| | - Yi Yan
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
| | - Kang-Kang Xu
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
| | - Can Li
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
| |
Collapse
|
131
|
Claudio-Piedras F, Recio-Tótoro B, Condé R, Hernández-Tablas JM, Hurtado-Sil G, Lanz-Mendoza H. DNA Methylation in Anopheles albimanus Modulates the Midgut Immune Response Against Plasmodium berghei. Front Immunol 2020; 10:3025. [PMID: 31993053 PMCID: PMC6970940 DOI: 10.3389/fimmu.2019.03025] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 12/10/2019] [Indexed: 12/11/2022] Open
Abstract
Epigenetic mechanisms such as DNA methylation and histone post-translational modifications are fundamental for the phenotypic plasticity of insects during their interaction with the environment. In response to environmental cues, the methylation pattern in DNA is dynamically remodeled to achieve an epigenetic control of gene expression. DNA methylation is the focus of study in insects for its evolutionarily conserved character; however, there is scant knowledge about the epigenetic regulation in vector mosquitoes, especially during their infection by parasites. The aim of the present study was to evaluate the participation of DNA methylation in the immune response of Anopheles albimanus to a Plasmodium infection. For this, we first investigated the presence of a fully functional DNA methylation system in A. albimanus by assessing its potential role in larval development. Subsequently, we evaluated the transcriptional response to Plasmodium berghei of two mosquito phenotypes with different degrees of susceptibility to the parasite, in a scenario where their global DNA methylation had been pharmacologically inhibited. Our study revealed that A. albimanus has a functional DNA methylation system that is essential to larval viability, and that is also responsive to feeding and parasite challenges. The pharmacological erasure of the methylome with azacytidine or decitabine abolished the divergent responses of both mosquito phenotypes, leading to a transcriptionally similar response upon parasite challenge. This response was more specific, and the infection load in both phenotypes was lowered. Our findings suggest that DNA methylation may constitute a key factor in vector competence, and a promising target for preventing malaria transmission.
Collapse
Affiliation(s)
| | | | | | | | | | - Humberto Lanz-Mendoza
- Centro de Investigaciones Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Mexico
| |
Collapse
|
132
|
An Ancient BCR-like Signaling Promotes ICP Production and Hemocyte Phagocytosis in Oyster. iScience 2020; 23:100834. [PMID: 31982779 PMCID: PMC6994640 DOI: 10.1016/j.isci.2020.100834] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/24/2019] [Accepted: 01/08/2020] [Indexed: 12/11/2022] Open
Abstract
BCR/TCR-based adaptive immune systems arise in the jawed vertebrates, and B cell receptors (BCRs) play an important role in the clonal selection of B cells and their differentiation into antibody-secreting plasma cells. The existence of BCR-like molecule and the activation mechanism of the downstream response are still not clear in invertebrates. In this study, an ancient BCR-like molecule (designated as CgIgR) with an immunoreceptor tyrosine-based activation motif (ITAM) in its cytoplasmic tail was identified from the Pacific oyster Crassostrea gigas to investigate its involvement in immune response. CgIgR could bind different bacteria through five extracellular Ig domains and formed dimers. The activated CgIgR recruited CgSyk to promote CgERK phosphorylation. The CgIgR-mediated signaling promoted the production of immunoglobulin domain-containing proteins (CgICP-2 and CgLRRIG-1) through inducing CgH3K4me2. The produced CgICPs eventually facilitated hemocytes to phagocytize and eliminate V. splendidus. This study proposed that there was an ancient BCR-like molecule and BCR-like signaling in molluscs. An ancient BCR-like molecule (defined as CgIgR) was identified from C. gigas We propose IgR-mediated signaling induces CgERK activity in oyster IgR-mediated signaling induced CgH3K4me2 to promote the production of CgICPs CgICPs facilitated the hemocytes to phagocytize and eliminate V. splendidus
Collapse
|
133
|
Abstract
Immune priming occurs when a past infection experience leads to a more effective immune response upon a secondary exposure to the infection or pathogen. In some instances, parents are able to transmit immune priming to their offspring, creating a subsequent generation with a superior immune capability, through processes that are not yet fully understood. Using a parasitoid wasp, which infects larval stages of Drosophila melanogaster, we describe an example of an intergenerational inheritance of immune priming. This phenomenon is anticipatory in nature and does not rely on parental infection, but rather, when adult fruit flies are cohabitated with a parasitic wasp, they produce offspring that are more capable of mounting a successful immune response against a parasitic macro-infection. This increase in offspring survival correlates with a more rapid induction of lamellocytes, a specialized immune cell. RNA-sequencing of the female germline identifies several differentially expressed genes following wasp exposure, including the peptiodoglycan recognition protein-LB (PGRP-LB). We find that genetic manipulation of maternal PGRP-LB identifies this gene as a key element in this intergenerational phenotype.
