101
|
Colpitts CC, Verrier ER, Baumert TF. Targeting Viral Entry for Treatment of Hepatitis B and C Virus Infections. ACS Infect Dis 2015; 1:420-7. [PMID: 27617925 DOI: 10.1021/acsinfecdis.5b00039] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hepatitis B virus (HBV) and hepatitis C virus (HCV) infections remain major health problems worldwide, with 400-500 million chronically infected people worldwide. Chronic infection results in liver cirrhosis and hepatocellular carcinoma, the second leading cause of cancer death. Current treatments for HBV limit viral replication without efficiently curing infection. HCV treatment has markedly progressed with the licensing of direct-acting antivirals (DAAs) for HCV cure, yet limited access for the majority of patients is a major challenge. Preventative and curative treatment strategies, aimed at novel targets, are needed for both viruses. Viral entry represents one such target, although detailed knowledge of the entry mechanisms is a prerequisite. For HBV, the recent discovery of the NTCP cell entry factor enabled the establishment of an HBV cell culture model and showed that cyclosporin A and Myrcludex B are NTCP-targeting entry inhibitors. Advances in the understanding of HCV entry revealed it to be a complex process involving many factors, offering several antiviral targets. These include viral envelope proteins E1 and E2, virion-associated lipoprotein ApoE, and cellular factors CD81, SRBI, EGFR, claudin-1, occludin, and the cholesterol transporter NPC1L1. Small molecules targeting SR-BI, EGFR, and NPC1L1 have entered clinical trials, whereas other viral- and host-targeted small molecules, peptides, and antibodies show promise in preclinical models. This review summarizes the current understanding of HBV and HCV entry and describes novel antiviral targets and compounds in different stages of clinical development. Overall, proof-of-concept studies indicate that entry inhibitors are a promising class of antivirals to prevent and treat HBV and HCV infections.
Collapse
Affiliation(s)
- Che C. Colpitts
- Inserm, U1110, Institut de Recherche sur les Maladies
Virales et Hépatiques, 67000 Strasbourg, France
- Université de Strasbourg, 67000 Strasbourg, France
| | - Eloi R. Verrier
- Inserm, U1110, Institut de Recherche sur les Maladies
Virales et Hépatiques, 67000 Strasbourg, France
- Université de Strasbourg, 67000 Strasbourg, France
| | - Thomas F. Baumert
- Inserm, U1110, Institut de Recherche sur les Maladies
Virales et Hépatiques, 67000 Strasbourg, France
- Université de Strasbourg, 67000 Strasbourg, France
- Institut Hospitalo-Universitaire,
Pôle Hépato-digestif, Hopitaux Universitaires de Strasbourg, 67000 Strasbourg, France
| |
Collapse
|
102
|
Tawar RG, Colpitts CC, Timm J, Fehm T, Roggendorf M, Meisel H, Meyer N, Habersetzer F, Cosset FL, Berg T, Zeisel MB, Baumert TF. Acute hepatitis C virus infection induces anti-host cell receptor antibodies with virus-neutralizing properties. Hepatology 2015; 62:726-36. [PMID: 26010076 DOI: 10.1002/hep.27906] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 05/19/2015] [Indexed: 12/17/2022]
Abstract
UNLABELLED Hepatitis C virus (HCV) causes persistent infection in the majority of infected individuals. The mechanisms of persistence and clearance are only partially understood. Antibodies (Abs) against host cell entry receptors have been shown to inhibit HCV infection in cell culture and animal models. In this study, we aimed to investigate whether anti-receptor Abs are induced during infection in humans in vivo and whether their presence is associated with outcome of infection. We established an enzyme-linked immunosorbant assay using a recombinant CD81-claudin-1 (CLDN1) fusion protein to detect and quantify Abs directed against extracellular epitopes of the HCV CD81-CLDN1 coreceptor complex. The presence of anti-receptor Abs was studied in serum of patients from a well-defined cohort of a single-source HCV outbreak of pregnant women and several control groups, including uninfected pregnant women, patients with chronic hepatitis B and D virus (HBV/HDV) infection, and healthy individuals. Virus-neutralizing activity of Abs was determined using recombinant cell culture-derived HCV (HCVcc). Our results demonstrate that HCV-infected patients have statistically significantly higher anti-CD81/CLDN1 Ab titers during the early phase of infection than controls. The titers were significantly higher in resolvers compared to persisters. Functional studies using immunoadsorption and HCV cell culture models demonstrate that HCV-neutralizing anti-receptor Abs are induced in the early phase of HCV infection, but not in control groups. CONCLUSION The virus-neutralizing properties of these Abs suggest a role for control of viral infection in conjunction with antiviral responses. Characterization of these anti-receptor Abs opens new avenues to prevent and treat HCV infection.
Collapse
Affiliation(s)
- Rajiv G Tawar
- Inserm, U1110, Institut des Maladies Virales et Hépatiques, Strasbourg, France.,University of Strasbourg, Strasbourg, France
| | - Che C Colpitts
- Inserm, U1110, Institut des Maladies Virales et Hépatiques, Strasbourg, France.,University of Strasbourg, Strasbourg, France
| | - Jörg Timm
- Institute for Virology, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Tanja Fehm
- Department of Gynecology and Obstetrics, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | | | - Helga Meisel
- Institute of Medical Virology, Helmut-Ruska-Haus, Charité University Medicine, Berlin, Germany
| | - Nicolas Meyer
- Pôle de Santé Publique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - François Habersetzer
- Inserm, U1110, Institut des Maladies Virales et Hépatiques, Strasbourg, France.,University of Strasbourg, Strasbourg, France.,Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - François-Loïc Cosset
- CIRI-International Center for Infectiology Research, Lyon, France; Inserm, U1111, Lyon France; Ecole Normale Supérieure; CNRS UMR 5308, Lyon, France; LabEx Ecofect, University of Lyon, Lyon, France
| | - Thomas Berg
- Department of Internal Medicine, Neurology and Dermatology, Gastroenterology and Rheumatology Clinic, Section of Hepatology, University of Leipzig, Leipzig, Germany
| | - Mirjam B Zeisel
- Inserm, U1110, Institut des Maladies Virales et Hépatiques, Strasbourg, France.,University of Strasbourg, Strasbourg, France
| | - Thomas F Baumert
- Inserm, U1110, Institut des Maladies Virales et Hépatiques, Strasbourg, France.,University of Strasbourg, Strasbourg, France.,Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| |
Collapse
|
103
|
Hakami AR, Ball JK, Tarr AW. Non-ionic detergents facilitate non-specific binding of M13 bacteriophage to polystyrene surfaces. J Virol Methods 2015; 221:1-8. [DOI: 10.1016/j.jviromet.2015.04.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 04/16/2015] [Accepted: 04/20/2015] [Indexed: 01/13/2023]
|
104
|
Approaching rational epitope vaccine design for hepatitis C virus with meta-server and multivalent scaffolding. Sci Rep 2015; 5:12501. [PMID: 26238798 PMCID: PMC4533164 DOI: 10.1038/srep12501] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 06/18/2015] [Indexed: 02/06/2023] Open
Abstract
Development of a prophylactic vaccine against hepatitis C virus (HCV) has been hampered by the extraordinary viral diversity and the poor host immune response. Scaffolding, by grafting an epitope onto a heterologous protein scaffold, offers a possible solution to epitope vaccine design. In this study, we designed and characterized epitope vaccine antigens for the antigenic sites of HCV envelope glycoproteins E1 (residues 314–324) and E2 (residues 412–423), for which neutralizing antibody-bound structures are available. We first combined six structural alignment algorithms in a “scaffolding meta-server” to search for diverse scaffolds that can structurally accommodate the HCV epitopes. For each antigenic site, ten scaffolds were selected for computational design, and the resulting epitope scaffolds were analyzed using structure-scoring functions and molecular dynamics simulation. We experimentally confirmed that three E1 and five E2 epitope scaffolds bound to their respective neutralizing antibodies, but with different kinetics. We then investigated a “multivalent scaffolding” approach by displaying 24 copies of an epitope scaffold on a self-assembling nanoparticle, which markedly increased the avidity of antibody binding. Our study thus demonstrates the utility of a multi-scale scaffolding strategy in epitope vaccine design and provides promising HCV immunogens for further assessment in vivo.
Collapse
|
105
|
Tarr AW, Khera T, Hueging K, Sheldon J, Steinmann E, Pietschmann T, Brown RJP. Genetic Diversity Underlying the Envelope Glycoproteins of Hepatitis C Virus: Structural and Functional Consequences and the Implications for Vaccine Design. Viruses 2015; 7:3995-4046. [PMID: 26193307 PMCID: PMC4517138 DOI: 10.3390/v7072809] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/19/2015] [Accepted: 07/08/2015] [Indexed: 12/13/2022] Open
Abstract
In the 26 years since the discovery of Hepatitis C virus (HCV) a major global research effort has illuminated many aspects of the viral life cycle, facilitating the development of targeted antivirals. Recently, effective direct-acting antiviral (DAA) regimens with >90% cure rates have become available for treatment of chronic HCV infection in developed nations, representing a significant advance towards global eradication. However, the high cost of these treatments results in highly restricted access in developing nations, where the disease burden is greatest. Additionally, the largely asymptomatic nature of infection facilitates continued transmission in at risk groups and resource constrained settings due to limited surveillance. Consequently a prophylactic vaccine is much needed. The HCV envelope glycoproteins E1 and E2 are located on the surface of viral lipid envelope, facilitate viral entry and are the targets for host immunity, in addition to other functions. Unfortunately, the extreme global genetic and antigenic diversity exhibited by the HCV glycoproteins represents a significant obstacle to vaccine development. Here we review current knowledge of HCV envelope protein structure, integrating knowledge of genetic, antigenic and functional diversity to inform rational immunogen design.
Collapse
Affiliation(s)
- Alexander W Tarr
- School of Life Sciences, Nottingham Digestive Diseases Biomedical Research Unit, University of Nottingham, Nottingham NG7 2RD, UK.
| | - Tanvi Khera
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centrefor Infection Research (HZI), Hannover D-30625, Germany.
| | - Kathrin Hueging
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centrefor Infection Research (HZI), Hannover D-30625, Germany.
| | - Julie Sheldon
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centrefor Infection Research (HZI), Hannover D-30625, Germany.
| | - Eike Steinmann
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centrefor Infection Research (HZI), Hannover D-30625, Germany.
| | - Thomas Pietschmann
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centrefor Infection Research (HZI), Hannover D-30625, Germany.
- German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Braunschweig 38124, Germany.
| | - Richard J P Brown
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centrefor Infection Research (HZI), Hannover D-30625, Germany.
| |
Collapse
|
106
|
Low cross-neutralization of hepatitis C correlates with liver disease in immunocompromized patients. AIDS 2015; 29:1025-33. [PMID: 26125137 DOI: 10.1097/qad.0000000000000651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND AND AIMS Chronic hepatitis C virus (HCV) infection causes severe liver disease in HIV-infected patients and liver transplant recipients. The impact of serum and immunoglobulin on viral entry was analysed in these patients. METHOD Sera from 60 anti-HCV positive patients, including 30 who were also anti-HIV positive, were tested with HCVpp from different genotypes (1a, 1b, 3 and 4) and with HCVcc (H77/JFH1). Seventeen HIV-seropositive and 13 HIV-seronegative patients with decompensated liver disease were studied before and after liver transplant. RESULTS Serum neutralization was markedly lower after liver transplant and in HIV patients than in mono-infected immune-competent individuals. This effect was due to low antibody-mediated neutralization. In HIV patients, low neutralization was correlated with low lymphocyte T CD4 cell counts and the severity of liver disease. To characterize neutralization, we tested HCVpp lacking hypervariable region (HVR1) and SR-BI receptor cholesterol transfer inhibition by BLT-4. These experiments showed that neutralization was strongly dependent on the HVR1 and the SR-BI receptor. HVR1 sequences showed that selective pressures were low in immune-compromised patients and highly correlated to HCV neutralization after liver transplant. Neutralization experiments were reproduced with HCV strain JFH1. CONCLUSION Serum neutralization in HIV-coinfected patients and HCV-infected liver transplant recipients is poor enhancing HCV entry through HVR1/SR-BI interplay. This may contribute to the severity of hepatitis C in these settings.
