101
|
Yamauchi K, Ikeda T, Hosokawa M, Nakatsuji N, Kawase E, Chuma S, Hasegawa K, Suemori H. Overexpression of Nuclear Receptor 5A1 Induces and Maintains an Intermediate State of Conversion between Primed and Naive Pluripotency. Stem Cell Reports 2020; 14:506-519. [PMID: 32084386 PMCID: PMC7066342 DOI: 10.1016/j.stemcr.2020.01.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 10/31/2022] Open
Abstract
Naive and primed human pluripotent stem cells (hPSCs) have provided useful insights into the regulation of pluripotency. However, the molecular mechanisms regulating naive conversion remain elusive. Here, we report intermediate naive conversion induced by overexpressing nuclear receptor 5A1 (NR5A1) in hPSCs. The cells displayed some naive features, such as clonogenicity, glycogen synthase kinase 3β, and mitogen-activated protein kinase (MAPK) independence, expression of naive-associated genes, and two activated X chromosomes, but lacked others, such as KLF17 expression, transforming growth factor β independence, and imprinted gene demethylation. Notably, NR5A1 negated MAPK activation by fibroblast growth factor 2, leading to cell-autonomous self-renewal independent of MAPK inhibition. These phenotypes may be associated with naive conversion, and were regulated by a DPPA2/4-dependent pathway that activates the selective expression of naive-associated genes. This study increases our understanding of the mechanisms regulating the conversion from primed to naive pluripotency.
Collapse
Affiliation(s)
- Kaori Yamauchi
- Laboratory of Embryonic Stem Cell Research, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Tatsuhiko Ikeda
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto 606-8351, Japan
| | - Mihoko Hosokawa
- Laboratory of Developmental Epigenome, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Norio Nakatsuji
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto 606-8351, Japan; Laboratory of Developmental Epigenome, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Eihachiro Kawase
- Laboratory of Embryonic Stem Cell Research, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Shinichiro Chuma
- Laboratory of Developmental Epigenome, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Kouichi Hasegawa
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto 606-8351, Japan; Institute for Stem Cell Biology and Regenerative Medicine, NCBS Campus, GKVK, Bangalore 560065, India
| | - Hirofumi Suemori
- Laboratory of Embryonic Stem Cell Research, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan.
| |
Collapse
|
102
|
Kang X, Li C. Landscape inferred from gene expression data governs pluripotency in embryonic stem cells. Comput Struct Biotechnol J 2020; 18:366-374. [PMID: 32128066 PMCID: PMC7044515 DOI: 10.1016/j.csbj.2020.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 02/07/2020] [Accepted: 02/09/2020] [Indexed: 12/21/2022] Open
Abstract
Embryonic stem cells (ESCs) can differentiate into diverse cell types and have the ability of self-renewal. Therefore, the study of cell fate decisions on embryonic stem cells has far-reaching significance for regenerative medicine and other biomedical fields. Mathematical models have been used to study emryonic stem cell differentiation. However, the underlying mechanisms of cell differentiation and lineage reprogramming remain to be elucidated. Especially, how to integrate the computational models with quantitative experimental data is still challenging. In this work, we developed a data-constrained modelling approach, and established a model of mouse embryonic stem cells. We used the truncated moment equations (TME) method to quantify the potential landscape of the ESC network. We identified two attractors on the landscape, which represent the embryonic stem cell (ESC) state and differentiated cell (DC) state, respectively, and quantified high dimensional biological paths for differentiation and reprogramming process. Through identifying the optimal combinations of gene targets based on a landscape control strategy, we offered some predictions about the key regulatory factors that govern the differentiation and reprogramming in ESCs.
Collapse
Affiliation(s)
- Xin Kang
- School of Mathematical Sciences, Fudan University, Shanghai, China.,Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China
| | - Chunhe Li
- Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China.,Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| |
Collapse
|
103
|
King DM, Hong CKY, Shepherdson JL, Granas DM, Maricque BB, Cohen BA. Synthetic and genomic regulatory elements reveal aspects of cis-regulatory grammar in mouse embryonic stem cells. eLife 2020; 9:41279. [PMID: 32043966 PMCID: PMC7077988 DOI: 10.7554/elife.41279] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 02/07/2020] [Indexed: 01/08/2023] Open
Abstract
In embryonic stem cells (ESCs), a core transcription factor (TF) network establishes the gene expression program necessary for pluripotency. To address how interactions between four key TFs contribute to cis-regulation in mouse ESCs, we assayed two massively parallel reporter assay (MPRA) libraries composed of binding sites for SOX2, POU5F1 (OCT4), KLF4, and ESRRB. Comparisons between synthetic cis-regulatory elements and genomic sequences with comparable binding site configurations revealed some aspects of a regulatory grammar. The expression of synthetic elements is influenced by both the number and arrangement of binding sites. This grammar plays only a small role for genomic sequences, as the relative activities of genomic sequences are best explained by the predicted occupancy of binding sites, regardless of binding site identity and positioning. Our results suggest that the effects of transcription factor binding sites (TFBS) are influenced by the order and orientation of sites, but that in the genome the overall occupancy of TFs is the primary determinant of activity. Transcription factors are proteins that flip genetic switches; their role is to control when and where genes are active. They do this by binding to short stretches of DNA called cis-regulatory sequences. Each sequence can have several binding sites for different transcription factors, but it is largely unclear whether the transcription factors binding to the same regulatory sequence actually work together. It is possible that each transcription factor may work independently and there only needs to be critical mass of transcription factors bound to throw the genetic switch. If this is the case, the most important features of a cis-regulatory sequence should be the number of binding sites it contains, and how tightly the transcription factors bind to those sites. The more transcription factors and the more strongly they bind, the more active the gene should be. An alternative option is that certain transcription factors may work better together, enhancing each other's effects such that the total effect is more than the sum of its parts. If this is true, the order, orientation and spacing of the binding sites within a sequence should matter more than the number. One way to investigate to distinguish between these possibilities is to study mouse embryonic stem cells, which have a core set of four transcription factors. Looking directly at a real genome, however, can be confusing and it is difficult to measure the effects of different cis-regulatory sequences because genes differ in so many other ways. To tackle this problem, King et al. created a synthetic set of cis-regulatory sequences based on the four core transcription factors found in mouse stem cells. The synthetic set had every combination of two, three or four of the binding sites, with each site either facing forwards or backwards along the DNA strand. King et al. attached each of the synthetic cis-regulatory sequences to a reporter gene to find out how well each sequence performed. This revealed that the cis-regulatory sequences with the most binding sites and the tightest binding affinities work best, suggesting that transcription factors mainly work independently. There was evidence of some interaction between some transcription factors, because, of the synthetic sequences with four binding sites, some worked better than others, and there were patterns in the most effective binding site combinations. However, these effects were small and when King et al. went on to test sequences from the real mouse genome, the most important factor by far was the number of binding sites. Synthetic libraries of DNA sequences allow researchers to examine gene regulation more clearly than is possible in real genomes. Yet this approach does have its limitations and it is impossible to capture every type of cis-regulatory sequence in one library. The next step to extend this work is to combine the two approaches, taking sequences from the real genome and manipulating them one by one. This could help to unravel the rules that govern how cis-regulatory sequences work in real cells.
Collapse
Affiliation(s)
- Dana M King
- Edison Center for Genome Sciences and Systems Biology, Washington University in St. Louis, St. Louis, United States.,Department of Genetics, Washington University in St. Louis, St. Louis, United States
| | - Clarice Kit Yee Hong
- Edison Center for Genome Sciences and Systems Biology, Washington University in St. Louis, St. Louis, United States.,Department of Genetics, Washington University in St. Louis, St. Louis, United States
| | - James L Shepherdson
- Edison Center for Genome Sciences and Systems Biology, Washington University in St. Louis, St. Louis, United States.,Department of Genetics, Washington University in St. Louis, St. Louis, United States
| | - David M Granas
- Edison Center for Genome Sciences and Systems Biology, Washington University in St. Louis, St. Louis, United States.,Department of Genetics, Washington University in St. Louis, St. Louis, United States
| | - Brett B Maricque
- Edison Center for Genome Sciences and Systems Biology, Washington University in St. Louis, St. Louis, United States.,Department of Genetics, Washington University in St. Louis, St. Louis, United States
| | - Barak A Cohen
- Edison Center for Genome Sciences and Systems Biology, Washington University in St. Louis, St. Louis, United States.,Department of Genetics, Washington University in St. Louis, St. Louis, United States
| |
Collapse
|
104
|
Réda C, Wilczyński B. Automated inference of gene regulatory networks using explicit regulatory modules. J Theor Biol 2020; 486:110091. [PMID: 31790679 DOI: 10.1016/j.jtbi.2019.110091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/09/2019] [Accepted: 11/21/2019] [Indexed: 11/25/2022]
Abstract
Gene regulatory networks are a popular tool for modelling important biological phenomena, such as cell differentiation or oncogenesis. Efficient identification of the causal connections between genes, their products and regulating transcription factors, is key to understanding how defects in their function may trigger diseases. Modelling approaches should keep up with the ever more detailed descriptions of the biological phenomena at play, as provided by new experimental findings and technical improvements. In recent years, we have seen great improvements in mapping of specific binding sites of many transcription factors to distinct regulatory regions. Recent gene regulatory network models use binding measurements; but usually only to define gene-to-gene interactions, ignoring regulatory module structure. Moreover, current huge amount of transcriptomic data, and exploration of all possible cis-regulatory arrangements which can lead to the same transcriptomic response, makes manual model building both tedious and time-consuming. In our paper, we propose a method to specify possible regulatory connections in a given Boolean network, based on transcription factor binding evidence. This is implemented by an algorithm which expands a regular Boolean network model into a "cis-regulatory" Boolean network model. This expanded model explicitly defines regulatory regions as additional nodes in the network, and adds new, valuable biological insights to the system dynamics. The expanded model can automatically be compared with expression data. And, for each node, a regulatory function, consistent with the experimental data, can be found. The resulting models are usually more constrained (by biologically-motivated metadata), and can then be inspected in in silico simulations. The fully automated method for model identification has been implemented in Python, and the expansion algorithm in R. The method resorts to the Z3 Satisfiability Modulo Theories (SMT) solver, and is similar to the RE:IN application (Yordanov et al., 2016). It is available on https://github.com/regulomics/expansion-network.
Collapse
Affiliation(s)
- Clémence Réda
- École Normale Supérieure Paris-Saclay, 61 avenue du Président Wilson, 94230 Cachan, France.
| | - Bartek Wilczyński
- Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, ulica Stefana Banacha 2, Warsaw 02-097, Poland
| |
Collapse
|
105
|
Lees JG, Gardner DK, Harvey AJ. Nicotinamide adenine dinucleotide induces a bivalent metabolism and maintains pluripotency in human embryonic stem cells. Stem Cells 2020; 38:624-638. [PMID: 32003519 DOI: 10.1002/stem.3152] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 12/27/2019] [Indexed: 12/19/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD+ ) and its precursor metabolites are emerging as important regulators of both cell metabolism and cell state. Interestingly, the role of NAD+ in human embryonic stem cell (hESC) metabolism and the regulation of pluripotent cell state is unresolved. Here we show that NAD+ simultaneously increases hESC mitochondrial oxidative metabolism and partially suppresses glycolysis and stimulates amino acid turnover, doubling the consumption of glutamine. Concurrent with this metabolic remodeling, NAD+ increases hESC pluripotent marker expression and proliferation, inhibits BMP4-induced differentiation and reduces global histone 3 lysine 27 trimethylation, plausibly inducing an intermediate naïve-to-primed bivalent metabolism and pluripotent state. Furthermore, maintenance of NAD+ recycling via malate aspartate shuttle activity is identified as an absolute requirement for hESC self-renewal, responsible for 80% of the oxidative capacity of hESC mitochondria. Our findings implicate NAD+ in the regulation of cell state, suggesting that the hESC pluripotent state is dependent upon cellular NAD+ .
