101
|
Schramm M, Herz J, Haas A, Krönke M, Utermöhlen O. Acid sphingomyelinase is required for efficient phago-lysosomal fusion. Cell Microbiol 2008; 10:1839-53. [PMID: 18485117 DOI: 10.1111/j.1462-5822.2008.01169.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The acid sphingomyelinase (ASMase) localizes to the lumen of endosomes, phagosomes and lysosomes as well as to the outer leaflet of the plasma membrane and hydrolyses sphingomyelin to ceramide and phosphorylcholine. Using the facultative intracellular bacterium Listeria monocytogenes, we show that maturation of phagosomes into phagolysosomes is severely impaired in macrophages genetically deficient for ASMase. Unlike in wild-type macrophages, phagosomes containing L. monocytogenes in ASMase(-/-) macrophages remained positive for the late phagosomal markers mannose-6-phosphate receptor (M6PR) and Rab7 for at least 2 h and, correspondingly, showed delayed acquisition of lysosomal markers like lysosome associated membrane protein 1 (Lamp1). The transfer of lysosomal fluid phase markers into phagosomes containing L. monocytogenes was severely impaired in ASMase(-/-) macrophages and decreased with increasing size of the cargo. Moreover, phagosomes containing L. monocytogenes from ASMase(-/-) cells acquired significantly less listeriocidal proteases cathepsin D, B and L. The results of this study suggest that ASMase is required for the proper fusion of late phagosomes with lysosomes, which is crucial for efficient transfer of lysosomal antibacterial hydrolases into phagosomes.
Collapse
Affiliation(s)
- Michael Schramm
- Institute for Medical Microbiology, Immunology and Hygiene, Medical Centre of the University of Cologne, Cologne, Germany
| | | | | | | | | |
Collapse
|
102
|
Affiliation(s)
- James A McNew
- Department of Biochemistry and Cell Biology, Rice University, 6100 Main Street MS-140, Houston, Texas 77251-1892, USA.
| |
Collapse
|
103
|
SNAREpin/Munc18 promotes adhesion and fusion of large vesicles to giant membranes. Proc Natl Acad Sci U S A 2008; 105:2380-5. [PMID: 18268324 DOI: 10.1073/pnas.0712125105] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Exocytic vesicle fusion requires both the SNARE family of fusion proteins and a closely associated regulatory subunit of the Sec1/Munc18 (SM) family. In principle, SM proteins could act at an early SNARE assembly step to promote vesicle-plasma membrane adhesion or at a late step to overcome the energetic barrier for fusion. Here, we use the neuronal cognates of each of these protein families to recapitulate, and distinguish, membrane adhesion and fusion on a novel lipidic platform suitable for imaging by fluorescence microscopy. Vesicle SNARE (v-SNARE) proteins reconstituted into giant vesicles ( approximately 10 mum) are fully mobile and functional. Through confocal microscopy, we observe that large vesicles ( approximately 100 nm) carrying target membrane SNAREs (t-SNAREs) both adhere to and freely move on the surface of the v-SNARE giant vesicle. Under conditions where the intrinsic ability of SNAREs to drive fusion is minimized, Munc18 stimulates both SNARE-dependent stable adhesion and fusion. Furthermore, mutation of a critical Munc18-binding residue on the N terminus of the t-SNARE syntaxin uncouples Munc18-stimulated vesicle adhesion from membrane fusion. We expect that the study of SNARE-mediated fusion with giant membranes will find wide applicability in distinguishing adhesion- and fusion-directed SNARE regulatory factors.
Collapse
|
104
|
|
105
|
Kreye S, Malsam J, Söllner TH. In vitro assays to measure SNARE-mediated vesicle fusion. Methods Mol Biol 2008; 440:37-50. [PMID: 18369935 DOI: 10.1007/978-1-59745-178-9_3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Membrane fusion is fundamental for a broad variety of physiological processes, such as synaptic transmission, fertilization, and viral entry. Intracellular fusion along the secretory and endocytic pathway is mediated by SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins. When recombinant v- and t-SNAREs are reconstituted into distinct liposome populations, membrane fusion can be monitored by either lipid or content mixing. The in vitro assays use fluorescence dequenching to measure vesicle fusion. The lipid-mixing assay is based on fluorescence resonance energy transfer between the fluorophores 7-nitro-2-1,3-benzoxadiazol-4-yl (NBD) and rhodamine, which are covalently coupled to lipids. Fusion of labeled v-SNARE liposomes with unlabeled t-SNARE liposomes increases the distance between NBD and rhodamine, increasing the NBD fluorescence. In the content-mixing assay, the water-soluble fluorophore 8-Hydroxypyrene-1,3,6-trisulfonic acid trisodium salt (HPTS) (pyranine) and its quencher p-Xylene-bis-pyridinium bromide (DPX) are incorporated into v-SNARE vesicles. The fusion of labeled v-SNARE vesicles with unlabeled t-SNARE vesicles dilutes the quencher and thus increases HPTS fluorescence. By controlling the lipid and protein composition, these assays provide important tools to detect fusion intermediates (e.g., hemifusion), and to elucidate the molecular mechanisms that regulate membrane fusion.
Collapse
Affiliation(s)
- Susanne Kreye
- Biochemistry Center (BZH), University of Heidelberg, Heidelberg, Germany
| | | | | |
Collapse
|
106
|
Abstract
Cell fusion would seem to be obviously recognizable upon visual inspection, and many studies employ a simple microscopic fusion index to quantify the rate and extent of fusion in cell culture. However, when cells are not in monolayers or when there is a large background of multinucleation through failed cytokinesis, cell-cell fusion can only be proven by mixing of cell contents. Furthermore, determination of the microscopic fusion index must generally be carried out manually, creating opportunities for unintended observer bias and limiting the numbers of cells assayed and therefore the statistical power of the assay. Strategies for making assays dependent on fusion and independent of visual observation are critical to increasing the accuracy and throughput of screens for molecules that control cell fusion. A variety of in vitro biochemical and nonbiochemical techniques have been developed to assay and monitor fusion events in cultured cells. In this chapter, we briefly discuss several in vitro fusion assays, nearly all based on systems of two components that interact to create a novel assayable signal only after cells fuse. We provide details for the use of one example of such a system, intracistronic complementation of beta-galactosidase activity by mutants of Escherichia coli lacZ, which allows for either cell-by-cell microscopic assay of cell fusion or quantitative and kinetic detection of cell fusions in whole populations. In addition, we describe a combination of gene knock-down protocols with this assay to study factors required for myoblast fusion.
Collapse
Affiliation(s)
- Jessica H Shinn-Thomas
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, CT, USA
| | | | | |
Collapse
|
107
|
Sapir A, Avinoam O, Podbilewicz B, Chernomordik LV. Viral and developmental cell fusion mechanisms: conservation and divergence. Dev Cell 2008; 14:11-21. [PMID: 18194649 PMCID: PMC3549671 DOI: 10.1016/j.devcel.2007.12.008] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Membrane fusion is a fundamental requirement in numerous developmental, physiological, and pathological processes in eukaryotes. So far, only a limited number of viral and cellular fusogens, proteins that fuse membranes, have been isolated and characterized. Despite the diversity in structures and functions of known fusogens, some common principles of action apply to all fusion reactions. These can serve as guidelines in the search for new fusogens, and may allow the formulation of a cross-species, unified theory to explain divergent and convergent evolutionary principles of membrane fusion.
Collapse
Affiliation(s)
- Amir Sapir
- Department of Biology, The Technion, Israel Institute of Technology, Haifa 32000, Israel
| | - Ori Avinoam
- Department of Biology, The Technion, Israel Institute of Technology, Haifa 32000, Israel
| | - Benjamin Podbilewicz
- Department of Biology, The Technion, Israel Institute of Technology, Haifa 32000, Israel
| | - Leonid V. Chernomordik
- Section on Membrane Biology, Laboratory of Cellular and Molecular Biophysics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
108
|
Abstract
Communication between neurons relies on chemical synapses and the release of neurotransmitters into the synaptic cleft. Neurotransmitter release is an exquisitely regulated membrane fusion event that requires the linking of an electrical nerve stimulus to Ca(2+) influx, which leads to the fusion of neurotransmitter-filled vesicles with the cell membrane. The timing of neurotransmitter release is controlled through the regulation of the soluble N-ethylmaleimide sensitive factor attachment receptor (SNARE) proteins-the core of the membrane fusion machinery. Assembly of the fusion-competent SNARE complex is regulated by several neuronal proteins, including complexin and the Ca(2+)-sensor synaptotagmin. Both complexin and synaptotagmin bind directly to SNAREs, but their mechanism of action has so far remained unclear. Recent studies revealed that synaptotagmin-Ca(2+) and complexin collaborate to regulate membrane fusion. These compelling new results provide a molecular mechanistic insight into the functions of both proteins: complexin 'clamps' the SNARE complex in a pre-fusion intermediate, which is then released by the action of Ca(2+)-bound synaptotagmin to trigger rapid fusion.
