101
|
Alderson RF, Pearsall D, Lindsay RM, Wong V. Characterization of receptors for ciliary neurotrophic factor on rat hippocampal astrocytes. Brain Res 1999; 818:236-51. [PMID: 10082809 DOI: 10.1016/s0006-8993(98)01273-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We have identified by Scatchard analysis both high (124 pM, 14.4 x106 sites/micrograms protein, 7600 sites/cell) and low (1.6 nM, 7.7x106 sites/micrograms protein, 4100 sites/cell) affinity receptors for [125I]-rat ciliary neurotrophic factor (rCNTF) on astrocytes. Ligand competition studies showed that the binding of [125I]-rCNTF was effectively competed by rCNTF and human CNTF, but not by hLIF, mIL-6 or mIL-1B. Three proteins specifically crossed-linked to [125I]-rCNTF, with the molecular weights of 190, 100, and 43 kDa, were immunoprecipitated by anti-rCNTF antibodies. Anti-LIFR or anti-gp130 antibodies immunoprecipitated the 100 and the 190 kDa proteins. CNTF induced the tyrosine phosphorylation of LIFR and gp130, as well as of proteins with the molecular weights of 88/91 and 42 kDa. The phosphorylation of the 88/91 kDa protein(s) was inhibited by pretreating the cells with staurosporine, 12-myristate 13-acetate phorbol (PMA), W7, chlorpromazine, or the intracellular Ca+2 chelator BAPTA/AM. In contrast, CNTF and PMA acted synergistically to induce the phosphorylation of two proteins with the molecular weights of 42 and 44 kDa. At later time points following CNTF treatment, c-fos messenger RNA and protein levels were increased. Collectively, these data indicate that hippocampal astrocytes express high-affinity, biologically functional receptor complexes for CNTF.
Collapse
Affiliation(s)
- R F Alderson
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY., USA.
| | | | | | | |
Collapse
|
102
|
Bohic S, Pilet P, Heymann D. Effects of leukemia inhibitory factor and oncostatin M on bone mineral formed in in vitro rat bone-marrow stromal cell culture: physicochemical aspects. Biochem Biophys Res Commun 1998; 253:506-13. [PMID: 9878566 DOI: 10.1006/bbrc.1998.9781] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Leukemia inhibitory factor (LIF) and oncostatin M (OSM), two pleiotropic cytokines involved in bone remodeling, have both anabolic and catabolic activities. This study analyzed the effects of LIF and OSM on the physicochemical characteristics of mineral phases formed in a rat bone-marrow stromal cell culture model. Stromal cells were cultured for three weeks in the presence of 10(-8) M dexamethasone, 50 microgram/mL ascorbic acid and 10 mM Na beta-glycerophosphate with or without 10 ng/ml LIF or OSM. Subsequently, the physicochemical characteristics of the mineralization nodules formed were analyzed by energy dispersive X ray microanalysis (EDX) and Fourier transform-infrared (FT-IR) and FT-Raman spectroscopy. EDX and FT-IR spectroscopy revealed the influence of LIF and OSM on the physicochemical characteristics of mineral phases. FT-Raman spectroscopy showed modifications of the main vibrational modes of the organic matrix. These alterations induced by growth factors could help define new strategies for the prevention and treatment of skeletal disorders.
Collapse
Affiliation(s)
- S Bohic
- UPRES EA 2159, Faculté de Chirurgie Dentaire, Nantes, France
| | | | | |
Collapse
|
103
|
Kolpakova E, Wiedłocha A, Stenmark H, Klingenberg O, Falnes PO, Olsnes S. Cloning of an intracellular protein that binds selectively to mitogenic acidic fibroblast growth factor. Biochem J 1998; 336 ( Pt 1):213-22. [PMID: 9806903 PMCID: PMC1219860 DOI: 10.1042/bj3360213] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In addition to its extracellular action, there is evidence that acidic fibroblast growth factor (aFGF) acts inside cells. To identify intracellular proteins interacting with aFGF, we screened a HeLa cell library in the yeast two-hybrid system using pLex-aFGF as a bait. A clone binding to aFGF, but not to the non-mitogenic mutant aFGF-K132E, was isolated and characterized. The insert contained an open reading frame corresponding to a novel protein of 42 kDa. The protein, termed aFGF intracellular binding protein (FIBP), is mainly hydrophilic and does not contain an N-terminal signal sequence. In vitro-translated FIBP bound specifically to a fusion protein of maltose-binding protein and aFGF. FIBP became post-translationally associated with microsomes added to the cell-free protein synthesizing system, and the membrane-associated protein bound aFGF with high efficiency. Immunoblots and fluorescence microscopy demonstrated that the protein is present in nuclei and, to a lesser extent, associated with mitochondria and other cytoplasmic membranes. The possibility is discussed that FIBP may be involved in the mitogenic action of aFGF.
Collapse
Affiliation(s)
- E Kolpakova
- Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway
| | | | | | | | | | | |
Collapse
|
104
|
Fuhrmann S, Kirsch M, Heller S, Rohrer HERMANN, Hofmann HD. Differential regulation of ciliary neurotrophic factor receptor-? expression in all major neuronal cell classes during development of the chick retina. J Comp Neurol 1998. [DOI: 10.1002/(sici)1096-9861(19981019)400:2<244::aid-cne6>3.0.co;2-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
105
|
Reciprocal regulation of ciliary neurotrophic factor receptors and acetylcholine receptors during synaptogenesis in embryonic chick atria. J Neurosci 1998. [PMID: 9736657 DOI: 10.1523/jneurosci.18-18-07372.1998] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Ciliary neurotrophic factor (CNTF) has been implicated in the development, survival, and maintenance of a broad range of neurons and glia in the peripheral nervous system and the CNS. Evidence also suggests that CNTF may affect development of cells outside the nervous system. We have found that functional CNTF and its receptor are expressed in developing embryonic chick heart and may be involved in parasympathetic synapse formation. CNTF and CNTF receptor mRNA levels were highest at embryonic day 11 (E11)-E13, the period of parasympathetic innervation in chick atria. Levels of atrial CNTF receptor mRNA were fourfold greater at E13 than at E6 and at E13 were 2.5-fold higher in atria than in ventricle, corresponding to the higher degree of parasympathetic innervation occurring in atria. Treatment of isolated atria or cultured atrial myocytes with recombinant human or avian CNTF resulted in the tyrosine phosphorylation and nuclear translocation of the signal transducer and activator of transcription STAT3. The developmental increase in atrial CNTF receptor mRNA was enhanced by stimulating muscarinic receptors with carbachol in ovo and was inhibited by blocking muscarinic cholinergic receptors with atropine. Treatment of cultured atrial myocytes with CNTF resulted in a twofold increase in the levels of muscarinic receptors. Thus, CNTF was able to regulate a key component of parasympathetic synapses on atrial myocytes. These results suggest a postsynaptic role for CNTF in the onset of parasympathetic function in the developing heart and provide new clues to molecular mechanisms directing synapse formation at targets of the autonomic nervous system.
Collapse
|
106
|
Xu J, Forger NG. Expression and androgen regulation of the ciliary neurotrophic factor receptor (CNTFR?) in muscles and spinal cord. ACTA ACUST UNITED AC 1998. [DOI: 10.1002/(sici)1097-4695(199805)35:2<217::aid-neu8>3.0.co;2-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
107
|
Ip NY. The neurotrophins and neuropoietic cytokines: two families of growth factors acting on neural and hematopoietic cells. Ann N Y Acad Sci 1998; 840:97-106. [PMID: 9629241 DOI: 10.1111/j.1749-6632.1998.tb09553.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Recent progress has revealed similarities between the receptors and signaling systems used by neurotrophic factors as compared to other growth factors and cytokines. The neurotrophins use a family of receptor tyrosine kinases known as the Trk receptors, whereas ciliary neurotrophic factor (CNTF) uses a "cytokine receptor" system that shares receptor components with a number of distantly related cytokines. We have used a human embryonal carcinoma cell line and human leukemia cell lines to examine the actions of the neurotrophins and CNTF on cellular differentiation. Our findings demonstrate that specific combinations of neurotrophic factors are required to influence the neuronal progenitor cells to become postmitotic mature CNS neurons. Such synergistic interactions may play an important role in modulating the differentiation of a wide assortment of neuronal precursors in the developing nervous system. Furthermore, our studies with leukemia cells suggest that neurotrophic factors may play a similar role in hematopoietic differentiation and that these factors may have therapeutic application in leukemia differentiation.