Collapse
Affiliation(s)
- Jarmon G Lees
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia.,O'Brien Institute Department, St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia.,Department of Medicine at St Vincent's Hospital, Melbourne Medical School, The University of Melbourne, Fitzroy, Victoria, Australia
| | - David K Gardner
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Alexandra J Harvey
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
106
|
Yang L, Zhu Y, Yu H, Cheng X, Chen S, Chu Y, Huang H, Zhang J, Li W. scMAGeCK links genotypes with multiple phenotypes in single-cell CRISPR screens. Genome Biol 2020; 21:19. [PMID: 31980032 PMCID: PMC6979386 DOI: 10.1186/s13059-020-1928-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 01/07/2020] [Indexed: 02/06/2023] Open
Abstract
We present scMAGeCK, a computational framework to identify genomic elements associated with multiple expression-based phenotypes in CRISPR/Cas9 functional screening that uses single-cell RNA-seq as readout. scMAGeCK outperforms existing methods, identifies genes and enhancers with known and novel functions in cell proliferation, and enables an unbiased construction of genotype-phenotype network. Single-cell CRISPR screening on mouse embryonic stem cells identifies key genes associated with different pluripotency states. Applying scMAGeCK on multiple datasets, we identify key factors that improve the power of single-cell CRISPR screening. Collectively, scMAGeCK is a novel tool to study genotype-phenotype relationships at a single-cell level.
Collapse
Affiliation(s)
- Lin Yang
- Center for Genetic Medicine Research, Children's National Hospital, 111 Michigan Ave NW, Washington, DC, 20010, USA.,Department of Genomics and Precision Medicine, George Washington University, 111 Michigan Ave NW, Washington, DC, 20010, USA.,Department of Biochemistry & Molecular Medicine, George Washington University, 2300 Eye St., NW, Washington, DC, 20037, USA
| | - Yuqing Zhu
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China.,Institute of Hematology, Zhejiang University, Hangzhou, 310058, Zhejiang, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, 314400, Zhejiang, China
| | - Hua Yu
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China.,Institute of Hematology, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Xiaolong Cheng
- Center for Genetic Medicine Research, Children's National Hospital, 111 Michigan Ave NW, Washington, DC, 20010, USA.,Department of Genomics and Precision Medicine, George Washington University, 111 Michigan Ave NW, Washington, DC, 20010, USA
| | - Sitong Chen
- Center for Genetic Medicine Research, Children's National Hospital, 111 Michigan Ave NW, Washington, DC, 20010, USA.,Department of Genomics and Precision Medicine, George Washington University, 111 Michigan Ave NW, Washington, DC, 20010, USA.,Department of Biochemistry & Molecular Medicine, George Washington University, 2300 Eye St., NW, Washington, DC, 20037, USA
| | - Yulan Chu
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China.,Institute of Hematology, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - He Huang
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China.,Institute of Hematology, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Jin Zhang
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China. .,Institute of Hematology, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| | - Wei Li
- Center for Genetic Medicine Research, Children's National Hospital, 111 Michigan Ave NW, Washington, DC, 20010, USA. .,Department of Genomics and Precision Medicine, George Washington University, 111 Michigan Ave NW, Washington, DC, 20010, USA.
| |
Collapse
|
107
|
Heo J, Noh B, Lee S, Lee H, Kim Y, Lim J, Ju H, Yu HY, Ryu C, Lee PCW, Jeong H, Oh Y, Kim K, Kim S, Son J, Hong B, Kim JS, Cho YM, Shin D. Phosphorylation of TFCP2L1 by CDK1 is required for stem cell pluripotency and bladder carcinogenesis. EMBO Mol Med 2020; 12:e10880. [PMID: 31709755 PMCID: PMC6949511 DOI: 10.15252/emmm.201910880] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 10/10/2019] [Accepted: 10/14/2019] [Indexed: 12/28/2022] Open
Abstract
Molecular programs involved in embryogenesis are frequently upregulated in oncogenic dedifferentiation and metastasis. However, their precise roles and regulatory mechanisms remain elusive. Here, we showed that CDK1 phosphorylation of TFCP2L1, a pluripotency-associated transcription factor, orchestrated pluripotency and cell-cycling in embryonic stem cells (ESCs) and was aberrantly activated in aggressive bladder cancers (BCs). In murine ESCs, the protein interactome and transcription targets of Tfcp2l1 indicated its involvement in cell cycle regulation. Tfcp2l1 was phosphorylated at Thr177 by Cdk1, which affected ESC cell cycle progression, pluripotency, and differentiation. The CDK1-TFCP2L1 pathway was activated in human BC cells, stimulating their proliferation, self-renewal, and invasion. Lack of TFCP2L1 phosphorylation impaired the tumorigenic potency of BC cells in a xenograft model. In patients with BC, high co-expression of TFCP2L1 and CDK1 was associated with unfavorable clinical characteristics including tumor grade, lymphovascular and muscularis propria invasion, and distant metastasis and was an independent prognostic factor for cancer-specific survival. These findings demonstrate the molecular and clinical significance of CDK1-mediated TFCP2L1 phosphorylation in stem cell pluripotency and in the tumorigenic stemness features associated with BC progression.
Collapse
Affiliation(s)
- Jinbeom Heo
- Department of Biomedical SciencesAsan Medical CenterUniversity of Ulsan College of MedicineSeoulKorea
- Department of PhysiologyUniversity of Ulsan College of MedicineSeoulKorea
| | - Byeong‐Joo Noh
- Department of PathologyGangneung Asan HospitalUniversity of Ulsan College of MedicineGangneungKorea
| | - Seungun Lee
- Department of Biomedical SciencesAsan Medical CenterUniversity of Ulsan College of MedicineSeoulKorea
- Department of PhysiologyUniversity of Ulsan College of MedicineSeoulKorea
| | - Hye‐Yeon Lee
- Department of Biomedical SciencesAsan Medical CenterUniversity of Ulsan College of MedicineSeoulKorea
- Department of PhysiologyUniversity of Ulsan College of MedicineSeoulKorea
| | - YongHwan Kim
- Department of Biomedical SciencesAsan Medical CenterUniversity of Ulsan College of MedicineSeoulKorea
- Department of PhysiologyUniversity of Ulsan College of MedicineSeoulKorea
| | - Jisun Lim
- Department of Biomedical SciencesAsan Medical CenterUniversity of Ulsan College of MedicineSeoulKorea
- Department of PhysiologyUniversity of Ulsan College of MedicineSeoulKorea
| | - Hyein Ju
- Department of Biomedical SciencesAsan Medical CenterUniversity of Ulsan College of MedicineSeoulKorea
- Department of PhysiologyUniversity of Ulsan College of MedicineSeoulKorea
| | - Hwan Yeul Yu
- Department of Biomedical SciencesAsan Medical CenterUniversity of Ulsan College of MedicineSeoulKorea
- Department of PhysiologyUniversity of Ulsan College of MedicineSeoulKorea
| | - Chae‐Min Ryu
- Department of Biomedical SciencesAsan Medical CenterUniversity of Ulsan College of MedicineSeoulKorea
- Department of PhysiologyUniversity of Ulsan College of MedicineSeoulKorea
| | - Peter CW Lee
- Department of Biomedical SciencesAsan Medical CenterUniversity of Ulsan College of MedicineSeoulKorea
| | - Hwangkyo Jeong
- Department of Convergence MedicineAsan Medical CenterUniversity of Ulsan College of MedicineSeoulKorea
| | - Yumi Oh
- Department of Convergence MedicineAsan Medical CenterUniversity of Ulsan College of MedicineSeoulKorea
| | - Kyunggon Kim
- Department of Convergence MedicineAsan Medical CenterUniversity of Ulsan College of MedicineSeoulKorea
| | - Sang‐Yeob Kim
- Department of Convergence MedicineAsan Medical CenterUniversity of Ulsan College of MedicineSeoulKorea
| | - Jaekyoung Son
- Department of Biomedical SciencesAsan Medical CenterUniversity of Ulsan College of MedicineSeoulKorea
| | - Bumsik Hong
- Department of UrologyAsan Medical CenterUniversity of Ulsan College of MedicineSeoulKorea
| | - Jong Soo Kim
- Department of Stem Cell BiologySchool of MedicineKonkuk UniversitySeoulKorea
| | - Yong Mee Cho
- Department of PathologyAsan Medical CenterUniversity of Ulsan College of MedicineSeoulKorea
| | - Dong‐Myung Shin
- Department of Biomedical SciencesAsan Medical CenterUniversity of Ulsan College of MedicineSeoulKorea
- Department of PhysiologyUniversity of Ulsan College of MedicineSeoulKorea
| |
Collapse
|
108
|
GP130 signaling and the control of naïve pluripotency in humans, monkeys, and pigs. Exp Cell Res 2020; 386:111712. [DOI: 10.1016/j.yexcr.2019.111712] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/31/2019] [Accepted: 11/02/2019] [Indexed: 12/19/2022]
|
109
|
Réda C, Kaufmann E, Delahaye-Duriez A. Machine learning applications in drug development. Comput Struct Biotechnol J 2019; 18:241-252. [PMID: 33489002 PMCID: PMC7790737 DOI: 10.1016/j.csbj.2019.12.006] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/10/2019] [Accepted: 12/10/2019] [Indexed: 02/07/2023] Open
Abstract
Due to the huge amount of biological and medical data available today, along with well-established machine learning algorithms, the design of largely automated drug development pipelines can now be envisioned. These pipelines may guide, or speed up, drug discovery; provide a better understanding of diseases and associated biological phenomena; help planning preclinical wet-lab experiments, and even future clinical trials. This automation of the drug development process might be key to the current issue of low productivity rate that pharmaceutical companies currently face. In this survey, we will particularly focus on two classes of methods: sequential learning and recommender systems, which are active biomedical fields of research.
Collapse
Affiliation(s)
- Clémence Réda
- NeuroDiderot, UMR 1141, Inserm, Université de Paris, Sorbonne Paris Cité, Hôpital Robert Debré, 48, boulevard Sérurier, Paris 75019, France
- Université Paris Diderot, Université de Paris, Sorbonne Paris Cité, 5, rue Thomas Mann, Paris 75013, France
| | - Emilie Kaufmann
- Univ. Lille, CNRS, Centrale Lille, Inria, UMR 9189 - CRIStAL - Centre de Recherche en Informatique Signal et Automatique de Lille, F-59000 Lille, France
| | - Andrée Delahaye-Duriez
- NeuroDiderot, UMR 1141, Inserm, Université de Paris, Sorbonne Paris Cité, Hôpital Robert Debré, 48, boulevard Sérurier, Paris 75019, France
- Université Paris 13, Sorbonne Paris Cité, UFR de santé, médecine et biologie humaine, Bobigny 93000, France
- Service histologie-embryologie-cytogénétique-biologie de la reproduction-CECOS, Hôpital Jean Verdier, AP-HP, Bondy 93140, France
| |
Collapse
|
110
|
Prajapati RS, Hintze M, Streit A. PRDM1 controls the sequential activation of neural, neural crest and sensory progenitor determinants. Development 2019; 146:dev.181107. [PMID: 31806661 DOI: 10.1242/dev.181107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 11/27/2019] [Indexed: 12/25/2022]
Abstract
During early embryogenesis, the ectoderm is rapidly subdivided into neural, neural crest and sensory progenitors. How the onset of lineage determinants and the loss of pluripotency markers are temporally and spatially coordinated in vivo is still debated. Here, we identify a crucial role for the transcription factor PRDM1 in the orderly transition from epiblast to defined neural lineages in chick. PRDM1 is initially expressed broadly in the entire epiblast, but becomes gradually restricted as cell fates are specified. We find that PRDM1 is required for the loss of some pluripotency markers and the onset of neural, neural crest and sensory progenitor specifier genes. PRDM1 directly activates their expression by binding to their promoter regions and recruiting the histone demethylase Kdm4a to remove repressive histone marks. However, once neural lineage determinants become expressed, they in turn repress PRDM1, whereas prolonged PRDM1 expression inhibits neural, neural crest and sensory progenitor genes, suggesting that its downregulation is necessary for cells to maintain their identity. Therefore, PRDM1 plays multiple roles during ectodermal cell fate allocation.