Collapse
|
134
|
Yang J, Schleicher TR, Dong Y, Park HB, Lan J, Cresswell P, Crawford J, Dimopoulos G, Fikrig E. Disruption of mosGILT in Anopheles gambiae impairs ovarian development and Plasmodium infection. J Exp Med 2020; 217:e20190682. [PMID: 31658986 PMCID: PMC7037243 DOI: 10.1084/jem.20190682] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/06/2019] [Accepted: 10/25/2019] [Indexed: 11/04/2022] Open
Abstract
Plasmodium infection in Anopheles is influenced by mosquito-derived factors. We previously showed that a protein in saliva from infected Anopheles, mosquito gamma-interferon-inducible lysosomal thiol reductase (mosGILT), inhibits the ability of sporozoites to traverse cells and readily establish infection of the vertebrate host. To determine whether mosGILT influences Plasmodium within the mosquito, we generated Anopheles gambiae mosquitoes carrying mosaic mutations in the mosGILT gene using CRISPR/CRISPR associated protein 9 (Cas9). Here, we show that female mosaic mosGILT mutant mosquitoes display defects in ovarian development and refractoriness to Plasmodium. Following infection by either Plasmodium berghei or Plasmodium falciparum, mutant mosquitoes have significantly reduced oocyst numbers as a result of increased thioester-containing protein 1 (TEP1)-dependent parasite killing. Expression of vitellogenin (Vg), the major yolk protein that can reduce the parasite-killing efficiency of TEP1, is severely impaired in mutant mosquitoes. MosGILT is a mosquito factor that is essential for ovarian development and indirectly protects both human and rodent Plasmodium species from mosquito immunity.
Collapse
Affiliation(s)
- Jing Yang
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| | - Tyler R. Schleicher
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| | - Yuemei Dong
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD
| | - Hyun Bong Park
- Department of Chemistry, Yale University, New Haven, CT
- Chemical Biology Institute, Yale University, West Haven, CT
| | - Jiangfeng Lan
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Peter Cresswell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Jason Crawford
- Department of Chemistry, Yale University, New Haven, CT
- Chemical Biology Institute, Yale University, West Haven, CT
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT
| | - George Dimopoulos
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
- Howard Hughes Medical Institute, Chevy Chase, MD
| |
Collapse
|
135
|
Han P, Han J, Zhang M, Fan J, Gong Q, Ma E, Zhang J. 20-Hydroxyecdysone enhances Immulectin-1 mediated immune response against entomogenous fungus in Locusta migratoria. PEST MANAGEMENT SCIENCE 2020; 76:304-313. [PMID: 31207079 DOI: 10.1002/ps.5515] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/29/2019] [Accepted: 06/08/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Entomogenous fungi are important factors in biological control, but innate immunity of insects restricts the efficiency of fungus infection. 20-hydroxyecdysone (20E) is involved in regulating the immune response of insects. Our previous studies have revealed that 20E enhances the expression of antibacterial peptides in the worldwide pest Locusta migratoria. However, the mechanism by which 20E controls innate immunity against entomogenous fungi is still unknown. RESULTS In the present study, based on the transcriptome of L. migratoria fat bodies challenged by 20E, immulectin-1 (LmIML-1) was screened and identified to be involved in modulating antifungal immunity. Spatio-temporal expression analysis showed LmIML-1 was highly expressed in the fifth instar nymph stage, and mainly distributed in the fat bodies and hemolymph. Both exogenous and endogenous 20E could increase the transcription of LmIML-1. In contrast, transcription of LmIML-1 did not increase when the 20E signal was blocked by RNAi of LmEcR (ecdysone receptor). The expressed recombinant protein rLmIML-1 possessed agglutination activity and promoted the encapsulation. RNA interference of LmIML-1 reduced the encapsulation of hemocytes, decreased the antifungal activity of plasma against Metarhizium anisopliae and accelerated the death of nymphs under the stress of entomogenous fungus. Meanwhile, 20E did not increase the antifungal activity with silence of LmIML-1 in L. migratoria. CONCLUSION 20E enhances antifungal immunity by activating immulectin-1 in L. migratoria. Our findings indicate a potential mechanism of 20E systematically regulating innate immune response to resist pathogens and provide a well-defined molecular target for improving biological control. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Pengfei Han
- Institute of Applied Biology and College of Life Science, Shanxi University, Taiyuan, China
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Shanxi, China
| | - Jiao Han
- Institute of Applied Biology and College of Life Science, Shanxi University, Taiyuan, China
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Shanxi, China
| | - Min Zhang
- Institute of Applied Biology and College of Life Science, Shanxi University, Taiyuan, China
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Shanxi, China
| | - Jiqiao Fan
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Shanxi, China
- Institute of Plant Protection, Shanxi Academy of Agricultural Sciences, Taiyuan, China
| | - Qitian Gong
- Institute of Applied Biology and College of Life Science, Shanxi University, Taiyuan, China
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Shanxi, China
| | - Enbo Ma
- Institute of Applied Biology and College of Life Science, Shanxi University, Taiyuan, China
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Shanxi, China
| | - Jianzhen Zhang
- Institute of Applied Biology and College of Life Science, Shanxi University, Taiyuan, China
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Shanxi, China