Collapse
Affiliation(s)
- Chavela M Carr
- Department of Pathology and Laboratory Medicine, University of Medicine and Dentistry of New Jersey—Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | - Mary Munson
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts, Medical School, 364 Plantation Street, Worcester, Massachusetts 01605, USA
- Tel: +1 508 856 8318; Fax: +1 508 856 6464;
| |
Collapse
|
109
|
|
110
|
Response: Extracellular localization of platelet SNARE proteins. Blood 2007. [DOI: 10.1182/blood-2007-07-098376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
111
|
Li F, Pincet F, Perez E, Eng WS, Melia TJ, Rothman JE, Tareste D. Energetics and dynamics of SNAREpin folding across lipid bilayers. Nat Struct Mol Biol 2007; 14:890-6. [PMID: 17906638 DOI: 10.1038/nsmb1310] [Citation(s) in RCA: 207] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Accepted: 09/05/2007] [Indexed: 11/09/2022]
Abstract
Membrane fusion occurs when SNAREpins fold up between lipid bilayers. How much energy is generated during SNAREpin folding and how this energy is coupled to the fusion of apposing membranes is unknown. We have used a surface forces apparatus to determine the energetics and dynamics of SNAREpin formation and characterize the different intermediate structures sampled by cognate SNAREs in the course of their assembly. The interaction energy-versus-distance profiles of assembling SNAREpins reveal that SNARE motifs begin to interact when the membranes are 8 nm apart. Even after very close approach of the bilayers (approximately 2-4 nm), the SNAREpins remain partly unstructured in their membrane-proximal region. The energy stabilizing a single SNAREpin in this configuration (35 k(B)T) corresponds closely with the energy needed to fuse outer but not inner leaflets (hemifusion) of pure lipid bilayers (40-50 k(B)T).
Collapse
Affiliation(s)
- Feng Li
- Laboratoire de Physique Statistique, Unité Mixte de Recherche 8550, Centre National de la Recherche Scientifique associée aux Universités Paris VI et Paris VII, Ecole Normale Supérieure, 24 rue Lhomond, 75005 Paris, France
| | | | | | | | | | | | | |
Collapse
|
112
|
Abstract
Remarkable strides have been made over the past 20 years in elucidating the molecular basis of membrane trafficking. Indeed, a combination of biochemical and genetic approaches have determined the identity and function of many of the core constituents needed for protein secretion and endocytosis. But much remains to be learned. This review highlights underlying themes in membrane traffic to help us refocus and solve many remaining and newly emerging issues that are fundamental to mammalian cell biology and human physiology.
Collapse
Affiliation(s)
- Suzanne R Pfeffer
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305-5307, USA.
| |
Collapse
|
113
|
Hu C, Hardee D, Minnear F. Membrane fusion by VAMP3 and plasma membrane t-SNAREs. Exp Cell Res 2007; 313:3198-209. [PMID: 17651732 PMCID: PMC2696983 DOI: 10.1016/j.yexcr.2007.06.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2006] [Revised: 05/15/2007] [Accepted: 06/11/2007] [Indexed: 11/16/2022]
Abstract
Pairing of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins on vesicles (v-SNAREs) and SNARE proteins on target membranes (t-SNAREs) mediates intracellular membrane fusion. VAMP3/cellubrevin is a v-SNARE that resides in recycling endosomes and endosome-derived transport vesicles. VAMP3 has been implicated in recycling of transferrin receptors, secretion of alpha-granules in platelets, and membrane trafficking during cell migration. Using a cell fusion assay, we examined membrane fusion capacity of the ternary complexes formed by VAMP3 and plasma membrane t-SNAREs syntaxin1, syntaxin4, SNAP-23 and SNAP-25. VAMP3 forms fusogenic pairing with t-SNARE complexes syntaxin1/SNAP-25, syntaxin1/SNAP-23 and syntaxin4/SNAP-25, but not with syntaxin4/SNAP-23. Deletion of the N-terminal domain of syntaxin4 enhanced membrane fusion more than two fold, indicating that the N-terminal domain negatively regulates membrane fusion. Differential membrane fusion capacities of the ternary v-/t-SNARE complexes suggest that transport vesicles containing VAMP3 have distinct membrane fusion kinetics with domains of the plasma membrane that present different t-SNARE proteins.
Collapse
Affiliation(s)
- Chuan Hu
- Department of Physiology and Pharmacology, West Virginia University Health Sciences Center, Morgantown, WV 26506, USA.
| | | | | |
Collapse
|
114
|
Tyrrell M, Campanoni P, Sutter JU, Pratelli R, Paneque M, Sokolovski S, Blatt MR. Selective targeting of plasma membrane and tonoplast traffic by inhibitory (dominant-negative) SNARE fragments. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 51:1099-115. [PMID: 17662029 DOI: 10.1111/j.1365-313x.2007.03206.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Vesicle traffic underpins cell homeostasis, growth and development in plants, and is facilitated by a superfamily of proteins known as SNAREs [soluble NSF (N-ethylmaleimide-sensitive factor) attachment protein receptors] that interact to draw vesicle and target membrane surfaces together for fusion. Structural homologies, biochemical and genetic analyses have yielded information about the localization and possible roles of these proteins. However, remarkably little evidence is yet available that speaks directly to the functional specificities of these proteins in selected trafficking pathways in vivo. Previously, we found that expressing a cytosolic (so-called Sp2) fragment of one plasma membrane SNARE from tobacco and Arabidopsis had severe effects on growth, tissue development and secretory traffic to the plasma membrane. We have explored this dominant-negative approach further to examine the specificity and overlaps in Sp2 activity by generating a toolbox of truncated SNARE constructs and antibodies for transient expression and analysis. Using a quantitative ratiometric approach with secreted green fluorescent protein (secGFP), we report here that traffic to the plasma membrane is suppressed selectively by Sp2 fragments of plasma membrane SNAREs AtSYP121 and AtSYP122, but not of the closely related SNARE AtSYP111 nor of the SNARE AtSYP21 that resides at the pre-vacuolar compartment (PVC). By contrast, traffic of the YFP-tagged aquaporin fusion protein TIP1;1-YFP to the tonoplast was blocked (leading to its accumulation in the PVC) when co-expressed with the Sp2 fragment of AtSYP21, but not when co-expressed with that of AtSYP121. Export of secGFP was also sensitive to the Sp2 fragment of the novel, plant-specific SNARE AtSYP71 that was recently found to be present in detergent-resistant, plasma membrane fractions. Co-incubation analyses of the plasma membrane SNAREs with the regulatory subdomain included within the Sp2 fragments showed activity in destabilizing protein complexes, but only with the complementary SNAREs. We conclude that the Sp2 fragment action accurately reflects the known specificity and targeting of these SNAREs, implies functional overlaps that are of potential physiological interest, and underscores the use of a dominant-negative strategy in functional studies of a major subfamily of SNAREs in plants.
Collapse
Affiliation(s)
- Matthew Tyrrell
- Laboratory of Plant Physiology and Biophysics, IBLS, Plant Sciences, Bower Building, University of Glasgow, Glasgow G12 8QQ, UK
| | | | | | | | | | | | | |
Collapse
|
115
|
Bronk P, Deák F, Wilson MC, Liu X, Südhof TC, Kavalali ET. Differential effects of SNAP-25 deletion on Ca2+ -dependent and Ca2+ -independent neurotransmission. J Neurophysiol 2007; 98:794-806. [PMID: 17553942 DOI: 10.1152/jn.00226.2007] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
At the synapse, SNAP-25, along with syntaxin/HPC-1 and synaptobrevin/VAMP, forms SNARE N-ethylmaleimide-sensitive factor [soluble (NSF) attachment protein receptor] complexes that are thought to catalyze membrane fusion. Results from neuronal cultures of synaptobrevin-2 knockout (KO) mice showed that loss of synaptobrevin has a more severe effect on calcium-evoked release than on spontaneous release or on release evoked by hypertonicity. In this study, we recorded neurotransmitter release from neuronal cultures of SNAP-25 KO mice to determine whether they share this property. In neurons lacking SNAP-25, as those deficient in synaptobrevin-2, we found that approximately 10-12% of calcium-independent excitatory and inhibitory neurotransmitter release persisted. However, in contrast to synaptobrevin-2 knockouts, this remaining readily releasable pool in SNAP-25-deficient synapses was virtually insensitive to calcium-dependent-evoked stimulation. Although field stimulation reliably evoked neurotransmitter release in synaptobrevin-2 KO neurons, responses were rare in neurons lacking SNAP-25, and unlike synaptobrevin-2-deficient synapses, SNAP-25-deficient synapses did not exhibit facilitation of release during high-frequency stimulation. This severe loss of evoked exocytosis was matched by a reduction, but not a complete loss, of endocytosis during evoked stimulation. Moreover, synaptic vesicle turnover probed by FM-dye uptake and release during hypertonic stimulation was relatively unaffected by the absence of SNAP-25. This last difference indicates that in contrast to synaptobrevin, SNAP-25 does not directly function in endocytosis. Together, these results suggest that SNAP-25 has a more significant role in calcium-secretion coupling than synaptobrevin-2.