Collapse
Affiliation(s)
- Ravindra S Prajapati
- Centre for Craniofacial & Regenerative Biology, Faculty of Dental, Oral and Craniofacial Sciences, King's College London, London SE1 9RT, UK
| | - Mark Hintze
- Centre for Craniofacial & Regenerative Biology, Faculty of Dental, Oral and Craniofacial Sciences, King's College London, London SE1 9RT, UK
| | - Andrea Streit
- Centre for Craniofacial & Regenerative Biology, Faculty of Dental, Oral and Craniofacial Sciences, King's College London, London SE1 9RT, UK
| |
Collapse
|
111
|
Friman ET, Deluz C, Meireles-Filho ACA, Govindan S, Gardeux V, Deplancke B, Suter DM. Dynamic regulation of chromatin accessibility by pluripotency transcription factors across the cell cycle. eLife 2019; 8:e50087. [PMID: 31794382 PMCID: PMC6890464 DOI: 10.7554/elife.50087] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/18/2019] [Indexed: 12/12/2022] Open
Abstract
The pioneer activity of transcription factors allows for opening of inaccessible regulatory elements and has been extensively studied in the context of cellular differentiation and reprogramming. In contrast, the function of pioneer activity in self-renewing cell divisions and across the cell cycle is poorly understood. Here we assessed the interplay between OCT4 and SOX2 in controlling chromatin accessibility of mouse embryonic stem cells. We found that OCT4 and SOX2 operate in a largely independent manner even at co-occupied sites, and that their cooperative binding is mostly mediated indirectly through regulation of chromatin accessibility. Controlled protein degradation strategies revealed that the uninterrupted presence of OCT4 is required for post-mitotic re-establishment and interphase maintenance of chromatin accessibility, and that highly OCT4-bound enhancers are particularly vulnerable to transient loss of OCT4 expression. Our study sheds light on the constant pioneer activity required to maintain the dynamic pluripotency regulatory landscape in an accessible state.
Collapse
Affiliation(s)
- Elias T Friman
- Institute of Bioengineering, School of Life SciencesEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Cédric Deluz
- Institute of Bioengineering, School of Life SciencesEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Antonio CA Meireles-Filho
- Institute of Bioengineering, School of Life SciencesEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Subashika Govindan
- Institute of Bioengineering, School of Life SciencesEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Vincent Gardeux
- Institute of Bioengineering, School of Life SciencesEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Bart Deplancke
- Institute of Bioengineering, School of Life SciencesEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - David M Suter
- Institute of Bioengineering, School of Life SciencesEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| |
Collapse
|
112
|
A formal methods approach to predicting new features of the eukaryotic vesicle traffic system. ACTA INFORM 2019. [DOI: 10.1007/s00236-019-00357-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
113
|
Dong C, Fischer LA, Theunissen TW. Recent insights into the naïve state of human pluripotency and its applications. Exp Cell Res 2019; 385:111645. [PMID: 31585117 DOI: 10.1016/j.yexcr.2019.111645] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/12/2019] [Accepted: 09/21/2019] [Indexed: 01/06/2023]
Abstract
The past decade has seen significant interest in the isolation of pluripotent stem cells corresponding to various stages of mammalian embryonic development. Two distinct and well-defined pluripotent states can be derived from mouse embryos: "naïve" pluripotent cells with properties of pre-implantation epiblast, and "primed" pluripotent cells, resembling post-implantation epiblast. Prompted by the successful interconversion between these two stem cell states in the mouse system, several groups have devised strategies for inducing a naïve state of pluripotency in human pluripotent stem cells. Here, we review recent insights into the naïve state of human pluripotency, focusing on two methods that confer defining transcriptomic and epigenomic signatures of the pre-implantation embryo. The isolation of naïve human pluripotent stem cells offers a window into early developmental mechanisms that cannot be adequately modeled in primed cells, such as X chromosome reactivation, metabolic reprogramming, and the regulation of hominid-specific transposable elements. We outline key unresolved questions regarding naïve human pluripotency, including its extrinsic and intrinsic control mechanisms, potential for embryonic and extraembryonic differentiation, and general utility as a model system for human development and disease.
Collapse
Affiliation(s)
- Chen Dong
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Laura A Fischer
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Thorold W Theunissen
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
114
|
Sladitschek HL, Neveu PA. A gene regulatory network controls the balance between mesendoderm and ectoderm at pluripotency exit. Mol Syst Biol 2019; 15:e9043. [PMID: 31885203 PMCID: PMC6896232 DOI: 10.15252/msb.20199043] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 11/11/2019] [Accepted: 11/14/2019] [Indexed: 12/24/2022] Open
Abstract
During embryogenesis, differentiation of pluripotent cells into somatic cell types depends both on signaling cues and intrinsic gene expression programs. While the molecular underpinnings of pluripotency are well mapped, much less is known on how mouse embryonic stem cells (mESCs) differentiate. Using RNA-Seq profiling during specification to the three germ layers, we showed that mESCs switched on condition-specific gene expression programs from the onset of the differentiation procedure and that primed pluripotency did not constitute an obligatory intermediate state. After inferring the gene network controlling mESC differentiation, we tested the role of the highly connected nodes by deleting them in a triple knock-in Sox1-Brachyury-Eomes mESC line reporting on ectoderm, mesoderm, and endoderm fates. This led to the identification of regulators of mESC differentiation that acted at several levels: Sp1 as a global break on differentiation, Nr5a2 controlling ectoderm specification, and notably Fos:Jun and Zfp354c as opposite switches between ectoderm and mesendoderm fate.
Collapse
Affiliation(s)
- Hanna L Sladitschek
- European Molecular Biology LaboratoryCell Biology and Biophysics UnitHeidelbergGermany
- Present address:
Department of Molecular MedicineUniversity of Padua School of MedicinePaduaItaly
| | - Pierre A Neveu
- European Molecular Biology LaboratoryCell Biology and Biophysics UnitHeidelbergGermany
| |
Collapse
|
115
|
Abstract
Early embryogenesis is characterized by the segregation of cell lineages that fulfill critical roles in the establishment of pregnancy and development of the fetus. The formation of the blastocyst marks the emergence of extraembryonic precursors, needed for implantation, and of pluripotent cells, which differentiate toward the major lineages of the adult organism. The coordinated emergence of these cell types shows that these processes are broadly conserved in mammals. However, developmental heterochrony and changes in gene regulatory networks highlight unique evolutionary adaptations that may explain the diversity in placentation and in the mechanisms controlling pluripotency in mammals. The incorporation of new technologies, including single-cell omics, imaging, and gene editing, is instrumental for comparative embryology. Broadening the knowledge of mammalian embryology will provide new insights into the mechanisms driving evolution and development. This knowledge can be readily translated into biomedical and biotechnological applications in humans and livestock, respectively.
Collapse
Affiliation(s)
- Ramiro Alberio
- School of Biosciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom;
| |
Collapse
|
116
|
Deegan DF, Karbalaei R, Madzo J, Kulathinal RJ, Engel N. The developmental origins of sex-biased expression in cardiac development. Biol Sex Differ 2019; 10:46. [PMID: 31488212 PMCID: PMC6727560 DOI: 10.1186/s13293-019-0259-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/20/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Expression patterns between males and females vary in every adult tissue, even in organs with no conspicuous dimorphisms such as the heart. While studies of male and female differences have traditionally focused on the influence of sex hormones, these do not account for all the differences at the molecular and epigenetic levels. We previously reported that a substantial number of genes were differentially expressed in male and female mouse embryonic stem (ES) cells and revealed dose-dependent enhancer activity in response to Prdm14, a key pluripotency factor expressed more highly in female ES cells. In this work, we investigated the role of Prdm14 in establishing sex-specific gene expression networks. We surveyed the sex-specific landscape in early embryogenesis with special reference to cardiac development. We generated sex-specific co-expression networks from mouse ES cells, examined the presence of sex-specific chromatin domains, and analyzed previously published datasets from different developmental time points to characterize how sex-biased gene expression waxes and wanes to evaluate whether sex-biased networks are detectable throughout heart development. RESULTS We performed ChIP-seq on male and female mouse ES cells to determine differences in chromatin status. Our study reveals sex-biased histone modifications, underscoring the potential for the sex chromosome complement to prime the genome differently in early development with consequences for later expression biases. Upon differentiation of ES cells to cardiac precursors, we found sex-biased expression of key transcription and epigenetic factors, some of which persisted from the undifferentiated state. Using network analyses, we also found that Prdm14 plays a prominent role in regulating a subset of dimorphic expression patterns. To determine whether sex-biased expression is present throughout cardiogenesis, we re-analyzed data from two published studies that sampled the transcriptomes of mouse hearts from 8.5 days post-coitum embryos to neonates and adults. We found sex-biased expression at every stage in heart development, and interestingly, identified a subset of genes that exhibit the same bias across multiple cardiogenic stages. CONCLUSIONS Overall, our results support the existence of sexually dimorphic gene expression profiles and regulatory networks at every stage of cardiac development, some of which may be established in early embryogenesis and epigenetically perpetuated.
Collapse
Affiliation(s)
- Daniel F. Deegan
- Fels Institute for Cancer Research, Lewis Katz School of Medicine, Temple University, 3400 N. Broad St, Philadelphia, PA 19140 USA
| | - Reza Karbalaei
- Department of Biology, College of Science and Technology, Temple University, 1900 N. 12th St, Philadelphia, PA 19122 USA
| | - Jozef Madzo
- Fels Institute for Cancer Research, Lewis Katz School of Medicine, Temple University, 3400 N. Broad St, Philadelphia, PA 19140 USA
| | - Rob J. Kulathinal
- Department of Biology, College of Science and Technology, Temple University, 1900 N. 12th St, Philadelphia, PA 19122 USA
| | - Nora Engel
- Fels Institute for Cancer Research, Lewis Katz School of Medicine, Temple University, 3400 N. Broad St, Philadelphia, PA 19140 USA
| |
Collapse
|
117
|
Liu J, Zhu X, Li J, Liu Z, Liu Y, Xue F, Yang L, An L, Chen CH, Presicce GA, Zheng Q, Du F. Deriving rabbit embryonic stem cells by small molecule inhibitors. Am J Transl Res 2019; 11:5122-5133. [PMID: 31497228 PMCID: PMC6731393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 07/10/2019] [Indexed: 06/10/2023]
Abstract
We previously developed pluripotent rabbit embryonic stem cells (rbES) using a culture system supplemented with basic fibroblast growth factor (bFGF) and leukemia inhibitory factor (LIF), noggin and Y-27632 (referred to as iFLY). In present work, we explored multiple approaches to enhance the chance of deriving domed pluripotent rbES cells by inhibition of MEK, GSK, and PKC signaling pathways. Domed stated rbES were derived in defined medium supplemented with 15% KOSR, 103 IU/mL mouse LIF, 10 ng/mL bFGF and three inhibitors to the MEK (PD0325901, 1 µM), GSK3 (CHIR99021, 3 µM) and PKC (Gö6983, 5 µM) (3i). Domed rbES were passaged every 3-4 days till passage 3-4 for the designated experiments. We showed that bFGF and LIF are indispensable for the derivation and maintenance of rbES; whereas the 3i medium containing inhibitors to the MEK (PD0325901), GSK3 (CHIR99021) and PKC (Gö6983) were necessary for deriving domed rbES. Domed rbES possessed naïve ES markers as Rex1 and ERAS in addition to Oct4, Klf4, Sox 2 and c-myc by RT-PCR. Domed rbES showed positive staining for Rex1, Fgf4, Klf4, Nanog and Oct4 by immunofluorescence chemistry. Further deleting either one factor in 3i medium as CHIR99021, PD0325901, Gö6983 or bFGF resulted in disappearing of domed rbES colonies. The optimal concentrations of 3i contained 0.75 µM PD0325901, 2.25 µM CHIR99021, and 4.5 µM Gö6983. Our work, in combination of different inhibitors for deriving rabbit ES, supports that the network of signal pathways plays an important role in ES self-renew, propagation and maintenance, and sheds light on deriving authentic properties of rbES in an important yet understudied model animal species.