Collapse
|
107
|
Hullegie SJ, Arends JE, Rijnders BJA, Irving WL, Salmon D, Prins M, Wensing AM, Klenerman P, Leblebicioglu H, Boesecke C, Rockstroh JK, Hoepelman AIM. Current knowledge and future perspectives on acute hepatitis C infection. Clin Microbiol Infect 2015; 21:797.e9-797.e17. [PMID: 25892133 DOI: 10.1016/j.cmi.2015.03.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 03/17/2015] [Accepted: 03/28/2015] [Indexed: 12/13/2022]
Abstract
Acute hepatitis C virus (HCV) infections are frequently seen worldwide in certain risk groups, with an annual incidence rate varying between 0.08% and 66%. Although this incidence is substantial, a delayed diagnosis during chronic infection is most often made in the absence of clinical symptoms in the acute phase of the infection. Currently used methods to diagnose acute HCV infection are IgG antibody seroconversion and repeated HCV RNA measurements, although no definitive diagnostic test is currently available. Progress in the field of adaptive and innate immune responses has aided both advances in the field of HCV vaccine development and a more basic understanding of viral persistence. The rapid changes in the treatment of chronic HCV infection will affect therapeutic regimens for acute HCV infection in the coming years, leading to shorter treatment courses and pegylated interferon-free modalities. This review gives an overview of the current knowledge and uncertainties, together with some future perspectives on acute hepatitis C epidemiology, virology, immunology, and treatment.
Collapse
Affiliation(s)
- S J Hullegie
- Department of Infectious Diseases, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - J E Arends
- Department of Infectious Diseases, University Medical Centre Utrecht, Utrecht, The Netherlands; The European Study Group of Viral Hepatitis (ESGVH), UK.
| | - B J A Rijnders
- Department of Infectious Diseases, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - W L Irving
- The European Study Group of Viral Hepatitis (ESGVH), UK; NIHR Biomedical Research Unit in Gastroenterology and the Liver, University of Nottingham, Nottingham, UK
| | - D Salmon
- The European Study Group of Viral Hepatitis (ESGVH), UK; Université Paris Descartes, Paris, France
| | - M Prins
- Cluster Infectious Diseases, Department of Research, Public Health Service, Amsterdam, The Netherlands; Department of Infectious Diseases, CINIMA, Academic Medical Centre, Amsterdam, The Netherlands
| | - A M Wensing
- Department of Infectious Diseases, University Medical Centre Utrecht, Utrecht, The Netherlands; The European Study Group of Viral Hepatitis (ESGVH), UK
| | - P Klenerman
- NDM and Jenner Institute, University of Oxford, Oxford, UK
| | - H Leblebicioglu
- The European Study Group of Viral Hepatitis (ESGVH), UK; Department of Infectious Diseases, Ondokuz Mayis University, Samsun, Turkey
| | - C Boesecke
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
| | - J K Rockstroh
- The European Study Group of Viral Hepatitis (ESGVH), UK; Department of Internal Medicine I, University of Bonn, Bonn, Germany
| | - A I M Hoepelman
- Department of Infectious Diseases, University Medical Centre Utrecht, Utrecht, The Netherlands; The European Study Group of Viral Hepatitis (ESGVH), UK
| |
Collapse
|
108
|
Kong L, Jackson KN, Wilson IA, Law M. Capitalizing on knowledge of hepatitis C virus neutralizing epitopes for rational vaccine design. Curr Opin Virol 2015; 11:148-57. [PMID: 25932568 PMCID: PMC4507806 DOI: 10.1016/j.coviro.2015.04.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 04/08/2015] [Indexed: 12/13/2022]
Abstract
Hepatitis C virus infects nearly 3% of the world's population and is often referred as a silent epidemic. It is a leading cause of liver cirrhosis and hepatocellular carcinoma in endemic countries. Although antiviral drugs are now available, they are not readily accessible to marginalized social groups and developing nations that are disproportionally impacted by HCV. To stop the HCV pandemic, a vaccine is needed. Recent advances in HCV research have provided new opportunities for studying HCV neutralizing antibodies and their subsequent use for rational vaccine design. It is now recognized that neutralizing antibodies to conserved antigenic sites of the virus can cross-neutralize diverse HCV genotypes and protect against infection in vivo. Structural characterization of the neutralizing epitopes has provided valuable information for design of candidate immunogens.
Collapse
Affiliation(s)
- Leopold Kong
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kelli N Jackson
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Mansun Law
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
109
|
Stewart H, Bartlett C, Ross-Thriepland D, Shaw J, Griffin S, Harris M. A novel method for the measurement of hepatitis C virus infectious titres using the IncuCyte ZOOM and its application to antiviral screening. J Virol Methods 2015; 218:59-65. [PMID: 25796989 PMCID: PMC4411217 DOI: 10.1016/j.jviromet.2015.03.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 03/11/2015] [Accepted: 03/12/2015] [Indexed: 12/31/2022]
Abstract
Hepatitis C virus (HCV) is a significant human pathogen, causing severe liver disease. Accurate quantification of viral titres is essential for the majority of assays. The current methods of HCV titration and quantification are laborious and imprecise. We report a novel method for calculating infectious HCV titres using the IncuCyte ZOOM. This method has applications for screening of novel antiviral compounds.
Hepatitis C virus (HCV) is a significant human pathogen infecting 3% of the world population. An infectious molecular clone capable of replicating and releasing infectious virions in cell culture has only been available since 2005, leaving a significant knowledge gap concerning post-RNA replication events such as particle assembly, trafficking and release. Thus, a fast, efficient and accurate method of measuring infectious viral titres is highly desirable. Current methods rely upon manual counting of infected cell foci and so are both labour-intensive and susceptible to human error. Here, we report a novel protocol, which utilises the IncuCyte ZOOM instrument and related software to accurately count infected cells and extrapolation of this data to produce an infectious titre, reported as infectious units per millilitre (IU/mL). This method reduces cost, time and error in experiments. We also demonstrate that this approach is amenable to high-throughput compound screening, thereby expediting the identification of novel antivirals.
Collapse
Affiliation(s)
- Hazel Stewart
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Christopher Bartlett
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Douglas Ross-Thriepland
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Joseph Shaw
- Leeds Institute of Cancer and Pathology, Faculty of Medicine and Health, St James's University Hospital, University of Leeds, Leeds LS9 7TF, United Kingdom
| | - Stephen Griffin
- Leeds Institute of Cancer and Pathology, Faculty of Medicine and Health, St James's University Hospital, University of Leeds, Leeds LS9 7TF, United Kingdom
| | - Mark Harris
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom.
| |
Collapse
|
110
|
Meyer K, Kwon YC, Liu S, Hagedorn CH, Ray RB, Ray R. Interferon-α inducible protein 6 impairs EGFR activation by CD81 and inhibits hepatitis C virus infection. Sci Rep 2015; 5:9012. [PMID: 25757571 PMCID: PMC4355636 DOI: 10.1038/srep09012] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 02/16/2015] [Indexed: 02/06/2023] Open
Abstract
Viral entry requires co-operative interactions of several host cell factors. Interferon (IFN) and the IFN-stimulated genes (ISGs) play a central role in antiviral responses against hepatitis C virus (HCV) infection. We examined the effect of interferon-α inducible protein 6 (IFI6) against HCV infection in human hepatoma cells. HCV RNA level or infectious foci were inhibited significantly by ectopic expression of IFI6. IFI6 impaired CD81 co-localization with claudin-1 (CLDN1) upon HCV infection or CD81 cross-linking by specific antibody. Activation of epidermal growth factor receptor (EGFR), a co-factor involved in CD81/CLDN1 interactions, was reduced in IFI6 expressing cells in response to HCV infection or CD81 cross linking by antibody, but not by treatment with EGF. Taken together, the results from our study support a model where IFI6 inhibits HCV entry by impairing EGFR mediated CD81/CLDN1 interactions. This may be relevant to other virus entry processes employing EGFR.
Collapse
Affiliation(s)
- Keith Meyer
- Department of Internal Medicine, Saint Louis University
| | | | - Shuanghu Liu
- Department of Medicinal Chemistry, College of Pharmacy, University of Utah
| | - Curt H Hagedorn
- 1] Department of Medicine and Genetics, University of Arkansas for Medical Sciences [2] The Central Arkansas Veterans Healthcare System
| | - Ratna B Ray
- 1] Department of Internal Medicine, Saint Louis University [2] Department of Pathology, Saint Louis University
| | - Ranjit Ray
- 1] Department of Internal Medicine, Saint Louis University [2] Department of Molecular Microbiology &Immunology, Saint Louis University
| |
Collapse
|
111
|
Li Y, Pierce BG, Wang Q, Keck ZY, Fuerst TR, Foung SKH, Mariuzza RA. Structural basis for penetration of the glycan shield of hepatitis C virus E2 glycoprotein by a broadly neutralizing human antibody. J Biol Chem 2015; 290:10117-25. [PMID: 25737449 DOI: 10.1074/jbc.m115.643528] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Indexed: 12/13/2022] Open
Abstract
Hepatitis C virus (HCV) is a major cause of liver cirrhosis and hepatocellular carcinoma. A challenge for HCV vaccine development is to identify conserved epitopes able to elicit protective antibodies against this highly diverse virus. Glycan shielding is a mechanism by which HCV masks such epitopes on its E2 envelope glycoprotein. Antibodies to the E2 region comprising residues 412-423 (E2(412-423)) have broadly neutralizing activities. However, an adaptive mutation in this linear epitope, N417S, is associated with a glycosylation shift from Asn-417 to Asn-415 that enables HCV to escape neutralization by mAbs such as HCV1 and AP33. By contrast, the human mAb HC33.1 can neutralize virus bearing the N417S mutation. To understand how HC33.1 penetrates the glycan shield created by the glycosylation shift to Asn-415, we determined the structure of this broadly neutralizing mAb in complex with its E2(412-423) epitope to 2.0 Å resolution. The conformation of E2(412-423) bound to HC33.1 is distinct from the β-hairpin conformation of this peptide bound to HCV1 or AP33, because of disruption of the β-hairpin through interactions with the unusually long complementarity-determining region 3 of the HC33.1 heavy chain. Whereas Asn-415 is buried by HCV1 and AP33, it is solvent-exposed in the HC33.1-E2(412-423) complex, such that glycosylation of Asn-415 would not prevent antibody binding. Furthermore, our results highlight the structural flexibility of the E2(412-423) epitope, which may serve as an immune evasion strategy to impede induction of antibodies targeting this site by reducing its antigenicity.
Collapse
Affiliation(s)
- Yili Li
- From the University of Maryland Institute for Bioscience and Biotechnology Research, W. M. Keck Laboratory for Structural Biology, Rockville, Maryland 20850, the Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, and
| | - Brian G Pierce
- From the University of Maryland Institute for Bioscience and Biotechnology Research, W. M. Keck Laboratory for Structural Biology, Rockville, Maryland 20850
| | - Qian Wang
- From the University of Maryland Institute for Bioscience and Biotechnology Research, W. M. Keck Laboratory for Structural Biology, Rockville, Maryland 20850, the Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, and
| | - Zhen-Yong Keck
- the Department of Pathology, Stanford University School of Medicine, Stanford, California 94304
| | - Thomas R Fuerst
- From the University of Maryland Institute for Bioscience and Biotechnology Research, W. M. Keck Laboratory for Structural Biology, Rockville, Maryland 20850, the Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, and
| | - Steven K H Foung
- the Department of Pathology, Stanford University School of Medicine, Stanford, California 94304
| | - Roy A Mariuzza
- From the University of Maryland Institute for Bioscience and Biotechnology Research, W. M. Keck Laboratory for Structural Biology, Rockville, Maryland 20850, the Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, and
| |
Collapse
|
112
|
Verstrepen BE, Boonstra A, Koopman G. Immune mechanisms of vaccine induced protection against chronic hepatitis C virus infection in chimpanzees. World J Hepatol 2015; 7:53-69. [PMID: 25624997 PMCID: PMC4295194 DOI: 10.4254/wjh.v7.i1.53] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 10/22/2014] [Accepted: 11/07/2014] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) infection is characterized by a high propensity for development of life-long viral persistence. An estimated 170 million people suffer from chronic hepatitis caused by HCV. Currently, there is no approved prophylactic HCV vaccine available. With the near disappearance of the most relevant animal model for HCV, the chimpanzee, we review the progression that has been made regarding prophylactic vaccine development against HCV. We describe the results of the individual vaccine evaluation experiments in chimpanzees, in relation to what has been observed in humans. The results of the different studies indicate that partial protection against infection can be achieved, but a clear correlate of protection has thus far not yet been defined.