Collapse
Affiliation(s)
- Peter Bronk
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-9111, USA
| | | | | | | | | | | |
Collapse
|
116
|
Li C, Hao M, Cao Z, Ding W, Graves-Deal R, Hu J, Piston DW, Coffey RJ. Naked2 acts as a cargo recognition and targeting protein to ensure proper delivery and fusion of TGF-alpha containing exocytic vesicles at the lower lateral membrane of polarized MDCK cells. Mol Biol Cell 2007; 18:3081-93. [PMID: 17553928 PMCID: PMC1949375 DOI: 10.1091/mbc.e07-02-0172] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Transforming growth factor-alpha (TGF-alpha) is the major autocrine EGF receptor ligand in vivo. In polarized epithelial cells, proTGF-alpha is synthesized and then delivered to the basolateral cell surface. We previously reported that Naked2 interacts with basolateral sorting determinants in the cytoplasmic tail of a Golgi-processed form of TGF-alpha and that TGF-alpha is not detected at the basolateral surface of Madin-Darby canine kidney (MDCK) cells expressing myristoylation-deficient (G2A) Naked2. By high-resolution microscopy, we now show that wild-type, but not G2A, Naked2-associated vesicles fuse at the plasma membrane. We further demonstrate that Naked2-associated vesicles are delivered to the lower lateral membrane of polarized MDCK cells independent of mu1B adaptin. We identify a basolateral targeting segment within Naked2; residues 1-173 redirect NHERF-1 from the apical cytoplasm to the basolateral membrane, and internal deletion of residues 37-104 results in apical mislocalization of Naked2 and TGF-alpha. Short hairpin RNA knockdown of Naked2 leads to a dramatic reduction in the 16-kDa cell surface isoform of TGF-alpha and increased cytosolic TGF-alpha immunoreactivity. We propose that Naked2 acts as a cargo recognition and targeting (CaRT) protein to ensure proper delivery, tethering, and fusion of TGF-alpha-containing vesicles to a distinct region at the basolateral surface of polarized epithelial cells.
Collapse
Affiliation(s)
- Cunxi Li
- Departments of *Medicine and Cell and Developmental Biology and
| | - Mingming Hao
- Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232; and
| | - Zheng Cao
- Departments of *Medicine and Cell and Developmental Biology and
| | - Wei Ding
- Departments of *Medicine and Cell and Developmental Biology and
| | | | - Jianyong Hu
- Departments of *Medicine and Cell and Developmental Biology and
| | - David W. Piston
- Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232; and
| | - Robert J. Coffey
- Departments of *Medicine and Cell and Developmental Biology and
- Department of Veterans Affairs Medical Center, Nashville, TN 37232-2279
| |
Collapse
|
117
|
Flaumenhaft R, Rozenvayn N, Feng D, Dvorak AM. SNAP-23 and syntaxin-2 localize to the extracellular surface of the platelet plasma membrane. Blood 2007; 110:1492-501. [PMID: 17485553 PMCID: PMC1975852 DOI: 10.1182/blood-2006-11-055772] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
SNARE proteins direct membrane fusion events required for platelet granule secretion. These proteins are oriented in cell membranes such that most of the protein resides in a cytosolic compartment. Evaluation of SNARE protein localization in activated platelets using immunonanogold staining and electron microscopy, however, demonstrated expression of SNAP-23 and syntaxin-2 on the extracellular surface of the platelet plasma membrane. Flow cytometry of intact platelets confirmed trypsin-sensitive SNAP-23 and syntaxin-2 localization to the extracellular surface of the plasma membrane. Acyl-protein thioesterase 1 and botulinum toxin C light chain released SNAP-23 and syntaxin-2, respectively, from the surface of intact platelets. When resting platelets were incubated with both acyl-protein thioesterase 1 and botulinum toxin C light chain, a complex that included both SNAP-23 and syntaxin-2 was detected in supernatants, indicating that extracellular SNARE proteins retain their ability to bind one another. These observations represent the first description of SNARE proteins on the extracellular surface of a cell.
Collapse
Affiliation(s)
- Robert Flaumenhaft
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
118
|
|
119
|
Gattegno T, Mittal A, Valansi C, Nguyen KC, Hall DH, Chernomordik LV, Podbilewicz B. Genetic control of fusion pore expansion in the epidermis of Caenorhabditis elegans. Mol Biol Cell 2007; 18:1153-66. [PMID: 17229888 PMCID: PMC1838987 DOI: 10.1091/mbc.e06-09-0855] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Revised: 01/02/2007] [Accepted: 01/08/2007] [Indexed: 11/11/2022] Open
Abstract
Developmental cell fusion is found in germlines, muscles, bones, placentae, and stem cells. In Caenorhabditis elegans 300 somatic cells fuse during development. Although there is extensive information on the early intermediates of viral-induced and intracellular membrane fusion, little is known about late stages in membrane fusion. To dissect the pathway of cell fusion in C. elegans embryos, we use genetic and kinetic analyses using live-confocal and electron microscopy. We simultaneously monitor the rates of multiple cell fusions in developing embryos and find kinetically distinct stages of initiation and completion of membrane fusion in the epidermis. The stages of cell fusion are differentially blocked or retarded in eff-1 and idf-1 mutants. We generate kinetic cell fusion maps for embryos grown at different temperatures. Different sides of the same cell differ in their fusogenicity: the left and right membrane domains are fusion-incompetent, whereas the anterior and posterior membrane domains fuse with autonomous kinetics in embryos. All but one cell pair can initiate the formation of the largest syncytium. The first cell fusion does not trigger a wave of orderly fusions in either direction. Ultrastructural studies show that epidermal syncytiogenesis require eff-1 activities to initiate and expand membrane merger.
Collapse
Affiliation(s)
- Tamar Gattegno
- *Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Aditya Mittal
- Section on Membrane Biology, Laboratory of Cellular and Molecular Biophysics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892; and
| | - Clari Valansi
- *Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Ken C.Q. Nguyen
- Center for C. elegans Anatomy, Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461
| | - David H. Hall
- Center for C. elegans Anatomy, Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Leonid V. Chernomordik
- Section on Membrane Biology, Laboratory of Cellular and Molecular Biophysics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892; and
| | - Benjamin Podbilewicz
- *Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
- Section on Membrane Biology, Laboratory of Cellular and Molecular Biophysics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892; and
| |
Collapse
|
120
|
Melia TJ. Putting the clamps on membrane fusion: How complexin sets the stage for calcium-mediated exocytosis. FEBS Lett 2007; 581:2131-9. [PMID: 17350005 DOI: 10.1016/j.febslet.2007.02.066] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2007] [Revised: 02/15/2007] [Accepted: 02/26/2007] [Indexed: 11/20/2022]
Abstract
Three recent papers have addressed a long-standing question in exocytosis: how does a sudden calcium influx trigger a coordinated synchronous release in regulated exocytosis [Giraudo, C.G., Eng, W.S., Melia, T.J. and Rothman, J.E. (2006) A clamping mechanism involved in SNARE-dependent exocytosis. Science 313, 676-680; Schaub, J.R., Lu, X., Doneske, B., Shin, Y.K. and McNew, J.A. (2006) Hemifusion arrest by complexin is relieved by Ca(2+)-synaptotagmin I. Nat. Struct. Mol. Biol. 13, 748-750; Tang, J., Maximov, A., Shin, O.H., Dai, H., Rizo, J. and Sudhof, T.C. (2006) A complexin/synaptotagmin 1 switch controls fast synaptic vesicle exocytosis. Cell 126, 1175-1187]? Using diverse approaches that include cell-free reconstitution of the membrane fusion machinery and in vivo manipulation of fusogenic proteins, these groups have established that the complexin proteins are fusion clamps. By arresting vesicle secretion just prior to fusion, complexin primes select vesicles for a fast, synchronous response to calcium.