Collapse
Affiliation(s)
- Jiao Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal UniversityNanjing 210046, Jiangsu, P. R. China
| | - Xiumei Zhu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal UniversityNanjing 210046, Jiangsu, P. R. China
| | - Jinshan Li
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal UniversityNanjing 210046, Jiangsu, P. R. China
| | - Zhihui Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal UniversityNanjing 210046, Jiangsu, P. R. China
| | - Yanhong Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal UniversityNanjing 210046, Jiangsu, P. R. China
| | - Fei Xue
- Renova Life, Inc.Jacksonville, Florida 32258, USA
| | - Lan Yang
- Lannuo Biotechnologies Wuxi Inc.Wuxi 214000, Jiangsu, P. R. China
| | - Liyou An
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal UniversityNanjing 210046, Jiangsu, P. R. China
| | | | | | - Qiping Zheng
- Department of Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu UniversityZhenjiang 212013, Jiangsu, P. R. China
| | - Fuliang Du
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal UniversityNanjing 210046, Jiangsu, P. R. China
- Renova Life, Inc.Jacksonville, Florida 32258, USA
| |
Collapse
|
118
|
Tewary M, Shakiba N, Zandstra PW. Stem cell bioengineering: building from stem cell biology. Nat Rev Genet 2019; 19:595-614. [PMID: 30089805 DOI: 10.1038/s41576-018-0040-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
New fundamental discoveries in stem cell biology have yielded potentially transformative regenerative therapeutics. However, widespread implementation of stem-cell-derived therapeutics remains sporadic. Barriers that impede the development of these therapeutics can be linked to our incomplete understanding of how the regulatory networks that encode stem cell fate govern the development of the complex tissues and organs that are ultimately required for restorative function. Bioengineering tools, strategies and design principles represent core components of the stem cell bioengineering toolbox. Applied to the different layers of complexity present in stem-cell-derived systems - from gene regulatory networks in single stem cells to the systemic interactions of stem-cell-derived organs and tissues - stem cell bioengineering can address existing challenges and advance regenerative medicine and cellular therapies.
Collapse
Affiliation(s)
- Mukul Tewary
- Institute of Biomaterials and Biomedical Engineering (IBBME) and The Donnelly Centre for Cellular and Biomolecular Research (CCBR), University of Toronto, Toronto, Ontario, Canada.,Collaborative Program in Developmental Biology, University of Toronto, Toronto, Ontario, Canada
| | - Nika Shakiba
- Institute of Biomaterials and Biomedical Engineering (IBBME) and The Donnelly Centre for Cellular and Biomolecular Research (CCBR), University of Toronto, Toronto, Ontario, Canada
| | - Peter W Zandstra
- Institute of Biomaterials and Biomedical Engineering (IBBME) and The Donnelly Centre for Cellular and Biomolecular Research (CCBR), University of Toronto, Toronto, Ontario, Canada. .,Collaborative Program in Developmental Biology, University of Toronto, Toronto, Ontario, Canada. .,Michael Smith Laboratories and School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
119
|
Stem Cell Differentiation as a Non-Markov Stochastic Process. Cell Syst 2019; 5:268-282.e7. [PMID: 28957659 PMCID: PMC5624514 DOI: 10.1016/j.cels.2017.08.009] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 06/21/2017] [Accepted: 08/07/2017] [Indexed: 12/25/2022]
Abstract
Pluripotent stem cells can self-renew in culture and differentiate along all somatic lineages in vivo. While much is known about the molecular basis of pluripotency, the mechanisms of differentiation remain unclear. Here, we profile individual mouse embryonic stem cells as they progress along the neuronal lineage. We observe that cells pass from the pluripotent state to the neuronal state via an intermediate epiblast-like state. However, analysis of the rate at which cells enter and exit these observed cell states using a hidden Markov model indicates the presence of a chain of unobserved molecular states that each cell transits through stochastically in sequence. This chain of hidden states allows individual cells to record their position on the differentiation trajectory, thereby encoding a simple form of cellular memory. We suggest a statistical mechanics interpretation of these results that distinguishes between functionally distinct cellular “macrostates” and functionally similar molecular “microstates” and propose a model of stem cell differentiation as a non-Markov stochastic process. We profile individual stem cells as they differentiate along the neural lineage Regulatory network changes and increased cell variability accompany differentiation Analysis of dynamics with a hidden Markov model reveals unobserved molecular states We propose a model of stem cell differentiation as a non-Markov stochastic process
Collapse
|
120
|
Vardhana SA, Arnold PK, Rosen BP, Chen Y, Carey BW, Huangfu D, Carmona-Fontaine C, Thompson CB, Finley LW. Glutamine independence is a selectable feature of pluripotent stem cells. Nat Metab 2019; 1:676-687. [PMID: 31511848 PMCID: PMC6737941 DOI: 10.1038/s42255-019-0082-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Most rapidly proliferating mammalian cells rely on the oxidation of exogenous glutamine to support cell proliferation. We previously found that culture of mouse embryonic stem cells (ESCs) in the presence of inhibitors against MEK and GSK3β to maintain pluripotency reduces cellular reliance on glutamine for tricarboxylic acid (TCA) cycle anaplerosis, enabling ESCs to proliferate in the absence of exogenous glutamine. Here we show that reduced dependence on exogenous glutamine is a generalizable feature of pluripotent stem cells. Enhancing self-renewal, through either overexpression of pluripotency-associated transcription factors or altered signal transduction, decreases the utilization of glutamine-derived carbons in the TCA cycle. As a result, cells with the highest potential for self-renewal can be enriched by transient culture in glutamine-deficient media. During pluripotent cell culture or reprogramming to pluripotency, transient glutamine withdrawal selectively leads to the elimination of non-pluripotent cells. These data reveal that reduced dependence on glutamine anaplerosis is an inherent feature of self-renewing pluripotent stem cells and reveal a simple, non-invasive mechanism to select for mouse and human pluripotent stem cells within a heterogeneous population during both ESC passage and induced pluripotent cell reprogramming.
Collapse
Affiliation(s)
- Santosha A. Vardhana
- Cancer Biology and Genetics Program, Memorial Sloan
Kettering Cancer Center, New York, New York, USA
- Center for Epigenetics Research, Memorial Sloan Kettering
Cancer Center, New York, New York, USA
| | - Paige K. Arnold
- Center for Epigenetics Research, Memorial Sloan Kettering
Cancer Center, New York, New York, USA
- Cell Biology Program, Memorial Sloan Kettering Cancer
Center, New York, New York, USA
- Louis V. Gerstner, Jr., Graduate School of Biomedical
Sciences, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Bess P. Rosen
- Developmental Biology Program, Memorial Sloan Kettering
Cancer Center, New York, New York, USA
| | - Yanyang Chen
- Center for Epigenetics Research, Memorial Sloan Kettering
Cancer Center, New York, New York, USA
- Cell Biology Program, Memorial Sloan Kettering Cancer
Center, New York, New York, USA
| | - Bryce W. Carey
- Laboratory of Chromatin Biology and Epigenetics, The
Rockefeller University, New York, New York, USA
| | - Danwei Huangfu
- Developmental Biology Program, Memorial Sloan Kettering
Cancer Center, New York, New York, USA
| | - Carlos Carmona-Fontaine
- Center for Genomics & Systems Biology, Department of
Biology, New York University, New York, New York, USA
| | - Craig B. Thompson
- Cancer Biology and Genetics Program, Memorial Sloan
Kettering Cancer Center, New York, New York, USA
- Center for Epigenetics Research, Memorial Sloan Kettering
Cancer Center, New York, New York, USA
| | - Lydia W.S. Finley
- Center for Epigenetics Research, Memorial Sloan Kettering
Cancer Center, New York, New York, USA
- Cell Biology Program, Memorial Sloan Kettering Cancer
Center, New York, New York, USA
- Correspondence should be addressed to L.W.S.F.
()
| |
Collapse
|
121
|
Hashimoto M, Sasaki H. Epiblast Formation by TEAD-YAP-Dependent Expression of Pluripotency Factors and Competitive Elimination of Unspecified Cells. Dev Cell 2019; 50:139-154.e5. [PMID: 31204175 DOI: 10.1016/j.devcel.2019.05.024] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 03/29/2019] [Accepted: 05/10/2019] [Indexed: 01/15/2023]
Abstract
The epiblast is a pluripotent cell population first formed in preimplantation embryos, and its quality is important for proper development. Here, we examined the mechanisms of epiblast formation and found that the Hippo pathway transcription factor TEAD and its coactivator YAP regulate expression of pluripotency factors. After specification of the inner cell mass, YAP accumulates in the nuclei and activates TEAD. TEAD activity is required for strong expression of pluripotency factors and is variable in the forming epiblast. Cells showing low TEAD activity are eliminated from the epiblast through cell competition. Pluripotency factor expression and MYC control cell competition downstream of TEAD activity. Cell competition eliminates unspecified cells and is required for proper organization of the epiblast. These results suggest that induction of pluripotency factors by TEAD activity and elimination of unspecified cells via cell competition ensure the production of an epiblast with naive pluripotency.
Collapse
Affiliation(s)
- Masakazu Hashimoto
- Laboratory for Embryogenesis, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hiroshi Sasaki
- Laboratory for Embryogenesis, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
122
|
Bornelöv S, Selmi T, Flad S, Dietmann S, Frye M. Codon usage optimization in pluripotent embryonic stem cells. Genome Biol 2019; 20:119. [PMID: 31174582 PMCID: PMC6555954 DOI: 10.1186/s13059-019-1726-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 05/23/2019] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND The uneven use of synonymous codons in the transcriptome regulates the efficiency and fidelity of protein translation rates. Yet, the importance of this codon bias in regulating cell state-specific expression programmes is currently debated. Here, we ask whether different codon usage controls gene expression programmes in self-renewing and differentiating embryonic stem cells. RESULTS Using ribosome and transcriptome profiling, we identify distinct codon signatures during human embryonic stem cell differentiation. We find that cell state-specific codon bias is determined by the guanine-cytosine (GC) content of differentially expressed genes. By measuring the codon frequencies at the ribosome active sites interacting with transfer RNAs (tRNA), we further discover that self-renewing cells optimize translation of codons that depend on the inosine tRNA modification in the anticodon wobble position. Accordingly, inosine levels are highest in human pluripotent embryonic stem cells. This effect is conserved in mice and is independent of the differentiation stimulus. CONCLUSIONS We show that GC content influences cell state-specific mRNA levels, and we reveal how translational mechanisms based on tRNA modifications change codon usage in embryonic stem cells.
Collapse
Affiliation(s)
- Susanne Bornelöv
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Tommaso Selmi
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Sophia Flad
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Sabine Dietmann
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Michaela Frye
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK.
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| |
Collapse
|
123
|
Complementary Activity of ETV5, RBPJ, and TCF3 Drives Formative Transition from Naive Pluripotency. Cell Stem Cell 2019; 24:785-801.e7. [PMID: 31031137 PMCID: PMC6509416 DOI: 10.1016/j.stem.2019.03.017] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 11/01/2018] [Accepted: 03/21/2019] [Indexed: 02/02/2023]
Abstract
The gene regulatory network (GRN) of naive mouse embryonic stem cells (ESCs) must be reconfigured to enable lineage commitment. TCF3 sanctions rewiring by suppressing components of the ESC transcription factor circuitry. However, TCF3 depletion only delays and does not prevent transition to formative pluripotency. Here, we delineate additional contributions of the ETS-family transcription factor ETV5 and the repressor RBPJ. In response to ERK signaling, ETV5 switches activity from supporting self-renewal and undergoes genome relocation linked to commissioning of enhancers activated in formative epiblast. Independent upregulation of RBPJ prevents re-expression of potent naive factors, TBX3 and NANOG, to secure exit from the naive state. Triple deletion of Etv5, Rbpj, and Tcf3 disables ESCs, such that they remain largely undifferentiated and locked in self-renewal, even in the presence of differentiation stimuli. Thus, genetic elimination of three complementary drivers of network transition stalls developmental progression, emulating environmental insulation by small-molecule inhibitors.
Collapse
|
124
|
Meisig J, Blüthgen N. The gene regulatory network of mESC differentiation: a benchmark for reverse engineering methods. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0222. [PMID: 29786557 DOI: 10.1098/rstb.2017.0222] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2018] [Indexed: 01/30/2023] Open
Abstract
A large body of data have accumulated that characterize the gene regulatory network of stem cells. Yet, a comprehensive and integrative understanding of this complex network is lacking. Network reverse engineering methods that use transcriptome data to derive these networks may help to uncover the topology in an unbiased way. Many methods exist that use co-expression to reconstruct networks. However, it remains unclear how these methods perform in the context of stem cell differentiation, as most systematic assessments have been made for regulatory networks of unicellular organisms. Here, we report a systematic benchmark of different reverse engineering methods against functional data. We show that network pruning is critical for reconstruction performance. We also find that performance is similar for algorithms that use different co-expression measures, i.e. mutual information or correlation. In addition, different methods yield very different network topologies, highlighting the challenge of interpreting these resulting networks as a whole.This article is part of the theme issue 'Designer human tissue: coming to a lab near you'.
