101
|
Postnatal Overnutrition Induces Changes in Synaptic Transmission to Leptin Receptor-Expressing Neurons in the Arcuate Nucleus of Female Mice. Nutrients 2020; 12:nu12082425. [PMID: 32823489 PMCID: PMC7468987 DOI: 10.3390/nu12082425] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 12/22/2022] Open
Abstract
The adipocyte-derived hormone leptin is a potent neurotrophic factor that contributes to the neural plasticity and development of feeding circuitry, particularly in the arcuate nucleus of the hypothalamus (ARH). Postnatal overnutrition affects leptin secretion and sensitivity, but whether postnatal overnutrition produces changes in the development of the synaptic transmission to ARH neurons is currently unknown. We evaluated the excitatory and inhibitory currents to ARH leptin receptor (LepR)-expressing neurons in prepubertal, pubertal and adult female mice. The effects of postnatal overnutrition in the expression of genes that code ion channels subunits in the ARH were also evaluated. We observed that the transition from prepubertal to pubertal stage is characterized by a rise in both excitatory and inhibitory transmission to ARH LepR-expressing neurons in control mice. Postnatal overnutrition induces a further increase in the excitatory synaptic transmission in pubertal and adult animals, whereas the amplitude of inhibitory currents to ARH LepR-expressing cells was reduced. Postnatal overnutrition also contributes to the modulation of gene expression of N-methyl-D-aspartate, GABAB and ATP-sensitive potassium channel subunits in ARH. In summary, the synaptic transmission to ARH cells is profoundly influenced by postnatal overnutrition. Thus, increased adiposity during early postnatal period induces long-lasting effects on ARH cellular excitability.
Collapse
|
102
|
Aviello G, Cristiano C, Luckman SM, D'Agostino G. Brain control of appetite during sickness. Br J Pharmacol 2020; 178:2096-2110. [DOI: 10.1111/bph.15189] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 06/20/2020] [Accepted: 06/23/2020] [Indexed: 12/13/2022] Open
Affiliation(s)
- Gabriella Aviello
- Department of Pharmacy, School of Medicine and Surgery University of Naples Federico II Naples Italy
| | - Claudia Cristiano
- Department of Pharmacy, School of Medicine and Surgery University of Naples Federico II Naples Italy
| | - Simon M. Luckman
- Faculty of Biology, Medicine and Health, School of Medical Sciences University of Manchester Manchester UK
| | - Giuseppe D'Agostino
- Faculty of Biology, Medicine and Health, School of Medical Sciences University of Manchester Manchester UK
| |
Collapse
|
103
|
Beutler LR, Corpuz TV, Ahn JS, Kosar S, Song W, Chen Y, Knight ZA. Obesity causes selective and long-lasting desensitization of AgRP neurons to dietary fat. eLife 2020; 9:e55909. [PMID: 32720646 PMCID: PMC7398661 DOI: 10.7554/elife.55909] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022] Open
Abstract
Body weight is regulated by interoceptive neural circuits that track energy need, but how the activity of these circuits is altered in obesity remains poorly understood. Here we describe the in vivo dynamics of hunger-promoting AgRP neurons during the development of diet-induced obesity in mice. We show that high-fat diet attenuates the response of AgRP neurons to an array of nutritionally-relevant stimuli including food cues, intragastric nutrients, cholecystokinin and ghrelin. These alterations are specific to dietary fat but not carbohydrate or protein. Subsequent weight loss restores the responsiveness of AgRP neurons to exterosensory cues but fails to rescue their sensitivity to gastrointestinal hormones or nutrients. These findings reveal that obesity triggers broad dysregulation of hypothalamic hunger neurons that is incompletely reversed by weight loss and may contribute to the difficulty of maintaining a reduced weight.
Collapse
Affiliation(s)
| | | | - Jamie S Ahn
- Howard Hughes Medical InstituteChevy ChaseUnited States
| | - Seher Kosar
- Howard Hughes Medical InstituteChevy ChaseUnited States
| | - Weimin Song
- Northwestern University Feinberg School of Medicine, Comprehensive Metabolic CoreChicagoUnited States
| | - Yiming Chen
- UCSF Department of PhysiologySan FranciscoUnited States
- UCSF Neuroscience Graduate ProgramSan FranciscoUnited States
| | - Zachary A Knight
- Howard Hughes Medical InstituteChevy ChaseUnited States
- UCSF Department of PhysiologySan FranciscoUnited States
- UCSF Neuroscience Graduate ProgramSan FranciscoUnited States
- Kavli Institute for Fundamental NeuroscienceSan FranciscoUnited States
| |
Collapse
|
104
|
Effects of metabolic state on the regulation of melanocortin circuits. Physiol Behav 2020; 224:113039. [PMID: 32610101 PMCID: PMC7387173 DOI: 10.1016/j.physbeh.2020.113039] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 06/01/2020] [Accepted: 06/26/2020] [Indexed: 12/14/2022]
Abstract
Dysfunction in neurophysiological systems that regulate food intake and metabolism are at least partly responsible for obesity and related comorbidities. An important component of this process is the hypothalamic melanocortin system, where an imbalance can result in severe obesity and deficits in glucose metabolism. Exercise offers many health benefits related to cardiovascular improvements, hunger control, and blood glucose homeostasis. However, the molecular mechanism underlying the exercise-induced improvements to the melanocortin system remain undefined. Here, we review the role of the melanocortin system to sense hormonal, nutrient, and neuronal signals of energy status. This information is then relayed onto secondary neurons in order to regulate physiological parameters, which promote proper energy and glucose balance. We also provide an overview on the effects of physical exercise to induce biophysical changes in the melanocortin circuit which may regulate food intake, glucose metabolism and improve overall metabolic health.
Collapse
|
105
|
Glial Endozepines Reverse High-Fat Diet-Induced Obesity by Enhancing Hypothalamic Response to Peripheral Leptin. Mol Neurobiol 2020; 57:3307-3333. [DOI: 10.1007/s12035-020-01944-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 05/13/2020] [Indexed: 12/23/2022]
|
106
|
da Silva Catarino J, Horvath TL. Metabolism: A Burning Opioid Issue in Obesity Therapeutics. Curr Biol 2020; 29:R1323-R1325. [PMID: 31846684 DOI: 10.1016/j.cub.2019.10.055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Food restriction triggers a lowering in body temperature. A new study now provides a mechanism for this process that relies on opioid signaling in the hypothalamus. These observations suggest potential new therapeutics for obesity.
Collapse
Affiliation(s)
- Jonatas da Silva Catarino
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Tamas L Horvath
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
107
|
Bednarz K, Alshafie W, Aufmkolk S, Desserteaux T, Markam PS, Storch KF, Stroh T. Ultradian Secretion of Growth Hormone in Mice: Linking Physiology With Changes in Synapse Parameters Using Super-Resolution Microscopy. Front Neural Circuits 2020; 14:21. [PMID: 32523515 PMCID: PMC7261915 DOI: 10.3389/fncir.2020.00021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/14/2020] [Indexed: 01/19/2023] Open
Abstract
Neuroendocrine circuits are orchestrated by the pituitary gland in response to hypothalamic hormone-releasing and inhibiting factors to generate an ultradian and/or circadian rhythm of hormone secretion. However, mechanisms that govern this rhythmicity are not fully understood. It has been shown that synaptic transmission in the rodent hypothalamus undergoes cyclical changes in parallel with rhythmic hormone secretion and a growing body of evidence suggests that rapid rewiring of hypothalamic neurons may be the source of these changes. For decades, structural synaptic studies have been utilizing electron microscopy, which provides the resolution suitable for visualizing synapses. However, the small field of view, limited specificity and manual analysis susceptible to bias fuel the search for a more quantitative approach. Here, we apply the fluorescence super-resolution microscopy approach direct Stochastic Optical Reconstruction Microscopy (dSTORM) to quantify and structurally characterize excitatory and inhibitory synapses that contact growth hormone-releasing-hormone (GHRH) neurons during peak and trough values of growth hormone (GH) concentration in mice. This approach relies on a three-color immunofluorescence staining of GHRH and pre- and post-synaptic markers, and a quantitative analysis with a Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm. With this method we confirm our previous findings, using electron microscopy, of increased excitatory synaptic input to GHRH neurons during peak levels of GH. Additionally, we find a shift in synapse numbers during low GH levels, where more inhibitory synaptic inputs are detected. Lastly, we utilize dSTORM to study novel aspects of synaptic structure. We show that more excitatory (but not inhibitory) pre-synaptic clusters associate with excitatory post-synaptic clusters during peaks of GH secretion and that the numbers of post-synaptic clusters increase during high hormone levels. The results presented here provide an opportunity to highlight dSTORM as a valuable quantitative approach to study synaptic structure in the neuroendocrine circuit. Importantly, our analysis of GH circuitry sheds light on the potential mechanism that drives ultradian changes in synaptic transmission and possibly aids in GH pulse generation in mice.
Collapse
Affiliation(s)
- Klaudia Bednarz
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.,Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Walaa Alshafie
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Sarah Aufmkolk
- Department of Genetics, Harvard Medical School, Boston, MA, United States
| | - Théotime Desserteaux
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Pratap Singh Markam
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada.,Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Kai-Florian Storch
- Douglas Mental Health University Institute, Montreal, QC, Canada.,Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Thomas Stroh
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.,Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| |
Collapse
|
108
|
Gosztonyi G, Ludwig H, Bode L, Kao M, Sell M, Petrusz P, Halász B. Obesity induced by Borna disease virus in rats: key roles of hypothalamic fast-acting neurotransmitters and inflammatory infiltrates. Brain Struct Funct 2020; 225:1459-1482. [PMID: 32394093 DOI: 10.1007/s00429-020-02063-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 03/21/2020] [Indexed: 12/30/2022]
Abstract
Human obesity epidemic is increasing worldwide with major adverse consequences on health. Among other possible causes, the hypothesis of an infectious contribution is worth it to be considered. Here, we report on an animal model of virus-induced obesity which might help to better understand underlying processes in human obesity. Eighty Wistar rats, between 30 and 60 days of age, were intracerebrally inoculated with Borna disease virus (BDV-1), a neurotropic negative-strand RNA virus infecting an unusually broad host spectrum including humans. Half of the rats developed fatal encephalitis, while the other half, after 3-4 months, continuously gained weight. At tripled weights, rats were sacrificed by trans-cardial fixative perfusion. Neuropathology revealed prevailing inflammatory infiltrates in the median eminence (ME), progressive degeneration of neurons of the paraventricular nucleus, the entorhinal cortex and the amygdala, and a strikingly high-grade involution of the hippocampus with hydrocephalus. Immune histology revealed that major BDV-1 antigens were preferentially present at glutamatergic receptor sites, while GABAergic areas remained free from BDV-1. Virus-induced suppression of the glutamatergic system caused GABAergic predominance. In the hypothalamus, this shifted the energy balance to the anabolic appetite-stimulating side governed by GABA, allowing for excessive fat accumulation in obese rats. Furthermore, inflammatory infiltrates in the ME and ventro-medial arcuate nucleus hindered free access of appetite-suppressing hormones leptin and insulin. The hormone transport system in hypothalamic areas outside the ME became blocked by excessively produced leptin, leading to leptin resistance. The resulting hyperleptinemic milieu combined with suppressed glutamatergic mechanisms was a characteristic feature of the found metabolic pathology. In conclusion, the study provided clear evidence that BDV-1 induced obesity in the rat model is the result of interdependent structural and functional metabolic changes. They can be explained by an immunologically induced hypothalamic microcirculation-defect, combined with a disturbance of neurotransmitter regulatory systems. The proposed mechanism may also have implications for human health. BDV-1 infection has been frequently found in depressive patients. Independently, comorbidity between depression and obesity has been reported, either. Future studies should address the exciting question of whether BDV-1 infection could be a link, whatsoever, between these two conditions.
Collapse
Affiliation(s)
- Georg Gosztonyi
- Institute of Neuropathology, Charité, University Medicine Berlin, 10117, Berlin, Germany.
| | - Hanns Ludwig
- Freelance Bornavirus Workgroup, 14163, Berlin, Germany
| | - Liv Bode
- Freelance Bornavirus Workgroup, 14163, Berlin, Germany
| | - Moujahed Kao
- Landesbetrieb Hessisches Landeslabor, 35392, Giessen, Germany
| | - Manfred Sell
- Division of Pathology, Martin Luther Hospital, 12351, Berlin, Germany
| | - Peter Petrusz
- Department of Cell and Developmental Biology, University of North Carolina At Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Béla Halász
- Neuromorphological and Neuroendocrine Research Laboratory, Semmelweis University, 1094, Budapest, Hungary
| |
Collapse
|
109
|
Wu R, Yu W, Fu L, Li F, Jing J, Cui X, Wang S, Cao Q, Xue B, Shi H. Postnatal leptin surge is critical for the transient induction of the developmental beige adipocytes in mice. Am J Physiol Endocrinol Metab 2020; 318:E453-E461. [PMID: 31961706 PMCID: PMC7191411 DOI: 10.1152/ajpendo.00292.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Beige adipocytes have become a promising therapeutic target to combat obesity. Our senior author Dr. B. Xue previously discovered a transient but significant induction of beige adipocytes in mice during early postnatal development, which peaked at postnatal day (P) 20 and then disappeared thereafter. However, the physiological mechanism underlying the transient induction of the developmental beige cells remains mystery. Interestingly, there exists a postnatal surge of leptin in mice at P10 before the appearance of the developmental beige adipocytes. Given the neurotropic effect of leptin during neuronal development and its role in activating the sympathetic nervous system (SNS), we tested the hypothesis that postnatal leptin surge is required for the transient induction of developmental beige adipocytes through sympathetic innervation. Unlike wild-type (WT) mice that were able to acquire the developmentally induced beige adipocytes at P20, ob/ob mice had much less uncoupling protein 1 (UCP1)-positive multilocular cells in inguinal white adipose tissue at the same age. This was consistent with reduced expression of UCP1 mRNA and protein levels in white fat of ob/ob mice. In contrast, daily injection of ob/ob mice with leptin between P8 and P16, mimicking the postnatal leptin surge, largely rescued the ability of these mice to acquire the developmentally induced beige adipocytes at P20, which was associated with enhanced sympathetic nerve innervation assessed by whole mount adipose tissue immunostaining of tyrosine hydroxylase. Our data demonstrate that the postnatal leptin surge is essential for the developmentally induced beige adipocyte formation in mice, possibly through increasing sympathetic nerve innervation.
