101
|
The specific features of the developing T cell compartment of the neonatal lung are a determinant of respiratory syncytial virus immunopathogenesis. PLoS Pathog 2021; 17:e1009529. [PMID: 33909707 PMCID: PMC8109812 DOI: 10.1371/journal.ppat.1009529] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 05/10/2021] [Accepted: 04/05/2021] [Indexed: 11/19/2022] Open
Abstract
The human respiratory syncytial virus (RSV) is a major cause of severe lower respiratory tract infections in infants, possibly due to the properties of the immature neonatal pulmonary immune system. Using the newborn lamb, a classical model of human lung development and a translational model of RSV infection, we aimed to explore the role of cell-mediated immunity in RSV disease during early life. Remarkably, in healthy conditions, the developing T cell compartment of the neonatal lung showed major differences to that seen in the mature adult lung. The most striking observation being a high baseline frequency of bronchoalveolar IL-4-producing CD4+ and CD8+ T cells, which declined progressively over developmental age. RSV infection exacerbated this pro-type 2 environment in the bronchoalveolar space, rather than inducing a type 2 response per se. Moreover, regulatory T cell suppressive functions occurred very early to dampen this pro-type 2 environment, rather than shutting them down afterwards, while γδ T cells dropped and failed to produce IL-17. Importantly, RSV disease severity was related to the magnitude of those unconventional bronchoalveolar T cell responses. These findings provide novel insights in the mechanisms of RSV immunopathogenesis in early life, and constitute a major step for the understanding of RSV disease severity.
Collapse
|
102
|
Srinivasan J, Lancaster JN, Singarapu N, Hale LP, Ehrlich LIR, Richie ER. Age-Related Changes in Thymic Central Tolerance. Front Immunol 2021; 12:676236. [PMID: 33968086 PMCID: PMC8100025 DOI: 10.3389/fimmu.2021.676236] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/06/2021] [Indexed: 01/03/2023] Open
Abstract
Thymic epithelial cells (TECs) and hematopoietic antigen presenting cells (HAPCs) in the thymus microenvironment provide essential signals to self-reactive thymocytes that induce either negative selection or generation of regulatory T cells (Treg), both of which are required to establish and maintain central tolerance throughout life. HAPCs and TECs are comprised of multiple subsets that play distinct and overlapping roles in central tolerance. Changes that occur in the composition and function of TEC and HAPC subsets across the lifespan have potential consequences for central tolerance. In keeping with this possibility, there are age-associated changes in the cellular composition and function of T cells and Treg. This review summarizes changes in T cell and Treg function during the perinatal to adult transition and in the course of normal aging, and relates these changes to age-associated alterations in thymic HAPC and TEC subsets.
Collapse
Affiliation(s)
- Jayashree Srinivasan
- Department of Molecular Biosciences, Institute of Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States
| | | | - Nandini Singarapu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Smithville, TX, United States
| | - Laura P Hale
- Department of Pathology, Duke University School of Medicine, Durham, NC, United States
| | - Lauren I R Ehrlich
- Department of Molecular Biosciences, Institute of Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States.,Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
| | - Ellen R Richie
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Smithville, TX, United States
| |
Collapse
|
103
|
Lutes LK, Steier Z, McIntyre LL, Pandey S, Kaminski J, Hoover AR, Ariotti S, Streets A, Yosef N, Robey EA. T cell self-reactivity during thymic development dictates the timing of positive selection. eLife 2021; 10:e65435. [PMID: 33884954 PMCID: PMC8116051 DOI: 10.7554/elife.65435] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/21/2021] [Indexed: 12/14/2022] Open
Abstract
Functional tuning of T cells based on their degree of self-reactivity is established during positive selection in the thymus, although how positive selection differs for thymocytes with relatively low versus high self-reactivity is unclear. In addition, preselection thymocytes are highly sensitive to low-affinity ligands, but the mechanism underlying their enhanced T cell receptor (TCR) sensitivity is not fully understood. Here we show that murine thymocytes with low self-reactivity experience briefer TCR signals and complete positive selection more slowly than those with high self-reactivity. Additionally, we provide evidence that cells with low self-reactivity retain a preselection gene expression signature as they mature, including genes previously implicated in modulating TCR sensitivity and a novel group of ion channel genes. Our results imply that thymocytes with low self-reactivity downregulate TCR sensitivity more slowly during positive selection, and associate membrane ion channel expression with thymocyte self-reactivity and progress through positive selection.
Collapse
Affiliation(s)
- Lydia K Lutes
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Zoë Steier
- Department of Bioengineering, University of California, BerkeleyBerkeleyUnited States
| | - Laura L McIntyre
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Shraddha Pandey
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - James Kaminski
- Center for Computational Biology, University of California, BerkeleyBerkeleyUnited States
| | - Ashley R Hoover
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Silvia Ariotti
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Aaron Streets
- Department of Bioengineering, University of California, BerkeleyBerkeleyUnited States
- Center for Computational Biology, University of California, BerkeleyBerkeleyUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - Nir Yosef
- Department of Bioengineering, University of California, BerkeleyBerkeleyUnited States
- Center for Computational Biology, University of California, BerkeleyBerkeleyUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
- Department of Electrical Engineering and Computer Sciences, University of California, BerkeleyBerkeleyUnited States
- Ragon Institute of MGH, MIT and HarvardCambridgeUnited States
| | - Ellen A Robey
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
104
|
Modeling human tumor-immune environments in vivo for the preclinical assessment of immunotherapies. Cancer Immunol Immunother 2021; 70:2737-2750. [PMID: 33830275 PMCID: PMC8423639 DOI: 10.1007/s00262-021-02897-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 02/22/2021] [Indexed: 12/13/2022]
Abstract
Despite the significant contributions of immunocompetent mouse models to the development and assessment of cancer immunotherapies, they inadequately represent the genetic and biological complexity of corresponding human cancers. Immunocompromised mice reconstituted with a human immune system (HIS) and engrafted with patient-derived tumor xenografts are a promising novel preclinical model for the study of human tumor-immune interactions. Whilst overcoming limitations of immunocompetent models, HIS-tumor models often rely on reconstitution with allogeneic immune cells, making it difficult to distinguish between anti-tumor and alloantigen responses. Models that comprise of autologous human tumor and human immune cells provide a platform that is more representative of the patient immune-tumor interaction. However, limited access to autologous tissues, short experimental windows, and poor retention of tumor microenvironment and tumor infiltrating lymphocyte components are major challenges affecting the establishment and application of autologous models. This review outlines existing preclinical murine models for the study of immuno-oncology, and highlights innovations that can be applied to improve the feasibility and efficacy of autologous models.
Collapse
|
105
|
Golden TN, Simmons RA. Immune dysfunction in developmental programming of type 2 diabetes mellitus. Nat Rev Endocrinol 2021; 17:235-245. [PMID: 33526907 PMCID: PMC7969450 DOI: 10.1038/s41574-020-00464-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/17/2020] [Indexed: 01/30/2023]
Abstract
Intrauterine growth restriction (IUGR) is a common complication of pregnancy and increases the risk of the offspring developing type 2 diabetes mellitus (T2DM) later in life. Alterations in the immune system are implicated in the pathogenesis of IUGR-induced T2DM. The development of the fetal immune system is a delicate balance as it must remain tolerant of maternal antigens whilst also preparing for the post-birth environment. In addition, the fetal immune system is susceptible to an altered intrauterine milieu caused by maternal and placental inflammatory mediators or secondary to nutrient and oxygen deprivation. Pancreatic-resident macrophages populate the pancreas during fetal development, and their phenotype is dynamic through the neonatal period. Furthermore, macrophages in the islets are instrumental in islet development as they influence β-cell proliferation and islet neogenesis. In addition, cytokines, derived from β-cells and macrophages, are important to islet homeostasis in the fetus and adult and, when perturbed, can cause islet dysfunction. Several activated immune pathways have been identified in the islets of people who experienced IUGR, with alternations in the levels of IL-1β and IL-4 as well as changes in TGFβ signalling. Leptin levels are also altered. Immunomodulation has shown therapeutic benefit in T2DM and might be particularly useful in IUGR-induced T2DM.
Collapse
Affiliation(s)
- Thea N Golden
- Center for Research on Reproduction and Women's Health, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, USA
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, USA
| | - Rebecca A Simmons
- Center for Research on Reproduction and Women's Health, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, USA.
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, USA.
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
106
|
Pierau M, Arra A, Brunner-Weinzierl MC. Preventing Atopic Diseases During Childhood - Early Exposure Matters. Front Immunol 2021; 12:617731. [PMID: 33717110 PMCID: PMC7946845 DOI: 10.3389/fimmu.2021.617731] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/19/2021] [Indexed: 12/11/2022] Open
Abstract
Atopic diseases in childhood are a major burden worldwide and there is still a lack of knowledge about treatable causes. In industrialized countries such as Germany, almost every second child is sensitized to at least one common allergen. Recent studies show that although the predisposition to allergies is inherited, the adaptive immune system of neonates and infants follows a developmental trajectory and whether an allergy actually occurs depends also on timing of allergen exposure including diet as well as environmental factors. New recommendations are far from being rigid of allergen avoidance; it is rather moving toward conditions that stand for more biodiversity. The observation that introduction of peanuts or eggs early in life significantly reduced the development of a later allergy will change our recommendations for the introduction of complementary foods. This is consistent with the hygiene hypothesis that early provocation shapes the developing immune system so that it reacts appropriately. Therefore, promoting the development of tolerance is at the heart of sensible allergy prevention - and this begins with the last trimester of pregnancy. In light of this concept, actual recommendations are discussed.
Collapse
|
107
|
Yu Y, Valderrama AV, Han Z, Uzan G, Naserian S, Oberlin E. Human fetal liver MSCs are more effective than adult bone marrow MSCs for their immunosuppressive, immunomodulatory, and Foxp3 + T reg induction capacity. Stem Cell Res Ther 2021; 12:138. [PMID: 33597011 PMCID: PMC7888159 DOI: 10.1186/s13287-021-02176-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 01/19/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) exhibit active abilities to suppress or modulate deleterious immune responses by various molecular mechanisms. These cells are the subject of major translational efforts as cellular therapies for immune-related diseases and transplantations. Plenty of preclinical studies and clinical trials employing MSCs have shown promising safety and efficacy outcomes and also shed light on the modifications in the frequency and function of regulatory T cells (T regs). Nevertheless, the mechanisms underlying these observations are not well known. Direct cell contact, soluble factor production, and turning antigen-presenting cells into tolerogenic phenotypes, have been proposed to be among possible mechanisms by which MSCs produce an immunomodulatory environment for T reg expansion and activity. We and others demonstrated that adult bone marrow (BM)-MSCs suppress adaptive immune responses directly by inhibiting the proliferation of CD4+ helper and CD8+ cytotoxic T cells but also indirectly through the induction of T regs. In parallel, we demonstrated that fetal liver (FL)-MSCs demonstrates much longer-lasting immunomodulatory properties compared to BM-MSCs, by inhibiting directly the proliferation and activation of CD4+ and CD8+ T cells. Therefore, we investigated if FL-MSCs exert their strong immunosuppressive effect also indirectly through induction of T regs. METHODS MSCs were obtained from FL and adult BM and characterized according to their surface antigen expression, their multilineage differentiation, and their proliferation potential. Using different in vitro combinations, we performed co-cultures of FL- or BM-MSCs and murine CD3+CD25-T cells to investigate immunosuppressive effects of MSCs on T cells and to quantify their capacity to induce functional T regs. RESULTS We demonstrated that although both types of MSC display similar cell surface phenotypic profile and differentiation capacity, FL-MSCs have significantly higher proliferative capacity and ability to suppress both CD4+ and CD8+ murine T cell proliferation and to modulate them towards less active phenotypes than adult BM-MSCs. Moreover, their substantial suppressive effect was associated with an outstanding increase of functional CD4+CD25+Foxp3+ T regs compared to BM-MSCs. CONCLUSIONS These results highlight the immunosuppressive activity of FL-MSCs on T cells and show for the first time that one of the main immunoregulatory mechanisms of FL-MSCs passes through active and functional T reg induction.