Collapse
Affiliation(s)
- N Y Ip
- Department of Biology, Hong Kong University of Science and Technology, Clear Water Bay.
| |
Collapse
|
108
|
Hudgins SN, Levison SW. Ciliary neurotrophic factor stimulates astroglial hypertrophy in vivo and in vitro. Exp Neurol 1998; 150:171-82. [PMID: 9527886 DOI: 10.1006/exnr.1997.6735] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
After insult or trauma, astrocytes become activated and endeavor to restore the brain's delicately balanced microenvironment. An index of their activated state is that they become enlarged or hypertrophic. Ciliary neurotrophic factor (CNTF), a member of the alpha helical family of cytokines, is synthesized by astrocytes and is generally regarded to be an autocrine and paracrine injury signal. To determine whether CNTF might be an endogenous signal that stimulates astrocyte hypertrophy in vivo, we intracerebrally injected 200 ng of recombinant human CNTF into the adult rat neocortex. To study the astrocytes their cytosol was stained with antibodies against S100beta and their nuclei were stained with propidium iodide (PI). Fluorescent images of astrocytic nuclei and somas were acquired using a confocal laser-scanning microscope and their areas were measured using the NIH image software. Within 24 h of treatment, CNTF induced a volume increase of the somas and nuclei of protoplasmic and fibrous astrocytes in vivo, and this effect persisted for at least 48 h. To determine whether CNTF activates astrocytes directly, glial cultures were treated with CNTF (10 ng/ml) and were evaluated by measuring the area of PI stained nuclei. CNTF stimulation increased the size of both polygonal and process-bearing astroglia. Since our studies in vivo have shown that CNTF induces other key aspects of gliosis (S. W. Levison et al., 1996; Exp. Neurol. 141, 256), we conclude that CNTF is a powerful activator of astrocytes and that it is likely responsible for the persistent glial hypertrophy observed following injuries and diseases of the CNS.
Collapse
Affiliation(s)
- S N Hudgins
- Department of Neuroscience and Anatomy, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | |
Collapse
|
109
|
Lin TN, Wang PY, Chi SI, Kuo JS. Differential regulation of ciliary neurotrophic factor (CNTF) and CNTF receptor alpha (CNTFR alpha) expression following focal cerebral ischemia. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1998; 55:71-80. [PMID: 9645962 DOI: 10.1016/s0169-328x(97)00367-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Ciliary neurotrophic factor (CNTF) is a member of cytokines, with trophic effects on ciliary, motor sympathetic, sensory, retinal and hippocampal neurons. In the present study, we examined the temporal and spatial expression profiles of CNTF and CNTF receptor alpha (CNTFR alpha) mRNAs in a focal cerebral ischemia model induced by transient occlusion of the right middle cerebral artery and both common carotid arteries. Northern blot analysis showed a slow and sustained increase in the 1.2 kb transcript of CNTF mRNA in the ischemic cortex of rats subjected to a transient 60 min ischemic insult. A delayed decrease in the 2.1 kb transcript of CNTFR alpha mRNA in the ischemic cortex was observed in rats subjected to 60 min ischemia followed by 72 h of reperfusion. In situ hybridization studies revealed constitutive expression of CNTFR alpha mRNA in the majority of neurons in the brain. Following 4 h of reperfusion, increased expression of CNTFR alpha mRNA was observed in the ipsilateral dentate gyrus, which is opposite to the down-regulation noted in the ischemic cortex. Within the infarct area CNTFR alpha mRNA had a marked increase in cortical layer II but a decrease in cortical layer V following 1 day of reperfusion. No signal of CNTFR alpha mRNA was detected within the infarct region following 3 days of reperfusion. Following 1 week of reperfusion, although no marked changes was observed in the level of CNTFR alpha mRNA in the area immediately surrounding the necrosis region where the reactive astrocytes were noted, a striking increase in the CNTF mRNA signal was noted. In summary, differential regulation of CNTF and CNTFR alpha mRNAs was noted in the ischemic cortex. Regional differences in CNTF receptor expression were noted between the ischemic cortex and ipsilateral dentate gyrus as well as between cortical layer II and V within the infarct region. CNTF mRNA, but not CNTFR alpha mRNA, had a marked increase in the area immediately adjacent to the necrosis. The mechanisms and patho-physiological significance for these differential regulation remain to be studied.
Collapse
Affiliation(s)
- T N Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | | | | | | |
Collapse
|
110
|
Abstract
Ten years have passed since the molecular cloning of interleukin 6 (IL-6) in 1986. IL-6 is a typical cytokine, exhibiting functional pleiotropy and redundancy. IL-6 is involved in the immune response, inflammation, and hematopoiesis. The IL-6 receptor consists of an IL-6 binding alpha chain and a signal transducer, gp130, which is shared among the receptors for the IL-6 related cytokine subfamily. The sharing of a receptor subunit is a general feature of cytokine receptors and provides the molecular basis for the functional redundancy of cytokines. JAK tyrosine kinase is a key molecule that can initiate multiple signal-transduction pathways by inducing the tyrosine-phosphorylation of the cytokine receptor, gp130 in the case of IL-6, on which several signaling molecules are recruited, including STAT, a signal transducer and activator of transcription, and SHP-2, which links to the Ras-MAP kinase pathway. JAK can also directly activate signaling molecules such as STAT and Tec. These multiple signal-transduction pathways intimately regulate the expression of several genes including c-myc, c-myb, junB, IRF1, egr-1, and bcl-2, leading to the induction of cell growth, differentiation, and survival. The deregulated expression of IL-6 and its receptor is involved in a variety of diseases.
Collapse
Affiliation(s)
- T Hirano
- Department of Molecular Oncology, Osaka University Medical School, Japan.
| |
Collapse
|
111
|
Finn TP, Kim S, Nishi R. Overexpression of ciliary neurotrophic factorin vivo rescues chick ciliary ganglion neurons from cell death. ACTA ACUST UNITED AC 1998. [DOI: 10.1002/(sici)1097-4695(19980215)34:3<283::aid-neu7>3.0.co;2-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
112
|
Giess R, Goetz R, Schrank B, Ochs G, Sendtner M, Toyka K. Potential implications of a ciliary neurotrophic factor gene mutation in a German population of patients with motor neuron disease. Muscle Nerve 1998; 21:236-8. [PMID: 9466600 DOI: 10.1002/(sici)1097-4598(199802)21:2<236::aid-mus12>3.0.co;2-#] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The frequency of a recently described point mutation of the ciliary neurotrophic factor (CNTF) gene was investigated in a population of 154 German patients with motor neuron disease (MND). Twenty-two percent of the patients were heterozygous, 2% homozygous for the CNTF mutation. Since the gene defect is per se not linked to MND, the identification of additional gene defects occurring simultaneously with this mutation could be informative for the understanding of pathogenic mechanisms of MND.
Collapse
Affiliation(s)
- R Giess
- Neurologische Universitaetsklinik, Wuerzburg, Germany
| | | | | | | | | | | |
Collapse
|
113
|
Sexual dimorphism in the spinal cord is absent in mice lacking the ciliary neurotrophic factor receptor. J Neurosci 1998. [PMID: 9391015 DOI: 10.1523/jneurosci.17-24-09605.1997] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Ciliary neurotrophic factor (CNTF) has potent survival-promoting effects on motoneurons in vitro and in vivo. We examined knockout mice with null mutations of the gene for either CNTF itself or the alpha-subunit of the CNTF receptor (CNTFRalpha) to assess whether CNTF and/or its receptors are involved in the development of a sexually dimorphic neuromuscular system. Male rodents have many more motoneurons in the spinal nucleus of the bulbocavernosus (SNB) than do females. This sex difference is caused by hormone-regulated death of SNB motoneurons and their target muscles. Sexual dimorphism of SNB motoneuron number developed completely normally in CNTF knockout (CNTF -/-) mice. In contrast, a sex difference in the SNB was absent in CNTFRalpha -/- animals: male mice lacking a functional CNTF alpha-receptor had fewer than half as many SNB motoneurons than did wild-type males and no more than did their female counterparts. Size of the bulbocavernosus and levator ani muscles, the main targets of SNB motoneurons, was not affected in either CNTF or CNTFRalpha knockout males. These observations suggest that signaling through the CNTF receptor is involved in sexually dimorphic development of SNB motoneuron number and that target muscle survival per se is not sufficient to ensure motoneuron survival in this system. In addition, our observations are consistent with the suggestion that CNTF itself is not the only endogenous ligand for the CNTF receptor. A second, as yet unknown, ligand may be important for neural development, including sexually dimorphic motoneuron development.