Collapse
Affiliation(s)
- Rui Wu
- School of Pharmacy, Zhejiang University of Technology, Hangzhou, Zhejiang, China
- Department of Biology, Georgia State University, Atlanta, Georgia
| | - Wenyan Yu
- School of Pharmacy, Zhejiang University of Technology, Hangzhou, Zhejiang, China
- Department of Biology, Georgia State University, Atlanta, Georgia
| | - Lizhi Fu
- Department of Biology, Georgia State University, Atlanta, Georgia
| | - Fenfen Li
- Department of Biology, Georgia State University, Atlanta, Georgia
| | - Jia Jing
- Department of Biology, Georgia State University, Atlanta, Georgia
| | - Xin Cui
- Department of Biology, Georgia State University, Atlanta, Georgia
| | - Shirong Wang
- Department of Biology, Georgia State University, Atlanta, Georgia
| | - Qiang Cao
- Department of Biology, Georgia State University, Atlanta, Georgia
| | - Bingzhong Xue
- Department of Biology, Georgia State University, Atlanta, Georgia
| | - Hang Shi
- Department of Biology, Georgia State University, Atlanta, Georgia
| |
Collapse
|
110
|
Coleman MF, Cozzo AJ, Pfeil AJ, Etigunta SK, Hursting SD. Cell Intrinsic and Systemic Metabolism in Tumor Immunity and Immunotherapy. Cancers (Basel) 2020; 12:cancers12040852. [PMID: 32244756 PMCID: PMC7225951 DOI: 10.3390/cancers12040852] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 12/14/2022] Open
Abstract
Immune checkpoint inhibitor (ICI) therapy has shown extraordinary promise at treating cancers otherwise resistant to treatment. However, for ICI therapy to be effective, it must overcome the metabolic limitations of the tumor microenvironment. Tumor metabolism has long been understood to be highly dysregulated, with potent immunosuppressive effects. Moreover, T cell activation and longevity within the tumor microenvironment are intimately tied to T cell metabolism and are required for the long-term efficacy of ICI therapy. We discuss in this review the intersection of metabolic competition in the tumor microenvironment, T cell activation and metabolism, the roles of tumor cell metabolism in immune evasion, and the impact of host metabolism in determining immune surveillance and ICI therapy outcomes. We also discussed the effects of obesity and calorie restriction—two important systemic metabolic perturbations that impact intrinsic metabolic pathways in T cells as well as cancer cells.
Collapse
Affiliation(s)
- Michael F. Coleman
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27516, USA; (M.F.C.); (A.J.C.); (A.J.P.); (S.K.E.)
| | - Alyssa J. Cozzo
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27516, USA; (M.F.C.); (A.J.C.); (A.J.P.); (S.K.E.)
- Department of Medicine, Duke University, Durham, NC 27705, USA
| | - Alexander J. Pfeil
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27516, USA; (M.F.C.); (A.J.C.); (A.J.P.); (S.K.E.)
| | - Suhas K. Etigunta
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27516, USA; (M.F.C.); (A.J.C.); (A.J.P.); (S.K.E.)
| | - Stephen D. Hursting
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27516, USA; (M.F.C.); (A.J.C.); (A.J.P.); (S.K.E.)
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27516, USA
- Correspondence:
| |
Collapse
|
111
|
Wasinski F, Furigo IC, Teixeira PDS, Ramos-Lobo AM, Peroni CN, Bartolini P, List EO, Kopchick JJ, Donato J. Growth Hormone Receptor Deletion Reduces the Density of Axonal Projections from Hypothalamic Arcuate Nucleus Neurons. Neuroscience 2020; 434:136-147. [PMID: 32229232 DOI: 10.1016/j.neuroscience.2020.03.037] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 12/18/2022]
Abstract
The arcuate nucleus (ARH) is an important hypothalamic area for the homeostatic control of feeding and other metabolic functions. In the ARH, proopiomelanocortin- (POMC) and agouti-related peptide (AgRP)-expressing neurons play a key role in the central regulation of metabolism. These neurons are influenced by circulating factors, such as leptin and growth hormone (GH). The objective of the present study was to determine whether a direct action of GH on ARH neurons regulates the density of POMC and AgRP axonal projections to major postsynaptic targets. We studied POMC and AgRP axonal projections to the hypothalamic paraventricular (PVH), lateral (LHA) and dorsomedial (DMH) nuclei in leptin receptor (LepR)-deficient mice (Leprdb/db), GH-deficient mice (Ghrhrlit/lit) and in mice carrying specific ablations of GH receptor (GHR) either in LepR- or AgRP-expressing cells. Leprdb/db mice presented reduction in the density of POMC innervation to the PVH compared to wild-type and Ghrhrlit/lit mice. Additionally, both Leprdb/db and Ghrhrlit/lit mice showed reduced AgRP fiber density in the PVH, LHA and DMH. LepR GHR knockout mice showed decreased density of POMC innervation in the PVH and DMH, compared to control mice, whereas a reduction in the density of AgRP innervation was observed in all areas analyzed. Conversely, AgRP-specific ablation of GHR led to a significant reduction in AgRP projections to the PVH, LHA and DMH, without affecting POMC innervation. Our findings indicate that GH has direct trophic effects on the formation of POMC and AgRP axonal projections and provide additional evidence that GH regulates hypothalamic neurocircuits controlling energy homeostasis.
Collapse
Affiliation(s)
- Frederick Wasinski
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil
| | - Isadora C Furigo
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil
| | - Pryscila D S Teixeira
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil
| | - Angela M Ramos-Lobo
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil
| | - Cibele N Peroni
- Centro de Biotecnologia, Instituto de Pesquisas Energéticas e Nucleares (IPEN-CNEN), São Paulo, SP 05508-900, Brazil
| | - Paolo Bartolini
- Centro de Biotecnologia, Instituto de Pesquisas Energéticas e Nucleares (IPEN-CNEN), São Paulo, SP 05508-900, Brazil
| | - Edward O List
- Edison Biotechnology Institute and Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - John J Kopchick
- Edison Biotechnology Institute and Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Jose Donato
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil.
| |
Collapse
|
112
|
Linehan V, Fang LZ, Parsons MP, Hirasawa M. High-fat diet induces time-dependent synaptic plasticity of the lateral hypothalamus. Mol Metab 2020; 36:100977. [PMID: 32277924 PMCID: PMC7170999 DOI: 10.1016/j.molmet.2020.100977] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 02/28/2020] [Accepted: 03/10/2020] [Indexed: 11/15/2022] Open
Abstract
Objective Orexin (ORX) and melanin-concentrating hormone (MCH) neurons in the lateral hypothalamus are critical regulators of energy homeostasis and are thought to differentially contribute to diet-induced obesity. However, it is unclear whether the synaptic properties of these cells are altered by obesogenic diets over time. Methods Rats and mice were fed a control chow or palatable high-fat diet (HFD) for various durations and then synaptic properties of ORX and MCH neurons were examined using exvivo whole-cell patch clamp recording. Confocal imaging was performed to assess the number of excitatory synaptic contacts to these neurons. Results ORX neurons exhibited a transient increase in spontaneous excitatory transmission as early as 1 day up to 1 week of HFD, which returned to control levels with prolonged feeding. Conversely, HFD induced a delayed increase in excitatory synaptic transmission to MCH neurons, which progressively increased as HFD became chronic. This increase occurred before the onset of significant weight gain. These synaptic changes appeared to be due to altered postsynaptic sensitivity or the number of active synaptic contacts depending on cell type and feeding duration. However, HFD induced no change in inhibitory transmission in either cell type at any time point. Conclusions These results suggest that the effects of HFD on feeding-related neurons are cell type-specific and dynamic. This highlights the importance of considering the feeding duration for research and weight loss interventions. ORX neurons may contribute to early hyperphagia, whereas MCH neurons may play a role in the onset and long-term maintenance of diet-induced obesity. High-fat diet increases excitatory transmission to orexin and MCH neurons. Increased excitatory drive to orexin neurons occurs within the first week but is transient. Excitatory synapses to MCH neurons increase with prolonged high-fat diet. Excitatory changes in MCH neurons are delayed but precede significant weight gain. These synaptic changes may contribute to the development and the maintenance of obesity.
Collapse
Affiliation(s)
- Victoria Linehan
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, 300 Prince Philip Drive, St. John's, Newfoundland, A1B 3V6, Canada
| | - Lisa Z Fang
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, 300 Prince Philip Drive, St. John's, Newfoundland, A1B 3V6, Canada
| | - Matthew P Parsons
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, 300 Prince Philip Drive, St. John's, Newfoundland, A1B 3V6, Canada
| | - Michiru Hirasawa
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, 300 Prince Philip Drive, St. John's, Newfoundland, A1B 3V6, Canada.
| |
Collapse
|
113
|
Ramírez-Orozco RE, García-Ruiz R, Morales P, Villalón CM, Villafán-Bernal JR, Marichal-Cancino BA. Potential metabolic and behavioural roles of the putative endocannabinoid receptors GPR18, GPR55 and GPR119 in feeding. Curr Neuropharmacol 2020; 17:947-960. [PMID: 31146657 PMCID: PMC7052828 DOI: 10.2174/1570159x17666190118143014] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/26/2018] [Accepted: 11/20/2018] [Indexed: 01/28/2023] Open
Abstract
Endocannabinoids are ancient biomolecules involved in several cellular (e.g., metabolism) and physiological (e.g., eating behaviour) functions. Indeed, eating behaviour alterations in marijuana users have led to investigate the orexigen-ic/anorexigenic effects of cannabinoids in animal/human models. This increasing body of research suggests that the endo-cannabinoid system plays an important role in feeding control. Accordingly, within the endocannabinoid system, canna-binoid receptors, enzymes and genes represent potential therapeutic targets for dealing with multiple metabolic and behav-ioural dysfunctions (e.g., obesity, anorexia, etc.). Paradoxically, our understanding on the endocannabinoid system as a cel-lular mediator is yet limited. For example: (i) only two cannabinoid receptors have been classified, but they are not enough to explain the pharmacological profile of several experimental effects induced by cannabinoids; and (ii) several orphan G pro-tein-coupled receptors (GPCRs) interact with cannabinoids and we do not know how to classify them (e.g., GPR18, GPR55 and GPR119; amongst others). On this basis, the present review attempts to summarize the lines of evidence supporting the potential role of GPR18, GPR55 and GPR119 in metabolism and feeding control that may explain some of the divergent effects and puzzling data re-lated to cannabinoid research. Moreover, their therapeutic potential in feeding behaviour alterations will be considered.
Collapse
Affiliation(s)
- Ricardo E Ramírez-Orozco
- Departamento de Nutricion y Cultura Fisica, Centro de Ciencias de la Salud, Universidad Autonoma de Aguascalientes, Ciudad Universitaria, 20131 Aguascalientes, Ags, Mexico
| | - Ricardo García-Ruiz
- Departamento de Fisiologia, Facultad de Medicina. Universidad Nacional Autonoma de Mexico, Ciudad de Mexico, Mexico
| | - Paula Morales
- Instituto de Quimica Fisica Rocasolano, Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain
| | - Carlos M Villalón
- Departamento de Farmacobiologia, Cinvestav- Coapa, Czda. Tenorios 235, Col. Granjas-Coapa, Deleg. Tlalpan, 14330 Ciudad de Mexico, Mexico
| | - J Rafael Villafán-Bernal
- Departamento de Cirugia, Centro de Ciencias de la Salud, Universidad Autonoma de Aguascalientes, CP 20131 Aguascalientes, Ags, Mexico
| | - Bruno A Marichal-Cancino
- Departamento de Fisiologia y Farmacologia, Centro de Ciencias Basicas, Universidad Autonoma de Aguascalientes, Ciudad Universitaria, 20131 Aguascalientes, Ags, Mexico
| |
Collapse
|
114
|
Cheng W, Gonzalez I, Pan W, Tsang AH, Adams J, Ndoka E, Gordian D, Khoury B, Roelofs K, Evers SS, MacKinnon A, Wu S, Frikke-Schmidt H, Flak JN, Trevaskis JL, Rhodes CJ, Fukada SI, Seeley RJ, Sandoval DA, Olson DP, Blouet C, Myers MG. Calcitonin Receptor Neurons in the Mouse Nucleus Tractus Solitarius Control Energy Balance via the Non-aversive Suppression of Feeding. Cell Metab 2020; 31:301-312.e5. [PMID: 31955990 PMCID: PMC7104375 DOI: 10.1016/j.cmet.2019.12.012] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 08/29/2019] [Accepted: 12/20/2019] [Indexed: 02/02/2023]
Abstract
To understand hindbrain pathways involved in the control of food intake, we examined roles for calcitonin receptor (CALCR)-containing neurons in the NTS. Ablation of NTS Calcr abrogated the long-term suppression of food intake, but not aversive responses, by CALCR agonists. Similarly, activating CalcrNTS neurons decreased food intake and body weight but (unlike neighboring CckNTS cells) failed to promote aversion, revealing that CalcrNTS neurons mediate a non-aversive suppression of food intake. While both CalcrNTS and CckNTS neurons decreased feeding via projections to the PBN, CckNTS cells activated aversive CGRPPBN cells while CalcrNTS cells activated distinct non-CGRP PBN cells. Hence, CalcrNTS cells suppress feeding via non-aversive, non-CGRP PBN targets. Additionally, silencing CalcrNTS cells blunted food intake suppression by gut peptides and nutrients, increasing food intake and promoting obesity. Hence, CalcrNTS neurons define a hindbrain system that participates in physiological energy balance and suppresses food intake without activating aversive systems.