Collapse
Affiliation(s)
- Yi Yu
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Villejuif, France
- Beijing Institute of Stem Cells, Health & Biotech Co., Ltd, Beijing, People’s Republic of China
| | | | - Zhongchao Han
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Beijing Institute of Stem Cells, Health & Biotech Co., Ltd, Beijing, People’s Republic of China
| | - Georges Uzan
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Villejuif, France
- Paris-Saclay University, Villejuif, France
| | - Sina Naserian
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Villejuif, France
- Paris-Saclay University, Villejuif, France
- CellMedEx, Saint Maur des Fossés, France
| | - Estelle Oberlin
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Villejuif, France
- Paris-Saclay University, Villejuif, France
| |
Collapse
|
108
|
Bacchetta R, Weinberg K. Thymic origins of autoimmunity-lessons from inborn errors of immunity. Semin Immunopathol 2021; 43:65-83. [PMID: 33532929 PMCID: PMC7925499 DOI: 10.1007/s00281-020-00835-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 12/22/2020] [Indexed: 12/16/2022]
Abstract
During their intrathymic development, nascent T cells are empowered to protect against pathogens and to be operative for a life-long acceptance of self. While autoreactive effector T (Teff) cell progenitors are eliminated by clonal deletion, the intrathymic mechanisms by which thymic regulatory T cell (tTreg) progenitors maintain specificity for self-antigens but escape deletion to exert their regulatory functions are less well understood. Both tTreg and Teff development and selection result from finely coordinated interactions between their clonotypic T cell receptors (TCR) and peptide/MHC complexes expressed by antigen-presenting cells, such as thymic epithelial cells and thymic dendritic cells. tTreg function is dependent on expression of the FOXP3 transcription factor, and induction of FOXP3 gene expression by tTreg occurs during their thymic development, particularly within the thymic medulla. While initial expression of FOXP3 is downstream of TCR activation, constitutive expression is fixed by interactions with various transcription factors that are regulated by other extracellular signals like TCR and cytokines, leading to epigenetic modification of the FOXP3 gene. Most of the understanding of the molecular events underlying tTreg generation is based on studies of murine models, whereas gaining similar insight in the human system has been very challenging. In this review, we will elucidate how inborn errors of immunity illuminate the critical non-redundant roles of certain molecules during tTreg development, shedding light on how their abnormal development and function cause well-defined diseases that manifest with autoimmunity alone or are associated with states of immune deficiency and autoinflammation.
Collapse
Affiliation(s)
- Rosa Bacchetta
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Lokey Stem Cell Research Building 265 Campus Drive, West Stanford, CA, 94305, USA.
- Center for Definitive and Curative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| | - Kenneth Weinberg
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Lokey Stem Cell Research Building 265 Campus Drive, West Stanford, CA, 94305, USA
- Center for Definitive and Curative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
109
|
Environmental signals rather than layered ontogeny imprint the function of type 2 conventional dendritic cells in young and adult mice. Nat Commun 2021; 12:464. [PMID: 33469015 PMCID: PMC7815729 DOI: 10.1038/s41467-020-20659-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 12/13/2020] [Indexed: 01/29/2023] Open
Abstract
Conventional dendritic cells (cDC) are key activators of naive T cells, and can be targeted in adults to induce adaptive immunity, but in early life are considered under-developed or functionally immature. Here we show that, in early life, when the immune system develops, cDC2 exhibit a dual hematopoietic origin and, like other myeloid and lymphoid cells, develop in waves. Developmentally distinct cDC2 in early life, despite being distinguishable by fate mapping, are transcriptionally and functionally similar. cDC2 in early and adult life, however, are exposed to distinct cytokine environments that shape their transcriptional profile and alter their ability to sense pathogens, secrete cytokines and polarize T cells. We further show that cDC2 in early life, despite being distinct from cDC2 in adult life, are functionally competent and can induce T cell responses. Our results thus highlight the potential of harnessing cDC2 for boosting immunity in early life.
Collapse
|
110
|
Immune Tolerance of the Human Decidua. J Clin Med 2021; 10:jcm10020351. [PMID: 33477602 PMCID: PMC7831321 DOI: 10.3390/jcm10020351] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 01/06/2023] Open
Abstract
The endometrium is necessary for implantation, complete development of the placenta, and a successful pregnancy. The endometrium undergoes repeated cycles of proliferation, decidualization (differentiation), and shedding during each menstrual cycle. The endometrium—including stromal, epithelial, vascular endothelial, and immune cells—is both functionally and morphologically altered in response to progesterone, causing changes in the number and types of immune cells. Immune cells make up half of the total number of endometrial cells during implantation and menstruation. Surprisingly, immune tolerant cells in the endometrium (uterine natural killer cells, T cells, and macrophages) have two conflicting functions: to protect the body by eliminating pathogenic microorganisms and other pathogens and to foster immunological change to tolerate the embryo during pregnancy. One of the key molecules involved in this control is the cytokine interleukin-15 (IL-15), which is secreted by endometrial stromal cells. Recently, it has been reported that IL-15 is directly regulated by the transcription factor heart- and neural crest derivatives-expressed protein 2 in endometrial stromal cells. In this review, we outline the significance of the endometrium and immune cell population during menstruation and early pregnancy and describe the factors involved in immune tolerance and their involvement in the establishment and maintenance of pregnancy.
Collapse
|
111
|
Renert-Yuval Y, Del Duca E, Pavel AB, Fang M, Lefferdink R, Wu J, Diaz A, Estrada YD, Canter T, Zhang N, Wagner A, Chamlin S, Krueger JG, Guttman-Yassky E, Paller AS. The molecular features of normal and atopic dermatitis skin in infants, children, adolescents, and adults. J Allergy Clin Immunol 2021; 148:148-163. [PMID: 33453290 DOI: 10.1016/j.jaci.2021.01.001] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 12/01/2020] [Accepted: 01/05/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Although atopic dermatitis (AD) often presents in infancy and persists into adulthood, comparative characterization of AD skin among different pediatric age groups is lacking. OBJECTIVE We sought to define skin biopsy profiles of lesional and nonlesional AD across different age groups (0-5-year-old infants with disease duration <6 months, 6-11-year-old children, 12-17-year-old adolescents, ≥18-year-old adults) versus age-appropriate controls. METHODS We performed gene expression analyses by RNA-sequencing and real-time PCR (RT-PCR) and protein expression analysis using immunohistochemistry. RESULTS TH2/TH22 skewing, including IL-13, CCL17/thymus and activation-regulated chemokine, IL-22, and S100As, characterized the common AD signature, with a global pathway-level enrichment across all ages. Nevertheless, specific cytokines varied widely. For example, IL-33, IL-1RL1/IL-33R, and IL-9, often associated with early atopic sensitization, showed greatest upregulations in infants. TH17 inflammation presented a 2-peak curve, with highest increases in infants (including IL-17A and IL-17F), followed by adults. TH1 polarization was uniquely detected in adults, even when compared with adolescents, with significant upregulation in adults of IFN-γ and CXCL9/CXCL10/CXCL11. Although all AD age groups had barrier abnormalities, only adults had significant decreases in filaggrin expression. Despite the short duration of the disease, infant AD presented robust downregulations of multiple barrier-related genes in both lesional and nonlesional skin. Clinical severity scores significantly correlated with TH2/TH22-related markers in all pediatric age groups. CONCLUSIONS The shared signature of AD across ages is TH2/TH22-skewed, yet differential expression of specific TH2/TH22-related genes, other TH pathways, and barrier-related genes portray heterogenetic, age-specific molecular fingerprints.
Collapse
Affiliation(s)
- Yael Renert-Yuval
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY; Department of Dermatology and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Ester Del Duca
- Department of Dermatology and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Dermatology, University Magna Graecia, Catanzaro, Italy
| | - Ana B Pavel
- Department of Dermatology and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Biomedical Engineering, University of Mississippi, Oxford, Miss
| | - Milie Fang
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Rachel Lefferdink
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Jianni Wu
- Department of Dermatology and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Aisleen Diaz
- Department of Dermatology and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Yeriel D Estrada
- Department of Dermatology and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Talia Canter
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Ning Zhang
- Department of Dermatology and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Annette Wagner
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Sarah Chamlin
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - James G Krueger
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY
| | - Emma Guttman-Yassky
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY; Department of Dermatology and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, NY.
| | - Amy S Paller
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Ill.
| |
Collapse
|
112
|
Bunis DG, Bronevetsky Y, Krow-Lucal E, Bhakta NR, Kim CC, Nerella S, Jones N, Mendoza VF, Bryson YJ, Gern JE, Rutishauser RL, Ye CJ, Sirota M, McCune JM, Burt TD. Single-Cell Mapping of Progressive Fetal-to-Adult Transition in Human Naive T Cells. Cell Rep 2021; 34:108573. [PMID: 33406429 PMCID: PMC10263444 DOI: 10.1016/j.celrep.2020.108573] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/01/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022] Open
Abstract
Whereas the human fetal immune system is poised to generate immune tolerance and suppress inflammation in utero, an adult-like immune system emerges to orchestrate anti-pathogen immune responses in post-natal life. It has been posited that cells of the adult immune system arise as a discrete ontological "layer" of hematopoietic stem-progenitor cells (HSPCs) and their progeny; evidence supporting this model in humans has, however, been inconclusive. Here, we combine bulk and single-cell transcriptional profiling of lymphoid cells, myeloid cells, and HSPCs from fetal, perinatal, and adult developmental stages to demonstrate that the fetal-to-adult transition occurs progressively along a continuum of maturity-with a substantial degree of inter-individual variation at the time of birth-rather than via a transition between discrete waves. These findings have important implications for the design of strategies for prophylaxis against infection in the newborn and for the use of umbilical cord blood (UCB) in the setting of transplantation.
Collapse
Affiliation(s)
- Daniel G Bunis
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA; Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Yelena Bronevetsky
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Elisabeth Krow-Lucal
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Nirav R Bhakta
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Charles C Kim
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Srilaxmi Nerella
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Norman Jones
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA; Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Ventura F Mendoza
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA; Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Yvonne J Bryson
- Division of Pediatric Infectious Diseases, Department of Pediatrics, David Geffen School of Medicine at UCLA, Mattel Children's Hospital UCLA, Los Angeles, CA, USA
| | - James E Gern
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Rachel L Rutishauser
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Chun Jimmie Ye
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA; Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA; Division of Rheumatology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Marina Sirota
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA; Department of Pediatrics, Division of Neonatology, University of California, San Francisco, San Francisco, CA, USA.
| | - Joseph M McCune
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
| | - Trevor D Burt
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA; Department of Pediatrics, Division of Neonatology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
113
|
de Candia P, Prattichizzo F, Garavelli S, Matarese G. T Cells: Warriors of SARS-CoV-2 Infection. Trends Immunol 2021; 42:18-30. [PMID: 33277181 PMCID: PMC7664351 DOI: 10.1016/j.it.2020.11.002] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/06/2020] [Accepted: 11/06/2020] [Indexed: 12/15/2022]
Abstract
Severe infection with severe acute respiratory syndrome coronavirus (SARS-CoV)-2 is characterized by massive cytokine release and T cell loss. The exaggerated host immune response, incapable of viral clearance, instead aggravates respiratory distress, as well as cardiac, and/or damage to other organs. The mortality pattern of SARS-CoV-2 infection, higher in older versus younger adults and almost absent in children, is possibly caused by the effects of age and pre-existing comorbidities on innate and adaptive immunity. Here, we speculate that the abnormal and excessive immune response to SARS-CoV-2 infection partly depends on T cell immunological memory, which is more pronounced in adults compared with children, and may significantly contribute to immunopathology and massive collateral damage in coronavirus disease 2019 (COVID-19) patients.
Collapse
Affiliation(s)
| | | | - Silvia Garavelli
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), 80131 Napoli, Italy
| | - Giuseppe Matarese
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), 80131 Napoli, Italy; Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Napoli, Italy.
| |
Collapse
|
114
|
Cinicola B, Conti MG, Terrin G, Sgrulletti M, Elfeky R, Carsetti R, Fernandez Salinas A, Piano Mortari E, Brindisi G, De Curtis M, Zicari AM, Moschese V, Duse M. The Protective Role of Maternal Immunization in Early Life. Front Pediatr 2021; 9:638871. [PMID: 33996688 PMCID: PMC8113393 DOI: 10.3389/fped.2021.638871] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/26/2021] [Indexed: 12/16/2022] Open
Abstract
With birth, the newborn is transferred from a quasi-sterile environment to the outside world. At this time, the neonatal immune system is inexperienced and continuously subject to a process of development as it encounters different antigenic stimuli after birth. It is initially characterized by a bias toward T helper 2 phenotype, reduced T helper 1, and cytotoxic responses to microbial stimuli, low levels of memory, and effector T and B cells and a high production of suppressive T regulatory cells. The aim of this setting, during fetal life, is to maintain an anti-inflammatory state and immune-tolerance. Maternal antibodies are transferred during pregnancy through the placenta and, in the first weeks of life of the newborn, they represent a powerful tool for protection. Thus, optimization of vaccination in pregnancy represents an important strategy to reduce the burden of neonatal infections and sepsis. Beneficial effects of maternal immunization are universally recognized, although the optimal timing of vaccination in pregnancy remains to be defined. Interestingly, the dynamic exchange that takes place at the fetal-maternal interface allows the transfer not only of antibodies, but also of maternal antigen presenting cells, probably in order to stimulate the developing fetal immune system in a harmless way. There are still controversial effects related to maternal immunization including the so called "immunology blunting," i.e., a dampened antibody production following infant's vaccination in those infants who received placentally transferred maternal immunity. However, clinical relevance of this phenomenon is still not clear. This review will provide an overview of the evolution of the immune system in early life and discuss the benefits of maternal vaccination. Current maternal vaccination policies and their rationale will be summarized on the road to promising approaches to enhance immunity in the neonate.