| |
Collapse
|
136
|
Li L, Gao X, Lan M, Yuan Y, Guo Z, Tang P, Li M, Liao X, Zhu J, Li Z, Ye M, Wu G. De novo transcriptome analysis and identification of genes associated with immunity, detoxification and energy metabolism from the fat body of the tephritid gall fly, Procecidochares utilis. PLoS One 2019; 14:e0226039. [PMID: 31846465 PMCID: PMC6917277 DOI: 10.1371/journal.pone.0226039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 11/19/2019] [Indexed: 01/13/2023] Open
Abstract
The fat body, a multifunctional organ analogous to the liver and fat tissue of vertebrates, plays an important role in insect life cycles. The fat body is involved in protein storage, energy metabolism, elimination of xenobiotics, and production of immunity regulator-like proteins. However, the molecular mechanism of the fat body's physiological functions in the tephritid stem gall-forming fly, Procecidochares utilis, are still unknown. In this study, we performed transcriptome analysis of the fat body of P. utilis using Illumina sequencing technology. In total, 3.71 G of clean reads were obtained and assembled into 30,559 unigenes, with an average length of 539 bp. Among those unigenes, 21,439 (70.16%) were annotated based on sequence similarity to proteins in NCBI's non-redundant protein sequence database (Nr). Sequences were also compared to NCBI's non-redundant nucleotide sequence database (Nt), a manually curated and reviewed protein sequence database (SwissProt), and KEGG and gene ontology annotations were applied to better understand the functions of these unigenes. A comparative analysis was performed to identify unigenes related to detoxification, immunity and energy metabolism. Many unigenes involved in detoxification were identified, including 50 unigenes of putative cytochrome P450s (P450s), 18 of glutathione S-transferases (GSTs), 35 of carboxylesterases (CarEs) and 26 of ATP-binding cassette (ABC) transporters. Many unigenes related to immunity were identified, including 17 putative serpin genes, five peptidoglycan recognition proteins (PGRPs) and four lysozyme genes. In addition, unigenes potentially involved in energy metabolism, including 18 lipase genes, five fatty acid synthase (FAS) genes and six elongases of very long chain fatty acid (ELOVL) genes, were identified. This transcriptome improves our genetic understanding of P. utilis and the identification of a numerous transcripts in the fat body of P. utilis offer a series of valuable molecular resources for future studies on the functions of these genes.
Collapse
Affiliation(s)
- Lifang Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Xi Gao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Mingxian Lan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Yuan Yuan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Zijun Guo
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Ping Tang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Mengyue Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Xianbin Liao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Jiaying Zhu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Zhengyue Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Min Ye
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Guoxing Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
137
|
Xing Q, Wang J, Zhao Q, Liao H, Xun X, Yang Z, Huang X, Bao Z. Alternative splicing, spatiotemporal expression of TEP family genes in Yesso scallop (Patinopecten yessoensis) and their disparity in responses to ocean acidification. FISH & SHELLFISH IMMUNOLOGY 2019; 95:203-212. [PMID: 31610293 DOI: 10.1016/j.fsi.2019.10.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/08/2019] [Accepted: 10/10/2019] [Indexed: 06/10/2023]
Abstract
The complement system constitutes a highly sophisticated and powerful body defense machinery acting in the innate immunity of both vertebrates and invertebrates. As central components of the complement system, significant effects of thioester-containing protein (TEP) family members on immunity have been reported in most vertebrates and in some invertebrates, but the spatiotemporal expression and regulatory patterns of TEP family genes under environmental stress have been less widely investigated in scallops. In this study, expression profiling of TEP family members in the Yesso scallop Patinopecten yessoensis (designated PyTEPs) was performed at all developmental stages, in different healthy adult tissues, and in mantles during exposure to different levels of acidification (pH = 6.5 and 7.5) for different time points (3, 6, 12 and 24 h); this profiling was accomplished through in silico analysis of transcriptome and genome databases. Spatiotemporal expression patterns revealed that PyTEPs had specific functional differentiation in all stages of growth and development of the scallop. Expression analysis confirmed the inducible expression patterns of PyTEPs during exposure to acidification. Gene duplication and alternative splicing events simultaneously occurred in PyTEP1. Seven different cDNA variants of PyTEP1 (designated PyTEP1-A-PyTEP1-G) were identified in the scallop mantle transcriptome during acidic stress. These variants were produced by the alternative splicing of seven differentially transcribed exons (exons 18-24), which encode the highly variable central region. The responses to immune stress may have arisen through the gene duplication and alternative splicing of PyTEP1. The sequence diversity of PyTEP1 isoforms and their different expression profiles in response to ocean acidification (OA) suggested a mechanism used by scallops to differentiate and regulate PyTEP1 gene expression. Collectively, these results demonstrate the gene duplication and alternative splicing of TEP family genes and provide valuable resources for elucidating their versatile roles in bivalve innate immune responses to OA challenge.