Collapse
Affiliation(s)
- Thomas J Melia
- Columbia University, Department of Physiology and Cellular Biophysics, 1150 Saint Nicholas Avenue, New York, NY 10032, USA
| |
Collapse
|
121
|
Shen J, Tareste DC, Paumet F, Rothman JE, Melia TJ. Selective Activation of Cognate SNAREpins by Sec1/Munc18 Proteins. Cell 2007; 128:183-95. [PMID: 17218264 DOI: 10.1016/j.cell.2006.12.016] [Citation(s) in RCA: 365] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2006] [Revised: 10/31/2006] [Accepted: 12/05/2006] [Indexed: 01/11/2023]
Abstract
Sec1/Munc18 (SM) proteins are required for every step of intracellular membrane fusion, but their molecular mechanism of action has been unclear. In this work, we demonstrate a fundamental role of the SM protein: to act as a stimulatory subunit of its cognate SNARE fusion machinery. In a reconstituted system, mammalian SNARE pairs assemble between bilayers to drive a basal fusion reaction. Munc18-1/nSec1, a synaptic SM protein required for neurotransmitter release, strongly accelerates this reaction through direct contact with both t- and v-SNAREs. Munc18-1 accelerates fusion only for the cognate SNAREs for exocytosis, therefore enhancing fusion specificity.
Collapse
Affiliation(s)
- Jingshi Shen
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
122
|
Podbilewicz B, Leikina E, Sapir A, Valansi C, Suissa M, Shemer G, Chernomordik LV. The C. elegans developmental fusogen EFF-1 mediates homotypic fusion in heterologous cells and in vivo. Dev Cell 2006; 11:471-81. [PMID: 17011487 DOI: 10.1016/j.devcel.2006.09.004] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Revised: 07/21/2006] [Accepted: 09/06/2006] [Indexed: 12/29/2022]
Abstract
During cell-cell fusion, two cells' plasma membranes merge, allowing the cytoplasms to mix and form a syncytium. Little is known about the mechanisms of cell fusion. Here, we asked whether eff-1, shown previously to be essential for fusion in Caenorhabditis elegans, acts directly in the fusion machinery. We show that expression of EFF-1 transmembrane protein drives fusion of heterologous cells into multinucleate syncytia. We obtained evidence that EFF-1-mediated fusion involves a hemifusion intermediate characterized by membrane mixing without cytoplasm mixing. Furthermore, syncytiogenesis requires EFF-1 in both fusing cells. To test whether this mechanism also applies in vivo, we conducted genetic mosaic analysis of C. elegans and found that homotypic epidermal fusion requires EFF-1 in both cells. Thus, although EFF-1-mediated fusion shares characteristics with viral and intracellular fusion, including an apparent hemifusion step, it differs from these reactions in the homotypic organization of the fusion machinery.
Collapse
Affiliation(s)
- Benjamin Podbilewicz
- Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel.
| | | | | | | | | | | | | |
Collapse
|
123
|
Choi J, Richards KL, Cinar HN, Newman AP. N-ethylmaleimide sensitive factor is required for fusion of the C. elegans uterine anchor cell. Dev Biol 2006; 297:87-102. [PMID: 16769048 DOI: 10.1016/j.ydbio.2006.04.471] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Revised: 04/27/2006] [Accepted: 04/28/2006] [Indexed: 01/17/2023]
Abstract
The fusion of the Caenorhabditis elegans uterine anchor cell (AC) with the uterine-seam cell (utse) is an excellent model system for studying cell-cell fusion, which is essential to animal development. We obtained an egg-laying defective (Egl) mutant in which the AC fails to fuse with the utse. This defect is highly specific: other aspects of utse development and other cell fusions appear to occur normally. We find that defect is due to a missense mutation in the nsf-1 gene, which encodes N-ethylmaleimide-sensitive factor (NSF), an intracellular membrane fusion factor. There are two NSF-1 isoforms, which are expressed in distinct tissues through two separate promoters. NSF-1L is expressed in the uterus, including the AC. We find that nsf-1 is required cell-autonomously in the AC for its fusion with the utse. Our results establish AC fusion as a paradigm for studying cell fusion at single cell resolution and demonstrate that the NSF ATPase is a key player in this process.
Collapse
Affiliation(s)
- Jaebok Choi
- Verna and Marrs Maclean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
124
|
Haluska CK, Riske KA, Marchi-Artzner V, Lehn JM, Lipowsky R, Dimova R. Time scales of membrane fusion revealed by direct imaging of vesicle fusion with high temporal resolution. Proc Natl Acad Sci U S A 2006; 103:15841-6. [PMID: 17043227 PMCID: PMC1613233 DOI: 10.1073/pnas.0602766103] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Membrane fusion is a vital process of life involved, for example, in cellular secretion via exocytosis, signaling between nerve cells, and virus infection. In both the life sciences and bioengineering, controlled membrane fusion has many possible applications, such as drug delivery, gene transfer, chemical microreactors, or synthesis of nanomaterials. Until now, the fusion dynamics has been elusive because direct observations have been limited to time scales that exceed several milliseconds. Here, the fusion of giant lipid vesicles is induced in a controlled manner and monitored with a temporal resolution of 50 micros. Two different fusion protocols are used that are based on synthetic fusogenic molecules and electroporation. For both protocols, the opening of the fusion necks is very fast, with an average expansion velocity of centimeters per second. This velocity indicates that the initial formation of a single fusion neck can be completed in a few hundred nanoseconds.
Collapse
Affiliation(s)
- Christopher K. Haluska
- *Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany; and
| | - Karin A. Riske
- *Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany; and
| | - Valérie Marchi-Artzner
- Laboratoire de Chimie des Interactions Moléculaires, Collège de France, 75005 Paris, France
| | - Jean-Marie Lehn
- Laboratoire de Chimie des Interactions Moléculaires, Collège de France, 75005 Paris, France
| | - Reinhard Lipowsky
- *Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany; and
| | - Rumiana Dimova
- *Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
125
|
Christiansen JJ, Weimbs T, Bander N, Rajasekaran AK. Differing effects of microtubule depolymerizing and stabilizing chemotherapeutic agents on t-SNARE–mediated apical targeting of prostate-specific membrane antigen. Mol Cancer Ther 2006; 5:2468-73. [PMID: 17041090 DOI: 10.1158/1535-7163.mct-06-0253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Prostate-specific membrane antigen (PSMA) is a protein up-regulated in the vast majority of prostate cancers. Antibodies to PSMA have proved highly specific for prostate cancer cells, and the therapeutic potential of such antibodies is currently being assessed in clinical trials. We have previously shown that PSMA at the cell surface of polarized epithelial cells is predominantly expressed at the apical plasma membrane and that microtubule depolymerization abolishes apical PSMA targeting. In the current report, we implicate a functional role for a target membrane soluble N-ethylmaleimide-sensitive factor adaptor protein receptor, syntaxin 3, in the microtubule-dependent apical targeting of PSMA. PSMA and syntaxin 3 are similarly localized to the apical plasma membrane of the prostatic epithelium and Madin-Darby canine kidney cells. Introduction of a point mutation into syntaxin 3 abolishes its polarized distribution and causes PSMA to be targeted in a nonpolarized fashion. Additionally, treatment of polarized Madin-Darby canine kidney cells with vinblastine, a microtubule depolymerizing chemotherapeutic agent, causes both syntaxin 3 and PSMA to redistribute in a nonpolarized fashion. However, following treatment with the microtubule stabilizing chemotherapeutic agent Taxotere, both syntaxin 3 and PSMA continue to localize in a polarized manner at the apical plasma membrane. Thus, microtubule depolymerizing and stabilizing chemotherapeutic drugs might exact similar cytotoxic effects but have disparate effects on protein targeting. This phenomenon might have important clinical implication, especially related to antibody-mediated immunotherapy, and could potentially be exploited for therapeutic benefit.
Collapse
Affiliation(s)
- Jason J Christiansen
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, USA
| | | | | | | |
Collapse
|
126
|
Latham CF, Lopez JA, Hu SH, Gee CL, Westbury E, Blair DH, Armishaw CJ, Alewood PF, Bryant NJ, James DE, Martin JL. Molecular dissection of the Munc18c/syntaxin4 interaction: implications for regulation of membrane trafficking. Traffic 2006; 7:1408-19. [PMID: 16899085 DOI: 10.1111/j.1600-0854.2006.00474.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Sec1p/Munc18 (SM) proteins are believed to play an integral role in vesicle transport through their interaction with SNAREs. Different SM proteins have been shown to interact with SNAREs via different mechanisms, leading to the conclusion that their function has diverged. To further explore this notion, in this study, we have examined the molecular interactions between Munc18c and its cognate SNAREs as these molecules are ubiquitously expressed in mammals and likely regulate a universal plasma membrane trafficking step. Thus, Munc18c binds to monomeric syntaxin4 and the N-terminal 29 amino acids of syntaxin4 are necessary for this interaction. We identified key residues in Munc18c and syntaxin4 that determine the N-terminal interaction and that are consistent with the N-terminal binding mode of yeast proteins Sly1p and Sed5p. In addition, Munc18c binds to the syntaxin4/SNAP23/VAMP2 SNARE complex. Pre-assembly of the syntaxin4/Munc18c dimer accelerates the formation of SNARE complex compared to assembly with syntaxin4 alone. These data suggest that Munc18c interacts with its cognate SNAREs in a manner that resembles the yeast proteins Sly1p and Sed5p rather than the mammalian neuronal proteins Munc18a and syntaxin1a. The Munc18c-SNARE interactions described here imply that Munc18c could play a positive regulatory role in SNARE assembly.