Collapse
Affiliation(s)
- Wenwen Cheng
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48105, USA
| | - Ian Gonzalez
- Division of Endocrinology, Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI 48105, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48105, USA
| | - Warren Pan
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48105, USA; Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48105, USA
| | - Anthony H Tsang
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, WT-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Jessica Adams
- Division of Endocrinology, Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI 48105, USA
| | - Ermelinda Ndoka
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48105, USA
| | - Desiree Gordian
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48105, USA
| | - Basma Khoury
- Department of Surgery, University of Michigan, Ann Arbor, MI 48105, USA
| | - Karen Roelofs
- Department of Surgery, University of Michigan, Ann Arbor, MI 48105, USA
| | - Simon S Evers
- Department of Surgery, University of Michigan, Ann Arbor, MI 48105, USA
| | - Andrew MacKinnon
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48105, USA
| | - Shuangcheng Wu
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48105, USA
| | | | - Jonathan N Flak
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48105, USA
| | - James L Trevaskis
- Cardiovascular, Renal and Metabolic Diseases, AstraZenica LLC, Gaithersburg, MD 20878, USA
| | - Christopher J Rhodes
- Cardiovascular, Renal and Metabolic Diseases, AstraZenica LLC, Gaithersburg, MD 20878, USA
| | - So-Ichiro Fukada
- Laboratory of Molecular and Cellular Physiology, Osaka University, Osaka 565-0871, Japan
| | - Randy J Seeley
- Department of Surgery, University of Michigan, Ann Arbor, MI 48105, USA
| | - Darleen A Sandoval
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48105, USA; Department of Surgery, University of Michigan, Ann Arbor, MI 48105, USA
| | - David P Olson
- Division of Endocrinology, Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI 48105, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48105, USA
| | - Clemence Blouet
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, WT-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK.
| | - Martin G Myers
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48105, USA; Division of Endocrinology, Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI 48105, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48105, USA; Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48105, USA.
| |
Collapse
|
115
|
Abstract
Human biology has evolved to keep body fat within a range that supports survival. During the last 25 years, obesity biologists have uncovered key aspects of physiology that prevent fat mass from becoming too low. In contrast, the mechanisms that counteract excessive adipose expansion are largely unknown. Evidence dating back to the 1950s suggests the existence of a blood-borne molecule that defends against weight gain. In this article, we discuss the research supporting an "unidentified factor of overfeeding" and models that explain its role in body weight control. If it exists, revealing the identity of this factor could end a long-lasting enigma of energy balance regulation and facilitate a much-needed breakthrough in the pharmacological treatment of obesity.
Collapse
Affiliation(s)
- Jens Lund
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Camilla Lund
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Morville
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christoffer Clemmensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
116
|
Bland T, Zhu M, Dillon C, Sahin GS, Rodriguez-Llamas JL, Appleyard SM, Wayman GA. Leptin Controls Glutamatergic Synaptogenesis and NMDA-Receptor Trafficking via Fyn Kinase Regulation of NR2B. Endocrinology 2020; 161:5678106. [PMID: 31840160 PMCID: PMC7015580 DOI: 10.1210/endocr/bqz030] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 12/10/2019] [Indexed: 01/13/2023]
Abstract
Activation of the leptin receptor, LepRb, by the adipocytokine/neurotrophic factor leptin in the central nervous system has procognitive and antidepressive effects. Leptin has been shown to increase glutamatergic synaptogenesis in multiple brain regions. In contrast, mice that have a mutation in the LepRb gene show abnormal synapse development in the hippocampus as well as deficits in cognition and increased depressive-like symptoms. Leptin increases glutamatergic synaptogenesis, in part, through enhancement of N-methyl-D-aspartic acid (NMDA) receptor function; yet the underlying signaling pathway is not known. In this study, we examine how leptin regulates surface expression of NR2B-containing NMDA receptors in hippocampal neurons. Leptin stimulation increases NR2BY1472 phosphorylation, which is inhibited by the Src family kinase inhibitor, PP1. Moreover, we show that Fyn, a member of the Src family kinases, is required for leptin-stimulated NR2BY1472 phosphorylation. Furthermore, inhibiting Y1472 phosphorylation with either a dominant negative Fyn mutant or an NR2B mutant that lacks the phosphorylation site (NR2BY1472F) blocks leptin-stimulated synaptogenesis. Additionally, we show that LepRb forms a complex with NR2B and Fyn. Taken together, these findings expand our knowledge of the LepRb interactome and the mechanisms by which leptin stimulates glutamatergic synaptogenesis in the developing hippocampus. Comprehending these mechanisms is key for understanding dendritic spine development and synaptogenesis, alterations of which are associated with many neurological disorders.
Collapse
Affiliation(s)
- Tyler Bland
- Program in Neuroscience, Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Mingyan Zhu
- Program in Neuroscience, Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Crystal Dillon
- Program in Neuroscience, Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Gulcan Semra Sahin
- Program in Neuroscience, Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Jose Luis Rodriguez-Llamas
- Program in Neuroscience, Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Suzanne M Appleyard
- Program in Neuroscience, Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Gary A Wayman
- Program in Neuroscience, Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
- Correspondence: Gary A. Wayman, Department of Integrative Physiology and Neuroscience, Program in Neuroscience, Washington State University, Pullman Washington 99164. E-mail:
| |
Collapse
|
117
|
Rojo-Ruiz J, Navas-Navarro P, Nuñez L, García-Sancho J, Alonso MT. Imaging of Endoplasmic Reticulum Ca 2+ in the Intact Pituitary Gland of Transgenic Mice Expressing a Low Affinity Ca 2+ Indicator. Front Endocrinol (Lausanne) 2020; 11:615777. [PMID: 33664709 PMCID: PMC7921146 DOI: 10.3389/fendo.2020.615777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/15/2020] [Indexed: 11/13/2022] Open
Abstract
The adenohypophysis contains five secretory cell types (somatotrophs, lactotrophs, thyrotrophs, corticotrophs, and gonadotrophs), each secreting a different hormone, and controlled by different hypothalamic releasing hormones (HRHs). Exocytic secretion is regulated by cytosolic Ca2+ signals ([Ca2+]C), which can be generated either by Ca2+ entry through the plasma membrane and/or by Ca2+ release from the endoplasmic reticulum (ER). In addition, Ca2+ entry signals can eventually be amplified by ER release via calcium-induced calcium release (CICR). We have investigated the contribution of ER Ca2+ release to the action of physiological agonists in pituitary gland. Changes of [Ca2+] in the ER ([Ca2+]ER) were measured with the genetically encoded low-affinity Ca2+ sensor GAP3 targeted to the ER. We used a transgenic mouse strain that expressed erGAP3 driven by a ubiquitous promoter. Virtually all the pituitary cells were positive for the sensor. In order to mimick the physiological environment, intact pituitary glands or acute slices from the transgenic mouse were used to image [Ca2+]ER. [Ca2+]C was measured simultaneously with Rhod-2. Luteinizing hormone-releasing hormone (LHRH) or thyrotropin releasing hormone (TRH), two agonists known to elicit intracellular Ca2+ mobilization, provoked robust decreases of [Ca2+]ER and concomitant rises of [Ca2+]C. A smaller fraction of cells responded to thyrotropin releasing hormone (TRH). By contrast, depolarization with high K+ triggered a rise of [Ca2+]C without a decrease of [Ca2+]ER, indicating that the calcium-induced calcium-release (CICR) via ryanodine receptor amplification mechanism is not present in these cells. Our results show the potential of transgenic ER Ca2+ indicators as novel tools to explore intraorganellar Ca2+ dynamics in pituitary gland in situ.
Collapse
|
118
|
Jehl F, Désert C, Klopp C, Brenet M, Rau A, Leroux S, Boutin M, Lagoutte L, Muret K, Blum Y, Esquerré D, Gourichon D, Burlot T, Collin A, Pitel F, Benani A, Zerjal T, Lagarrigue S. Chicken adaptive response to low energy diet: main role of the hypothalamic lipid metabolism revealed by a phenotypic and multi-tissue transcriptomic approach. BMC Genomics 2019; 20:1033. [PMID: 31888468 PMCID: PMC6937963 DOI: 10.1186/s12864-019-6384-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 12/11/2019] [Indexed: 02/07/2023] Open
Abstract
Background Production conditions of layer chicken can vary in terms of temperature or diet energy content compared to the controlled environment where pure-bred selection is undertaken. The aim of this study was to better understand the long-term effects of a 15%-energy depleted diet on egg-production, energy homeostasis and metabolism via a multi-tissue transcriptomic analysis. Study was designed to compare effects of the nutritional intervention in two layer chicken lines divergently selected for residual feed intake. Results Chicken adapted to the diet in terms of production by significantly increasing their feed intake and decreasing their body weight and body fat composition, while their egg production was unchanged. No significant interaction was observed between diet and line for the production traits. The low energy diet had no effect on adipose tissue and liver transcriptomes. By contrast, the nutritional challenge affected the blood transcriptome and, more severely, the hypothalamus transcriptome which displayed 2700 differentially expressed genes. In this tissue, the low-energy diet lead to an over-expression of genes related to endocannabinoid signaling (CN1R, NAPE-PLD) and to the complement system, a part of the immune system, both known to regulate feed intake. Both mechanisms are associated to genes related polyunsaturated fatty acids synthesis (FADS1, ELOVL5 and FADS2), like the arachidonic acid, a precursor of anandamide, a key endocannabinoid, and of prostaglandins, that mediate the regulatory effects of the complement system. A possible regulatory role of NR1H3 (alias LXRα) has been associated to these transcriptional changes. The low-energy diet further affected brain plasticity-related genes involved in the cholesterol synthesis and in the synaptic activity, revealing a link between nutrition and brain plasticity. It upregulated genes related to protein synthesis, mitochondrial oxidative phosphorylation and fatty acid oxidation in the hypothalamus, suggesting reorganization in nutrient utilization and biological synthesis in this brain area. Conclusions We observed a complex transcriptome modulation in the hypothalamus of chicken in response to low-energy diet suggesting numerous changes in synaptic plasticity, endocannabinoid regulation, neurotransmission, lipid metabolism, mitochondrial activity and protein synthesis. This global transcriptomic reprogramming could explain the adaptive behavioral response (i.e. increase of feed intake) of the animals to the low-energy content of the diet.
Collapse
Affiliation(s)
- F Jehl
- PEGASE UMR 1348, INRA, AGROCAMPUS OUEST, 35590, Saint-Gilles, France
| | - C Désert
- PEGASE UMR 1348, INRA, AGROCAMPUS OUEST, 35590, Saint-Gilles, France
| | - C Klopp
- SIGENAE Plateform, INRA, 31326, Castanet-Tolosan, France
| | - M Brenet
- PEGASE UMR 1348, INRA, AGROCAMPUS OUEST, 35590, Saint-Gilles, France
| | - A Rau
- GABI UMR 1313, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - S Leroux
- GenPhySE UMR 1388, INRA, INPT, ENVT, Université de Toulouse, 31326, Castanet-Tolosan, France
| | - M Boutin
- PEGASE UMR 1348, INRA, AGROCAMPUS OUEST, 35590, Saint-Gilles, France
| | - L Lagoutte
- PEGASE UMR 1348, INRA, AGROCAMPUS OUEST, 35590, Saint-Gilles, France
| | - K Muret
- PEGASE UMR 1348, INRA, AGROCAMPUS OUEST, 35590, Saint-Gilles, France
| | - Y Blum
- Programme Cartes d'Identité des Tumeurs (CIT), Ligue Nationale Contre Le Cancer, 75013, Paris, France
| | - D Esquerré
- GENOTOUL Plateform, INRA, 31326, Castanet-Tolosan, France
| | | | - T Burlot
- NOVOGEN, Mauguérand, 22800, Le Foeil, France
| | - A Collin
- BOA UMR, INRA, Université de Tours, 37380, Nouzilly, France
| | - F Pitel
- GenPhySE UMR 1388, INRA, INPT, ENVT, Université de Toulouse, 31326, Castanet-Tolosan, France
| | - A Benani
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université de Bourgogne, Dijon, France
| | - T Zerjal
- SIGENAE Plateform, INRA, 31326, Castanet-Tolosan, France.
| | - S Lagarrigue
- PEGASE UMR 1348, INRA, AGROCAMPUS OUEST, 35590, Saint-Gilles, France.
| |
Collapse
|
119
|
Cabral A, Fernandez G, Tolosa MJ, Rey Moggia Á, Calfa G, De Francesco PN, Perello M. Fasting induces remodeling of the orexigenic projections from the arcuate nucleus to the hypothalamic paraventricular nucleus, in a growth hormone secretagogue receptor-dependent manner. Mol Metab 2019; 32:69-84. [PMID: 32029231 PMCID: PMC7005150 DOI: 10.1016/j.molmet.2019.11.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/14/2019] [Accepted: 11/20/2019] [Indexed: 02/06/2023] Open
Abstract
Objective Arcuate nucleus (ARC) neurons producing Agouti-related peptide (AgRP) and neuropeptide Y (NPY; ARCAgRP/NPY neurons) are activated under energy-deficit states. ARCAgRP/NPY neurons innervate the hypothalamic paraventricular nucleus (PVH), and ARC→PVH projections are recognized as key regulators of food intake. Plasma ghrelin levels increase under energy-deficit states and activate ARCAgRP/NPY neurons by acting on the growth hormone secretagogue receptor (GHSR). Here, we hypothesized that activation of ARCAgRP/NPY neurons in fasted mice would promote morphological remodeling of the ARCAgRP/NPY→PVH projections in a GHSR-dependent manner. Methods We performed 1) fluorescent immunohistochemistry, 2) imaging of green fluorescent protein (GFP) signal in NPY-GFP mice, and 3) DiI axonal labeling in brains of ad libitum fed or fasted mice with pharmacological or genetic blockage of the GHSR signaling and then estimated the density and strength of ARCAgRP/NPY→PVH fibers by assessing the mean fluorescence intensity, the absolute area with fluorescent signal, and the intensity of the fluorescent signal in the fluorescent area of the PVH. Results We found that 1) the density and strength of ARCAgRP/NPY fibers increase in the PVH of fasted mice, 2) the morphological remodeling of the ARCAgRP/NPY→PVH projections correlates with the activation of PVH neurons, and 3) PVH neurons are not activated in ARC-ablated mice. We also found that fasting-induced remodeling of ARCAgRP/NPY→PVH fibers and PVH activation are impaired in mice with pharmacological or genetic blockage of GHSR signaling. Conclusion This evidence shows that the connectivity between hypothalamic circuits controlling food intake can be remodeled in the adult brain, depending on the energy balance conditions, and that GHSR activity is a key regulator of this phenomenon. The density and strength of ARCAgRP/NPY→PVH fibers increase in fasted mice. Remodeling of ARCAgRP/NPY→PVH projections correlates with the activation of PVH neurons. GHSR signaling is required for fasting-induced ARCAgRP/NPY→PVH projection remodeling.