Collapse
Affiliation(s)
- Babs E Verstrepen
- Babs E Verstrepen, Gerrit Koopman, Department of Virology, Biomedical Primate Research Centre, 2280GH Rijswijk, The Netherlands
| | - André Boonstra
- Babs E Verstrepen, Gerrit Koopman, Department of Virology, Biomedical Primate Research Centre, 2280GH Rijswijk, The Netherlands
| | - Gerrit Koopman
- Babs E Verstrepen, Gerrit Koopman, Department of Virology, Biomedical Primate Research Centre, 2280GH Rijswijk, The Netherlands
| |
Collapse
|
113
|
Abstract
Hepatocytes express an array of plasma membrane and intracellular ion channels, yet their role during the hepatitis C virus (HCV) life cycle remains largely undefined. Here, we show that HCV increases intracellular hepatic chloride (Cl(-)) influx that can be inhibited by selective Cl(-) channel blockers. Through pharmacological and small interfering RNA (siRNA)-mediated silencing, we demonstrate that Cl(-) channel inhibition is detrimental to HCV replication. This represents the first observation of the involvement of Cl(-) channels during the HCV life cycle.
Collapse
|
114
|
A view of the E2-CD81 interface at the binding site of a neutralizing antibody against hepatitis C virus. J Virol 2014; 89:492-501. [PMID: 25339761 DOI: 10.1128/jvi.01661-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
UNLABELLED Hepatitis C virus (HCV) glycoprotein E2 is considered a major target for generating neutralizing antibodies against HCV, primarily due to its role of engaging host entry factors, such as CD81, a key cell surface protein associated with HCV entry. Based on a series of biochemical analyses in combination with molecular docking, we present a description of a potential binding interface formed between the E2 protein and CD81. The virus side of this interface includes a hydrophobic helix motif comprised of residues W(437)LAGLF(442), which encompasses the binding site of a neutralizing monoclonal antibody, mAb41. The helical conformation of this motif provides a structural framework for the positioning of residues F442 and Y443, serving as contact points for the interaction with CD81. The cell side of this interface likewise involves a surface-exposed hydrophobic helix, namely, the D-helix of CD81, which coincides with the binding site of 1D6, a monoclonal anti-CD81 antibody known to block HCV entry. Our illustration of this virus-host interface suggests an important role played by the W(437)LAGLF(442) helix of the E2 protein in the hydrophobic interaction with the D-helix of CD81, thereby facilitating our understanding of the mechanism for antibody-mediated neutralization of HCV. IMPORTANCE Characterization of the interface established between a virus and host cells can provide important information that may be used for the control of virus infections. The interface that enables hepatitis C virus (HCV) to infect human liver cells has not been well understood because of the number of cell surface proteins, factors, and conditions found to be associated with the infection process. Based on a series of biochemical analyses in combination with molecular docking, we present such an interface, consisting of two hydrophobic helical structures, from the HCV E2 surface glycoprotein and the CD81 protein, a major host cell receptor recognized by all HCV strains. Our study reveals the critical role played by hydrophobic interactions in the formation of this virus-host interface, thereby contributing to our understanding of the mechanism for antibody-mediated neutralization of HCV.
Collapse
|
115
|
Recombinant hepatitis C virus envelope glycoprotein vaccine elicits antibodies targeting multiple epitopes on the envelope glycoproteins associated with broad cross-neutralization. J Virol 2014; 88:14278-88. [PMID: 25275133 DOI: 10.1128/jvi.01911-14] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
UNLABELLED Although effective hepatitis C virus (HCV) antivirals are on the horizon, a global prophylactic vaccine for HCV remains elusive. The diversity of the virus is a major concern for vaccine development; there are 7 major genotypes of HCV found globally. Therefore, a successful vaccine will need to protect against HCV infection by all genotypes. Despite the diversity, many monoclonal antibodies (MAbs) with broadly cross-neutralizing activity have been described, suggesting the presence of conserved epitopes that can be targeted to prevent infection. Similarly, a vaccine comprising recombinant envelope glycoproteins (rE1E2) derived from the genotype 1a HCV-1 strain has been shown to be capable of eliciting cross-neutralizing antibodies in guinea pigs, chimpanzees, and healthy human volunteers. In order to investigate the basis for this cross-neutralization, epitope mapping of anti-E1E2 antibodies present within antisera from goats and humans immunized with HCV-1 rE1E2 was conducted through peptide mapping and competition studies with a panel of cross-neutralizing MAbs targeting various epitopes within E1E2. The immunized-goat antiserum was shown to compete with the binding of all MAbs tested (AP33, HC33.4, HC84.26, 1:7, AR3B, AR4A, AR5A, IGH526, and A4). Antisera showed the best competition against HC84.26 and AR3B and the weakest competition against AR4A. Furthermore, antisera from five immunized human vaccinees were shown to compete with five preselected MAbs (AP33, AR3B, AR4A, AR5A, and IGH526). These data show that immunization with HCV-1 rE1E2 elicits antibodies targeting multiple cross-neutralizing epitopes. Our results further support the use of such a vaccine antigen to induce cross-genotype neutralization. IMPORTANCE An effective prophylactic vaccine for HCV is needed for optimal control of the disease burden. The high diversity of HCV has posed a challenge for developing vaccines that elicit neutralizing antibodies for protection against infection. Despite this, we have previously shown that a vaccine comprising recombinant envelope glycoproteins derived from a single genotype 1a strain was capable of eliciting a cross-neutralizing antibody response in human volunteers. Here, we have used competition binding assays and peptide binding assays to show that antibodies present in the antisera from vaccinated goats and humans bind epitopes overlapping with those of a variety of well-characterized cross-neutralizing monoclonal antibodies. This provides a mechanism for the cross-neutralizing human antisera: antibodies present in the antisera bind to conserved regions associated with cross-neutralization. Importantly, this work provides further support for a vaccine comprising recombinant envelope glycoproteins, perhaps in a formulation with a vaccine component eliciting strong anti-HCV CD4(+) and CD8(+) T cell responses.
Collapse
|
116
|
Ruwona TB, Giang E, Nieusma T, Law M. Fine mapping of murine antibody responses to immunization with a novel soluble form of hepatitis C virus envelope glycoprotein complex. J Virol 2014; 88:10459-71. [PMID: 24965471 PMCID: PMC4178869 DOI: 10.1128/jvi.01584-14] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 06/17/2014] [Indexed: 02/08/2023] Open
Abstract
UNLABELLED The hepatitis C virus (HCV) envelope glycoprotein E1E2 complex is a candidate vaccine antigen. Previous immunization studies of E1E2 have yielded various results on its ability to induce virus-neutralizing antibodies in animal models and humans. The murine model has become a vital tool for HCV research owing to the development of humanized mice susceptible to HCV infection. In this study, we investigated the antibody responses of mice immunized with E1E2 and a novel soluble form of E1E2 (sE1E2) by a DNA prime and protein boost strategy. The results showed that sE1E2 elicited higher antibody titers and a greater breadth of reactivity than the wild-type cell-associated E1E2. However, immune sera elicited by either immunogen were only weakly neutralizing. In order to understand the contrasting results of binding and serum neutralizing activities, epitopes targeted by the polyclonal antibody responses were mapped and monoclonal antibodies (MAbs) were generated. The results showed that the majority of serum antibodies were directed to the E1 region 211 to 250 and the E2 regions 421 to 469, 512 to 539, 568 to 609, and 638 to 651, instead of the well-known immunodominant E2 hypervariable region 1 (HVR1). Unexpectedly, in MAb analysis, ∼ 12% of MAbs isolated were specific to the conserved E2 antigenic site 412 to 423, and 85% of them cross-neutralized multiple HCV isolates. The epitopes recognized by these MAbs are similar but distinct from the previously reported HCV1 and AP33 broadly neutralizing epitopes. In conclusion, E1E2 can prime B cells specific to conserved neutralizing epitopes, but the levels of serum neutralizing antibodies elicited are insufficient for effective virus neutralization. The sE1E2 constructs described in this study can be a useful template for rational antigen engineering. IMPORTANCE Hepatitis C virus infects 2 to 3% of the world's population and is a leading cause of liver failures and the need for liver transplantation. The virus envelope glycoprotein complex E1E2 produced by detergent extraction of cells overexpressing the protein was evaluated in a phase I clinical trial but failed to induce neutralizing antibodies in most subjects. In this study, we designed a novel form of E1E2 which is secreted from cells and is soluble and compared it to wild-type E1E2 by DNA immunization of mice. The results showed that this new E1E2 is more immunogenic than wild-type E1E2. Detailed mapping of the antibody responses revealed that antibodies to the conserved E2 antigenic site 412 to 423 were elicited but the serum concentrations were too low to neutralize the virus effectively. This soluble E1E2 provides a new reagent for studying HCV and for rational vaccine design.
Collapse
Affiliation(s)
- Tinashe B Ruwona
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, USA
| | - Erick Giang
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, USA
| | - Travis Nieusma
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, USA
| | - Mansun Law
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
117
|
Gorzin Z, Gorzin AA, Tabarraei A, Behnampour N, Irani S, Ghaemi A. Immunogenicity evaluation of a DNA vaccine expressing the hepatitis C virus non-structural protein 2 gene in C57BL/6 mice. IRANIAN BIOMEDICAL JOURNAL 2014; 18:1-7. [PMID: 24375156 DOI: 10.6091/ibj.1231.2013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUNDS Most of the hepatitis C virus (HCV) infections elicit poor immune responses and 75% to 85% of cases become chronic; therefore, the development of an effective vaccine against HCV is of paramount importance. In this study, we aimed to evaluate co-administration of HCV non-Structural Protein 2 and IL-12 DNA vaccines in C57BL/6 mice. METHODS A plasmid encoding full-length HCV NS2 protein (non-structural protein 2) was generated and used to vaccinate mice. Negative control (an empty expression vector) was also employed to evaluate the background response. To investigate immune responses against vaccine, C57BL/6 mice received three doses of the vaccine with a two-week interval. Cellular immunity was assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay for lymphocyte proliferation, lactate dehydrogenase release for cytotoxic T lymphocyte (CTL) activity and cytokine assay. RESULTS The findings demonstrated that immunization of mice with plasmid expressing HCV NS2 induced CTL response, interferon gamma production, and lymphocyte proliferation compared to negative control. The results also demonstrated that co-administration of IL-12 with the HCV NS2 plasmid induced significantly better immune response in C57BL/6 mice. CONCLUSION DNA vaccine encoding HCV NS2 is an effective candidate that can trigger CTL-based immune response against HCV. In addition, the results suggested that combining the DNA vaccine approach with immune stimulatory cytokines may significantly enhance antigen-specific immune responses.
