101
|
Ruddock MW, Stein A, Landaker E, Park J, Cooksey RC, McClain D, Patti ME. Saturated fatty acids inhibit hepatic insulin action by modulating insulin receptor expression and post-receptor signalling. J Biochem 2008; 144:599-607. [PMID: 18713797 DOI: 10.1093/jb/mvn105] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Free fatty acids (FFAs) are proposed to play a pathogenic role in both peripheral and hepatic insulin resistance. We have examined the effect of saturated FFA on insulin signalling (100 nM) in two hepatocyte cell lines. Fao hepatoma cells were treated with physiological concentrations of sodium palmitate (0.25 mM) (16:0) for 0.25-48 h. Palmitate decreased insulin receptor (IR) protein and mRNA expression in a dose- and time-dependent manner (35% decrease at 12 h). Palmitate also reduced insulin-stimulated IR and IRS-2 tyrosine phosphorylation, IRS-2-associated PI 3-kinase activity, and phosphorylation of Akt, p70 S6 kinase, GSK-3 and FOXO1A. Palmitate also inhibited insulin action in hepatocytes derived from wild-type IR (+/+) mice, but was ineffective in IR-deficient (-/-) cells. The effects of palmitate were reversed by triacsin C, an inhibitor of fatty acyl CoA synthases, indicating that palmitoyl CoA ester formation is critical. Neither the non-metabolized bromopalmitate alone nor the medium chain fatty acid octanoate (8:0) produced similar effects. However, the CPT-1 inhibitor (+/-)-etomoxir and bromopalmitate (in molar excess) reversed the effects of palmitate. Thus, the inhibition of insulin signalling by palmitate in hepatoma cells is dependent upon oxidation of fatty acyl-CoA species and requires intact insulin receptor expression.
Collapse
Affiliation(s)
- Mark W Ruddock
- Research Division, Cellular & Molecular Physiology, Joslin Diabetes Centre, and Harvard Medical School, 1 Joslin Place, Boston, MA 02215, USA.
| | | | | | | | | | | | | |
Collapse
|
102
|
Malcher-Lopes R, Franco A, Tasker JG. Glucocorticoids shift arachidonic acid metabolism toward endocannabinoid synthesis: a non-genomic anti-inflammatory switch. Eur J Pharmacol 2008; 583:322-39. [PMID: 18295199 PMCID: PMC2367369 DOI: 10.1016/j.ejphar.2007.12.033] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Revised: 12/12/2007] [Accepted: 12/16/2007] [Indexed: 11/24/2022]
Abstract
Glucocorticoids are capable of exerting both genomic and non-genomic actions in target cells of multiple tissues, including the brain, which trigger an array of electrophysiological, metabolic, secretory and inflammatory regulatory responses. Here, we have attempted to show how glucocorticoids may generate a rapid anti-inflammatory response by promoting arachidonic acid-containing endocannabinoids biosynthesis. According to our hypothesized model, non-genomic action of glucocorticoids results in the global shift of membrane lipid metabolism, subverting metabolic pathways toward the synthesis of the anti-inflammatory endocannabinoids, anandamide (AEA) and 2-arachidonoyl-glycerol (2-AG), and away from arachidonic acid production. Post-transcriptional inhibition of cyclooxygenase-2 (COX(2)) synthesis by glucocorticoids assists this mechanism by suppressing the synthesis of pro-inflammatory prostaglandins as well as endocannabinoid-derived prostanoids. In the central nervous system (CNS) this may represent a major neuroprotective system, which may cross-talk with leptin signaling in the hypothalamus allowing for the coordination between energy homeostasis and the inflammatory response.
Collapse
|
103
|
Rapid activation of Akt2 is sufficient to stimulate GLUT4 translocation in 3T3-L1 adipocytes. Cell Metab 2008; 7:348-56. [PMID: 18396141 DOI: 10.1016/j.cmet.2008.02.008] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Revised: 12/24/2007] [Accepted: 02/14/2008] [Indexed: 01/10/2023]
Abstract
The serine/threonine kinase Akt2 has been implicated in insulin-regulated glucose uptake into muscle and fat cells by promoting the translocation of glucose transporter 4 (GLUT4) to the cell surface. However, it remains unclear whether activation of Akt2 is sufficient since a role for alternate signaling pathways has been proposed. Here we have engineered 3T3-L1 adipocytes to express a rapidly inducible Akt2 system based on drug-inducible heterodimerization. Addition of the dimerizer rapalog resulted in activation of Akt2 within 5 min, concomitant with phosphorylation of the Akt substrates AS160 and GSK3. Comparison with insulin stimulation revealed that the level of Akt2 activity observed with rapalog was within the physiological range, reducing the likelihood of off-target effects. Transient activation of Akt2 also increased glucose transport and GLUT4 translocation to the plasma membrane. These results show that activation of Akt2 is sufficient to stimulate GLUT4 translocation in 3T3-L1 adipocytes to an extent similar to insulin.