Collapse
Affiliation(s)
- Qiang Xing
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Jing Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Qiang Zhao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Yantai Marine Economic Research Institute, Yantai, 264000, China
| | - Huan Liao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Xiaogang Xun
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Zujing Yang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Xiaoting Huang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| |
Collapse
|
138
|
Zhang HJ, Lin YP, Liu M, Liang XY, Ji YN, Tang BZ, Hou YM. Functional conservation and division of two single-carbohydrate-recognition domain C-type lectins from the nipa palm hispid beetle Octodonta nipae (Maulik). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 100:103416. [PMID: 31255631 DOI: 10.1016/j.dci.2019.103416] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/20/2019] [Accepted: 06/20/2019] [Indexed: 06/09/2023]
Abstract
As an invasive pest, the complete and effective innate immune system is crucial for the nipa palm hispid beetle Octodonta nipae (Maulik) to adjust to new environments. C-type lectins (CTLs) are large families of carbohydrate-binding proteins that possess one or more characteristic carbohydrate-recognition domains (CRD) and function as pattern-recognition receptors, which play important roles in mediating humoral and cellular immunity. In the present study, for the first time, we report two CTL-Ss (single-CRD CTLs) from O. nipae (Maulik) (designated OnCTL1 and OnCTL2). The two CTL-Ss share high identity at conserved amino acids associated with conserved carbohydrate binding sites Gln-Pro-Asp (QPD) motifs and clearly show a 1:1 orthologous relationship in insects, which endow them with functional conservation and diversification. mRNA abundance analysis showed that OnCTL1 was upregulated upon Staphylococcus aureus and Escherichia coli challenge at 6 and 12 h, while OnCTL2 underwent no changes upon E. coli challenge and was even downregulated after S. aureus infection. Knockdown of OnCTL1 significantly decreased the transcripts of two key serine proteases (prophenoloxidase activating factors), OnPPAF1 and OnPPAF3, followed by the reduction of haemolymph phenoloxidase activity; it also increased the expression of Defensin2B. In contrast, silencing of OnCTL2 significantly decreased the expression of Defensin2B and Attacin3C, the encapsulation index, and the phagocytosis rate compared to the dsEGFP group. The spreading results showed that more irregularly shaped plasmatocytes and lower levels of aggregation were found in OnCTL2-silenced pupae than in the dsOnCTL1 and dsEGFP groups. We can infer from the results of this study that the two OnCTLs play important roles in the immune system and generate a functional division: OnCTL1 seems to function more in humoral immunity including mediating bacterial recognition and activating the phenoloxidase cascade, and OnCTL2 plays a greater role in enhancing cellular immunity. These observations could replenish information on the functional diversification of insect CTLs, and also provide valuable information to unravel the immunity in O. nipae.
Collapse
Affiliation(s)
- Hua-Jian Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Ya-Ping Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Min Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xin-Yu Liang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Ya-Nan Ji
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Bao-Zhen Tang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.
| | - You-Ming Hou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.
| |
Collapse
|
139
|
Preetham E, Rubeena AS, Vaseeharan B, Chaurasia MK, Arockiaraj J, Olsen RE. Anti-biofilm properties and immunological response of an immune molecule lectin isolated from shrimp Metapenaeus monoceros. FISH & SHELLFISH IMMUNOLOGY 2019; 94:896-906. [PMID: 31533083 DOI: 10.1016/j.fsi.2019.09.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 09/07/2019] [Accepted: 09/14/2019] [Indexed: 06/10/2023]
Abstract
The study is carried out to understand the antimicrobial and immunological response of a potential immune molecule lectin, MmLec isolated from haemolymph of Speckled shrimp, Metapenaeus monoceros. MmLec was purified using mannose coupled Sepharose CL-4B affinity chromatography, which was further subjected on SDS-PAGE to ascertain the distribution of their molecular weight. Sugar binding specificity assay was conducted at various pH and temperatures to investigate the binding affinity of MmLec towards the specific carbohydrate molecule. Functional analysis of immune molecule MmLec included haemagglutination assays performed using human erythrocytes and yeast agglutination activity against Saccharomyces cerevisiae which, were analyzed using light microscopy. In order to study the antimicrobial activity, two Gram-negative (Vibrio parahaemolyticus and Aeromonas hydrophila) and two Gram-positive (Staphylococcus aureus and Enterococcus faecalis) bacteria were treated with purified MmLec. Moreover, these bacterial species were also treated at different concentration of the MmLec to speculate the antibiofilm properties of MmLec which was analyzed under Light Microscopy and Confocal Laser Scanning Microscopy. In addition, other functional characterization of MmLec showed the uniqueness of MmLec in agglutination of human erythrocyte as well as the cells of yeast Saccharomyces cerevisiae. Also, the phenoloxidase activity and encapsulation assay was evaluated. MTT assay displayed that MmLec are potent in anticancer activity. The study will help to understand the immunological interference and antimicrobial nature of MmLec which would be supportive in establishing a potential therapeutic tool and to develop better and novel disease control strategies in shrimp and farmed aquaculture industries as well as in health management.
Collapse
Affiliation(s)
- Elumalai Preetham
- Department of Processing Technology (Biochemistry), Kerala University of Fisheries and Ocean Studies, Panangad, 682 506, Kochi, Kerala, India; School of Ocean Science and Technology, Kerala University of Fisheries and Ocean Studies, Panangad, 682 506, Kochi, Kerala, India.
| | - Abdul Salam Rubeena
- School of Ocean Science and Technology, Kerala University of Fisheries and Ocean Studies, Panangad, 682 506, Kochi, Kerala, India
| | - Baskaralingam Vaseeharan
- Crustacean Molecular Biology and Genomics Division, Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Science Block 4th Floor, Burma Colony, Karaikudi, 630 004, Tamil Nadu, India
| | - Mukesh Kumar Chaurasia
- Department of Processing Technology (Biochemistry), Kerala University of Fisheries and Ocean Studies, Panangad, 682 506, Kochi, Kerala, India
| | - Jesu Arockiaraj
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India
| | - Rolf Erik Olsen
- Norwegian University of Science and Technology, Department of Biology, 7491, Trondheim, Norway
| |
Collapse
|
140
|
Rogan MR, Patterson LL, Wang JY, McBride JW. Bacterial Manipulation of Wnt Signaling: A Host-Pathogen Tug-of-Wnt. Front Immunol 2019; 10:2390. [PMID: 31681283 PMCID: PMC6811524 DOI: 10.3389/fimmu.2019.02390] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/23/2019] [Indexed: 12/27/2022] Open
Abstract
The host-pathogen interface is a crucial battleground during bacterial infection in which host defenses are met with an array of bacterial counter-mechanisms whereby the invader aims to make the host environment more favorable to survival and dissemination. Interestingly, the eukaryotic Wnt signaling pathway has emerged as a key player in the host and pathogen tug-of-war. Although studied for decades as a regulator of embryogenesis, stem cell maintenance, bone formation, and organogenesis, Wnt signaling has recently been shown to control processes related to bacterial infection in the human host. Wnt signaling pathways contribute to cell cycle control, cytoskeleton reorganization during phagocytosis and cell migration, autophagy, apoptosis, and a number of inflammation-related events. Unsurprisingly, bacterial pathogens have evolved strategies to manipulate these Wnt-associated processes in order to enhance infection and survival within the human host. In this review, we examine the different ways human bacterial pathogens with distinct host cell tropisms and lifestyles exploit Wnt signaling for infection and address the potential of harnessing Wnt-related mechanisms to combat infectious disease.