Collapse
|
114
|
Wessler I, Kirkpatrick CJ, Racké K. Non-neuronal acetylcholine, a locally acting molecule, widely distributed in biological systems: expression and function in humans. Pharmacol Ther 1998; 77:59-79. [PMID: 9500159 DOI: 10.1016/s0163-7258(97)00085-5] [Citation(s) in RCA: 303] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Acetylcholine acts as a neurotransmitter in the central and peripheral nervous systems in humans. However, recent experiments demonstrate a widespread expression of the cholinergic system in non-neuronal cells in humans. The synthesizing enzyme choline acetyltransferase, the signalling molecule acetylcholine, and the respective receptors (nicotinic or muscarinic) are expressed in epithelial cells (human airways, alimentary tract, epidermis). Acetylcholine is also found in mesothelial, endothelial, glial, and circulating blood cells (platelets, mononuclear cells), as well as in alveolar macrophages. The existence of non-neuronal acetylcholine explains the widespread expression of muscarinic and nicotinic receptors in cells not innervated by cholinergic neurons. Non-neuronal acetylcholine appears to be involved in the regulation of important cell functions, such as mitosis, trophic functions, automaticity, locomotion, ciliary activity, cell-cell contact, cytoskeleton, as well as barrier and immune functions. The most important tasks for the future will be to clarify the multiple biological roles of non-neuronal acetylcholine in detail and to identify pathological conditions in which this system is up- or down-regulated. This could provide the basis for the development of new therapeutic strategies to target the non-neuronal cholinergic system.
Collapse
Affiliation(s)
- I Wessler
- Department of Pharmacology, University of Mainz, Germany
| | | | | |
Collapse
|
115
|
Hirano T, Nakajima K, Hibi M. Signaling mechanisms through gp130: a model of the cytokine system. Cytokine Growth Factor Rev 1997; 8:241-52. [PMID: 9620640 DOI: 10.1016/s1359-6101(98)80005-1] [Citation(s) in RCA: 291] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The interleukin-6 cytokine family plays roles in a wide variety of tissues and organs, including the immune hematopoietic and nervous systems. Gp130 is a signal-transducing subunit shared by the receptors for the IL-6 family of cytokines. The binding of a ligand to its receptor induces the dimerization of gp130, leading to the activation of JAK tyrosine kinase and tyrosine phosphorylation of gp130. These events lead to the activation of multiple signal-transduction pathways, such as the STAT, Ras-MAPK and PI-3 kinase pathways whose activation is controlled by distinct regions of gp130. We propose a model showing that the outcome of the signal transduction depends on the balance or interplay among the contradictory signal transduction pathways that are simultaneously generated through a cytokine receptor in a given target cell.
Collapse
Affiliation(s)
- T Hirano
- Department of Oncology, Biomedical Research Center, Osaka University Medical School, Suita, Japan.
| | | | | |
Collapse
|
116
|
Abstract
Ciliary neurotrophic factor (CNTF) is an abundant cytosolic molecule in myelinating Schwann cells of adult rodents. In newborn animals in which CNTF is not yet expressed, exogenous CNTF that is locally administered very effectively protects motoneurons from degeneration by axotomy. To evaluate whether endogenous CNTF, released after nerve injury from the cytosol of Schwann cells, supports motoneuron survival, we transected the facial nerve in 4-week-old pmn mice. In this mouse mutant a rapidly progressing degenerative disease of motoneurons starts by the third postnatal week at the hindlimbs and progresses to the anterior parts of the body, leading to death by the seventh to eighth week. Apoptotic death of motoneurons can be observed during this period, as revealed by TUNEL staining. In 6-week-old unlesioned pmn mice approximately 40% of facial motoneurons have degenerated. Facial nerve lesion dramatically increased the number of surviving motoneurons in pmn mice. This protective effect was absent in pmn mice lacking endogenous CNTF. Quantitative analysis of leukemia inhibitory factor (LIF) mRNA expression revealed that the dramatic upregulation seen in wild-type mice after peripheral nerve lesion did not occur in pmn mice. Therefore, endogenous LIF cannot compensate for the lack of CNTF in pmn crossbred with CNTF knock-out mice. Thus, endogenous CNTF released from lesioned Schwann cells supports the survival of axotomized motoneurons under conditions in which motoneurons are in the process of rapid degeneration.
Collapse
|
117
|
Sanberg PR, Borlongan CV, Othberg AI, Saporta S, Freeman TB, Cameron DF. Testis-derived Sertoli cells have a trophic effect on dopamine neurons and alleviate hemiparkinsonism in rats. Nat Med 1997; 3:1129-32. [PMID: 9334725 DOI: 10.1038/nm1097-1129] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Neural tissue transplantation has become an alternative treatment for Parkinson's disease (PD) and other neurodegenerative disorders. The clinical use of neural grafts as a source of dopamine for Parkinson's disease patients, although beneficial, is associated with logistical and ethical issues. Thus, alternative graft sources have been explored including polymer-encapsulated cells and nonneural cells (that is, adrenal chromaffin cells) or genetically modified cells that secrete dopamine and/or trophic factors. Although progress has been made, no current alternative graft source has ideal characteristics for transplantation. Emerging evidence suggests the importance of trophic factors in enhancing survival and regeneration of intrinsic dopaminergic neurons. It would be desirable to transplant cells that are readily available, immunologically accepted by the central nervous system and capable of producing dopamine and/or trophic factors. Sertoli cells have been shown to secrete CD-95 ligand and regulatory proteins, as well as trophic, tropic, and immunosuppressive factors that provide the testis, in part, with its "immunoprivileged" status. The present study demonstrated that transplantation of rat testis-derived Sertoli cells into adult rat brains ameliorated behavioral deficits in rats with 6-hydroxydopamine-induced hemiparkinsonism. This was associated with enhanced tyrosine hydroxylase (TH) immunoreactivity in the striatum in the area around the transplanted Sertoli cells. Furthermore, in vitro experiments demonstrated enhanced dopaminergic neuronal survival and outgrowth when embryonic neurons were cultured with medium in which rat Sertoli cells had been grown. Transplantation of Sertoli cells may provide a useful alternative treatment for PD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- P R Sanberg
- Division of Neurological Surgery, University of South Florida College of Medicine, Tampa 33612, USA
| | | | | | | | | | | |
Collapse
|
118
|
Wishingrad MA, Koshlukova S, Halvorsen SW. Ciliary neurotrophic factor stimulates the phosphorylation of two forms of STAT3 in chick ciliary ganglion neurons. J Biol Chem 1997; 272:19752-7. [PMID: 9242633 DOI: 10.1074/jbc.272.32.19752] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Ciliary neurotrophic factor (CNTF) is a neuropoietic cytokine that was identified, purified, and cloned based on its neurotrophic activity on cultured chick ciliary ganglion neurons. The molecular mechanisms by which CNTF elicits its effects on these neurons are unknown. We have previously identified functional receptors for CNTF on ciliary ganglion neurons and demonstrated the CNTF-specific tyrosine phosphorylation of an approximately 90-kDa protein. Here we show that CNTF induced the rapid tyrosine phosphorylation and nuclear accumulation of this protein and identify it as an avian form of the transcription factor, STAT3. Identification was confirmed by its recognition with two distinct anti-STAT3 antibodies and the lack of binding to antibodies against STAT1, -2, -4, -5, or -6. The phosphorylation was stable for up to 2 h but required the continued presence of CNTF. CNTF also induced the tyrosine phosphorylation of a similar protein in cultured chick dorsal root ganglion and retinal neurons. In addition, we identify a second, 100-kDa form of STAT3 that appears in response to CNTF. Unlike previous reports, utilizing mammalian cell lines that detected a slower migrating form of STAT3 resulting from H7-sensitive protein phosphorylation, H7 did not prevent the appearance of the 100-kDa form in ciliary neurons. Thus, the 100-kDa avian protein may represent a novel form of CNTF-inducible STAT3.
Collapse
Affiliation(s)
- M A Wishingrad
- Department of Biochemical Pharmacology, State University of New York, Buffalo, New York 14260, USA
| | | | | |
Collapse
|
119
|
Murphy M, Dutton R, Koblar S, Cheema S, Bartlett P. Cytokines which signal through the LIF receptor and their actions in the nervous system. Prog Neurobiol 1997; 52:355-78. [PMID: 9304697 DOI: 10.1016/s0301-0082(97)00020-8] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A number of different cytokines, each initially characterized on the basis of very different biological activities, all have very similar signalling pathways and share a similar tertiary structure. These cytokines include leukaemia inhibitory factor, ciliary neuronotrophic factor, oncostatin M, growth-promoting activity and cardiotrophin 1. They all have been found to regulate a number of properties of cells of the developing and mature nervous system in vitro and thus are neuroregulatory cytokines. The actions of these cytokines include regulation of neurotransmitter phenotype, differentiation of neuronal precursor cells both in the peripheral nervous system and in the spinal cord, survival of differentiated neurons, and regulation of development of both astrocytes and oligodendrocytes. In addition, studies in animal models show that these factors can rescue sensory and motor neurons from axotomy-induced cell death, which suggests that they can act as trauma factors for injured neurons. Analysis of the expression patterns of the different neuroregulatory cytokines and their receptors reveals that the receptors are expressed throughout nervous system development and following trauma, whereas the cytokines show temporal and spatial specific expression patterns. This is consistent with the idea that specific cytokines have specific roles in neural development and repair, but that their signalling pathways are shared. The phenotypes of the receptor knockouts show clear deficits in nervous system development, indicating a crucial role for LIF receptor signalling. Knockouts of individual cytokines are less dramatic, but LIF and CNTF knockouts do reveal deficits in maintenance of motor neurons or following trauma. Thus, whereas LIF and CNTF have clear roles in maintenance and following trauma, it is unclear which of the cytokines is involved in nervous system development. In clinical terms, these findings add further support to the use of these cytokines in nervous system trauma and disease.