Collapse
Affiliation(s)
- Bianca Cinicola
- Department of Maternal and Child Health and Urological Sciences, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy.,Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Maria Giulia Conti
- Department of Maternal and Child Health and Urological Sciences, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy.,Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Gianluca Terrin
- Department of Maternal and Child Health and Urological Sciences, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Mayla Sgrulletti
- Pediatric Immunopathology and Allergology Unit, University of Rome Tor Vergata, Policlinico Tor Vergata, Rome, Italy.,Ph.D. Program in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, Rome, Italy
| | - Reem Elfeky
- Department of Clinical Immunology, Royal Free Hospital, London, United Kingdom.,Infection, Immunity & Inflammation Department, Institute of Child Health, University College London (UCL), London, United Kingdom
| | - Rita Carsetti
- Diagnostic Immunology Research Unit, Multimodal Medicine Research Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Microbiology and Diagnostic Immunology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Ane Fernandez Salinas
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy.,Diagnostic Immunology Research Unit, Multimodal Medicine Research Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Eva Piano Mortari
- Diagnostic Immunology Research Unit, Multimodal Medicine Research Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Giulia Brindisi
- Department of Maternal and Child Health and Urological Sciences, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Mario De Curtis
- Department of Maternal and Child Health and Urological Sciences, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Anna Maria Zicari
- Department of Maternal and Child Health and Urological Sciences, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Viviana Moschese
- Pediatric Immunopathology and Allergology Unit, University of Rome Tor Vergata, Policlinico Tor Vergata, Rome, Italy.,Department Saint Camillus International University of Health and Medical Sciences, Rome, Italy
| | - Marzia Duse
- Department of Maternal and Child Health and Urological Sciences, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
115
|
Elsaid R, Soares-da-Silva F, Peixoto M, Amiri D, Mackowski N, Pereira P, Bandeira A, Cumano A. Hematopoiesis: A Layered Organization Across Chordate Species. Front Cell Dev Biol 2020; 8:606642. [PMID: 33392196 PMCID: PMC7772317 DOI: 10.3389/fcell.2020.606642] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022] Open
Abstract
The identification of distinct waves of progenitors during development, each corresponding to a specific time, space, and function, provided the basis for the concept of a "layered" organization in development. The concept of a layered hematopoiesis was established by classical embryology studies in birds and amphibians. Recent progress in generating reliable lineage tracing models together with transcriptional and proteomic analyses in single cells revealed that, also in mammals, the hematopoietic system evolves in successive waves of progenitors with distinct properties and fate. During embryogenesis, sequential waves of hematopoietic progenitors emerge at different anatomic sites, generating specific cell types with distinct functions and tissue homing capacities. The first progenitors originate in the yolk sac before the emergence of hematopoietic stem cells, some giving rise to progenies that persist throughout life. Hematopoietic stem cell-derived cells that protect organisms against environmental pathogens follow the same sequential strategy, with subsets of lymphoid cells being only produced during embryonic development. Growing evidence indicates that fetal immune cells contribute to the proper development of the organs they seed and later ensure life-long tissue homeostasis and immune protection. They include macrophages, mast cells, some γδ T cells, B-1 B cells, and innate lymphoid cells, which have "non-redundant" functions, and early perturbations in their development or function affect immunity in the adult. These observations challenged the view that all hematopoietic cells found in the adult result from constant and monotonous production from bone marrow-resident hematopoietic stem cells. In this review, we evaluate evidence for a layered hematopoietic system across species. We discuss mechanisms and selective pressures leading to the temporal generation of different cell types. We elaborate on the consequences of disturbing fetal immune cells on tissue homeostasis and immune development later in life.
Collapse
Affiliation(s)
- Ramy Elsaid
- Unit of Lymphocytes and Immunity, Immunology Department, Institut Pasteur, Paris, France
- INSERM U1223, Paris, France
- Université de Paris, Céllule Pasteur, Paris, France
| | - Francisca Soares-da-Silva
- Unit of Lymphocytes and Immunity, Immunology Department, Institut Pasteur, Paris, France
- INSERM U1223, Paris, France
- Université de Paris, Céllule Pasteur, Paris, France
- I3S—Instituto de Investigação e Inovação em Saúde and INEB—Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
- Graduate Program in Areas of Basic and Applied Biology, Instituto de Ciências Biomeìdicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Marcia Peixoto
- Unit of Lymphocytes and Immunity, Immunology Department, Institut Pasteur, Paris, France
- INSERM U1223, Paris, France
- Université de Paris, Céllule Pasteur, Paris, France
- I3S—Instituto de Investigação e Inovação em Saúde and INEB—Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Dali Amiri
- Unit of Lymphocytes and Immunity, Immunology Department, Institut Pasteur, Paris, France
- INSERM U1223, Paris, France
- Université de Paris, Céllule Pasteur, Paris, France
| | - Nathan Mackowski
- Unit of Lymphocytes and Immunity, Immunology Department, Institut Pasteur, Paris, France
- INSERM U1223, Paris, France
- Université de Paris, Céllule Pasteur, Paris, France
| | - Pablo Pereira
- Unit of Lymphocytes and Immunity, Immunology Department, Institut Pasteur, Paris, France
- INSERM U1223, Paris, France
- Université de Paris, Céllule Pasteur, Paris, France
| | - Antonio Bandeira
- Unit of Lymphocytes and Immunity, Immunology Department, Institut Pasteur, Paris, France
- INSERM U1223, Paris, France
- Université de Paris, Céllule Pasteur, Paris, France
| | - Ana Cumano
- Unit of Lymphocytes and Immunity, Immunology Department, Institut Pasteur, Paris, France
- INSERM U1223, Paris, France
- Université de Paris, Céllule Pasteur, Paris, France
| |
Collapse
|
116
|
Abstract
T cell-mediated immune tolerance is a state of unresponsiveness of T cells towards specific self or non-self antigens. This is particularly essential during prenatal/neonatal period when T cells are exposed to dramatically changing environment and required to avoid rejection of maternal antigens, limit autoimmune responses, tolerate inert environmental and food antigens and antigens from non-harmful commensal microorganisms, promote maturation of mucosal barrier function, yet mount an appropriate response to pathogenic microorganisms. The cell-intrinsic and cell extrinsic mechanisms promote the generation of prenatal/neonatal T cells with distinct features to meet the complex and dynamic need of tolerance during this period. Reduced exposure or impaired tolerance in early life may have significant impact on allergic or autoimmune diseases in adult life. The uniqueness of conventional and regulatory T cells in human umbilical cord blood (UCB) may also provide certain advantages in UCB transplantation for hematological disorders.
Collapse
Affiliation(s)
- Lijun Yang
- Department of Immunology, School of Basic Medical Sciences, Peking University, NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
| | - Rong Jin
- Department of Immunology, School of Basic Medical Sciences, Peking University, NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
| | - Dan Lu
- Institute of Systems Biomedicine, Peking University Health Science Center, Beijing, China
| | - Qing Ge
- Department of Immunology, School of Basic Medical Sciences, Peking University, NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
117
|
Bonney EA, Krebs K, Kim J, Prakash K, Torrance BL, Haynes L, Rincon M. Protective Intranasal Immunization Against Influenza Virus in Infant Mice Is Dependent on IL-6. Front Immunol 2020; 11:568978. [PMID: 33193346 PMCID: PMC7656064 DOI: 10.3389/fimmu.2020.568978] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 10/05/2020] [Indexed: 12/26/2022] Open
Abstract
Respiratory diseases adversely affect infants and are the focus of efforts to develop vaccinations and other modalities to prevent disease. The infant immune system differs from that of older children and adults in many ways that are as yet ill understood. We have used a C57BL/6 mouse model of infection with a laboratory- adapted strain of influenza (PR8) to delineate the importance of the cytokine IL-6 in the innate response to primary infection and in the development of protective immunity in adult mice. Herein, we used this same model in infant (14 days of age) mice to determine the effect of IL-6 deficiency. Infant wild type mice are more susceptible than older mice to infection, similar to the findings in humans. IL-6 is expressed in the lung in the early response to PR8 infection. While intramuscular immunization does not protect against lethal challenge, intranasal administration of heat inactivated virus is protective and correlates with expression of IL-6 in the lung, activation of lung CD8 cells, and development of an influenza-specific antibody response. In IL-6 deficient mice, this response is abrogated, and deficient mice are not protected against lethal challenge. These studies support the importance of the role of the tissue environment in infant immunity, and further suggest that IL-6 may be helpful in the generation of protective immune responses in infants.
Collapse
Affiliation(s)
- Elizabeth Ann Bonney
- Department of Obstetrics, Gynecology and Reproductive Sciences, Larner College of Medicine, University of Vermont, Burlington, VT, United States
| | - Kendall Krebs
- Department of Obstetrics, Gynecology and Reproductive Sciences, Larner College of Medicine, University of Vermont, Burlington, VT, United States
| | - Jihye Kim
- Division of Medical Oncology, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States
| | - Kirtika Prakash
- Department of Obstetrics, Gynecology and Reproductive Sciences, Larner College of Medicine, University of Vermont, Burlington, VT, United States
| | - Blake L Torrance
- Department of Immunology, University of Connecticut Center on Aging, Farmington, CT, United States
| | - Laura Haynes
- Department of Immunology, University of Connecticut Center on Aging, Farmington, CT, United States
| | - Mercedes Rincon
- Division of Immunobiology, Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, United States.,Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
118
|
Hsu H, Boudova S, Mvula G, Divala TH, Rach D, Mungwira RG, Boldrin F, Degiacomi G, Manganelli R, Laufer MK, Cairo C. Age-related changes in PD-1 expression coincide with increased cytotoxic potential in Vδ2 T cells during infancy. Cell Immunol 2020; 359:104244. [PMID: 33248366 DOI: 10.1016/j.cellimm.2020.104244] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/08/2020] [Accepted: 10/30/2020] [Indexed: 12/19/2022]
Abstract
Human Vγ9Vδ2 T cells respond to several diverse pathogens by sensing microbial cholesterol intermediates. Unlike CD4 T cells, they are poised for rapid Th1-like responses even before birth, which allows them to play a key role in the first line of defense against pathogens in early life. However, their regulation and functional maturation during infancy (in particular the acquisition of cytotoxic potential) remain understudied. We thus characterized their responses to cholesterol intermediates and Bacille Calmette-Guérin in a cohort of African neonates and 12-month-old infants. Infant Vδ2 lymphocytes exhibited intermediate or adult-like expression of markers associated with differentiation or function, intermediate proliferative responses, and adult-like cytotoxic potential. The enhancement of Vδ2 cell cytotoxic potential coincided with decreasing PD-1 and increasing NKG2A expression. Our results are consistent with the hypothesis that switching from a PD-1+ to a NKG2A+ phenotype during infancy indicates a shift in mechanisms regulating Vδ2 T cell function.
Collapse
Affiliation(s)
- Haoting Hsu
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Sarah Boudova
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Godfrey Mvula
- Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi
| | - Titus H Divala
- Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi
| | - David Rach
- Molecular Microbiology and Immunology Graduate Program, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Randy G Mungwira
- Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi
| | - Francesca Boldrin
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Giulia Degiacomi
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | | | - Miriam K Laufer
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Cristiana Cairo
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
119
|
Hung CH, Wang KY, Liou YH, Wang JP, Huang AYS, Lee TL, Jiang ST, Liao NS, Shyu YC, Shen CKJ. Negative Regulation of the Differentiation of Flk2 - CD34 - LSK Hematopoietic Stem Cells by EKLF/KLF1. Int J Mol Sci 2020; 21:E8448. [PMID: 33182781 PMCID: PMC7697791 DOI: 10.3390/ijms21228448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/30/2020] [Accepted: 11/05/2020] [Indexed: 12/13/2022] Open
Abstract
Erythroid Krüppel-like factor (EKLF/KLF1) was identified initially as a critical erythroid-specific transcription factor and was later found to be also expressed in other types of hematopoietic cells, including megakaryocytes and several progenitors. In this study, we have examined the regulatory effects of EKLF on hematopoiesis by comparative analysis of E14.5 fetal livers from wild-type and Eklf gene knockout (KO) mouse embryos. Depletion of EKLF expression greatly changes the populations of different types of hematopoietic cells, including, unexpectedly, the long-term hematopoietic stem cells Flk2- CD34- Lin- Sca1+ c-Kit+ (LSK)-HSC. In an interesting correlation, Eklf is expressed at a relatively high level in multipotent progenitor (MPP). Furthermore, EKLF appears to repress the expression of the colony-stimulating factor 2 receptor β subunit (CSF2RB). As a result, Flk2- CD34- LSK-HSC gains increased differentiation capability upon depletion of EKLF, as demonstrated by the methylcellulose colony formation assay and by serial transplantation experiments in vivo. Together, these data demonstrate the regulation of hematopoiesis in vertebrates by EKLF through its negative regulatory effects on the differentiation of the hematopoietic stem and progenitor cells, including Flk2- CD34- LSK-HSCs.