Collapse
Affiliation(s)
- Madison R. Rogan
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - LaNisha L. Patterson
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Jennifer Y. Wang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Jere W. McBride
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, United States
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
141
|
Zhang Z, Kong J, De Mandal S, Li S, Zheng Z, Jin F, Xu X. An immune-responsive PGRP-S1 regulates the expression of antibacterial peptide genes in diamondback moth, Plutella xylostella (L.). Int J Biol Macromol 2019; 142:114-124. [PMID: 31593730 DOI: 10.1016/j.ijbiomac.2019.09.081] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/10/2019] [Accepted: 09/10/2019] [Indexed: 01/24/2023]
Abstract
Peptidoglycan recognition proteins (PGRPs) are family of pattern recognition receptors (PRRs) and triggers the innate immune system (IIS) against the microbial infection. Although PGRPs have been intensively studied in model insects, they remain uncharacterized in most of the non-model insects. Here, we cloned and characterized a full-length cDNA of PGRP, from P. xylostella (PxPGRP-S1), which encodes a protein of 239 amino acids with PGRP domain, Ami2 domain and transmembrane region. The phylogenetic analysis revealed that the PxPGRP-S1 was closely related to the unigene of Plutella xylostella. Quantitative real-time PCR and immunohistochemistry revealed that PxPGRP-S1 is mainly expressed in the fat body of the healthy larva. The expression of PxPGRP-S1 was significantly upregulated in the midgut at 24 h postinfection by Bacillus thuringiensis. Silencing of the PxPGRP-S1 expression by RNAi, significantly decrease the expression of the antimicrobial peptides (AMPs) in the 4th instar larvae of P. xylostella. Similarly injection of an anti-PxPGRP-S1 serum caused the low expression of the AMPs in P. xylostella. Additionally, PxPGRP-S1 depleted P. xylostella by oral administration of bacterial expressed dsRNA decreased the resistance against B. thuringiensis challenge, leads to high mortality. Together, our result indicates that PxPGRP-S1, served as a bacterial pattern recognition receptor (PRR) and triggers the expression of AMPs in P. xylostella.
Collapse
Affiliation(s)
- Zhantao Zhang
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Jinrong Kong
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Surajit De Mandal
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Shuzhong Li
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Zhihua Zheng
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Fengliang Jin
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Xiaoxia Xu
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
142
|
Zhou X, Peng LY, Wang ZC, Wang W, Zhu Z, Huang XH, Chen LB, Song QS, Bao YY. Identification of novel antimicrobial peptides from rice planthopper, Nilaparvata lugens. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 113:103215. [PMID: 31449847 DOI: 10.1016/j.ibmb.2019.103215] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/14/2019] [Accepted: 08/18/2019] [Indexed: 05/08/2023]
Abstract
In this study, two novel antibacterial peptide genes, termed lugensin A and B were identified and characterized from a rice sap-sucking hemipteran insect pest, the brown planthopper, Nilaparvata lugens. Lugensin gene expression was significantly induced by Gram-negative and Gram-positive bacterial stains under the regulation of a signal receptor, the long peptidoglycan recognition protein (PGRP-LC) in the IMD pathway. Knockdown of PGRP-LC by RNAi eliminated bacterium induced Lugensin gene expression. Lugensins had the apparent antibacterial activities against Escherichia coli K12, Bacillus subtilis and the rice bacterial brown stripe pathogen Acidovorax avenae subsp. avenae (Aaa) strain RS-1. Lugensins inhibited bacterial proliferation by disrupting the integrity of the bacterial membranes. Scanning electron microscopy revealed abnormal membrane morphology of the recombinant Lugensin-treated bacteria. Lugensins induced complete cell disruption of E. coli K12 and B. subtilis strains while formed the holes on the cell surface of Aaa RS-1 strain. Immunofluorescence showed that Lugensins localized in the cell membrane of E. coli K12 while accumulated in the cytosol of B. subtilis. Differently, Lugensins remained in both the cell membrane and the cytosol of Aaa RS-1 strain, suggesting different action modes of Lugensins to different microbes. This is the first report of the novel antibacterial peptides found in the rice sap-sucking hemipteran insect species.