Collapse
Affiliation(s)
- M Murphy
- Walter and Eliza Hall Institute of Medical Research, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | | | | | | | | |
Collapse
|
120
|
Gozes I, Davidson A, Gozes Y, Mascolo R, Barth R, Warren D, Hauser J, Brenneman DE. Antiserum to activity-dependent neurotrophic factor produces neuronal cell death in CNS cultures: immunological and biological specificity. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1997; 99:167-75. [PMID: 9125470 DOI: 10.1016/s0165-3806(96)00215-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Activity-dependent neurotrophic factor (ADNF) is a glia-derived protein that is neuroprotective at femtomolar concentrations. ADNF is released from astroglia after treatment with 0.1 nM vasoactive intestinal peptide (VIP). To further assess the biological role of ADNF, antiserum was produced following sequential injections of purified ADNF into mice. Anti-ADNF ascites fluid (1:10,000) decreased neuronal survival by 45-55% in comparison to untreated cultures or those treated with control ascites. The neuronal death after anti-ADNF treatment was observed in cultures derived from the spinal cord, hippocampus or cerebral cortex at similar IC50's. Using a terminal deoxynucleotidyl transferase in situ assay to estimate apoptosis in cerebral cortical cultures, anti-ADNF was shown to produce a 70% increase in the number of labeled cells in comparison to controls. In spinal cord cultures, anti-ADNF treatment produced a 20% decrease in choline acetyltransferase activity in comparison to controls. Neuronal cell death produced by the antiserum to ADNF was prevented in cultures co-treated with purified ADNF or ADNF-15, an active peptide derived from the parent ADNF. In vitro binding between the anti-ADNF and ADNF-15 was demonstrated with size exclusion chromatography. Comparative studies with other growth factors (insulin-like growth factor-1, platelet-derived growth factor, nerve growth factor, epidermal growth factor, ciliary neurotrophic growth factor, and neurotrophin-3) demonstrated that only ADNF prevented neuronal cell death associated with electrical blockade. These investigations indicated that an ADNF-like substance was present in cultures derived from multiple locations in the central nervous system and that ADNF-15 exhibited both neuroprotection and immunogenicity. ADNF appears to be both a regulator of activity-dependent neuronal survival and a neuroprotectant.
Collapse
Affiliation(s)
- I Gozes
- Department of Clinical Biochemistry, Sackler School of Medicine, Tel Aviv University, Israel
| | | | | | | | | | | | | | | |
Collapse
|
121
|
Differential regulation of ciliary neurotrophic factor (CNTF) and CNTF receptor alpha expression in astrocytes and neurons of the fascia dentata after entorhinal cortex lesion. J Neurosci 1997. [PMID: 8994067 DOI: 10.1523/jneurosci.17-03-01137.1997] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neurotrophic factors have been implicated in reactive processes occurring in response to CNS lesions. Ciliary neurotrophic factor (CNTF), in particular, has been shown to ameliorate axotomy-induced degeneration of CNS neurons and to be upregulated at wound sites in the brain. To investigate a potential role of CNTF in lesion-induced degeneration and reorganization, we have analyzed the expression of CNTF protein and CNTF receptor alpha (CNTFR alpha) mRNA in the rat dentate gyrus after unilateral entorhinal cortex lesions (ECLs), using immunocytochemistry and nonradioactive in situ hybridization, respectively. In sham-operated as in normal animals, CNTF protein was not detectable by immunocytochemistry. Starting at 3 d after ECL, upregulation of CNTF expression was observed in the ipsilateral outer molecular layer (OML). Expression was maximal at around day 7, and at this stage immunoreactivity could be specifically localized to astrocytes in the ipsilateral OML. By day 14 postlesion, CNTF immunoreactivity had returned to control levels. CNTFR alpha mRNA was restricted to neurons of the granule cell layer in controls. Three days postlesion, prominent CNTFR alpha expression was observed in the deafferented OML. A similar but less prominent response was noticed in the contralateral OML. After 10 d, CNTFR alpha expression had returned to control levels. Double labeling for CNTFR alpha mRNA and glial fibrillary acidic protein (GFAP) showed that upregulation of CNTFR alpha occurred in reactive, GFAP-immunopositive astrocytes of the OML. A substantial reduction of CNTFR alpha expression in the deafferented granule cells was transiently observed at 7 and 10 d postlesion. Our results suggest a paracrine or autocrine function of CNTF in the regulation of astrocytic and neuronal responses after brain injury.
Collapse
|
122
|
Ezzeddine ZD, Yang X, DeChiara T, Yancopoulos G, Cepko CL. Postmitotic cells fated to become rod photoreceptors can be respecified by CNTF treatment of the retina. Development 1997; 124:1055-67. [PMID: 9056780 DOI: 10.1242/dev.124.5.1055] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Lineage analyses of vertebrate retinae have led to the suggestions that cell fate decisions are made during or after the terminal cell division and that extrinsic factors can influence fate choices. The evidence for a role of extrinsic factors is strongest for development of rodent rod photoreceptors ('rods'). In an effort to identify molecules that may regulate rod development, a number of known factors were assayed in vitro. Ciliary neurotrophic factor (CNTF) was found to have a range of effects on retinal cells. Addition of CNTF to postnatal rat retinal explants resulted in a dramatic reduction in the number of differentiating rods. Conversly, the number of cells expressing markers of bipolar cell differentiation was increased to a level not normally seen in vivo or in vitro. In addition, a small increase in the percentage of cells expressing either a marker of amacrine cells or a marker of Muller glia was noted. It was determined that many of the cells that would normally differentiate into rods were the cells that differentiated as bipolar cells in the presence of CNTF. Prospective rod photoreceptors could make this change even when they were postmitotic, indicating that at least a subset of cells fated to be rods were not committed to this fate at the time they were born. These findings highlight the distinction between cell fate and commitment. Resistance to the effect of CNTF on rod differentiation occurred at about the time that a cell began to express opsin. The time of commitment to terminal rod differentiation may thus coincide with the initiation of opsin expression. In agreement with the hypothesis that CNTF plays a role in rod differentiation in vivo, a greater percentage of cells were observed differentiating as rod photoreceptors in mouse retinal explants lacking a functional CNTF receptor, relative to wild-type littermates.
Collapse
Affiliation(s)
- Z D Ezzeddine
- Department of Genetics and Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
123
|
Lee MY, Hofmann HD, Kirsch M. Expression of ciliary neurotrophic factor receptor-alpha messenger RNA in neonatal and adult rat brain: an in situ hybridization study. Neuroscience 1997; 77:233-46. [PMID: 9044389 DOI: 10.1016/s0306-4522(96)00476-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Ciliary neurotrophic factor is a pleiotropic molecule thought to have multiple functions in the developing and adult nervous system. To investigate the role of ciliary neurotrophic factor in the developing and mature brain by defining putative target cells the expression of the ligand-binding alpha-subunit of the ciliary neurotrophic factor receptor was studied in neonatal and adult rat brains using a digoxygenin-labelled probe for in situ hybridization. Neuronal populations expressing ciliary neurotrophic factor receptor-alpha messenger RNA were found in many functionally diverse brain areas including the olfactory bulb (mitral cells and other neurons) neocortex (layer V) and other cortical areas (pyramidal cell layers in the piriform cortex and hippocampus, granule cell layer of the dentate gyrus) and distinct nuclei in the thalamus, hypothalamus and brainstem. In the latter, reticular nuclei and both cranial motor and sensory nerve nuclei showed intense hybridization signals in the neonatal brain. The nucleus ruber, substantia nigra pars reticularis, deep cerebellar nuclei and a subpopulation of cells in the internal granular layer of the cerebellum were also labelled. In many areas (e.g. in thalamic, midbrain and pontine nuclei) ciliary neurotrophic factor receptor-alpha expression became undetectable with maturation; however, there were other areas (e.g., olfactory bulb, cerebral cortex and hypothalamus) where expression was higher in the adult. The neuroepithelium of the neonatal rat displayed a highly selective expression of ciliary neurotrophic factor receptor-alpha in areas which are known to exhibit high rates of postnatal cell proliferation in the germinal zones. Generally, neurons which have been reported to respond to exogenous ciliary neurotrophic factor were labelled by the ciliary neurotrophic factor receptor-alpha probe. This was not the case, however, for striatal and septal neurons. The results of this study suggest that ciliary neurotrophic factor receptor-alpha ligands have even broader functions than previously thought, acting on different neuronal populations in the developing and mature brain, respectively.