Collapse
|
104
|
Srivastava AK. Section Review—Oncologic, Endocrine & Metabolic: Potential Use of Vanadium Compounds in the Treatment of Diabetes Mellitus. Expert Opin Investig Drugs 2008. [DOI: 10.1517/13543784.4.6.525] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
105
|
Montecucco F, Steffens S, Mach F. Insulin resistance: a proinflammatory state mediated by lipid-induced signaling dysfunction and involved in atherosclerotic plaque instability. Mediators Inflamm 2008; 2008:767623. [PMID: 18604303 PMCID: PMC2442435 DOI: 10.1155/2008/767623] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Accepted: 06/09/2008] [Indexed: 11/23/2022] Open
Abstract
The dysregulation of the insulin-glucose axis represents the crucial event in insulin resistance syndrome. Insulin resistance increases atherogenesis and atherosclerotic plaque instability by inducing proinflammatory activities on vascular and immune cells. This condition characterizes several diseases, such as type 2 diabetes, impaired glucose tolerance (IGT), impaired fasting glucose (IFG), obesity, hypertension, dyslipidemia, and other endocrinopathies, but also cancer. Recent studies suggest that the pathophysiology of insulin resistance is closely related to interferences with insulin-mediated intracellular signaling on skeletal muscle cells, hepatocytes, and adipocytes. Strong evidence supports the role of free fatty acids (FFAs) in promoting insulin resistance. The FFA-induced activation of protein kinase C (PKC) delta, inhibitor kappaB kinase (IKK), or c-Jun N-terminal kinase (JNK) modulates insulin-triggered intracellular pathway (classically known as PI3-K-dependent). Therefore, reduction of FFA levels represents a selective target for modulating insulin resistance.
Collapse
Affiliation(s)
- Fabrizio Montecucco
- Division of Cardiology, Foundation for Medical Researches, University Hospital, 1211 Geneva, Switzerland
| | - Sabine Steffens
- Division of Cardiology, Foundation for Medical Researches, University Hospital, 1211 Geneva, Switzerland
| | - François Mach
- Division of Cardiology, Foundation for Medical Researches, University Hospital, 1211 Geneva, Switzerland
| |
Collapse
|
106
|
Ikegami Y, Inukai K, Awata T, Asano T, Katayama S. SH3 domain of the phosphatidylinositol 3-kinase regulatory subunit is responsible for the formation of a sequestration complex with insulin receptor substrate-1. Biochem Biophys Res Commun 2007; 365:433-8. [PMID: 17991427 DOI: 10.1016/j.bbrc.2007.10.187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Accepted: 10/29/2007] [Indexed: 11/30/2022]
Abstract
Class IA phosphatidylinositol 3-kinase (PI 3-kinase), which is composed of a 110kDa catalytic subunit and a regulatory subunit, plays a key role in most insulin dependent cellular responses. To date, five mammalian regulatory subunit isoforms have been identified, including two 85kDa proteins (p85alpha and p85beta), two 55kDa proteins (p55gamma and p55alpha), and one 50kDa protein (p50alpha). In the present study, we overexpressed these recombinant proteins, tagged with green fluorescent proteins (GFP), in CHO-IR cells and investigated intracellular localizations in both the presence and the absence of insulin stimulation. Interestingly, in response to insulin, only p85alpha and p85beta redistributed to isolated foci in the cells, while both were present throughout the cytoplasm in quiescent cells. In contrast, p55s accumulated in the perinuclear region irrespective of insulin stimulation, while p50alpha behaved similarly to control GFP. Immunofluorescent antibodies against endogenous IRS-1 revealed IRS-1 to be co-localized in the p85 foci in response to insulin. As both insulin receptors and p110alpha catalytic subunits were absent from these foci on immunofluorescence study, only p85 and IRS-1 were suggested to form a sequestration complex in response to insulin. To determine the domain responsible for IRS-1 complex formation, we prepared and overexpressed the SH3 domain deletion mutant of p85alpha in CHO-IR cells. This mutant failed to form foci, suggesting the SH3 domain of regulatory subunits to be responsible for formation of the p85-IRS-1 sequestration complex. In conclusion, our study revealed the SH3 domain of PI 3-kinase to play a critical role in intracellular localizations, including formation of foci with IRS-1 in response to insulin.