Collapse
Affiliation(s)
- Xiang Zhou
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lu-Yao Peng
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhe-Chao Wang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wei Wang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhen Zhu
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiao-Hui Huang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Li-Bo Chen
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qi-Sheng Song
- Division of Plant Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, USA.
| | - Yan-Yuan Bao
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
143
|
Tan W, Acevedo T, Harris EV, Alcaide TY, Walters JR, Hunter MD, Gerardo NM, Roode JC. Transcriptomics of monarch butterflies (
Danaus plexippus
) reveals that toxic host plants alter expression of detoxification genes and down‐regulate a small number of immune genes. Mol Ecol 2019; 28:4845-4863. [DOI: 10.1111/mec.15219] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/24/2019] [Accepted: 07/26/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Wen‐Hao Tan
- Department of Biology Emory University Atlanta GA USA
| | - Tarik Acevedo
- Department of Biology Emory University Atlanta GA USA
- Department of Ecosystem Science and Management Pennsylvania State University State College PA USA
| | | | - Tiffanie Y. Alcaide
- Department of Biology Emory University Atlanta GA USA
- Department of Ecosystem Science and Management Pennsylvania State University State College PA USA
| | - James R. Walters
- Department of Ecology and Evolutionary Biology University of Kansas Lawrence KS USA
| | - Mark D. Hunter
- Department of Ecology & Evolutionary Biology University of Michigan Ann Arbor MI USA
| | | | | |
Collapse
|
144
|
Xu K, Zhang Z, Xu Z, Tang Z, Liu L, Lu Z, Qi P. A novel invertebrate toll-like receptor is involved in TLR mediated signal pathway of thick shell mussel Mytilus coruscus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 97:11-19. [PMID: 30904427 DOI: 10.1016/j.dci.2019.03.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 03/20/2019] [Accepted: 03/20/2019] [Indexed: 06/09/2023]
Abstract
Toll-like receptors (TLRs) are the most well studied pattern recognition receptors (PRRs) that play a crucial role in both innate and adaptive immunity in animals. In the present study, a novel toll-like receptor (McTLRj) was identified and characterised in thick shell mussel Mytilus coruscus. McTLRj possessed a signal peptide, a transmembrane domain, leucine-rich repeats and an intracellular Toll/interleukin-1 receptor domain that were conserved in typical TLRs. McTLRj transcripts were constitutively expressed in all of the examined tissues with high expression level in immune-related tissues, and significantly induced in haemocytes upon live Vibrio alginolyticus, lipopolysaccharide, polyinosinic-polycytidylic acid and peptidoglycans challenge. The overexpression of the McTLRj TLR fragment in Drosophila S2 cells could induce the expression of Drosophila attacin A, drosomycin, cecropin A, and metchnikowin expression. The expression of McTLRj was obviously repressed by dsRNA-mediated RNA interference, and downstream TLR pathway factors, such as MyD88a, IRAK4, and TRAF6 were significantly repressed in McTLRj-silenced mussels upon LPS challenge. These results collectively indicated that McTLRj is a TLR family member that may play a potential PRR role in TLR-mediated signalling pathway. This research contributed to the clarification of innate immune response in molluscs.
Collapse
Affiliation(s)
- Kaida Xu
- Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Scientific Observing and Experimental Station of Fishery Resources for Key Fishing Grounds, Ministry of Agriculture, Marine Fishery Research Institute of Zhejiang Province, Zhejiang, Zhoushan, 316021, China
| | - Zhanying Zhang
- General Station of Plant Protection, Hubei Province, Hubei, Wuhan, 430070, China
| | - Zhongtian Xu
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhejiang, Zhoushan, 316004, China
| | - Zurong Tang
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhejiang, Zhoushan, 316004, China
| | - Lianwei Liu
- Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Scientific Observing and Experimental Station of Fishery Resources for Key Fishing Grounds, Ministry of Agriculture, Marine Fishery Research Institute of Zhejiang Province, Zhejiang, Zhoushan, 316021, China
| | - Zhanhui Lu
- Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Scientific Observing and Experimental Station of Fishery Resources for Key Fishing Grounds, Ministry of Agriculture, Marine Fishery Research Institute of Zhejiang Province, Zhejiang, Zhoushan, 316021, China
| | - Pengzhi Qi
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhejiang, Zhoushan, 316004, China.
| |
Collapse
|
145
|
Caragata EP, Tikhe CV, Dimopoulos G. Curious entanglements: interactions between mosquitoes, their microbiota, and arboviruses. Curr Opin Virol 2019; 37:26-36. [PMID: 31176069 PMCID: PMC6768729 DOI: 10.1016/j.coviro.2019.05.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 11/22/2022]
Abstract
Mosquitoes naturally harbor a diverse community of microorganisms that play a crucial role in their biology. Mosquito-microbiota interactions are abundant and complex. They can dramatically alter the mosquito immune response, and impede or enhance a mosquito's ability to transmit medically important arboviral pathogens. Yet critically, given the massive public health impact of arboviral disease, few such interactions have been well characterized. In this review, we describe the current state of knowledge of the role of microorganisms in mosquito biology, how microbial-induced changes to mosquito immunity moderate infection with arboviruses, cases of mosquito-microbial-virus interactions with a defined mechanism, and the molecular interactions that underlie the endosymbiotic bacterium Wolbachia's ability to block virus infection in mosquitoes.