Collapse
Affiliation(s)
- Johannes Meisig
- Institute of Pathology, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.,IRI Life Sciences and Institute for Theoretical Biology, Humboldt University Berlin, Philippstr. 13/Haus 18, 10115 Berlin, Germany
| | - Nils Blüthgen
- Institute of Pathology, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany .,IRI Life Sciences and Institute for Theoretical Biology, Humboldt University Berlin, Philippstr. 13/Haus 18, 10115 Berlin, Germany
| |
Collapse
|
125
|
Epigenetic modulation of a hardwired 3D chromatin landscape in two naive states of pluripotency. Nat Cell Biol 2019; 21:568-578. [PMID: 31036938 DOI: 10.1038/s41556-019-0310-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 03/11/2019] [Indexed: 01/09/2023]
Abstract
The mechanisms underlying enhancer activation and the extent to which enhancer-promoter rewiring contributes to spatiotemporal gene expression are not well understood. Using integrative and time-resolved analyses we show that the extensive transcriptome and epigenome resetting during the conversion between 'serum' and '2i' states of mouse embryonic stem cells (ESCs) takes place with minimal enhancer-promoter rewiring that becomes more evident in primed-state pluripotency. Instead, differential gene expression is strongly linked to enhancer activation via H3K27ac. Conditional depletion of transcription factors and allele-specific enhancer analysis reveal an essential role for Esrrb in H3K27 acetylation and activation of 2i-specific enhancers. Restoration of a polymorphic ESRRB motif using CRISPR-Cas9 in a hybrid ESC line restores ESRRB binding and enhancer H3K27ac in an allele-specific manner but has no effect on chromatin interactions. Our study shows that enhancer activation in serum- and 2i-ESCs is largely driven by transcription factor binding and epigenetic marking in a hardwired network of chromatin interactions.
Collapse
|
126
|
Mulas C, Kalkan T, von Meyenn F, Leitch HG, Nichols J, Smith A. Defined conditions for propagation and manipulation of mouse embryonic stem cells. Development 2019; 146:dev173146. [PMID: 30914406 PMCID: PMC6451320 DOI: 10.1242/dev.173146] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 02/19/2019] [Indexed: 02/02/2023]
Abstract
The power of mouse embryonic stem (ES) cells to colonise the developing embryo has revolutionised mammalian developmental genetics and stem cell research. This power is vulnerable, however, to the cell culture environment, deficiencies in which can lead to cellular heterogeneity, adaptive phenotypes, epigenetic aberrations and genetic abnormalities. Here, we provide detailed methodologies for derivation, propagation, genetic modification and primary differentiation of ES cells in 2i or 2i+LIF media without serum or undefined serum substitutes. Implemented diligently, these procedures minimise variability and deviation, thereby improving the efficiency, reproducibility and biological validity of ES cell experimentation.
Collapse
Affiliation(s)
- Carla Mulas
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Tüzer Kalkan
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Ferdinand von Meyenn
- Department of Medical and Molecular Genetics, King's College London, London SE1 9RT, UK
| | - Harry G Leitch
- MRC London Institute of Medical Sciences (LMS), Du Cane Road, London W12 0NN, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Jennifer Nichols
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QR, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Austin Smith
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QR, UK
- Department of Biochemistry, University of Cambridge, Hopkins Building, Tennis Court Road, Cambridge CB2 1QW, UK
| |
Collapse
|
127
|
Li YP, Duan FF, Zhao YT, Gu KL, Liao LQ, Su HB, Hao J, Zhang K, Yang N, Wang Y. A TRIM71 binding long noncoding RNA Trincr1 represses FGF/ERK signaling in embryonic stem cells. Nat Commun 2019; 10:1368. [PMID: 30911006 PMCID: PMC6433952 DOI: 10.1038/s41467-019-08911-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/11/2019] [Indexed: 12/27/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) have emerged as important components of gene regulatory network in embryonic stem cells (ESCs). However, the function and molecular mechanism of lncRNAs are still largely unknown. Here we identifies Trincr1 (TRIM71 interacting long noncoding RNA 1) lncRNA that regulates the FGF/ERK signaling and self-renewal of ESCs. Trincr1 is exported by THOC complex to cytoplasm where it binds and represses TRIM71, leading to the downregulation of SHCBP1 protein. Knocking out Trincr1 leads to the upregulation of phosphorylated ERK and ERK pathway target genes and the decrease of ESC self-renewal, while knocking down Trim71 completely rescues the defects of Trincr1 knockout. Furthermore, ectopic expression of Trincr1 represses FGF/ERK signaling and the self-renewal of neural progenitor cells (NPCs). Together, this study highlights lncRNA as an important player in cell signaling network to coordinate cell fate specification. FGF signaling through ERK is known to promote the differentiation of embryonic stem cells (ES cells). Here, the authors demonstrate that the lncRNA Trincr1 binds and represses TRIM71 in ES cells, leading to downregulation of SHCBP1 protein, the reduction of FGF/ERK signaling and the promotion of self-renewal.
Collapse
Affiliation(s)
- Ya-Pu Li
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, 100871, Beijing, China
| | - Fei-Fei Duan
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, 100871, Beijing, China
| | - Yu-Ting Zhao
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, 100871, Beijing, China
| | - Kai-Li Gu
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, 100871, Beijing, China
| | - Le-Qi Liao
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, 100871, Beijing, China
| | - Huai-Bin Su
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, 100871, Beijing, China
| | - Jing Hao
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, 100871, Beijing, China
| | - Kun Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, 300353, Tianjin, China
| | - Na Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, 300353, Tianjin, China
| | - Yangming Wang
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, 100871, Beijing, China.
| |
Collapse
|
128
|
Yang F, Jin H, Que B, Chao Y, Zhang H, Ying X, Zhou Z, Yuan Z, Su J, Wu B, Zhang W, Qi D, Chen D, Min W, Lin S, Ji W. Dynamic m 6A mRNA methylation reveals the role of METTL3-m 6A-CDCP1 signaling axis in chemical carcinogenesis. Oncogene 2019; 38:4755-4772. [PMID: 30796352 PMCID: PMC6756049 DOI: 10.1038/s41388-019-0755-0] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 01/21/2019] [Accepted: 02/01/2019] [Indexed: 11/09/2022]
Abstract
N6-methyladenosine (m6A) is the most abundant internal modification in mammalian mRNAs. Despite its functional importance in various physiological events, the role of m6A in chemical carcinogenesis remains largely unknown. Here we profiled the dynamic m6A mRNA modification during cellular transformation induced by chemical carcinogens and identified a subset of cell transformation-related, concordantly modulated m6A sites. Notably, the increased m6A in 3'-UTR mRNA of oncogene CDCP1 was found in malignant transformed cells. Mechanistically, the m6A methyltransferase METTL3 and demethylases ALKBH5 mediate the m6A modification in 3'-UTR of CDCP1 mRNA. METTL3 and m6A reader YTHDF1 preferentially recognize m6A residues on CPCP1 3'-UTR and promote CDCP1 translation. We further showed that METTL3 and CDCP1 are upregulated in the bladder cancer patient samples and the expression of METTL3 and CDCP1 is correlated with the progression status of the bladder cancers. Inhibition of the METTL3-m6A-CDCP1 axis resulted in decreased growth and progression of chemical-transformed cells and bladder cancer cells. Most importantly, METTL3-m6A-CDCP1 axis has synergistic effect with chemical carcinogens in promoting malignant transformation of uroepithelial cells and bladder cancer tumorigenesis in vitro and in vivo. Taken together, our results identify dynamic m6A modification in chemical-induced malignant transformation and provide insight into critical roles of the METTL3-m6A-CDCP1 axis in chemical carcinogenesis.
Collapse
Affiliation(s)
- Fan Yang
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Huan Jin
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.,Department of Physiology, Zunyi Medical College, Guizhou, 563000, China
| | - Biao Que
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.,Guangdong Key Laboratory of Urology, Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510230, China
| | - Yinghui Chao
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Haiqing Zhang
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiaoling Ying
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhongyang Zhou
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zusen Yuan
- Guangdong Key Laboratory of Urology, Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510230, China
| | - Jialin Su
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Bin Wu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510080, China
| | - Wenjuan Zhang
- Department of Preventive Medicine, The School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Defeng Qi
- Guangdong Key Laboratory of Urology, Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510230, China
| | - Demeng Chen
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wang Min
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China. .,Department of Pathology and the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, 06519, USA.
| | - Shuibin Lin
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Weidong Ji
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
129
|
Wang X, Wang X, Zhang S, Sun H, Li S, Ding H, You Y, Zhang X, Ye SD. The transcription factor TFCP2L1 induces expression of distinct target genes and promotes self-renewal of mouse and human embryonic stem cells. J Biol Chem 2019; 294:6007-6016. [PMID: 30782842 DOI: 10.1074/jbc.ra118.006341] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 02/12/2019] [Indexed: 12/15/2022] Open
Abstract
TFCP2L1 (transcription factor CP2-like 1) is a transcriptional regulator critical for maintaining mouse and human embryonic stem cell (ESC) pluripotency. However, the direct TFCP2L1 target genes are uncharacterized. Here, using gene overexpression, immunoblotting, quantitative real-time PCR, ChIP, and reporter gene assays, we show that TFCP2L1 primarily induces estrogen-related receptor β (Esrrb) expression that supports mouse ESC identity and also selectively enhances Kruppel-like factor 4 (Klf4) expression and thereby promotes human ESC self-renewal. Specifically, we found that in mouse ESCs, TFCP2L1 binds directly to the Esrrb gene promoter and regulates its transcription. Esrrb knockdown impaired Tfcp2l1's ability to induce interleukin 6 family cytokine (leukemia inhibitory factor)-independent ESC self-renewal and to reprogram epiblast stem cells to naïve pluripotency. Conversely, Esrrb overexpression blocked differentiation induced by Tfcp2l1 down-regulation. Moreover, we identified Klf4 as a direct TFCP2L1 target in human ESCs, bypassing the requirement for activin A and basic fibroblast growth factor in short-term human ESC self-renewal. Enforced Klf4 expression recapitulated the self-renewal-promoting effect of Tfcp2l1, whereas Klf4 knockdown eliminated these effects and caused loss of colony-forming capability. These findings indicate that TFCP2L1 functions differently in naïve and primed pluripotency, insights that may help elucidate the different states of pluripotency.
Collapse
Affiliation(s)
- Xiaohu Wang
- From the Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei 230601
| | - Xiaoxiao Wang
- the Department of Anesthesiology, Anhui Provincial Hospital, First Affiliated Hospital of University of Science and Technology of China, Hefei 230001, China
| | - Shuyuan Zhang
- From the Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei 230601
| | - Hongwei Sun
- From the Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei 230601
| | - Sijia Li
- From the Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei 230601
| | - Huiwen Ding
- From the Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei 230601
| | - Yu You
- From the Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei 230601; the Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Xuewu Zhang
- the Department of Hematology, Institute of Hematology, First Affiliated Hospital of Zhejiang University, Hangzhou 310003, China
| | - Shou-Dong Ye
- From the Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei 230601; the Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, China.
| |
Collapse
|
130
|
Del Sol A, Okawa S, Ravichandran S. Computational Strategies for Niche-Dependent Cell Conversion to Assist Stem Cell Therapy. Trends Biotechnol 2019; 37:687-696. [PMID: 30782480 DOI: 10.1016/j.tibtech.2019.01.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 12/28/2022]
Abstract
The field of regenerative medicine has blossomed in recent decades. However, the ultimate goal of tissue regeneration - replacing damaged or aged cells with healthy functioning cells - still faces a number of challenges. In particular, better understanding of the role of the cellular niche in shaping stem cell phenotype and conversion would aid in improving current protocols for stem cell therapies. In this regard, the implementation of novel computational approaches that consider the niche effect on stem cells would be valuable. Here we discuss current problems in stem cell transplantation and rejuvenation, and we propose computational strategies to control niche-dependent cell conversion to overcome them.