Collapse
Affiliation(s)
- Yuichi Ikegami
- Division of Endocrinology and Diabetes, Department of Medicine, Saitama Medical University, Morohongo 38, Moroyama, Iruma-gun, Saitama 350-0495, Japan
| | | | | | | | | |
Collapse
|
107
|
Hakuno F, Kurihara S, Watson RT, Pessin JE, Takahashi SI. 53BP2S, interacting with insulin receptor substrates, modulates insulin signaling. J Biol Chem 2007; 282:37747-58. [PMID: 17965023 DOI: 10.1074/jbc.m702472200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
It is well known that insulin receptor substrates (IRS) act as a mediator for signal transduction of insulin, insulin-like growth factors, and several cytokines. To identify proteins that interact with IRS and modulate IRS-mediated signals, we performed yeast two-hybrid screening with IRS-1 as bait. Out of 109 cDNA-positive clones identified from a human placental cDNA library, two clones encoded 53BP2, p53-binding protein 2 (53BP2S), a short form splicing variant of the apoptosis-stimulating protein of p53 that possesses Src homology region 3 domain, and ankyrin repeats domain, and had been reported to interact with p53, Bcl-2, and NF-kappaB. Interaction of 53BP2S with IRS-1 was confirmed by glutathione S-transferase pull-down and co-immunoprecipitation assays in COS-7 cells and 3T3-L1 adipocytes. The Src homology region 3 domain and ankyrin repeats domain of 53BP2S were responsible for its interaction with IRS-1, whereas the phosphotyrosine binding domain and a central domain (amino acid residues 750-861) of IRS-1 were required for its interaction with 53BP2S. In CHO-C400 cells, expression of 53BP2S reduced insulin-stimulated IRS-1 tyrosine phosphorylation with a concomitant enhancement of IRS-2 tyrosine phosphorylation. In addition, the amount of the phosphatidylinositol 3-kinase regulatory p85 subunit associated with tyrosine-phosphorylated proteins, and activation of Akt was enhanced by 53BP2S expression. Although 53BP2S also enhanced Akt activation in 3T3-L1 adipocytes, insulin-induced glucose transporter 4 translocation was markedly inhibited in accordance with reduction of insulin-induced AS160 phosphorylation. Together these data demonstrate that 53BP2S interacts and modulates the insulin signals mediated by IRSs.
Collapse
Affiliation(s)
- Fumihiko Hakuno
- Department of Animal Sciences, Graduate School of Agriculture and Life Sciences, the University of Tokyo, Tokyo, Japan
| | | | | | | | | |
Collapse
|
108
|
Watson RT, Saltiel AR, Pessin JE, Kanzaki M. Subcellular Compartmentalization of Insulin Signaling Processes and GLUT4 Trafficking Events. MECHANISMS OF INSULIN ACTION 2007:33-51. [DOI: 10.1007/978-0-387-72204-7_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
109
|
Iwata M, Hayakawa K, Murakami T, Naruse K, Kawakami K, Inoue-Miyazu M, Yuge L, Suzuki S. Uniaxial cyclic stretch-stimulated glucose transport is mediated by a ca-dependent mechanism in cultured skeletal muscle cells. Pathobiology 2007; 74:159-68. [PMID: 17643061 DOI: 10.1159/000103375] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Accepted: 12/29/2006] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Mechanical stimuli such as stretch increase glucose transport and glycogen metabolism in skeletal muscle. However, the molecular mechanisms involved in the mechanotransduction events are poorly understood. The present study was conducted in order to determine whether the signaling mechanism leading to mechanical stretch-stimulated glucose transport is similar to, or distinct from, the signaling mechanisms leading to insulin- and contraction-stimulated glucose transport in cultured muscle cells. METHODS Cultured C2C12 myotubes were stretched, after which the 2-deoxy-D-glucose (2-DG) uptake was measured. RESULTS Following cyclic stretch, C2C12 myotubes showed a significant increase in 2-DG uptake, and this effect was not prevented by inhibiting phosphatidylinositol 3-kinase or 5'-AMP-activated protein kinase and by extracellular Ca(2+) chelation. Conversely, the stretch-stimulated 2-DG uptake was completely prevented by dantrolene (an inhibitor of Ca(2+) release from sarcoplasmic reticulum). Furthermore, the stretch-stimulated 2-DG uptake was prevented by the Ca(2+)/calmodulin-dependent kinase inhibitor KN93 which did not prevent the insulin-stimulated 2-DG uptake. CONCLUSIONS These results suggest that the effects of stretch-stimulated glucose transport are independent of the insulin-signaling pathway. By contrast, following mechanical stretch in skeletal muscle, the signal transduction pathway leading to glucose transport may require the participation of cytosolic Ca(2+) and Ca(2+)/calmodulin kinase, but not 5'-AMP-activated protein kinase.
Collapse
Affiliation(s)
- Masahiro Iwata
- Program in Physical and Occupational Therapy, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | | | |
Collapse
|
110
|
Diehl KM, Grewal N, Ethier SP, Woods-Ignatoski KM. p38MAPK-activated AKT in HER-2 overexpressing human breast cancer cells acts as an EGF-independent survival signal. J Surg Res 2007; 142:162-9. [PMID: 17612563 DOI: 10.1016/j.jss.2007.01.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2006] [Revised: 01/16/2007] [Accepted: 01/23/2007] [Indexed: 11/16/2022]
Abstract
BACKGROUND HER-2 is an epidermal growth factor receptor (EGFR) family receptor tyrosine kinase that is overexpressed in about 30% of human breast cancers correlating with a poor prognosis. Previous work in our laboratory has found that HER-2 overexpression plays a role in growth factor independence, anchorage independence, motility, and invasion of naturally occurring basement membranes. We also found that AKT was activated by p38MAPK in these cells, but this activation did not play a role in invasion. Since AKT has been shown in other systems to be a survival factor, we hypothesized that HER-2 mediated activation of AKT is necessary for growth factor independence. METHODS Human mammary epithelial cells transduced to overexpress HER-2, HER-2, PTEN, and Myr-AKT and the primary breast cancer cell lines SUM-149 and SUM-225 were used to dissect the signaling pathways leading to growth factor independence and anchorage-independent growth in HER-2 overexpressing cells. RESULTS We found that, in the absence of EGF, p38MAPK-activated AKT is necessary for HER-2 overexpressing cells to survive and to form colonies in soft agar. We show that EGF works as a survival signal in the absence of p38MAPK-mediated activation of AKT. We also show that human mammary epithelial cells expressing a constitutively active AKT do not require EGF for growth or colony formation in soft agar. CONCLUSIONS The data presented here indicate that AKT activation can compensate for EGF-mediated cell survival signals leading to growth factor independence and anchorage-independent growth.