Collapse
Affiliation(s)
- M Y Lee
- Institute of Anatomy, University of Freiburg, Germany
| | | | | |
Collapse
|
124
|
Hiruma S, Shimizu T, Huruta T, Satou T, Hu J, Tanji K, Hashimoto S. Ciliary neurotrophic factor immunoreactivity in rat intramuscular nerve during reinnervation through a silicone tube after severing of the rat sciatic nerve. Exp Mol Pathol 1997; 64:23-30. [PMID: 9203506 DOI: 10.1006/exmp.1997.2206] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The immunoreactivity of ciliary neurotrophic factor (CNTF) and S100 was studied in the degenerating and regenerating intramuscular nerves after the sciatic nerve was severed. The sciatic nerves of male Wistar rats were transected at the midpoint of the thigh, and silicone tubing was used to obtain effective reinnervation. The strong immunoreactivity of CNTF and S100 was observed in the Schwann cell cytoplasm of intramuscular nerves (IMN) and at the neuromuscular junction (NMJ) on the control sections. The CNTF immunoreactivity gradually became weak and indistinct in the Schwann cell cytoplasm after the operation. However, it was recognized again in the IMN at 4 weeks after the operation. On the other hand, the S100 immunoreactivity was continuously observed except at the NMJ through the denervating and reinnervating period. At 12 weeks after the operation, the strong immunoreactivity of both CNTF and S100 was observed again. These findings suggest that the amount of CNTF protein decreased in Schwann cells of the IMN and NMJ during the denervating period and increased during the reinnervating period in proportion to the number of remyelinated Schwann cells after severing of the sciatic nerve. They also suggest that CNTF was more highly correlated than the S100 protein with the reinnervation activity of Schwann cells.
Collapse
Affiliation(s)
- S Hiruma
- Second Department of Pathology, Kinki University School of Medicine, Osakasayama, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
125
|
Abstract
The field of neurotrophic factor pharmacology emerged during the past decade with the discovery that these proteins can counteract neuronal atrophy and death in the adult nervous system. These concepts are being tested in clinical trials. Therapeutic use of neurotrophic proteins seems practical for diseases of the peripheral nervous system (PNS), where they can be given by systemic administration. For diseases of the CNS, special administration strategies will have to be developed to deliver the neurotrophic factors into the brain. The development of small molecule mimetics represents an alternative approach that is actively pursued to provide brain-penetrant neurotrophics.
Collapse
Affiliation(s)
- F Hefti
- Neuroscience Research Centre, Merck Sharp & Dohme, Harlow, Essex, United Kingdom
| |
Collapse
|
126
|
Krewson CE, Dause R, Mak M, Saltzman WM. Stabilization of nerve growth factor in controlled release polymers and in tissue. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 1997; 8:103-17. [PMID: 8957707 DOI: 10.1163/156856296x00183] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We have studied the release of nerve growth factor (NGF), a protein under consideration for treatment of Alzheimer's Disease, from polymer matrices and microspheres to characterize the stability of NGF, the dynamics of NGF release, and the distribution of NGF within the brain interstitium. Poly(ethylene-co-vinyl acetate) (EVAc) disks and poly(L-lactic acid) (PLA) microspheres were formed by codispersing NGF with one of a variety of molecules. The mass of mouse NGF (mNGF) detected following release from EVAc disks into buffered saline varied five-fold over the range of codispersants studied, with carboxymethyldextran providing optimal release, while the mass of recombinant human NGF (rhNGF) released varied four-fold from both EVAc disks and PLA microspheres, with albumin and carboxymethyldextran providing optimal release. Variation of the codispersant species significantly affected NGF release into buffered saline; it also had a noticeable, but small, effect of the amount of NGF found in the brain tissue following implantation of a polymer device. To improve NGF retention in tissue, NGF was conjugated to 70,000 molecular weight dextran and incorporated into a polymeric device. The distribution of NGF was enhanced by conjugation; comparison of NGF concentrations in the brain to a mathematical model of diffusion and elimination suggested that the elimination rate of NGF-dextran conjugate in the tissue was over seven times slower than the elimination rate of NGF. These results indicate that variation of the properties of the controlled release system may be useful in regulating the time course of NGF delivery to tissue, and that modification of the NGF itself can improve penetration and retention in the brain.
Collapse
Affiliation(s)
- C E Krewson
- Department of Chemical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | | | |
Collapse
|
127
|
Klein S, Roghani M, Rifkin DB. Fibroblast growth factors as angiogenesis factors: new insights into their mechanism of action. EXS 1997; 79:159-92. [PMID: 9002232 DOI: 10.1007/978-3-0348-9006-9_7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- S Klein
- Department of Cell Biology, New York University Medical Center, New York 10016, USA
| | | | | |
Collapse
|
128
|
|
129
|
Implants of encapsulated human CNTF-producing fibroblasts prevent behavioral deficits and striatal degeneration in a rodent model of Huntington's disease. J Neurosci 1996. [PMID: 8756445 DOI: 10.1523/jneurosci.16-16-05168.1996] [Citation(s) in RCA: 136] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Delivery of neurotrophic molecules to the CNS has gained considerable attention as a potential treatment strategy for neurological disorders. In the present study, a DHFR-based expression vector containing the human ciliary neurotrophic factor (hCNTF) was transfected into a baby hamster kidney fibroblast cell line (BHK). Using a polymeric device, encapsulated BHK-control cells and those secreting hCNTF (BHK-hCNTF) were transplanted unilaterally into the rat lateral ventricle. Twelve days later, the same animals received unilateral injections of quinolinic acid (QA; 225 nmol) into the ipsilateral striatum. After surgery, animals were behaviorally tested for apomorphine-induced rotation behavior and for skilled forelimb function using the staircase test. Rats receiving BHK-hCNTF cells rotated significantly less than animals receiving BHK-control cells. No behavioral effects of hCNTF were observed on the staircase test. Nissl-stained sections demonstrated that BHK-hCNTF cells significantly reduced the extent of striatal damage produced by QA. Quantitative analysis of striatal neurons further demonstrated that both choline acetyltransferase- and GAD-immunoreactive neurons were protected by BHK-hCNTF implants. In contrast, a similar loss of NADPH-diaphorase-positive cells was observed in the striatum of both implant groups. Analysis of retrieved capsules revealed numerous viable and mitotically active BHK cells that continued to secrete hCNTF. These results support the concepts that implants of polymer-encapsulated hCNTF-releasing cells can be used to protect striatal neurons from excitotoxic damage and that this strategy may ultimately prove relevant for the treatment of Huntington's disease.
Collapse
|
130
|
Gozes I, Brenneman DE. Activity-dependent neurotrophic factor (ADNF). An extracellular neuroprotective chaperonin? J Mol Neurosci 1996; 7:235-44. [PMID: 8968945 DOI: 10.1007/bf02737061] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
To understand and intervene in neuronal cell death, intensive investigations have been directed at the discovery of intracellular and extracellular factors that provide natural neuroprotection. This goal has fundamental importance for both rational strategies for the treatment of neurodegenerative diseases and also the delineation of molecular mechanisms that regulate nervous system differentiation and growth. We have discovered a potential interface among these fields of research with activity-dependent neurotrophic factor (ADNF), a protein containing sequence homologies to intracellular stress proteins that is found in the extracellular milieu of astroglial cells incubated with the neuropeptide vasoactive intestinal peptide (VIP). Femtomolar concentrations of ADNF and a short peptide sequence derived from it (a peptidergic active site) protected neurons from death associated with a broad range of toxins, including those related to Alzheimer's disease, the human immunodeficiency virus, excito-toxicity, and electrical blockade. Because the activity of the protein was mimicked by a short peptide fragment, this peptide is now proposed as a lead compound for drug development against neurodegeneration.