Collapse
Affiliation(s)
- Chun-Hao Hung
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 115, Taiwan; (C.-H.H.); (K.-Y.W.); (Y.-H.L.); (J.-P.W.); (A.Y.-S.H.); (T.-L.L.); (N.-S.L.)
| | - Keh-Yang Wang
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 115, Taiwan; (C.-H.H.); (K.-Y.W.); (Y.-H.L.); (J.-P.W.); (A.Y.-S.H.); (T.-L.L.); (N.-S.L.)
| | - Yae-Huei Liou
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 115, Taiwan; (C.-H.H.); (K.-Y.W.); (Y.-H.L.); (J.-P.W.); (A.Y.-S.H.); (T.-L.L.); (N.-S.L.)
| | - Jing-Ping Wang
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 115, Taiwan; (C.-H.H.); (K.-Y.W.); (Y.-H.L.); (J.-P.W.); (A.Y.-S.H.); (T.-L.L.); (N.-S.L.)
| | - Anna Yu-Szu Huang
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 115, Taiwan; (C.-H.H.); (K.-Y.W.); (Y.-H.L.); (J.-P.W.); (A.Y.-S.H.); (T.-L.L.); (N.-S.L.)
| | - Tung-Liang Lee
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 115, Taiwan; (C.-H.H.); (K.-Y.W.); (Y.-H.L.); (J.-P.W.); (A.Y.-S.H.); (T.-L.L.); (N.-S.L.)
| | - Si-Tse Jiang
- Department of Research and Development, National Laboratory Animal Center, National Applied Research Laboratories, Tainan 74147, Taiwan;
| | - Nah-Shih Liao
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 115, Taiwan; (C.-H.H.); (K.-Y.W.); (Y.-H.L.); (J.-P.W.); (A.Y.-S.H.); (T.-L.L.); (N.-S.L.)
| | - Yu-Chiau Shyu
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 115, Taiwan; (C.-H.H.); (K.-Y.W.); (Y.-H.L.); (J.-P.W.); (A.Y.-S.H.); (T.-L.L.); (N.-S.L.)
- Department of Nursing, Chang Gung University of Science and Technology, Taoyuan City 333, Taiwan
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung Branch, Keelung 204, Taiwan
| | - Che-Kun James Shen
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 115, Taiwan; (C.-H.H.); (K.-Y.W.); (Y.-H.L.); (J.-P.W.); (A.Y.-S.H.); (T.-L.L.); (N.-S.L.)
- The PhD Program for Neural Regenerative Medicine, Taipei Medical University, Taipei 115, Taiwan
| |
Collapse
|
120
|
Jain N. The early life education of the immune system: Moms, microbes and (missed) opportunities. Gut Microbes 2020; 12:1824564. [PMID: 33043833 PMCID: PMC7781677 DOI: 10.1080/19490976.2020.1824564] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/29/2020] [Accepted: 09/08/2020] [Indexed: 02/03/2023] Open
Abstract
The early life immune system is characterized by unique developmental milestones. Functionally diverse immune cells arise from distinct waves of hematopoietic stem cells, a phenomenon referred to as 'layered' immunity. This stratified development of immune cells extends to lineages of both innate and adaptive cells. The defined time window for the development of these immune cells lends itself to the influence of specific exposures typical of the early life period. The perinatal immune system develops in a relatively sterile fetal environment but emerges into one filled with a multitude of antigenic encounters. A major burden of this comes in the form of the microbiota that is being newly established at mucosal surfaces of the newborn. Accumulating evidence suggests that early life microbial exposures, including those arising in utero, can imprint long-lasting changes in the offspring's immune system and determine disease risk throughout life. In this review, I highlight unique features of early life immunity and explore the role of intestinal bacteria in educating the developing immune system.
Collapse
Affiliation(s)
- Nitya Jain
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Charlestown, MA, USA
| |
Collapse
|
121
|
Li Y, Kong W, Yang W, Patel RM, Casey EB, Okeyo-Owuor T, White JM, Porter SN, Morris SA, Magee JA. Single-Cell Analysis of Neonatal HSC Ontogeny Reveals Gradual and Uncoordinated Transcriptional Reprogramming that Begins before Birth. Cell Stem Cell 2020; 27:732-747.e7. [PMID: 32822583 PMCID: PMC7655695 DOI: 10.1016/j.stem.2020.08.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 06/21/2020] [Accepted: 07/31/2020] [Indexed: 12/14/2022]
Abstract
Fetal and adult hematopoietic stem cells (HSCs) have distinct proliferation rates, lineage biases, gene expression profiles, and gene dependencies. Although these differences are widely recognized, it is not clear how the transition from fetal to adult identity is coordinated. Here we show that murine HSCs and committed hematopoietic progenitor cells (HPCs) undergo a gradual, rather than precipitous, transition from fetal to adult transcriptional states. The transition begins prior to birth and is punctuated by a late prenatal spike in type I interferon signaling that promotes perinatal HPC expansion and sensitizes progenitors to the leukemogenic FLT3ITD mutation. Most other changes in gene expression and enhancer activation are imprecisely timed and poorly coordinated. Thus, heterochronic enhancer elements, and their associated transcripts, are activated independently of one another rather than as part of a robust network. This simplifies the regulatory programs that guide neonatal HSC/HPC ontogeny, but it creates heterogeneity within these populations.
Collapse
Affiliation(s)
- Yanan Li
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Wenjun Kong
- Department of Genetics, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA; Department of Developmental Biology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Wei Yang
- Department of Genetics, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Riddhi M Patel
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Emily B Casey
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Theresa Okeyo-Owuor
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - J Michael White
- Department of Pathology and Immunobiology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Shaina N Porter
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Samantha A Morris
- Department of Genetics, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA; Department of Developmental Biology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA.
| | - Jeffrey A Magee
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA; Department of Genetics, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA.
| |
Collapse
|
122
|
Matas‐Céspedes A, Brown L, Mahbubani KT, Bareham B, Higgins J, Curran M, de Haan L, Lapointe J, Stebbings R, Saeb‐Parsy K. Use of human splenocytes in an innovative humanised mouse model for prediction of immunotherapy-induced cytokine release syndrome. Clin Transl Immunology 2020; 9:e1202. [PMID: 33173582 PMCID: PMC7641894 DOI: 10.1002/cti2.1202] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/09/2020] [Accepted: 10/06/2020] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVES Humanised mice have emerged as valuable models for pre-clinical testing of the safety and efficacy of immunotherapies. Given the variety of models available, selection of the most appropriate humanised mouse model is critical in study design. Here, we aimed to develop a model for predicting cytokine release syndrome (CRS) while minimising graft-versus-host disease (GvHD). METHODS To overcome donor-induced variation, we directly compared the in vitro and in vivo immune phenotype of immunodeficient NSG mice reconstituted with human bone marrow (BM) CD34+ haematopoietic stem cells (HSCs), peripheral blood mononuclear cells (PBMCs) or spleen mononuclear cells (SPMCs) from the same human donors. SPMC engraftment in NSG-dKO mice, which lack MHC class I and II, was also evaluated as a strategy to limit GvHD. Another group of mice was engrafted with umbilical cord blood (UCB) CD34+ HSCs. Induction of CRS in vivo was investigated upon administration of the anti-CD3 monoclonal antibody OKT3. RESULTS PBMC- and SPMC-reconstituted NSG mice showed short-term survival, with engrafted human T cells exhibiting mostly an effector memory phenotype. Survival in SPMC-reconstituted NSG-dKO mice was significantly longer. Conversely, both BM and UCB-HSC models showed longer survival, without demonstrable GvHD and a more naïve T-cell phenotype. PBMC- and SPMC-reconstituted mice, but not BM-HSC or UCB-HSC mice, experienced severe clinical signs of CRS upon administration of OKT3. CONCLUSION PBMC- and SPMC-reconstituted NSG mice better predict OKT3-mediated CRS. The SPMC model allows generation of large experimental groups, and the use of NSG-dKO mice mitigates the limitation of early GvHD.
Collapse
Affiliation(s)
- Alba Matas‐Céspedes
- Clinical Pharmacology and Safety SciencesR&DAstraZenecaCambridgeUK
- Department of SurgeryUniversity of Cambridge and NIHR Cambridge Biomedical CampusCambridgeUK
| | - Lee Brown
- Clinical Pharmacology and Safety SciencesR&DAstraZenecaCambridgeUK
| | - Krishnaa T Mahbubani
- Department of SurgeryUniversity of Cambridge and NIHR Cambridge Biomedical CampusCambridgeUK
| | - Bethany Bareham
- Department of SurgeryUniversity of Cambridge and NIHR Cambridge Biomedical CampusCambridgeUK
| | - Jackie Higgins
- Department of SurgeryUniversity of Cambridge and NIHR Cambridge Biomedical CampusCambridgeUK
| | - Michelle Curran
- Clinical Pharmacology and Safety SciencesR&DAstraZenecaCambridgeUK
- Department of SurgeryUniversity of Cambridge and NIHR Cambridge Biomedical CampusCambridgeUK
| | - Lolke de Haan
- Clinical Pharmacology and Safety SciencesR&DAstraZenecaCambridgeUK
- Present address:
ADC TherapeuticsLondonUK
| | | | | | - Kourosh Saeb‐Parsy
- Department of SurgeryUniversity of Cambridge and NIHR Cambridge Biomedical CampusCambridgeUK
| |
Collapse
|
123
|
Tieppo P, Papadopoulou M, Gatti D, McGovern N, Chan JKY, Gosselin F, Goetgeluk G, Weening K, Ma L, Dauby N, Cogan A, Donner C, Ginhoux F, Vandekerckhove B, Vermijlen D. The human fetal thymus generates invariant effector γδ T cells. J Exp Med 2020; 217:132616. [PMID: 31816633 PMCID: PMC7062527 DOI: 10.1084/jem.20190580] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 09/13/2019] [Accepted: 10/29/2019] [Indexed: 12/28/2022] Open
Abstract
Tieppo et al. show that the human fetal thymus generates invariant γδ T cells with programmed effector functions. This is due to an intrinsic property of fetal HSPCs caused by high expression of the RNA-binding protein Lin28b. In the mouse thymus, invariant γδ T cells are generated at well-defined times during development and acquire effector functions before exiting the thymus. However, whether such thymic programming and age-dependent generation of invariant γδ T cells occur in humans is not known. Here we found that, unlike postnatal γδ thymocytes, human fetal γδ thymocytes were functionally programmed (e.g., IFNγ, granzymes) and expressed low levels of terminal deoxynucleotidyl transferase (TdT). This low level of TdT resulted in a low number of N nucleotide insertions in the complementarity-determining region-3 (CDR3) of their TCR repertoire, allowing the usage of short homology repeats within the germline-encoded VDJ segments to generate invariant/public cytomegalovirus-reactive CDR3 sequences (TRGV8-TRJP1-CATWDTTGWFKIF, TRDV2-TRDD3-CACDTGGY, and TRDV1-TRDD3-CALGELGD). Furthermore, both the generation of invariant TCRs and the intrathymic acquisition of effector functions were due to an intrinsic property of fetal hematopoietic stem and precursor cells (HSPCs) caused by high expression of the RNA-binding protein Lin28b. In conclusion, our data indicate that the human fetal thymus generates, in an HSPC/Lin28b-dependent manner, invariant γδ T cells with programmed effector functions.