Collapse
Affiliation(s)
- Agustina Cabral
- Laboratorio de Neurofisiología, Instituto Multidisciplinario de Biología Celular (IMBICE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional La Plata y Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA), La Plata, Buenos Aires, Argentina
| | - Gimena Fernandez
- Laboratorio de Neurofisiología, Instituto Multidisciplinario de Biología Celular (IMBICE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional La Plata y Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA), La Plata, Buenos Aires, Argentina
| | - María J Tolosa
- Laboratorio de Neurofisiología, Instituto Multidisciplinario de Biología Celular (IMBICE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional La Plata y Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA), La Plata, Buenos Aires, Argentina
| | - Ángeles Rey Moggia
- Laboratorio de Neurofisiología, Instituto Multidisciplinario de Biología Celular (IMBICE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional La Plata y Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA), La Plata, Buenos Aires, Argentina
| | - Gastón Calfa
- Instituto de Farmacología Experimental de Córdoba (IFEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Pablo N De Francesco
- Laboratorio de Neurofisiología, Instituto Multidisciplinario de Biología Celular (IMBICE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional La Plata y Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA), La Plata, Buenos Aires, Argentina
| | - Mario Perello
- Laboratorio de Neurofisiología, Instituto Multidisciplinario de Biología Celular (IMBICE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional La Plata y Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA), La Plata, Buenos Aires, Argentina.
| |
Collapse
|
120
|
McGrath TM, Spreckley E, Rodriguez AF, Viscomi C, Alamshah A, Akalestou E, Murphy KG, Jones NS. The homeostatic dynamics of feeding behaviour identify novel mechanisms of anorectic agents. PLoS Biol 2019; 17:e3000482. [PMID: 31805040 PMCID: PMC6894749 DOI: 10.1371/journal.pbio.3000482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 11/01/2019] [Indexed: 12/26/2022] Open
Abstract
Better understanding of feeding behaviour will be vital in reducing obesity and metabolic syndrome, but we lack a standard model that captures the complexity of feeding behaviour. We construct an accurate stochastic model of rodent feeding at the bout level in order to perform quantitative behavioural analysis. Analysing the different effects on feeding behaviour of peptide YY3-36 (PYY3-36), lithium chloride, glucagon-like peptide 1 (GLP-1), and leptin shows the precise behavioural changes caused by each anorectic agent. Our analysis demonstrates that the changes in feeding behaviour evoked by the anorectic agents investigated do not mimic the behaviour of well-fed animals and that the intermeal interval is influenced by fullness. We show how robust homeostatic control of feeding thwarts attempts to reduce food intake and how this might be overcome. In silico experiments suggest that introducing a minimum intermeal interval or modulating upper gut emptying can be as effective as anorectic drug administration.
Collapse
Affiliation(s)
- Thomas M. McGrath
- Department of Mathematics, Imperial College London, London, United Kingdom
- EPSRC Centre for the Mathematics of Precision Healthcare, Imperial College London, London, United Kingdom
| | - Eleanor Spreckley
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| | - Aina Fernandez Rodriguez
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| | - Carlo Viscomi
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Amin Alamshah
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| | - Elina Akalestou
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| | - Kevin G. Murphy
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| | - Nick S. Jones
- Department of Mathematics, Imperial College London, London, United Kingdom
- EPSRC Centre for the Mathematics of Precision Healthcare, Imperial College London, London, United Kingdom
| |
Collapse
|
121
|
Quarta C, Fioramonti X, Cota D. POMC Neurons Dysfunction in Diet-induced Metabolic Disease: Hallmark or Mechanism of Disease? Neuroscience 2019; 447:3-14. [PMID: 31689486 DOI: 10.1016/j.neuroscience.2019.09.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/19/2019] [Accepted: 09/24/2019] [Indexed: 12/19/2022]
Abstract
One important lesson from the last decade of studies in the field of systemic energy metabolism is that obesity is first and foremost a brain disease. Hypothalamic neurons dysfunction observed in response to chronic metabolic stress is a key pathogenic node linking consumption of hypercaloric diets with body weight gain and associated metabolic sequelae. A key hypothalamic neuronal population expressing the neuropeptide Pro-opio-melanocortin (POMC) displays altered electrical activity and dysregulated neuropeptides production capacity after long-term feeding with hypercaloric diets. However, whether such neuronal dysfunction represents a consequence or a mechanism of disease, remains a subject of debate. Here, we will review and highlight emerging pathogenic mechanisms that explain why POMC neurons undergo dysfunctional activity in response to caloric overload, and critically address whether these mechanisms may be causally implicated in the physiopathology of obesity and of its associated co-morbidities.
Collapse
Affiliation(s)
- Carmelo Quarta
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France; University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France.
| | - Xavier Fioramonti
- Université de Bordeaux, Institut National de la Recherche Agronomique, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - Daniela Cota
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France; University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France.
| |
Collapse
|
122
|
Zecharia D, Rauch M, Sharabi-Nov A, Tamir S, Gutman R. Postnatal administration of leptin antagonist mitigates susceptibility to obesity under high-fat diet in male αMUPA mice. Am J Physiol Endocrinol Metab 2019; 317:E783-E793. [PMID: 31454257 DOI: 10.1152/ajpendo.00099.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Perturbations in postnatal leptin signaling have been associated with altered susceptibility to diet-induced obesity (DIO) under high-fat-diet (HFD), albeit with contradicting evidence. Previous studies have shown that alpha murine urokinase-type plasminogen activator (αMUPA) mice have a higher and longer postnatal leptin surge compared with their wild types (WTs) as well as lower body weight and food intake under regular diet (RD). Here we explored αMUPA's propensity for DIO and the effect of attenuating postnatal leptin signaling with leptin antagonist (LA) on energy homeostasis under both RD and HFD. Four-day-old αMUPA pups were treated on alternate days until postnatal day 18 with either vehicle or LA (10 or 20 mg·day-1·kg-1) and weaned into RD or HFD. Compared with RD-fed αMUPA males, HFD-fed αMUPA males showed higher energy intake, even when corrected for body weight difference, and became hyperinsulinemic and obese. Additionally, HFD-fed αMUPA males gained body weight at a higher rate than their WTs mainly because of strain differences in energy expenditure. LA administration did not affect strain differences under RD but attenuated αMUPA's hyperinsulinemia and DIO under HFD, most likely by mediating energy expenditure. Together with our previous findings, these results suggest that αMUPA's leptin surge underlies its higher susceptibility to obesity under HFD, highlighting the role of leptin-related developmental processes in inducing obesity in a postweaning obesogenic environment, at least in αMUPA males. This study therefore supports the use of αMUPA mice for elucidating developmental mechanisms of obesity and the efficacy of early-life manipulations via leptin surge axis in attenuating DIO.
Collapse
Affiliation(s)
- Danielle Zecharia
- Laboratory of Integrative Physiology, MIGAL-Galilee Research Institute. Kiryat Shmona, Israel
- Department of Biotechnology, Faculty of Sciences and Technology, Tel-Hai College, Upper Galilee, Israel
| | - Maayan Rauch
- Laboratory of Integrative Physiology, MIGAL-Galilee Research Institute. Kiryat Shmona, Israel
| | - Adi Sharabi-Nov
- Research Wing, Ziv Medical Center, Zefat, Israel
- Department of Nutritional Sciences, Faculty of Sciences and Technology, Tel-Hai College, Upper Galilee, Israel
| | - Snait Tamir
- Department of Nutritional Sciences, Faculty of Sciences and Technology, Tel-Hai College, Upper Galilee, Israel
- Laboratory of Human Health and Nutrition Sciences, MIGAL-Galilee Research Institute, Kiryat Shmona, Israel
| | - Roee Gutman
- Laboratory of Integrative Physiology, MIGAL-Galilee Research Institute. Kiryat Shmona, Israel
- Department of Animal Sciences, Faculty of Sciences and Technology, Tel-Hai College, Upper Galilee, Israel
| |
Collapse
|
123
|
Mussa BM, Taneera J, Mohammed AK, Srivastava A, Mukhopadhyay D, Sulaiman N. Potential role of hypothalamic microRNAs in regulation of FOS and FTO expression in response to hypoglycemia. J Physiol Sci 2019; 69:981-991. [PMID: 31728912 PMCID: PMC10717546 DOI: 10.1007/s12576-019-00718-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 10/06/2019] [Indexed: 01/05/2023]
Abstract
Hypoglycemia-associated autonomic failure (HAAF) is a serious complication of diabetes which is associated with the absence of physiological homeostatic counter-regulatory mechanisms that are controlled by the hypothalamus and sympathetic nervous system. Identification of biomarkers for early detection of HAAF requires an advanced understanding of molecular signature of hypoglycemia which is yet to be identified. The outcomes of the present study have shown that the viability and the apoptotic rate of the hypothalamic neurons (mHypoE-N39) were decreased significantly due to hypoglycemia in a dose-dependent fashion (p < 0.05). Although there are more than 1000 miRNAs differentially expressed in hypothalamus, only twelve miRNAs (miR-7a, miR-7b, miR-9, miR-29b, miR-29c, miR-30a, miR-30b, miR-30c, miR-101b-3p, miR-181a-5p, miR-378-3p and miR-873-5p) were correlated to two main hypothalamic regulatory proteins, FOS and FTO. Expression of these proteins was very sensitive to hypoglycemia. We demonstrated that hypoglycemia modulates the expression of hypothalamic miRNAs that are related to FOS and FTO.
Collapse
Affiliation(s)
- Bashair M Mussa
- Basic Medical Science Department, College of Medicine, University of Sharjah, P.O. Box: 27272, Sharjah, United Arab Emirates.
| | - Jalal Taneera
- Basic Medical Science Department, College of Medicine, Sharjah Institute for Medical Research, University of Sharjah, P.O. Box: 27272, Sharjah, United Arab Emirates
| | - Abdul Khader Mohammed
- Sharjah Institute for Medical Research, University of Sharjah, P.O. Box: 27272, Sharjah, United Arab Emirates
| | - Ankita Srivastava
- Sharjah Institute for Medical Research, University of Sharjah, P.O. Box: 27272, Sharjah, United Arab Emirates
| | - Debasmita Mukhopadhyay
- Sharjah Institute for Medical Research, University of Sharjah, P.O. Box: 27272, Sharjah, United Arab Emirates
| | - Nabil Sulaiman
- Family Medicine and Behavioral Science, College of Medicine, University of Sharjah, P.O. Box: 27272, Sharjah, United Arab Emirates
| |
Collapse
|
124
|
Mendoza J. Food intake and addictive-like eating behaviors: Time to think about the circadian clock(s). Neurosci Biobehav Rev 2019; 106:122-132. [DOI: 10.1016/j.neubiorev.2018.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 06/25/2018] [Accepted: 07/03/2018] [Indexed: 12/25/2022]
|
125
|
Freda PU, Reyes-Vidal C, Jin Z, Pugh M, Panigrahi SK, Bruce JN, Wardlaw SL. Plasma Agouti-Related Protein Levels in Acromegaly and Effects of Surgical or Pegvisomant Therapy. J Clin Endocrinol Metab 2019; 104:5453-5461. [PMID: 31361303 PMCID: PMC6777636 DOI: 10.1210/jc.2019-01079] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/18/2019] [Indexed: 12/12/2022]
Abstract
CONTEXT GH activates agouti-related protein (AgRP) neurons, leading to orexigenic responses in mice. The relationship between serum GH and plasma AgRP, which has been shown to reflect hypothalamic AgRP, has not been evaluated in humans. OBJECTIVE To test the hypothesis that central stimulatory actions of GH on hypothalamic AgRP could be reflected in plasma AgRP in acromegaly. METHODS We studied 23 patients with active acromegaly before and for ≤2 years after surgical (n = 13) or GH receptor antagonist therapy with pegvisomant (n = 10), and 100 healthy subjects with morning fasting blood samples for AgRP, leptin, GH, and IGF-1 and anthropometric measurements. RESULTS The plasma AgRP levels were higher in those with active acromegaly than in the matched healthy subjects [median, 100 pg/mL; interquartile range (IQR), 78 to 139 pg/mL vs median, 63 pg/mL; IQR, 58 to 67 pg/mL; P < 0.0001]. Plasma AgRP decreased from before to after surgery (median, 102 pg/mL; IQR, 82 to 124 pg/mL vs median, 63 pg/mL; IQR, 55.6 to 83 pg/mL; P = 0.0024) and from before to during pegvisomant therapy (median, 97 pg/mL; IQR, 77 to 175 pg/mL vs median, 63; IQR, 61 to 109 pg/mL; P = 0.006). The plasma AgRP level correlated with GH (r = 0.319; P = 0.011) and IGF-1 (r = 0.292; P = 0.002). In repeated measure analysis, AgRP was significantly associated with IGF-1. CONCLUSIONS Our data have provided evidence of a stimulatory effect of GH on plasma AgRP in humans. The levels were greater in active acromegaly and decreased in parallel with GH and IGF-1 decreases with acromegaly treatment. Data from mice suggest that AgRP may mediate some of the known effects of GH on energy metabolism. This warrants further study in patients with acromegaly and other populations.