Collapse
Affiliation(s)
- Eric P Caragata
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Chinmay V Tikhe
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States.
| |
Collapse
|
146
|
Tawidian P, Rhodes VL, Michel K. Mosquito-fungus interactions and antifungal immunity. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 111:103182. [PMID: 31265904 PMCID: PMC6639037 DOI: 10.1016/j.ibmb.2019.103182] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 06/28/2019] [Indexed: 05/14/2023]
Abstract
The mosquito immune system has evolved in the presence of continuous encounters with fungi that range from food to foes. Herein, we review the field of mosquito-fungal interactions, providing an overview of current knowledge and topics of interest. Mosquitoes encounter fungi in their aquatic and terrestrial habitats. Mosquito larvae are exposed to fungi on plant detritus, within the water column, and at the water surface. Adult mosquitoes are exposed to fungi during indoor and outdoor resting, blood and sugar feeding, mating, and oviposition. Fungi enter the mosquito body through different routes, including ingestion and through active or passive breaches in the cuticle. Oral uptake of fungi can be beneficial to mosquitoes, as yeasts hold nutritional value and support larval development. However, ingestion of or surface contact with fungal entomopathogens leads to colonization of the mosquito with often lethal consequences to the host. The mosquito immune system recognizes fungi and mounts cellular and humoral immune responses in the hemocoel, and possibly epithelial immune responses in the gut. These responses are regulated transcriptionally through multiple signal transduction pathways. Proteolytic protease cascades provide additional regulation of antifungal immunity. Together, these immune responses provide an efficient barrier to fungal infections, which need to be overcome by entomopathogens. Therefore, fungi constitute an excellent tool to examine the molecular underpinnings of mosquito immunity and to identify novel antifungal peptides. In addition, recent advances in mycobiome analyses can now be used to examine the contribution of fungi to various mosquito traits, including vector competence.
Collapse
Affiliation(s)
- P Tawidian
- Division of Biology, Kansas State University, 267 Chalmers Hall, Manhattan, KS, 66506, USA
| | - V L Rhodes
- Missouri Southern State University, Biology Department, Reynolds Hall 220, 3950 E. Newman Rd., Joplin, MO, 64801-1595, USA
| | - K Michel
- Division of Biology, Kansas State University, 267 Chalmers Hall, Manhattan, KS, 66506, USA.
| |
Collapse
|
147
|
Qin Y, Jiang S, Huang J, Zhou F, Yang Q, Jiang S, Yang L. C-type lectin response to bacterial infection and ammonia nitrogen stress in tiger shrimp (Penaeus monodon). FISH & SHELLFISH IMMUNOLOGY 2019; 90:188-198. [PMID: 31028898 DOI: 10.1016/j.fsi.2019.04.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 03/26/2019] [Accepted: 04/11/2019] [Indexed: 06/09/2023]
Abstract
C-type lectins (CTLs) are pattern recognition receptors (PRRs) that are important in invertebrate innate immunity for the recognition and elimination of pathogens. Although they were reported in many shrimp, C-type lectins subfamily contain a large number of members with different functions that need to research in deep. In this present study, a new type of CTL, PmCL1 with 861 bp long full-length cDNA, that encodes a protein with 164-amino acid from a 495-bp open reading frame, was isolated and characterized from tiger shrimp (Penaeus monodon). The mRNA transcript of PmCL1 showed the highest expression in the hepatopancreas, whereas it was barely detected in the ovary. After the shrimp were stimulated by Vibrio harveyi and Vibrio anguillarum, PmCL1 expression in the hepatopancreas and gill was significantly upregulated. A carbohydrate-binding assay revealed the specificity of PmCL1 for pathogen-associated molecular patterns (PAMPs) that included peptidoglycan (PGN) and lipopolysaccharide (LPS), and saccharides that included d-glucose, galactosamine, α-lactose, treholose, and d-mannose. Recombinant PmCL1 agglutinated gram-positive (Staphylococcus aureus) and gram-negative bacteria (V. harveyi, V. anguillarum, Vibrio alginolyticus, Vibrio parahemolyticus, Vibrio vulnificus, and Aeromonas hydrophila) in the presence of calcium ions and enhanced the efficiency of clearing the invading bacteria. Collectively, our results suggested that PmCL1 might play an important role as a pattern recognition receptor (PRR) in the immune response towards pathogen infections, as well as the response towards ammonia nitrogen stress.
Collapse
Affiliation(s)
- Yukai Qin
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou, 510300, PR China; College of Aqua-life Science and Technology, Shanghai Ocean University, Shanghai, PR China
| | - Shigui Jiang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou, 510300, PR China; Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen, 518108, PR China
| | - Jianhua Huang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou, 510300, PR China; Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen, 518108, PR China
| | - Falin Zhou
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou, 510300, PR China; Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen, 518108, PR China
| | - Qibin Yang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou, 510300, PR China; Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen, 518108, PR China
| | - Song Jiang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou, 510300, PR China; Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen, 518108, PR China
| | - Lishi Yang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou, 510300, PR China; Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen, 518108, PR China.
| |
Collapse
|
148
|
The Mosquito Immune System and the Life of Dengue Virus: What We Know and Do Not Know. Pathogens 2019; 8:pathogens8020077. [PMID: 31200426 PMCID: PMC6631187 DOI: 10.3390/pathogens8020077] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 01/10/2023] Open
Abstract
Flaviviruses are largely transmitted to humans by their arthropod vectors such as mosquitoes or ticks. The dengue virus (DENV) is one of the members of the family Flaviviridae and is the causative agent of dengue fever. In the mosquito vector, DENV enters through viremic blood meal and replicates in the mid-gut. Newly formed virion particles circulate to various mosquito organs and get transmitted to the next host in subsequent bites. Aedes aegypti and Aedes albopictus have intricate immune control to allow DENV production at a sub-pathogenic level. In the mosquito, antimicrobial peptides (AMP) and RNA inference (RNAi) are the two main antiviral strategies used against DENV. Apart from innate immunity, mosquito resident microbes play a significant role in modulating DENV replication. In this review, we discuss different immune mechanisms and preventive strategies that act against DENV in two of its vectors: Aedes aegypti and Aedes albopictus.