Collapse
Affiliation(s)
- Kathleen M Diehl
- University of Michigan Health Systems, University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan 48109, USA
| | | | | | | |
Collapse
|
111
|
Ono H, Sakoda H, Fujishiro M, Anai M, Kushiyama A, Fukushima Y, Katagiri H, Ogihara T, Oka Y, Kamata H, Horike N, Uchijima Y, Kurihara H, Asano T. Carboxy-terminal modulator protein induces Akt phosphorylation and activation, thereby enhancing antiapoptotic, glycogen synthetic, and glucose uptake pathways. Am J Physiol Cell Physiol 2007; 293:C1576-85. [PMID: 17615157 DOI: 10.1152/ajpcell.00570.2006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Carboxy-terminal modulator protein (CTMP) was identified as binding to the carboxy terminus of Akt and inhibiting the phosphorylation and activation of Akt. In contrast to a previous study, we found CTMP overexpression to significantly enhance Akt phosphorylation at both Thr(308) and Ser(473) as well as the kinase activity of Akt, while phosphatidylinositol 3-kinase (PI3-kinase) activity was unaffected. Translocation of Akt to the membrane fraction was also markedly increased in response to overexpression of CTMP, with no change in the whole cellular content of Akt. Furthermore, the phosphorylations of GSK-3beta and Foxo1, well-known substrates of Akt, were increased by CTMP overexpression. On the other hand, suppression of CTMP with small interfering RNA partially but significantly attenuated this Akt phosphorylation. The cellular activities reportedly mediated by Akt activation were also enhanced by CTMP overexpression. UV-B-induced apoptosis of HeLa cells was significantly reversed not only by overexpression of the active mutant of Akt (myr-Akt) but also by that of CTMP. Increases in glucose transport activity and glycogen synthesis were also induced by overexpression of either myr-Akt or CTMP in 3T3-L1 adipocytes. Taking these results into consideration, it can be concluded that CTMP induces translocation of Akt to the membrane and thereby increases the level of Akt phosphorylation. As a result, CTMP enhances various cellular activities that are principally mediated by the PI3-kinase/Akt pathway.
Collapse
Affiliation(s)
- Hiraku Ono
- Department of Endocrinology and Metabolism, Institute for Adult Disease, Asahi Life Foundation, Tokyo
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Abstract
NHE3 is the brush-border (BB) Na+/H+exchanger of small intestine, colon, and renal proximal tubule which is involved in large amounts of neutral Na+absorption. NHE3 is a highly regulated transporter, being both stimulated and inhibited by signaling that mimics the postprandial state. It also undergoes downregulation in diarrheal diseases as well as changes in renal disorders. For this regulation, NHE3 exists in large, multiprotein complexes in which it associates with at least nine other proteins. This review deals with short-term regulation of NHE3 and the identity and function of its recognized interacting partners and the multiprotein complexes in which NHE3 functions.
Collapse
Affiliation(s)
- Mark Donowitz
- Department of Medicine, GI Division, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | |
Collapse
|
113
|
Ma HP, Chou CF, Wei SP, Eaton DC. Regulation of the epithelial sodium channel by phosphatidylinositides: experiments, implications, and speculations. Pflugers Arch 2007; 455:169-80. [PMID: 17605040 DOI: 10.1007/s00424-007-0294-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Accepted: 05/18/2007] [Indexed: 10/23/2022]
Abstract
Recent studies suggest that the activity of epithelial sodium channels (ENaC) is increased by phosphatidylinositides, especially phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)) and phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P(3)). Stimulation of phospholipase C by either adenosine triphosphate (ATP)-activation of purinergic P2Y receptors or epidermal growth factor (EGF)-activation of EGF receptors reduces membrane PI(4,5)P(2), and consequently decreases ENaC activity. Since ATP and EGF may be trapped in cysts formed by the distal tubule, it is possible that ENaC inhibition induced by ATP and EGF facilitates cyst formation in polycystic kidney diseases (PKD). However, some results suggest that ENaC activity is increased in PKD. In contrast to P2Y and EGF receptors, stimulation of insulin-like growth factor-1 (IGF-1) receptor by aldosterone or insulin produces PI(3,4,5)P(3), and consequently increases ENaC activity. The acute effect of aldosterone on ENaC activity through PI(3,4,5)P(3) possibly accounts for the initial feedback for blood volume recovery after hypovolemic hypotension. PI(4,5)P(2) and PI(3,4,5)P(3), respectively, interacts with the N terminus of beta-ENaC and the C terminus of gamma-ENaC. However, whether ENaC selectively binds to PI(4,5)P(2) and PI(3,4,5)P(3) over other anionic phospholipids remains unclear.