Collapse
Affiliation(s)
- I Gozes
- Department of Clinical Biochemistry, Sackler School of Medicine, Tel Aviv University, Israel
| | | |
Collapse
|
131
|
Auguste P, Robledo O, Olivier C, Froger J, Praloran V, Pouplard-Barthelaix A, Gascan H. Alanine substitution for Thr268 and Asp269 of soluble ciliary neurotrophic factor (CNTF) receptor alpha component defines a specific antagonist for the CNTF response. J Biol Chem 1996; 271:26049-56. [PMID: 8824245 DOI: 10.1074/jbc.271.42.26049] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Ciliary neurotrophic factor (CNTF) associates with an alpha subunit (CNTFRalpha) of the receptor complex to initiate signal transduction by facilitating heterodimerization of the gp130 transducing protein and the leukemia inhibitory factor receptor (LIFR) beta. CNTFRalpha is anchored to the membrane by a glycosylphosphatidylinositol linkage; however, a soluble form of the alpha subunit can still bind CNTF to recruit the signal transducing components of the receptor complex. In the present study we show that alanine substitution for residues Thr268 and Asp269 of the CNTFRalpha subunit results in a mutated receptor subunit (R3), which can bind CNTF with an affinity similar to that of the wild type CNTFRalpha but, when expressed as a soluble receptor subunit, lowers the binding of CNTF to its tripartite receptor. In addition, CNTFR3alpha inhibits the proliferation of the TF1 hematopoietic cell line triggered by CNTF plus soluble wild type CNTFRalpha but not by IL-6 or oncostatin M. Similarly, CNTFR3alpha specifically antagonizes the induction of gp130 and LIFRbeta tyrosine phosphorylation observed in response to CNTF and wild type soluble CNTFRalpha in the HepG2 hepatoma cell line, as well as the subsequent events leading to haptoglobin synthesis. Positions 268 and 269 of CNTFRalpha appear to be critical for its interaction with gp130 and LIFRbeta, whereby alanine substitution of the residues at these positions results in antagonism of the CNTF-induced response.
Collapse
Affiliation(s)
- P Auguste
- Laboratoire de Biologie Cellulaire, 4 rue Larrey, CHU Angers, 49033 Angers Cedex, France
| | | | | | | | | | | | | |
Collapse
|
132
|
Affiliation(s)
- Ronald M Lindsay
- Regeneron Pharmaceuticals, Incorporated, Tarrytown, New York 10591, USA
| | | |
Collapse
|
133
|
Nonogaki K, Pan XM, Moser AH, Shigenaga J, Staprans I, Sakamoto N, Grunfeld C, Feingold KR. LIF and CNTF, which share the gp130 transduction system, stimulate hepatic lipid metabolism in rats. Am J Physiol Endocrinol Metab 1996; 271:E521-8. [PMID: 8843746 DOI: 10.1152/ajpendo.1996.271.3.e521] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We determined the effects of leukemia inhibitory factor (LIF) and ciliary neurotrophic factor (CNTF) on lipid metabolism in intact rats. Administration of LIF and CNTF increased serum triglycerides in a dose-dependent manner with peak values at 2 h. The effects of LIF and CNTF on serum cholesterol were very small, and serum glucose was unaffected. Both LIF and CNTF stimulated hepatic triglyceride secretion, hepatic de novo fatty acid synthesis, and lipolysis. Pretreatment with phenylisopropyl adenosine, which inhibits lipolysis, partially inhibited LIF- and CNTF-induced hypertriglyceridemia. Interleukin-4, which inhibits cytokine-induced hepatic fatty acid synthesis, also partially inhibited LIF- and CNTF-induced hypertriglyceridemia. These results indicate that both lipolysis and de novo fatty acid synthesis play a role in providing fatty acids for the increase in hepatic triglyceride secretion. Neither indomethacin nor adrenergic receptor antagonists affected the hypertriglyceridemia. The combination of LIF plus CNTF showed no additive effects consistent with the action of both cytokines through the gp130 transduction system. Thus LIF and CNTF have similar effects on lipid metabolism; they join a growing list of cytokines that stimulate hepatic triglyceride secretion and may mediate the changes in lipid metabolism that accompany the acute phase response.
Collapse
Affiliation(s)
- K Nonogaki
- Department of Medicine, University of California, San Francisco 94143, USA
| | | | | | | | | | | | | | | |
Collapse
|
134
|
Jordan CL. Morphological effects of ciliary neurotrophic factor treatment during neuromuscular synapse elimination. JOURNAL OF NEUROBIOLOGY 1996; 31:29-40. [PMID: 9120434 DOI: 10.1002/(sici)1097-4695(199609)31:1<29::aid-neu3>3.0.co;2-h] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In adult skeletal muscles, exogenous ciliary neurotrophic factor (CNTF) induces axons and their nerve terminals to sprout. CNTF also regulates the amount of multiple innervation in developing skeletal muscles during synapse elimination, maintaining multiple innervation of muscle fibers. While CNTF may maintain multiple innervation by regulating developmental synapse elimination, it is also possible that CNTF induces the formation of new multiple innervation through a sprouting response. In this study I examined morphologically the effects of CNTF during synapse elimination in the extensor digitorum longus (EDL) muscle. Rat pups received injections of CNTF in one leg and vehicle in the other either early [postnatal day 7 (P7)-P13] or late (P14-P20) in development. The early treatment period corresponds to that time when the pattern of innervation in the EDL is converted from predominantly multiple to single innervation. The late treatment period is at the end of synapse elimination for the EDL but corresponds to the major period of synapse elimination in the levator ani (LA), allowing a comparison of effects on these two muscles from the same animals. On the day after the final injection, EDL muscles were dissected and stained with tetranitroblue tetrazolium and the resulting pattern of innervation was assessed. The present findings indicate that only the early CNTF treatment regulates the level of multiple innervation in the EDL. Moreover, the effect o early CNTF treatment was local, affecting multiple innervation only in the EDL from the CNTF-treated leg. CNTF injected during the late treatment period had no apparent effects on the EDL but had a potent effect on the pattern of innervation in the LA, significantly increasing the level of multiple innervation in this muscle. Thus, CNTF affected multiple innervation in these two muscles only if provided during the period when single innervation normally develops. There was no evidence to indicate that CNTF induced axons or their terminals to sprout during either treatment period. In conclusion, CNTF increases the level of multiple innervation, probably by regulating synapse elimination, and skeletal muscles themselves may be an important target site for CNTF action. Presumably, the sprouting response to CNTF found in adult muscle develops sometime after P21.
Collapse
Affiliation(s)
- C L Jordan
- Department of Psychology, University of California, Berkeley 94720-1650, USA.
| |
Collapse
|
135
|
Abstract
Neurotrophic factors are proteins that promote the survival and growth of neurons in the vertebrate nervous system. Although it is well known that many neurons obtain these factors from the regions to which their axons project, studies of the sites of neurotrophic factor synthesis have raised the possibility that at least some neurons may obtain these factors from other sources. Alternative sources of neurotrophic factors include cells along a neuron's axon shaft and cells or other axons terminals within the vicinity of a neuron's cell body and dendritic arbour. In addition, recent experimental studies have shown that at certain stages of development neurotrophic factor autocrine loops operate in some neurons. The evidence for and the potential physiological significance of these different modes of action of neurotrophic factors will be discussed.
Collapse
Affiliation(s)
- A M Davies
- School of Biological and Medical Sciences, University of St. Andrews, Fife, Scotland.
| |
Collapse
|
136
|
Abstract
Ciliary neurotrophic factor (CNTF) shares structural and functional properties with members of the hematopoietic cytokine family. It is composed of a four-helix bundle structure and shares the transmembrane signal transducing proteins, glycoprotein-130 (gp130) and leukemia inhibitory factor receptor (LIF-R). Structure-function analysis showed that the gp130-interactive proteins bind in a similar manner to that of growth hormone (site I and II). In addition, gp130-interactive proteins and granulocyte colony-stimulating factor (G-CSF) utilize another binding site (site III) at the boundary between CD loop and helix D. CNTF triggers the association of receptor components, resulting in activation of a signal transduction cascade mediated by specific intracellular protein tyrosine kinases. The Janus kinase (JAK)/signal transducer and activator of transcription (STAT) and Ras/mitogen-activated protein kinase (MAPK) signaling pathways have been characterized in terms of gp130-interactive protein, and there should be other pathways and some crosstalk between them to enhance, prolong, or specify the signals.
Collapse
Affiliation(s)
- M Inoue
- Sumitomo Pharmaceuticals Research Center, Osaka, Japan
| | | | | |
Collapse
|
137
|
Sendtner M, Götz R, Holtmann B, Escary JL, Masu Y, Carroll P, Wolf E, Brem G, Brület P, Thoenen H. Cryptic physiological trophic support of motoneurons by LIF revealed by double gene targeting of CNTF and LIF. Curr Biol 1996; 6:686-94. [PMID: 8793295 DOI: 10.1016/s0960-9822(09)00450-3] [Citation(s) in RCA: 135] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND The survival and differentiation of motoneurons during embryonic development, and the maintenance of their function in the postnatal phase, are regulated by a great variety of neurotrophic molecules which mediate their effects through different receptor systems. The multifactorial support of motoneurons represents a system of high security, because the inactivation of individual ligands has either no detectable, or relatively small, atrophic or degenerative effect on motoneurons. RESULTS Leukaemia inhibitory factor (LIF) has been demonstrated to support motoneuron survival in vitro and in vivo under different experimental conditions. However, when LIF was inactivated by gene targeting, there were no apparent changes in the number and structure of motoneurons and no impairment of their function. The slowly appearing, relatively mild degenerating effects in motoneurons that resulted from ciliary neurotrophic factor (CNTF) gene targeting were substantially potentiated by simultaneous inactivation of the LIF gene, however. Thus, in mice deficient in LIF and CNTF, the degenerative changes in motoneurons were more extensive and appeared earlier. These changes were also functionally reflected by a marked reduction in grip strength. CONCLUSIONS Degenerative disorders of the nervous system, in particular those of motoneurons, may be based on multifactorial inherited and/or acquired defects which individually do not result in degenerative disorders, but which become apparent when additional (cryptic) inherited disturbances or sub-threshold concentrations of noxious factors come into play. Accordingly, the inherited inactivation of the CNTF gene in a high proportion of the Japanese population may represent a predisposing factor for degenerative disorders of motoneurons.