Collapse
Affiliation(s)
- Catherine F Latham
- Institute for Molecular Bioscience and ARC Special Research Centre for Functional and Applied Genomics, University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Leguia M, Conner S, Berg L, Wessel GM. Synaptotagmin I is involved in the regulation of cortical granule exocytosis in the sea urchin. Mol Reprod Dev 2006; 73:895-905. [PMID: 16572466 DOI: 10.1002/mrd.20454] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cortical granules are stimulus-dependent secretory vesicles found in the egg cortex of most vertebrates and many invertebrates. Upon fertilization, an increase in intracellular calcium levels triggers cortical granules to exocytose enzymes and structural proteins that permanently modify the extracellular surface of the egg to prevent polyspermy. Synaptotagmin is postulated to be a calcium sensor important for stimulus-dependent secretion and to test this hypothesis for cortical granule exocytosis, we identified the ortholog in two sea urchin species that is present selectively on cortical granules. Characterization by RT-PCR, in-situ RNA hybridization, Western blot and immunolocalization shows that synaptotagmin I is expressed in a manner consistent with it having a role during cortical granule secretion. We specifically tested synaptotagmin function during cortical granule exocytosis using a microinjected antibody raised against the entire cytoplasmic domain of sea urchin synaptotagmin I. The results show that synaptotagmin I is essential for normal cortical granule dynamics at fertilization in the sea urchin egg. Identification of this same protein in other developmental stages also shown here will be important for interpreting stimulus-dependent secretory events for signaling throughout embryogenesis.
Collapse
Affiliation(s)
- Mariana Leguia
- Department of Molecular and Cellular Biology & Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | | | | | | |
Collapse
|
128
|
Abstract
SNARE proteins mediate the fusion of lipid bilayers by the directed assembly of coiled-coil domains arising from apposing membranes. We have utilized inverted cone-shaped lipids, antagonists of the necessary membrane deformation during fusion to characterize the extent and range of SNARE assembly up to the moment of stalk formation between bilayers. The inverted cone-shaped lipid family of acyl-CoAs specifically inhibits the completion of fusion in an acyl-chain length-dependent manner. Removal of acyl-CoA from the membrane relieves the inhibition and initiates a burst of membrane fusion with rates exceeding any point in the control curves lacking acyl-CoA. This burst indicates the accumulation of semi-assembled fusion complexes. These preformed complexes are resistant to cleavage by botulinum toxin B and thus appear to have progressed beyond the "loosely zippered" state of docked synaptic vesicles. Surprisingly, application of the soluble domain of VAMP2, which blocks SNARE assembly by competing for binding on the available t-SNAREs, blocks recovery from the acyl-CoA inhibition. Thus, complexes formed in the presence of a lipidic antagonist to fusion are incompletely assembled, suggesting that the formation of tightly assembled SNARE pairs requires progression all the way through to membrane fusion. In this regard, physiologically docked exocytic vesicles may be anchored by a highly dynamic and potentially even reversible SNAREpin.
Collapse
Affiliation(s)
- Thomas J Melia
- Department of Physiology and Cellular Biophysics, Columbia University, College of Physicians and Surgeons, New York, New York 10032, USA.
| | | | | | | |
Collapse
|
129
|
Shillcock JC, Lipowsky R. The computational route from bilayer membranes to vesicle fusion. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2006; 18:S1191-S1219. [PMID: 21690837 DOI: 10.1088/0953-8984/18/28/s06] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Biological membranes are examples of 'smart' materials whose properties and behaviour emerge from the propagation across many scales of the molecular characteristics of their constituents. Artificial smart materials, such as drug delivery vehicles and biosensors, often rely on modifying naturally occurring soft matter, such as polymers and lipid vesicles, so that they possess useful behaviour. However, the complexity of natural membranes, both in their static properties, exemplified in their phase behaviour, and in their dynamic properties, as in the kinetics of their formation and interactions, hinders their rational modification. Mesoscopic simulations, such as dissipative particle dynamics (DPD), allow in silico experiments to be easily and cheaply performed on complex, soft materials requiring as input only the molecular structure of the constituents at a coarse-grained level. They can therefore act as a guide to experimenters prior to performing costly assays. Additionally, mesoscopic simulations provide the only currently feasible window on the length- and timescales relevant to important biophysical processes such as vesicle fusion. We review here the development of computational models of bilayer membranes, and in particular the use of mesoscopic simulations to follow the molecular rearrangements that occur during membrane fusion.
Collapse
Affiliation(s)
- Julian C Shillcock
- Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germanyhttp://www.mpikg.mpg.de/th
| | | |
Collapse
|
130
|
Giraudo CG, Eng WS, Melia TJ, Rothman JE. A clamping mechanism involved in SNARE-dependent exocytosis. Science 2006; 313:676-80. [PMID: 16794037 DOI: 10.1126/science.1129450] [Citation(s) in RCA: 262] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
During neurotransmitter release at the synapse, influx of calcium ions stimulates the release of neurotransmitter. However, the mechanism by which synaptic vesicle fusion is coupled to calcium has been unclear, despite the identification of both the core fusion machinery [soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)] and the principal calcium sensor (synaptotagmin). Here, we describe what may represent a basic principle of the coupling mechanism: a reversible clamping protein (complexin) that can freeze the SNAREpin, an assembled fusion-competent intermediate en route to fusion. When calcium binds to the calcium sensor synaptotagmin, the clamp would then be released. SNARE proteins, and key regulators like synaptotagmin and complexin, can be ectopically expressed on the cell surface. Cells expressing such "flipped" synaptic SNAREs fuse constitutively, but when we coexpressed complexin, fusion was blocked. Adding back calcium triggered fusion from this intermediate in the presence of synaptotagmin.
Collapse
Affiliation(s)
- Claudio G Giraudo
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
| | | | | | | |
Collapse
|
131
|
Sutter JU, Campanoni P, Tyrrell M, Blatt MR. Selective mobility and sensitivity to SNAREs is exhibited by the Arabidopsis KAT1 K+ channel at the plasma membrane. THE PLANT CELL 2006; 18:935-54. [PMID: 16531497 PMCID: PMC1425843 DOI: 10.1105/tpc.105.038950] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/24/2005] [Revised: 02/13/2006] [Accepted: 02/17/2006] [Indexed: 05/07/2023]
Abstract
Recent findings indicate that proteins in the SNARE superfamily are essential for cell signaling, in addition to facilitating vesicle traffic in plant cell homeostasis, growth, and development. We previously identified SNAREs SYP121/Syr1 from tobacco (Nicotiana tabacum) and the Arabidopsis thaliana homolog SYP121 associated with abscisic acid and drought stress. Disrupting tobacco SYP121 function by expressing a dominant-negative Sp2 fragment had severe effects on growth, development, and traffic to the plasma membrane, and it blocked K(+) and Cl(-) channel responses to abscisic acid in guard cells. These observations raise questions about SNARE control in exocytosis and endocytosis of ion channel proteins and their organization within the plane of the membrane. We have used a dual, in vivo tagging strategy with a photoactivatable green fluorescent protein and externally exposed hemagglutinin epitopes to monitor the distribution and trafficking dynamics of the KAT1 K(+) channel transiently expressed in tobacco leaves. KAT1 is localized to the plasma membrane within positionally stable microdomains of approximately 0.5 microm in diameter; delivery of the K(+) channel, but not of the PMA2 H(+)-ATPase, to the plasma membrane is suppressed by Sp2 fragments of tobacco and Arabidopsis SYP121, and Sp2 expression leads to profound changes in KAT1 distribution and mobility within the plane of the plasma membrane. These results offer direct evidence for SNARE-mediated traffic of the K(+) channel and a role in its distribution within subdomains of the plasma membrane, and they implicate a role for SNAREs in positional anchoring of the K(+) channel protein.