Collapse
Affiliation(s)
- He-Ping Ma
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, 1530 Third Avenue South, ZRB 510, Birmingham, AL, 35294, USA.
| | | | | | | |
Collapse
|
114
|
Jeyaraj S, Boehmer C, Lang F, Palmada M. Role of SGK1 kinase in regulating glucose transport via glucose transporter GLUT4. Biochem Biophys Res Commun 2007; 356:629-35. [PMID: 17382906 DOI: 10.1016/j.bbrc.2007.03.029] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Accepted: 03/01/2007] [Indexed: 11/19/2022]
Abstract
Insulin stimulates glucose transport into muscle and fat cells by enhancing GLUT4 abundance in the plasma membrane through activation of phosphatidylinositol 3-kinase (PI3K). Protein kinase B (PKB) and PKCzeta are known PI3K downstream targets in the regulation of GLUT4. The serum- and glucocorticoid-inducible kinase SGK1 is similarly activated by insulin and capable to regulate cell surface expression of several metabolite transporters. In this study, we evaluated the putative role of SGK1 in the modulation of GLUT4. Coexpression of the kinase along with GLUT4 in Xenopus oocytes stimulated glucose transport. The enhanced GLUT4 activity was paralleled by increased transporter abundance in the plasma membrane. Disruption of the SGK1 phosphorylation site on GLUT4 ((S274A)GLUT4) abrogated the stimulating effect of SGK1. In summary, SGK1 promotes glucose transporter membrane abundance via GLUT4 phosphorylation at Ser274. Thus, SGK1 may contribute to the insulin and GLUT4-dependent regulation of cellular glucose uptake.
Collapse
|
115
|
Ghanassia E, Brun JF, Mercier J, Raynaud E. Oxidative mechanisms at rest and during exercise. Clin Chim Acta 2007; 383:1-20. [PMID: 17544388 DOI: 10.1016/j.cca.2007.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2006] [Revised: 03/27/2007] [Accepted: 04/04/2007] [Indexed: 12/17/2022]
Abstract
Carbohydrates (CHO) and lipids provide the amount of energy required for physical and chemical reactions inside the human body. The various constraints the body has to resolve explain the use of these two substrates, catabolized via distinct pathways to one common final reaction. In the classic model, three main organs/tissues for substrate fluxes (liver, adipose tissue and skeletal muscle) and one organ regulating main reactions by adaptation of hormonal secretions (endocrine pancreas) are described. From this point of view, the only interactions between CHO and lipid metabolisms are mediated by glycaemic changes via insulin/glucagon ratio (IGR). However, according to recent advances, this concept seems to have a limited validity as it does take into account neither the many other interactions between CHO and lipid metabolism that are likely to occur in addition to the coarse control by IGR, nor the long-term regulation of energy balance, whose description began with the discovery of leptin. Moreover, it does not include the effects of energy expenditure. Therefore, this review focuses on three topics: (i) describe interactions between CHO and lipid metabolism at the level of each tissue and organ implied, via hormonal signaling as well as direct action of nutrients, (ii) integrate fluxes of substrates and signals between those tissues at rest in a global view of the metabolism taking into account short-term and long-term regulating factors and (iii) describe separately, to avoid confusion or extrapolation, the short-term and long-term influence of exercise on these regulation loops.
Collapse
|
116
|
Schäfer C, Hoffmann L, Heldt K, Lornejad-Schäfer MR, Brauers G, Gehrmann T, Garrow TA, Häussinger D, Mayatepek E, Schwahn BC, Schliess F. Osmotic regulation of betaine homocysteine-S-methyltransferase expression in H4IIE rat hepatoma cells. Am J Physiol Gastrointest Liver Physiol 2007; 292:G1089-98. [PMID: 17218476 DOI: 10.1152/ajpgi.00088.2006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cell hydration changes critically affect liver metabolism and gene expression. In the course of gene expression studies using nylon cDNA-arrays we found that hyperosmolarity (405 mosmol/l) suppressed the betaine-homocysteine methyltransferase (Bhmt) mRNA expression in H4IIE rat hepatoma cells. This was confirmed by Northern blot and real-time quantitative RT-PCR analysis, which in addition unraveled a pronounced induction of Bhmt mRNA expression by hypoosmotic (205 mosmol/l) swelling. Osmotic regulation of Bhmt mRNA expression was largely paralleled at the levels of Bhmt protein and enzymatic activity. Like hyperosmotic NaCl, hyperosmotic raffinose but not hyperosmotic urea suppressed Bhmt mRNA expression, suggesting that cell shrinkage rather than increased ionic strength or hyperosmolarity per se is the trigger. Hypoosmolarity increased the expression of a reporter gene driven by the entire human BHMT promoter, whereas destabilization of BHMT mRNA was observed under hyperosmotic conditions. Osmosensitivity of Bhmt mRNA expression was impaired by inhibitors of tyrosine kinases and cyclic nucleotide-dependent kinases. The osmotic regulation of BHMT may be part of a cell volume-regulatory response and additionally lead to metabolic alterations that depend on the availability of betaine-derived methyl groups.