Collapse
Affiliation(s)
- Paola Tieppo
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), Bruxelles, Belgium.,Institute for Medical Immunology, Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Maria Papadopoulou
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), Bruxelles, Belgium.,Institute for Medical Immunology, Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Deborah Gatti
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), Bruxelles, Belgium.,Institute for Medical Immunology, Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Naomi McGovern
- Department of Pathology and Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Jerry K Y Chan
- Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore.,Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,OBGYN-Academic Clinical Program, Duke-National University of Singapore, Duke-National University of Singapore Medical School, Singapore
| | - Françoise Gosselin
- Department of Obstetrics and Gynecology, Hôpital Erasme, Université Libre de Bruxelles (ULB), Bruxelles, Belgium
| | - Glenn Goetgeluk
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium
| | - Karin Weening
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium
| | - Ling Ma
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), Bruxelles, Belgium.,Institute for Medical Immunology, Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Nicolas Dauby
- Institute for Medical Immunology, Université Libre de Bruxelles (ULB), Gosselies, Belgium.,Department of Infectious Diseases, Centre Hospitalier Universitaire Saint-Pierre, Université Libre de Bruxelles (ULB), Bruxelles, Belgium
| | - Alexandra Cogan
- Department of Obstetrics and Gynecology, Centre Hospitalier Universitaire Saint-Pierre, Université Libre de Bruxelles (ULB), Bruxelles, Belgium
| | - Catherine Donner
- Department of Obstetrics and Gynecology, Hôpital Erasme, Université Libre de Bruxelles (ULB), Bruxelles, Belgium
| | - Florent Ginhoux
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore
| | - Bart Vandekerckhove
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium
| | - David Vermijlen
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), Bruxelles, Belgium.,Institute for Medical Immunology, Université Libre de Bruxelles (ULB), Gosselies, Belgium
| |
Collapse
|
124
|
Pediatric HIV: the Potential of Immune Therapeutics to Achieve Viral Remission and Functional Cure. Curr HIV/AIDS Rep 2020; 17:237-248. [PMID: 32356090 DOI: 10.1007/s11904-020-00495-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
PURPOSE OF REVIEW In the absence of antiretroviral therapy (ART), more than 50% of perinatally HIV-infected children die by 2 years of age. Early ART from infancy is therefore a global recommendation and significantly improves immune health, child survival, and disease outcome. However, even early treatment does not prevent or eradicate the latent reservoir necessitating life-long ART. Adherence to life-long ART is challenging for children and longstanding ART during chronic HIV infection led to higher risks of non-AIDS co-morbidities and virologic failure in infected children. Thus, HIV-infected children are an important population for consideration for immune-based interventions to achieve ART-free remission and functional cure. This review summarizes how the uniqueness of the early life immune system can be harnessed for the development of ART-free remission and functional cure, which means complete virus control in absence of ART. In addition, recent advances in therapeutics in the HIV cure field and their potential for the treatment of pediatric HIV infections are discussed. RECENT FINDINGS Preclinical studies and clinical trials demonstrated that immune-based interventions target HIV replication, limit size of virus reservoir, maintain virus suppression, and delay time to virus rebound. However, these studies have been performed so far only in carefully selected HIV-infected adults, highlighting the need to evaluate the efficacy of immune-based therapeutics in HIV-infected children and to design interventions tailored to the early life maturing immune system. Immune-based therapeutics alone or in combination with ART should be actively explored as potential strategies to achieve viral remission and functional cure in HIV-infected pediatric populations.
Collapse
|
125
|
Challenges for the Newborn Immune Response to Respiratory Virus Infection and Vaccination. Vaccines (Basel) 2020; 8:vaccines8040558. [PMID: 32987691 PMCID: PMC7712002 DOI: 10.3390/vaccines8040558] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/19/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022] Open
Abstract
The initial months of life reflect an extremely challenging time for newborns as a naïve immune system is bombarded with a large array of pathogens, commensals, and other foreign entities. In many instances, the immune response of young infants is dampened or altered, resulting in increased susceptibility and disease following infection. This is the result of both qualitative and quantitative changes in the response of multiple cell types across the immune system. Here we provide a review of the challenges associated with the newborn response to respiratory viral pathogens as well as the hurdles and advances for vaccine-mediated protection.
Collapse
|
126
|
Kitazawa J, Kimura F, Nakamura A, Morimune A, Takahashi A, Takashima A, Amano T, Tsuji S, Kaku S, Kasahara K, Murakami T. Endometrial Immunity for Embryo Implantation and Pregnancy Establishment. TOHOKU J EXP MED 2020; 250:49-60. [PMID: 31996497 DOI: 10.1620/tjem.250.49] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The uterus is an organ for raising the fetus, and its lumen is lined by the endometrium. The endometrium is an important site for the implantation and maturation of fertilized eggs. The endometrium undergoes repetitive proliferation, maturation (decidualization), and exfoliation changes every menstrual cycle. At the same time, the number and type of endometrial immunocompetent cells vary during the menstrual cycle. At the implantation stage, the immunocompetent cells occupy approximately half of the endometrial cells. Immunocompetent cells normally eliminate pathogenic microorganisms to protect the body; however, they also promote immune tolerance to accept the fetus during pregnancy. The immunocompetent cells in the uterus can perform both these functions. With the establishment of pregnancy, stimuli from the trophoblast (placenta) and fetus can also change the immune environment of the uterus, and pregnancy can be maintained only when the immune system is well adapted to the stimuli of some hormones and the fetus. Immunity for the establishment of pregnancy is not simple because multiple immunocompetent cells are involved in establishing and maintaining pregnancy. To understand the immune mechanisms associated with the establishment of pregnancy, we have to learn about each immune cell. This review, therefore, discusses the roles and distribution of the immunocompetent cells inside the uterus during menstruation and early pregnancy.
Collapse
Affiliation(s)
- Jun Kitazawa
- Department of Obstetrics and Gynecology, Shiga University of Medical Science
| | - Fuminori Kimura
- Department of Obstetrics and Gynecology, Shiga University of Medical Science
| | - Akiko Nakamura
- Department of Obstetrics and Gynecology, Shiga University of Medical Science
| | - Aina Morimune
- Department of Obstetrics and Gynecology, Shiga University of Medical Science
| | - Akimasa Takahashi
- Department of Obstetrics and Gynecology, Shiga University of Medical Science
| | - Akiko Takashima
- Department of Obstetrics and Gynecology, Shiga University of Medical Science
| | - Tsukuru Amano
- Department of Obstetrics and Gynecology, Shiga University of Medical Science
| | - Shunichiro Tsuji
- Department of Obstetrics and Gynecology, Shiga University of Medical Science
| | - Shoji Kaku
- Department of Obstetrics and Gynecology, Shiga University of Medical Science
| | - Kyoko Kasahara
- Department of Obstetrics and Gynecology, Shiga University of Medical Science
| | - Takashi Murakami
- Department of Obstetrics and Gynecology, Shiga University of Medical Science
| |
Collapse
|
127
|
Stephen-Victor E, Crestani E, Chatila TA. Dietary and Microbial Determinants in Food Allergy. Immunity 2020; 53:277-289. [PMID: 32814026 PMCID: PMC7467210 DOI: 10.1016/j.immuni.2020.07.025] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/13/2020] [Accepted: 07/27/2020] [Indexed: 12/16/2022]
Abstract
The steep rise in food allergy (FA) has evoked environmental factors involved in disease pathogenesis, including the gut microbiota, diet, and their metabolites. Early introduction of solid foods synchronizes with the "weaning reaction," a time during which the microbiota imprints durable oral tolerance. Recent work has shown that children with FA manifest an early onset dysbiosis with the loss of Clostridiales species, which promotes the differentiation of ROR-γt+ regulatory T cells to suppress FA. This process can be reversed in pre-clinical mouse models by targeted bacteriotherapy. Here, we review the dominant tolerance mechanisms enforced by the microbiota to suppress FA and discuss therapeutic intervention strategies that act to recapitulate the early life window of opportunity in stemming the FA epidemic.
Collapse
Affiliation(s)
- Emmanuel Stephen-Victor
- Division of Immunology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Elena Crestani
- Division of Immunology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Talal A Chatila
- Division of Immunology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
128
|
Ng MSF, Roth TL, Mendoza VF, Marson A, Burt TD. Helios enhances the preferential differentiation of human fetal CD4 + naïve T cells into regulatory T cells. Sci Immunol 2020; 4:4/41/eaav5947. [PMID: 31757834 DOI: 10.1126/sciimmunol.aav5947] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 10/24/2019] [Indexed: 12/14/2022]
Abstract
T cell receptor (TCR) stimulation and cytokine cues drive the differentiation of CD4+ naïve T cells into effector T cell populations with distinct proinflammatory or regulatory functions. Unlike adult naïve T cells, human fetal naïve CD4+ T cells preferentially differentiate into FOXP3+ regulatory T (Treg) cells upon TCR activation independent of exogenous cytokine signaling. This cell-intrinsic predisposition for Treg differentiation is implicated in the generation of tolerance in utero; however, the underlying mechanisms remain largely unknown. Here, we identify epigenetic and transcriptional programs shared between fetal naïve T and committed Treg cells that are inactive in adult naïve T cells and show that fetal-derived induced Treg (iTreg) cells retain this transcriptional program. We show that a subset of Treg-specific enhancers is accessible in fetal naïve T cells, including two active superenhancers at Helios Helios is expressed in fetal naïve T cells but not in adult naïve T cells, and fetal iTreg cells maintain Helios expression. CRISPR-Cas9 ablation of Helios in fetal naïve T cells impaired their differentiation into iTreg cells upon TCR stimulation, reduced expression of immunosuppressive genes in fetal iTreg cells such as IL10, and increased expression of proinflammatory genes including IFNG Consequently, Helios knockout fetal iTreg cells had reduced IL-10 and increased IFN-γ cytokine production. Together, our results reveal important roles for Helios in enhancing preferential fetal Treg differentiation and fine-tuning eventual Treg function. The Treg-biased programs identified within fetal naïve T cells could potentially be used to engineer enhanced iTreg populations for adoptive cellular therapies.
Collapse
Affiliation(s)
- Melissa S F Ng
- Biomedical Sciences Graduate Program, University of California, San Francisco (UCSF), San Francisco, CA 94143, USA.,Singapore Immunology Network, Agency for Science, Technology and Research, Biopolis, Singapore 138648, Singapore
| | - Theodore L Roth
- Biomedical Sciences Graduate Program, University of California, San Francisco (UCSF), San Francisco, CA 94143, USA.,Department of Microbiology and Immunology, UCSF, San Francisco, CA 94143, USA.,Diabetes Center, UCSF, San Francisco, CA 94143, USA
| | - Ventura F Mendoza
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, CA 94143, USA
| | - Alexander Marson
- Department of Microbiology and Immunology, UCSF, San Francisco, CA 94143, USA.,Diabetes Center, UCSF, San Francisco, CA 94143, USA.,Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA.,Department of Medicine, UCSF, San Francisco, CA 94143, USA.,Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.,UCSF Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, CA 94158, USA.,Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA
| | - Trevor D Burt
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, CA 94143, USA. .,Department of Pediatrics, Division of Neonatology, UCSF, San Francisco, CA 94110, USA
| |
Collapse
|
129
|
Knolle J, Pierau M, Hebel K, Lampe K, Jorch G, Kropf S, Arens C, Brunner-Weinzierl MC. Children From the Age of Three Show a Developmental Switch in T-Cell Differentiation. Front Immunol 2020; 11:1640. [PMID: 32849561 PMCID: PMC7402172 DOI: 10.3389/fimmu.2020.01640] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/18/2020] [Indexed: 12/14/2022] Open
Abstract
Every sixth child suffers from hypertrophy of the adenoid, a secondary lymphoid organ, at least once in childhood. Little is known about the impact of pathogen-provocation vs. developmental impact on T-cell responses after 1 year of age. Therefore, developmental and infection-driven influences on the formation of T-cell-compartments and -multifunctionality in adenoids were analyzed taking into account patient's history of age and inflammatory processes. Here, we show that in adenoids of 102 infants and children similar frequencies of naïve, effector, and memory T-cells were accumulated, whereby history of suffering from subsequent infection symptoms resulted in lower frequencies of CD4+ and CD8+ T-cells co-expressing several cytokines. While patients suffering from sole nasal obstruction had balanced Th1- and Th17-compartments, Th1 dominated in patients with concomitant upper airway infections. In addition, analysis of cytokine co-expressing CD4+ and CD8+ T-cells showed that children at the age of three or older differed significantly from those being 1- or 2-years old, implicating a developmental switch in T-cell differentiation at that age. Yet, dissecting age and infectious history of the patients revealed that while CD8+ T-cell differentiation seems to be triggered by development, CD4+ T-cell functionality is partly impaired by infections. However, this functionality recovers by the age of 3 years. Thus, 3 years of age seems to be a critical period in an infant's life to develop robust T-cell compartments of higher quality. These findings identify important areas for future research and distinguish an age period in early childhood when to consider adjusting the choice of treatment of infections.