Collapse
Affiliation(s)
- Zahra Gorzin
- Dept. of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ali Akbar Gorzin
- Shiraz HIV/AIDS Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alijan Tabarraei
- Dept. of Microbiology, School of Medicine, Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Naser Behnampour
- Dept. of Statistics, Gorgan Para-Medical School, Golestan University of Medical Sciences, Gorgan, Iran
| | - Shiva Irani
- Dept. of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Amir Ghaemi
- Golestan Research Center of Gastroenterology and Hepatology-GRCGH, Dept. of Microbiology, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran.,Shefa Neuroscience Research Center, Khatam Al Anbia Hospital, Tehran, Iran
| |
Collapse
|
118
|
Keck ZY, Angus AGN, Wang W, Lau P, Wang Y, Gatherer D, Patel AH, Foung SKH. Non-random escape pathways from a broadly neutralizing human monoclonal antibody map to a highly conserved region on the hepatitis C virus E2 glycoprotein encompassing amino acids 412-423. PLoS Pathog 2014; 10:e1004297. [PMID: 25122476 PMCID: PMC4133389 DOI: 10.1371/journal.ppat.1004297] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 06/23/2014] [Indexed: 12/15/2022] Open
Abstract
A challenge for hepatitis C virus (HCV) vaccine development is to define epitopes that are able to elicit protective antibodies against this highly diverse virus. The E2 glycoprotein region located at residues 412-423 is conserved and antibodies to 412-423 have broadly neutralizing activities. However, an adaptive mutation, N417S, is associated with a glycan shift in a variant that cannot be neutralized by a murine but by human monoclonal antibodies (HMAbs) against 412-423. To determine whether HCV escapes from these antibodies, we analyzed variants that emerged when cell culture infectious HCV virions (HCVcc) were passaged under increasing concentrations of a specific HMAb, HC33.1. Multiple nonrandom escape pathways were identified. Two pathways occurred in the context of an N-glycan shift mutation at N417T. At low antibody concentrations, substitutions of two residues outside of the epitope, N434D and K610R, led to variants having improved in vitro viral fitness and reduced sensitivity to HC33.1 binding and neutralization. At moderate concentrations, a S419N mutation occurred within 412-423 in escape variants that have greatly reduced sensitivity to HC33.1 but compromised viral fitness. Importantly, the variants generated from these pathways differed in their stability. N434D and K610R-associated variants were stable and became dominant as the virions were passaged. The S419N mutation reverted back to N419S when immune pressure was reduced by removing HC33.1. At high antibody concentrations, a mutation at L413I was observed in variants that were resistant to HC33.1 neutralization. Collectively, the combination of multiple escape pathways enabled the virus to persist under a wide range of antibody concentrations. Moreover, these findings pose a different challenge to vaccine development beyond the identification of highly conserved epitopes. It will be necessary for a vaccine to induce high potency antibodies that prevent the formation of escape variants, which can co-exist with lower potency or levels of neutralizing activities.
Collapse
Affiliation(s)
- Zhen-yong Keck
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Allan G. N. Angus
- MRC – University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Wenyan Wang
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Patrick Lau
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Yong Wang
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Derek Gatherer
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, United Kingdom
| | - Arvind H. Patel
- MRC – University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
- * E-mail: (AHP); (SKHF)
| | - Steven K. H. Foung
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail: (AHP); (SKHF)
| |
Collapse
|
119
|
Apolipoprotein E likely contributes to a maturation step of infectious hepatitis C virus particles and interacts with viral envelope glycoproteins. J Virol 2014; 88:12422-37. [PMID: 25122793 DOI: 10.1128/jvi.01660-14] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED The assembly of infectious hepatitis C virus (HCV) particles is tightly linked to components of the very-low-density lipoprotein (VLDL) pathway. We and others have shown that apolipoprotein E (ApoE) plays a major role in production of infectious HCV particles. However, the mechanism by which ApoE contributes to virion assembly/release and how it gets associated with the HCV particle is poorly understood. We found that knockdown of ApoE reduces titers of infectious intra- and extracellular HCV but not of the related dengue virus. ApoE depletion also reduced amounts of extracellular HCV core protein without affecting intracellular core amounts. Moreover, we found that ApoE depletion affected neither formation of nucleocapsids nor their envelopment, suggesting that ApoE acts at a late step of assembly, such as particle maturation and infectivity. Importantly, we demonstrate that ApoE interacts with the HCV envelope glycoproteins, most notably E2. This interaction did not require any other viral proteins and depended on the transmembrane domain of E2 that also was required for recruitment of HCV envelope glycoproteins to detergent-resistant membrane fractions. These results suggest that ApoE plays an important role in HCV particle maturation, presumably by direct interaction with viral envelope glycoproteins. IMPORTANCE The HCV replication cycle is tightly linked to host cell lipid pathways and components. This is best illustrated by the dependency of HCV assembly on lipid droplets and the VLDL component ApoE. Although the role of ApoE for production of infectious HCV particles is well established, it is still poorly understood how ApoE contributes to virion formation and how it gets associated with HCV particles. Here, we provide experimental evidence that ApoE likely is required for an intracellular maturation step of HCV particles. Moreover, we demonstrate that ApoE associates with the viral envelope glycoproteins. This interaction appears to be dispensable for envelopment of virus particles but likely contributes to the quality control of secreted infectious virions. These results shed new light on the exploitation of host cell lipid pathways by HCV and the link of viral particle assembly to the VLDL component ApoE.
Collapse
|
120
|
Drummer HE. Challenges to the development of vaccines to hepatitis C virus that elicit neutralizing antibodies. Front Microbiol 2014; 5:329. [PMID: 25071742 PMCID: PMC4080681 DOI: 10.3389/fmicb.2014.00329] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 06/16/2014] [Indexed: 12/24/2022] Open
Abstract
Despite 20 years of research, a vaccine to prevent hepatitis C virus (HCV) infection has not been developed. A vaccine to prevent HCV will need to induce broadly reactive immunity able to prevent infection by the 7 genetically and antigenically distinct genotypes circulating world-wide. HCV encodes two surface exposed glycoproteins, E1 and E2 that function as a heterodimer to mediate viral entry. Neutralizing antibodies (NAbs) to both E1 and E2 have been described with the major NAb target being E2. The function of E2 is to attach virions to host cells via cell surface receptors that include, but is not limited to, the tetraspanin CD81 and scavenger receptor class B type 1. However, E2 has developed a number of immune evasion strategies to limit the effectiveness of the NAb response and possibly limit the ability of the immune system to generate potent NAbs in natural infection. Hypervariable regions that shield the underlying core domain, subdominant neutralization epitopes and glycan shielding combine to make E2 a difficult target for the immune system. This review summarizes recent information on the role of NAbs to prevent HCV infection, the targets of the NAb response and structural information on glycoprotein E2 in complex with neutralizing antibodies. This new information should provide a framework for the rational design of new vaccine candidates that elicit highly potent broadly reactive NAbs to prevent HCV infection.
Collapse
Affiliation(s)
- Heidi E Drummer
- Viral Fusion Laboratory, Centre for Biomedical Research, Burnet Institute Melbourne, VIC, Australia. ; Department of Microbiology, Monash University Clayton, VIC, Australia ; Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne Parkville, VIC, Australia
| |
Collapse
|
121
|
Natural killer cell function and dysfunction in hepatitis C virus infection. BIOMED RESEARCH INTERNATIONAL 2014; 2014:903764. [PMID: 25057504 PMCID: PMC4095668 DOI: 10.1155/2014/903764] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 04/14/2014] [Indexed: 01/06/2023]
Abstract
Viruses must continually adapt against dynamic innate and adaptive responses of the host immune system to establish chronic infection. Only a small minority (~20%) of those exposed to hepatitis C virus (HCV) spontaneously clear infection, leaving approximately 200 million people worldwide chronically infected with HCV. A number of recent research studies suggest that establishment and maintenance of chronic HCV infection involve natural killer (NK) cell dysfunction. This relationship is illustrated in vitro by disruption of typical NK cell responses including both cell-mediated cytotoxicity and cytokine production. Expression of a number of activating NK cell receptors in vivo is also affected in chronic HCV infection. Thus, direct in vivo and in vitro evidence of compromised NK function in chronic HCV infection in conjunction with significant epidemiological associations between the outcome of HCV infection and certain combinations of NK cell regulatory receptor and class I human histocompatibility linked antigen (HLA) genotypes indicate that NK cells are important in the immune response against HCV infection. In this review, we highlight evidence suggesting that selective impairment of NK cell activity is related to establishment of chronic HCV infection.
Collapse
|
122
|
Hamed MR, Brown RJ, Zothner C, Urbanowicz RA, Mason CP, Krarup A, McClure CP, Irving WL, Ball JK, Harris M, Hickling TP, Tarr AW. Recombinant human L-ficolin directly neutralizes hepatitis C virus entry. J Innate Immun 2014; 6:676-84. [PMID: 24854201 PMCID: PMC6741592 DOI: 10.1159/000362209] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Revised: 03/16/2014] [Accepted: 03/16/2014] [Indexed: 12/25/2022] Open
Abstract
L-ficolin is a soluble pattern recognition molecule expressed by the liver that contributes to innate immune defense against microorganisms. It is well described that binding of L-ficolin to specific pathogen-associated molecular patterns activates the lectin complement pathway, resulting in opsonization and lysis of pathogens. In this study, we demonstrated that in addition to this indirect effect, L-ficolin has a direct neutralizing effect against hepatitis C virus (HCV) entry. Specific, dose-dependent binding of recombinant L-ficolin to HCV glycoproteins E1 and E2 was observed. This interaction was inhibited by soluble L-ficolin ligands. Interaction of L-ficolin with E1 and E2 potently inhibited entry of retroviral pseudoparticles bearing these glycoproteins. L-ficolin also inhibited entry of cell-cultured HCV in a calcium-dependent manner. Neutralizing concentrations of L-ficolin were found to be circulating in the serum of HCV-infected individuals. This is the first description of direct neutralization of HCV entry by a ficolin and highlights a novel role for L-ficolin as a virus entry inhibitor.
Collapse
Affiliation(s)
- Mohamed R. Hamed
- School of Life Sciences, and Nottingham Digestive Diseases Biomedical Research Unit, University of Nottingham, Nottingham, UK
- Medical Microbiology and Immunology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Richard J.P. Brown
- School of Life Sciences, and Nottingham Digestive Diseases Biomedical Research Unit, University of Nottingham, Nottingham, UK
| | - Carsten Zothner
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Richard A. Urbanowicz
- School of Life Sciences, and Nottingham Digestive Diseases Biomedical Research Unit, University of Nottingham, Nottingham, UK
| | - Christopher P. Mason
- School of Life Sciences, and Nottingham Digestive Diseases Biomedical Research Unit, University of Nottingham, Nottingham, UK
| | - Anders Krarup
- Biochemistry Department, University of Oxford, Oxford, UK
| | - C. Patrick McClure
- School of Life Sciences, and Nottingham Digestive Diseases Biomedical Research Unit, University of Nottingham, Nottingham, UK
| | - William L. Irving
- School of Life Sciences, and Nottingham Digestive Diseases Biomedical Research Unit, University of Nottingham, Nottingham, UK
| | - Jonathan K. Ball
- School of Life Sciences, and Nottingham Digestive Diseases Biomedical Research Unit, University of Nottingham, Nottingham, UK
| | - Mark Harris
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Timothy P. Hickling
- School of Life Sciences, and Nottingham Digestive Diseases Biomedical Research Unit, University of Nottingham, Nottingham, UK
| | - Alexander W. Tarr
- School of Life Sciences, and Nottingham Digestive Diseases Biomedical Research Unit, University of Nottingham, Nottingham, UK
| |
Collapse
|
123
|
Xiao F, Fofana I, Heydmann L, Barth H, Soulier E, Habersetzer F, Doffoël M, Bukh J, Patel AH, Zeisel MB, Baumert TF. Hepatitis C virus cell-cell transmission and resistance to direct-acting antiviral agents. PLoS Pathog 2014; 10:e1004128. [PMID: 24830295 PMCID: PMC4022730 DOI: 10.1371/journal.ppat.1004128] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 04/02/2014] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C virus (HCV) is transmitted between hepatocytes via classical cell entry but also uses direct cell-cell transfer to infect neighboring hepatocytes. Viral cell-cell transmission has been shown to play an important role in viral persistence allowing evasion from neutralizing antibodies. In contrast, the role of HCV cell-cell transmission for antiviral resistance is unknown. Aiming to address this question we investigated the phenotype of HCV strains exhibiting resistance to direct-acting antivirals (DAAs) in state-of-the-art model systems for cell-cell transmission and spread. Using HCV genotype 2 as a model virus, we show that cell-cell transmission is the main route of viral spread of DAA-resistant HCV. Cell-cell transmission of DAA-resistant viruses results in viral persistence and thus hampers viral eradication. We also show that blocking cell-cell transmission using host-targeting entry inhibitors (HTEIs) was highly effective in inhibiting viral dissemination of resistant genotype 2 viruses. Combining HTEIs with DAAs prevented antiviral resistance and led to rapid elimination of the virus in cell culture model. In conclusion, our work provides evidence that cell-cell transmission plays an important role in dissemination and maintenance of resistant variants in cell culture models. Blocking virus cell-cell transmission prevents emergence of drug resistance in persistent viral infection including resistance to HCV DAAs. In spite of the rapid development of antiviral agents, antiviral resistance remains a challenge for the treatment of viral infections including hepatitis B and C virus (HBV, HCV), human immunodeficiency virus (HIV) and influenza. Virus spreads from infected cells to surrounding uninfected host cells to develop infection through cell-free and cell-cell transmission routes. Understanding the spread of resistant virus is important for the development of novel antiviral strategies to prevent and treat antiviral resistance. Here, we characterize the spread of resistant viruses and its impact for emergence and prevention of resistance using HCV as a model system. Our results show that cell-cell transmission is the main transmission route for antiviral resistant HCV strains and is crucial for the maintenance of infection. Monoclonal antibodies or small molecules targeting HCV entry factors are effective in inhibiting the spread of resistant HCV in cell culture models and thus should be evaluated clinically for prevention and treatment of HCV resistance. Combination of inhibitors targeting viral entry and clinically used direct-acting antivirals (DAAs) prevents antiviral resistance and leads to viral eradication in cell culture models. Collectively, the investigation provides a new strategy for prevention of viral resistance to antiviral agents.
