101
|
Regulation of mTORC1 by the Rag GTPases. Biochem Soc Trans 2023; 51:655-664. [PMID: 36929165 DOI: 10.1042/bst20210038] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/18/2023]
Abstract
The Rag GTPases are an evolutionarily conserved family that play a crucial role in amino acid sensing by the mammalian target of rapamycin complex 1 (mTORC1). mTORC1 is often referred to as the master regulator of cell growth. mTORC1 hyperactivation is observed in multiple diseases such as cancer, obesity, metabolic disorders, and neurodegeneration. The Rag GTPases sense amino acid levels and form heterodimers, where RagA or RagB binds to RagC or RagD, to recruit mTORC1 to the lysosome where it becomes activated. Here, we review amino acid signaling to mTORC1 through the Rag GTPases.
Collapse
|
102
|
Influence of mTOR-regulated anabolic pathways on equine skeletal muscle health. J Equine Vet Sci 2023; 124:104281. [PMID: 36905972 DOI: 10.1016/j.jevs.2023.104281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
Skeletal muscle is a highly dynamic organ that is essential for locomotion as well as endocrine regulation in all populations of horses. However, despite the importance of adequate muscle development and maintenance, the mechanisms underlying protein anabolism in horses on different diets, exercise programs, and at different life stages remain obscure. Mechanistic target of rapamycin (mTOR) is a key component of the protein synthesis pathway and is regulated by biological factors such as insulin and amino acid availability. Providing a diet ample in vital amino acids, such as leucine and glutamine, is essential in activating sensory pathways that recruit mTOR to the lysosome and assist in the translation of important downstream targets. When the diet is well balanced, mitochondrial biogenesis and protein synthesis are activated in response to increased exercise bouts in the performing athlete. It is important to note that the mTOR kinase pathways are multi-faceted and very complex, with several binding partners and targets that lead to specific functions in protein turnover of the cell, and ultimately, the capacity to maintain or grow muscle mass. Further, these pathways are likely altered across the lifespan, with an emphasis of growth in young horses while decreases in musculature with aged horses appears to be attributable to degradation or other regulators of protein synthesis rather than alterations in the mTOR pathway. Previous work has begun to pinpoint ways in which the mTOR pathway is influenced by diet, exercise, and age; however, future research is warranted to quantify the functional outcomes related to changes in mTOR. Promisingly, this could provide direction on appropriate management techniques to support skeletal muscle growth and maximize athletic potential in differing equine populations.
Collapse
|
103
|
Romano PS, Akematsu T, Besteiro S, Bindschedler A, Carruthers VB, Chahine Z, Coppens I, Descoteaux A, Alberto Duque TL, He CY, Heussler V, Le Roch KG, Li FJ, de Menezes JPB, Menna-Barreto RFS, Mottram JC, Schmuckli-Maurer J, Turk B, Tavares Veras PS, Salassa BN, Vanrell MC. Autophagy in protists and their hosts: When, how and why? AUTOPHAGY REPORTS 2023; 2:2149211. [PMID: 37064813 PMCID: PMC10104450 DOI: 10.1080/27694127.2022.2149211] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/15/2022] [Indexed: 03/12/2023]
Abstract
Pathogenic protists are a group of organisms responsible for causing a variety of human diseases including malaria, sleeping sickness, Chagas disease, leishmaniasis, and toxoplasmosis, among others. These diseases, which affect more than one billion people globally, mainly the poorest populations, are characterized by severe chronic stages and the lack of effective antiparasitic treatment. Parasitic protists display complex life-cycles and go through different cellular transformations in order to adapt to the different hosts they live in. Autophagy, a highly conserved cellular degradation process, has emerged as a key mechanism required for these differentiation processes, as well as other functions that are crucial to parasite fitness. In contrast to yeasts and mammals, protist autophagy is characterized by a modest number of conserved autophagy-related proteins (ATGs) that, even though, can drive the autophagosome formation and degradation. In addition, during their intracellular cycle, the interaction of these pathogens with the host autophagy system plays a crucial role resulting in a beneficial or harmful effect that is important for the outcome of the infection. In this review, we summarize the current state of knowledge on autophagy and other related mechanisms in pathogenic protists and their hosts. We sought to emphasize when, how, and why this process takes place, and the effects it may have on the parasitic cycle. A better understanding of the significance of autophagy for the protist life-cycle will potentially be helpful to design novel anti-parasitic strategies.
Collapse
Affiliation(s)
- Patricia Silvia Romano
- Laboratorio de Biología de Trypanosoma cruzi y de la célula hospedadora. Instituto de Histología y Embriología de Mendoza. Universidad Nacional de Cuyo. (IHEM-CONICET-UNCUYO). Facultad de Ciencias Médicas. Universidad Nacional de Cuyo. Av. Libertador 80 (5500), Mendoza, Argentina
| | - Takahiko Akematsu
- Department of Biosciences, College of Humanities and Sciences, Nihon University, Tokyo, Japan
| | | | | | - Vern B Carruthers
- Department of Microbiology and Immunology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Zeinab Chahine
- Department of Molecular, Cell and Systems Biology, University of California Riverside, CA, USA
| | - Isabelle Coppens
- Department of Molecular Microbiology and Immunology. Department of Molecular Microbiology and Immunology. Johns Hopkins Malaria Research Institute. Johns Hopkins University Bloomberg School of Public Health. Baltimore 21205, MD, USA
| | - Albert Descoteaux
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Laval, QC
| | - Thabata Lopes Alberto Duque
- Autophagy Inflammation and Metabolism Center, University of New Mexico Health Sciences Center, Albuquerque, NM, USA; Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Cynthia Y He
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Volker Heussler
- Institute of Cell Biology.University of Bern. Baltzerstr. 4 3012 Bern
| | - Karine G Le Roch
- Department of Molecular, Cell and Systems Biology, University of California Riverside, CA, USA
| | - Feng-Jun Li
- Department of Biological Sciences, National University of Singapore, Singapore
| | | | | | - Jeremy C Mottram
- York Biomedical Research Institute, Department of Biology, University of York, York, UK
| | | | - Boris Turk
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia
| | - Patricia Sampaio Tavares Veras
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia
- National Institute of Science and Technology of Tropical Diseases - National Council for Scientific Research and Development (CNPq)
| | - Betiana Nebai Salassa
- Laboratorio de Biología de Trypanosoma cruzi y de la célula hospedadora. Instituto de Histología y Embriología de Mendoza. Universidad Nacional de Cuyo. (IHEM-CONICET-UNCUYO). Facultad de Ciencias Médicas. Universidad Nacional de Cuyo. Av. Libertador 80 (5500), Mendoza, Argentina
| | - María Cristina Vanrell
- Laboratorio de Biología de Trypanosoma cruzi y de la célula hospedadora. Instituto de Histología y Embriología de Mendoza. Universidad Nacional de Cuyo. (IHEM-CONICET-UNCUYO). Facultad de Ciencias Médicas. Universidad Nacional de Cuyo. Av. Libertador 80 (5500), Mendoza, Argentina
| |
Collapse
|
104
|
Steidl ME, Nigro EA, Nielsen AK, Pagliarini R, Cassina L, Lampis M, Podrini C, Chiaravalli M, Mannella V, Distefano G, Yang M, Aslanyan M, Musco G, Roepman R, Frezza C, Boletta A. Primary cilia sense glutamine availability and respond via asparagine synthetase. Nat Metab 2023; 5:385-397. [PMID: 36879119 PMCID: PMC10042734 DOI: 10.1038/s42255-023-00754-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 02/02/2023] [Indexed: 03/08/2023]
Abstract
Depriving cells of nutrients triggers an energetic crisis, which is resolved by metabolic rewiring and organelle reorganization. Primary cilia are microtubule-based organelles at the cell surface, capable of integrating multiple metabolic and signalling cues, but their precise sensory function is not fully understood. Here we show that primary cilia respond to nutrient availability and adjust their length via glutamine-mediated anaplerosis facilitated by asparagine synthetase (ASNS). Nutrient deprivation causes cilia elongation, mediated by reduced mitochondrial function, ATP availability and AMPK activation independently of mTORC1. Of note, glutamine removal and replenishment is necessary and sufficient to induce ciliary elongation or retraction, respectively, under nutrient stress conditions both in vivo and in vitro by restoring mitochondrial anaplerosis via ASNS-dependent glutamate generation. Ift88-mutant cells lacking cilia show reduced glutamine-dependent mitochondrial anaplerosis during metabolic stress, due to reduced expression and activity of ASNS at the base of cilia. Our data indicate a role for cilia in responding to, and possibly sensing, cellular glutamine levels via ASNS during metabolic stress.
Collapse
Affiliation(s)
- Maria Elena Steidl
- Molecular Basis of Cystic Kidney Disorders Unit, Division of Genetics and Cell Biology, IRCCS, San Raffaele Scientific Institute, Milan, Italy
- Ph.D Program in Molecular and Cellular Biology, Vita-Salute San Raffaele University, Milan, Italy
| | - Elisa A Nigro
- Molecular Basis of Cystic Kidney Disorders Unit, Division of Genetics and Cell Biology, IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - Anne Kallehauge Nielsen
- Molecular Basis of Cystic Kidney Disorders Unit, Division of Genetics and Cell Biology, IRCCS, San Raffaele Scientific Institute, Milan, Italy
- Ph.D Program in Molecular and Cellular Biology, Vita-Salute San Raffaele University, Milan, Italy
| | - Roberto Pagliarini
- Molecular Basis of Cystic Kidney Disorders Unit, Division of Genetics and Cell Biology, IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - Laura Cassina
- Molecular Basis of Cystic Kidney Disorders Unit, Division of Genetics and Cell Biology, IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - Matteo Lampis
- Molecular Basis of Cystic Kidney Disorders Unit, Division of Genetics and Cell Biology, IRCCS, San Raffaele Scientific Institute, Milan, Italy
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Christine Podrini
- Molecular Basis of Cystic Kidney Disorders Unit, Division of Genetics and Cell Biology, IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - Marco Chiaravalli
- Molecular Basis of Cystic Kidney Disorders Unit, Division of Genetics and Cell Biology, IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - Valeria Mannella
- Center for Omics Sciences, IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - Gianfranco Distefano
- Molecular Basis of Cystic Kidney Disorders Unit, Division of Genetics and Cell Biology, IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - Ming Yang
- MRC, Cancer Unit Cambridge, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, UK
- CECAD Research Center, Cologne, Germany
| | - Mariam Aslanyan
- Department of Human Genetics and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Giovanna Musco
- Biomolecular Nuclear Magnetic Resonance Unit, Division of Genetics and Cell Biology, IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - Ronald Roepman
- Department of Human Genetics and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Christian Frezza
- MRC, Cancer Unit Cambridge, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, UK
- CECAD Research Center, Cologne, Germany
| | - Alessandra Boletta
- Molecular Basis of Cystic Kidney Disorders Unit, Division of Genetics and Cell Biology, IRCCS, San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
105
|
Ferroptosis-Related Gene SLC1A5 Is a Novel Prognostic Biomarker and Correlates with Immune Microenvironment in HBV-Related HCC. J Clin Med 2023; 12:jcm12051715. [PMID: 36902506 PMCID: PMC10003624 DOI: 10.3390/jcm12051715] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
(1) Background: Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide with limited treatment satisfaction. Finding new therapeutic targets has remained a major challenge. Ferroptosis is an iron-dependent cell death program that plays a regulatory role in HBV infection and HCC development. It is necessary to classify the roles of ferroptosis or ferroptosis-related genes (FRGs) in HBV-related HCC progression. (2) Methods: We conducted a matched case-control study from the TCGA database, retrospectively collecting demographic data and common clinical indicators from all subjects. The Kaplan-Meier curve, univariate and multivariate cox regression analysis of the FRGs were used to explore the risk factors for HBV-related HCC. The CIBERSORT algorithm and TIDE algorithm were executed to evaluate the functions of FRGs in the tumor-immune environment. (3) Results: A total of 145 HBV-positive HCC patients and 266 HBV-negative HCC patients were enrolled in our study. Four ferroptosis related genes (FANCD2, CS, CISD1 and SLC1A5) were positively correlated with the progression of HBV-related HCC. Among them, SLC1A5 was an independent risk factor for HBV-related HCC, and correlated with poor prognosis, advanced progression and an immunosuppression microenvironment. (4) Conclusions: Here, we revealed that a ferroptosis-related gene, SLC1A5, may be an excellent predictor of HBV-related HCC and may provide insight into the development of innovative possible therapeutic techniques.
Collapse
|
106
|
Hou YC, Wu JM, Chen KY, Wu MH, Yang PJ, Lee PC, Chen PD, Yeh SL, Lin MT. Glutamine and leucine administration attenuates muscle atrophy in sepsis. Life Sci 2023; 314:121327. [PMID: 36584912 DOI: 10.1016/j.lfs.2022.121327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/02/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
AIMS This study investigated whether l-glutamine (Gln) and/or l-leucine (Leu) administration could attenuate muscle atrophy in a mouse model of cecal ligation and puncture (CLP)-induced sepsis. MATERIALS AND METHODS Septic mice were given a daily intraperitoneal injection of Gln, Leu, or Gln plus Leu, and mice were sacrificed on either day 1 or 4 after CLP. Blood and muscles were collected for analysis of amino acid contents and markers related to protein degradation, muscle regeneration, and protein synthesis. KEY FINDINGS Leu treatment alone increased both muscle mass and total muscle protein content on day 4 after CLP. Gln administration reduced muscular Gln contents on day 1 and enhanced plasma Gln levels on day 4. Higher plasma branched-chain amino acid (BCAA) abundances and lower muscular BCAA levels were observed in Leu-treated mice on day 4. Gln and Leu individually suppressed muscle expressions of the E3 ubiquitin ligase genes, Trim63 and Fbxo32, on day 4 after CLP. As to muscle expressions of myogenic genes, both Gln and Leu upregulated Myog expression on day 1, but Leu alone enhanced Myf5 gene expression, whereas Gln plus Leu increased MyoD and Myog expression levels on day 4. Akt/mammalian target of rapamycin (mTOR) signaling was only activated by Gln and Leu when individually administered. SIGNIFICANCE Gln and/or Leu administration reduces sepsis-induced muscle degradation and promotes myogenic gene expressions. Leu treatment alone had more-pronounced effects on maintaining muscle mass during sepsis. A combination of Gln and Leu failed to show synergistic effects on alleviating sepsis-induced muscle atrophy.