Collapse
MESH Headings
- Animals
- Betaine/metabolism
- Betaine-Homocysteine S-Methyltransferase/genetics
- Betaine-Homocysteine S-Methyltransferase/metabolism
- Carcinoma, Hepatocellular/enzymology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/physiopathology
- Cell Line, Tumor
- Cell Size
- Cyclic Nucleotide-Regulated Protein Kinases/metabolism
- Gene Expression Regulation, Enzymologic
- Liver Neoplasms/enzymology
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Liver Neoplasms/physiopathology
- Osmolar Concentration
- Osmosis
- Promoter Regions, Genetic
- Protein Kinase Inhibitors/pharmacology
- Protein-Tyrosine Kinases/metabolism
- RNA, Messenger/metabolism
- Raffinose/chemistry
- Raffinose/metabolism
- Rats
- Saline Solution, Hypertonic/metabolism
- Sarcosine/analogs & derivatives
- Sarcosine/metabolism
- Signal Transduction
- Time Factors
- Transcription, Genetic
- Transfection
- Urea/chemistry
- Urea/metabolism
- Water-Electrolyte Balance
Collapse
Affiliation(s)
- Christine Schäfer
- Clinic for Gastroenterology, Hepatology, and Infectiology, Düsseldorf, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Cayouette S, Boulay G. Intracellular trafficking of TRP channels. Cell Calcium 2007; 42:225-32. [PMID: 17368756 DOI: 10.1016/j.ceca.2007.01.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2007] [Revised: 01/30/2007] [Accepted: 01/31/2007] [Indexed: 11/18/2022]
Abstract
Thirteen years ago, it was suggested that exocytotic insertion of store-operated channels into the plasma membrane lead to increased Ca(2+) entry in non-excitable cells upon G protein-coupled or tyrosine kinase receptor stimulation. Since the discovery of the TRP channel superfamily and their involvement in receptor-induced Ca(2+) entry, many studies have shown that different members of the TRP superfamily translocate into the plasma membrane upon stimulation. While the exact molecular mechanism by which TRP channels insert into the plasma membrane is unknown, TRP-binding proteins have been shown to directly regulate this trafficking. This review summarizes recent advances related to the mechanism of TRP channel trafficking, focusing on the role of TRP-binding proteins.
Collapse
Affiliation(s)
- Sylvie Cayouette
- Department of Pharmacology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | | |
Collapse
|
118
|
Li R, Thorens B, Loeken MR. Expression of the gene encoding the high-Km glucose transporter 2 by the early postimplantation mouse embryo is essential for neural tube defects associated with diabetic embryopathy. Diabetologia 2007; 50:682-9. [PMID: 17235524 DOI: 10.1007/s00125-006-0579-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2006] [Accepted: 11/21/2006] [Indexed: 01/01/2023]
Abstract
AIMS/HYPOTHESIS Excess glucose transport to embryos during diabetic pregnancy causes congenital malformations. The early postimplantation embryo expresses the gene encoding the high-Km GLUT2 (also known as SLC2A2) glucose transporter. The hypothesis tested here is that high-Km glucose transport by GLUT2 causes malformations resulting from maternal hyperglycaemia during diabetic pregnancy. MATERIALS AND METHODS Glut2 mRNA was assayed by RT-PCR. The Km of embryo glucose transport was determined by measuring 0.5-20 mmol/l 2-deoxy[3H]glucose transport. To test whether the GLUT2 transporter is required for neural tube defects resulting from maternal hyperglycaemia, Glut2+/- mice were crossed and transient hyperglycaemia was induced by glucose injection on day 7.5 of pregnancy. Embryos were recovered on day 10.5, and the incidence of neural tube defects in wild-type, Glut2+/- and Glut2-/- embryos was scored. RESULTS Early postimplantation embryos expressed Glut2, and expression was unaffected by maternal diabetes. Moreover, glucose transport by these embryos showed Michaelis-Menten kinetics of 16.19 mmol/l, consistent with transport mediated by GLUT2. In pregnancies made hyperglycaemic on day 7.5, neural tube defects were significantly increased in wild-type embryos, but Glut2+/- embryos were partially protected from neural tube defects, and Glut2-/- embryos were completely protected from these defects. The frequency of occurrence of wild-type, Glut2+/- and Glut2-/- embryos suggests that the presence of Glut2 alleles confers a survival advantage in embryos before day 10.5. CONCLUSIONS/INTERPRETATIONS High-Km glucose transport by the GLUT2 glucose transporter during organogenesis is responsible for the embryopathic effects of maternal diabetes.