Collapse
Affiliation(s)
- Jens-Uwe Sutter
- Laboratory of Plant Physiology and Biophysics, Institute of Biomedical and Life Sciences-Plant Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | | | | | | |
Collapse
|
132
|
Merten CA, Stitz J, Braun G, Medvedovska J, Cichutek K, Buchholz CJ. Fusoselect: cell-cell fusion activity engineered by directed evolution of a retroviral glycoprotein. Nucleic Acids Res 2006; 34:e41. [PMID: 16540592 PMCID: PMC1408311 DOI: 10.1093/nar/gkl053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Membrane fusion plays a key role in many biological processes including vesicle trafficking, synaptic transmission, fertilization or cell entry of enveloped viruses. As a common feature the fusion process is mediated by distinct membrane proteins. We describe here 'Fusoselect', a universal procedure allowing the identification and engineering of molecular determinants for cell-cell fusion-activity by directed evolution. The system couples cell-cell fusion with the release of retroviral particles, but can principally be applied to membrane proteins of non-viral origin as well. As a model system, we chose a gamma-retroviral envelope protein, which naturally becomes fusion-active through proteolytic processing by the viral protease. The selection process evolved variants that, in contrast to the parental protein, mediated cell-cell fusion in absence of the viral protease. Detailed analysis of the variants revealed molecular determinants for fusion competence in the cytoplasmic tail (CT) of retroviral Env proteins and demonstrated the power of Fusoselect.
Collapse
Affiliation(s)
| | - Jörn Stitz
- Biotechnology and Bioengineering Group, Institute for Chemical and Bio-Engineering, Swiss Federal Institute of TechnologyCH-8093 Zurich, Switzerland
| | | | | | | | - Christian J. Buchholz
- To whom correspondence should be addressed. Tel: ++49 6103 77 4011; Fax: ++49 6103 771255;
| |
Collapse
|
133
|
Schilde C, Wassmer T, Mansfeld J, Plattner H, Kissmehl R. A Multigene Family Encoding R-SNAREs in the Ciliate Paramecium tetraurelia. Traffic 2006; 7:440-55. [PMID: 16536742 DOI: 10.1111/j.1600-0854.2006.00397.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
SNARE proteins (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) mediate membrane interactions and are conventionally divided into Q-SNAREs and R-SNAREs according to the possession of a glutamine or arginine residue at the core of their SNARE domain. Here, we describe a set of R-SNAREs from the ciliate Paramecium tetraurelia consisting of seven families encoded by 12 genes that are expressed simultaneously. The complexity of the endomembrane system in Paramecium can explain this high number of genes. All P. tetraurelia synaptobrevins (PtSybs) possess a SNARE domain and show homology to the Longin family of R-SNAREs such as Ykt6, Sec22 and tetanus toxin-insensitive VAMP (TI-VAMP). We localized four exemplary PtSyb subfamilies with GFP constructs and antibodies on the light and electron microscopic level. PtSyb1-1, PtSyb1-2 and PtSyb3-1 were found in the endoplasmic reticulum, whereas PtSyb2 is localized exclusively in the contractile vacuole complex. PtSyb6 was found cytosolic but also resides in regularly arranged structures at the cell cortex (parasomal sacs), the cytoproct and oral apparatus, probably representing endocytotic compartments. With gene silencing, we showed that the R-SNARE of the contractile vacuole complex, PtSyb2, functions to maintain structural integrity as well as functionality of the osmoregulatory system but also affects cell division.
Collapse
Affiliation(s)
- Christina Schilde
- Chair of Cell Biology and Ultrastructure Research, University of Konstanz, PO Box 5560, 78457 Konstanz, Germany. christina.schilde@uni-konstanzde
| | | | | | | | | |
Collapse
|
134
|
Griffin EE, Detmer SA, Chan DC. Molecular mechanism of mitochondrial membrane fusion. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:482-9. [PMID: 16571363 DOI: 10.1016/j.bbamcr.2006.02.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2006] [Accepted: 02/14/2006] [Indexed: 11/18/2022]
Abstract
Mitochondrial fusion requires coordinated fusion of the outer and inner membranes. This process leads to exchange of contents, controls the shape of mitochondria, and is important for mitochondrial function. Two types of mitochondrial GTPases are essential for mitochondrial fusion. On the outer membrane, the fuzzy onions/mitofusin proteins form complexes in trans that mediate homotypic physical interactions between adjacent mitochondria and are likely directly involved in outer membrane fusion. Associated with the inner membrane, the OPA1 dynamin-family GTPase maintains membrane structure and is a good candidate for mediating inner membrane fusion. In yeast, Ugo1p binds to both of these GTPases to form a fusion complex, although a related protein has yet to be found in mammals. An understanding of the molecular mechanism of fusion may have implications for Charcot-Marie-Tooth subtype 2A and autosomal dominant optic atrophy, neurodegenerative diseases caused by mutations in Mfn2 and OPA1.
Collapse
Affiliation(s)
- Erik E Griffin
- Division of Biology, California Institute of Technology, 1200 East California Blvd., MC114-96, Pasadena, CA 91125, USA
| | | | | |
Collapse
|
135
|
Affiliation(s)
- Leonid V Chernomordik
- Section on Membrane Biology, Laboratory of Cellular and Molecular Biophysics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-1855, USA.
| | | |
Collapse
|
136
|
Abstract
The microvascular endothelial cell monolayer localized at the critical interface between the blood and vessel wall has the vital functions of regulating tissue fluid balance and supplying the essential nutrients needed for the survival of the organism. The endothelial cell is an exquisite “sensor” that responds to diverse signals generated in the blood, subendothelium, and interacting cells. The endothelial cell is able to dynamically regulate its paracellular and transcellular pathways for transport of plasma proteins, solutes, and liquid. The semipermeable characteristic of the endothelium (which distinguishes it from the epithelium) is crucial for establishing the transendothelial protein gradient (the colloid osmotic gradient) required for tissue fluid homeostasis. Interendothelial junctions comprise a complex array of proteins in series with the extracellular matrix constituents and serve to limit the transport of albumin and other plasma proteins by the paracellular pathway. This pathway is highly regulated by the activation of specific extrinsic and intrinsic signaling pathways. Recent evidence has also highlighted the importance of the heretofore enigmatic transcellular pathway in mediating albumin transport via transcytosis. Caveolae, the vesicular carriers filled with receptor-bound and unbound free solutes, have been shown to shuttle between the vascular and extravascular spaces depositing their contents outside the cell. This review summarizes and analyzes the recent data from genetic, physiological, cellular, and morphological studies that have addressed the signaling mechanisms involved in the regulation of both the paracellular and transcellular transport pathways.
Collapse
Affiliation(s)
- Dolly Mehta
- Center of Lung and Vascular Biology, Dept. of Pharmacology (M/C 868), University of Illinois, 835 S. Wolcott Avenue, Chicago, IL 60612, USA
| | | |
Collapse
|
137
|
Chen X, Araç D, Wang TM, Gilpin CJ, Zimmerberg J, Rizo J. SNARE-mediated lipid mixing depends on the physical state of the vesicles. Biophys J 2005; 90:2062-74. [PMID: 16361343 PMCID: PMC1386784 DOI: 10.1529/biophysj.105.071415] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Reconstitution experiments have suggested that N-ethylmaleimide sensitive factor attachment protein receptor (SNARE) proteins constitute a minimal membrane fusion machinery but have yielded contradictory results, and it is unclear whether the mechanism of membrane merger is related to the stalk mechanism that underlies physiological membrane fusion. Here we show that reconstitution of solubilized neuronal SNAREs into preformed 100 nm liposomes (direct method) yields proteoliposomes with more homogeneous sizes and protein densities than the standard reconstitution method involving detergent cosolubilization of proteins and lipids. Standard reconstitutions yield slow but efficient lipid mixing at high protein densities and variable amounts of lipid mixing at moderate protein densities. However, the larger, more homogenous proteoliposomes prepared by the direct method yield almost no lipid mixing at moderate protein densities. These results suggest that the lipid mixing observed for standard reconstitutions is dominated by the physical state of the membrane, perhaps due to populations of small vesicles (or micelles) with high protein densities and curvature stress created upon reconstitution. Accordingly, changing membrane spontaneous curvature by adding lysophospholipids inhibits the lipid mixing observed for standard reconstitutions. Our data indicate that the lipid mixing caused by high SNARE densities and/or curvature stress occurs by a stalk mechanism resembling the mechanism of fusion between biological membranes, but the neuronal SNAREs are largely unable to induce lipid mixing at physiological protein densities and limited curvature stress.