Collapse
Affiliation(s)
- Yu-Chen Hou
- Master Program in Food Safety, College of Nutrition, Taipei Medical University, Taipei, Taiwan; School of Food Safety, College of Nutrition, Taipei Medical University, Taipei, Taiwan; Nutrition Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Jin-Ming Wu
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kuen-Yuan Chen
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ming-Hsun Wu
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Po-Jen Yang
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Po-Chu Lee
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Po-Da Chen
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Sung-Ling Yeh
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ming-Tsan Lin
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
107
|
Liu H, Zhu Z, Xue Q, Yang F, Cao W, Xue Z, Liu X, Zheng H. Picornavirus infection enhances aspartate by the SLC38A8 transporter to promote viral replication. PLoS Pathog 2023; 19:e1011126. [PMID: 36735752 PMCID: PMC9931120 DOI: 10.1371/journal.ppat.1011126] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 02/15/2023] [Accepted: 01/17/2023] [Indexed: 02/04/2023] Open
Abstract
Foot-and-mouth disease, a class of animal diseases, is caused by foot-and-mouth disease virus (FMDV). The metabolic changes during FMDV infection remain unclear. Here, PK-15 cells, serum, and tonsils infected with FMDV were analyzed by metabolomics. A total of 284 metabolites in cells were significantly changed after FMDV infection, and most of them belong to amino acids and nucleotides. Further studies showed that FMDV infection significantly enhanced aspartate in vitro and in vivo. The amino acid transporter solute carrier family 38 member 8 (SLC38A8) was responsible for FMDV-upregulated aspartate. Enterovirus 71 (EV71) and Seneca Valley virus (SVV) infection also enhanced aspartate by SLC38A8. Aspartate aminotransferase activity was also elevated in FMDV-, EV71-, and SVV-infected cells, which may lead to reversible transition between the TCA cycle and amino acids synthesis. Aspartate and SLC38A8 were essential for FMDV, EV71, and SVV replication in cells. In addition, aspartate and SLC38A8 also promoted FMDV and EV71 replication in mice. Detailed analysis indicated that FMDV infection promoted the transfer of mTOR to lysosome to enhance interaction between mTOR and Rheb, and activated PI3K/AKT/TSC2/Rheb/mTOR/p70S6K1 pathway to promote viral replication. The mTORC1 signaling pathway was responsible for FMDV-induced SLC38A8 protein expression. For the first time, our data identified metabolic changes during FMDV infection. These data identified a novel mechanism used by FMDV to upregulate aspartate to promote viral replication and will provide new perspectives for developing new preventive strategies.
Collapse
Affiliation(s)
- Huisheng Liu
- State Key Laboratory of Veterinary Etiological Biology; College of Veterinary Medicine, Lanzhou University, WOAH/National reference laboratory for foot-and-mouth disease; Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zixiang Zhu
- State Key Laboratory of Veterinary Etiological Biology; College of Veterinary Medicine, Lanzhou University, WOAH/National reference laboratory for foot-and-mouth disease; Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Qiao Xue
- State Key Laboratory of Veterinary Etiological Biology; College of Veterinary Medicine, Lanzhou University, WOAH/National reference laboratory for foot-and-mouth disease; Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Fan Yang
- State Key Laboratory of Veterinary Etiological Biology; College of Veterinary Medicine, Lanzhou University, WOAH/National reference laboratory for foot-and-mouth disease; Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Weijun Cao
- State Key Laboratory of Veterinary Etiological Biology; College of Veterinary Medicine, Lanzhou University, WOAH/National reference laboratory for foot-and-mouth disease; Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zhaoning Xue
- State Key Laboratory of Veterinary Etiological Biology; College of Veterinary Medicine, Lanzhou University, WOAH/National reference laboratory for foot-and-mouth disease; Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiangtao Liu
- State Key Laboratory of Veterinary Etiological Biology; College of Veterinary Medicine, Lanzhou University, WOAH/National reference laboratory for foot-and-mouth disease; Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology; College of Veterinary Medicine, Lanzhou University, WOAH/National reference laboratory for foot-and-mouth disease; Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
108
|
Gao X, Lei G, Wang B, Deng Z, Karges J, Xiao H, Tan D. Encapsulation of Platinum Prodrugs into PC7A Polymeric Nanoparticles Combined with Immune Checkpoint Inhibitors for Therapeutically Enhanced Multimodal Chemotherapy and Immunotherapy by Activation of the STING Pathway. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205241. [PMID: 36504435 PMCID: PMC9896041 DOI: 10.1002/advs.202205241] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Tumor immunotherapy has emerged as one of the most promising therapeutic methods to treat cancer. Despite its clinical application, the immunosuppressive tumor microenvironment compromises the therapeutic efficiency of this technique. To overcome this limitation, many research efforts have been devoted to the development of agents that reprogram the immunosuppressive tumor microenvironment through novel mechanisms. Over the last decade, compounds that intervene through the immunogenic stimulator of interferon genes (STING) pathway have emerged with potential for clinical development. Herein, the encapsulation of chemotherapeutic platinum complexes with a polymer with a cyclic seven-membered ring (PC7A)-based polymer into pH-responsive nanoparticles for multimodal therapeutically enhanced chemotherapy and immunotherapy is presented. This study represents the first nanomaterial with a dual activation mechanism of the STING pathway through DNA fragmentation as well as PC7A binding. The combination of these nanoparticles with immune checkpoint inhibitors demonstrates to nearly fully eradicate a colorectal tumor inside the mouse model by chemotherapy and immunotherapy using the STING pathway.
Collapse
Affiliation(s)
- Xiangjie Gao
- Affiliated Hospital of Xiangnan UniversityChenzhouHunan Province423000China
- Xiangnan UniversityChenzhouHunan Province423000China
- Key Laboratory of Medical Imaging and Artificial Intelligence of Hunan ProvinceChenzhouHunan Province423000China
- Hunan Engineering Research Center of Advanced Embedded Computing and Intelligent Medical Systems, Xiangnan UniversityChenzhouHunan Province423000China
| | - Guanxiong Lei
- Affiliated Hospital of Xiangnan UniversityChenzhouHunan Province423000China
- Xiangnan UniversityChenzhouHunan Province423000China
- Key Laboratory of Medical Imaging and Artificial Intelligence of Hunan ProvinceChenzhouHunan Province423000China
- Hunan Engineering Research Center of Advanced Embedded Computing and Intelligent Medical Systems, Xiangnan UniversityChenzhouHunan Province423000China
| | - Bin Wang
- Beijing National Laboratory for Molecular SciencesState Key Laboratory of Polymer Physics and ChemistryInstitute of ChemistryChinese Academy of SciencesBeijing100190China
| | - Zhong Deng
- Affiliated Hospital of Xiangnan UniversityChenzhouHunan Province423000China
- Xiangnan UniversityChenzhouHunan Province423000China
- Key Laboratory of Medical Imaging and Artificial Intelligence of Hunan ProvinceChenzhouHunan Province423000China
- Hunan Engineering Research Center of Advanced Embedded Computing and Intelligent Medical Systems, Xiangnan UniversityChenzhouHunan Province423000China
| | - Johannes Karges
- Faculty of Chemistry and BiochemistryRuhr‐University BochumUniversitätsstrasse 15044780BochumGermany
| | - Haihua Xiao
- Beijing National Laboratory for Molecular SciencesState Key Laboratory of Polymer Physics and ChemistryInstitute of ChemistryChinese Academy of SciencesBeijing100190China
| | - Donghui Tan
- Affiliated Hospital of Xiangnan UniversityChenzhouHunan Province423000China
- Xiangnan UniversityChenzhouHunan Province423000China
- Key Laboratory of Medical Imaging and Artificial Intelligence of Hunan ProvinceChenzhouHunan Province423000China
- Hunan Engineering Research Center of Advanced Embedded Computing and Intelligent Medical Systems, Xiangnan UniversityChenzhouHunan Province423000China
| |
Collapse
|
109
|
De Santis MC, Gozzelino L, Margaria JP, Costamagna A, Ratto E, Gulluni F, Di Gregorio E, Mina E, Lorito N, Bacci M, Lattanzio R, Sala G, Cappello P, Novelli F, Giovannetti E, Vicentini C, Andreani S, Delfino P, Corbo V, Scarpa A, Porporato PE, Morandi A, Hirsch E, Martini M. Lysosomal lipid switch sensitises to nutrient deprivation and mTOR targeting in pancreatic cancer. Gut 2023; 72:360-371. [PMID: 35623884 PMCID: PMC9872233 DOI: 10.1136/gutjnl-2021-325117] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 05/07/2022] [Indexed: 01/27/2023]
Abstract
OBJECTIVE Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease with limited therapeutic options. However, metabolic adaptation to the harsh PDAC environment can expose liabilities useful for therapy. Targeting the key metabolic regulator mechanistic target of rapamycin complex 1 (mTORC1) and its downstream pathway shows efficacy only in subsets of patients but gene modifiers maximising response remain to be identified. DESIGN Three independent cohorts of PDAC patients were studied to correlate PI3K-C2γ protein abundance with disease outcome. Mechanisms were then studied in mouse (KPC mice) and cellular models of PDAC, in presence or absence of PI3K-C2γ (WT or KO). PI3K-C2γ-dependent metabolic rewiring and its impact on mTORC1 regulation were assessed in conditions of limiting glutamine availability. Finally, effects of a combination therapy targeting mTORC1 and glutamine metabolism were studied in WT and KO PDAC cells and preclinical models. RESULTS PI3K-C2γ expression was reduced in about 30% of PDAC cases and was associated with an aggressive phenotype. Similarly, loss of PI3K-C2γ in KPC mice enhanced tumour development and progression. The increased aggressiveness of tumours lacking PI3K-C2γ correlated with hyperactivation of mTORC1 pathway and glutamine metabolism rewiring to support lipid synthesis. PI3K-C2γ-KO tumours failed to adapt to metabolic stress induced by glutamine depletion, resulting in cell death. CONCLUSION Loss of PI3K-C2γ prevents mTOR inactivation and triggers tumour vulnerability to RAD001 (mTOR inhibitor) and BPTES/CB-839 (glutaminase inhibitors). Therefore, these results might open the way to personalised treatments in PDAC with PI3K-C2γ loss.
Collapse
Affiliation(s)
- Maria Chiara De Santis
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy
| | - Luca Gozzelino
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy
| | - Jean Piero Margaria
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy
| | - Andrea Costamagna
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy
| | - Edoardo Ratto
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy
| | - Federico Gulluni
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy
| | - Enza Di Gregorio
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy
| | - Erica Mina
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy
| | - Nicla Lorito
- Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Firenze, Italy
| | - Marina Bacci
- Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Firenze, Italy
| | - Rossano Lattanzio
- Department of Innovative Technologies in Medicine and Dentistry, Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio", Chieti, Italy, Chieti, Italy
| | - Gianluca Sala
- Department of Innovative Technologies in Medicine and Dentistry, Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio", Chieti, Italy, Chieti, Italy
| | - Paola Cappello
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy
| | - Francesco Novelli
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University, De Boelelaan 1117, 1081, HV, Amsterdam, The Netherlands
- Cancer Pharmacology Lab, Fondazione Pisana per la Scienza, Pisa, Italy
| | | | - Silvia Andreani
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Pietro Delfino
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Vincenzo Corbo
- ARC-Net Research Centre, University of Verona, Verona, Italy
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Aldo Scarpa
- ARC-Net Research Centre, University of Verona, Verona, Italy
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Paolo Ettore Porporato
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy
| | - Andrea Morandi
- Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Firenze, Italy
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy
| | - Miriam Martini
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy
| |
Collapse
|
110
|
The Role of PI3K/AKT/mTOR Signaling in Hepatocellular Carcinoma Metabolism. Int J Mol Sci 2023; 24:ijms24032652. [PMID: 36768977 PMCID: PMC9916527 DOI: 10.3390/ijms24032652] [Citation(s) in RCA: 100] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/01/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths in the world. Metabolic reprogramming is considered a new hallmark of cancer, but it remains unclearly described in HCC. The dysregulation of the PI3K/AKT/mTOR signaling pathway is common in HCC and is, therefore, a topic of further research and the concern of developing a novel target for liver cancer therapy. In this review, we illustrate mechanisms by which this signaling network is accountable for regulating HCC cellular metabolism, including glucose metabolism, lipid metabolism, amino acid metabolism, pyrimidine metabolism, and oxidative metabolism, and summarize the ongoing clinical trials based on the inhibition of the PI3K/AKT/mTOR pathway in HCC.
Collapse
|
111
|
Li M, Hu Z, Guo T, Xie T, Tang Y, Wu X, Luo F. Targeting mTOR Signaling by Dietary Polysaccharides in Cancer Prevention: Advances and Challenges. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:96-109. [PMID: 36541706 DOI: 10.1021/acs.jafc.2c06780] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Cancer is the most serious problem for public health. Traditional treatments often come with unavoidable side effects. Therefore, the therapeutic effects of natural products with wide sources and low toxicity are attracting more and more attention. Polysaccharides have been shown to have cancer-fighting potential, but the molecular mechanisms remain unclear. The mammalian target of rapamycin (mTOR) pathway has become an attractive target of antitumor therapy research in recent years. The regulation of mTOR pathway not only affects cell proliferation and growth but also has an important effect in tumor metabolism. Recent studies indicate that dietary polysaccharides play a vital role in cancer prevention and treatment by regulating mTOR pathway. Here, the progress in targeting mTOR signaling by dietary polysaccharides in cancer prevention and their molecular mechanisms are systemically summarized. It will promote the understanding of the anticancer effects of polysaccharides and provide reference to investigators of this cutting edge field.