Collapse
Affiliation(s)
- Julienne Knolle
- Department of Pediatrics, Otto-von-Guericke-University, Magdeburg, Germany.,Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg, Germany
| | - Mandy Pierau
- Department of Pediatrics, Otto-von-Guericke-University, Magdeburg, Germany.,Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg, Germany
| | - Katrin Hebel
- Department of Pediatrics, Otto-von-Guericke-University, Magdeburg, Germany
| | - Karen Lampe
- Department of Otorhinolaryngology, Head and Neck Surgery, Otto-von-Guericke-University, Magdeburg, Germany
| | - Gerhard Jorch
- Department of Pediatrics, Otto-von-Guericke-University, Magdeburg, Germany
| | - Siegfried Kropf
- Department of Biometry and Medical Informatics, Otto-von-Guericke-University, Magdeburg, Germany
| | - Christoph Arens
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg, Germany.,Department of Otorhinolaryngology, Head and Neck Surgery, Otto-von-Guericke-University, Magdeburg, Germany
| | - Monika C Brunner-Weinzierl
- Department of Pediatrics, Otto-von-Guericke-University, Magdeburg, Germany.,Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg, Germany
| |
Collapse
|
130
|
Knapek KJ, Georges HM, Van Campen H, Bishop JV, Bielefeldt-Ohmann H, Smirnova NP, Hansen TR. Fetal Lymphoid Organ Immune Responses to Transient and Persistent Infection with Bovine Viral Diarrhea Virus. Viruses 2020; 12:v12080816. [PMID: 32731575 PMCID: PMC7472107 DOI: 10.3390/v12080816] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 02/07/2023] Open
Abstract
Bovine Viral Diarrhea Virus (BVDV) fetal infections occur in two forms; persistent infection (PI) or transient infection (TI), depending on what stage of gestation the fetus is infected. Examination of lymphoid organs from both PI and TI fetuses reveals drastically different fetal responses, dependent upon the developmental stage of the fetal immune system. Total RNA was extracted from the thymuses and spleens of uninfected control, PI, and TI fetuses collected on day 190 of gestation to test the hypothesis that BVDV infection impairs the innate and adaptive immune response in the fetal thymus and spleen of both infection types. Transcripts of genes representing the innate immune response and adaptive immune response genes were assayed by Reverse Transcription quatitative PCR (RT-qPCR) (2−ΔΔCq; fold change). Genes of the innate immune response, interferon (IFN) inducible genes, antigen presentation to lymphocytes, and activation of B cells were downregulated in day 190 fetal PI thymuses compared to controls. In contrast, innate immune response genes were upregulated in TI fetal thymuses compared to controls and tended to be upregulated in TI fetal spleens. Genes associated with the innate immune system were not different in PI fetal spleens; however, adaptive immune system genes were downregulated, indicating that PI fetal BVDV infection has profound inhibitory effects on the expression of genes involved in the innate and adaptive immune response. The downregulation of these genes in lymphocytes and antigen-presenting cells in the developing thymus and spleen may explain the incomplete clearance of BVDV and the persistence of the virus in PI animals while the upregulation of the TI innate immune response indicates a more mature immune system, able to clear the virus.
Collapse
Affiliation(s)
- Katie J. Knapek
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (K.J.K.); (H.M.G.); (H.V.C.); (J.V.B.); (N.P.S.)
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Hanah M. Georges
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (K.J.K.); (H.M.G.); (H.V.C.); (J.V.B.); (N.P.S.)
| | - Hana Van Campen
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (K.J.K.); (H.M.G.); (H.V.C.); (J.V.B.); (N.P.S.)
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Jeanette V. Bishop
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (K.J.K.); (H.M.G.); (H.V.C.); (J.V.B.); (N.P.S.)
| | - Helle Bielefeldt-Ohmann
- Australian Infectious Diseases Research Centre and School of Veterinary Science, The University of Queensland, St. Lucia, QLD 4072, Australia;
| | - Natalia P. Smirnova
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (K.J.K.); (H.M.G.); (H.V.C.); (J.V.B.); (N.P.S.)
| | - Thomas R. Hansen
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (K.J.K.); (H.M.G.); (H.V.C.); (J.V.B.); (N.P.S.)
- Correspondence: ; Tel.: +1-970-988-4582
| |
Collapse
|
131
|
Dekker L, de Koning C, Lindemans C, Nierkens S. Reconstitution of T Cell Subsets Following Allogeneic Hematopoietic Cell Transplantation. Cancers (Basel) 2020; 12:E1974. [PMID: 32698396 PMCID: PMC7409323 DOI: 10.3390/cancers12071974] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/10/2020] [Accepted: 07/16/2020] [Indexed: 02/07/2023] Open
Abstract
Allogeneic (allo) hematopoietic cell transplantation (HCT) is the only curative treatment option for patients suffering from chemotherapy-refractory or relapsed hematological malignancies. The occurrence of morbidity and mortality after allo-HCT is still high. This is partly correlated with the immunological recovery of the T cell subsets, of which the dynamics and relations to complications are still poorly understood. Detailed information on T cell subset recovery is crucial to provide tools for better prediction and modulation of adverse events. Here, we review the current knowledge regarding CD4+ and CD8+ T cells, γδ T cells, iNKT cells, Treg cells, MAIT cells and naive and memory T cell reconstitution, as well as their relations to outcome, considering different cell sources and immunosuppressive therapies. We conclude that the T cell subsets reconstitute in different ways and are associated with distinct adverse and beneficial events; however, adequate reconstitution of all the subsets is associated with better overall survival. Although the exact mechanisms involved in the reconstitution of each T cell subset and their associations with allo-HCT outcome need to be further elucidated, the data and suggestions presented here point towards the development of individualized approaches to improve their reconstitution. This includes the modulation of immunotherapeutic interventions based on more detailed immune monitoring, aiming to improve overall survival changes.
Collapse
Affiliation(s)
- Linde Dekker
- Princess Máxima Center for Pediatric Oncology, Utrecht University, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands; (L.D.); (C.L.)
| | - Coco de Koning
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands;
| | - Caroline Lindemans
- Princess Máxima Center for Pediatric Oncology, Utrecht University, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands; (L.D.); (C.L.)
| | - Stefan Nierkens
- Princess Máxima Center for Pediatric Oncology, Utrecht University, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands; (L.D.); (C.L.)
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands;
| |
Collapse
|
132
|
Yi G, Zhao Y, Xie F, Zhu F, Wan Z, Wang J, Wang X, Gao K, Cao L, Li X, Chen C, Kuang Y, Qiu X, Yang H, Wang J, Su B, Chen L, Zhang W, Hou Y, Xu X, He Y, Tsun A, Liu X, Li B. Single-cell RNA-seq unveils critical regulators of human FOXP3 + regulatory T cell stability. Sci Bull (Beijing) 2020; 65:1114-1124. [PMID: 36659163 DOI: 10.1016/j.scib.2020.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/09/2019] [Accepted: 10/10/2019] [Indexed: 01/21/2023]
Abstract
The heterogeneity and plasticity of T lymphocytes is critical for determining immune response outcomes. Functional regulatory T (Treg) cells are commonly characterized by stable FOXP3 expression and have reported to exhibit heterogeneous phenotypes under inflammatory conditions. However, the interplay between inflammation and Treg cell suppressive activity still remains elusive. Here, we utilized single-cell RNA sequencing to investigate how human Treg cells respond to the pro-inflammatory cytokine interleukin-6 (IL-6). We observed that Treg cells divided into two subpopulations after IL-6 stimulation. TIGIT- unstable Treg cells lost FOXP3 expression and gained an effector-like T cell phenotype, whereas TIGIT+ Treg cells retained robust suppressive function. Single cell transcriptome analysis revealed a spectrum of cellular states of IL-6-stimulated Treg cells and how cytochrome P450 family 1 subfamily A member 1 (CYP1A1) is a crucial regulator of Treg cell suppressive capability and stability. CYP1A1-deficient human Treg cells developed a Th17-like phenotype after IL-6 stimulation. Our findings implicate CYP1A1 as a previously unidentified regulator of Treg cells that may have target potential for clinical application for biotherapies.
Collapse
Affiliation(s)
- Gang Yi
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Biotheus Inc., Zhuhai 519080, China
| | - Yi Zhao
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; BGI-Shenzhen, Shenzhen 518083, China; School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Feng Xie
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Fuxiang Zhu
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ziyun Wan
- BGI-Shenzhen, Shenzhen 518083, China
| | | | - Xie Wang
- BGI-Shenzhen, Shenzhen 518083, China
| | - Kai Gao
- BGI-Shenzhen, Shenzhen 518083, China
| | - Lixia Cao
- BGI-Shenzhen, Shenzhen 518083, China
| | | | - Chen Chen
- School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yashu Kuang
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510006, China
| | - Xiu Qiu
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510006, China
| | | | - Jian Wang
- James D. Watson Institute of Genome Sciences, Hangzhou 310058, China
| | - Bing Su
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lei Chen
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wei Zhang
- BGI-Shenzhen, Shenzhen 518083, China
| | - Yong Hou
- BGI-Shenzhen, Shenzhen 518083, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen 518083, China
| | - Yinyan He
- Department of Obstetrics and Gynaecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | | | - Xiao Liu
- BGI-Shenzhen, Shenzhen 518083, China.
| | - Bin Li
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
133
|
McCune JM, Weissman IL. The Ban on US Government Funding Research Using Human Fetal Tissues: How Does This Fit with the NIH Mission to Advance Medical Science for the Benefit of the Citizenry? Stem Cell Reports 2020; 13:777-786. [PMID: 31722191 PMCID: PMC6895704 DOI: 10.1016/j.stemcr.2019.10.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/05/2019] [Accepted: 10/05/2019] [Indexed: 01/19/2023] Open
Abstract
Some have argued that human fetal tissue research is unnecessary and/or immoral. Recently, the Trump administration has taken the drastic––and we believe misguided––step to effectively ban government-funded research on fetal tissue altogether. In this article, we show that entire lines of research and their clinical outcomes would not have progressed had fetal tissue been unavailable. We argue that this research has been carried out in a manner that is ethical and legal, and that it has provided knowledge that has saved lives, particularly those of pregnant women, their unborn fetuses, and newborns. We believe that those who support a ban on the use of fetal tissue are halting medical progress and therefore endangering the health and lives of many, and for this they should accept responsibility. At the very least, we challenge them to be true to their beliefs: if they wish to short-circuit a scientific process that has led to medical advances, they should pledge to not accept for themselves the health benefits that such advances provide.
Collapse
Affiliation(s)
- Joseph M McCune
- Division of Experimental Medicine, University of California, San Francisco, USA
| | - Irving L Weissman
- Institute for Stem Cell Biology and Regenerative Medicine and Ludwig Center for Cancer Stem Cell Research, Stanford University, Stanford, CA, USA.
| |
Collapse
|
134
|
Le J, Park JE, Ha VL, Luong A, Branciamore S, Rodin AS, Gogoshin G, Li F, Loh YHE, Camacho V, Patel SB, Welner RS, Parekh C. Single-Cell RNA-Seq Mapping of Human Thymopoiesis Reveals Lineage Specification Trajectories and a Commitment Spectrum in T Cell Development. Immunity 2020; 52:1105-1118.e9. [PMID: 32553173 PMCID: PMC7388724 DOI: 10.1016/j.immuni.2020.05.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 04/20/2020] [Accepted: 05/22/2020] [Indexed: 12/21/2022]
Abstract
The challenges in recapitulating in vivo human T cell development in laboratory models have posed a barrier to understanding human thymopoiesis. Here, we used single-cell RNA sequencing (sRNA-seq) to interrogate the rare CD34+ progenitor and the more differentiated CD34- fractions in the human postnatal thymus. CD34+ thymic progenitors were comprised of a spectrum of specification and commitment states characterized by multilineage priming followed by gradual T cell commitment. The earliest progenitors in the differentiation trajectory were CD7- and expressed a stem-cell-like transcriptional profile, but had also initiated T cell priming. Clustering analysis identified a CD34+ subpopulation primed for the plasmacytoid dendritic lineage, suggesting an intrathymic dendritic specification pathway. CD2 expression defined T cell commitment stages where loss of B cell potential preceded that of myeloid potential. These datasets delineate gene expression profiles spanning key differentiation events in human thymopoiesis and provide a resource for the further study of human T cell development.
Collapse
Affiliation(s)
- Justin Le
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Jeong Eun Park
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Vi Luan Ha
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Annie Luong
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Sergio Branciamore
- Department of Computational and Quantitative Medicine, and Diabetes and Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Andrei S Rodin
- Department of Computational and Quantitative Medicine, and Diabetes and Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Grigoriy Gogoshin
- Department of Computational and Quantitative Medicine, and Diabetes and Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Fan Li
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | | | - Virginia Camacho
- Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sweta B Patel
- Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Robert S Welner
- Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Chintan Parekh
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA; Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
135
|
Davenport MP, Smith NL, Rudd BD. Building a T cell compartment: how immune cell development shapes function. Nat Rev Immunol 2020; 20:499-506. [PMID: 32493982 DOI: 10.1038/s41577-020-0332-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2020] [Indexed: 02/06/2023]
Abstract
We are just beginning to understand the diversity of the peripheral T cell compartment, which arises from the specialization of different T cell subsets and the plasticity of individual naive T cells to adopt different fates. Although the progeny of a single T cell can differentiate into many phenotypes following infection, individual T cells are biased towards particular phenotypes. These biases are typically ascribed to random factors that occur during and after antigenic stimulation. However, the T cell compartment does not remain static with age, and shifting immune challenges during ontogeny give rise to T cells with distinct functional properties. Here, we argue that the developmental history of naive T cells creates a 'hidden layer' of diversity that persists into adulthood. Insight into this diversity can provide a new perspective on immunity and immunotherapy across the lifespan.