Collapse
|
149
|
Zhang RN, Li CT, Ren FF, Ye MQ, Deng XJ, Yi HY, Cao Y, Yang WY. Functional characterization of short-type peptidoglycan recognition proteins (PGRPs) from silkworm Bombyx mori in innate immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 95:59-67. [PMID: 30708025 DOI: 10.1016/j.dci.2019.01.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 06/09/2023]
Abstract
Peptidoglycan recognition proteins (PGRPs) are members of an important class of pattern recognition receptors in insects that can specifically recognize peptidoglycan (PGN) in bacterial cell walls and participate in immune regulation and bacterial clearance. Although the role of PGRPs in regulating the innate immune response in Drosophila melanogaster has been studied, little is known regarding PGRPs in Lepidoptera species. In this study, five short (S)-type Bombyx mori PGRPs (BmPGRPs) were cloned, expressed, and evaluated for their function in innate immunity. B. mori larvae that were injected with the gram-positive bacterium Bacillus megaterium or the gram-negative bacterium Escherichia coli exhibited a rapid and significant upregulation in S-type BmPGRP expression. The results showed that the five evaluated BmPGRPs have significant agglutination activity toward E. coli and B. megaterium and more notable amidase activity toward meso-diaminopimelic acid peptidoglycan (DAP-PGN). Furthermore, only in the presence of BmPGRP-S5 did B. mori larval hemocytes exhibit significant phagocytosis against E. coli and B. megaterium.
Collapse
Affiliation(s)
- Ruo-Nan Zhang
- Laboratory of Insect Molecular Biology and Biotechnology, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Cai-Ting Li
- Laboratory of Insect Molecular Biology and Biotechnology, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Fei-Fei Ren
- Laboratory of Insect Molecular Biology and Biotechnology, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Ming-Qiang Ye
- The Sericultural and Agri-Food Research Institute of the Guangdong Academy of Agricultural Sciences, Guangzhou, 510642, China
| | - Xiao-Juan Deng
- Laboratory of Insect Molecular Biology and Biotechnology, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Hui-Yu Yi
- Laboratory of Insect Molecular Biology and Biotechnology, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yang Cao
- Laboratory of Insect Molecular Biology and Biotechnology, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Wan-Ying Yang
- Laboratory of Insect Molecular Biology and Biotechnology, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
150
|
Yang D, Han Y, Liu Y, Cao R, Wang Q, Dong Z, Liu H, Zhang X, Zhang Q, Zhao J. A peptidoglycan recognition protein involved in immune recognition and immune defenses in Ruditapes philippinarum. FISH & SHELLFISH IMMUNOLOGY 2019; 88:441-448. [PMID: 30872031 DOI: 10.1016/j.fsi.2019.03.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/06/2019] [Accepted: 03/08/2019] [Indexed: 06/09/2023]
Abstract
Peptidoglycan recognition proteins (PGRPs) are important pattern recognition receptors in the innate immune system of invertebrates. In the study, a short PGRP (designed as RpPGRP) was identified and characterized from the manila clam Ruditapes philippinarum. The open reading frame of RpPGRP encoded a polypeptide of 249-amino acids with a calculated molecular mass of 27.2 kDa and an isoelectric point of 6.62. Multiple alignments and phylogenetic analysis strongly suggested that RpPGRP was a new member of the PGRP superfamily. In non-stimulated clams, RpPGRP exhibited different tissue expression pattern, and highly expressed in hepatopancreas and hemocytes. Expression of RpPGRP transcripts was significantly up-regulated in hemocytes of clams post Vibrio anguillarum or Micrococcus luteus challenge. The recombinant RpPGRP (rRpPGRP) exhibited high affinity to PGN, LPS and zymosan in a concentration-dependent manner. With a broad spectrum of bacterial binding activities, rRpPGRP exhibited strong agglutination activity to Escherichia coli, Vibrio splendidus, V. anguillarum and M. luteus. Furthermore, rRpPGRP exhibited Zn2+-dependent amidase activity and catalyzed the degradation of insoluble PGN. Especially, rRpPGRP exhibited significant antibacterial activity against E. coli and M. luteus. Moreover, the biofilm formation of E. coli could be inhibited after rRpPGRP incubation in the presence of Zn2+. This inhibitory effect of rRpPGRP might attribute to its amide bactericidal activity. Taken together, rRpPGRP played important roles in PGRP-mediated immune defense mechanisms, especially by recognizing antigens and eliminating bacteria.
Collapse
Affiliation(s)
- Dinglong Yang
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Yijing Han
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yongliang Liu
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Ruiwen Cao
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Qing Wang
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Zhijun Dong
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Hui Liu
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Xiaoli Zhang
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Qianqian Zhang
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Jianmin Zhao
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Center for Ocean Mega-science, Chinese Academy of Sciences, Qingdao Shandong, 266071, PR China.
| |
Collapse
|