Collapse
Affiliation(s)
- Mengyuan Li
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Zuomin Hu
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Tianyi Guo
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Tiantian Xie
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Yanqin Tang
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Xiuxiu Wu
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Feijun Luo
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| |
Collapse
|
112
|
Li TY, Gao AW, Li X, Li H, Liu YJ, Lalou A, Neelagandan N, Naef F, Schoonjans K, Auwerx J. V-ATPase/TORC1-mediated ATFS-1 translation directs mitochondrial UPR activation in C. elegans. J Cell Biol 2023; 222:e202205045. [PMID: 36314986 PMCID: PMC9623136 DOI: 10.1083/jcb.202205045] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/22/2022] [Accepted: 10/12/2022] [Indexed: 11/18/2022] Open
Abstract
To adapt mitochondrial function to the ever-changing intra- and extracellular environment, multiple mitochondrial stress response (MSR) pathways, including the mitochondrial unfolded protein response (UPRmt), have evolved. However, how the mitochondrial stress signal is sensed and relayed to UPRmt transcription factors, such as ATFS-1 in Caenorhabditis elegans, remains largely unknown. Here, we show that a panel of vacuolar H+-ATPase (v-ATPase) subunits and the target of rapamycin complex 1 (TORC1) activity are essential for the cytosolic relay of mitochondrial stress to ATFS-1 and for the induction of the UPRmt. Mechanistically, mitochondrial stress stimulates v-ATPase/Rheb-dependent TORC1 activation, subsequently promoting ATFS-1 translation. Increased translation of ATFS-1 upon mitochondrial stress furthermore relies on a set of ribosomal components but is independent of GCN-2/PEK-1 signaling. Finally, the v-ATPase and ribosomal subunits are required for mitochondrial surveillance and mitochondrial stress-induced longevity. These results reveal a v-ATPase-TORC1-ATFS-1 signaling pathway that links mitochondrial stress to the UPRmt through intimate crosstalks between multiple organelles.
Collapse
Affiliation(s)
- Terytty Yang Li
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Arwen W. Gao
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Xiaoxu Li
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Hao Li
- Laboratory of Metabolic Signaling, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Yasmine J. Liu
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Amelia Lalou
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Nagammal Neelagandan
- Laboratory of Computational and Systems Biology, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Felix Naef
- Laboratory of Computational and Systems Biology, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Kristina Schoonjans
- Laboratory of Metabolic Signaling, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
113
|
Animal-source foods as a suitable complementary food for improved physical growth in 6 to 24-month-old children in low- and middle-income countries: a systematic review and meta-analysis of randomised controlled trials. Br J Nutr 2022; 128:2453-2463. [PMID: 35109944 DOI: 10.1017/s0007114522000290] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Although animal-source foods are suitable complementary food for child growth in low- and middle-income countries (LMICs), their efficacy is still under discussion. This systematic review and meta-analysis was done to investigate the suitability of animal-source foods intake on child physical growth in LMICs. A systematic literature search was done using electronic databases and scanning the reference list of included studies, previous meta-analysis and systematic reviews. Paper selection was based on the PICO (ST) criteria. Papers were selected if based on 6 to 24-month-old children, if they were randomised controlled trials evaluating the effect of complementary animal-based food supplementation of any natural origin, if reporting at least a measure of body size and published after 2000. The PRISMA guidelines for reporting systematic review was followed in the paper selection. Fourteen papers were included in the systematic review and eight were considered for the meta-analysis. Animal-based food supplementation resulted in a higher length-for-age LAZ and weight-for-age (WAZ) Z-scores compared with the control group with random effect size of 0·15 (95 % CI 0·02, 0·27) and 0·20 (95 % CI 0·03, 0·36), respectively. Results were confirmed after influence analyses, and publication bias resulted as negligible. An increased effect on LAZ and WAZ was observed when the food supplementation was based on egg with effect size of 0·31 (95 % CI = -0·03, 0·64) and 0·36 (95 % CI = -0·03, 0·75), respectively. Animal-source foods are a suitable complementary food to improve growth in 6 to 24-month-old children in LMICs.
Collapse
|
114
|
L-Theanine Regulates the Abundance of Amino Acid Transporters in Mice Duodenum and Jejunum via the mTOR Signaling Pathway. Nutrients 2022; 15:nu15010142. [PMID: 36615799 PMCID: PMC9824403 DOI: 10.3390/nu15010142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/20/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
The intestine is a key organ for the absorption of amino acids. L-theanine (LTA) is a structural analog of glutamine and a characteristic non-protein amino acid found in tea (Camellia sinensis) that regulates lipid and protein metabolism. The present study explored the role of LTA in intestinal amino acid absorption, protein synthesis, and its mechanisms. Overall, our findings suggest that LTA supplementation not only affects serum alkaline phosphatase (AKP), total protein (TP), and urea nitrogen (BUN) levels, but it also upregulates the mRNA and protein expression of amino acid transporters (EAAT3, EAAT1, 4F2hc, y+LAT1, CAT1, ASCT2, and B0AT1), and activates the mTOR signaling pathway. The downstream S6 and S6K1 proteins are regulated, and the expression of amino acid transporters is regulated. These findings suggest that LTA increases intestinal AA absorption, promotes protein metabolism, and increases nitrogen utilization by upregulating AAT expression, activating the mTOR signaling pathway, and phosphorylating the mTOR downstream proteins S6 and S6K1.
Collapse
|
115
|
Kotani Y, Sumiyoshi M, Sasada M, Watanabe T, Matsuda S. Arf1 facilitates mast cell proliferation via the mTORC1 pathway. Sci Rep 2022; 12:22297. [PMID: 36566324 PMCID: PMC9789986 DOI: 10.1038/s41598-022-26925-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022] Open
Abstract
Mast cells are one of major players in allergic responses. Mast cell activation via the high affinity IgE receptor (FcεRI) causes degranulation and release of de novo synthesized proinflammatory cytokines in a process that involves vesicle trafficking. Considering that the GTPase ADP-ribosylation factor 1 (Arf1) orchestrates and maintains membrane traffic and organelle structure, it seems likely that Arf1 contributes to mast cell activation. Actually, it has been reported that pharmaceutical blockade of the Arf1 pathway suppresses cytokine secretion and mast cell degranulation. However, physiological roles of Arf1 in mast cells remain elusive. Here, by using a genetic approach, we demonstrate that Arf1 is required for optimal mTORC1 activation upon IL-3 and facilitates mast cell proliferation. On the other hand, contrary to our expectation, Arf1-deficiency had little impact on FcεRI-induced degranulation nor cytokine secretion. Our findings reveal an unexpected role of Arf1 in mast cell expansion and its potential as a therapeutic target in the mast cell proliferative disorders.
Collapse
Affiliation(s)
- Yui Kotani
- grid.410783.90000 0001 2172 5041Department of Cell Signaling, Institute of Biomedical Science, Kansai Medical University, Hirakata, Osaka 573-1010 Japan ,grid.174568.90000 0001 0059 3836Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women’s University, Nara, 630-8506 Japan
| | - Mami Sumiyoshi
- grid.410783.90000 0001 2172 5041Department of Cell Signaling, Institute of Biomedical Science, Kansai Medical University, Hirakata, Osaka 573-1010 Japan
| | - Megumi Sasada
- grid.174568.90000 0001 0059 3836Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women’s University, Nara, 630-8506 Japan
| | - Toshio Watanabe
- grid.174568.90000 0001 0059 3836Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women’s University, Nara, 630-8506 Japan
| | - Satoshi Matsuda
- grid.410783.90000 0001 2172 5041Department of Cell Signaling, Institute of Biomedical Science, Kansai Medical University, Hirakata, Osaka 573-1010 Japan
| |
Collapse
|
116
|
Xiong J, Luu TTT, Venkatachalam K, Du G, Zhu MX. Glutamine Produces Ammonium to Tune Lysosomal pH and Regulate Lysosomal Function. Cells 2022; 12:80. [PMID: 36611873 PMCID: PMC9819001 DOI: 10.3390/cells12010080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Glutamine is one of the most abundant amino acids in the cell. In mitochondria, glutaminases 1 and 2 (GLS1/2) hydrolyze glutamine to glutamate, which serves as the precursor of multiple metabolites. Here, we show that ammonium generated during GLS1/2-mediated glutaminolysis regulates lysosomal pH and in turn lysosomal degradation. In primary human skin fibroblasts BJ cells and mouse embryonic fibroblasts, deprivation of total amino acids for 1 h increased lysosomal degradation capacity as shown by the increased turnover of lipidated microtubule-associated proteins 1A/1B light chain 3B (LC3-II), several autophagic receptors, and endocytosed DQ-BSA. Removal of glutamine but not any other amino acids from the culture medium enhanced lysosomal degradation similarly as total amino acid starvation. The presence of glutamine in regular culture media increased lysosomal pH by >0.5 pH unit and the removal of glutamine caused lysosomal acidification. GLS1/2 knockdown, GLS1 antagonist, or ammonium scavengers reduced lysosomal pH in the presence of glutamine. The addition of glutamine or NH4Cl prevented the increase in lysosomal degradation and curtailed the extension of mTORC1 function during the early time period of amino acid starvation. Our findings suggest that glutamine tunes lysosomal pH by producing ammonium, which regulates lysosomal degradation to meet the demands of cellular activities. During the early stage of amino acid starvation, the glutamine-dependent mechanism allows more efficient use of internal reserves and endocytosed proteins to extend mTORC1 activation such that the normal anabolism is not easily interrupted by a brief disruption of the amino acid supply.
Collapse
Affiliation(s)
- Jian Xiong
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Program in Biochemistry and Cell Biology, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Thi Thu Trang Luu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Program in Biochemistry and Cell Biology, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Kartik Venkatachalam
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Program in Biochemistry and Cell Biology, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
- Program in Neuroscience, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Guangwei Du
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Program in Biochemistry and Cell Biology, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Michael X. Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Program in Biochemistry and Cell Biology, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
- Program in Neuroscience, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
117
|
Branched-Chain Amino Acids and Insulin Resistance, from Protein Supply to Diet-Induced Obesity. Nutrients 2022; 15:nu15010068. [PMID: 36615726 PMCID: PMC9824001 DOI: 10.3390/nu15010068] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/30/2022] [Accepted: 12/09/2022] [Indexed: 12/28/2022] Open
Abstract
For more than a decade, there has been a wide debate about the branched-chain amino acids (BCAA) leucine, valine, and isoleucine, with, on the one hand, the supporters of their anabolic effects and, on the other hand, those who suspect them of promoting insulin resistance. Indeed, the role of leucine in the postprandial activation of protein synthesis has been clearly established, even though supplementation studies aimed at taking advantage of this property are rather disappointing. Furthermore, there is ample evidence of an association between the elevation of their plasma concentrations and insulin resistance or the risk of developing type 2 diabetes, although there are many confounding factors, starting with the level of animal protein consumption. After a summary of their metabolism and anabolic properties, we analyze in this review the factors likely to increase the plasma concentrations of BCAAs, including insulin-resistance. After an analysis of supplementation or restriction studies in search of a direct role of BCAAs in insulin resistance, we discuss an indirect role through some of their metabolites: branched-chain keto acids, C3 and C5 acylcarnitines, and hydroxyisobutyrate. Overall, given the importance of insulin in the metabolism of these amino acids, it is very likely that small alterations in insulin sensitivity are responsible for a reduction in their catabolism long before the onset of impaired glucose tolerance.
Collapse
|
118
|
Hertel A, Alves LM, Dutz H, Tascher G, Bonn F, Kaulich M, Dikic I, Eimer S, Steinberg F, Bremm A. USP32-regulated LAMTOR1 ubiquitination impacts mTORC1 activation and autophagy induction. Cell Rep 2022; 41:111653. [PMID: 36476874 DOI: 10.1016/j.celrep.2022.111653] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 08/16/2022] [Accepted: 10/20/2022] [Indexed: 12/12/2022] Open
Abstract
The endosomal-lysosomal system is a series of organelles in the endocytic pathway that executes trafficking and degradation of proteins and lipids and mediates the internalization of nutrients and growth factors to ensure cell survival, growth, and differentiation. Here, we reveal regulatory, non-proteolytic ubiquitin signals in this complex system that are controlled by the enigmatic deubiquitinase USP32. Knockout (KO) of USP32 in primary hTERT-RPE1 cells results among others in hyperubiquitination of the Ragulator complex subunit LAMTOR1. Accumulation of LAMTOR1 ubiquitination impairs its interaction with the vacuolar H+-ATPase, reduces Ragulator function, and ultimately limits mTORC1 recruitment. Consistently, in USP32 KO cells, less mTOR kinase localizes to lysosomes, mTORC1 activity is decreased, and autophagy is induced. Furthermore, we demonstrate that depletion of USP32 homolog CYK-3 in Caenorhabditis elegans results in mTOR inhibition and autophagy induction. In summary, we identify a control mechanism of the mTORC1 activation cascade at lysosomes via USP32-regulated LAMTOR1 ubiquitination.