Collapse
Affiliation(s)
- Miles P Davenport
- Kirby Institute for Infection and Immunity, University of New South Wales Australia, Sydney, New South Wales, Australia.
| | - Norah L Smith
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - Brian D Rudd
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
136
|
Georges HM, Knapek KJ, Bielefeldt-Ohmann H, Van Campen H, Hansen TR. Attenuated lymphocyte activation leads to the development of immunotolerance in bovine fetuses persistently infected with bovine viral diarrhea virus†. Biol Reprod 2020; 103:560-571. [PMID: 32483591 DOI: 10.1093/biolre/ioaa088] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/17/2020] [Accepted: 05/28/2020] [Indexed: 11/14/2022] Open
Abstract
Bovine viral diarrhea virus continues to cost the cattle industry millions of dollars each year despite control measures. The primary reservoirs for bovine viral diarrhea virus are persistently infected animals, which are infected in utero and shed the virus throughout their lifetime. The difficulty in controlling the virus stems from a limited understanding of transplacental transmission and fetal development of immunotolerance. In this study, pregnant bovine viral diarrhea virus naïve heifers were inoculated with bovine viral diarrhea virus on day 75 of gestation and fetal spleens were collected on gestational days 82, 97, 190, and 245. Microarray analysis on splenic RNA from days 82 and 97 revealed an increase in signaling for the innate immune system and antigen presentation to T cells in day 97 persistently infected fetuses compared to controls. Reverse transcription quantitative polymerase chain reaction on select targets validated the microarray revealing a downregulation of type I interferons and lymphocyte markers in day 190 persistently infected fetuses compared to controls. Protein was visualized using western blot and tissue sections were analyzed with hematoxylin and eosin staining and immunohistochemistry. Data collected indicate that fetal immunotolerance to bovine viral diarrhea virus developed between days 97 and 190, with mass attenuation of the immune system on day 190 of gestation. Furthermore, lymphocyte transcripts were initially unchanged then downregulated, suggesting that immunotolerance to the virus stems from a blockage in lymphocyte activation and hence an inability to clear the virus. The identification of lymphocyte derived immunotolerance will aid in the development of preventative and viral control measures to implement before or during pregnancy.
Collapse
Affiliation(s)
- Hanah M Georges
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Katie J Knapek
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Helle Bielefeldt-Ohmann
- School of Veterinary Science, The University of Queensland - Gatton Campus, Gatton, QLD, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD, Australia
| | - Hana Van Campen
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Thomas R Hansen
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
137
|
Smiljanovic B, Grützkau A, Sörensen T, Grün JR, Vogl T, Bonin M, Schendel P, Stuhlmüller B, Claussnitzer A, Hermann S, Ohrndorf S, Aupperle K, Backhaus M, Radbruch A, Burmester GR, Häupl T. Synovial tissue transcriptomes of long-standing rheumatoid arthritis are dominated by activated macrophages that reflect microbial stimulation. Sci Rep 2020; 10:7907. [PMID: 32404914 PMCID: PMC7220941 DOI: 10.1038/s41598-020-64431-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/15/2020] [Indexed: 12/30/2022] Open
Abstract
Advances in microbiome research suggest involvement in chronic inflammatory diseases such as rheumatoid arthritis (RA). Searching for initial trigger(s) in RA, we compared transcriptome profiles of highly inflamed RA synovial tissue (RA-ST) and osteoarthritis (OA)-ST with 182 selected reference transcriptomes of defined cell types and their activation by exogenous (microbial) and endogenous inflammatory stimuli. Screening for dominant changes in RA-ST demonstrated activation of monocytes/macrophages with gene-patterns induced by bacterial and fungal triggers. Gene-patterns of activated B- or T-cells in RA-ST reflected a response to activated monocytes/macrophages rather than inducing their activation. In contrast, OA-ST was dominated by gene-patterns of non-activated macrophages and fibroblasts. The difference between RA and OA was more prominent in transcripts of secreted proteins and was confirmed by protein quantification in synovial fluid (SF) and serum. In total, 24 proteins of activated cells were confirmed in RA-SF compared to OA-SF and some like CXCL13, CCL18, S100A8/A9, sCD14, LBP reflected this increase even in RA serum. Consequently, pathogen-like response patterns in RA suggest that direct microbial influences exist. This challenges the current concept of autoimmunity and immunosuppressive treatment and advocates new diagnostic and therapeutic strategies that consider microbial persistence as important trigger(s) in the etiopathogenesis of RA.
Collapse
Affiliation(s)
- Biljana Smiljanovic
- Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin, Berlin, Germany
| | - Andreas Grützkau
- Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Till Sörensen
- Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin, Berlin, Germany
| | - Joachim R Grün
- Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Thomas Vogl
- Institute of Immunology, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Marc Bonin
- Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin, Berlin, Germany
| | - Pascal Schendel
- Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin, Berlin, Germany
| | - Bruno Stuhlmüller
- Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin, Berlin, Germany
| | - Anne Claussnitzer
- Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin, Berlin, Germany
| | - Sandra Hermann
- Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin, Berlin, Germany
| | - Sarah Ohrndorf
- Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin, Berlin, Germany
| | - Karlfried Aupperle
- Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin, Berlin, Germany
| | - Marina Backhaus
- Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin, Berlin, Germany
| | - Andreas Radbruch
- Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Gerd R Burmester
- Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin, Berlin, Germany
| | - Thomas Häupl
- Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin, Berlin, Germany.
| |
Collapse
|
138
|
Maternal microchimerism protects hemophilia A patients from inhibitor development. Blood Adv 2020; 4:1867-1869. [PMID: 32374877 DOI: 10.1182/bloodadvances.2020001832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 04/01/2020] [Indexed: 11/20/2022] Open
Abstract
Key Points
Deleterious F8 mutations do not necessarily lead to the incidence of inhibitors in hemophilia A patients receiving replacement therapy. Maternal chimeric cells migrated into a fetus with hemophilia A during pregnancy could induce tolerance toward FVIII.
Collapse
|
139
|
Abstract
The blood and immune systems develop in parallel during early prenatal life. Waves of hematopoiesis separated in anatomical space and time give rise to circulating and tissue-resident immune cells. Previous observations have relied on animal models, which differ from humans in both their developmental timeline and exposure to microorganisms. Decoding the composition of the human immune system is now tractable using single-cell multi-omics approaches. Large-scale single-cell genomics, imaging technologies, and the Human Cell Atlas initiative have together enabled a systems-level mapping of the developing human immune system and its emergent properties. Although the precise roles of specific immune cells during development require further investigation, the system as a whole displays malleable and responsive properties according to developmental need and environmental challenge.
Collapse
Affiliation(s)
- Jong-Eun Park
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Laura Jardine
- Biosciences Institute, Newcastle University, Faculty of Medical Sciences, Newcastle upon Tyne NE2 4HH, UK
| | - Berthold Gottgens
- Department of Haematology, University of Cambridge, Cambridge CB2 2XY, UK
- Wellcome and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 2XY, UK
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK.
- Department of Physics/Cavendish Laboratory, University of Cambridge, JJ Thomson Ave., Cambridge CB3 0HE, UK
| | - Muzlifah Haniffa
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK.
- Biosciences Institute, Newcastle University, Faculty of Medical Sciences, Newcastle upon Tyne NE2 4HH, UK
- Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4LP, UK
| |
Collapse
|
140
|
Jardine L, Haniffa M. Reconstructing human DC, monocyte and macrophage development in utero using single cell technologies. Mol Immunol 2020; 123:1-6. [PMID: 32380279 DOI: 10.1016/j.molimm.2020.04.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/10/2020] [Accepted: 04/22/2020] [Indexed: 12/27/2022]
Abstract
The repertoire of dendritic cells (DCs), monocytes and macrophages in adult humans is diverse and we are appreciating this to a greater extent as high throughput methods, such a single-cell RNA sequencing, become widely adopted and scalable. This powerful lens of analysis is also beginning to shed light on prenatal immunology, allowing us to chart the emergence, tissue distribution and developmental regulation of DCs, monocytes and macrophages during early human life. In this review, we will integrate recent insights from studies of the developing immune system into our understanding of adult DC, monocyte and macrophage organization, illustrating where insights from early life both affirm and challenge current understanding.
Collapse
Affiliation(s)
- Laura Jardine
- Biosciences Institute, Newcastle University, Faculty of Medical Sciences, Newcastle upon Tyne, NE2 4HH, UK; Department of Haematology, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4LP, UK.
| | - Muzlifah Haniffa
- Biosciences Institute, Newcastle University, Faculty of Medical Sciences, Newcastle upon Tyne, NE2 4HH, UK; Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK; Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE2 4LP, UK.
| |
Collapse
|
141
|
Seng A, Krausz KL, Pei D, Koestler DC, Fischer RT, Yankee TM, Markiewicz MA. Coexpression of FOXP3 and a Helios isoform enhances the effectiveness of human engineered regulatory T cells. Blood Adv 2020; 4:1325-1339. [PMID: 32259202 PMCID: PMC7160257 DOI: 10.1182/bloodadvances.2019000965] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 03/04/2020] [Indexed: 12/13/2022] Open
Abstract
Regulatory T cells (Tregs) are a subset of immune cells that suppress the immune response. Treg therapy for inflammatory diseases is being tested in the clinic, with moderate success. However, it is difficult to isolate and expand Tregs to sufficient numbers. Engineered Tregs (eTregs) can be generated in larger quantities by genetically manipulating conventional T cells to express FOXP3. These eTregs can suppress in vitro and in vivo but not as effectively as endogenous Tregs. We hypothesized that ectopic expression of the transcription factor Helios along with FOXP3 is required for optimal eTreg immunosuppression. To test this theory, we generated eTregs by retrovirally transducing total human T cells (CD4+ and CD8+) with FOXP3 alone or with each of the 2 predominant isoforms of Helios. Expression of both FOXP3 and the full-length isoform of Helios was required for eTreg-mediated disease delay in a xenogeneic graft-versus-host disease model. In vitro, this corresponded with superior suppressive function of FOXP3 and full-length Helios-expressing CD4+ and CD8+ eTregs. RNA sequencing showed that the addition of full-length Helios changed gene expression in cellular pathways and the Treg signature compared with FOXP3 alone or the other major Helios isoform. Together, these results show that functional human CD4+ and CD8+ eTregs can be generated from total human T cells by coexpressing FOXP3 and full-length Helios.
Collapse
Affiliation(s)
- Amara Seng
- Department of Microbiology, Molecular Genetics, and Immunology, and
| | - Kelsey L Krausz
- Department of Microbiology, Molecular Genetics, and Immunology, and
| | - Dong Pei
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS; and
| | - Devin C Koestler
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS; and
| | - Ryan T Fischer
- Pediatric Gastroenterology, Department of Pediatrics, Children's Mercy Hospital, Kansas City, MO
| | - Thomas M Yankee
- Department of Microbiology, Molecular Genetics, and Immunology, and
| | | |
Collapse
|
142
|
Patwardhan RS, Singh B, Pal D, Checker R, Bandekar M, Sharma D, Sandur SK. Redox regulation of regulatory T-cell differentiation and functions. Free Radic Res 2020; 54:947-960. [DOI: 10.1080/10715762.2020.1745202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Raghavendra S. Patwardhan
- Radiation Biology and Health Sciences Division, Modular Laboratories, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | - Babita Singh
- Radiation Biology and Health Sciences Division, Modular Laboratories, Bhabha Atomic Research Centre, Trombay, Mumbai, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
| | - Debojyoti Pal
- Radiation Biology and Health Sciences Division, Modular Laboratories, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | - Rahul Checker
- Radiation Biology and Health Sciences Division, Modular Laboratories, Bhabha Atomic Research Centre, Trombay, Mumbai, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
| | - Mayuri Bandekar
- Radiation Biology and Health Sciences Division, Modular Laboratories, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | - Deepak Sharma
- Radiation Biology and Health Sciences Division, Modular Laboratories, Bhabha Atomic Research Centre, Trombay, Mumbai, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
| | - Santosh K. Sandur
- Radiation Biology and Health Sciences Division, Modular Laboratories, Bhabha Atomic Research Centre, Trombay, Mumbai, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
| |
Collapse
|
143
|
Rackaityte E, Halkias J. Mechanisms of Fetal T Cell Tolerance and Immune Regulation. Front Immunol 2020; 11:588. [PMID: 32328065 PMCID: PMC7160249 DOI: 10.3389/fimmu.2020.00588] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/13/2020] [Indexed: 12/19/2022] Open
Abstract
The developing human fetus generates both tolerogenic and protective immune responses in response to the unique requirements of gestation. Thus, a successful human pregnancy depends on a fine balance between two opposing immunological forces: the semi-allogeneic fetus learns to tolerate both self- and maternal- antigens and, in parallel, develops protective immunity in preparation for birth. This critical window of immune development bridges prenatal immune tolerance with the need for postnatal environmental protection, resulting in a vulnerable neonatal period with heightened risk of infection. The fetal immune system is highly specialized to mediate this transition and thus serves a different function from that of the adult. Adaptive immune memory is already evident in the fetal intestine. Fetal T cells with pro-inflammatory potential are born in a tolerogenic environment and are tightly controlled by both cell-intrinsic and -extrinsic mechanisms, suggesting that compartmentalization and specialization, rather than immaturity, define the fetal immune system. Dysregulation of fetal tolerance generates an inflammatory response with deleterious effects to the pregnancy. This review aims to discuss the recent advances in our understanding of the cellular and molecular composition of fetal adaptive immunity and the mechanisms that govern T cell development and function. We also discuss the tolerance promoting environment that impacts fetal immunity and the consequences of its breakdown. A greater understanding of fetal mechanisms of immune activation and regulation has the potential to uncover novel paradigms of immune balance which may be leveraged to develop therapies for transplantation, autoimmune disease, and birth-associated inflammatory pathologies.