Collapse
Affiliation(s)
- Antonio Del Sol
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg,7 Avenue des Hauts-Fourneaux, Esch-sur-Alzette, L-4362 Luxembourg City, Luxembourg; CIC bioGUNE,Bizkaia Technology Park, 801 Building, 48160 Derio, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao 48013, Spain; Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia.
| | - Satoshi Okawa
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg,7 Avenue des Hauts-Fourneaux, Esch-sur-Alzette, L-4362 Luxembourg City, Luxembourg
| | - Srikanth Ravichandran
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg,7 Avenue des Hauts-Fourneaux, Esch-sur-Alzette, L-4362 Luxembourg City, Luxembourg
| |
Collapse
|
131
|
Mathieu J, Detraux D, Kuppers D, Wang Y, Cavanaugh C, Sidhu S, Levy S, Robitaille AM, Ferreccio A, Bottorff T, McAlister A, Somasundaram L, Artoni F, Battle S, Hawkins RD, Moon RT, Ware CB, Paddison PJ, Ruohola-Baker H. Folliculin regulates mTORC1/2 and WNT pathways in early human pluripotency. Nat Commun 2019; 10:632. [PMID: 30733432 PMCID: PMC6367455 DOI: 10.1038/s41467-018-08020-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 12/05/2018] [Indexed: 01/05/2023] Open
Abstract
To reveal how cells exit human pluripotency, we designed a CRISPR-Cas9 screen exploiting the metabolic and epigenetic differences between naïve and primed pluripotent cells. We identify the tumor suppressor, Folliculin(FLCN) as a critical gene required for the exit from human pluripotency. Here we show that FLCN Knock-out (KO) hESCs maintain the naïve pluripotent state but cannot exit the state since the critical transcription factor TFE3 remains active in the nucleus. TFE3 targets up-regulated in FLCN KO exit assay are members of Wnt pathway and ESRRB. Treatment of FLCN KO hESC with a Wnt inhibitor, but not ESRRB/FLCN double mutant, rescues the cells, allowing the exit from the naïve state. Using co-immunoprecipitation and mass spectrometry analysis we identify unique FLCN binding partners. The interactions of FLCN with components of the mTOR pathway (mTORC1 and mTORC2) reveal a mechanism of FLCN function during exit from naïve pluripotency. The pathways involved in exit from pluripotency in human embryonic stem cells are poorly understood. Here, the authors performed a CRISPR-based screen to identify genes that promote exit from naïve pluripotency and find a role for folliculin (FLCN) by regulating the mTOR and Wnt pathways.
Collapse
Affiliation(s)
- J Mathieu
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA.,Department of Comparative Medicine, University of Washington, Seattle, WA, 98109, USA
| | - D Detraux
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA.,Laboratory of Cellular Biochemistry and Biology (URBC), University of Namur, Namur, 5000, Belgium
| | - D Kuppers
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Y Wang
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA.,Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA, 98109, USA
| | - C Cavanaugh
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA.,Department of Comparative Medicine, University of Washington, Seattle, WA, 98109, USA
| | - S Sidhu
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
| | - S Levy
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
| | - A M Robitaille
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA.,Department of Pharmacology, University of Washington, Seattle, WA, 98195, USA
| | - A Ferreccio
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
| | - T Bottorff
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
| | - A McAlister
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
| | - L Somasundaram
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
| | - F Artoni
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
| | - S Battle
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA.,Department of Medical Genetics & Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - R D Hawkins
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA.,Department of Medical Genetics & Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - R T Moon
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA.,Department of Pharmacology, University of Washington, Seattle, WA, 98195, USA
| | - C B Ware
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA.,Department of Comparative Medicine, University of Washington, Seattle, WA, 98109, USA
| | - P J Paddison
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA. .,Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA.
| | - H Ruohola-Baker
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA. .,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA.
| |
Collapse
|
132
|
De Los Angeles A, Elsworth JD, Redmond DE. ERK-independent African Green monkey pluripotent stem cells in a putative chimera-competent state. Biochem Biophys Res Commun 2019; 510:78-84. [DOI: 10.1016/j.bbrc.2019.01.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 01/07/2019] [Indexed: 12/11/2022]
|
133
|
Verstreken CM, Labouesse C, Agley CC, Chalut KJ. Embryonic stem cells become mechanoresponsive upon exit from ground state of pluripotency. Open Biol 2019; 9:180203. [PMID: 30958114 PMCID: PMC6367133 DOI: 10.1098/rsob.180203] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 12/10/2018] [Indexed: 12/24/2022] Open
Abstract
Stem cell fate decisions are driven by a broad array of signals, both chemical and mechanical. Although much progress has been made in our understanding of the impact of chemical signals on cell fate choice, much less is known about the role and influence of mechanical signalling, particularly in embryonic stem (ES) cells. Many studies use substrates with different stiffness to study mechanical signalling, but changing substrate stiffness can induce secondary effects which are difficult to disentangle from the direct effects of forces/mechanical signals. To probe the direct impact of mechanical stress on cells, we developed an adaptable cell substrate stretcher to exert specific, reproducible forces on cells. Using this device to test the response of ES cells to tensile strain, we found that cells experienced a transient influx of calcium followed by an upregulation of the so-called immediate and early genes. On longer time scales, however, ES cells in ground state conditions were largely insensitive to mechanical stress. Nonetheless, as ES cells exited the ground state, their susceptibility to mechanical signals increased, resulting in broad transcriptional changes. Our findings suggest that exit from ground state of pluripotency is unaffected by mechanical signals, but that these signals could become important during the next stage of lineage specification. A better understanding of this process could improve our understanding of cell fate choice in early development and improve protocols for differentiation guided by mechanical cues.
Collapse
Affiliation(s)
- C M Verstreken
- 1 Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK
- 2 Wellcome Trust/Medical Research Council Stem Cell Institute , University of Cambridge , Cambridge CB2 1QR , UK
| | - C Labouesse
- 2 Wellcome Trust/Medical Research Council Stem Cell Institute , University of Cambridge , Cambridge CB2 1QR , UK
| | - C C Agley
- 2 Wellcome Trust/Medical Research Council Stem Cell Institute , University of Cambridge , Cambridge CB2 1QR , UK
| | - K J Chalut
- 1 Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK
- 2 Wellcome Trust/Medical Research Council Stem Cell Institute , University of Cambridge , Cambridge CB2 1QR , UK
| |
Collapse
|
134
|
Stumpf PS, MacArthur BD. Machine Learning of Stem Cell Identities From Single-Cell Expression Data via Regulatory Network Archetypes. Front Genet 2019; 10:2. [PMID: 30723489 PMCID: PMC6349820 DOI: 10.3389/fgene.2019.00002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/07/2019] [Indexed: 01/04/2023] Open
Abstract
The molecular regulatory network underlying stem cell pluripotency has been intensively studied, and we now have a reliable ensemble model for the "average" pluripotent cell. However, evidence of significant cell-to-cell variability suggests that the activity of this network varies within individual stem cells, leading to differential processing of environmental signals and variability in cell fates. Here, we adapt a method originally designed for face recognition to infer regulatory network patterns within individual cells from single-cell expression data. Using this method we identify three distinct network configurations in cultured mouse embryonic stem cells-corresponding to naïve and formative pluripotent states and an early primitive endoderm state-and associate these configurations with particular combinations of regulatory network activity archetypes that govern different aspects of the cell's response to environmental stimuli, cell cycle status and core information processing circuitry. These results show how variability in cell identities arise naturally from alterations in underlying regulatory network dynamics and demonstrate how methods from machine learning may be used to better understand single cell biology, and the collective dynamics of cell communities.
Collapse
Affiliation(s)
- Patrick S. Stumpf
- Centre for Human Development, Stem Cells and Regeneration, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Ben D. MacArthur
- Centre for Human Development, Stem Cells and Regeneration, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
- Mathematical Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
135
|
Rackham OJ, Polo JM. Let it RE:IN: integrating experimental observations to predict pluripotency network behaviour. EMBO J 2019; 38:embj.2018101133. [PMID: 30545825 DOI: 10.15252/embj.2018101133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Owen Jl Rackham
- Program in Cardiovascular and Metabolic Disorders Duke-National University of Singapore Medical School, Singapore
| | - Jose M Polo
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Vic., Australia.,Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, Vic., Australia.,Australian Regenerative Medicine Institute, Monash University, Clayton, Vic., Australia
| |
Collapse
|
136
|
Abstract
Humans develop from a unique group of pluripotent cells in early embryos that can produce all cells of the human body. While pluripotency is only transiently manifest in the embryo, scientists have identified conditions that sustain pluripotency indefinitely in the laboratory. Pluripotency is not a monolithic entity, however, but rather comprises a spectrum of different cellular states. Questions regarding the scientific value of examining the continuum of pluripotent stem (PS) cell states have gained increased significance in light of attempts to generate interspecies chimeras between humans and animals. In this chapter, I review our ever-evolving understanding of the continuum of pluripotency. Historically, the discovery of two different PS cell states in mice fostered a general conception of pluripotency comprised of two distinct attractor states: naïve and primed. Naïve pluripotency has been defined by competence to form germline chimeras and governance by unique KLF-based transcription factor (TF) circuitry, whereas primed state is distinguished by an inability to generate chimeras and alternative TF regulation. However, the discovery of many alternative PS cell states challenges the concept of pluripotency as a binary property. Moreover, it remains unclear whether the current molecular criteria used to classify human naïve-like pluripotency also identify human chimera-competent PS cells. Therefore, I examine the pluripotency continuum more closely in light of recent advances in PS cell research and human interspecies chimera research.
Collapse
|
137
|
Abstract
The Reasoning Engine for Interaction Networks (RE:IN) is a tool that was developed initially for the study of pluripotency in mouse embryonic stem cells. A set of critical factors that regulate the pluripotent state had been identified experimentally, but it was not known how these genes interacted to stabilize self-renewal or commit the cell to differentiation. The methodology encapsulated in RE:IN enabled the exploration of a space of possible network interaction models, allowing for uncertainty in whether individual interactions exist between the pluripotency factors. This concept of an "abstract" network was combined with automated reasoning that allows the user to eliminate models that are inconsistent with experimental observations. The tool generalizes beyond the study of stem cell decision-making, allowing for the study of interaction networks more broadly across biology.
Collapse
|
138
|
Afanassieff M, Aksoy I, Beaujean N, Bourillot PY, Savatier P. [Fifty shades of pluripotency]. Med Sci (Paris) 2018; 34:944-953. [PMID: 30526839 DOI: 10.1051/medsci/2018240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Since the derivation of the first pluripotent embryonic stem cell lines in mice in the early 1980s, a plethora of lines has been obtained from various mammalian species including rodents, lagomorphs and primates. These lines are distinguished by their molecular and functional characteristics and correspond to the different pluripotency states observed in the developing embryo between the "blastocyst" and "gastrula" stages. These cell lines are positioned along a gradient, or continuum of pluripotency, the ends of which are epitomized by the naïve and primed states, respectively. Conventional human pluripotent stem cells self-renew in the primed state of pluripotency (ie, at the bottom of the gradient), a position that is undoubtedly the cause of their natural instability. Recent studies aim to generate naive human pluripotent stem cells (at the top of the gradient). The importance of this research in the perspective of medical applications will be discussed.
Collapse
Affiliation(s)
- Marielle Afanassieff
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, INRA USC 1361, 69500 Bron, France
| | - Irène Aksoy
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, INRA USC 1361, 69500 Bron, France
| | - Nathalie Beaujean
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, INRA USC 1361, 69500 Bron, France
| | - Pierre-Yves Bourillot
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, INRA USC 1361, 69500 Bron, France
| | - Pierre Savatier
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, INRA USC 1361, 69500 Bron, France
| |
Collapse
|
139
|
Evidence of Extracellular Vesicles Biogenesis and Release in Mouse Embryonic Stem Cells. Stem Cell Rev Rep 2018; 14:262-276. [PMID: 29032399 DOI: 10.1007/s12015-017-9776-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Extracellular vesicles (EVs) released by mouse embryonic stem cells (mESCs) are considered a source of bioactive molecules that modulate their microenvironment by acting on intercellular communication. Either intracellular endosomal machinery or their derived EVs have been considered a relevant system of signal circuits processing. Herein, we show that these features are found in mESCs. Ultrastructural analysis revealed structures and organelles of the endosomal system such as coated pits and endocytosis-related vesicles, prominent rough endoplasmic reticulum and Golgi apparatus, and multivesicular bodies (MVBs) containing either few or many intraluminal vesicles (ILVs) that could be released as exosomes to extracellular milieu. Besides, budding vesicles shed from the plasma membrane to the extracellular space is suggestive of microvesicle biogenesis in mESCs. mESCs and mouse blastocyst express specific markers of the Endosomal Sorting Complex Required for Transport (ESCRT) system. Ultrastructural analysis and Nanoparticle Tracking Analysis (NTA) of isolated EVs revealed a heterogeneous population of exosomes and microvesicles released by mESCs. These vesicles contain Wnt10b and the Notch ligand Delta-like 4 (DLL4) and also the co-chaperone stress inducible protein 1 (STI1) and its partner Hsp90. Wnt10b and Dll4 colocalize with EVs biogenesis markers in mESCs. Overall, the present study supports the function of the mESCs endocytic network and their EVs as players in stem cell biology.