Collapse
Affiliation(s)
- Alexandra Hertel
- Institute of Biochemistry II, Goethe University Frankfurt - Medical Faculty, University Hospital, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Ludovico Martins Alves
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Henrik Dutz
- Center for Biological Systems Analysis, University of Freiburg, Habsburgerstr. 49, 79104 Freiburg, Germany
| | - Georg Tascher
- Institute of Biochemistry II, Goethe University Frankfurt - Medical Faculty, University Hospital, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Florian Bonn
- Institute of Biochemistry II, Goethe University Frankfurt - Medical Faculty, University Hospital, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Manuel Kaulich
- Institute of Biochemistry II, Goethe University Frankfurt - Medical Faculty, University Hospital, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Frankfurt Cancer Institute, 60596 Frankfurt am Main, Germany; Cardio-Pulmonary Institute, 60590 Frankfurt am Main, Germany
| | - Ivan Dikic
- Institute of Biochemistry II, Goethe University Frankfurt - Medical Faculty, University Hospital, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany; Frankfurt Cancer Institute, 60596 Frankfurt am Main, Germany; Cardio-Pulmonary Institute, 60590 Frankfurt am Main, Germany
| | - Stefan Eimer
- Institute of Cell Biology and Neuroscience, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60439 Frankfurt am Main, Germany
| | - Florian Steinberg
- Center for Biological Systems Analysis, University of Freiburg, Habsburgerstr. 49, 79104 Freiburg, Germany
| | - Anja Bremm
- Institute of Biochemistry II, Goethe University Frankfurt - Medical Faculty, University Hospital, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
119
|
Wang G, Chen L, Qin S, Zheng Y, Xia C, Yao J, Wang P, Deng L. Cystine Induced-mTORC2 Activation through Promoting Sin1 Phosphorylation to Suppress Cancer Cell Ferroptosis. Mol Nutr Food Res 2022; 66:e2200186. [PMID: 36189894 DOI: 10.1002/mnfr.202200186] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 09/19/2022] [Indexed: 01/18/2023]
Abstract
SCOPE Mechanistic target of rapamycin (mTOR) serves as a central signaling node in the coordination of cell growth and metabolism, and it functions via two distinct complexes, namely, mTOR complex 1 (mTORC1) and mTORC2. mTORC1 plays a crucial role in sensing amino acids, whereas mTORC2 involves in sensing growth factors. However, it remains largely unclear whether mTORC2 can sense amino acids and the mechanism by which amino acids regulate mTORC2 has not been studied. METHODS AND RESULTS After treating cells with indicated concentration of amino acids for different time, it is found that the mTORC2 activation is significantly increased in response to amino acids stimulation, especially cystine. Particularly, knockdown solute carrier family 7 member 11 (SLC7A11) by siRNA shows that SLC7A11-mediated cystine uptake is responsible for activating mTORC2. Mechanistically, the study finds that p38 is activated in response to cystine stimulation, and co-immunoprecipitation (Co-IP) experiments suggest that p38 regulates the assembly of components within mTORC2 by mediating the phosphorylation of the mTORC2 subunit mitogen-activated protein kinase-interacting protein 1 (Sin1) in a cystine-dependent manner. Finally, combined with inducers and inhibitors of ferroptosis and cell viability assay, the study observes that cystine-mediated regulation of the p38-Sin1-mTOR-AKT pathway induces resistance to ferroptosis. CONCLUSION These results indicate that cystine-induced activation of the p38-Sin1-mTORC2-AKT pathway suppresses ferroptosis.
Collapse
Affiliation(s)
- GuoYan Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lei Chen
- Division of Laboratory Safety and Services, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - SenLin Qin
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - YiNing Zheng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chao Xia
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - JunHu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ping Wang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Lu Deng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
120
|
Frappaolo A, Karimpour-Ghahnavieh A, Cesare G, Sechi S, Fraschini R, Vaccari T, Giansanti MG. GOLPH3 protein controls organ growth by interacting with TOR signaling proteins in Drosophila. Cell Death Dis 2022; 13:1003. [PMID: 36435842 PMCID: PMC9701223 DOI: 10.1038/s41419-022-05438-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/28/2022]
Abstract
The oncoprotein GOLPH3 (Golgi phosphoprotein 3) is an evolutionarily conserved phosphatidylinositol 4-phosphate effector, mainly localized to the Golgi apparatus, where it supports organelle architecture and vesicular trafficking. Overexpression of human GOLPH3 correlates with poor prognosis in several cancer types and is associated with enhanced signaling downstream of mTOR (mechanistic target of rapamycin). However, the molecular link between GOLPH3 and mTOR remains elusive. Studies in Drosophila melanogaster have shown that Translationally controlled tumor protein (Tctp) and 14-3-3 proteins are required for organ growth by supporting the function of the small GTPase Ras homolog enriched in the brain (Rheb) during mTORC1 (mTOR complex 1) signaling. Here we demonstrate that Drosophila GOLPH3 (dGOLPH3) physically interacts with Tctp and 14-3-3ζ. RNAi-mediated knockdown of dGOLPH3 reduces wing and eye size and enhances the phenotypes of Tctp RNAi. This phenotype is partially rescued by overexpression of Tctp, 14-3-3ζ, or Rheb. We also show that the Golgi localization of Rheb in Drosophila cells depends on dGOLPH3. Consistent with dGOLPH3 involvement in Rheb-mediated mTORC1 activation, depletion of dGOLPH3 also reduces levels of phosphorylated ribosomal S6 kinase, a downstream target of mTORC1. Finally, the autophagy flux and the expression of autophagic transcription factors of the TFEB family, which anti correlates with mTOR signaling, are compromised upon reduction of dGOLPH3. Overall, our data provide the first in vivo demonstration that GOLPH3 regulates organ growth by directly associating with mTOR signaling proteins.
Collapse
Affiliation(s)
- Anna Frappaolo
- grid.7841.aIstituto di Biologia e Patologia Molecolari del CNR, c/o Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, 00185 Roma, Italy
| | - Angela Karimpour-Ghahnavieh
- grid.7841.aIstituto di Biologia e Patologia Molecolari del CNR, c/o Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, 00185 Roma, Italy
| | - Giuliana Cesare
- grid.4708.b0000 0004 1757 2822Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy
| | - Stefano Sechi
- grid.7841.aIstituto di Biologia e Patologia Molecolari del CNR, c/o Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, 00185 Roma, Italy
| | - Roberta Fraschini
- grid.7563.70000 0001 2174 1754Dipartimento di Biotecnologie e Bioscienze, Università degli studi di Milano Bicocca, 20126 Milano, Italy
| | - Thomas Vaccari
- grid.4708.b0000 0004 1757 2822Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy
| | - Maria Grazia Giansanti
- grid.7841.aIstituto di Biologia e Patologia Molecolari del CNR, c/o Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, 00185 Roma, Italy
| |
Collapse
|
121
|
Roh J, Im M, Chae Y, Kang J, Kim W. The Involvement of Long Non-Coding RNAs in Glutamine-Metabolic Reprogramming and Therapeutic Resistance in Cancer. Int J Mol Sci 2022; 23:ijms232314808. [PMID: 36499136 PMCID: PMC9738059 DOI: 10.3390/ijms232314808] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/02/2022] Open
Abstract
Metabolic alterations that support the supply of biosynthetic molecules necessary for rapid and sustained proliferation are characteristic of cancer. Some cancer cells rely on glutamine to maintain their energy requirements for growth. Glutamine is an important metabolite in cells because it not only links to the tricarboxylic acid cycle by producing α-ketoglutarate by glutaminase and glutamate dehydrogenase but also supplies other non-essential amino acids, fatty acids, and components of nucleotide synthesis. Altered glutamine metabolism is associated with cancer cell survival, proliferation, metastasis, and aggression. Furthermore, altered glutamine metabolism is known to be involved in therapeutic resistance. In recent studies, lncRNAs were shown to act on amino acid transporters and glutamine-metabolic enzymes, resulting in the regulation of glutamine metabolism. The lncRNAs involved in the expression of the transporters include the abhydrolase domain containing 11 antisense RNA 1, LINC00857, plasmacytoma variant translocation 1, Myc-induced long non-coding RNA, and opa interacting protein 5 antisense RNA 1, all of which play oncogenic roles. When it comes to the regulation of glutamine-metabolic enzymes, several lncRNAs, including nuclear paraspeckle assembly transcript 1, XLOC_006390, urothelial cancer associated 1, and thymopoietin antisense RNA 1, show oncogenic activities, and others such as antisense lncRNA of glutaminase, lincRNA-p21, and ataxin 8 opposite strand serve as tumor suppressors. In addition, glutamine-dependent cancer cells with lncRNA dysregulation promote cell survival, proliferation, and metastasis by increasing chemo- and radio-resistance. Therefore, understanding the roles of lncRNAs in glutamine metabolism will be helpful for the establishment of therapeutic strategies for glutamine-dependent cancer patients.
Collapse
Affiliation(s)
- Jungwook Roh
- Department of Science Education, Korea National University of Education, Cheongju-si 28173, Chungbuk, Republic of Korea
| | - Mijung Im
- Department of Science Education, Korea National University of Education, Cheongju-si 28173, Chungbuk, Republic of Korea
| | - Yeonsoo Chae
- Department of Science Education, Korea National University of Education, Cheongju-si 28173, Chungbuk, Republic of Korea
| | - JiHoon Kang
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Wanyeon Kim
- Department of Science Education, Korea National University of Education, Cheongju-si 28173, Chungbuk, Republic of Korea
- Department of Biology Education, Korea National University of Education, Cheongju-si 28173, Chungbuk, Republic of Korea
- Correspondence: ; Tel.: +82-43-230-3750
| |
Collapse
|
122
|
Hong Y, Yang C, Zhong J, Hou Y, Xie K, Wang L. Dietary Plant Protein Intake Can Reduce Maternal Insulin Resistance during Pregnancy. Nutrients 2022; 14:nu14235039. [PMID: 36501068 PMCID: PMC9740834 DOI: 10.3390/nu14235039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Evidence suggests that the source of dietary protein may have an impact on insulin resistance, but no studies have explored it in pregnant populations. In this study, we combined a population study and an animal experiment to explore this effect. The population study was conducted with data from NHANES. Multiple linear regression was used to observe the association of protein intake with outcomes, including fasting glucose (GLU), insulin (INS), and HOMA-IR. In the animal experiment, 36 pregnant SD rats in three groups were orally administered 100% animal protein, 50% animal protein and 50% plant protein, or 100% plant protein, respectively. The intervention continued throughout the whole pregnancy. On day 19.5, maternal plasma was collected after overnight fasting, and metabolomics was performed using UPLC-MS. We found plant protein intake was negatively correlated with INS and HOMA-IR in the whole population. During the third trimester, a similar correlation was also observed. The animal experiment also presented the same result. In metabolomic analysis, changes in various metabolites and related pathways including FoxO and mTOR signaling pathways were observed. In conclusion, we found a negative association between dietary plant protein intake and maternal insulin resistance during pregnancy. Changes in some active substances and related metabolic pathways may play an important role.
Collapse
Affiliation(s)
- Yuting Hong
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Chen Yang
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Jinjing Zhong
- Ausnutria Hyproca Nutrition Co., Ltd., Changsha 410000, China
| | - Yanmei Hou
- Ausnutria Hyproca Nutrition Co., Ltd., Changsha 410000, China
| | - Kui Xie
- Ausnutria Hyproca Nutrition Co., Ltd., Changsha 410000, China
| | - Linlin Wang
- Ausnutria Hyproca Nutrition Co., Ltd., Changsha 410000, China
- Correspondence:
| |
Collapse
|
123
|
Kim M, Son GI, Cho YH, Kim GH, Yun SE, Kim YJ, Chung J, Lee E, Park JJ. Reduced branched-chain aminotransferase activity alleviates metabolic vulnerability caused by dim light exposure at night in Drosophila. J Neurogenet 2022:1-11. [DOI: 10.1080/01677063.2022.2144292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Mari Kim
- Department of Preventive Medicine, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Gwang-Ic Son
- Department of Preventive Medicine, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Yun-Ho Cho
- Department of Physiology, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Gye-Hyeong Kim
- Department of Physiology, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Sung-Eun Yun
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Young-Joon Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Jongkyeong Chung
- SRC Center for Systems Geroscience, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Eunil Lee
- Department of Preventive Medicine, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Joong-Jean Park
- Department of Physiology, College of Medicine, Korea University, Seoul, Republic of Korea
| |
Collapse
|
124
|
Yu Y, Zhong Z, Ma L, Xiang C, Chen J, Huang XY, Xu P, Xiong Y. Sulfate-TOR signaling controls transcriptional reprogramming for shoot apex activation. THE NEW PHYTOLOGIST 2022; 236:1326-1338. [PMID: 36028982 DOI: 10.1111/nph.18441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Plants play a primary role for the global sulfur cycle in the earth ecosystems by reduction of inorganic sulfate from the soil to organic sulfur-containing compounds. How plants sense and transduce the sulfate availability to mediate their growth remains largely unclear. The target of rapamycin (TOR) kinase is an evolutionarily conserved master regulator of nutrient sensing and metabolic signaling to control cell proliferation and growth in all eukaryotes. By tissue-specific Western blotting and RNA-sequencing analysis, we investigated sulfate-TOR signal pathway in regulating shoot apex development. Here, we report that inorganic sulfate exhibits high potency activating TOR and cell proliferation to promote true leaf development in Arabidopsis in a glucose-energy parallel pathway. Genetic and metabolite analyses suggest that this sulfate activation of TOR is independent from the sulfate-assimilation process and glucose-energy signaling. Significantly, tissue specific transcriptome analyses uncover previously unknown sulfate-orchestrating genes involved in DNA replication, cell proliferation and various secondary metabolism pathways, which largely depends on TOR signaling. Systematic comparison between the sulfate- and glucose-TOR controlled transcriptome further reveals that TOR kinase, as the central growth integrator, responds to different nutrient signals to control both shared and unique transcriptome networks, therefore, precisely modulates plant proliferation, growth and stress responses.
Collapse
Affiliation(s)
- Yongdong Yu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
- Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhaochen Zhong
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liuyin Ma
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chengbin Xiang
- Division of Life Sciences and Medicine, Division of Molecular and Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, 230027, China
| | - Jie Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xin-Yuan Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ping Xu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Yan Xiong
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
125
|
Mallén-Ponce MJ, Pérez-Pérez ME, Crespo JL. Analyzing the impact of autotrophic and heterotrophic metabolism on the nutrient regulation of TOR. THE NEW PHYTOLOGIST 2022; 236:1261-1266. [PMID: 36052700 DOI: 10.1111/nph.18450] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
The target of rapamycin (TOR) protein kinase is a master regulator of cell growth in all eukaryotes, from unicellular yeast and algae to multicellular animals and plants. Target of rapamycin balances the synthesis and degradation of proteins, lipids, carbohydrates and nucleic acids in response to nutrients, growth factors and cellular energy to promote cell growth. Among nutrients, amino acids (AAs) and glucose are central regulators of TOR activity in evolutionary distant eukaryotes such as mammals, plants and algae. However, these organisms obtain the nutrients through totally different metabolic processes. Although photosynthetic eukaryotes can use atmospheric CO2 as the sole carbon (C) source for all reactions in the cell, heterotrophic organisms get nutrients from other sources of organic C including glucose. Here, we discuss the impact of autotrophic and heterotrophic metabolism on the nutrient regulation of TOR, focusing on the role of AAs and C sources upstream of this signaling pathway.