Collapse
Affiliation(s)
- M Sendtner
- Department of Neurology, University of Würzburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Affiliation(s)
- J A Wagner
- Department of Neurology & Neuroscience, Cornell University Medical College, New York 10021, USA
| |
Collapse
|
139
|
Fourcin M, Chevalier S, Guillet C, Robledo O, Froger J, Pouplard-Barthelaix A, Gascan H. gp130 transducing receptor cross-linking is sufficient to induce interleukin-6 type responses. J Biol Chem 1996; 271:11756-60. [PMID: 8662709 DOI: 10.1074/jbc.271.20.11756] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
gP130 transducing receptor is involved in the formation of high affinity receptors for the cytokines of the interleukin-6 (IL-6) family. Recruitment of gp130 by IL-6 associated to its receptor leads to the dimerization of the transducing component. In the present study we did characterize the B-S12 monoclonal antibody raised against gp130 and able to elicit IL-6 type biological activities. B-S12 antibody triggered strongly the proliferation of TF1 and XGI hematopoietic cell lines and was able to increase the synthesis of acute phase proteins in HepG2 hepatoma cell line. B-S12 also behaved as a synergistic factor with granulocyte-macrophage colony-stimulating factor for both proliferation and differentiation of CD34-positive hematopoietic cell progenitors. By using a symmetric enzyme-linked immunosorbent assay, allowing the detection of dimeric forms of soluble gp130, we found that addition of B-S12 to gp130 led to its dimerization. Analysis of the tyrosine phosphorylation events in gp130 and Jak kinase family members revealed that B-S12 quickly induced the phosphorylation of gp130 in a neural derived cell line, and that Jak1 and Jak2 were also recruited. In conclusion, we show that gp130 cross-linking with the B-S12 monoclonal antibody was sufficient to generate functional IL-6 type responses in hematopoietic, neural, and hepatic cells.
Collapse
Affiliation(s)
- M Fourcin
- Laboratoire de Biologie Cellulaire, CHU Angers, France
| | | | | | | | | | | | | |
Collapse
|
140
|
Abstract
A novel 14-amino acid peptide, with stress-protein-like sequences, exhibiting neuroprotection at unprecedented concentrations, is revealed. This peptide prevented neuronal cell death associated with the envelope protein (GP 120) from HIV, with excitotoxicity (N-methyl d-aspartate), with the beta amyloid peptide (putative cytotoxin in Alzheimer's disease), and with tetrodotoxin (electrical blockade). The peptide was designed to contain a sequence derived from a new neuroprotective protein secreted by astroglial cells in the presence of vasoactive intestinal peptide. The neurotrophic protein was isolated by sequential chromatographic methods combining ion exchange, size separation, and hydrophobic interaction. The protein (mol mass, 14 kD and pI, 8.3 +/- 0.25) was named activity-dependent neurotrophic factor, as it protected neurons from death associated with electrical blockade. Peptide sequencing led to the synthesis of the novel 14-amino acid peptide that was homologous, but not identical, to an intracellular stress protein, heat shock protein 60. Neutralizing antiserum to heat shock protein 60 produced neuronal cell death that could be prevented by cotreatment with the novel protein, suggesting the existence of extracellular stress-like proteins with neuroprotective properties. These studies identify a potent neuroprotective glial protein and an active peptide that provide a basis for developing treatments of currently intractable neurodegenerative diseases.
Collapse
Affiliation(s)
- D E Brenneman
- Laboratory of Developmental Neurobiology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-4480, USA
| | | |
Collapse
|
141
|
Tuszynski MH, Mafong E, Meyer S. Central infusions of brain-derived neurotrophic factor and neurotrophin-4/5, but not nerve growth factor and neurotrophin-3, prevent loss of the cholinergic phenotype in injured adult motor neurons. Neuroscience 1996; 71:761-71. [PMID: 8867048 DOI: 10.1016/0306-4522(95)00440-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Neurotrophic factors are molecules that prevent neuronal degeneration and regulate neuronal phenotype during either development or adulthood. Relatively little is known about the comparative responsiveness of injured adult central nervous system motor neurons to various neurotrophic factors. In the present study we examined the effects of four members of the neurotrophin family on injured adult motor neurons. Nerve growth factor, brain-derived neurotrophic factor, neurotrophin-3 or neurotrophin-4/5 were infused intracerebroventricularly into adult rats following transection of the motor hypoglossal nerve. Two weeks after axotomy, brain-derived neurotrophic factor and neurotrophin-4/5 completely prevented the loss of the cholinergic phenotype in hypoglossal motor neurons (97 +/- 11% and 99 +/- 5%, respectively) as assessed by choline acetyltransferase immunolabeling. In contrast, nerve growth factor and neurotrophin-3 exerted no protective effect. The low-affinity p75 neurotrophin receptor, capable of binding all four neurotrophins, was re-expressed in injured hypoglossal neurons; the majority of injured hypoglossal neurons also express trkB receptors but not trkA or trkC receptors. Thus, injury-induced responses to neurotrophins in adult motor neurons are mediated by trk receptors and their agonists, but may or may not also require low-affinity p75 neurotrophin receptors. Intracerebroventricular infusions of trkB agonists may be a useful means of targeting multiple and distantly separated populations of motor neurons for neurotrophic factor therapy.
Collapse
Affiliation(s)
- M H Tuszynski
- Department of Neurosciences-0608, University of California-San Diego, La Jolla 92093, USA
| | | | | |
Collapse
|
142
|
Finn TP, Nishi R. Expression of a chicken ciliary neurotrophic factor in targets of ciliary ganglion neurons during and after the cell-death phase. J Comp Neurol 1996; 366:559-71. [PMID: 8833109 DOI: 10.1002/(sici)1096-9861(19960318)366:4<559::aid-cne1>3.0.co;2-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Ciliary ganglion (CG) neurons, like other neuronal populations, become dependent on their targets for survival during development. We have previously purified and cloned a secreted ciliary neurotrophic factor that was called growth-promoting activity (GPA). We report here the expression and purification of a highly active form of recombinant GPA, the preparation of GPA-specific polyclonal and monoclonal antibodies, and the use of these antibodies to investigate the cellular location and timing of GPA expression in tissues innervated by CG neurons. Virtually all of the trophic activity in extracts of embryonic eyes could be depleted by GPA-specific antibodies. GPA-like immunoreactivity was found in both targets of the CG: the arterial vasculature of the choroid layer and the ciliary body of the eye. In the choroid layer, GPA was localized to smooth muscle cells surrounding the choroid arteries. Staining in the choroid layer was first detectable at embryonic day (E) 10, or about 2 days after cell death has begun in the ganglion, then increased in intensity through E19. Quantification of trophic activity from whole eye extracts at various ages showed a small increase in activity observed between E9 and E12 and at least a 10-fold increase between E12 and E18. The presence of GPA protein in target cells of CG neurons during the specific developmental period when these neurons undergo cell death is consistent with its proposed function as a target-derived ciliary neurotrophic factor.
Collapse
Affiliation(s)
- T P Finn
- Department of Cell and Developmental Biology, Oregon Health Sciences University, Portland, Oregon 97201, USA
| | | |
Collapse
|
143
|
Nakahara Y, Gage FH, Tuszynski MH. Grafts of fibroblasts genetically modified to secrete NGF, BDNF, NT-3, or basic FGF elicit differential responses in the adult spinal cord. Cell Transplant 1996. [PMID: 8689031 DOI: 10.1016/0963-6897(95)02028-4] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Neuronal and axonal responses to neurotrophic factors in the developing spinal cord have been relatively well characterized, but little is known about adult spinal responses to neurotrophic factors. We genetically modified primary rat fibroblasts to produce either nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), or basic fibroblast growth factor (bFGF), then grafted these neurotrophic factor-secreting cells into the central gray matter of the spinal cord in adult rats. Spinal cord lesions were not made prior to grafting. From 2 wk to 6 mo later, sensory neurites of dorsal root origin extensively penetrated NGF-, NT-3-, and bFGF-producing grafts, whereas BDNF-secreting grafts elicited no growth responses. Putative noradrenergic neurites also penetrated NGF-secreting cell grafts. Local motor and corticospinal motor axons did not penetrate any of the neurotrophic factor-secreting grafts. These results indicate that unlesioned or minimally lesioned adult spinal cord sensory and putative noradrenergic populations retain significant neurotrophic factor responsiveness, whereas motor neurites are comparatively resistant even to those neurotrophic factors to which they exhibit survival dependence during development. Grafts of genetically modified cells can be a useful tool for characterizing neurotrophic factor responsiveness in the adult spinal cord and designing strategies to promote axonal regeneration after injury.