Collapse
Affiliation(s)
- Pamela U Freda
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
- Correspondence and Reprint Requests: Pamela U. Freda, MD, Department of Medicine, Vagelos College of Physicians & Surgeons, Columbia University, 650 West 168th Street, Room 1014, New York, New York 10032. E-mail:
| | - Carlos Reyes-Vidal
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | - Zhezhen Jin
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, New York
| | - Mya Pugh
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | - Sunil K Panigrahi
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | - Jeffrey N Bruce
- Department of Neurosurgery, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | - Sharon L Wardlaw
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| |
Collapse
|
126
|
Ozmen S, Şeker A, Demirci E. Ghrelin and leptin levels in children with anxiety disorders. J Pediatr Endocrinol Metab 2019; 32:1043-1047. [PMID: 31472067 DOI: 10.1515/jpem-2019-0229] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/28/2019] [Indexed: 11/15/2022]
Abstract
Background Anxiety disorders are common psychiatric disorders in childhood and an important health problem that is associated with the risk of serious mental, educational and economical problems. Researchers have mentioned many different mechanisms in the etiopathology of anxiety disorders. This study aimed to investigate ghrelin and leptin levels in children with anxiety disorders and thus to contribute to the clarification of anxiety in children. Methods Forty-three children aged 6-12 years with a diagnosis of the Anxiety Disorder according to DSM 5 and 21 healthy children age- and gender-matched to the study group were included. All the subjects were assessed with Kiddie Schedule for Affective Disorders and Schizophrenia Present and Lifetime Version (K-SADS-PL) and State-Trait Anxiety Inventory for Children (STAI-C) scale. Blood samples were obtained in the morning and serum ghrelin and leptin levels were measured with enzyme-linked immunosorbent assay (ELISA) kits. Results In the anxiety group the ghrelin levels were higher than the control group (p = 0.037) but there was no significant difference between the leptin levels (p = 0.430). Also, when the girls in the anxiety group and the girls in the control group were compared, ghrelin levels were higher in the anxiety group (p < 0.01). Conclusions These findings suggest that ghrelin may play a significant role in the etiologic mechanisms of anxiety disorders. However, more detailed studies are needed to explain the linkage between anxiety disorders and neuropeptides.
Collapse
Affiliation(s)
- Sevgi Ozmen
- Erciyes University Hospital, Child and Adolescent Psychiatry Department, Melikgazi, Kayseri, Turkey
| | - Asilay Şeker
- Erciyes University Hospital, Child and Adolescent Psychiatry Department, Melikgazi, Kayseri, Turkey
| | - Esra Demirci
- Erciyes University Hospital, Child and Adolescent Psychiatry Department, Melikgazi, Kayseri, Turkey
| |
Collapse
|
127
|
Geller S, Arribat Y, Netzahualcoyotzi C, Lagarrigue S, Carneiro L, Zhang L, Amati F, Lopez-Mejia IC, Pellerin L. Tanycytes Regulate Lipid Homeostasis by Sensing Free Fatty Acids and Signaling to Key Hypothalamic Neuronal Populations via FGF21 Secretion. Cell Metab 2019; 30:833-844.e7. [PMID: 31474567 DOI: 10.1016/j.cmet.2019.08.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 12/28/2018] [Accepted: 08/05/2019] [Indexed: 12/12/2022]
Abstract
The hypothalamus plays a key role in the detection of energy substrates to regulate energy homeostasis. Tanycytes, the hypothalamic ependymo-glia, are located at a privileged position to integrate multiple peripheral inputs. We observed that tanycytes produce and secrete Fgf21 and are located close to Fgf21-sensitive neurons. Fasting, likely via the increase in circulating fatty acids, regulates this central Fgf21 production. Tanycytes store palmitate in lipid droplets and oxidize it, leading to the activation of a reactive oxygen species (ROS)/p38-MAPK signaling pathway, which is essential for tanycytic Fgf21 expression upon palmitate exposure. Tanycytic Fgf21 deletion triggers an increase in lipolysis, likely due to impaired inhibition of key neurons during fasting. Mice deleted for tanycytic Fgf21 exhibit increased energy expenditure and a reduction in fat mass gain, reminiscent of a browning phenotype. Our results suggest that tanycytes sense free fatty acids to maintain body lipid homeostasis through Fgf21 signaling within the hypothalamus.
Collapse
Affiliation(s)
- Sarah Geller
- Department of Physiology, University of Lausanne, 1005 Lausanne, Switzerland.
| | - Yoan Arribat
- Department of Physiology, University of Lausanne, 1005 Lausanne, Switzerland
| | | | - Sylviane Lagarrigue
- Department of Physiology, University of Lausanne, 1005 Lausanne, Switzerland
| | - Lionel Carneiro
- Department of Physiology, University of Lausanne, 1005 Lausanne, Switzerland
| | - Lianjun Zhang
- Ludwig Center for Cancer Research, University of Lausanne, 1066 Epalinges, Switzerland
| | - Francesca Amati
- Department of Physiology, University of Lausanne, 1005 Lausanne, Switzerland; Institute of Sports Sciences, University of Lausanne, Lausanne 1005, Switzerland; Service of Endocrinology, Diabetology, and Metabolism, Department of Medicine, Lausanne University Hospital, Lausanne 1011, Switzerland
| | - Isabel C Lopez-Mejia
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Luc Pellerin
- Department of Physiology, University of Lausanne, 1005 Lausanne, Switzerland; Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 CNRS, LabEx TRAIL-IBIO, Université de Bordeaux, Bordeaux Cedex 33760, France.
| |
Collapse
|
128
|
Zhao S, Zhu Y, Schultz RD, Li N, He Z, Zhang Z, Caron A, Zhu Q, Sun K, Xiong W, Deng H, Sun J, Deng Y, Kim M, Lee CE, Gordillo R, Liu T, Odle AK, Childs GV, Zhang N, Kusminski CM, Elmquist JK, Williams KW, An Z, Scherer PE. Partial Leptin Reduction as an Insulin Sensitization and Weight Loss Strategy. Cell Metab 2019; 30:706-719.e6. [PMID: 31495688 PMCID: PMC6774814 DOI: 10.1016/j.cmet.2019.08.005] [Citation(s) in RCA: 191] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 07/17/2019] [Accepted: 08/07/2019] [Indexed: 12/12/2022]
Abstract
The physiological role of leptin is thought to be a driving force to reduce food intake and increase energy expenditure. However, leptin therapies in the clinic have failed to effectively treat obesity, predominantly due to a phenomenon referred to as leptin resistance. The mechanisms linking obesity and the associated leptin resistance remain largely unclear. With various mouse models and a leptin neutralizing antibody, we demonstrated that hyperleptinemia is a driving force for metabolic disorders. A partial reduction of plasma leptin levels in the context of obesity restores hypothalamic leptin sensitivity and effectively reduces weight gain and enhances insulin sensitivity. These results highlight that a partial reduction in plasma leptin levels leads to improved leptin sensitivity, while pointing to a new avenue for therapeutic interventions in the treatment of obesity and its associated comorbidities.
Collapse
Affiliation(s)
- Shangang Zhao
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yi Zhu
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Robbie D Schultz
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Na Li
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zhenyan He
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Neurosurgery and Endocrinology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Zhuzhen Zhang
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alexandre Caron
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Qingzhang Zhu
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kai Sun
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA; Center for Metabolic and Degenerative Diseases, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Wei Xiong
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Hui Deng
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jia Sun
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Neurosurgery and Endocrinology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Yingfeng Deng
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Min Kim
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Charlotte E Lee
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ruth Gordillo
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tiemin Liu
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Angela K Odle
- Neurobiology & Developmental Sciences, College of Medicine, University of Arkansas for Medical Sciences
| | - Gwen V Childs
- Neurobiology & Developmental Sciences, College of Medicine, University of Arkansas for Medical Sciences
| | - Ningyan Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Christine M Kusminski
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joel K Elmquist
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kevin W Williams
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Philipp E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
129
|
Sebo ZL, Rendina-Ruedy E, Ables GP, Lindskog DM, Rodeheffer MS, Fazeli PK, Horowitz MC. Bone Marrow Adiposity: Basic and Clinical Implications. Endocr Rev 2019; 40:1187-1206. [PMID: 31127816 PMCID: PMC6686755 DOI: 10.1210/er.2018-00138] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 04/03/2019] [Indexed: 12/14/2022]
Abstract
The presence of adipocytes in mammalian bone marrow (BM) has been recognized histologically for decades, yet, until recently, these cells have received little attention from the research community. Advancements in mouse transgenics and imaging methods, particularly in the last 10 years, have permitted more detailed examinations of marrow adipocytes than ever before and yielded data that show these cells are critical regulators of the BM microenvironment and whole-body metabolism. Indeed, marrow adipocytes are anatomically and functionally separate from brown, beige, and classic white adipocytes. Thus, areas of BM space populated by adipocytes can be considered distinct fat depots and are collectively referred to as marrow adipose tissue (MAT) in this review. In the proceeding text, we focus on the developmental origin and physiologic functions of MAT. We also discuss the signals that cause the accumulation and loss of marrow adipocytes and the ability of these cells to regulate other cell lineages in the BM. Last, we consider roles for MAT in human physiology and disease.
Collapse
Affiliation(s)
- Zachary L Sebo
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut.,Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut
| | | | - Gene P Ables
- Orentreich Foundation for the Advancement of Science, Cold Spring, New York
| | - Dieter M Lindskog
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, Connecticut
| | - Matthew S Rodeheffer
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut.,Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut
| | - Pouneh K Fazeli
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, Massachusetts
| | - Mark C Horowitz
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
130
|
Bae-Gartz I, Janoschek R, Breuer S, Schmitz L, Hoffmann T, Ferrari N, Branik L, Oberthuer A, Kloppe CS, Appel S, Vohlen C, Dötsch J, Hucklenbruch-Rother E. Maternal Obesity Alters Neurotrophin-Associated MAPK Signaling in the Hypothalamus of Male Mouse Offspring. Front Neurosci 2019; 13:962. [PMID: 31572115 PMCID: PMC6753176 DOI: 10.3389/fnins.2019.00962] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 08/28/2019] [Indexed: 12/26/2022] Open
Abstract
Purpose Maternal obesity has emerged as an important risk factor for the development of metabolic disorders in the offspring. The hypothalamus as the center of energy homeostasis regulation is known to function based on complex neuronal networks that evolve during fetal and early postnatal development and maintain their plasticity into adulthood. Development of hypothalamic feeding networks and their functional plasticity can be modulated by various metabolic cues, especially in early stages of development. Here, we aimed at determining the underlying molecular mechanisms that contribute to disturbed hypothalamic network formation in offspring of obese mouse dams. Methods Female mice were fed either a control diet (CO) or a high-fat diet (HFD) after weaning until mating and during pregnancy and gestation. Male offspring was sacrificed at postnatal day (P) 21. The hypothalamus was subjected to gene array analysis, quantitative PCR and western blot analysis. Results P21 HFD offspring displayed increased body weight, circulating insulin levels, and strongly increased activation of the hypothalamic insulin signaling cascade with a concomitant increase in ionized calcium binding adapter molecule 1 (IBA1) expression. At the same time, the global gene expression profile in CO and HFD offspring differed significantly. More specifically, manifest influences on several key pathways of hypothalamic neurogenesis, axogenesis, and regulation of synaptic transmission and plasticity were detectable. Target gene expression analysis revealed significantly decreased mRNA expression of several neurotrophic factors and co-factors and their receptors, accompanied by decreased activation of their respective intracellular signal transduction. Conclusion Taken together, these results suggest a potential role for disturbed neurotrophin signaling and thus impaired neurogenesis, axogenesis, and synaptic plasticity in the pathogenesis of the offspring’s hypothalamic feeding network dysfunction due to maternal obesity.