Collapse
Affiliation(s)
- R Li
- Developmental and Stem Cell Biology, Joslin Diabetes Center, 1 Joslin Place, Boston, MA 02215, USA
| | | | | |
Collapse
|
119
|
Yoshiga D, Sato N, Torisu T, Mori H, Yoshida R, Nakamura S, Takaesu G, Kobayashi T, Yoshimura A. Adaptor protein SH2-B linking receptor-tyrosine kinase and Akt promotes adipocyte differentiation by regulating peroxisome proliferator-activated receptor gamma messenger ribonucleic acid levels. Mol Endocrinol 2007; 21:1120-31. [PMID: 17312274 DOI: 10.1210/me.2006-0413] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Adipocyte differentiation is regulated by insulin and IGF-I, which transmit signals by activating their receptor tyrosine kinase. SH2-B is an adaptor protein containing pleckstrin homology and Src homology 2 (SH2) domains that have been implicated in insulin and IGF-I receptor signaling. In this study, we found a strong link between SH2-B levels and adipogenesis. The fat mass and expression of adipogenic genes including peroxisome proliferator-activated receptor gamma (PPARgamma) were reduced in white adipose tissue of SH2-B-/- mice. Reduced adipocyte differentiation of SH2-B-deficient mouse embryonic fibroblasts (MEFs) was observed in response to insulin and dexamethasone, whereas retroviral SH2-B overexpression enhanced differentiation of 3T3-L1 preadipocytes to adipocytes. SH2-B overexpression enhanced mRNA level of PPARgamma in 3T3-L1 cells, whereas PPARgamma levels were reduced in SH2-B-deficient MEFs in response to insulin. SH2-B-mediated up-regulation of PPARgamma mRNA was blocked by a phosphatidylinositol 3-kinase inhibitor, but not by a MAPK kinase inhibitor. Insulin-induced Akt activation and the phosphorylation of forkhead transcription factor (FKHR/Foxo1), a negative regulator of PPARgamma transcription, were up-regulated by SH2-B overexpression, but reduced in SH2-B-deficient MEFs. These data indicate that SH2-B is a key regulator of adipogenesis both in vivo and in vitro by regulating the insulin/IGF-I receptor-Akt-Foxo1-PPARgamma pathway.
Collapse
Affiliation(s)
- Daigo Yoshiga
- Division of Molecular and Cellular Immunology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Yao XH, Grégoire Nyomba BL. Abnormal glucose homeostasis in adult female rat offspring after intrauterine ethanol exposure. Am J Physiol Regul Integr Comp Physiol 2007; 292:R1926-33. [PMID: 17218436 DOI: 10.1152/ajpregu.00822.2006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Adverse events during pregnancy, including prenatal ethanol (EtOH) exposure, are associated with insulin-resistant diabetes in male rat offspring, but it is unclear whether this is true for female offspring. We investigated whether prenatal EtOH exposure alters glucose metabolism in adult female rat offspring and whether this is associated with reduced in vivo insulin signaling in skeletal muscle. Female Sprague-Dawley rats were given EtOH, 4 g.kg(-1).day(-1) by gavage throughout pregnancy. Glucose tolerance test and hyperinsulinemic euglycemic clamp were performed, and insulin signaling was investigated in skeletal muscle, in adult female offspring. We gave insulin intravenously to these rats and determined the association of glucose transporter-4 with plasma membranes, as well as the phosphorylation of phosphoinositide-dependent protein kinase-1 (PDK1), Akt, and PKCzeta. Although EtOH offspring had normal birth weight, they were overweight as adults and had fasting hyperglycemia, hyperinsulinemia, and reduced insulin-stimulated glucose uptake. After insulin treatment, EtOH-exposed rats had decreased membrane glucose transporter-4, PDK1, Akt, and PKCzeta in the gastrocnemius muscle, compared with control rats. Insulin stimulation of PDK1, Akt, and PKCzeta phosphorylation was also reduced. In addition, the expression of the protein tribbles-3 and the phosphatase enzyme activity of phosphatase and tensin homolog deleted on chromosome 10 (PTEN), which prevent Akt activation, were increased in muscle from EtOH-exposed rats. Female rat offspring exposed to EtOH in utero develop insulin-resistant diabetes in association with excessive PTEN and tribbles-3 signaling downstream of the phosphatidylinositol 3-kinase pathway in skeletal muscle, which may be a mechanism for the abnormal glucose tolerance.