Collapse
|
140
|
Bahat A, Goldman A, Zaltsman Y, Khan DH, Halperin C, Amzallag E, Krupalnik V, Mullokandov M, Silberman A, Erez A, Schimmer AD, Hanna JH, Gross A. MTCH2-mediated mitochondrial fusion drives exit from naïve pluripotency in embryonic stem cells. Nat Commun 2018; 9:5132. [PMID: 30510213 PMCID: PMC6277412 DOI: 10.1038/s41467-018-07519-w] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 11/07/2018] [Indexed: 01/16/2023] Open
Abstract
The role of mitochondria dynamics and its molecular regulators remains largely unknown during naïve-to-primed pluripotent cell interconversion. Here we report that mitochondrial MTCH2 is a regulator of mitochondrial fusion, essential for the naïve-to-primed interconversion of murine embryonic stem cells (ESCs). During this interconversion, wild-type ESCs elongate their mitochondria and slightly alter their glutamine utilization. In contrast, MTCH2-/- ESCs fail to elongate their mitochondria and to alter their metabolism, maintaining high levels of histone acetylation and expression of naïve pluripotency markers. Importantly, enforced mitochondria elongation by the pro-fusion protein Mitofusin (MFN) 2 or by a dominant negative form of the pro-fission protein dynamin-related protein (DRP) 1 is sufficient to drive the exit from naïve pluripotency of both MTCH2-/- and wild-type ESCs. Taken together, our data indicate that mitochondria elongation, governed by MTCH2, plays a critical role and constitutes an early driving force in the naïve-to-primed pluripotency interconversion of murine ESCs.
Collapse
Affiliation(s)
- Amir Bahat
- Department of Biological Regulation, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Andres Goldman
- Department of Biological Regulation, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Yehudit Zaltsman
- Department of Biological Regulation, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Dilshad H Khan
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Coral Halperin
- Department of Biological Regulation, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Emmanuel Amzallag
- Department of Biological Regulation, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Vladislav Krupalnik
- Department of Molecular Genetics, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Michael Mullokandov
- Department of Biological Regulation, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Alon Silberman
- Department of Biological Regulation, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Ayelet Erez
- Department of Biological Regulation, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Aaron D Schimmer
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Jacob H Hanna
- Department of Molecular Genetics, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Atan Gross
- Department of Biological Regulation, Weizmann Institute of Science, 7610001, Rehovot, Israel.
| |
Collapse
|
141
|
Dunn SJ, Li MA, Carbognin E, Smith A, Martello G. A common molecular logic determines embryonic stem cell self-renewal and reprogramming. EMBO J 2018; 38:embj.2018100003. [PMID: 30482756 PMCID: PMC6316172 DOI: 10.15252/embj.2018100003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 10/03/2018] [Accepted: 10/04/2018] [Indexed: 11/18/2022] Open
Abstract
During differentiation and reprogramming, new cell identities are generated by reconfiguration of gene regulatory networks. Here, we combined automated formal reasoning with experimentation to expose the logic of network activation during induction of naïve pluripotency. We find that a Boolean network architecture defined for maintenance of naïve state embryonic stem cells (ESC) also explains transcription factor behaviour and potency during resetting from primed pluripotency. Computationally identified gene activation trajectories were experimentally substantiated at single‐cell resolution by RT–qPCR. Contingency of factor availability explains the counterintuitive observation that Klf2, which is dispensable for ESC maintenance, is required during resetting. We tested 124 predictions formulated by the dynamic network, finding a predictive accuracy of 77.4%. Finally, we show that this network explains and predicts experimental observations of somatic cell reprogramming. We conclude that a common deterministic program of gene regulation is sufficient to govern maintenance and induction of naïve pluripotency. The tools exemplified here could be broadly applied to delineate dynamic networks underlying cell fate transitions.
Collapse
Affiliation(s)
- Sara-Jane Dunn
- Microsoft Research, Cambridge, UK.,Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Meng Amy Li
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Elena Carbognin
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Austin Smith
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK .,Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
142
|
Vipin D, Wang L, Devailly G, Michoel T, Joshi A. Causal Transcription Regulatory Network Inference Using Enhancer Activity as a Causal Anchor. Int J Mol Sci 2018; 19:ijms19113609. [PMID: 30445760 PMCID: PMC6274755 DOI: 10.3390/ijms19113609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/05/2018] [Accepted: 11/08/2018] [Indexed: 02/08/2023] Open
Abstract
Transcription control plays a crucial role in establishing a unique gene expression signature for each of the hundreds of mammalian cell types. Though gene expression data have been widely used to infer cellular regulatory networks, existing methods mainly infer correlations rather than causality. We developed statistical models and likelihood-ratio tests to infer causal gene regulatory networks using enhancer RNA (eRNA) expression information as a causal anchor and applied the framework to eRNA and transcript expression data from the FANTOM Consortium. Predicted causal targets of transcription factors (TFs) in mouse embryonic stem cells, macrophages and erythroblastic leukaemia overlapped significantly with experimentally-validated targets from ChIP-seq and perturbation data. We further improved the model by taking into account that some TFs might act in a quantitative, dosage-dependent manner, whereas others might act predominantly in a binary on/off fashion. We predicted TF targets from concerted variation of eRNA and TF and target promoter expression levels within a single cell type, as well as across multiple cell types. Importantly, TFs with high-confidence predictions were largely different between these two analyses, demonstrating that variability within a cell type is highly relevant for target prediction of cell type-specific factors. Finally, we generated a compendium of high-confidence TF targets across diverse human cell and tissue types.
Collapse
Affiliation(s)
- Deepti Vipin
- Division of Developmental Biology, The Roslin Institute, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG Scotland, UK.
| | - Lingfei Wang
- Division of Genetics and Genomics, The Roslin Institute, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG Scotland, UK.
| | - Guillaume Devailly
- Division of Developmental Biology, The Roslin Institute, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG Scotland, UK.
| | - Tom Michoel
- Division of Genetics and Genomics, The Roslin Institute, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG Scotland, UK.
- Computational Biology Unit, Department of Informatics, University of Bergen, DataBlokk, 5th Floor, Thormohlensgt 55, N-5008 Bergen, Norway.
| | - Anagha Joshi
- Division of Developmental Biology, The Roslin Institute, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG Scotland, UK.
- Computational Biology Unit, Department of Clinical Science, University of Bergen, DataBlokk, 5th Floor, Thormohlensgt 55, N-5008 Bergen, Norway.
| |
Collapse
|
143
|
Ma X, Ezer D, Adryan B, Stevens TJ. Canonical and single-cell Hi-C reveal distinct chromatin interaction sub-networks of mammalian transcription factors. Genome Biol 2018; 19:174. [PMID: 30359306 PMCID: PMC6203279 DOI: 10.1186/s13059-018-1558-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 10/04/2018] [Indexed: 12/20/2022] Open
Abstract
Background Transcription factor (TF) binding to regulatory DNA sites is a key determinant of cell identity within multi-cellular organisms and has been studied extensively in relation to site affinity and chromatin modifications. There has been a strong focus on the inference of TF-gene regulatory networks and TF-TF physical interaction networks. Here, we present a third type of TF network, the spatial network of co-localized TF binding sites within the three-dimensional genome. Results Using published canonical Hi-C data and single-cell genome structures, we assess the spatial proximity of a genome-wide array of potential TF-TF co-localizations in human and mouse cell lines. For individual TFs, the abundance of occupied binding sites shows a positive correspondence with their clustering in three dimensions, and this is especially apparent for weak TF binding sites and at enhancer regions. An analysis between different TF proteins identifies significantly proximal pairs, which are enriched in reported physical interactions. Furthermore, clustering of different TFs based on proximity enrichment identifies two partially segregated co-localization sub-networks, involving different TFs in different cell types. Using data from both human lymphoblastoid cells and mouse embryonic stem cells, we find that these sub-networks are enriched within, but not exclusive to, different chromosome sub-compartments that have been identified previously in Hi-C data. Conclusions This suggests that the association of TFs within spatial networks is closely coupled to gene regulatory networks. This applies to both differentiated and undifferentiated cells and is a potential causal link between lineage-specific TF binding and chromosome sub-compartment segregation. Electronic supplementary material The online version of this article (10.1186/s13059-018-1558-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaoyan Ma
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Daphne Ezer
- The Alan Turing Institute for Data Science, British Library, 96 Euston Rd, Kings Cross, London, NW1 2DB, UK.,Department of Statistics, University of Warwick, Coventry, CV4 7AL, UK
| | - Boris Adryan
- Merck KGaA, Chief Digital Office, 64293, Darmstadt, Germany
| | - Tim J Stevens
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
144
|
Hackett JA, Huang Y, Günesdogan U, Gretarsson KA, Kobayashi T, Surani MA. Tracing the transitions from pluripotency to germ cell fate with CRISPR screening. Nat Commun 2018; 9:4292. [PMID: 30327475 PMCID: PMC6191455 DOI: 10.1038/s41467-018-06230-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 08/08/2018] [Indexed: 12/26/2022] Open
Abstract
Early mammalian development entails transit through naive pluripotency towards post-implantation epiblast, which subsequently gives rise to primordial germ cells (PGC), the founding germline population. To investigate these cell fate transitions, we developed a compound-reporter to track cellular identity in a model of PGC specification (PGC-like cells; PGCLC), and coupled it with genome-wide CRISPR screening. We identify key genes both for exit from pluripotency and for acquisition of PGC fate, and characterise a central role for the transcription regulators Nr5a2 and Zfp296 in germline ontogeny. Abrogation of these genes results in widespread activation (Nr5a2−/−) or inhibition (Zfp296−/−) of WNT pathway factors in PGCLC. This leads to aberrant upregulation of the somatic programme or failure to activate germline genes, respectively, and consequently loss of germ cell identity. Our study places Zfp296 and Nr5a2 as key components of an expanded PGC gene regulatory network, and outlines a transferable strategy for identifying critical regulators of complex cell fate decisions. Primordial Germ Cell-Like Cells (PGCLCs) are an in vitro model for primordial germ cell development. Here, the authors couple a novel compound reporter with CRISPR screening to identify key genes for exit from pluripotency and acquisition of PGCLC fate; specifically identifying Nr5a2 and Zfp296.
Collapse
Affiliation(s)
- Jamie A Hackett
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK. .,Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory (EMBL), via Ramarini 32, 00015, Rome, Italy. .,Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK.
| | - Yun Huang
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK.,Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK
| | - Ufuk Günesdogan
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK.,Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK.,Department of Developmental Biology, University of Göttingen, Göttingen Center for Molecular Biosciences, Justus-von-Liebig Weg 11, 37077, Göttingen, Germany
| | - Kristjan A Gretarsson
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory (EMBL), via Ramarini 32, 00015, Rome, Italy
| | - Toshihiro Kobayashi
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK.,Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK.,Center for Genetic Analysis of Behaviour, National Institute for Physiological Sciences, 5-1 Higashiyama Myodaiji, Okazaki, Aichi, 444-8787, Japan
| | - M Azim Surani
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK. .,Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK.
| |
Collapse
|
145
|
Köksal AS, Beck K, Cronin DR, McKenna A, Camp ND, Srivastava S, MacGilvray ME, Bodík R, Wolf-Yadlin A, Fraenkel E, Fisher J, Gitter A. Synthesizing Signaling Pathways from Temporal Phosphoproteomic Data. Cell Rep 2018; 24:3607-3618. [PMID: 30257219 PMCID: PMC6295338 DOI: 10.1016/j.celrep.2018.08.085] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 04/16/2018] [Accepted: 08/29/2018] [Indexed: 12/25/2022] Open
Abstract
We present a method for automatically discovering signaling pathways from time-resolved phosphoproteomic data. The Temporal Pathway Synthesizer (TPS) algorithm uses constraint-solving techniques first developed in the context of formal verification to explore paths in an interaction network. It systematically eliminates all candidate structures for a signaling pathway where a protein is activated or inactivated before its upstream regulators. The algorithm can model more than one hundred thousand dynamic phosphosites and can discover pathway members that are not differentially phosphorylated. By analyzing temporal data, TPS defines signaling cascades without needing to experimentally perturb individual proteins. It recovers known pathways and proposes pathway connections when applied to the human epidermal growth factor and yeast osmotic stress responses. Independent kinase mutant studies validate predicted substrates in the TPS osmotic stress pathway.