Collapse
Affiliation(s)
- Inga Bae-Gartz
- Department of Pediatrics, University Hospital of Cologne, Cologne, Germany
| | - Ruth Janoschek
- Department of Pediatrics, University Hospital of Cologne, Cologne, Germany
| | - Saida Breuer
- Department of Pediatrics, University Hospital of Cologne, Cologne, Germany
| | - Lisa Schmitz
- Department of Pediatrics, University Hospital of Cologne, Cologne, Germany
| | - Thorben Hoffmann
- Department of Pediatrics, University Hospital of Cologne, Cologne, Germany
| | - Nina Ferrari
- Heart Center, Cologne Center for Prevention in Childhood and Youth, University Hospital of Cologne, Cologne, Germany
| | - Lena Branik
- Department of Pediatrics, University Hospital of Cologne, Cologne, Germany
| | - Andre Oberthuer
- Department of Pediatrics, University Hospital of Cologne, Cologne, Germany
| | - Cora-Sophia Kloppe
- Department of Pediatrics, University Hospital of Cologne, Cologne, Germany
| | - Sarah Appel
- Department of Pediatrics, University Hospital of Cologne, Cologne, Germany
| | - Christina Vohlen
- Department of Pediatrics, University Hospital of Cologne, Cologne, Germany
| | - Jörg Dötsch
- Department of Pediatrics, University Hospital of Cologne, Cologne, Germany
| | | |
Collapse
|
131
|
Idelevich A, Sato K, Nagano K, Rowe G, Gori F, Baron R. ΔFosB Requires Galanin, but not Leptin, to Increase Bone Mass via the Hypothalamus, but both are needed to increase Energy expenditure. J Bone Miner Res 2019; 34:1707-1720. [PMID: 30998833 PMCID: PMC6744351 DOI: 10.1002/jbmr.3741] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 03/22/2019] [Accepted: 04/05/2019] [Indexed: 01/29/2023]
Abstract
Energy metabolism and bone homeostasis share several regulatory pathways. The AP1 transcription factor ΔFosB and leptin both regulate energy metabolism and bone, yet whether their pathways intersect is not known. Transgenic mice overexpressing ΔFosB under the control of the Enolase 2 (ENO2) promoter exhibit high bone mass, high energy expenditure, low fat mass, and low circulating leptin levels. Because leptin is a regulator of bone and ΔFosB acts on leptin-responsive ventral hypothalamic (VHT) neurons to induce bone anabolism, we hypothesized that regulation of leptin may contribute to the central actions of ΔFosB in the VHT. To address this question, we used adeno-associated virus (AAV) expression of ΔFosB in the VHT of leptin-deficient ob/ob mice and genetic crossing of ENO2-ΔFosB with ob/ob mice. In both models, leptin deficiency prevented ΔFosB-triggered reduction in body weight, increase in energy expenditure, increase in glucose utilization, and reduction in pancreatic islet size. In contrast, leptin deficiency failed to prevent ΔFosB-triggered increase in bone mass. Unlike leptin deficiency, galanin deficiency blocked both the metabolic and the bone ΔFosB-induced effects. Overall, our data demonstrate that, while the catabolic energy metabolism effects of ΔFosB require intact leptin and galanin signaling, the bone mass-accruing effects of ΔFosB require galanin but are independent of leptin. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Anna Idelevich
- Department of Medicine, Harvard Medical School and Endocrine Unit, Massachusetts General Hospital, and Division of Bone and Mineral Metabolism, Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Kazusa Sato
- Department of Medicine, Harvard Medical School and Endocrine Unit, Massachusetts General Hospital, and Division of Bone and Mineral Metabolism, Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Kenichi Nagano
- Department of Medicine, Harvard Medical School and Endocrine Unit, Massachusetts General Hospital, and Division of Bone and Mineral Metabolism, Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Glenn Rowe
- Department of Medicine, Harvard Medical School and Endocrine Unit, Massachusetts General Hospital, and Division of Bone and Mineral Metabolism, Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Francesca Gori
- Department of Medicine, Harvard Medical School and Endocrine Unit, Massachusetts General Hospital, and Division of Bone and Mineral Metabolism, Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Roland Baron
- Department of Medicine, Harvard Medical School and Endocrine Unit, Massachusetts General Hospital, and Division of Bone and Mineral Metabolism, Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| |
Collapse
|
132
|
Maffei M, Mainardi M. Editorial: Metabolic Mediators and Synapses: Linking Body Periphery to Neural Plasticity. Front Cell Neurosci 2019; 13:378. [PMID: 31507378 PMCID: PMC6718701 DOI: 10.3389/fncel.2019.00378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 08/02/2019] [Indexed: 01/21/2023] Open
Affiliation(s)
- Margherita Maffei
- Institute of Clinical Physiology, National Research Council, Pisa, Italy.,Endocrinology Unit, Obesity Center, University Hospital of Pisa, Pisa, Italy
| | - Marco Mainardi
- Laboratory of Biology "Bio@SNS", Scuola Normale Superiore, Pisa, Italy.,Institute of Neuroscience, National Research Council, Pisa, Italy
| |
Collapse
|
133
|
Fujita Y, Yamashita T. The Effects of Leptin on Glial Cells in Neurological Diseases. Front Neurosci 2019; 13:828. [PMID: 31447640 PMCID: PMC6692660 DOI: 10.3389/fnins.2019.00828] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 07/25/2019] [Indexed: 12/11/2022] Open
Abstract
It is known that various endocrine modulators, including leptin and ghrelin, have neuroprotective roles in neurological diseases. Leptin is a hormone produced by adipocytes and was originally identified as a gene related to obesity in mice. The leptin receptors in the hypothalamus are the main target for the homeostatic regulation of body weight. Recent studies have demonstrated that leptin receptors are also expressed in other regions of the central nervous system (CNS), such as the hippocampus, cerebral cortex, and spinal cord. Accordingly, these studies identified the involvement of leptin in the regulation of neuronal survival and neural development. Furthermore, leptin has been shown to have neuroprotective functions in animal models of neurological diseases and demyelination. These observations also suggest that dysregulation of leptin signaling may be involved in the association between neurodegeneration and obesity. In this review, we summarize novel functions of leptin in animal models of neurodegenerative diseases. Specifically, we focus on the emerging evidence for the role of leptin in non-neuronal cells in the CNS, including astrocytes, microglia, and oligodendrocytes. Understanding leptin-mediated neuroprotective signals and molecular mechanisms underlying remyelination will be helpful to establish therapeutic strategies against neurological diseases.
Collapse
Affiliation(s)
- Yuki Fujita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan.,WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan.,WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan.,Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
134
|
Roth CL, von Schnurbein J, Elfers C, Moss A, Wabitsch M. Changes in Satiety Hormones in Response to Leptin Treatment in a Patient with Leptin Deficiency. Horm Res Paediatr 2019; 90:424-430. [PMID: 29996141 DOI: 10.1159/000489884] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 05/04/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND We tested whether leptin treatment affects secretion of satiety-related gut peptides and brain-derived neurotrophic factor (BDNF), which is a regulator of energy homeostasis downstream of hypothalamic leptin signaling. METHODS We report the case of a morbidly obese 14.7-year-old girl with a novel previously reported homozygous leptin gene mutation, in whom hormone secretion was evaluated in 30-min intervals for 10 h (07.30-17.30) to assess BDNF, insulin, glucagon-like peptide-1 (GLP-1), ghrelin, and peptide YY (PYY) secretion before as well as 11 and 46 weeks after start of metreleptin treatment. RESULTS Leptin substitution resulted in strong reductions of body fat and calorie intake. Insulin secretion increased by 58.9% after 11 weeks, but was reduced by -44.8% after 46 weeks compared to baseline. Similarly, GLP-1 increased after 11 weeks (+15.2%) and decreased after 46 weeks. PYY increased consistently (+5%/ +13.2%, after 11/46 weeks). Ghrelin decreased after 46 weeks (-11%). BDNF secretion was not affected by leptin treatment. CONCLUSION The strong increase in insulin and GLP-1 secretion after 11 weeks of metreleptin treatment cannot be explained by reduced adiposity and might contribute to improved central satiety. Observed changes of PYY can lead to increased satiety as well. However, leptin replacement does not seem to affect circulating BDNF levels.
Collapse
Affiliation(s)
- Christian L Roth
- Seattle Children's Research Institute, Center for Integrative Brain Research, University of Washington, Department of Pediatrics, Seattle, Washington, USA,
| | - Julia von Schnurbein
- Division of Pediatric Endocrinology, Diabetes and Obesity Unit, Department of Pediatrics and Adolescent Medicine, Ulm University, Ulm, Germany
| | - Clinton Elfers
- Seattle Children's Research Institute, Center for Integrative Brain Research, University of Washington, Department of Pediatrics, Seattle, Washington, USA
| | - Anja Moss
- Division of Pediatric Endocrinology, Diabetes and Obesity Unit, Department of Pediatrics and Adolescent Medicine, Ulm University, Ulm, Germany
| | - Martin Wabitsch
- Division of Pediatric Endocrinology, Diabetes and Obesity Unit, Department of Pediatrics and Adolescent Medicine, Ulm University, Ulm, Germany
| |
Collapse
|
135
|
Abstract
The discovery of leptin changed the view of adipose tissue from that of a passive vessel that stores fat to that of a dynamic endocrine organ that actively regulates behaviour and metabolism. Secreted by adipose tissue, leptin functions as an afferent signal in a negative feedback loop, acting primarily on neurons in the hypothalamus and regulating feeding and many other functions. The leptin endocrine system serves a critical evolutionary function by maintaining the relative constancy of adipose tissue mass, thereby protecting individuals from the risks associated with being too thin (starvation and infertility) or too obese (predation). In this Review, the biology of leptin is summarized, and a conceptual framework is established for studying the pathogenesis of obesity, which, analogously to diabetes, can result from either leptin hyposecretion or leptin resistance. Herein, these two states are distinguished with the terms 'type 1 obesity' and 'type 2 obesity': type 1 obesity describes a subset of obese individuals with low endogenous plasma leptin levels who respond to leptin therapy, whereas type 2 obesity describes most obese individuals, who are leptin resistant but might respond to leptin therapy in combination with other drugs, such as leptin sensitizers.
Collapse
Affiliation(s)
- Jeffrey M Friedman
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
136
|
Skov LJ, Ratner C, Hansen NW, Thompson JJ, Egerod KL, Burm H, Dalbøge LS, Hedegaard MA, Brakebusch C, Pers TH, Perrier JF, Holst B. RhoA in tyrosine hydroxylase neurones regulates food intake and body weight via altered sensitivity to peripheral hormones. J Neuroendocrinol 2019; 31:e12761. [PMID: 31237372 DOI: 10.1111/jne.12761] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/18/2019] [Accepted: 06/18/2019] [Indexed: 12/16/2022]
Abstract
Dopamine-producing tyrosine hydroxylase (TH) neurones in the hypothalamic arcuate nucleus (ARC) have recently been shown to be involved in ghrelin signalling and body weight homeostasis. In the present study, we investigate the role of the intracellular regulator RhoA in hypothalamic TH neurones in response to peripheral hormones. Diet-induced obesity was found to be associated with increased phosphorylation of TH in ARC, indicating obesity-associated increased activity of ARC TH neurones. Mice in which RhoA was specifically knocked out in TH neurones (TH-RhoA-/- mice) were more sensitive to the orexigenic effect of peripherally administered ghrelin and displayed an abolished response to the anorexigenic hormone leptin. When TH-RhoA-/- mice were challenged with a high-fat high-sucrose (HFHS) diet, they became hyperphagic and gained more body weight and fat mass compared to wild-type control mice. Importantly, lack of RhoA prevented development of ghrelin resistance, which is normally observed in wild-type mice after long-term HFHS diet feeding. Patch-clamp electrophysiological analysis demonstrated increased ghrelin-induced excitability of TH neurones in lean TH-RhoA-/- mice compared to lean littermate control animals. Additionally, increased expression of the orexigenic hypothalamic neuropeptides agouti-related peptide and neuropeptide Y was observed in TH-RhoA-/- mice. Overall, our data indicate that TH neurones in ARC are important for the regulation of body weight homeostasis and that RhoA is both a central effector in these neurones and important for the development of obesity-induced ghrelin resistance. The obese phenotype of TH-RhoA-/- mice may be a result of increased sensitivity to ghrelin and decreased sensitivity to leptin, resulting in increased food intake.
Collapse
Affiliation(s)
- Louise J Skov
- Department of Biomedical Sciences and Nutrient and Metabolite Sensing, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Cecilia Ratner
- Department of Biomedical Sciences and Nutrient and Metabolite Sensing, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Nikolaj W Hansen
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Jonathan J Thompson
- Human Genomics and Metagenomics in Metabolism, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Kristoffer L Egerod
- Department of Biomedical Sciences and Nutrient and Metabolite Sensing, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Hayley Burm
- Department of Biomedical Sciences and Nutrient and Metabolite Sensing, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | | | - Morten A Hedegaard
- Department of Biomedical Sciences and Nutrient and Metabolite Sensing, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Cord Brakebusch
- Biotech Research and Innovation Centre, BRIC, University of Copenhagen, Copenhagen, Denmark
| | - Tune H Pers
- Human Genomics and Metagenomics in Metabolism, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | | | - Birgitte Holst
- Department of Biomedical Sciences and Nutrient and Metabolite Sensing, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
137
|
Rosin JM, Kurrasch DM. Emerging roles for hypothalamic microglia as regulators of physiological homeostasis. Front Neuroendocrinol 2019; 54:100748. [PMID: 31059719 DOI: 10.1016/j.yfrne.2019.100748] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/24/2019] [Accepted: 05/02/2019] [Indexed: 01/22/2023]
Abstract
The hypothalamus is a crucial brain region that responds to external stressors and functions to maintain physiological homeostatic processes, such as core body temperature and energy balance. The hypothalamus regulates homeostasis by producing hormones that thereby influence the production of other hormones that then control the internal milieu of the body. Microglia are resident macrophages and phagocytic immune cells of the central nervous system (CNS), classically known for surveying the brain's environment, responding to neural insults, and disposing of cellular debris. Recent evidence has shown that microglia are also responsive to external stressors and can influence both the development and function of the hypothalamus in a sex-dependent manner. This emerging microglia-hypothalamic interaction raises the intriguing notion that microglia might play an unappreciated role in hypothalamic control of physiological homeostasis. In this review, we briefly outline how the hypothalamus regulates physiological homeostasis and then describe how this literature overlaps with our understanding of microglia's role in the CNS. We also outline the current literature demonstrating how microglia loss or activation affects the hypothalamus, and ultimately homeostasis. We conclude by proposing how microglia could be key regulators of homeostatic processes by sensing cues external to the CNS and transmitting them through the hypothalamus.