Collapse
Affiliation(s)
- Fei Xiao
- Inserm, U1110, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Isabel Fofana
- Inserm, U1110, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Laura Heydmann
- Inserm, U1110, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Heidi Barth
- Inserm, U1110, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Laboratoire de Virologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Eric Soulier
- Inserm, U1110, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - François Habersetzer
- Inserm, U1110, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Pôle Hépato-digestif, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Michel Doffoël
- Inserm, U1110, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Pôle Hépato-digestif, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Hvidovre Hospital and Department of International Health, Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Arvind H. Patel
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Mirjam B. Zeisel
- Inserm, U1110, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Thomas F. Baumert
- Inserm, U1110, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Pôle Hépato-digestif, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Gastrointestinal Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
124
|
Ball JK, Tarr AW, McKeating JA. The past, present and future of neutralizing antibodies for hepatitis C virus. Antiviral Res 2014; 105:100-11. [PMID: 24583033 PMCID: PMC4034163 DOI: 10.1016/j.antiviral.2014.02.013] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 02/08/2014] [Accepted: 02/13/2014] [Indexed: 12/11/2022]
Abstract
Hepatitis C virus (HCV) is a major cause of liver disease and hepatocellular carcinoma worldwide. HCV establishes a chronic infection in the majority of cases. However, some individuals clear the virus, demonstrating a protective role for the host immune response. Although new all-oral drug combinations may soon replace traditional ribavirin-interferon therapy, the emerging drug cocktails will be expensive and associated with side-effects and resistance, making a global vaccine an urgent priority. T cells are widely accepted to play an essential role in clearing acute HCV infection, whereas the role antibodies play in resolution and disease pathogenesis is less well understood. Recent studies have provided an insight into viral neutralizing determinants and the protective role of antibodies during infection. This review provides a historical perspective of the role neutralizing antibodies play in HCV infection and discusses the therapeutic benefits of antibody-based therapies. This article forms part of a symposium in Antiviral Research on "Hepatitis C: next steps toward global eradication."
Collapse
Affiliation(s)
- Jonathan K Ball
- School of Life Sciences and The Nottingham Digestive Diseases Centre Biomedical Research Unit, University of Nottingham, Queens Medical Centre, Nottingham NG7 2UH, United Kingdom
| | - Alexander W Tarr
- School of Life Sciences and The Nottingham Digestive Diseases Centre Biomedical Research Unit, University of Nottingham, Queens Medical Centre, Nottingham NG7 2UH, United Kingdom
| | - Jane A McKeating
- Viral Hepatitis Research Group and Centre for Human Virology, Institute for Biomedical Research, University of Birmingham, Birmingham B15 2TT, United Kingdom.
| |
Collapse
|
125
|
Zhu YZ, Qian XJ, Zhao P, Qi ZT. How hepatitis C virus invades hepatocytes: The mystery of viral entry. World J Gastroenterol 2014; 20:3457-3467. [PMID: 24707128 PMCID: PMC3974512 DOI: 10.3748/wjg.v20.i13.3457] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 12/03/2013] [Accepted: 01/05/2014] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) infection is a global health problem, with an estimated 170 million people being chronically infected. HCV cell entry is a complex multi-step process, involving several cellular factors that trigger virus uptake into the hepatocytes. The high- density lipoprotein receptor scavenger receptor class B type I, tetraspanin CD81, tight junction protein claudin-1, and occludin are the main receptors that mediate the initial step of HCV infection. In addition, the virus uses cell receptor tyrosine kinases as entry regulators, such as epidermal growth factor receptor and ephrin receptor A2. This review summarizes the current understanding about how cell surface molecules are involved in HCV attachment, internalization, and membrane fusion, and how host cell kinases regulate virus entry. The advances of the potential antiviral agents targeting this process are introduced.
Collapse
|
126
|
Tabll AA, Moustafa RI, El Abd YS, Bader El Din NG, El-Shenawy R, Yousef H, Hussein M, Dawood RM, Omran MH, El-Awady MK. Mouse monoclonal antibody towards e1 specific epitope blocks viral entry and intracellular viral replication in vitro. J Immunoassay Immunochem 2014; 35:60-73. [PMID: 24063617 DOI: 10.1080/15321819.2013.792831] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We characterized viral neutralization by a murine monoclonal antibody (mAb315) developed against conserved E1 specific epitope aa 315-323 at pre- and post-binding steps of infection into Huh7 cells. Detection of native virus in infected Huh7 cells by mAb315 were demonstrated by immunostaining. Inhibitions of viral entry by three different concentrations of mAb315 were measured by intracellular amplification of HCV RNA post infection. HCV RNA positive sera from 24 patients were used to infect Huh7 cell line in absence or presence of mouse monoclonal antibody produced in Balb/c mice or culture supernatant of mouse hybrid cells. Monoclonal Ab mAb315 could detect synthetic peptide p315 adsorbed on peripheral human lymphocytes by flow cytometry and showed high immuno reactivity to E1 viral antigen in infected Huh7 cells by immunostaining. Antibody-mediated neutralization assays demonstrated the ability of mAb315 to block HCV binding/entry to target cells at 0.73 mg/mL ascitic fluid or 250 µg/mL culture supernatant of mouse hybrid cells. Sixteen of 24 infected sera could infect Huh7 cells (67%). Binding/entry of HCV was completely blocked by mAb315 in 11/16 cases (69%). These findings suggest that mAb315 can induce HCV neutralization in vitro, which makes it a candidate for developing HCV therapeutic antibodies.
Collapse
Affiliation(s)
- Ashraf A Tabll
- a Department of Microbial Biotechnology , National Research Center , Giza , Egypt
| | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Characterization of hepatitis C virus intra- and intergenotypic chimeras reveals a role of the glycoproteins in virus envelopment. J Virol 2013; 87:13297-306. [PMID: 24089562 DOI: 10.1128/jvi.01708-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Hepatitis C virus (HCV) is highly variable and associated with chronic liver disease. Viral isolates are grouped into seven genotypes (GTs). Accumulating evidence indicates that viral determinants in the core to NS2 proteins modulate the efficiency of virus production. However, the role of the glycoproteins E1 and E2 in this process is currently poorly defined. Therefore, we constructed chimeric viral genomes to explore the role of E1 and E2 in HCV assembly. Comparison of the kinetics and efficiency of particle production by intragenotypic chimeras highlighted core and p7 as crucial determinants for efficient virion release. Glycoprotein sequences, however, had only a minimal impact on this process. In contrast, in the context of intergenotypic HCV chimeras, HCV assembly was profoundly influenced by glycoprotein genes. On the one hand, insertion of GT1a-derived (H77) E1-E2 sequences into a chimeric GT2a virus (Jc1) strongly suppressed virus production. On the other hand, replacement of H77 glycoproteins within the GT1a-GT2a chimeric genome H77/C3 by GT2a-derived (Jc1) E1-E2 increased infectious particle production. Thus, within intergenotypic chimeras, glycoprotein features strongly modulate virus production. Replacement of Jc1 glycoprotein genes by H77-derived E1-E2 did not grossly affect subcellular localization of core, E2, and NS2. However, it caused an accumulation of nonenveloped core protein and increased abundance of nonenveloped core protein structures with slow sedimentation. These findings reveal an important role for the HCV glycoproteins E1 and E2 in membrane envelopment, which likely depends on a genotype-specific interplay with additional viral factors.
Collapse
|
128
|
Holder KA, Stapleton SN, Gallant ME, Russell RS, Grant MD. Hepatitis C virus-infected cells downregulate NKp30 and inhibit ex vivo NK cell functions. THE JOURNAL OF IMMUNOLOGY 2013; 191:3308-18. [PMID: 23960237 DOI: 10.4049/jimmunol.1300164] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hepatitis C virus (HCV) successfully evades the immune system and establishes chronic infection in ∼80% of cases. Immune evasion may involve modulating NK cell functions. Therefore, we developed a short-term assay to assess immediate effects of HCV-infected cells on ex vivo NK cytotoxicity and cytokine production. Natural cytotoxicity, Ab-dependent cell-mediated cytotoxicity, IFN-γ production, and TNF-α production were all significantly inhibited by short-term direct exposure to HCV-infected hepatoma-derived Huh-7.5 cells. Inhibition required cell-to-cell contact and increased together with multiplicity of infection and HCV protein levels. Blocking potential interaction between HCV E2 and NK CD81 did not abrogate NK cell inhibition mediated by HCV-infected cells. We observed no change in expression levels of NKG2D, NKG2A, NKp46, or CD16 on NK cells exposed to HCV-infected Huh-7.5 cells for 5 h or of human histocompatibility-linked leukocyte Ag E on HCV-infected compared with uninfected Huh-7.5 cells. Inhibition of ex vivo NK functions did correspond with reduced surface expression of the natural cytotoxicity receptor NKp30, and downregulation of NKp30 was functionally reflected in reduced anti-NKp30 redirected lysis of P815 cells. Infection of Huh-7.5 cells with HCV JFH1(T) increased surface binding of an NKp30-IgG1 Fcγ fusion protein, suggesting upregulation of an antagonistic NKp30 ligand on HCV-infected cells. Our assay demonstrates rapid inhibition of critical NK cell functions by HCV-infected cells. Similar localized effects in vivo may contribute to establishment of chronic HCV infection and associated phenotypic and functional changes in the NK population.
Collapse
Affiliation(s)
- Kayla A Holder
- Division of BioMedical Sciences, Immunology and Infectious Diseases Program, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3V6, Canada
| | | | | | | | | |
Collapse
|
129
|
Omran MH, Nabil W, Youssef SS, El-Sayed M, El Awady MK. Heterogeneity and new epitopes of hepatitis C virus genotype 4. HEPATITIS MONTHLY 2013; 13:e10521. [PMID: 24130599 PMCID: PMC3796197 DOI: 10.5812/hepatmon.10521] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/14/2013] [Accepted: 06/20/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND Hepatitis C virus (HCV) was found to have a major role in human liver disease by its ability to face the host-cell defenses and the immune system. Heterogeneity of HCV was the key for its adaptation to its host and represented a significant hurdle for the development of both effective vaccines as well as for novel therapeutic interventions. OBJECTIVES Due to the heterogeneity of HCV virus because of both high replication and high mutation rate in vivo, this study was conducted to analyze different isolates of Egyptian patients of genotype 4, of the most mutant regions of the virus (E1 and E2) as they played an important role in viral persistence by escaping from the immune system of the host body. PATIENTS AND METHODS This study was conducted through PCR amplification of E1 and E2 regions, sequencing and phylogenetic analysis, calculating synonyms and non-synonyms substitutions, finding the possible glycosylation sites and different epitope domains. RESULTS The present work figured out that the heterogeneity of the quasispecies of our local strains 4a was high showing up 15% diversity. This study also showed four glycosylation sites that play an important role in the entry of the virus and protein folding. Besides, different epitpoes were identified in different regions of the E1 and E2 domains; a finding which would help in determining the neutralizing and non- neutralizing antibodies. CONCLUSIONS This study would help in understanding the driving forces of genetic diversity and would be fundamental for representing potential candidate targets for antibodies and the development of vaccine trials.