Collapse
Affiliation(s)
- Elze Rackaityte
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, United States
| | - Joanna Halkias
- Division of Neonatology, Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, CA, United States
| |
Collapse
|
144
|
Rackaityte E, Halkias J, Fukui EM, Mendoza VF, Hayzelden C, Crawford ED, Fujimura KE, Burt TD, Lynch SV. Viable bacterial colonization is highly limited in the human intestine in utero. Nat Med 2020; 26:599-607. [PMID: 32094926 PMCID: PMC8110246 DOI: 10.1038/s41591-020-0761-3] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 01/10/2020] [Indexed: 02/08/2023]
Abstract
Mucosal immunity develops in the human fetal intestine by 11-14 weeks of gestation, yet whether viable microbes exist in utero and interact with the intestinal immune system is unknown. Bacteria-like morphology was identified in pockets of human fetal meconium at mid-gestation by scanning electron microscopy (n = 4), and a sparse bacterial signal was detected by 16S rRNA sequencing (n = 40 of 50) compared to environmental controls (n = 87). Eighteen taxa were enriched in fetal meconium, with Micrococcaceae (n = 9) and Lactobacillus (n = 6) the most abundant. Fetal intestines dominated by Micrococcaceae exhibited distinct patterns of T cell composition and epithelial transcription. Fetal Micrococcus luteus, isolated only in the presence of monocytes, grew on placental hormones, remained viable within antigen presenting cells, limited inflammation ex vivo and possessed genomic features linked with survival in the fetus. Thus, viable bacteria are highly limited in the fetal intestine at mid-gestation, although strains with immunomodulatory capacity are detected in subsets of specimens.
Collapse
Affiliation(s)
- E Rackaityte
- Division of Gastroenterology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - J Halkias
- Division of Neonatology, Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| | - E M Fukui
- Division of Gastroenterology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - V F Mendoza
- Division of Neonatology, Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| | - C Hayzelden
- College of Science and Engineering, San Francisco State University, San Francisco, CA, USA
| | - E D Crawford
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - K E Fujimura
- Division of Gastroenterology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Genentech, South San Francisco, CA, USA
| | - T D Burt
- Duke University School of Medicine, Durham, NC, USA
| | - S V Lynch
- Division of Gastroenterology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
145
|
Apostol AC, Jensen KDC, Beaudin AE. Training the Fetal Immune System Through Maternal Inflammation-A Layered Hygiene Hypothesis. Front Immunol 2020; 11:123. [PMID: 32117273 PMCID: PMC7026678 DOI: 10.3389/fimmu.2020.00123] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/17/2020] [Indexed: 12/14/2022] Open
Abstract
Over the last century, the alarming surge in allergy and autoimmune disease has led to the hypothesis that decreasing exposure to microbes, which has accompanied industrialization and modern life in the Western world, has fundamentally altered the immune response. In its current iteration, the “hygiene hypothesis” suggests that reduced microbial exposures during early life restricts the production and differentiation of immune cells suited for immune regulation. Although it is now well-appreciated that the increase in hypersensitivity disorders represents a “perfect storm” of many contributing factors, we argue here that two important considerations have rarely been explored. First, the window of microbial exposure that impacts immune development is not limited to early childhood, but likely extends into the womb. Second, restricted microbial interactions by an expectant mother will bias the fetal immune system toward hypersensitivity. Here, we extend this discussion to hypothesize that the cell types sensing microbial exposures include fetal hematopoietic stem cells, which drive long-lasting changes to immunity.
Collapse
Affiliation(s)
- April C Apostol
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, Merced, CA, United States
| | - Kirk D C Jensen
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, Merced, CA, United States
| | - Anna E Beaudin
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, Merced, CA, United States
| |
Collapse
|
146
|
Abstract
Neonatal CD4+ and CD8+ T cells have historically been characterized as immature or defective. However, recent studies prompt a reinterpretation of the functions of neonatal T cells. Rather than a population of cells always falling short of expectations set by their adult counterparts, neonatal T cells are gaining recognition as a distinct population of lymphocytes well suited for the rapidly changing environment in early life. In this review, I will highlight new evidence indicating that neonatal T cells are not inert or less potent versions of adult T cells but instead are a broadly reactive layer of T cells poised to quickly develop into regulatory or effector cells, depending on the needs of the host. In this way, neonatal T cells are well adapted to provide fast-acting immune protection against foreign pathogens, while also sustaining tolerance to self-antigens.
Collapse
Affiliation(s)
- Brian D Rudd
- Department of Microbiology and Immunology, Cornell University, Ithaca, New York 14853, USA;
| |
Collapse
|
147
|
Qazi KR, Bach Jensen G, van der Heiden M, Björkander S, Holmlund U, Haileselassie Y, Kokkinou E, Marchini G, Jenmalm MC, Abrahamsson T, Sverremark-Ekström E. Extremely Preterm Infants Have Significant Alterations in Their Conventional T Cell Compartment during the First Weeks of Life. THE JOURNAL OF IMMUNOLOGY 2019; 204:68-77. [PMID: 31801814 DOI: 10.4049/jimmunol.1900941] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/27/2019] [Indexed: 12/26/2022]
Abstract
Extremely preterm neonates are particularly susceptible to infections, likely because of severely impaired immune function. However, little is known on the composition of the T cell compartment in early life in this vulnerable population. We conducted a comprehensive phenotypic flow cytometry-based longitudinal analysis of the peripheral conventional T cell compartment of human extremely low gestational age neonates (ELGAN) with extremely low birth weight (ELBW; <1000 g) participating in a randomized placebo-controlled study of probiotic supplementation. PBMCs from ELGAN/ELBW neonates were collected at day 14, day 28, and postmenstrual week 36. Comparisons were made with full-term 14-d-old neonates. Total CD4+ and CD8+ T cell frequencies were markedly lower in the preterm neonates. The reduction was more pronounced among the CD8+ population, resulting in an increased CD4/CD8 ratio. The preterm infants were also more Th2 skewed than the full-term infants. Although the frequency of regulatory T cells seemed normal in the ELGAN/ELBW preterm neonates, their expression of the homing receptors α4β7, CCR4, and CCR9 was altered. Notably, ELGAN/ELBW infants developing necrotizing enterocolitis before day 14 had higher expression of CCR9 in CD4+T cells at day 14. Chorioamnionitis clearly associated with reduced T regulatory cell frequencies and functional characteristics within the preterm group. Finally, probiotic supplementation with Lactobacillus reuteri did not impose any phenotypic changes of the conventional T cell compartment. In conclusion, notable immaturities of the T cell compartment in ELGAN/ELBW neonates may at least partially explain their increased susceptibility to severe immune-mediated morbidities.
Collapse
Affiliation(s)
- Khaleda Rahman Qazi
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden;
| | - Georg Bach Jensen
- Department of Clinical and Experimental Medicine, Linköping University, 581 83 Linköping, Sweden.,Department of Paediatrics, Linköping University, 581 83 Linköping, Sweden; and
| | - Marieke van der Heiden
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Sophia Björkander
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Ulrika Holmlund
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Yeneneh Haileselassie
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Efthymia Kokkinou
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Giovanna Marchini
- Department of Women's and Children's Health, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Maria C Jenmalm
- Department of Clinical and Experimental Medicine, Linköping University, 581 83 Linköping, Sweden
| | - Thomas Abrahamsson
- Department of Clinical and Experimental Medicine, Linköping University, 581 83 Linköping, Sweden.,Department of Paediatrics, Linköping University, 581 83 Linköping, Sweden; and
| | - Eva Sverremark-Ekström
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
148
|
Hornef MW, Torow N. 'Layered immunity' and the 'neonatal window of opportunity' - timed succession of non-redundant phases to establish mucosal host-microbial homeostasis after birth. Immunology 2019; 159:15-25. [PMID: 31777069 PMCID: PMC6904599 DOI: 10.1111/imm.13149] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/03/2019] [Accepted: 09/06/2019] [Indexed: 12/12/2022] Open
Abstract
The intricate host–microbial interaction and the overwhelming complexity of the mucosal immune system in the adult host raise the question of how this system is initially established. Here, we propose the implementation of the concept of the ‘postnatal window of opportunity’ into the model of a ‘layered immunity’ to explain how the newborn's mucosal immune system matures and how host–microbial immune homeostasis is established after birth. We outline the concept of a timed succession of non‐redundant phases during postnatal immune development and discuss the possible influence of external factors and conditions.
Collapse
Affiliation(s)
- Mathias W Hornef
- Institute of Medical Microbiology, RWTH University Hospital Aachen, Aachen, Germany
| | - Natalia Torow
- Institute of Medical Microbiology, RWTH University Hospital Aachen, Aachen, Germany
| |
Collapse
|
149
|
Simpson JA, Brown ME. Making HIS mice more human-like. J Leukoc Biol 2019; 107:9-10. [PMID: 31682279 DOI: 10.1002/jlb.5ce1019-262r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/11/2019] [Accepted: 10/12/2019] [Indexed: 12/11/2022] Open
Abstract
Discussion on exhaustion/senescence marker profiles on human T cells in BRGSF-A2 humanized mice and how they resemble those in human samples; describes how this model fits into the humanized-mouse research field.
Collapse
|
150
|
Kim MH, Akbari O, Genyk Y, Kohli R, Emamaullee J. Immunologic benefit of maternal donors in pediatric living donor liver transplantation. Pediatr Transplant 2019; 23:e13560. [PMID: 31402535 DOI: 10.1111/petr.13560] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/18/2019] [Accepted: 07/08/2019] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW Long-term follow-up has suggested that pediatric LDLT may have superior outcomes compared to deceased donor recipients. In this review, we describe the subset of LDLT recipients with maternal donors that have lower reported rates of rejection and improved allograft survival. RECENT FINDINGS Pediatric LDLT recipients, particularly those with a primary diagnosis of biliary atresia who receive grafts from their mothers, have been reported to have lower rates of acute cellular rejection post-transplant and graft failure. Maternal-fetal microchimerism and the persistence of regulatory T cells may be related to improved outcomes observed in recipients with maternal donors. Further, recent studies have shown that up to 60% of pediatric LDLT recipients can undergo intentional withdrawal of immunosuppression and achieve long-term operational tolerance. The impact of graft type on operational tolerance has not been thoroughly investigated; however, investigation of tolerant pediatric LDLT patients with maternal donors may provide key insights into the mechanisms of immune tolerance. SUMMARY While excellent outcomes can be achieved in pediatric LDLT, there is still a measurable decrease in graft and patient survival over time post-transplant. Recipients of maternal donor liver transplants are a subset of patients who may be advantaged toward improved outcomes by means of immune tolerance.
Collapse
Affiliation(s)
- Michelle H Kim
- Division of Hepatobiliary and Transplant Surgery, Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Omid Akbari
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yuri Genyk
- Division of Hepatobiliary and Transplant Surgery, Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Pediatric Liver Care Center, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Rohit Kohli
- Pediatric Liver Care Center, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Juliet Emamaullee
- Division of Hepatobiliary and Transplant Surgery, Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Pediatric Liver Care Center, Children's Hospital Los Angeles, Los Angeles, CA, USA
| |
Collapse
|