Collapse
Affiliation(s)
- Manuel J Mallén-Ponce
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, Sevilla, 41092, Spain
| | - María Esther Pérez-Pérez
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, Sevilla, 41092, Spain
| | - José L Crespo
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, Sevilla, 41092, Spain
| |
Collapse
|
126
|
Rangel M, Kong J, Bhatt V, Khayati K, Guo JY. Autophagy and tumorigenesis. FEBS J 2022; 289:7177-7198. [PMID: 34270851 PMCID: PMC8761221 DOI: 10.1111/febs.16125] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/28/2021] [Accepted: 07/15/2021] [Indexed: 01/13/2023]
Abstract
Autophagy is a catabolic process that captures cellular waste and degrades them in the lysosome. The main functions of autophagy are quality control of cytosolic proteins and organelles, and intracellular recycling of nutrients in order to maintain cellular homeostasis. Autophagy is upregulated in many cancers to promote cell survival, proliferation, and metastasis. Both cell-autonomous autophagy (also known as tumor autophagy) and non-cell-autonomous autophagy (also known as host autophagy) support tumorigenesis through different mechanisms, including inhibition of p53 activation, sustaining redox homeostasis, maintenance of essential amino acids levels in order to support energy production and biosynthesis, and inhibition of antitumor immune responses. Therefore, autophagy may serve as a tumor-specific vulnerability and targeting autophagy could be a novel strategy in cancer treatment.
Collapse
Affiliation(s)
- Michael Rangel
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, 08903, USA
| | - Jerry Kong
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, 08903, USA
| | - Vrushank Bhatt
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, 08903, USA
| | - Khoosheh Khayati
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, 08903, USA
| | - Jessie Yanxiang Guo
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, 08903, USA,Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA,Department of Chemical Biology, Rutgers Ernest Mario School of Pharmacy, Piscataway, NJ, USA
| |
Collapse
|
127
|
Zhu J, Wang H, Jiang X. mTORC1 beyond anabolic metabolism: Regulation of cell death. J Biophys Biochem Cytol 2022; 221:213609. [PMID: 36282248 PMCID: PMC9606688 DOI: 10.1083/jcb.202208103] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 12/13/2022] Open
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1), a multi-subunit protein kinase complex, interrogates growth factor signaling with cellular nutrient and energy status to control metabolic homeostasis. Activation of mTORC1 promotes biosynthesis of macromolecules, including proteins, lipids, and nucleic acids, and simultaneously suppresses catabolic processes such as lysosomal degradation of self-constituents and extracellular components. Metabolic regulation has emerged as a critical determinant of various cellular death programs, including apoptosis, pyroptosis, and ferroptosis. In this article, we review the expanding knowledge on how mTORC1 coordinates metabolic pathways to impinge on cell death regulation. We focus on the current understanding on how nutrient status and cellular signaling pathways connect mTORC1 activity with ferroptosis, an iron-dependent cell death program that has been implicated in a plethora of human diseases. In-depth understanding of the principles governing the interaction between mTORC1 and cell death pathways can ultimately guide the development of novel therapies for the treatment of relevant pathological conditions.
Collapse
Affiliation(s)
- Jiajun Zhu
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China,Tsinghua-Peking Center for Life Sciences, Beijing, China,Correspondence to Jiajun Zhu:
| | - Hua Wang
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Xuejun Jiang
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY,Xuejun Jiang:
| |
Collapse
|
128
|
Jiang W, Ou Z, Zhu Q, Zai H. RagC GTPase regulates mTOR to promote chemoresistance in senescence-like HepG2 cells. Front Physiol 2022; 13:949737. [PMID: 36267578 PMCID: PMC9577253 DOI: 10.3389/fphys.2022.949737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 09/20/2022] [Indexed: 11/23/2022] Open
Abstract
Radiotherapy and chemotherapy can arrest cancer cells in a senescence-like state, which can lead to therapy resistance and cancer relapse. mTOR is hyperactivated in senescent cells but the mechanisms remain unclear. In this study, we examine the roles of several mTOR-regulated GTPases in senescence-like liver cancer cells and the mechanisms in drug resistance. We show that although RagC, Rheb, Rab1A, Rab5 and Arf1 GTPases were required for optimal mTOR activation in proliferating HepG2 cells, only RagC and Rheb are required in the senescence-like counterparts. Consistently, the drug resistance of the senescence-like HepG2 can be reduced by knocking down RagC and Rheb but not the other GTPases. Autophagic and lysosomal activity were increased in senescence-like cells; pharmacological inhibition of autophagy-lysosome decreased mTOR activity and preferentially sensitized senescence-like HepG2 cells to chemotherapy drugs including trametinib, cisplatin, and doxorubicin. In liver cancer patients, expression of RagC and Rheb but not other GTPases examined was associated with unfavorable prognosis. Our study therefore has defined a key role of Rag-Rheb GTPase in mediating mTOR activation and drug resistance in senescence-like HepG2 cells, which could have important implications in developing second-line treatments for liver cancer patients.
Collapse
Affiliation(s)
- Wei Jiang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, Hunan, China
| | - Zhenglin Ou
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, Hunan, China
| | - Qin Zhu
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, Hunan, China
| | - Hongyan Zai
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, Hunan, China
- *Correspondence: Hongyan Zai,
| |
Collapse
|
129
|
Smith-Byrne K, Cerani A, Guida F, Zhou S, Agudo A, Aleksandrova K, Barricarte A, Barranco MR, Bochers CH, Gram IT, Han J, Amos CI, Hung RJ, Grankvist K, Nøst TH, Imaz L, Chirlaque-López MD, Johansson M, Kaaks R, Kühn T, Martin RM, McKay JD, Pala V, Robbins HA, Sandanger TM, Schibli D, Schulze MB, Travis RC, Vineis P, Weiderpass E, Brennan P, Johansson M, Richards JB. Circulating Isovalerylcarnitine and Lung Cancer Risk: Evidence from Mendelian Randomization and Prediagnostic Blood Measurements. Cancer Epidemiol Biomarkers Prev 2022; 31:1966-1974. [PMID: 35839461 PMCID: PMC9530646 DOI: 10.1158/1055-9965.epi-21-1033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/09/2021] [Accepted: 07/13/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Tobacco exposure causes 8 of 10 lung cancers, and identifying additional risk factors is challenging due to confounding introduced by smoking in traditional observational studies. MATERIALS AND METHODS We used Mendelian randomization (MR) to screen 207 metabolites for their role in lung cancer predisposition using independent genome-wide association studies (GWAS) of blood metabolite levels (n = 7,824) and lung cancer risk (n = 29,266 cases/56,450 controls). A nested case-control study (656 cases and 1,296 matched controls) was subsequently performed using prediagnostic blood samples to validate MR association with lung cancer incidence data from population-based cohorts (EPIC and NSHDS). RESULTS An MR-based scan of 207 circulating metabolites for lung cancer risk identified that blood isovalerylcarnitine (IVC) was associated with a decreased odds of lung cancer after accounting for multiple testing (log10-OR = 0.43; 95% CI, 0.29-0.63). Molar measurement of IVC in prediagnostic blood found similar results (log10-OR = 0.39; 95% CI, 0.21-0.72). Results were consistent across lung cancer subtypes. CONCLUSIONS Independent lines of evidence support an inverse association of elevated circulating IVC with lung cancer risk through a novel methodologic approach that integrates genetic and traditional epidemiology to efficiently identify novel cancer biomarkers. IMPACT Our results find compelling evidence in favor of a protective role for a circulating metabolite, IVC, in lung cancer etiology. From the treatment of a Mendelian disease, isovaleric acidemia, we know that circulating IVC is modifiable through a restricted protein diet or glycine and L-carnatine supplementation. IVC may represent a modifiable and inversely associated biomarker for lung cancer.
Collapse
Affiliation(s)
- Karl Smith-Byrne
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Agustin Cerani
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada/Centre for Clinical Epidemiology, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Florence Guida
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Sirui Zhou
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada/Centre for Clinical Epidemiology, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Antonio Agudo
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Institut Català d'Oncologia, Spain
| | - Krasimira Aleksandrova
- Nutrition, Immunity and Metabolism Senior Scientist Group, Department of Nutrition and Gerontology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
- University of Potsdam, Institute of Nutritional Science, Potsdam, Germany
| | - Aurelio Barricarte
- Navarra Institute for Health Research (IdiSNA) Pamplona, Spain
- CIBER in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Miguel Rodríguez Barranco
- CIBER in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Escuela Andaluza de Salud Pública (EASP), Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Christoph H. Bochers
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada/Centre for Clinical Epidemiology, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
- University of Victoria–Genome British Columbia Proteomics Centre, Victoria, BC, Canada/Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Inger Torhild Gram
- Faculty of Health Sciences, Department of Community Medicine, University of Tromsø, The Arctic University of Norway, Norway
| | - Jun Han
- University of Victoria–Genome British Columbia Proteomics Centre, Victoria, BC, Canada/Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Christopher I. Amos
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Rayjean J. Hung
- Prosserman Centre for Health Research, Mount Sinai Hospital, Toronto, Canada
| | - Kjell Grankvist
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
| | - Therese Haugdhal Nøst
- Faculty of Health Sciences, Department of Community Medicine, University of Tromsø, The Arctic University of Norway, Norway
| | - Liher Imaz
- Ministry of Health of the Basque Government, Public Health Division of Gipuzkoa, Donostia-San Sebastian, Spain
- Biodonostia Health Research Institute, Donostia-San Sebastian, Spain
| | - María Dolores Chirlaque-López
- CIBER in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Department of Epidemiology, Regional Health Council, IMIB-Arrixaca, Murcia University, Murcia, Spain
| | | | - Rudolf Kaaks
- German Cancer Research Center (DKFZ), Heidelberg, Department of Cancer Epidemiology
- Translational Lung Research Center (TLRC) Heidelberg, Member of the German Center for Lung Research (DZL), Germany
| | - Tilman Kühn
- German Cancer Research Center (DKFZ), Heidelberg, Department of Cancer Epidemiology
| | - Richard M. Martin
- Clinical Epidemiology & Public Health, University of Bristol, Bristol, United Kingdom
| | - James D. McKay
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Valeria Pala
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano
| | - Hilary A. Robbins
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Torkjel M. Sandanger
- Faculty of Health Sciences, Department of Community Medicine, University of Tromsø, The Arctic University of Norway, Norway
| | - David Schibli
- University of Victoria–Genome British Columbia Proteomics Centre, Victoria, BC, Canada/Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Matthias B. Schulze
- Nutrition, Immunity and Metabolism Senior Scientist Group, Department of Nutrition and Gerontology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
- University of Potsdam, Institute of Nutritional Science, Potsdam, Germany
| | - Ruth C. Travis
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Paolo Vineis
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Elisabete Weiderpass
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Paul Brennan
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Mattias Johansson
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - J. Brent Richards
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada/Centre for Clinical Epidemiology, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
- Division of Endocrinology, Department of Medicine & Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Department of Twin Research and Genetic Epidemiology, King's College London, Strand, London, United Kingdom
| |
Collapse
|
130
|
Scerra G, De Pasquale V, Scarcella M, Caporaso MG, Pavone LM, D'Agostino M. Lysosomal positioning diseases: beyond substrate storage. Open Biol 2022; 12:220155. [PMID: 36285443 PMCID: PMC9597170 DOI: 10.1098/rsob.220155] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Lysosomal storage diseases (LSDs) comprise a group of inherited monogenic disorders characterized by lysosomal dysfunctions due to undegraded substrate accumulation. They are caused by a deficiency in specific lysosomal hydrolases involved in cellular catabolism, or non-enzymatic proteins essential for normal lysosomal functions. In LSDs, the lack of degradation of the accumulated substrate and its lysosomal storage impairs lysosome functions resulting in the perturbation of cellular homeostasis and, in turn, the damage of multiple organ systems. A substantial number of studies on the pathogenesis of LSDs has highlighted how the accumulation of lysosomal substrates is only the first event of a cascade of processes including the accumulation of secondary metabolites and the impairment of cellular trafficking, cell signalling, autophagic flux, mitochondria functionality and calcium homeostasis, that significantly contribute to the onset and progression of these diseases. Emerging studies on lysosomal biology have described the fundamental roles of these organelles in a variety of physiological functions and pathological conditions beyond their canonical activity in cellular waste clearance. Here, we discuss recent advances in the knowledge of cellular and molecular mechanisms linking lysosomal positioning and trafficking to LSDs.
Collapse
Affiliation(s)
- Gianluca Scerra
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Valeria De Pasquale
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino 1, 80137 Naples, Italy
| | - Melania Scarcella
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Maria Gabriella Caporaso
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Luigi Michele Pavone
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Massimo D'Agostino
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| |
Collapse
|
131
|
NKT cells adopt a glutamine-addicted phenotype to regulate their homeostasis and function. Cell Rep 2022; 41:111516. [DOI: 10.1016/j.celrep.2022.111516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 05/19/2022] [Accepted: 09/26/2022] [Indexed: 11/20/2022] Open
|
132
|
Yoshimura R, Nomura S. Co-ingestion of glutamine and leucine synergistically promotes mTORC1 activation. Sci Rep 2022; 12:15870. [PMID: 36151270 PMCID: PMC9508252 DOI: 10.1038/s41598-022-20251-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/12/2022] [Indexed: 11/09/2022] Open
Abstract
Leucine (Leu) regulates protein synthesis and degradation via activation of mammalian target of rapamycin complex 1 (mTORC1). Glutamine (Gln) synergistically promotes mTORC1 activation with Leu via glutaminolysis and Leu absorption via an antiporter. However, Gln has also been shown to inhibit mTORC1 activity. To resolve this paradox, we aimed to elucidate the effects of Gln on Leu-mediated mTORC1 activation. We administered Leu, Gln, tryptophan, Leu + Gln, or Leu + tryptophan to mice after 24-h fasting. The mice were then administered puromycin to evaluate protein synthesis and the gastrocnemius muscle was harvested 30 min later. Phosphorylated eukaryotic initiation factor 4E-binding protein 1, 70-kDa ribosomal protein S6 kinase 1, and Unc-51 like kinase 1 levels were the highest in the Leu + Gln group and significantly increased compared with those in the control group; however, Gln alone did not increase the levels of phosphorylated proteins. No difference in glutamate dehydrogenase activity was observed between the groups. Leu concentrations in the gastrocnemius muscle were similar in the Leu-intake groups. Our study highlights a novel mechanism underlying the promotive effect of Gln on Leu-mediated mTORC1 activation, providing insights into the pathway through which amino acids regulate muscle protein metabolism.