Collapse
Affiliation(s)
- Jessica M Rosin
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Deborah M Kurrasch
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
138
|
GABAergic Inputs to POMC Neurons Originating from the Dorsomedial Hypothalamus Are Regulated by Energy State. J Neurosci 2019; 39:6449-6459. [PMID: 31235650 DOI: 10.1523/jneurosci.3193-18.2019] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 05/21/2019] [Accepted: 06/10/2019] [Indexed: 02/06/2023] Open
Abstract
Neuronal circuits regulating hunger and satiety synthesize information encoding the energy state of the animal and translate those signals into motivated behaviors to meet homeostatic needs. Proopiomelanocortin (POMC) neurons in the arcuate nucleus of the hypothalamus are activated by energy surfeits and inhibited by energy deficits. When activated, these cells inhibit food intake and facilitate weight loss. Conversely, decreased activity in POMC cells is associated with increased food intake and obesity. Circulating nutrients and hormones modulate the activity of POMC neurons over protracted periods of time. However, recent work indicates that calcium activity in POMC cells changes in response to food cues on times scales consistent with the rapid actions of amino acid transmitters. Indeed, the frequency of spontaneous IPSCs (sIPSCs) onto POMC neurons increases during caloric deficits. However, the afferent brain regions responsible for this inhibitory modulation are currently unknown. Here, through the use of brain region-specific deletion of GABA release in both male and female mice we show that neurons in the dorsomedial hypothalamus (DMH) are responsible for the majority of sIPSCs in POMC neurons as well as the fasting-induced increase in sIPSC frequency. Further, the readily releasable pool of GABA vesicles and the release probability of GABA is increased at DMH-to-POMC synapses following an overnight fast. Collectively these data provide evidence that DMH-to-POMC GABA circuitry conveys inhibitory neuromodulation onto POMC cells that is sensitive to the animal's energy state.SIGNIFICANCE STATEMENT Activation of proopiomelanocortin (POMC) cells signals satiety, whereas GABAergic cells in the dorsomedial hypothalamus (DMH) can increase food consumption. However, communication between these cells, particularly in response to changes in metabolic state, is unknown. Here, through targeted inhibition of DMH GABA release, we show that DMH neurons contribute a significant portion of spontaneously released GABA onto POMC cells and are responsible for increased GABAergic inhibition of POMC cells during fasting, likely mediated through increased release probability of GABA at DMH terminals. These data provide important information about inhibitory modulation of metabolic circuitry and provide a mechanism through which POMC neurons could be inhibited, or disinhibited, rapidly in response to food availability.
Collapse
|
139
|
Cedernaes J, Huang W, Ramsey KM, Waldeck N, Cheng L, Marcheva B, Omura C, Kobayashi Y, Peek CB, Levine DC, Dhir R, Awatramani R, Bradfield CA, Wang XA, Takahashi JS, Mokadem M, Ahima RS, Bass J. Transcriptional Basis for Rhythmic Control of Hunger and Metabolism within the AgRP Neuron. Cell Metab 2019; 29:1078-1091.e5. [PMID: 30827863 PMCID: PMC6506361 DOI: 10.1016/j.cmet.2019.01.023] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 11/12/2018] [Accepted: 01/30/2019] [Indexed: 12/12/2022]
Abstract
The alignment of fasting and feeding with the sleep/wake cycle is coordinated by hypothalamic neurons, though the underlying molecular programs remain incompletely understood. Here, we demonstrate that the clock transcription pathway maximizes eating during wakefulness and glucose production during sleep through autonomous circadian regulation of NPY/AgRP neurons. Tandem profiling of whole-cell and ribosome-bound mRNAs in morning and evening under dynamic fasting and fed conditions identified temporal control of activity-dependent gene repertoires in AgRP neurons central to synaptogenesis, bioenergetics, and neurotransmitter and peptidergic signaling. Synaptic and circadian pathways were specific to whole-cell RNA analyses, while bioenergetic pathways were selectively enriched in the ribosome-bound transcriptome. Finally, we demonstrate that the AgRP clock mediates the transcriptional response to leptin. Our results reveal that time-of-day restriction in transcriptional control of energy-sensing neurons underlies the alignment of hunger and food acquisition with the sleep/wake state.
Collapse
Affiliation(s)
- Jonathan Cedernaes
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Medical Sciences, Uppsala University, Uppsala SE-75124, Sweden
| | - Wenyu Huang
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Kathryn Moynihan Ramsey
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Nathan Waldeck
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Lei Cheng
- Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL 60208, USA
| | - Biliana Marcheva
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Chiaki Omura
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Yumiko Kobayashi
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Clara Bien Peek
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Daniel C Levine
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ravindra Dhir
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Raj Awatramani
- Department of Neurology and Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Christopher A Bradfield
- McArdle Laboratory for Cancer Research, University of Wisconsin Medical School, Madison, WI 53706, USA
| | - Xiaozhong A Wang
- Department of Molecular Sciences, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL 60208, USA
| | - Joseph S Takahashi
- Department of Neuroscience and Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Mohamad Mokadem
- Division of Gastroenterology and Hepatology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa, IA 52242, USA
| | - Rexford S Ahima
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Joseph Bass
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
140
|
Chowen JA, Frago LM, Fernández-Alfonso MS. Physiological and pathophysiological roles of hypothalamic astrocytes in metabolism. J Neuroendocrinol 2019; 31:e12671. [PMID: 30561077 DOI: 10.1111/jne.12671] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/27/2018] [Accepted: 12/11/2018] [Indexed: 12/26/2022]
Abstract
The role of glial cells, including astrocytes, in metabolic control has received increasing attention in recent years. Although the original interest in these macroglial cells was a result of astrogliosis being observed in the hypothalamus of diet-induced obese subjects, studies have also focused on how they participate in the physiological control of appetite and energy expenditure. Astrocytes express receptors for numerous hormones, growth factors and neuropeptides. Some functions of astrocytes include transport of nutrients and hormones from the circulation to the brain, storage of glycogen, participation in glucose sensing, synaptic plasticity, uptake and metabolism of neurotransmitters, release of substances to modify neurotransmission, and cytokine production, amongst others. In the hypothalamus, these physiological glial functions impact on neuronal circuits that control systemic metabolism to modify their outputs. The initial response of astrocytes to poor dietary habits and obesity involves activation of neuroprotective mechanisms but, with chronic exposure to these situations, hypothalamic astrocytes participate in the development of some of the damaging secondary effects. The present review discusses not only some of the physiological functions of hypothalamic astrocytes in metabolism, but also their role in the secondary complications of obesity, such as insulin resistance and cardiovascular affectations.
Collapse
Affiliation(s)
- Julie A Chowen
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, Madrid, Spain
- CIBEROBN (Centro de Investigación Biomédica en Red sobre Fisiopatología de la Obesidad y Nutrición), Instituto de Salud Carlos III, Madrid, Spain
- IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain
| | - Laura M Frago
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, Madrid, Spain
- CIBEROBN (Centro de Investigación Biomédica en Red sobre Fisiopatología de la Obesidad y Nutrición), Instituto de Salud Carlos III, Madrid, Spain
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
| | - María Soledad Fernández-Alfonso
- Instituto Pluridisciplinar UCM y Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| |
Collapse
|
141
|
Chen Y, Essner RA, Kosar S, Miller OH, Lin YC, Mesgarzadeh S, Knight ZA. Sustained NPY signaling enables AgRP neurons to drive feeding. eLife 2019; 8:e46348. [PMID: 31033437 PMCID: PMC6513552 DOI: 10.7554/elife.46348] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/26/2019] [Indexed: 12/20/2022] Open
Abstract
Artificial stimulation of Agouti-Related Peptide (AgRP) neurons promotes intense food consumption, yet paradoxically during natural behavior these cells are inhibited before feeding begins. Previously, to reconcile these observations, we showed that brief stimulation of AgRP neurons can generate hunger that persists for tens of minutes, but the mechanisms underlying this sustained hunger drive remain unknown (Chen et al., 2016). Here we show that Neuropeptide Y (NPY) is uniquely required for the long-lasting effects of AgRP neurons on feeding behavior. We blocked the ability of AgRP neurons to signal through AgRP, NPY, or GABA, and then stimulated these cells using a paradigm that mimics their natural regulation. Deletion of NPY, but not AgRP or GABA, abolished optically-stimulated feeding, and this was rescued by NPY re-expression selectively in AgRP neurons. These findings reveal a unique role for NPY in sustaining hunger in the interval between food discovery and consumption.
Collapse
Affiliation(s)
- Yiming Chen
- Kavli Institute for Fundamental NeuroscienceUniversity of California, San FranciscoSan FranciscoUnited States
- Neuroscience Graduate ProgramUniversity of California, San FranciscoSan FranciscoUnited States
| | - Rachel A Essner
- Department of PhysiologyUniversity of California, San FranciscoSan FranciscoUnited States
| | - Seher Kosar
- Department of PhysiologyUniversity of California, San FranciscoSan FranciscoUnited States
| | - Oliver H Miller
- Department of PhysiologyUniversity of California, San FranciscoSan FranciscoUnited States
| | - Yen-Chu Lin
- Department of PhysiologyUniversity of California, San FranciscoSan FranciscoUnited States
| | - Sheyda Mesgarzadeh
- Department of PhysiologyUniversity of California, San FranciscoSan FranciscoUnited States
| | - Zachary A Knight
- Kavli Institute for Fundamental NeuroscienceUniversity of California, San FranciscoSan FranciscoUnited States
- Neuroscience Graduate ProgramUniversity of California, San FranciscoSan FranciscoUnited States
- Department of PhysiologyUniversity of California, San FranciscoSan FranciscoUnited States
- Howard Hughes Medical InstituteUniversity of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
142
|
Macedo F, Dos Santos LS, Glezer I, da Cunha FM. Brain Innate Immune Response in Diet-Induced Obesity as a Paradigm for Metabolic Influence on Inflammatory Signaling. Front Neurosci 2019; 13:342. [PMID: 31068773 PMCID: PMC6491681 DOI: 10.3389/fnins.2019.00342] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/25/2019] [Indexed: 12/19/2022] Open
Abstract
Obesity is a predisposing factor for numerous morbidities, including those affecting the central nervous system. Hypothalamic inflammation is a hallmark of obesity and is believed to participate in the onset and progression of the obese phenotype, by promoting changes in neuronal functions involved in the control of metabolism. The activation of brain immune cells in the hypothalamus, which are represented by microglia and brain macrophages, is associated with obesity and has been the focus of intense research. Despite the significant body of knowledge gathered on this topic, obesity-induced metabolic changes in brain cells involved in innate immune responses are still poorly characterized due, at least in part, to limitations in the existing experimental methods. Since the metabolic state influences immune responses of microglia and other myeloid cells, the understanding and characterization of the effects of cellular metabolism on the functions of these cells, and their impact on brain integrity, are crucial for the development of efficient therapeutic interventions for individuals exposed to a long-term high fat diet (HFD). Here we review and speculate on the cellular basis that may underlie the observed changes in the reactivity and metabolism of the innate immune cells of the brain in diet-induced obesity (DIO), and discuss important points that deserve further investigation.
Collapse
Affiliation(s)
- Felipe Macedo
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Lucas Souza Dos Santos
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Isaias Glezer
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Fernanda Marques da Cunha
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
143
|
Yang Y, van der Klaauw AA, Zhu L, Cacciottolo TM, He Y, Stadler LKJ, Wang C, Xu P, Saito K, Hinton A, Yan X, Keogh JM, Henning E, Banton MC, Hendricks AE, Bochukova EG, Mistry V, Lawler KL, Liao L, Xu J, O'Rahilly S, Tong Q, Inês Barroso, O'Malley BW, Farooqi IS, Xu Y. Steroid receptor coactivator-1 modulates the function of Pomc neurons and energy homeostasis. Nat Commun 2019; 10:1718. [PMID: 30979869 PMCID: PMC6461669 DOI: 10.1038/s41467-019-08737-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 01/21/2019] [Indexed: 12/04/2022] Open
Abstract
Hypothalamic neurons expressing the anorectic peptide Pro-opiomelanocortin (Pomc) regulate food intake and body weight. Here, we show that Steroid Receptor Coactivator-1 (SRC-1) interacts with a target of leptin receptor activation, phosphorylated STAT3, to potentiate Pomc transcription. Deletion of SRC-1 in Pomc neurons in mice attenuates their depolarization by leptin, decreases Pomc expression and increases food intake leading to high-fat diet-induced obesity. In humans, fifteen rare heterozygous variants in SRC-1 found in severely obese individuals impair leptin-mediated Pomc reporter activity in cells, whilst four variants found in non-obese controls do not. In a knock-in mouse model of a loss of function human variant (SRC-1L1376P), leptin-induced depolarization of Pomc neurons and Pomc expression are significantly reduced, and food intake and body weight are increased. In summary, we demonstrate that SRC-1 modulates the function of hypothalamic Pomc neurons, and suggest that targeting SRC-1 may represent a useful therapeutic strategy for weight loss.
Collapse
Affiliation(s)
- Yongjie Yang
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Agatha A van der Klaauw
- University of Cambridge Metabolic Research Laboratories, and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Liangru Zhu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Sciences & Technology, Wuhan, 430022, China
| | - Tessa M Cacciottolo
- University of Cambridge Metabolic Research Laboratories, and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Yanlin He
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Lukas K J Stadler
- University of Cambridge Metabolic Research Laboratories, and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Chunmei Wang
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Pingwen Xu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Kenji Saito
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Antentor Hinton
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Xiaofeng Yan
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Julia M Keogh
- University of Cambridge Metabolic Research Laboratories, and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Elana Henning
- University of Cambridge Metabolic Research Laboratories, and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Matthew C Banton
- University of Cambridge Metabolic Research Laboratories, and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Audrey E Hendricks
- Wellcome Sanger Institute, Cambridge, CB10 1SA, UK
- Mathematical and Statistical Sciences Department, University of Colorado - Denver, Denver, CO, 80204, USA
| | - Elena G Bochukova
- University of Cambridge Metabolic Research Laboratories, and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Vanisha Mistry
- University of Cambridge Metabolic Research Laboratories, and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Katherine L Lawler
- University of Cambridge Metabolic Research Laboratories, and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Lan Liao
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jianming Xu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Stephen O'Rahilly
- University of Cambridge Metabolic Research Laboratories, and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Qingchun Tong
- Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | | | - Inês Barroso
- Wellcome Sanger Institute, Cambridge, CB10 1SA, UK
| | - Bert W O'Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - I Sadaf Farooqi
- University of Cambridge Metabolic Research Laboratories, and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK.
| | - Yong Xu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
144
|
Sebo ZL, Rodeheffer MS. Assembling the adipose organ: adipocyte lineage segregation and adipogenesis in vivo. Development 2019; 146:dev172098. [PMID: 30948523 PMCID: PMC6467474 DOI: 10.1242/dev.172098] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Adipose tissue is composed of anatomically distinct depots that mediate several important aspects of energy homeostasis. The past two decades have witnessed increased research effort to elucidate the ontogenetic basis of adipose form and function. In this Review, we discuss advances in our understanding of adipose tissue development with particular emphasis on the embryonic patterning of depot-specific adipocyte lineages and adipocyte differentiation in vivo Micro-environmental cues and other factors that influence cell identity and cell behavior at various junctures in the adipocyte lineage hierarchy are also considered.