Collapse
Affiliation(s)
- Moataza H. Omran
- Microbial Biotechnology Department, Genetic Engineering Division, National Research Centre, Dokki Cairo, Egypt
- Corresponding author: Moataza H. Omran, Microbial Biotechnology Department, Genetic Engineering Division, National Research Centre, Dokki Cairo, Egypt. Tel: +20-1223735450, Fax: +20-233370931, E-mail: ,
| | - Wael Nabil
- Microbial Biotechnology Department, Genetic Engineering Division, National Research Centre, Dokki Cairo, Egypt
| | - Samar S. Youssef
- Microbial Biotechnology Department, Genetic Engineering Division, National Research Centre, Dokki Cairo, Egypt
| | - Mervat El-Sayed
- Chemistry Department, Faculty of Science, Cairo University, Dokki Cairo, Egypt
| | - Mostafa K. El Awady
- Microbial Biotechnology Department, Genetic Engineering Division, National Research Centre, Dokki Cairo, Egypt
| |
Collapse
|
130
|
Structural and antigenic definition of hepatitis C virus E2 glycoprotein epitopes targeted by monoclonal antibodies. Clin Dev Immunol 2013; 2013:450963. [PMID: 23935648 PMCID: PMC3722892 DOI: 10.1155/2013/450963] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 06/10/2013] [Indexed: 12/24/2022]
Abstract
Hepatitis C virus (HCV) is the major cause of chronic liver disease as well as the major indication for liver transplantation worldwide. Current standard of care is not completely effective, not administrable in grafted patients, and burdened by several side effects. This incomplete effectiveness is mainly due to the high propensity of the virus to continually mutate under the selective pressure exerted by the host immune response as well as currently administered antiviral drugs. The E2 envelope surface glycoprotein of HCV (HCV/E2) is the main target of the host humoral immune response and for this reason one of the major variable viral proteins. However, broadly cross-neutralizing monoclonal antibodies (mAbs) directed against HCV/E2 represent a promising tool for the study of virus-host interplay as well as for the development of effective prophylactic and therapeutic approaches. In the last few years many anti-HCV/E2 mAbs have been evaluated in preclinical and clinical trials as possible candidate antivirals, particularly for administration in pre- and post-transplant settings. In this review we summarize the antigenic and structural characteristics of HCV/E2 determined through the use of anti-HCV/E2 mAbs, which, given the absence of a crystal structure of this glycoprotein, represent currently the best tool available.
Collapse
|
131
|
Liu R, Rao H, Wang J, Xie X, Jiang D, Pan X, Zhao P, Zhang H, Wei L. Determination of the human antibody response to the neutralization epitopes encompassing amino acids 313-327 and 432-443 of hepatitis C virus E1E2 glycoproteins. PLoS One 2013; 8:e66872. [PMID: 23826163 PMCID: PMC3691243 DOI: 10.1371/journal.pone.0066872] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 05/13/2013] [Indexed: 12/28/2022] Open
Abstract
It has been reported that monoclonal antibodies (MAbs) to the E1E2 glycoproteins may have the potential to prevent hepatitis C virus (HCV) infection. The protective epitopes targeted by these MAbs have been mapped to the regionsencompassing amino acids 313–327 and 432–443. In this study, we synthesized these two peptides and tested the reactivity of serum samples from 336 patients, 210 of whichwere from Chronic Hepatitis C (CHC) patients infected with diverse HCV genotypes.The remaining 126 samples were isolated from patients who had spontaneously clearedHCV infection.In the chronic HCV-infected group (CHC group), the prevalence of human serum antibodies reactive to epitopes 313–327 and 432–443was 24.29%(51 of 210) and4.76%(10 of 210),respectively. In thespontaneousclearance group (SC group),the prevalence was 0.79%(1 of 126) and 12.70%(16 of 126), respectively.The positive serum samples that contained antibodies reactive to epitope 313–327 neutralizedHCV pseudoparticles (HCVpp) bearing the envelope glycoproteins of genotypes 1a or 1b and/or 4, but genotypes 2a, 3a, 5 and 6 were not neutralized. The neutralizing activity of these serum samples could not be inhibited by peptide 313–327. Six samples (SC17, SC38, SC86, SC92, CHC75 and CHC198) containing antibodies reactive to epitope 432–443 had cross-genotype neutralizing activities. Theneutralizing activityof SC38, SC86, SC92 and CHC75waspartiallyinhibited by peptide 432–443. However,the neutralizing activity of sample SC17 for genotype 4HCVpp and sample CHC198 for genotype 1b HCVppwere notinhibited by the peptide.This study identifies the neutralizing ability of endogenous anti-HCV antibodies and warrants the exploration of antibodies reactive to epitope432–443as sources for future antibody therapies.
Collapse
Affiliation(s)
- Ruyu Liu
- Peking University People’s Hospital, Peking University HepatologyInstitute, Beijing, China
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing, China
| | - Huiying Rao
- Peking University People’s Hospital, Peking University HepatologyInstitute, Beijing, China
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing, China
| | - Jianghua Wang
- Peking University People’s Hospital, Peking University HepatologyInstitute, Beijing, China
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing, China
| | - Xingwang Xie
- Peking University People’s Hospital, Peking University HepatologyInstitute, Beijing, China
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing, China
| | - Dong Jiang
- Peking University People’s Hospital, Peking University HepatologyInstitute, Beijing, China
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing, China
| | - Xiaoben Pan
- Peking University People’s Hospital, Peking University HepatologyInstitute, Beijing, China
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing, China
| | - Ping Zhao
- Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Second Military Medical University, Shanghai, China
| | - Henghui Zhang
- Peking University People’s Hospital, Peking University HepatologyInstitute, Beijing, China
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing, China
| | - Lai Wei
- Peking University People’s Hospital, Peking University HepatologyInstitute, Beijing, China
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing, China
- * E-mail:
| |
Collapse
|
132
|
Pantua H, Diao J, Ultsch M, Hazen M, Mathieu M, McCutcheon K, Takeda K, Date S, Cheung TK, Phung Q, Hass P, Arnott D, Hongo JA, Matthews DJ, Brown A, Patel AH, Kelley RF, Eigenbrot C, Kapadia SB. Glycan Shifting on Hepatitis C Virus (HCV) E2 Glycoprotein Is a Mechanism for Escape from Broadly Neutralizing Antibodies. J Mol Biol 2013; 425:1899-1914. [DOI: 10.1016/j.jmb.2013.02.025] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 02/15/2013] [Accepted: 02/22/2013] [Indexed: 12/14/2022]
|
133
|
Wahid A, Dubuisson J. Virus-neutralizing antibodies to hepatitis C virus. J Viral Hepat 2013; 20:369-76. [PMID: 23647953 DOI: 10.1111/jvh.12094] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 02/26/2013] [Indexed: 02/06/2023]
Abstract
For a long time, the lack of an appropriate cell culture system has hampered the study of neutralizing antibody responses against hepatitis C virus (HCV). However, the last decade has seen the development of several model systems that have significantly advanced our understanding of viral entry and antibody neutralization. Studies of acutely infected patients suggest that a strong and early production of neutralizing antibodies may contribute to control the virus during the acute phase of HCV infection and facilitate viral elimination by cellular immune responses. It also emerges that the early antibody response mainly targets hypervariable region 1 (HVR1) of the envelope glycoprotein E2. This host response can lead to viral escape from neutralization by rapid amino acid changes in this hypervariable region. In contrast, cross-reactive neutralizing antibodies seem to appear later during HCV infection, and several mechanisms contribute to reduce their accessibility to their cognate epitopes. These include the masking of major conserved neutralizing epitopes by HVR1, specific N-linked glycans and the lipid moiety of the viral particle. Other potential mechanisms of evasion from the neutralizing antibody response include a modulation by high-density lipoproteins and interfering antibodies as well as the capacity of the virus to be transferred by cell-to-cell contacts. Finally, the recent identification of several highly conserved neutralizing epitopes provides some opportunities for the design and development of vaccine candidates that elicit a protective humoral immune response.
Collapse
Affiliation(s)
- A Wahid
- Center for Infection & Immunity of Lille CIIL, Inserm U1019, CNRS UMR8204, Institut Pasteur de Lille, Univ Lille Nord de France, Lille, France
| | | |
Collapse
|
134
|
Shi C, Ploss A. Hepatitis C virus vaccines in the era of new direct-acting antivirals. Expert Rev Gastroenterol Hepatol 2013; 7:171-85. [PMID: 23363265 DOI: 10.1586/egh.12.72] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hepatitis C virus (HCV) infection is a major global health problem as it has a high propensity for establishing chronicity. Chronic HCV carriers are at risk of developing severe liver disease including fibrosis, cirrhosis and liver cancer. While treatment has considerably improved over the years, therapy is still only partially effective, and is plagued by side effects, which contribute to treatment failure and is expensive to manage. The drug development pipeline contains several compounds that hold promise to achieve the goal of a short and more tolerable therapy, and are also likely to improve treatment response rates. It remains to be seen, however, how potent antiviral drug cocktails will affect the hepatitis C burden worldwide. In resource-poor environments, considerable costs, inadequate infrastructure for medical supervision and distribution may diminish the impact of future therapies. Consequently, development of novel therapeutic and prophylactic strategies is imperative to contain HCV infection globally.
Collapse
Affiliation(s)
- Chao Shi
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | | |
Collapse
|
135
|
Abstract
Due to the obligatory intracellular lifestyle of viruses, cell culture systems for efficient viral propagation are crucial to obtain a detailed understanding of the virus-host cell interaction. For hepatitis C virus (HCV) the development of permissive and authentic culture models continues to be a challenging task. The first efforts to culture HCV had limited success and range back to before the virus was molecularly cloned in 1989. Since then several major breakthroughs have gradually overcome limitations in culturing the virus and sequentially permitted analysis of viral RNA replication, cell entry, and ultimately the complete replication cycle in cultured cells in 2005. Until today, basic and applied HCV research greatly benefit from these tremendous efforts which spurred multiple complementary cell-based model systems for distinct steps of the HCV replication cycle. When used in combination they now permit deep insights into the fascinating biology of HCV and its interplay with the host cell. In fact, drug development has been much facilitated and our understanding of the molecular determinants of HCV replication has grown in parallel to these advances. Building on this groundwork and further refining our cellular models to better mimic the architecture, polarization and differentiation of natural hepatocytes should reveal novel unique aspects of HCV replication. Ultimately, models to culture primary HCV isolates across all genotypes may teach us important new lessons about viral functional adaptations that have evolved in exchange with its human host and that may explain the variable natural course of hepatitis C.
Collapse
Affiliation(s)
- Eike Steinmann
- Helmholtz Centre for Infection Research, Hannover, Germany
| | | |
Collapse
|
136
|
Kong L, Giang E, Nieusma T, Robbins JB, Deller MC, Stanfield RL, Wilson IA, Law M. Structure of hepatitis C virus envelope glycoprotein E2 antigenic site 412 to 423 in complex with antibody AP33. J Virol 2012; 86:13085-8. [PMID: 22973046 PMCID: PMC3497658 DOI: 10.1128/jvi.01939-12] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 09/07/2012] [Indexed: 11/20/2022] Open
Abstract
We have determined the crystal structure of the broadly neutralizing antibody (bnAb) AP33, bound to a peptide corresponding to hepatitis C virus (HCV) E2 envelope glycoprotein antigenic site 412 to 423. Comparison with bnAb HCV1 bound to the same epitope reveals a different angle of approach to the antigen by bnAb AP33 and slight variation in its β-hairpin conformation of the epitope. These structures establish two different modes of binding to E2 that antibodies adopt to neutralize diverse HCV.