Collapse
Affiliation(s)
- Xiaocheng Chen
- Department of Biochemistry and Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | | | | | | | |
Collapse
|
138
|
Hong W. Cytotoxic T lymphocyte exocytosis: bring on the SNAREs! Trends Cell Biol 2005; 15:644-50. [PMID: 16260137 DOI: 10.1016/j.tcb.2005.10.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2005] [Revised: 08/05/2005] [Accepted: 10/04/2005] [Indexed: 02/03/2023]
Abstract
Despite our general understanding of membrane traffic, the molecular machinery at the immunological synapse (IS) that regulates exocytosis of lytic granules from cytotoxic T lymphocytes (CTLs) remains elusive. The identification of disease-causing mutations in the small GTPase Rab27a, priming factor Munc13-4 and fusion protein syntaxin11 has defined an important role for these proteins in CTL exocytosis. In addition, the demonstration of a direct interaction in vitro between Rab27a and Munc13-4 suggests the possibility that the Rab27a-Munc13-4 cascade might regulate CTL exocytosis by engaging SNAREs such as syntaxin11. We propose that these SNAREs are likely to mediate the fusion of lytic granules with the plasma membrane of the IS.
Collapse
Affiliation(s)
- Wanjin Hong
- Membrane Biology Laboratory, Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore 138673, Singapore.
| |
Collapse
|
139
|
Abstract
During membrane fusion, the outer leaflets of the two membranes merge first, whereas the distal membrane leaflets remain separate until the opening of a fusion pore. This intermediate stage, called hemifusion, is a critical event shared by exocytosis, protein trafficking, and viral entry.
Collapse
Affiliation(s)
- Leonid V Chernomordik
- Section on Membrane Biology, Laboratory of Cellular and Molecular Biophysics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
140
|
Giraudo CG, Hu C, You D, Slovic AM, Mosharov EV, Sulzer D, Melia TJ, Rothman JE. SNAREs can promote complete fusion and hemifusion as alternative outcomes. ACTA ACUST UNITED AC 2005; 170:249-60. [PMID: 16027221 PMCID: PMC2171417 DOI: 10.1083/jcb.200501093] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Using a cell fusion assay, we show here that in addition to complete fusion SNAREs also promote hemifusion as an alternative outcome. Approximately 65% of events resulted in full fusion, and the remaining 35% in hemifusion; of those, approximately two thirds were permanent and approximately one third were reversible. We predict that this relatively close balance among outcomes could be tipped by binding of regulatory proteins to the SNAREs, allowing for dynamic physiological regulation between full fusion and reversible kiss-and-run–like events.
Collapse
Affiliation(s)
- Claudio G Giraudo
- Department of Physiology and Cellular Biophysics, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | | | | | | | | | | | |
Collapse
|
141
|
Castillo-Flores A, Weinberger A, Robinson M, Gerst JE. Mso1 Is a Novel Component of the Yeast Exocytic SNARE Complex. J Biol Chem 2005; 280:34033-41. [PMID: 16087665 DOI: 10.1074/jbc.m507142200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The yeast exocytic SNARE complex consists of one molecule each of the Sso1/2 target SNAREs, Snc1/2 vesicular SNAREs, and the Sec9 target SNARE, which form a fusion complex that is conserved in evolution. Another protein, Sec1, binds to the SNARE complex to facilitate assembly. We show that Mso1, a Sec1-interacting protein, also binds to the SNARE complex and plays a role in mediating Sec1 functions. Like Sec1, Mso1 bound to SNAREs in cells containing SNARE complexes (i.e. wild-type, sec1-1, and sec18-1 cells), but not in cells in which complex formation is inhibited (i.e. sec4-8 cells). Nevertheless, Mso1 remained associated with Sec1 even in sec4-8 cells, indicating that they act as a pair. Mso1 localized primarily to the plasma membrane of the bud when SNARE complex formation was not impaired but was mostly in the cytoplasm when assembly was prevented. Genetic studies suggest that Mso1 enhances Sec1 function while attenuating Sec4 GTPase function. This dual action may impart temporal regulation between Sec4 turnoff and Sec1-mediated SNARE assembly. Notably, a small region at the C terminus of Mso1 is conserved in the mammalian Munc13/Mint proteins and is necessary for proper membrane localization. Overexpression of Mso1 lacking this domain (Mso1-(1-193)) inhibited the growth of cells bearing an attenuated Sec4 GTPase. These results suggest that Mso1 is a component of the exocytic SNARE complex and a possible ortholog of the Munc13/Mint proteins.
Collapse
|
142
|
Oishi Y, Arakawa T, Tanimura A, Itakura M, Takahashi M, Tajima Y, Mizoguchi I, Takuma T. Role of VAMP-2, VAMP-7, and VAMP-8 in constitutive exocytosis from HSY cells. Histochem Cell Biol 2005; 125:273-81. [PMID: 16195891 DOI: 10.1007/s00418-005-0068-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2005] [Indexed: 11/25/2022]
Abstract
We evaluated the role of VAMP-2/synaptobrevin, VAMP-7/TI-VAMP, and VAMP-8/endobrevin in exocytic pathways of HSY cells, a human parotid epithelial cell line, by coexpressing these VAMP proteins tagged with green fluorescent protein (GFP) and human growth hormone (hGH) as a secretory cargo. Exocytosis of hGH was constitutive and the fluorescent signal of hGH-GFP was observed in the Golgi area and small vesicles quickly moving throughout the cytoplasm. The cytoplasmic vesicles containing hGH overlapped well with VAMP-7-GFP, but did so scarcely with VAMP-2-GFP or VAMP-8-GFP. However, when the vesicle transport from the trans-Golgi network to the plasma membrane was arrested by incubation at 20 degrees C for 2 h and then released by warming up to 37 degrees C; VAMP-2-GFP and hGH were clearly colocalized together in small cytoplasmic vesicles. Neither VAMP-7-GFP nor hGH-GFP was colocalized with LAMP-1, a marker for lysosomes and late endosomes. These results suggest that (1) VAMP-2 can be one of the v-SNAREs for constitutive exocytosis; (2) VAMP-7 is involved in the constitutive exocytosis as a slow, minor v-SNARE, but not in the lysosomal transport; and (3) VAMP-8 is unlikely to be a v-SNARE for constitutive exocytosis in HSY cells.
Collapse
Affiliation(s)
- Yohei Oishi
- Department of Oral Biochemistry, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu, Hokkaido, 061-0293 Japan
| | | | | | | | | | | | | | | |
Collapse
|
143
|
Perez A, Li QX, Perez-Romero P, Delassus G, Lopez SR, Sutter S, McLaren N, Fuller AO. A new class of receptor for herpes simplex virus has heptad repeat motifs that are common to membrane fusion proteins. J Virol 2005; 79:7419-30. [PMID: 15919898 PMCID: PMC1143644 DOI: 10.1128/jvi.79.12.7419-7430.2005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We isolated a human cDNA by expression cloning and characterized its gene product as a new human protein that enables entry and infection of herpes simplex virus (HSV). The gene, designated hfl-B5, encodes a type II cell surface membrane protein, B5, that is broadly expressed in human primary tissue and cell lines. It contains a high-scoring heptad repeat at the extracellular C terminus that is predicted to form an alpha-helix for coiled coils like those in cellular SNAREs or in some viral fusion proteins. A synthetic 30-mer peptide that has the same sequence as the heptad repeat alpha-helix blocks HSV infection of B5-expressing porcine cells and human HEp-2 cells. Transient expression of human B5 in HEp-2 cells results in increased polykarocyte formation even in the absence of viral proteins. The B5 protein fulfills all criteria as a receptor or coreceptor for HSV entry. Use by HSV of a human cellular receptor, such as B5, that contains putative membrane fusion domains provides an example where a pathogenic virus with broad tropism has usurped a widely expressed cellular protein to function in infection at events that lead to membrane fusion.
Collapse
Affiliation(s)
- Aleida Perez
- Department of Microbiology and Immunology, University of Michigan School of Medicine, 6736 Medical Sciences II, 0620, Ann Arbor, MI 48109-0620, USA
| | | | | | | | | | | | | | | |
Collapse
|
144
|
Hiesinger PR, Fayyazuddin A, Mehta SQ, Rosenmund T, Schulze KL, Zhai RG, Verstreken P, Cao Y, Zhou Y, Kunz J, Bellen HJ. The v-ATPase V0 subunit a1 is required for a late step in synaptic vesicle exocytosis in Drosophila. Cell 2005; 121:607-620. [PMID: 15907473 PMCID: PMC3351201 DOI: 10.1016/j.cell.2005.03.012] [Citation(s) in RCA: 246] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Revised: 02/14/2005] [Accepted: 03/16/2005] [Indexed: 02/04/2023]
Abstract
The V(0) complex forms the proteolipid pore of an ATPase that acidifies vesicles. In addition, an independent function in membrane fusion has been proposed largely based on yeast vacuolar fusion experiments. We have isolated mutations in the largest V(0) component vha100-1 in flies in an unbiased genetic screen for synaptic malfunction. The protein is only required in neurons, colocalizes with markers for synaptic vesicles as well as active zones, and interacts with t-SNAREs. Loss of vha100-1 leads to vesicle accumulation in synaptic terminals, suggesting a deficit in release. The amplitude of spontaneous release events and release with hypertonic stimulation indicate normal levels of neurotransmitter loading, yet mutant embryos display severe defects in evoked synaptic transmission and FM1-43 uptake. Our data suggest that Vha100-1 functions downstream of SNAREs in synaptic vesicle fusion.