Collapse
Affiliation(s)
- Zachary L Sebo
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8103, USA
| | - Matthew S Rodeheffer
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8103, USA
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06520-8016, USA
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520-8073, USA
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
145
|
Olszewski PK, Wood EL, Klockars A, Levine AS. Excessive Consumption of Sugar: an Insatiable Drive for Reward. Curr Nutr Rep 2019; 8:120-128. [DOI: 10.1007/s13668-019-0270-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
146
|
Baldini G, Phelan KD. The melanocortin pathway and control of appetite-progress and therapeutic implications. J Endocrinol 2019; 241:R1-R33. [PMID: 30812013 PMCID: PMC6500576 DOI: 10.1530/joe-18-0596] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 01/22/2019] [Indexed: 12/19/2022]
Abstract
The initial discovery that ob/ob mice become obese because of a recessive mutation of the leptin gene has been crucial to discover the melanocortin pathway to control appetite. In the melanocortin pathway, the fed state is signaled by abundance of circulating hormones such as leptin and insulin, which bind to receptors expressed at the surface of pro-opiomelanocortin (POMC) neurons to promote processing of POMC to the mature hormone α-melanocyte-stimulating hormone (α-MSH). The α-MSH released by POMC neurons then signals to decrease energy intake by binding to melanocortin-4 receptor (MC4R) expressed by MC4R neurons to the paraventricular nucleus (PVN). Conversely, in the 'starved state' activity of agouti-related neuropeptide (AgRP) and of neuropeptide Y (NPY)-expressing neurons is increased by decreased levels of circulating leptin and insulin and by the orexigenic hormone ghrelin to promote food intake. This initial understanding of the melanocortin pathway has recently been implemented by the description of the complex neuronal circuit that controls the activity of POMC, AgRP/NPY and MC4R neurons and downstream signaling by these neurons. This review summarizes the progress done on the melanocortin pathway and describes how obesity alters this pathway to disrupt energy homeostasis. We also describe progress on how leptin and insulin receptors signal in POMC neurons, how MC4R signals and how altered expression and traffic of MC4R change the acute signaling and desensitization properties of the receptor. We also describe how the discovery of the melanocortin pathway has led to the use of melanocortin agonists to treat obesity derived from genetic disorders.
Collapse
Affiliation(s)
- Giulia Baldini
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Kevin D. Phelan
- Department of Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
147
|
Pan W, Liu C, Zhang J, Gao X, Yu S, Tan H, Yu J, Qian D, Li J, Bian S, Yang J, Zhang C, Huang L, Jin J. Association Between Single Nucleotide Polymorphisms in PPARA and EPAS1 Genes and High-Altitude Appetite Loss in Chinese Young Men. Front Physiol 2019; 10:59. [PMID: 30778304 PMCID: PMC6369186 DOI: 10.3389/fphys.2019.00059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/18/2019] [Indexed: 12/24/2022] Open
Abstract
Appetite loss is a common symptom that occurs in high altitude (HA) for lowlanders. Previous studies indicated that hypoxia is the initiating vital factor of HA appetite loss. PPARA, EPAS1, EGLN1, HIF1A, HIF1AN, and NFE2L2 play important roles in hypoxic responses. We aimed to explore the association of these hypoxia-related gene polymorphisms with HA appetite loss. In this study, we enrolled 416 young men who rapidly ascended to Lhasa (3700 m) from Chengdu (<500m) by plane. PPARA, EPAS1, EGLN1, HIF1A, HIF1AN, and NFE2L2 were genotyped by MassARRAY. Appetite scores were measured to identify HA appetite loss. Logistic regression and multiple genetic models were tested to evaluate the association between the single nucleotide polymorphisms (SNPs) and risk of HA appetite loss in crude and adjusted (age and SaO2) analysis. Subsequently, Haploview software was used to analyze the linkage disequilibrium (LD), haplotype construction and the association of diverse haplotypes with the risk of HA appetite loss. Our results revealed that allele “A” in PPARA rs4253747 was significantly associated with the increased risk of HA appetite loss. Codominant, dominant, recessive, and log-additive models of PPARA rs4253747 showed the increased risk of HA appetite loss in the crude and adjusted analysis. However, only dominant, overdominant, and log-additive models of EPAS1 rs6756667 showed decreased risk of HA appetite loss in the crude and adjusted analysis. Moreover, the results from haplotype-based test showed that the rs7292407-rs6520015 haplotype “AC” was associated with HA appetite loss in the crude analysis rather than the adjusted analysis. In this study, we first established the association of SNPs in PPARA (rs4253747) and EPAS1 (rs6756667) genes with susceptibility to HA appetite loss in Han Chinese young men. These findings provide novel insights into understanding the mechanisms involved in HA appetite loss.
Collapse
Affiliation(s)
- Wenxu Pan
- Department of Cardiology, Xinqiao Hospital, Army Medical University (The Third Military Medical University), Chongqing, China
| | - Chuan Liu
- Institute of Cardiovascular Diseases, Xinqiao Hospital, Army Medical University (The Third Military Medical University), Chongqing, China
| | - Jihang Zhang
- Institute of Cardiovascular Diseases, Xinqiao Hospital, Army Medical University (The Third Military Medical University), Chongqing, China
| | - Xubin Gao
- Institute of Cardiovascular Diseases, Xinqiao Hospital, Army Medical University (The Third Military Medical University), Chongqing, China
| | - Shiyong Yu
- Department of Cardiology, Xinqiao Hospital, Army Medical University (The Third Military Medical University), Chongqing, China.,Institute of Cardiovascular Diseases, Xinqiao Hospital, Army Medical University (The Third Military Medical University), Chongqing, China
| | - Hu Tan
- Department of Cardiology, Xinqiao Hospital, Army Medical University (The Third Military Medical University), Chongqing, China.,Institute of Cardiovascular Diseases, Xinqiao Hospital, Army Medical University (The Third Military Medical University), Chongqing, China
| | - Jie Yu
- Department of Cardiology, Xinqiao Hospital, Army Medical University (The Third Military Medical University), Chongqing, China.,Institute of Cardiovascular Diseases, Xinqiao Hospital, Army Medical University (The Third Military Medical University), Chongqing, China
| | - Dehui Qian
- Department of Cardiology, Xinqiao Hospital, Army Medical University (The Third Military Medical University), Chongqing, China.,Institute of Cardiovascular Diseases, Xinqiao Hospital, Army Medical University (The Third Military Medical University), Chongqing, China
| | - Jiabei Li
- Department of Cardiology, Xinqiao Hospital, Army Medical University (The Third Military Medical University), Chongqing, China.,Institute of Cardiovascular Diseases, Xinqiao Hospital, Army Medical University (The Third Military Medical University), Chongqing, China
| | - Shizhu Bian
- Department of Cardiology, Xinqiao Hospital, Army Medical University (The Third Military Medical University), Chongqing, China.,Institute of Cardiovascular Diseases, Xinqiao Hospital, Army Medical University (The Third Military Medical University), Chongqing, China
| | - Jie Yang
- Institute of Cardiovascular Diseases, Xinqiao Hospital, Army Medical University (The Third Military Medical University), Chongqing, China
| | - Chen Zhang
- Department of Cardiology, Xinqiao Hospital, Army Medical University (The Third Military Medical University), Chongqing, China
| | - Lan Huang
- Department of Cardiology, Xinqiao Hospital, Army Medical University (The Third Military Medical University), Chongqing, China.,Institute of Cardiovascular Diseases, Xinqiao Hospital, Army Medical University (The Third Military Medical University), Chongqing, China
| | - Jun Jin
- Department of Cardiology, Xinqiao Hospital, Army Medical University (The Third Military Medical University), Chongqing, China.,Institute of Cardiovascular Diseases, Xinqiao Hospital, Army Medical University (The Third Military Medical University), Chongqing, China
| |
Collapse
|
148
|
Ramos-Lobo AM, Teixeira PD, Furigo IC, Melo HM, de M Lyra E Silva N, De Felice FG, Donato J. Long-term consequences of the absence of leptin signaling in early life. eLife 2019; 8:40970. [PMID: 30694175 PMCID: PMC6384028 DOI: 10.7554/elife.40970] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 01/28/2019] [Indexed: 12/11/2022] Open
Abstract
Leptin regulates energy balance and also exhibits neurotrophic effects during critical developmental periods. However, the actual role of leptin during development is not yet fully understood. To uncover the importance of leptin in early life, the present study restored leptin signaling either at the fourth or tenth week of age in mice formerly null for the leptin receptor (LepR) gene. We found that some defects previously considered irreversible due to neonatal deficiency of leptin signaling, including the poor development of arcuate nucleus neural projections, were recovered by LepR reactivation in adulthood. However, LepR deficiency in early life led to irreversible obesity via suppression of energy expenditure. LepR reactivation in adulthood also led to persistent reduction in hypothalamic Pomc, Cartpt and Prlh mRNA expression and to defects in the reproductive system and brain growth. Our findings revealed that early defects in leptin signaling cause permanent metabolic, neuroendocrine and developmental problems. Leptin is a hormone that keeps us healthy in many ways. It regulates our body weight by reining in our appetite and fine-tuning the energy we burn, and it helps us establish and maintain our fertility. It also participates in brain development. Leptin performs these roles by attaching to specific receptors in nerve cells and relaying relevant information to the brain. Early events can trigger life-long changes in the way our body works, a process called metabolic programming. Leptin is believed to participate in this reprogramming mechanism, but its role remains uncertain. In particular, it is still unclear which leptin-driven changes are permanent, and which ones are reversible. Being able to distinguish between the two types of alterations would help to better grasp the role leptin plays in early development. Here, Ramos-Lobo et al. examined genetically engineered mice born without a working leptin receptor. These animals were impervious to the effects of leptin. Then, once the rodents were adults, they were treated with a drug that restored their leptin receptors, making them sensitive to the hormone again. These experiments revealed that mice without leptin receptors during early life developed obesity, were less able to lose weight and burned less energy. Their reproductive success was also compromised. Finally, the lack of leptin during development caused permanent reduction of the animals’ brains, and changes in the activity of certain genes in the organ. The work by Ramos-Lobo et al. indicates that in mice, lacking leptin sensibility early in life conditions the body to permanently become ‘thrifty’, burning less energy and making it harder to lose weight. It is rare for humans to be born completely without leptin activity. Yet, having too much or too little food as a baby affects the level of the hormone, or our sensitivity to it: this may permanently change the way our bodies manage energy. Ultimately, learning more about these mechanisms could help us ward off or treat obesity.
Collapse
Affiliation(s)
- Angela M Ramos-Lobo
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Pryscila Ds Teixeira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Isadora C Furigo
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Helen M Melo
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Natalia de M Lyra E Silva
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Centre for Neuroscience Studies, Department of Psychiatry, Queen's University, Kingston, Canada
| | - Fernanda G De Felice
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jose Donato
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
149
|
Cavalcanti-de-Albuquerque JP, Bober J, Zimmer MR, Dietrich MO. Regulation of substrate utilization and adiposity by Agrp neurons. Nat Commun 2019; 10:311. [PMID: 30659173 PMCID: PMC6338802 DOI: 10.1038/s41467-018-08239-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 12/20/2018] [Indexed: 12/17/2022] Open
Abstract
The type of nutrient utilized by the organism at any given time—substrate utilization—is a critical component of energy metabolism. The neuronal mechanisms involved in the regulation of substrate utilization in mammals are largely unknown. Here, we found that activation of hypothalamic Agrp neurons rapidly altered whole-body substrate utilization, increasing carbohydrate utilization, while decreasing fat utilization. These metabolic changes occurred even in the absence of caloric ingestion and were coupled to increased lipogenesis. Accordingly, inhibition of fatty acid synthase—a key enzyme that mediates lipogenesis—blunted the effects of Agrp neuron activation on substrate utilization. In pair-fed conditions during positive energy balance, activation of Agrp neurons improved metabolic efficiency, and increased weight gain and adiposity. Conversely, ablation of Agrp neurons impaired fat mass accumulation. These results suggest Agrp neurons regulate substrate utilization, contributing to lipogenesis and fat mass accumulation during positive energy balance. Agouti-related peptide (AgRP) producing neurons regulate food intake and metabolic processes in peripheral organs. Here, the authors show that hypothalamic AgRP neurons alter whole body substrate utilization to favour carbohydrate usage and lipid storage.
Collapse
Affiliation(s)
- João Paulo Cavalcanti-de-Albuquerque
- Department of Comparative Medicine, Yale University School of Medicine, 310 Cedar Street, Brady Memorial Laboratory Room 410, New Haven, CT, 06520, USA.,Institute of Biophysics Carlos Chagas Filho and of Nutrition Josue de Castro, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941, Brazil
| | - Jeremy Bober
- Department of Comparative Medicine, Yale University School of Medicine, 310 Cedar Street, Brady Memorial Laboratory Room 410, New Haven, CT, 06520, USA
| | - Marcelo R Zimmer
- Department of Comparative Medicine, Yale University School of Medicine, 310 Cedar Street, Brady Memorial Laboratory Room 410, New Haven, CT, 06520, USA.,Graduate Program in Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 90035, Brazil
| | - Marcelo O Dietrich
- Department of Comparative Medicine, Yale University School of Medicine, 310 Cedar Street, Brady Memorial Laboratory Room 410, New Haven, CT, 06520, USA. .,Graduate Program in Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 90035, Brazil. .,Department of Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA.
| |
Collapse
|
150
|
Yay A, Onder GO, Ozdamar S, Bahadir A, Aytekin M, Baran M. The Effects of Leptin on Rat Brain Development; An Experimental Study. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-018-09803-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|