Collapse
Affiliation(s)
- Ryoji Yoshimura
- Department of Health and Nutrition, Faculty of Health Management, Nagasaki International University, 2825-7 Huis Ten Bosch Machi, Sasebo City, Nagasaki, Japan.
| | - Shuichi Nomura
- Department of Health and Nutrition, Faculty of Health Management, Nagasaki International University, 2825-7 Huis Ten Bosch Machi, Sasebo City, Nagasaki, Japan
| |
Collapse
|
133
|
Oncogenic RAS commandeers amino acid sensing machinery to aberrantly activate mTORC1 in multiple myeloma. Nat Commun 2022; 13:5469. [PMID: 36115844 PMCID: PMC9482638 DOI: 10.1038/s41467-022-33142-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 09/01/2022] [Indexed: 11/23/2022] Open
Abstract
Oncogenic RAS mutations are common in multiple myeloma (MM), an incurable malignancy of plasma cells. However, the mechanisms of pathogenic RAS signaling in this disease remain enigmatic and difficult to inhibit therapeutically. We employ an unbiased proteogenomic approach to dissect RAS signaling in MM. We discover that mutant isoforms of RAS organize a signaling complex with the amino acid transporter, SLC3A2, and MTOR on endolysosomes, which directly activates mTORC1 by co-opting amino acid sensing pathways. MM tumors with high expression of mTORC1-dependent genes are more aggressive and enriched in RAS mutations, and we detect interactions between RAS and MTOR in MM patient tumors harboring mutant RAS isoforms. Inhibition of RAS-dependent mTORC1 activity synergizes with MEK and ERK inhibitors to quench pathogenic RAS signaling in MM cells. This study redefines the RAS pathway in MM and provides a mechanistic and rational basis to target this mode of RAS signaling. RAS mutations are commonly found in multiple myeloma (MM). Here, the authors show that oncogenic RAS mutations activate mTORC1 signalling in MM and combining mTORC1 and MEK/ERK inhibitors synergize to improve survival in preclinical models.
Collapse
|
134
|
A Rag GTPase dimer code defines the regulation of mTORC1 by amino acids. Nat Cell Biol 2022; 24:1394-1406. [PMID: 36097072 PMCID: PMC9481461 DOI: 10.1038/s41556-022-00976-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 07/13/2022] [Indexed: 12/14/2022]
Abstract
Amino acid availability controls mTORC1 activity via a heterodimeric Rag GTPase complex that functions as a scaffold at the lysosomal surface, bringing together mTORC1 with its activators and effectors. Mammalian cells express four Rag proteins (RagA–D) that form dimers composed of RagA/B bound to RagC/D. Traditionally, the Rag paralogue pairs (RagA/B and RagC/D) are referred to as functionally redundant, with the four dimer combinations used interchangeably in most studies. Here, by using genetically modified cell lines that express single Rag heterodimers, we uncover a Rag dimer code that determines how amino acids regulate mTORC1. First, RagC/D differentially define the substrate specificity downstream of mTORC1, with RagD promoting phosphorylation of its lysosomal substrates TFEB/TFE3, while both Rags are involved in the phosphorylation of non-lysosomal substrates such as S6K. Mechanistically, RagD recruits mTORC1 more potently to lysosomes through increased affinity to the anchoring LAMTOR complex. Furthermore, RagA/B specify the signalling response to amino acid removal, with RagB-expressing cells maintaining lysosomal and active mTORC1 even upon starvation. Overall, our findings reveal key qualitative differences between Rag paralogues in the regulation of mTORC1, and underscore Rag gene duplication and diversification as a potentially impactful event in mammalian evolution. Gollwitzer, Grützmacher et al. and Figlia et al. establish that the various Rag GTPase genes and isoforms differentially regulate mTORC1 activity and distinctly modulate the responsiveness of mammalian cells to amino acid availability.
Collapse
|
135
|
Figlia G, Müller S, Hagenston AM, Kleber S, Roiuk M, Quast JP, Ten Bosch N, Carvajal Ibañez D, Mauceri D, Martin-Villalba A, Teleman AA. Brain-enriched RagB isoforms regulate the dynamics of mTORC1 activity through GATOR1 inhibition. Nat Cell Biol 2022; 24:1407-1421. [PMID: 36097071 PMCID: PMC9481464 DOI: 10.1038/s41556-022-00977-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 07/13/2022] [Indexed: 12/26/2022]
Abstract
Mechanistic target of rapamycin complex 1 (mTORC1) senses nutrient availability to appropriately regulate cellular anabolism and catabolism. During nutrient restriction, different organs in an animal do not respond equally, with vital organs being relatively spared. This raises the possibility that mTORC1 is differentially regulated in different cell types, yet little is known about this mechanistically. The Rag GTPases, RagA or RagB bound to RagC or RagD, tether mTORC1 in a nutrient-dependent manner to lysosomes where mTORC1 becomes activated. Although the RagA and B paralogues were assumed to be functionally equivalent, we find here that the RagB isoforms, which are highly expressed in neurons, impart mTORC1 with resistance to nutrient starvation by inhibiting the RagA/B GTPase-activating protein GATOR1. We further show that high expression of RagB isoforms is observed in some tumours, revealing an alternative strategy by which cancer cells can retain elevated mTORC1 upon low nutrient availability.
Collapse
Affiliation(s)
- Gianluca Figlia
- Signal Transduction in Cancer and Metabolism, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg University, Heidelberg, Germany
| | - Sandra Müller
- Signal Transduction in Cancer and Metabolism, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg University, Heidelberg, Germany
| | - Anna M Hagenston
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, INF 366, Heidelberg, Germany
| | - Susanne Kleber
- Molecular Neurobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mykola Roiuk
- Signal Transduction in Cancer and Metabolism, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg University, Heidelberg, Germany
| | - Jan-Philipp Quast
- Signal Transduction in Cancer and Metabolism, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg University, Heidelberg, Germany
| | - Nora Ten Bosch
- Signal Transduction in Cancer and Metabolism, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Damian Carvajal Ibañez
- Heidelberg University, Heidelberg, Germany.,Molecular Neurobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniela Mauceri
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, INF 366, Heidelberg, Germany
| | - Ana Martin-Villalba
- Molecular Neurobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Aurelio A Teleman
- Signal Transduction in Cancer and Metabolism, German Cancer Research Center (DKFZ), Heidelberg, Germany. .,Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
136
|
Yuskaitis CJ, Modasia JB, Schrötter S, Rossitto LA, Groff KJ, Morici C, Mithal DS, Chakrabarty RP, Chandel NS, Manning BD, Sahin M. DEPDC5-dependent mTORC1 signaling mechanisms are critical for the anti-seizure effects of acute fasting. Cell Rep 2022; 40:111278. [PMID: 36044864 PMCID: PMC9508617 DOI: 10.1016/j.celrep.2022.111278] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/11/2022] [Accepted: 08/05/2022] [Indexed: 11/30/2022] Open
Abstract
Caloric restriction and acute fasting are known to reduce seizures but through unclear mechanisms. mTOR signaling has been suggested as a potential mechanism for seizure protection from fasting. We demonstrate that brain mTORC1 signaling is reduced after acute fasting of mice and that neuronal mTORC1 integrates GATOR1 complex-mediated amino acid and tuberous sclerosis complex (TSC)-mediated growth factor signaling. Neuronal mTORC1 is most sensitive to withdrawal of leucine, arginine, and glutamine, which are dependent on DEPDC5, a component of the GATOR1 complex. Metabolomic analysis reveals that Depdc5 neuronal-specific knockout mice are resistant to sensing significant fluctuations in brain amino acid levels after fasting. Depdc5 neuronal-specific knockout mice are resistant to the protective effects of fasting on seizures or seizure-induced death. These results establish that acute fasting reduces seizure susceptibility in a DEPDC5-dependent manner. Modulation of nutrients upstream of GATOR1 and mTORC1 could offer a rational therapeutic strategy for epilepsy treatment.
Collapse
Affiliation(s)
- Christopher J Yuskaitis
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Division of Epilepsy and Clinical Neurophysiology and Epilepsy Genetics Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jinita B Modasia
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sandra Schrötter
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Leigh-Ana Rossitto
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Karenna J Groff
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Christopher Morici
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Divakar S Mithal
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Section of Neurology, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Ram P Chakrabarty
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Navdeep S Chandel
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Brendan D Manning
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Mustafa Sahin
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
137
|
Mao B, Zhang Q, Ma L, Zhao DS, Zhao P, Yan P. Overview of Research into mTOR Inhibitors. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27165295. [PMID: 36014530 PMCID: PMC9413691 DOI: 10.3390/molecules27165295] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 12/04/2022]
Abstract
The mammalian target of rapamycin (mTOR) is a serine/threonine kinase that belongs to the phosphoinositide 3-kinase (PI3K)-related kinase (PIKK) family. The kinase exists in the forms of two complexes, mTORC1 and mTORC2, and it participates in cell growth, proliferation, metabolism, and survival. The kinase activity is closely related to the occurrence and development of multiple human diseases. Inhibitors of mTOR block critical pathways to produce antiviral, anti-inflammatory, antiproliferative and other effects, and they have been applied to research in cancer, inflammation, central nervous system diseases and viral infections. Existing mTOR inhibitors are commonly divided into mTOR allosteric inhibitors, ATP-competitive inhibitors and dual binding site inhibitors, according to their sites of action. In addition, there exist several dual-target mTOR inhibitors that target PI3K, histone deacetylases (HDAC) or ataxia telangiectasia mutated and Rad-3 related (ATR) kinases. This review focuses on the structure of mTOR protein and related signaling pathways as well as the structure and characteristics of various mTOR inhibitors. Non-rapalog allosteric inhibitors will open new directions for the development of new therapeutics specifically targeting mTORC1. The applications of ATP-competitive inhibitors in central nervous system diseases, viral infections and inflammation have laid the foundation for expanding the indications of mTOR inhibitors. Both dual-binding site inhibitors and dual-target inhibitors are beneficial in overcoming mTOR inhibitor resistance.
Collapse
Affiliation(s)
- Beibei Mao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Correspondence: (B.M.); (P.Z.); (P.Y.)
| | - Qi Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Li Ma
- Shandong Provincial Key Laboratory of Molecular Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Dong-Sheng Zhao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Pan Zhao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Correspondence: (B.M.); (P.Z.); (P.Y.)
| | - Peizheng Yan
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Correspondence: (B.M.); (P.Z.); (P.Y.)
| |
Collapse
|
138
|
Mitochondrial hyperfusion via metabolic sensing of regulatory amino acids. Cell Rep 2022; 40:111198. [PMID: 35977476 DOI: 10.1016/j.celrep.2022.111198] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 06/06/2022] [Accepted: 07/21/2022] [Indexed: 11/24/2022] Open
Abstract
The relationship between nutrient starvation and mitochondrial dynamics is poorly understood. We find that cells facing amino acid starvation display clear mitochondrial fusion as a means to evade mitophagy. Surprisingly, further supplementation of glutamine (Q), leucine (L), and arginine (R) did not reverse, but produced stronger mitochondrial hyperfusion. Interestingly, the hyperfusion response to Q + L + R was dependent upon mitochondrial fusion proteins Mfn1 and Opa1 but was independent of MTORC1. Metabolite profiling indicates that Q + L + R addback replenishes amino acid and nucleotide pools. Inhibition of fumarate hydratase, glutaminolysis, or inosine monophosphate dehydrogenase all block Q + L + R-dependent mitochondrial hyperfusion, which suggests critical roles for the tricarboxylic acid (TCA) cycle and purine biosynthesis in this response. Metabolic tracer analyses further support the idea that supplemented Q promotes purine biosynthesis by serving as a donor of amine groups. We thus describe a metabolic mechanism for direct sensing of cellular amino acids to control mitochondrial fusion and cell fate.
Collapse
|
139
|
Isabelle G, Mohammad FK, Evi Z, Fabienne V, Martine R, Evelyne D. Glutamine transport as a possible regulator of nitrogen catabolite repression in Saccharomyces cerevisiae. Yeast 2022; 39:493-507. [PMID: 35942513 DOI: 10.1002/yea.3809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/19/2022] [Accepted: 08/03/2022] [Indexed: 11/08/2022] Open
Abstract
Nitrogen Catabolite Repression (NCR) is a major transcriptional control pathway governing nitrogen use in yeast, with several hundred of target genes identified to date. Early and extensive studies on NCR led to the identification of the 4 GATA zinc finger transcription factors, but the primary mechanism initiating NCR is still unclear up till now. To identify novel players of NCR, we have undertaken a genetic screen in an NCR-relieved gdh1Δ mutant, which led to the identification of four genes directly linked to protein ubiquitylation. Ubiquitylation is an important way of regulating amino acid transporters and our observations being specifically observed in glutamine-containing media, we hypothesized that glutamine transport could be involved in establishing NCR. Stabilization of Gap1 at the plasma membrane restored NCR in gdh1Δ cells and AGP1 (but not GAP1) deletion could relieve repression in the ubiquitylation mutants isolated during the screen. Altogether, our results suggest that deregulated glutamine transporter function in all three weak nitrogen derepressed (wnd) mutants restores the repression of NCR-sensitive genes consecutive to GDH1 deletion. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
| | - Fayyad-Kazan Mohammad
- Université Libre de Bruxelles, Belgium.,Biotechnology Department, American International University (AIU), Saad Al Abdullah, Al Jahra, Kuwait
| | - Zaremba Evi
- Labiris, Brussels, Belgium.,Université Libre de Bruxelles, Belgium
| | | | | | - Dubois Evelyne
- Labiris, Brussels, Belgium.,Université Libre de Bruxelles, Belgium
| |
Collapse
|
140
|
Nicastro R, Gaillard H, Zarzuela L, Péli-Gulli MP, Fernández-García E, Tomé M, García-Rodríguez N, Durán RV, De Virgilio C, Wellinger RE. Manganese is a physiologically relevant TORC1 activator in yeast and mammals. eLife 2022; 11:80497. [PMID: 35904415 PMCID: PMC9337852 DOI: 10.7554/elife.80497] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/18/2022] [Indexed: 12/09/2022] Open
Abstract
The essential biometal manganese (Mn) serves as a cofactor for several enzymes that are crucial for the prevention of human diseases. Whether intracellular Mn levels may be sensed and modulate intracellular signaling events has so far remained largely unexplored. The highly conserved target of rapamycin complex 1 (TORC1, mTORC1 in mammals) protein kinase requires divalent metal cofactors such as magnesium (Mg2+) to phosphorylate effectors as part of a homeostatic process that coordinates cell growth and metabolism with nutrient and/or growth factor availability. Here, our genetic approaches reveal that TORC1 activity is stimulated in vivo by elevated cytoplasmic Mn levels, which can be induced by loss of the Golgi-resident Mn2+ transporter Pmr1 and which depend on the natural resistance-associated macrophage protein (NRAMP) metal ion transporters Smf1 and Smf2. Accordingly, genetic interventions that increase cytoplasmic Mn2+ levels antagonize the effects of rapamycin in triggering autophagy, mitophagy, and Rtg1-Rtg3-dependent mitochondrion-to-nucleus retrograde signaling. Surprisingly, our in vitro protein kinase assays uncovered that Mn2+ activates TORC1 substantially better than Mg2+, which is primarily due to its ability to lower the Km for ATP, thereby allowing more efficient ATP coordination in the catalytic cleft of TORC1. These findings, therefore, provide both a mechanism to explain our genetic observations in yeast and a rationale for how fluctuations in trace amounts of Mn can become physiologically relevant. Supporting this notion, TORC1 is also wired to feedback control mechanisms that impinge on Smf1 and Smf2. Finally, we also show that Mn2+-mediated control of TORC1 is evolutionarily conserved in mammals, which may prove relevant for our understanding of the role of Mn in human diseases.