Collapse
Affiliation(s)
- P Robin Hiesinger
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas 77030
| | - Amir Fayyazuddin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| | - Sunil Q Mehta
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Tanja Rosenmund
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| | - Karen L Schulze
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas 77030
| | - R Grace Zhai
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas 77030
| | - Patrik Verstreken
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| | - Yu Cao
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| | - Yi Zhou
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| | - Jeannette Kunz
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030
| | - Hugo J Bellen
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas 77030; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030; Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030; Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030.
| |
Collapse
|
145
|
MacDonald ML, Eaton ME, Dudman JT, Konradi C. Antipsychotic drugs elevate mRNA levels of presynaptic proteins in the frontal cortex of the rat. Biol Psychiatry 2005; 57:1041-51. [PMID: 15860345 PMCID: PMC2734482 DOI: 10.1016/j.biopsych.2005.01.022] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2004] [Revised: 09/14/2004] [Accepted: 01/13/2005] [Indexed: 02/01/2023]
Abstract
BACKGROUND Molecular adaptations are believed to contribute to the mechanism of action of antipsychotic drugs (APDs). We attempted to establish common gene regulation patterns induced by chronic treatment with APDs. METHODS Gene expression analysis was performed with the Affymetrix U34A array in the frontal cortex (FC) and the striatum of rats chronically treated with two concentrations of either clozapine or haloperidol. Key data were verified with real-time quantitative polymerase chain reaction. RESULTS Many genes in the FC affected by APD-treatment contribute to similar functions. mRNAs coding for synaptic vesicle docking- and microtubule-associated proteins were upregulated; mRNAs for serine-threonine protein phosphatases were downregulated, whereas the serine-threonine kinases protein kinase A, protein kinase C, and calcium/calmodulin kinase II alpha and IV were upregulated, indicating increased potential for protein phosphorylation. In the striatum, altered gene expression was less focused on genes of particular function or location, and the high concentration of haloperidol had a different gene expression profile than any of the other APD treatments. CONCLUSION We found an increase in the transcription of genes coding for proteins involved in synaptic plasticity and synaptic activity in the FC. We furthermore found that the gene expression profile of APDs is different between FC and striatum.
Collapse
Affiliation(s)
| | - Molly E. Eaton
- Laboratory of Neuroplasticity, McLean Hospital, Belmont, MA02478
| | - Joshua T. Dudman
- Laboratory of Neuroplasticity, McLean Hospital, Belmont, MA02478
| | - Christine Konradi
- Laboratory of Neuroplasticity, McLean Hospital, Belmont, MA02478
- Harvard Medical School, Department of Psychiatry, Boston, MA 02115
- to whom correspondence should be addressed at: Laboratory of Neuroplasticity, McLean Hospital, 115 Mill Street, Belmont, MA 02478, Tel: 617 855 2052, Fax: 617 855 2023, e-mail:
| |
Collapse
|
146
|
Abstract
Molecular machines orchestrate the translocation and entry of pathogens through host cell membranes, in addition to the uptake and release of molecules during endocytosis and exocytosis. Viral cell entry requires a family of glycoproteins, and the structural organization and function of these viral glycoproteins are similar to the SNARE proteins, which are known to be involved in intracellular vesicle fusion, endocytosis and exocytosis. Here, we propose that a family of bacterial membrane proteins that are responsible for cell-mediated adherence and entry resembles the structural architecture of both viral fusion proteins and eukaryotic SNAREs and might therefore share similar, but distinct, mechanisms of cell membrane translocation. Furthermore, we propose that the recurrence of these molecular machines across species indicates that these architectural motifs were evolutionarily selected because they provided the best solution to ensure the survival of pathogens within a particular environment.
Collapse
Affiliation(s)
- Michèle A. Barocchi
- Department of Bioinformatics and Cellular Microbiology, Chiron Vaccines, Via Fiorentina 1, Siena, 53100 Italy
| | - Vega Masignani
- Department of Bioinformatics and Cellular Microbiology, Chiron Vaccines, Via Fiorentina 1, Siena, 53100 Italy
| | - Rino Rappuoli
- Department of Bioinformatics and Cellular Microbiology, Chiron Vaccines, Via Fiorentina 1, Siena, 53100 Italy
| |
Collapse
|
147
|
Abstract
Cell-cell fusion is fundamental to the development and physiology of multicellular organisms, but little is known of its mechanistic underpinnings. Recent studies have revealed that many proteins involved in cell-cell fusion are also required for seemingly unrelated cellular processes such as phagocytosis, cell migration, axon growth, and synaptogenesis. We review advances in understanding cell-cell fusion by contrasting it with virus-cell and intracellular vesicle fusion. We also consider how proteins involved in general aspects of membrane dynamics have been co-opted to control fusion of diverse cell types by coupling with specialized proteins involved in cell-cell recognition, adhesion, and signaling.
Collapse
Affiliation(s)
- Elizabeth H Chen
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | |
Collapse
|
148
|
Cohen FS, Melikyan GB. The energetics of membrane fusion from binding, through hemifusion, pore formation, and pore enlargement. J Membr Biol 2005; 199:1-14. [PMID: 15366419 DOI: 10.1007/s00232-004-0669-8] [Citation(s) in RCA: 242] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The main steps of viral membrane fusion are local membrane approach, hemifusion, pore formation, and pore enlargement. Experiments and theoretical analyses have helped determine the relative energies required for each step. Key protein structures and conformational changes of the fusion process have been identified. The physical deformations of monolayer bending and lipid tilt have been applied to the steps of membrane fusion. Experiment and theory converge to strongly indicate that, contrary to former conceptions, the fusion process is progressively more energetically difficult: hemifusion has a relatively low energy barrier, pore formation is more energy-consuming, and pore enlargement is the most difficult to achieve.
Collapse
Affiliation(s)
- F S Cohen
- Rush University Medical Center, Department of Molecular Biophysics and Physiology, 1653 W Congress Parkway, Chicago, IL 60612, USA.
| | | |
Collapse
|
149
|
Hong W. SNAREs and traffic. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1744:120-44. [PMID: 15893389 DOI: 10.1016/j.bbamcr.2005.03.014] [Citation(s) in RCA: 360] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2004] [Revised: 03/24/2005] [Accepted: 03/28/2005] [Indexed: 01/05/2023]
Abstract
SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) are now generally accepted to be the major players in the final stage of the docking and the subsequent fusion of diverse vesicle-mediated transport events. The SNARE-mediated process is conserved evolutionally from yeast to human, as well as mechanistically and structurally across different transport events in eukaryotic cells. In the post-genomic era, a fairly complete list of "all" SNAREs in several organisms (including human) can now be made. This review aims to summarize the key properties and the mechanism of action of SNAREs in mammalian cells.
Collapse
Affiliation(s)
- Wanjin Hong
- Membrane Biology Laboratory, Institute of Molecular and Cell Biology, Proteos, Singapore.
| |
Collapse
|
150
|
Bowen ME, Weninger K, Ernst J, Chu S, Brunger AT. Single-molecule studies of synaptotagmin and complexin binding to the SNARE complex. Biophys J 2005; 89:690-702. [PMID: 15821166 PMCID: PMC1366567 DOI: 10.1529/biophysj.104.054064] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The assembly of multiprotein complexes at the membrane interface governs many signaling processes in cells. However, very few methods exist for obtaining biophysical information about protein complex formation at the membrane. We used single molecule fluorescence resonance energy transfer to study complexin and synaptotagmin interactions with the SNARE complex in deposited lipid bilayers. Using total internal reflectance microscopy, individual binding events at the membrane could be resolved despite an excess of unbound protein in solution. Fluorescence resonance energy transfer (FRET)-efficiency derived distances for the complexin-SNARE interaction were consistent with the crystal structure of the complexin-SNARE complex. The unstructured N-terminal region of complexin showed broad distributions of FRET efficiencies to the SNARE complex, suggesting that information on conformational variability can be obtained from FRET efficiency distributions. The low-affinity interaction of synaptotagmin with the SNARE complex changed dramatically upon addition of Ca2+ with high FRET efficiency interactions appearing between the C2B domain and linker domains of synaptotagmin and the membrane proximal portion of the SNARE complex. These results demonstrate that single molecule FRET can be used as a "spectroscopic ruler" to simultaneously gain structural and kinetic information about transient multiprotein complexes at the membrane interface.
Collapse
Affiliation(s)
- Mark E Bowen
- The Howard Hughes Medical Institute and Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, USA
| | | | | | | | | |
Collapse
|