Collapse
Affiliation(s)
- Y Nakahara
- Department of Neurosciences, University of California-San Diego, La Jolla 92093, USA
| | | | | |
Collapse
|
144
|
Tolosano E, Cutufia MA, Hirsch E, Stefanuto G, Voyron S, Fasolo A, Silengo L, Altruda F. Ciliary neurotrophic factor constitutively expressed in the nervous system of transgenic mice protects embryonic dorsal root ganglion neurons from apoptosis. Eur J Neurosci 1996; 8:521-9. [PMID: 8963443 DOI: 10.1111/j.1460-9568.1996.tb01236.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Ciliary neurotrophic factor (CNTF) is a potent survival factor for several neuronal populations. It is expressed postnatally by Schwann cells in the peripheral nervous system and by some glial and neuronal cells in the central nervous system. We used the promoter of the neurofilament light chain gene to produce transgenic mice that express CNTF in neurons from the beginning of neuronal differentiation. These transgenic animals may represent a suitable model to identify neuronal cell types responsive to CNTF in vivo and to study the mechanism of action of this neurotrophic factor. We show that dorsal root ganglion neurons of transgenic mice expressing CNTF in neurons are protected from apoptosis during embryonic development: 40% of these cells undergo apoptosis between embryonic day 12.5 and postnatal day 5 in transgenic mice whereas 60% do so in control animals. However, protection from apoptosis does not result in an increase in the total number of neurons at the end of development. We discuss our results with regard to CNTF potentialities in vivo and the significance of programmed cell death during development.
Collapse
Affiliation(s)
- E Tolosano
- Department of Genetics, Biology and Medical Chemistry, University of Turin, Italy
| | | | | | | | | | | | | | | |
Collapse
|
145
|
Encha Razavi F, Larroche JC, Roume J, Gonzales M, Kondo HC, Mulliez N. Lethal familial fetal akinesia sequence (FAS) with distinct neuropathological pattern: type III lissencephaly syndrome. AMERICAN JOURNAL OF MEDICAL GENETICS 1996; 62:16-22. [PMID: 8779318 DOI: 10.1002/(sici)1096-8628(19960301)62:1<16::aid-ajmg4>3.0.co;2-u] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We report on a distinct pattern of primary central nervous system (CNS) degeneration affecting neuronal survival in the brain and spinal cord in 5 fetuses with fetal akinesia sequence (FAS). This neuropathological pattern is characteristic of a lethal entity that we propose calling type III lissencephaly syndrome. Parental consanguinity and the recurrence in sibs support a genetic cause. The mechanism of neuronal death is not yet understood; abnormal apoptosis and/or deficiency in neurotropic factors may be considered possible causes.
Collapse
Affiliation(s)
- F Encha Razavi
- Service Histo-Embryologie, Hôpital Henri Mondor, Créteil, France
| | | | | | | | | | | |
Collapse
|
146
|
Cepko CL, Austin CP, Yang X, Alexiades M, Ezzeddine D. Cell fate determination in the vertebrate retina. Proc Natl Acad Sci U S A 1996; 93:589-95. [PMID: 8570600 PMCID: PMC40096 DOI: 10.1073/pnas.93.2.589] [Citation(s) in RCA: 749] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
In the vertebrate central nervous system, the retina has been a useful model for studies of cell fate determination. Recent results from studies conducted in vitro and in vivo suggest a model of retinal development in which both the progenitor cells and the environment change over time. The model is based upon the notion that the mitotic cells within the retina change in their response properties, or "competence", during development. These changes presage the ordered appearance of distinct cell types during development and appear to be necessary for the production of the distinct cell types. As the response properties of the cells change, so too do the environmental signals that the cells encounter. Together, intrinsic properties and extrinsic cues direct the choice of cell fate.
Collapse
Affiliation(s)
- C L Cepko
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
147
|
Regeneration of the Auditory Nerve: The Role of Neurotrophic Factors. CLINICAL ASPECTS OF HEARING 1996. [DOI: 10.1007/978-1-4612-4068-6_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
148
|
Krieglstein K, Maysinger D, Unsicker K. The survival response of mesencephalic dopaminergic neurons to the neurotrophins BDNF and NT-4 requires priming with serum: comparison with members of the TGF-beta superfamily and characterization of the serum-free culture system. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 1996; 47:247-58. [PMID: 8841970 DOI: 10.1007/978-3-7091-6892-9_17] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The neurotrophins, brain-derived neurotrophic factor (BDNF) and neurotrophin-4 (NT-4), are established survival promoting molecules for dopaminergic (DAergic) neurons cultured from the fetal rat midbrain floor. We have cultured and compared the survival of embryonic day (E) 14 mesencephalic cells in fully defined, serum-free medium, with serum-primed cultures (one hour during dissociation). Cultures were characterized using antibodies against neuron-specific enolase (NSE), tyrosine hydroxylase (TH), vimentin, glial fibrillary acidic protein (GFAP), and the antigen A2B5. The absolute absence of serum did not reduce the survival of TH-positive DAergic neurons nor alter the percentages of cells staining for the above markers. Transforming growth factor-beta 3 (TGF-beta 3) and glial cell line-derived neurotrophic factor (GDNF), two members of the TGF-beta superfamily, both promoted the survival of TH-positive cells (TGF-beta 3: 2-fold; GDNF: 1.6-fold) over the 8-day culture period. Survival mediated by TGF-beta 3 and GDNF was independent of whether or not the cells had been initially exposed to serum. In contrast, the survival promoting effects of BDNF and NT-4 were crucially dependent on serum priming. RT-PCR for the full-length trkB high affinity neurotrophin receptor revealed its presence in both culture systems. We conclude that priming with serum is important to make DAergic neurons fully responsive to BDNF and NT-4. Underlying mechanisms might be sought at the level or distal of trkB receptor expression, without excluding the possiblity that serum elicits production of growth factors that synergistically act with neurotrophins in these cultures.
Collapse
Affiliation(s)
- K Krieglstein
- Department of Anatomy, University of Heidelberg, Federal Republic of Germany
| | | | | |
Collapse
|
149
|
Abstract
Ciliary neurotrophic factor (CNTF) has been shown to promote the survival of motoneurons, but its effects on axonal outgrowth have not been examined in detail. Since nerve growth factor (NGF) promotes the outgrowth of neurites within the same populations of neurons that depend on NGF for survival, we investigated whether CNTF would stimulate neurite outgrowth from motoneurons in addition to enhancing their survival. We found that CNTF is a powerful promoter of neurite outgrowth from cultured chick embryo ventral spinal cord neurons. An effect of CNTF on neurite outgrowth was detectable within 7 hours, and at a concentration of 10 ng/ml, CNTF enhanced neurite length by about 3- to 4-fold within 48 hours. The neurite growth-promoting effect of CNTF does not appear to be a consequence of its survival-promoting effect. To determine whether the effect of CNTF on spinal cord neurons was specific for motoneurons, we analyzed cell survival and neurite outgrowth for motoneurons labeled with diI, as well as for neurons taken from the dorsal half of the spinal cord, which lacks motoneurons. We found that the effect of CNTF was about the same for motoneurons as it was for neurons from the dorsal spinal cord. The responsiveness of a variety of spinal cord neurons to CNTF may broaden the appeal of CNTF as a candidate for the treatment of spinal cord injury or disease.
Collapse
Affiliation(s)
- N M Oyesiku
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
150
|
Yamada K, Nitta A, Saito T, Hu J, Nabeshima T. Changes in ciliary neurotrophic factor content in the rat brain after continuous intracerebroventricular infusion of beta-amyloid(1-40) protein. Neurosci Lett 1995; 201:155-8. [PMID: 8848241 DOI: 10.1016/0304-3940(95)12161-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have previously shown that the continuous intracerebroventricular infusion of beta-amyloid(1-40) protein results in memory impairments in rats, associated with a reduction of choline acetyltransferase activity in the frontal cortex and hippocampus. In the present study, we examined whether the infusion of beta-amyloid(1-40) protein affected the content of ciliary neurotrophic factor (CNTF) in the rat brain. The beta-amyloid(1-40) infusion increased CNTF content in the frontal cortex, hippocampus, and the cerebellum, but decreased its content in the brain stem. These results suggest that accumulation of beta-amyloid(1-40) in the brain may affect CNTF production in vivo.
Collapse
Affiliation(s)
- K Yamada
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University School of Medicine, Showa-ku, Japan
| | | | | | | | | |
Collapse
|