Collapse
Affiliation(s)
- Ali Sinan Köksal
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, USA
| | - Kirsten Beck
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Dylan R Cronin
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA; Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, USA
| | - Aaron McKenna
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Nathan D Camp
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Saurabh Srivastava
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, USA
| | | | - Rastislav Bodík
- Paul G. Allen Center for Computer Science and Engineering, University of Washington, Seattle, WA, USA
| | | | - Ernest Fraenkel
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jasmin Fisher
- Microsoft Research, Cambridge, UK; Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Anthony Gitter
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA; Morgridge Institute for Research, Madison, WI, USA.
| |
Collapse
|
146
|
van Mierlo G, Wester RA, Marks H. Quantitative subcellular proteomics using SILAC reveals enhanced metabolic buffering in the pluripotent ground state. Stem Cell Res 2018; 33:135-145. [PMID: 30352361 DOI: 10.1016/j.scr.2018.09.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 08/13/2018] [Accepted: 09/17/2018] [Indexed: 11/26/2022] Open
Abstract
The ground state of pluripotency is defined as a minimal unrestricted epigenetic state as present in the Inner Cell Mass. Mouse embryonic stem cells (ESCs) grown in a defined serum-free medium with two kinase inhibitors ("2i ESCs") have been postulated to reflect ground-state pluripotency, whereas ESCs grown in the presence of serum ("serum ESCs") share more similarities with post-implantation epiblast cells. Pluripotency results from an intricate interplay between cytoplasmic, nuclear and chromatin-associated proteins. Here, we perform quantitative subcellular proteomics to gain insight in the molecular mechanisms sustaining the pluripotent states reflected by 2i and serum ESCs. We describe a full SILAC workflow and quality controls for proteomic comparison of 2i and serum ESCs, allowing subcellular proteomics of the cytoplasm, nucleoplasm and chromatin. The obtained quantitative information revealed increased levels of naïve pluripotency factors on the chromatin of 2i ESCs. Surprisingly, the cytoplasmic proteome suggests that 2i and serum ESCs utilize distinct metabolic programs, which include upregulation of free radical buffering by the glutathione pathway in 2i ESCs. Through induction of intracellular radicals, we show that the altered metabolic environment renders 2i ESCs less sensitive to oxidative stress. Altogether, this work provides novel insights into the proteomic landscape underlying ground state pluripotency.
Collapse
Affiliation(s)
- Guido van Mierlo
- Department of Molecular Biology, Faculty of Science, Radboud University, Radboud Institute for Molecular Life Sciences (RIMLS), Geert Grooteplein 26/28, 6525GA Nijmegen, the Netherlands
| | - Roelof A Wester
- Department of Molecular Biology, Faculty of Science, Radboud University, Radboud Institute for Molecular Life Sciences (RIMLS), Geert Grooteplein 26/28, 6525GA Nijmegen, the Netherlands
| | - Hendrik Marks
- Department of Molecular Biology, Faculty of Science, Radboud University, Radboud Institute for Molecular Life Sciences (RIMLS), Geert Grooteplein 26/28, 6525GA Nijmegen, the Netherlands.
| |
Collapse
|
147
|
Sutherland L, Ruhe M, Gattegno-Ho D, Mann K, Greaves J, Koscielniak M, Meek S, Lu Z, Waterfall M, Taylor R, Tsakiridis A, Brown H, Maciver SK, Joshi A, Clinton M, Chamberlain LH, Smith A, Burdon T. LIF-dependent survival of embryonic stem cells is regulated by a novel palmitoylated Gab1 signalling protein. J Cell Sci 2018; 131:jcs222257. [PMID: 30154213 PMCID: PMC6176924 DOI: 10.1242/jcs.222257] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 08/17/2018] [Indexed: 01/25/2023] Open
Abstract
The cytokine leukaemia inhibitory factor (LIF) promotes self-renewal of mouse embryonic stem cells (ESCs) through activation of the transcription factor Stat3. However, the contribution of other ancillary pathways stimulated by LIF in ESCs, such as the MAPK and PI3K pathways, is less well understood. We show here that naive-type mouse ESCs express high levels of a novel effector of the MAPK and PI3K pathways. This effector is an isoform of the Gab1 (Grb2-associated binder protein 1) adaptor protein that lacks the N-terminal pleckstrin homology (PH) membrane-binding domain. Although not essential for rapid unrestricted growth of ESCs under optimal conditions, the novel Gab1 variant (Gab1β) is required for LIF-mediated cell survival under conditions of limited nutrient availability. This enhanced survival is absolutely dependent upon a latent palmitoylation site that targets Gab1β directly to ESC membranes. These results show that constitutive association of Gab1 with membranes through a novel mechanism promotes LIF-dependent survival of murine ESCs in nutrient-poor conditions.
Collapse
Affiliation(s)
- Linda Sutherland
- Division of Developmental Biology, The Roslin Institute and R(D)VS, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Madeleine Ruhe
- Division of Developmental Biology, The Roslin Institute and R(D)VS, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Daniela Gattegno-Ho
- Division of Developmental Biology, The Roslin Institute and R(D)VS, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Karanjit Mann
- Division of Developmental Biology, The Roslin Institute and R(D)VS, University of Edinburgh, Midlothian, EH25 9RG, UK
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | - Jennifer Greaves
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | - Magdalena Koscielniak
- Division of Developmental Biology, The Roslin Institute and R(D)VS, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Stephen Meek
- Division of Developmental Biology, The Roslin Institute and R(D)VS, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Zen Lu
- Division of Genetics and Genomics, The Roslin Institute and R(D)SVS, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Martin Waterfall
- Division of Developmental Biology, The Roslin Institute and R(D)VS, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Ryan Taylor
- Division of Developmental Biology, The Roslin Institute and R(D)VS, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Anestis Tsakiridis
- Department of Biomedical Science, The University of Sheffield, Alfred Denny Building, Western Bank, Sheffield S10 2TN, UK
| | - Helen Brown
- Division of Genetics and Genomics, The Roslin Institute and R(D)SVS, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Sutherland K Maciver
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Anagha Joshi
- Division of Developmental Biology, The Roslin Institute and R(D)VS, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Michael Clinton
- Division of Developmental Biology, The Roslin Institute and R(D)VS, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Luke H Chamberlain
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | - Austin Smith
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge CB2 1QT, UK
| | - Tom Burdon
- Division of Developmental Biology, The Roslin Institute and R(D)VS, University of Edinburgh, Midlothian, EH25 9RG, UK
| |
Collapse
|
148
|
Brackston RD, Lakatos E, Stumpf MPH. Transition state characteristics during cell differentiation. PLoS Comput Biol 2018; 14:e1006405. [PMID: 30235202 PMCID: PMC6168170 DOI: 10.1371/journal.pcbi.1006405] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 10/02/2018] [Accepted: 07/27/2018] [Indexed: 12/11/2022] Open
Abstract
Models describing the process of stem-cell differentiation are plentiful, and may offer insights into the underlying mechanisms and experimentally observed behaviour. Waddington's epigenetic landscape has been providing a conceptual framework for differentiation processes since its inception. It also allows, however, for detailed mathematical and quantitative analyses, as the landscape can, at least in principle, be related to mathematical models of dynamical systems. Here we focus on a set of dynamical systems features that are intimately linked to cell differentiation, by considering exemplar dynamical models that capture important aspects of stem cell differentiation dynamics. These models allow us to map the paths that cells take through gene expression space as they move from one fate to another, e.g. from a stem-cell to a more specialized cell type. Our analysis highlights the role of the transition state (TS) that separates distinct cell fates, and how the nature of the TS changes as the underlying landscape changes-change that can be induced by e.g. cellular signaling. We demonstrate that models for stem cell differentiation may be interpreted in terms of either a static or transitory landscape. For the static case the TS represents a particular transcriptional profile that all cells approach during differentiation. Alternatively, the TS may refer to the commonly observed period of heterogeneity as cells undergo stochastic transitions.
Collapse
Affiliation(s)
- Rowan D. Brackston
- Centre for Integrative Systems Biology and Bioinformatics, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Eszter Lakatos
- Centre for Integrative Systems Biology and Bioinformatics, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Michael P. H. Stumpf
- Centre for Integrative Systems Biology and Bioinformatics, Department of Life Sciences, Imperial College London, London, United Kingdom
- School of BioScience and School of Mathematics and Statistics, University of Melbourne, Melbourne, Australia
| |
Collapse
|
149
|
Liu D, Wang X, He D, Sun C, He X, Yan L, Li Y, Han JDJ, Zheng P. Single-cell RNA-sequencing reveals the existence of naive and primed pluripotency in pre-implantation rhesus monkey embryos. Genome Res 2018; 28:1481-1493. [PMID: 30154223 PMCID: PMC6169889 DOI: 10.1101/gr.233437.117] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 08/27/2018] [Indexed: 01/23/2023]
Abstract
Naive pluripotency exists in epiblast cells of mouse pre-implantation embryos. However, whether the naive pluripotency is transient or nonexistent in primate embryos remains unclear. Using RNA-seq in single blastomeres from 16-cell embryos through to hatched blastocysts of rhesus monkey, we constructed the lineage segregation roadmap in which the specification of trophectoderm, epiblast, and primitive endoderm is initiated simultaneously at the early blastocyst stage. Importantly, we uncovered the existence of distinct pluripotent states in monkey pre-implantation embryos. At the early- and middle-blastocyst stages, the epiblast cells have the transcriptome features of naive pluripotency, whereas they display a continuum of primed pluripotency characteristics at the late and hatched blastocyst stages. Moreover, we identified potential regulators that might play roles in the transition from naive to primed pluripotency. Thus, our study suggests the transient existence of naive pluripotency in primates and proposes an ideal time window for derivation of primate embryonic stem cells with naive pluripotency.
Collapse
Affiliation(s)
- Denghui Liu
- Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xinyi Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Dajian He
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,University of Chinese Academy of Sciences, Beijing 101408, China
| | - Chunli Sun
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xiechao He
- Primate Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Lanzhen Yan
- Primate Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Yizhou Li
- Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jing-Dong J Han
- Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ping Zheng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Primate Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| |
Collapse
|
150
|
Nett IR, Mulas C, Gatto L, Lilley KS, Smith A. Negative feedback via RSK modulates Erk-dependent progression from naïve pluripotency. EMBO Rep 2018; 19:e45642. [PMID: 29895711 PMCID: PMC6073214 DOI: 10.15252/embr.201745642] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 05/16/2018] [Accepted: 05/18/2018] [Indexed: 01/08/2023] Open
Abstract
Mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) signalling is implicated in initiation of embryonic stem (ES) cell differentiation. The pathway is subject to complex feedback regulation. Here, we examined the ERK-responsive phosphoproteome in ES cells and identified the negative regulator RSK1 as a prominent target. We used CRISPR/Cas9 to create combinatorial mutations in RSK family genes. Genotypes that included homozygous null mutations in Rps6ka1, encoding RSK1, resulted in elevated ERK phosphorylation. These RSK-depleted ES cells exhibit altered kinetics of transition into differentiation, with accelerated downregulation of naïve pluripotency factors, precocious expression of transitional epiblast markers and early onset of lineage specification. We further show that chemical inhibition of RSK increases ERK phosphorylation and expedites ES cell transition without compromising multilineage potential. These findings demonstrate that the ERK activation profile influences the dynamics of pluripotency progression and highlight the role of signalling feedback in temporal control of cell state transitions.
Collapse
Affiliation(s)
- Isabelle Re Nett
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Carla Mulas
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Laurent Gatto
- Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Cambridge, UK
- Computational Proteomics Unit, Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Cambridge, UK
| | - Kathryn S Lilley
- Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Austin Smith
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|