Collapse
Affiliation(s)
| | | | | | | | - Marc C. Deller
- Departments of Molecular Biology
- Joint Center for Structural Genomics, La Jolla, California, USA
| | | | - Ian A. Wilson
- Departments of Molecular Biology
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, USA
- Joint Center for Structural Genomics, La Jolla, California, USA
| | | |
Collapse
|
137
|
Cooperativity in virus neutralization by human monoclonal antibodies to two adjacent regions located at the amino terminus of hepatitis C virus E2 glycoprotein. J Virol 2012; 87:37-51. [PMID: 23097455 DOI: 10.1128/jvi.01941-12] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A challenge for hepatitis C virus (HCV) vaccine development is defining conserved epitopes that induce protective antibodies against this highly diverse virus. An envelope glycoprotein (E2) segment located at amino acids (aa) 412 to 423 contains highly conserved neutralizing epitopes. While polyclonal antibodies to aa 412 to 423 from HCV-infected individuals confirmed broad neutralization, conflicting findings have been reported on polyclonal antibodies to an adjacent region, aa 434 to 446, that may or may not interfere with neutralization by antibodies to aa 412 to 423. To define the interplay between these antibodies, we isolated human monoclonal antibodies (HMAbs) to aa 412 to 423, designated HC33-related HMAbs (HC33 HMAbs), and characterized their interactions with other HMAbs to aa 434 to 446. A subset of the HC33 HMAbs neutralized genotype 1 to 6 infectious cell culture-derived HCV virions (HCVcc) with various activities. Although nonneutralizing HC33 HMAbs were isolated, they had lower binding affinities than neutralizing HC33 HMAbs. These antibodies could be converted to neutralizing antibodies by affinity maturation. Unidirectional competition for binding to E2 was observed between HC33 HMAbs and HMAbs to aa 434 to 446. When HMAbs to aa 434 to 446, which mediated neutralization, were combined with neutralizing HC33 HMAbs, biphasic patterns in neutralization were observed. A modest degree of antagonism was observed at lower concentrations, and a modest degree of synergism was observed at higher concentrations. However, the overall effect was additive neutralization. A similar pattern was observed when these antibodies were combined to block E2 binding to the HCV coreceptor, CD81. These findings demonstrate that both of these E2 regions participate in epitopes mediating virus neutralization and that the antibodies to aa 412 to 423 and aa 434 to 446 do not hinder their respective virus-neutralizing activities.
Collapse
|
138
|
HCV glycoprotein E2 is a novel BDCA-2 ligand and acts as an inhibitor of IFN production by plasmacytoid dendritic cells. Blood 2012; 120:4544-51. [PMID: 23053572 DOI: 10.1182/blood-2012-02-413286] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The elimination of hepatitis C virus (HCV) in > 50% of chronically infected patients by treatment with IFN-α suggests that plasmacytoid dendritic cells (pDCs), major producers of IFN-α, play an important role in the control of HCV infection. However, despite large amounts of Toll-like receptor 7-mediated IFN-α, produced by pDCs exposed to HCV-infected hepatocytes, HCV still replicates in infected liver. Here we show that HCV envelope glycoprotein E2 is a novel ligand of pDC C-type lectin immunoreceptors (CLRs), blood DC antigen 2 (BDCA-2) and DC-immunoreceptor (DCIR). HCV particles inhibit, via binding of E2 glycoprotein to CLRs, production of IFN-α and IFN-λ in pDCs exposed to HCV-infected hepatocytes, and induce in pDCs a rapid phosphorylation of Akt and Erk1/2, in a manner similar to the crosslinking of BDCA-2 or DCIR. Blocking of BDCA-2 and DCIR with Fab fragments of monoclonal antibodies preserves the capacity of pDCs to produce type I and III IFNs in the presence of HCV particles. Thus, negative interference of CLR signaling triggered by cell-free HCV particles with Toll-like receptor signaling triggered by cell-associated HCV results in the inhibition of the principal pDC function, production of IFN.
Collapse
|
139
|
Vieyres G, Pietschmann T. Entry and replication of recombinant hepatitis C viruses in cell culture. Methods 2012; 59:233-48. [PMID: 23009812 DOI: 10.1016/j.ymeth.2012.09.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 08/05/2012] [Accepted: 09/13/2012] [Indexed: 12/23/2022] Open
Abstract
Hepatitis C virus (HCV) is a positive-strand enveloped RNA virus and belongs to the Flaviviridae family. The heavy health burden associated with the virus infection in humans and the intriguing peculiarities of the interaction between the HCV replication cycle and the hepatocyte host cell have stimulated a flourishing research field. The present review aims at recapitulating the different viral and cellular systems modelling HCV entry and replication, and in particular at gathering the tools available to dissect the HCV entry pathway.
Collapse
Affiliation(s)
- Gabrielle Vieyres
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research; A Joint Venture Between The Medical School Hannover and The Helmholtz Centre for Infection Research, Feodor-Lynen-Straße 7-9, 30625 Hannover, Germany
| | | |
Collapse
|
140
|
Toward a hepatitis C virus vaccine: the structural basis of hepatitis C virus neutralization by AP33, a broadly neutralizing antibody. J Virol 2012; 86:12923-32. [PMID: 22993159 DOI: 10.1128/jvi.02052-12] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The E2 envelope glycoprotein of hepatitis C virus (HCV) binds to the host entry factor CD81 and is the principal target for neutralizing antibodies (NAbs). Most NAbs recognize hypervariable region 1 on E2, which undergoes frequent mutation, thereby allowing the virus to evade neutralization. Consequently, there is great interest in NAbs that target conserved epitopes. One such NAb is AP33, a mouse monoclonal antibody that recognizes a conserved, linear epitope on E2 and potently neutralizes a broad range of HCV genotypes. In this study, the X-ray structure of AP33 Fab in complex with an epitope peptide spanning residues 412 to 423 of HCV E2 was determined to 1.8 Å. In the complex, the peptide adopts a β-hairpin conformation and docks into a deep binding pocket on the antibody. The major determinants of antibody recognition are E2 residues L413, N415, G418, and W420. The structure is compared to the recently described HCV1 Fab in complex with the same epitope. Interestingly, the antigen-binding sites of HCV1 and AP33 are completely different, whereas the peptide conformation is very similar in the two structures. Mutagenesis of the peptide-binding residues on AP33 confirmed that these residues are also critical for AP33 recognition of whole E2, confirming that the peptide-bound structure truly represents AP33 interaction with the intact glycoprotein. The slightly conformation-sensitive character of the AP33-E2 interaction was explored by cross-competition analysis and alanine-scanning mutagenesis. The structural details of this neutralizing epitope provide a starting point for the design of an immunogen capable of eliciting AP33-like antibodies.
Collapse
|
141
|
Lagaye S, Shen H, Saunier B, Nascimbeni M, Gaston J, Bourdoncle P, Hannoun L, Massault PP, Vallet-Pichard A, Mallet V, Pol S. Efficient replication of primary or culture hepatitis C virus isolates in human liver slices: a relevant ex vivo model of liver infection. Hepatology 2012; 56:861-72. [PMID: 22454196 DOI: 10.1002/hep.25738] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 03/13/2012] [Indexed: 12/16/2022]
Abstract
UNLABELLED The development of human cultured hepatitis C virus (HCV) replication-permissive hepatocarcinoma cell lines has provided important new virological tools to study the mechanisms of HCV infection; however, this experimental model remains distantly related to physiological and pathological conditions. Here, we report the development of a new ex vivo model using human adult liver slices culture, demonstrating, for the first time, the ability of primary isolates to undergo de novo viral replication with the production of high-titer infectious virus as well as Japanese fulminant hepatitis type 1, H77/C3, and Con1/C3. This experimental model was employed to demonstrate HCV neutralization or HCV inhibition, in a dose-dependent manner, either by cluster of differentiation 81 or envelope protein 2-specific antibodies or convalescent serum from a recovered HCV patient or by antiviral drugs. CONCLUSION This new ex vivo model represents a powerful tool for studying the viral life cycle and dynamics of virus spread in native tissue and also allows one to evaluate the efficacy of new antiviral drugs.
Collapse
Affiliation(s)
- Sylvie Lagaye
- Equipe Cycle cellulaire, Régénération et Hépatopathies, Institut Cochin, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Centre National de la Recherche Scientifique (CNRS) UMR8104, Université Paris Descartes (UMR S1016), Paris, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Sautto G, Mancini N, Diotti RA, Solforosi L, Clementi M, Burioni R. Anti-hepatitis C virus E2 (HCV/E2) glycoprotein monoclonal antibodies and neutralization interference. Antiviral Res 2012; 96:82-9. [PMID: 22898087 DOI: 10.1016/j.antiviral.2012.07.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 07/27/2012] [Accepted: 07/30/2012] [Indexed: 01/06/2023]
Abstract
The suggested HCV escape mechanism consisting in the elicitation of antibody (Ab) subpopulations interfering with the neutralizing activity of other Abs has recently been questioned. In particular, it was originally reported that Abs directed against the 436-447 region (epitope II) of HCV/E2 glycoprotein may interfere with the neutralizing Abs directed against the 412-423 region (epitope I) involved in the binding to CD81. In this paper, we investigate on the molecular features of this phenomenon describing an anti-HCV/E2 monoclonal Ab (mAb) (e509) endowed with a weak neutralizing activity, and whose epitope is centered on epitope II. Interestingly, e509 influenced the potent neutralizing activity of AP33, one of the best characterized anti-HCV/E2 mAb, whereas it did not show any interfering activity against two other broadly neutralizing mAbs (e20 and e137), whose epitopes partially overlap with that of e509 and which possibly displace it from the antigen. These data may give a possible clue to interpret the conflicting studies published to date on the mechanism of interference, suggesting the existence of at least two groups of broadly neutralizing anti-HCV/E2 Abs: (i) those whose epitope is focused on the 412-423 CD81-binding region and whose activity may be hampered by other Abs directed against the 436-447 region, and (ii) those directed against CD81-binding regions but whose epitope contains also residues within the 436-447 region recognized by interfering mAbs, thus competing with them for binding. The conflicting results of previous studies may therefore depend on the relative amount of each of these two populations in the polyclonal preparations used. Overall, a better comprehension of this phenomenon may be of importance in the set up of novel mAb-based anti-HCV therapeutic strategies.
Collapse
Affiliation(s)
- Giuseppe Sautto
- Laboratorio di Microbiologia e Virologia, Università Vita-Salute San Raffaele, Milano, Italy
| | | | | | | | | | | |
Collapse
|
143
|
Hussain S, Barretto N, Uprichard SL. New hepatitis C virus drug discovery strategies and model systems. Expert Opin Drug Discov 2012; 7:849-59. [PMID: 22861052 DOI: 10.1517/17460441.2012.711312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Hepatitis C virus (HCV) is a major cause of liver disease worldwide and the leading indication for liver transplantation in the United States. Current treatment options are expensive, not effective in all patients and are associated with serious side effects. Although preclinical, anti-HCV drug screening is still hampered by the lack of readily infectable small animal models, the development of cell culture HCV experimental model systems has driven a promising new wave of HCV antiviral drug discovery. AREAS COVERED This review contains a concise overview of current HCV treatment options and limitations with a subsequent in-depth focus on the available experimental models and novel strategies that have, and continue to enable, important advances in HCV drug development. EXPERT OPINION With a large cohort of chronically HCV-infected patients progressively developing liver disease that puts them at risk for hepatocellular carcinoma and hepatic decompensation, there is an urgent need to develop effective therapeutics that are well tolerated and effective in all patients and against all HCV genotypes. Significant advances in HCV experimental model development have expedited drug discovery; however, additional progress is needed. Importantly, the current trends and momentum in the field suggests that we will continue to overcome critical experimental challenges to reach this end goal.