Collapse
Affiliation(s)
- Raffaele Nicastro
- University of Fribourg, Department of Biology, Fribourg, Switzerland
| | - Hélène Gaillard
- Centro Andaluz de Biología Molecular y Medicina Regenerativa - CABIMER, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Seville, Spain.,Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Laura Zarzuela
- Centro Andaluz de Biología Molecular y Medicina Regenerativa - CABIMER, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Seville, Spain
| | | | - Elisabet Fernández-García
- Centro Andaluz de Biología Molecular y Medicina Regenerativa - CABIMER, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Seville, Spain.,Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Mercedes Tomé
- Centro Andaluz de Biología Molecular y Medicina Regenerativa - CABIMER, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Seville, Spain
| | - Néstor García-Rodríguez
- Centro Andaluz de Biología Molecular y Medicina Regenerativa - CABIMER, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Seville, Spain.,Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Raúl V Durán
- Centro Andaluz de Biología Molecular y Medicina Regenerativa - CABIMER, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Seville, Spain
| | | | - Ralf Erik Wellinger
- Centro Andaluz de Biología Molecular y Medicina Regenerativa - CABIMER, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Seville, Spain.,Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
141
|
Krokowski D, Jobava R, Szkop KJ, Chen CW, Fu X, Venus S, Guan BJ, Wu J, Gao Z, Banaszuk W, Tchorzewski M, Mu T, Ropelewski P, Merrick WC, Mao Y, Sevval AI, Miranda H, Qian SB, Manifava M, Ktistakis NT, Vourekas A, Jankowsky E, Topisirovic I, Larsson O, Hatzoglou M. Stress-induced perturbations in intracellular amino acids reprogram mRNA translation in osmoadaptation independently of the ISR. Cell Rep 2022; 40:111092. [PMID: 35858571 PMCID: PMC9491157 DOI: 10.1016/j.celrep.2022.111092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/26/2022] [Accepted: 06/22/2022] [Indexed: 12/23/2022] Open
Abstract
The integrated stress response (ISR) plays a pivotal role in adaptation of translation machinery to cellular stress. Here, we demonstrate an ISR-independent osmoadaptation mechanism involving reprogramming of translation via coordinated but independent actions of mTOR and plasma membrane amino acid transporter SNAT2. This biphasic response entails reduced global protein synthesis and mTOR signaling followed by translation of SNAT2. Induction of SNAT2 leads to accumulation of amino acids and reactivation of mTOR and global protein synthesis, paralleled by partial reversal of the early-phase, stress-induced translatome. We propose SNAT2 functions as a molecular switch between inhibition of protein synthesis and establishment of an osmoadaptive translation program involving the formation of cytoplasmic condensates of SNAT2-regulated RNA-binding proteins DDX3X and FUS. In summary, we define key roles of SNAT2 in osmotolerance.
Collapse
Affiliation(s)
- Dawid Krokowski
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA; Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland.
| | - Raul Jobava
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA; Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Krzysztof J Szkop
- Department of Oncology-Pathology, Science for Life Laboratories, Karolinska Institute, Stockholm, Sweden
| | - Chien-Wen Chen
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Xu Fu
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Sarah Venus
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Bo-Jhih Guan
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Jing Wu
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Zhaofeng Gao
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Wioleta Banaszuk
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Marek Tchorzewski
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland; EcoTech-Complex Centre, Maria Curie-Skłodowska University, Lublin, Poland
| | - Tingwei Mu
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Phil Ropelewski
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - William C Merrick
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Yuanhui Mao
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Aksoylu Inci Sevval
- Department of Oncology-Pathology, Science for Life Laboratories, Karolinska Institute, Stockholm, Sweden
| | - Helen Miranda
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Shu-Bing Qian
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | | | | | - Anastasios Vourekas
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Eckhard Jankowsky
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Ivan Topisirovic
- The Lady Davis Institute, Jewish General Hospital, Montréal, QC, Canada; Gerald Bronfman Department of Oncology, McGill University, Montréal, QC, Canada; Department of Biochemistry and Division of Experimental Medicine, McGill University, Montréal, QC, Canada.
| | - Ola Larsson
- Department of Oncology-Pathology, Science for Life Laboratories, Karolinska Institute, Stockholm, Sweden.
| | - Maria Hatzoglou
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
142
|
Li MZ, Liu EJ, Zhou QZ, Li SH, Liu SJ, Yu HT, Pan QH, Sun F, He T, Wang WJ, Ke D, Feng YQ, Li J, Wang JZ. Intracellular accumulation of tau inhibits autophagosome formation by activating TIA1-amino acid-mTORC1 signaling. Mil Med Res 2022; 9:38. [PMID: 35799293 PMCID: PMC9264508 DOI: 10.1186/s40779-022-00396-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 06/13/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Autophagy dysfunction plays a crucial role in tau accumulation and neurodegeneration in Alzheimer's disease (AD). This study aimed to investigate whether and how the accumulating tau may in turn affect autophagy. METHODS The primary hippocampal neurons, N2a and HEK293T cells with tau overexpression were respectively starved and treated with vinblastine to study the effects of tau on the initiating steps of autophagy, which was analysed by Student's two-tailed t-test. The rapamycin and concanamycin A were employed to inhibit the mammalian target of rapamycin kinase complex 1 (mTORC1) activity and the vacuolar H+-ATPase (v-ATPase) activity, respectively, which were analysed by One-way ANOVA with post hoc tests. The Western blotting, co-immunoprecipitation and immunofluorescence staining were conducted to gain insight into the mechanisms underlying the tau effects of mTORC1 signaling alterations, as analysed by Student's two-tailed t-test or One-way ANOVA with post hoc tests. The autophagosome formation was detected by immunofluorescence staining and transmission electron microscopy. The amino acids (AA) levels were detected by high performance liquid chromatography (HPLC). RESULTS We observed that overexpressing human full-length wild-type tau to mimic AD-like tau accumulation induced autophagy deficits. Further studies revealed that the increased tau could bind to the prion-related domain of T cell intracellular antigen 1 (PRD-TIA1) and this association significantly increased the intercellular level of amino acids (Leucine, P = 0.0038; Glutamic acid, P = 0.0348; Alanine, P = 0.0037; Glycine, P = 0.0104), with concordant upregulation of mTORC1 activity [phosphorylated eukaryotic translation initiation factor 4E-binding protein 1 (p-4EBP1), P < 0.0001; phosphorylated 70 kDa ribosomal protein S6 kinase 1 (p-p70S6K1), P = 0.0001, phosphorylated unc-51-like autophagy-activating kinase 1 (p-ULK1), P = 0.0015] and inhibition of autophagosome formation [microtubule-associated protein light chain 3 II (LC3 II), P = 0.0073; LC3 puncta, P < 0.0001]. As expected, this tau-induced deficit of autophagosome formation in turn aggravated tau accumulation. Importantly, we also found that blocking TIA1 and tau interaction by overexpressing PRD-TIA1, downregulating the endogenous TIA1 expression by shRNA, or downregulating tau protein level by a small proteolysis targeting chimera (PROTAC) could remarkably attenuate tau-induced autophagy impairment. CONCLUSIONS Our findings reveal that AD-like tau accumulation inhibits autophagosome formation and induces autophagy deficits by activating the TIA1/amino acid/mTORC1 pathway, and thus this work reveals new insight into tau-associated neurodegeneration and provides evidence supporting the use of new therapeutic targets for AD treatment and that of related tauopathies.
Collapse
Affiliation(s)
- Meng-Zhu Li
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
- Department of Neurosurgery, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014 China
| | - En-Jie Liu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Qiu-Zhi Zhou
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Shi-Hong Li
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Shi-Jie Liu
- Department of Chemistry, Wuhan University, Wuhan, 430072 China
| | - Hai-Tao Yu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Qi-Hang Pan
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
- Department of Neurosurgery, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014 China
| | - Fei Sun
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Ting He
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Wei-Jin Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Dan Ke
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Yu-Qi Feng
- Department of Chemistry, Wuhan University, Wuhan, 430072 China
| | - Jun Li
- Department of Neurosurgery, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014 China
| | - Jian-Zhi Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226000 Jiangsu China
| |
Collapse
|
143
|
Zhang B, Peng H, Zhou M, Bao L, Wang C, Cai F, Zhang H, Wang JE, Niu Y, Chen Y, Wang Y, Hatanpaa KJ, Copland JA, DeBerardinis RJ, Wang Y, Luo W. Targeting BCAT1 Combined with α-Ketoglutarate Triggers Metabolic Synthetic Lethality in Glioblastoma. Cancer Res 2022; 82:2388-2402. [PMID: 35499760 PMCID: PMC9256772 DOI: 10.1158/0008-5472.can-21-3868] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/28/2022] [Accepted: 04/27/2022] [Indexed: 01/07/2023]
Abstract
Branched-chain amino acid transaminase 1 (BCAT1) is upregulated selectively in human isocitrate dehydrogenase (IDH) wildtype (WT) but not mutant glioblastoma multiforme (GBM) and promotes IDHWT GBM growth. Through a metabolic synthetic lethal screen, we report here that α-ketoglutarate (AKG) kills IDHWT GBM cells when BCAT1 protein is lost, which is reversed by reexpression of BCAT1 or supplementation with branched-chain α-ketoacids (BCKA), downstream metabolic products of BCAT1. In patient-derived IDHWT GBM tumors in vitro and in vivo, cotreatment of BCAT1 inhibitor gabapentin and AKG resulted in synthetic lethality. However, AKG failed to evoke a synthetic lethal effect with loss of BCAT2, BCKDHA, or GPT2 in IDHWT GBM cells. Mechanistically, loss of BCAT1 increased the NAD+/NADH ratio but impaired oxidative phosphorylation, mTORC1 activity, and nucleotide biosynthesis. These metabolic alterations were synergistically augmented by AKG treatment, thereby causing mitochondrial dysfunction and depletion of cellular building blocks, including ATP, nucleotides, and proteins. Partial restoration of ATP, nucleotides, proteins, and mTORC1 activity by BCKA supplementation prevented IDHWT GBM cell death conferred by the combination of BCAT1 loss and AKG. These findings define a targetable metabolic vulnerability in the most common subset of GBM that is currently incurable. SIGNIFICANCE Metabolic synthetic lethal screening in IDHWT glioblastoma defines a vulnerability to ΑΚG following BCAT1 loss, uncovering a therapeutic strategy to improve glioblastoma treatment. See related commentary by Meurs and Nagrath, p. 2354.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Pathology, UT Southwestern Medical Center,
Dallas, TX 75390, USA
| | - Hui Peng
- Department of Pathology, UT Southwestern Medical Center,
Dallas, TX 75390, USA
| | - Mi Zhou
- Department of Pathology, UT Southwestern Medical Center,
Dallas, TX 75390, USA
| | - Lei Bao
- Department of Pathology, UT Southwestern Medical Center,
Dallas, TX 75390, USA
| | - Chenliang Wang
- Department of Pathology, UT Southwestern Medical Center,
Dallas, TX 75390, USA
| | - Feng Cai
- Children’s Medical Center Research Institute, UT
Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hongxia Zhang
- Department of Pathology, UT Southwestern Medical Center,
Dallas, TX 75390, USA
| | - Jennifer E. Wang
- Department of Pathology, UT Southwestern Medical Center,
Dallas, TX 75390, USA
| | - Yanling Niu
- Department of Pathology, UT Southwestern Medical Center,
Dallas, TX 75390, USA
| | - Yan Chen
- Department of Pathology, UT Southwestern Medical Center,
Dallas, TX 75390, USA
| | - Yijie Wang
- Department of Pathology, UT Southwestern Medical Center,
Dallas, TX 75390, USA
| | - Kimmo J. Hatanpaa
- Department of Pathology, UT Southwestern Medical Center,
Dallas, TX 75390, USA
| | - John A. Copland
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL
32224 USA
| | - Ralph J. DeBerardinis
- Children’s Medical Center Research Institute, UT
Southwestern Medical Center, Dallas, TX 75390, USA.,Howard Hughes Medical Institute, UT Southwestern Medical
Center, Dallas, TX 75390, USA
| | - Yingfei Wang
- Department of Pathology, UT Southwestern Medical Center,
Dallas, TX 75390, USA.,Department of Neurology, UT Southwestern Medical Center,
Dallas, TX 75390, USA
| | - Weibo Luo
- Department of Pathology, UT Southwestern Medical Center,
Dallas, TX 75390, USA.,Department of Pharmacology, UT Southwestern Medical Center,
Dallas, TX 75390, USA.,Address correspondence to: Weibo Luo, Department
of Pathology, UT Southwestern Medical Center. 5323 Harry Hines Blvd., NB6.460,
Dallas, TX 75390-9072, USA. Phone: 214.645.4770;
| |
Collapse
|
144
|
Zhou J, Chen H, Du J, Tai H, Han X, Huang N, Wang X, Gong H, Yang M, Xiao H. Glutamine Availability Regulates the Development of Aging Mediated by mTOR Signaling and Autophagy. Front Pharmacol 2022; 13:924081. [PMID: 35860029 PMCID: PMC9289448 DOI: 10.3389/fphar.2022.924081] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Glutamine is a conditionally essential amino acid involved in energy production and redox homeostasis. Aging is commonly characterized by energy generation reduction and redox homeostasis dysfunction. Various aging-related diseases have been reported to be accompanied by glutamine exhaustion. Glutamine supplementation has been used as a nutritional therapy for patients and the elderly, although the mechanism by which glutamine availability affects aging remains elusive. Here, we show that chronic glutamine deprivation induces senescence in fibroblasts and aging in Drosophila melanogaster, while glutamine supplementation protects against oxidative stress-induced cellular senescence and rescues the D-galactose-prompted progeria phenotype in mice. Intriguingly, we found that long-term glutamine deprivation activates the Akt-mTOR pathway, together with the suppression of autolysosome function. However, the inhibition of the Akt-mTOR pathway effectively rescued the autophagy impairment and cellular senescence caused by glutamine deprivation. Collectively, our study demonstrates a novel interplay between glutamine availability and the aging process. Mechanistically, long-term glutamine deprivation could evoke mammalian target of rapamycin (mTOR) pathway activation and autophagy impairment. These findings provide new insights into the connection between glutamine availability and the aging process.