Collapse
Affiliation(s)
- Snawar Hussain
- University of Illinois at Chicago, Department of Medicine, Chicago, IL 60612, USA
| | | | | |
Collapse
|
144
|
Hepatitis C virus induces epidermal growth factor receptor activation via CD81 binding for viral internalization and entry. J Virol 2012; 86:10935-49. [PMID: 22855500 DOI: 10.1128/jvi.00750-12] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
While epidermal growth factor receptor (EGFR) has been shown to be important in the entry process for multiple viruses, including hepatitis C virus (HCV), the molecular mechanisms by which EGFR facilitates HCV entry are not well understood. Using the infectious cell culture HCV model (HCVcc), we demonstrate that the binding of HCVcc particles to human hepatocyte cells induces EGFR activation that is dependent on interactions between HCV and CD81 but not claudin 1. EGFR activation can also be induced by antibody mediated cross-linking of CD81. In addition, EGFR ligands that enhance the kinetics of HCV entry induce EGFR internalization and colocalization with CD81. While EGFR kinase inhibitors inhibit HCV infection primarily by preventing EGFR endocytosis, antibodies that block EGFR ligand binding or inhibitors of EGFR downstream signaling have no effect on HCV entry. These data demonstrate that EGFR internalization is critical for HCV entry and identify a hitherto-unknown association between CD81 and EGFR.
Collapse
|
145
|
Hepatitis C virus envelope glycoprotein fitness defines virus population composition following transmission to a new host. J Virol 2012; 86:11956-66. [PMID: 22855498 DOI: 10.1128/jvi.01079-12] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Genetic variability is a hallmark of RNA virus populations. However, transmission to a new host often results in a marked decrease in population diversity. This genetic bottlenecking is observed during hepatitis C virus (HCV) transmission and can arise via a selective sweep or through the founder effect. To model HCV transmission, we utilized chimeric SCID/Alb-uPA mice with transplanted human hepatocytes and infected them with a human serum HCV inoculum. E1E2 glycoprotein gene sequences in the donor inoculum and recipient mice were determined following single-genome amplification (SGA). In independent experiments, using mice with liver cells grafted from different sources, an E1E2 variant undetectable in the source inoculum was selected for during transmission. Bayesian coalescent analyses indicated that this variant arose in the inoculum pretransmission. Transmitted variants that established initial infection harbored key substitutions in E1E2 outside HVR1. Notably, all posttransmission E1E2s had lost a potential N-linked glycosylation site (PNGS) in E2. In lentiviral pseudoparticle assays, the major posttransmission E1E2 variant conferred an increased capacity for entry compared to the major variant present in the inoculum. Together, these data demonstrate that increased envelope glycoprotein fitness can drive selective outgrowth of minor variants posttransmission and that loss of a PNGS is integral to this improved phenotype. Mathematical modeling of the dynamics of competing HCV variants indicated that relatively modest differences in glycoprotein fitness can result in marked shifts in virus population composition. Overall, these data provide important insights into the dynamics and selection of HCV populations during transmission.
Collapse
|
146
|
Burton DR, Poignard P, Stanfield RL, Wilson IA. Broadly neutralizing antibodies present new prospects to counter highly antigenically diverse viruses. Science 2012; 337:183-6. [PMID: 22798606 DOI: 10.1126/science.1225416] [Citation(s) in RCA: 345] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Certain human pathogens avoid elimination by our immune system by rapidly mutating the surface protein sites targeted by antibody responses, and consequently they tend to be problematic for vaccine development. The behavior described is prominent for a subset of viruses--the highly antigenically diverse viruses--which include HIV, influenza, and hepatitis C viruses. However, these viruses do harbor highly conserved exposed sites, usually associated with function, which can be targeted by broadly neutralizing antibodies. Until recently, not many such antibodies were known, but advances in the field have enabled increasing numbers to be identified. Molecular characterizations of the antibodies and, most importantly, of the sites of vulnerability that they recognize give hope for the discovery of new vaccines and drugs.
Collapse
Affiliation(s)
- Dennis R Burton
- Department of Immunology and Microbial Science and International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | | | |
Collapse
|
147
|
Song H, Ren F, Li J, Shi S, Yan L, Gao F, Li K, Zhuang H. A laboratory-adapted HCV JFH-1 strain is sensitive to neutralization and can gradually escape under the selection pressure of neutralizing human plasma. Virus Res 2012; 169:154-61. [PMID: 22846920 DOI: 10.1016/j.virusres.2012.07.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 07/17/2012] [Accepted: 07/20/2012] [Indexed: 01/08/2023]
Abstract
Viral replication and neutralization of hepatitis C viruses (HCV) have been studied using the infectious molecular clone JFH-1. By passaging JFH-1 in hepatoma cells in the absence or presence of HCV neutralizing antibodies (nAbs), we investigated the molecular mechanisms of cell-culture adaptation and sensitivity to nAbs. The cell culture-adapted JFH-1 virus (JFH-1-CA) became more sensitive to nAbs than its parental virus. Sequence analysis revealed that the predominant viruses in the JFH-1-CA population carried two mutations in their envelopes (I414T and V293A). Plasma that could neutralize JFH-1-CA was found in 2 of 7 HCV-infected individuals who have cleared the virus in blood. Plasma 226233 with a higher 50% neutralization titer was used for in vitro selection of neutralization resistant viruses. Under the increasing selection pressure of plasma 226233, the neutralizing sensitivity of JFH-1-CA decreased gradually. Two mutations (T414I and P500S) in envelope were found in all but one sequenced clones in the viral population after eight rounds of selection. Interestingly, the cell-culture adapted mutation I414T reverted back to the wild-type residue (I414) under the selection pressure. By introducing mutations at positions 414 and 500 into the JFH-1 clone, we confirmed that the T414I mutation alone can confer neutralization resistance. The results of this current study suggest that nAbs are present in a subset of HCV-infected individuals who have cleared the virus in blood. Our data also provide the first evidence that, the E2 residue P500, located within a previously identified highly conserved polyclonal epitope, may be a target for neutralizing antibodies present in individual who have spontaneously resolved the HCV infection.
Collapse
Affiliation(s)
- Hongshuo Song
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | | | | | | | | | | | | | | |
Collapse
|
148
|
FOFANA ISABEL, FAFI–KREMER SAMIRA, CAROLLA PATRIC, FAUVELLE CATHERINE, ZAHID MUHAMMADNAUMAN, TUREK MARINE, HEYDMANN LAURA, CURY KARINE, HAYER JULIETTE, COMBET CHRISTOPHE, COSSET FRANÇOIS, PIETSCHMANN THOMAS, HIET MARIE, BARTENSCHLAGER RALF, HABERSETZER FRANÇOIS, DOFFOËL MICHEL, KECK ZHEN, FOUNG STEVENKH, ZEISEL MIRJAMB, STOLL–KELLER FRANÇOISE, BAUMERT THOMASF. Mutations that alter use of hepatitis C virus cell entry factors mediate escape from neutralizing antibodies. Gastroenterology 2012; 143:223-233.e9. [PMID: 22503792 PMCID: PMC5295797 DOI: 10.1053/j.gastro.2012.04.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 03/14/2012] [Accepted: 04/06/2012] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS The development of vaccines and other strategies to prevent hepatitis C virus (HCV) infection is limited by rapid viral evasion. HCV entry is the first step of infection; this process involves several viral and host factors and is targeted by host-neutralizing responses. Although the roles of host factors in HCV entry have been well characterized, their involvement in evasion of immune responses is poorly understood. We used acute infection of liver graft as a model to investigate the molecular mechanisms of viral evasion. METHODS We studied factors that contribute to evasion of host immune responses using patient-derived antibodies, HCV pseudoparticles, and cell culture-derived HCV that express viral envelopes from patients who have undergone liver transplantation. These viruses were used to infect hepatoma cell lines that express different levels of HCV entry factors. RESULTS By using reverse genetic analyses, we identified altered use of host-cell entry factors as a mechanism by which HCV evades host immune responses. Mutations that alter use of the CD81 receptor also allowed the virus to escape neutralizing antibodies. Kinetic studies showed that these mutations affect virus-antibody interactions during postbinding steps of the HCV entry process. Functional studies with a large panel of patient-derived antibodies showed that this mechanism mediates viral escape, leading to persistent infection in general. CONCLUSIONS We identified a mechanism by which HCV evades host immune responses, in which use of cell entry factors evolves with escape from neutralizing antibodies. These findings advance our understanding of the pathogenesis of HCV infection and might be used to develop antiviral strategies and vaccines.
Collapse
Affiliation(s)
- ISABEL FOFANA
- Inserm, U748, Strasbourg, France
,Université de Strasbourg, Strasbourg, France
| | - SAMIRA FAFI–KREMER
- Inserm, U748, Strasbourg, France
,Université de Strasbourg, Strasbourg, France
,Laboratoire de Virologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - PATRIC CAROLLA
- Inserm, U748, Strasbourg, France
,Université de Strasbourg, Strasbourg, France
| | - CATHERINE FAUVELLE
- Inserm, U748, Strasbourg, France
,Université de Strasbourg, Strasbourg, France
| | | | - MARINE TUREK
- Inserm, U748, Strasbourg, France
,Université de Strasbourg, Strasbourg, France
| | - LAURA HEYDMANN
- Inserm, U748, Strasbourg, France
,Université de Strasbourg, Strasbourg, France
| | - KARINE CURY
- Inserm, U748, Strasbourg, France
,Université de Strasbourg, Strasbourg, France
| | - JULIETTE HAYER
- Bases Moléculaires et Structurales des Systèmes Infectieux, UMR 5086, Centre National de la Recherche Scientifique, Université de Lyon, Institut de Biologie et Chimie des Proteines, Lyon, France
| | - CHRISTOPHE COMBET
- Bases Moléculaires et Structurales des Systèmes Infectieux, UMR 5086, Centre National de la Recherche Scientifique, Université de Lyon, Institut de Biologie et Chimie des Proteines, Lyon, France
| | - FRANÇOIS–LOÏC COSSET
- Université de Lyon, Université Claude Bernard Lyon1, IFR 128, Inserm U758; Ecole Normale Supérieure de Lyon, 69364 Lyon, France
| | - THOMAS PIETSCHMANN
- Division of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - MARIE–SOPHIE HIET
- The Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - RALF BARTENSCHLAGER
- The Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - FRANÇOIS HABERSETZER
- Inserm, U748, Strasbourg, France
,Université de Strasbourg, Strasbourg, France
,Pôle Hepato-Digestif, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - MICHEL DOFFOËL
- Inserm, U748, Strasbourg, France
,Université de Strasbourg, Strasbourg, France
,Pôle Hepato-Digestif, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - ZHEN–YONG KECK
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - STEVEN K. H. FOUNG
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - MIRJAM B. ZEISEL
- Inserm, U748, Strasbourg, France
,Université de Strasbourg, Strasbourg, France
| | - FRANÇOISE STOLL–KELLER
- Inserm, U748, Strasbourg, France
,Université de Strasbourg, Strasbourg, France
,Laboratoire de Virologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - THOMAS F. BAUMERT
- Inserm, U748, Strasbourg, France
,Université de Strasbourg, Strasbourg, France
,Pôle Hepato-Digestif, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| |
Collapse
|
149
|
Vercauteren K, Leroux-Roels G, Meuleman P. Blocking HCV entry as potential antiviral therapy. Future Virol 2012. [DOI: 10.2217/fvl.12.47] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
150
|
Structural basis of hepatitis C virus neutralization by broadly neutralizing antibody HCV1. Proc Natl Acad Sci U S A 2012; 109:9499-504. [PMID: 22623528 DOI: 10.1073/pnas.1202924109] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hepatitis C virus (HCV) infects more than 2% of the global population and is a leading cause of liver cirrhosis, hepatocellular carcinoma, and end-stage liver diseases. Circulating HCV is genetically diverse, and therefore a broadly effective vaccine must target conserved T- and B-cell epitopes of the virus. Human mAb HCV1 has broad neutralizing activity against HCV isolates from at least four major genotypes and protects in the chimpanzee model from primary HCV challenge. The antibody targets a conserved antigenic site (residues 412-423) on the virus E2 envelope glycoprotein. Two crystal structures of HCV1 Fab in complex with an epitope peptide at 1.8-Å resolution reveal that the epitope is a β-hairpin displaying a hydrophilic face and a hydrophobic face on opposing sides of the hairpin. The antibody predominantly interacts with E2 residues Leu(413) and Trp(420) on the hydrophobic face of the epitope, thus providing an explanation for how HCV isolates bearing mutations at Asn(415) on the same binding face escape neutralization by this antibody. The results provide structural information for a neutralizing epitope on the HCV E2 glycoprotein and should help guide rational design of HCV immunogens to elicit similar broadly neutralizing antibodies through vaccination.
Collapse
|