Collapse
Affiliation(s)
- Jiao Zhou
- Department of Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Honghan Chen
- Department of Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jintao Du
- Department of Otorhinolaryngology Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Haoran Tai
- Department of Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Development and Regeneration Key Laboratory of Sichuan Province, Department of Anatomy and Histology and Embryology, Chengdu Medical College, Chengdu, China
| | - Xiaojuan Han
- Department of Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ning Huang
- Department of Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaobo Wang
- Department of Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hui Gong
- Department of Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Mingyao Yang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, China
| | - Hengyi Xiao
- Department of Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Hengyi Xiao,
| |
Collapse
|
145
|
Jonsson WO, Mirek ET, Wek RC, Anthony TG. Activation and execution of the hepatic integrated stress response by dietary essential amino acid deprivation is amino acid specific. FASEB J 2022; 36:e22396. [PMID: 35690926 PMCID: PMC9204950 DOI: 10.1096/fj.202200204rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/16/2022] [Accepted: 05/24/2022] [Indexed: 12/30/2022]
Abstract
Dietary removal of an essential amino acid (EAA) triggers the integrated stress response (ISR) in liver. Herein, we explored the mechanisms that activate the ISR and execute changes in transcription and translation according to the missing EAA. Wild‐type mice and mice lacking general control nonderepressible 2 (Gcn2) were fed an amino acid complete diet or a diet devoid of either leucine or sulfur amino acids (methionine and cysteine). Serum and liver leucine concentrations were significantly reduced within the first 6 h of feeding a diet lacking leucine, corresponding with modest, GCN2‐dependent increases in Atf4 mRNA translation and induction of selected ISR target genes (Fgf21, Slc7a5, Slc7a11). In contrast, dietary removal of the sulfur amino acids lowered serum methionine, but not intracellular methionine, and yet hepatic mRNA abundance of Atf4, Fgf21, Slc7a5, Slc7a11 substantially increased regardless of GCN2 status. Liver tRNA charging levels did not correlate with intracellular EAA concentrations or GCN2 status and remained similar to mice fed a complete diet. Furthermore, loss of Gcn2 increased the occurrence of ribosome collisions in liver and derepressed mechanistic target of rapamycin complex 1 signal transduction, but these changes did not influence execution of the ISR. We conclude that ISR activation is directed by intracellular EAA concentrations, but ISR execution is not. Furthermore, a diet devoid of sulfur amino acids does not require GCN2 for the ISR to execute changes to the transcriptome.
Collapse
Affiliation(s)
- William O Jonsson
- Department of Nutritional Sciences, School of Environmental and Biological Sciences, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey, USA
| | - Emily T Mirek
- Department of Nutritional Sciences, School of Environmental and Biological Sciences, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey, USA
| | - Ronald C Wek
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Tracy G Anthony
- Department of Nutritional Sciences, School of Environmental and Biological Sciences, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey, USA
| |
Collapse
|
146
|
Zhang H, Chen P, Yan H, Fu G, Luo F, Zhang J, Zhao S, Zhai B, Yu J, Chen L, Cui H, Chen J, Huang S, Zeng J, Xu W, Wang H, Liu J. Targeting mTORC2/HDAC3 Inhibits Stemness of Liver Cancer Cells Against Glutamine Starvation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103887. [PMID: 35187863 PMCID: PMC9284171 DOI: 10.1002/advs.202103887] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 01/27/2022] [Indexed: 06/12/2023]
Abstract
Cancer cells are addicted to glutamine. However, cancer cells often suffer from glutamine starvation, which largely results from the fast growth of cancer cells and the insufficient vascularization in the interior of cancer tissues. Herein, based on clinical samples, patient-derived cells (PDCs), and cell lines, it is found that liver cancer cells display stem-like characteristics upon glutamine shortage due to maintaining the stemness of tumor initiating cells (TICs) and even promoting transformation of non-TICs into stem-like cells by glutamine starvation. Increased expression of glutamine synthetase (GS) is essential for maintaining and promoting stem-like characteristics of liver cancer cells during glutamine starvation. Mechanistically, glutamine starvation activates Rictor/mTORC2 to induce HDAC3-mediated deacetylation and stabilization of GS. Rictor is significantly correlated with the expression of GS and stem marker OCT4 at tumor site, and closely correlates with poor prognosis of hepatocellular carcinomas. Inhibiting components of mTORC2-HDAC3-GS axis decrease TICs and promote xenografts regression upon glutamine-starvation therapy. Collectively, the data provides novel insights into the role of Rictor/mTORC2-HDAC3 in reprogramming glutamine metabolism to sustain stemness of cancer cells. Targeting Rictor/HDAC3 may enhance the efficacy of glutamine-starvation therapy and limit the rapid growth and malignant progression of tumors.
Collapse
Affiliation(s)
- Hui‐Lu Zhang
- Department of Digestive Diseases of Huashan Hospital and Institutes of Biomedical SciencesFudan UniversityShanghai200040China
| | - Ping Chen
- Department of Digestive Diseases of Huashan Hospital and Institutes of Biomedical SciencesFudan UniversityShanghai200040China
| | - He‐Xin Yan
- Renji HospitalSchool of MedicineShanghai Jiaotong UniversityShanghai200120China
| | - Gong‐Bo Fu
- Department of Medical OncologyAffiliated Jinling HospitalMedical School of Nanjing UniversityNanjing210093China
| | - Fei‐Fei Luo
- Department of Digestive Diseases of Huashan Hospital and Institutes of Biomedical SciencesFudan UniversityShanghai200040China
| | - Jun Zhang
- Department of Digestive Diseases of Huashan Hospital and Institutes of Biomedical SciencesFudan UniversityShanghai200040China
| | - Shi‐Min Zhao
- Department of Digestive Diseases of Huashan Hospital and Institutes of Biomedical SciencesFudan UniversityShanghai200040China
| | - Bo Zhai
- Renji HospitalSchool of MedicineShanghai Jiaotong UniversityShanghai200120China
| | - Jiang‐Hong Yu
- Department of Digestive Diseases of Huashan Hospital and Institutes of Biomedical SciencesFudan UniversityShanghai200040China
| | - Lin Chen
- Department of Digestive Diseases of Huashan Hospital and Institutes of Biomedical SciencesFudan UniversityShanghai200040China
| | - Hao‐Shu Cui
- Department of Digestive Diseases of Huashan Hospital and Institutes of Biomedical SciencesFudan UniversityShanghai200040China
| | - Jian Chen
- Department of Digestive Diseases of Huashan Hospital and Institutes of Biomedical SciencesFudan UniversityShanghai200040China
| | - Shuai Huang
- Renji HospitalSchool of MedicineShanghai Jiaotong UniversityShanghai200120China
| | - Jun Zeng
- Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
| | - Wei Xu
- Department of Digestive Diseases of Huashan Hospital and Institutes of Biomedical SciencesFudan UniversityShanghai200040China
| | - Hong‐Yang Wang
- Eastern Hepatobiliary Surgery HospitalSecond Military Medical UniversityShanghai200433China
- National Center for Liver CancerShanghai200433China
| | - Jie Liu
- Department of Digestive Diseases of Huashan Hospital and Institutes of Biomedical SciencesFudan UniversityShanghai200040China
| |
Collapse
|
147
|
Deng W, Wang H. Efficient cell chatting between embryo and uterus ensures embryo implantation. Biol Reprod 2022; 107:339-348. [PMID: 35774025 PMCID: PMC9310511 DOI: 10.1093/biolre/ioac135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 03/29/2022] [Accepted: 04/11/2022] [Indexed: 11/12/2022] Open
Abstract
Embryo implantation is one of the hottest topics during female reproduction since it is the first dialogue between maternal uterus and developing embryo whose disruption will contribute to adverse pregnancy outcome. Numerous achievements have been made to decipher the underlying mechanism of embryo implantation by genetic and molecular approaches accompanied with emerging technological advances. In recent decades, raising concepts incite insightful understanding on the mechanism of reciprocal communication between implantation competent embryos and receptive uterus. Enlightened by these gratifying evolvements, we aim to summarize and revisit current progress on the critical determinants of mutual communication between maternal uterus and embryonic signaling on the perspective of embryo implantation to alleviate infertility, enhance fetal health, and improve contraceptive design.
Collapse
Affiliation(s)
- Wenbo Deng
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Haibin Wang
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
148
|
Effects of dietary tryptophan on muscle growth, protein synthesis and antioxidant capacity in hybrid catfish Pelteobagrus vachelli♀ × Leiocassis longirostris♂. Br J Nutr 2022; 127:1761-1773. [PMID: 34321122 DOI: 10.1017/s0007114521002828] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The present study evaluated effects of dietary supplementation with tryptophan (Trp) on muscle growth, protein synthesis and antioxidant capacity in hybrid catfish Pelteobagrus vachelli♀ × Leiocassis longirostris♂. Fish were fed six different diets containing 2·6 (control), 3·1, 3·7, 4·2, 4·7 and 5·6 g Trp/kg diet for 56 d, respectively. Results showed that dietary Trp significantly (1) improved muscle protein content, fibre density and frequency of fibre diameter; (2) up-regulated the mRNA levels of PCNA, myf5, MyoD1, MyoG, MRF4, IGF-I, IGF-II, IGF-IR, PIK3Ca, TOR, 4EBP1 and S6K1; (3) increased phosphorylation levels of AKT, TOR and S6K1; (4) decreased contents of MDA and PC, and increased activities of CAT, GST, GR, ASA and AHR; (5) up-regulated mRNA levels of CuZnSOD, CAT, GST, GPx, GCLC and Nrf2, and decreased Keap1 mRNA level; (6) increased nuclear Nrf2 protein level and the intranuclear antioxidant response element-binding ability, and reduced Keap1 protein level. These results indicated that dietary Trp improved muscle growth, protein synthesis as well as antioxidant capacity, which might be partly related to myogenic regulatory factors, IGF/PIK3Ca/AKT/TOR and Keap1/Nrf2 signalling pathways. Finally, based on the quadratic regression analysis of muscle protein and MDA contents, the optimal Trp requirements of hybrid catfish (21·82-39·64 g) were estimated to be 3·94 and 3·93 g Trp/kg diet (9·57 and 9·54 g/kg of dietary protein), respectively.
Collapse
|
149
|
Yue S, Li G, He S, Li T. The central role of mTORC1 in amino acid sensing. Cancer Res 2022; 82:2964-2974. [PMID: 35749594 DOI: 10.1158/0008-5472.can-21-4403] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/28/2022] [Accepted: 06/17/2022] [Indexed: 11/16/2022]
Abstract
The mechanistic target of rapamycin (mTOR) is a master regulator of cell growth that controls cell homeostasis in response to nutrients, growth factors, and other environmental cues. Recent studies have emphasized the importance of lysosomes as a hub for nutrient sensing, especially amino acid sensing by mTORC1. This review highlights recent advances in understanding the amino acid-mTORC1 signaling axis and the role of mTORC1 in cancer.
Collapse
|
150
|
Fan J, Yuan Z, Burley SK, Libutti SK, Zheng XFS. Amino acids control blood glucose levels through mTOR signaling. Eur J Cell Biol 2022; 101:151240. [PMID: 35623230 PMCID: PMC10035058 DOI: 10.1016/j.ejcb.2022.151240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 12/12/2022] Open
Abstract
Amino Acids are not only major nutrient sources, but also serve as chemical signals to control cellular growth. Rab1A recently emerged as a key component in amino acid sensing and signaling to activate the mTOR complex1 (mTORC1). In a recently published study [1], we generated tamoxifen-inducible, conditional whole-body Rab1A knockout in adult mice. These mice are viable but develop hyperglycemia and glucose intolerance. Interestingly, Rab1A ablation selectively reduces insulin expression and pancreatic beta-cell population. Mechanistically, branched chain amino acids (BCAA), through the Rab1A-mTORC1 complex, promote the stability and nuclear localization of Pdx1, a master transcription factor that controls growth, function and identity of pancreatic beta-cells. These findings reveal a role and underlying mechanism by which amino acids control body's glucose level through a beta-cell specific function by the Rab1A-mTORC1-Pdx1 signaling axis, which has implications in both diabetes and cancer.
Collapse
Affiliation(s)
- Jialin Fan
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08901, USA; Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, the State University of New Jersey, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | - Ziqiang Yuan
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08901, USA; Department of Surgery, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08901, USA
| | - Stephen K Burley
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08901, USA; RCSB Protein Data Bank and Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA; Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA; RCSB Protein Data Bank, San Diego Supercomputer Center, University of California, La Jolla, 9500 Gilman Drive, San Diego, CA 92093, USA
| | - Steven K Libutti
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08901, USA; Department of Surgery, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08901, USA
| | - X F Steven Zheng
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08901, USA; Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, the State University of New Jersey, 675 Hoes Lane, Piscataway, NJ 08854, USA.
| |
Collapse
|