Collapse
Affiliation(s)
- Xing-Hai Yao
- Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | | |
Collapse
|
121
|
Winbanks CE, Grimwood L, Gasser A, Darby IA, Hewitson TD, Becker GJ. Role of the phosphatidylinositol 3-kinase and mTOR pathways in the regulation of renal fibroblast function and differentiation. Int J Biochem Cell Biol 2007; 39:206-19. [PMID: 16973406 DOI: 10.1016/j.biocel.2006.08.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2006] [Revised: 07/31/2006] [Accepted: 08/08/2006] [Indexed: 11/19/2022]
Abstract
Tubulointerstitial fibrosis is largely mediated by (myo)fibroblasts present in the interstitium. In this study, we investigated the role of mTOR and phosphatidylinositol 3-kinase in the regulation of fibroblast kinetics, fibroblast differentiation, and collagen synthesis. Rat renal fibroblasts were propagated from kidneys 3 days post-ureteric obstruction and specific inhibitors of mTOR (RAD) and phosphatidylinositol 3-kinase (LY294002) were used to examine the regulation of fibrogenesis. LY294002 but not RAD completely inhibited phosphorylation of Akt, while both inhibitors decreased phosphorylation of the S6 ribosomal protein. RAD and LY decreased foetal calf serum stimulated proliferation and DNA synthesis. In addition to their individual effects, treatment with both RAD and LY294002 decreased serum-induced fibroblast proliferation and DNA synthesis significantly more than either drug alone. TUNEL positive cells (apoptosis) in RAD and LY294002 treated groups were not different from control groups. In addition to their effect on proliferation, both inhibitors also reduced total collagen synthesis. Differentiation studies indicated an increase in alpha-smooth muscle actin expression relative to beta-actin (western blotting), with cytochemistry confirming that all doses of RAD and LY294002 increased the proportion of alpha-smooth muscle actin positive cells, and hence myofibroblasts. Effects were independent of cell toxicity. These results highlight the potential significance of PI3K and mTOR, in the regulation of renal (myo)fibroblast activity. The synergistic effects of LY and RAD on proliferation suggest that mTOR signalling involves pathways other than phosphatidylinositol 3-kinase. These results provide a novel insight into the mechanisms of fibroblast regulation during fibrogenesis.
Collapse
Affiliation(s)
- Catherine E Winbanks
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, Vic. 3050, Australia
| | | | | | | | | | | |
Collapse
|
122
|
Abstract
The translational machinery of mammalian cells is regulated through the phosphorylation of a number of its components, especially translation factor proteins. These include factors involved in the initiation and elongation stages of translation, and proteins that modify their activity. Examples include eukaryotic initiation factor (eIF) 4E, eukaryotic elongation factor (eEF) 2, and eIF4E-binding protein 1 (4E-BP1). Their phosphorylation is mediated by protein kinases that, in turn, are regulated by specific intracellular signaling pathways. These pathways include those mediated via the mammalian target of rapamycin (mTOR), the ERK and p38 MAP kinase pathways, and protein kinase B (Akt). These pathways are activated by hormones (e.g., insulin), growth factors, mitogens, and other extracellular stimuli. In some cases, amino acids also modulate the pathway (e.g., mTOR). Procedures are described for determining the states of phosphorylation and/or activity of several translation factors, and of kinases that phosphorylate them. We also outline procedures for assessing the states of activation of relevant signaling pathways. In addition, we provide guidelines on using small molecule inhibitors to assess the involvement of specific signaling pathways in controlling translation factors and protein synthesis.
Collapse
|
123
|
Fischoeder A, Meyborg H, Stibenz D, Fleck E, Graf K, Stawowy P. Insulin augments matrix metalloproteinase-9 expression in monocytes. Cardiovasc Res 2006; 73:841-8. [PMID: 17234168 DOI: 10.1016/j.cardiores.2006.12.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Revised: 12/05/2006] [Accepted: 12/06/2006] [Indexed: 01/04/2023] Open
Abstract
OBJECTIVE Insulin resistance and hyperinsulinemia are major causes of cardiovascular morbidity and mortality. Matrix metalloproteinases (MMPs), highly expressed in activated mononuclear cells in vulnerable atherosclerotic lesions, are the main proteolytic enzymes controlling plaque stability. The aim of this study was to investigate the regulation of monocyte MMP-9 by insulin. METHODS AND RESULTS Stimulation of MMP-9 expression by insulin was time- and concentration-dependent in human monocytic THP-1 cells. Inhibition of insulin receptor (IR) maturation via inhibition of its activating convertase furin with the pharmacological furin-inhibitor decanoyl-RVKR-chloromethylketone, as well as blocking of IGF-1R function with a IGF-1R blocking antibody, demonstrated that insulin mediates increases in MMP-9 via IR activation. Inhibition of insulin's "metabolic" phosphatidylinositol 3-kinase signaling with wortmannin (50 nmol/L) or LY294002 (2.5 micromol/L) did not prevent insulin-dependent MMP-9 induction. In contrast inhibition of insulin's "mitogenic" Ras-Raf-mitogen-activated protein kinase-kinase pathways with PD98059 (15 micromol/L) or U0126 (2 micromol/L) inhibited insulin-induced MMP-9 gelatinolytic activity in THP-1 cells. Likewise, PD98059 inhibited insulin augmented MMP-9 levels in primary human monocytes, whereas wortmannin had no effect. CONCLUSION This study demonstrates that insulin can induce MMP-9 via mitogenic signaling pathways in monocytes, whereas phosphatidylinositol 3-kinase-dependent signaling, typically altered in insulin resistance, is not required. Induction of MMP-9 by insulin may potentially contribute to a pro-inflammatory state and the increased cardiovascular morbidity and mortality in type 2 diabetics.
Collapse
Affiliation(s)
- Arne Fischoeder
- Department of Medicine/Cardiology, Deutsches Herzzentrum Berlin, Augustenburger Platz 1, D-13353 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
124
|
Avruch J, Hara K, Lin Y, Liu M, Long X, Ortiz-Vega S, Yonezawa K. Insulin and amino-acid regulation of mTOR signaling and kinase activity through the Rheb GTPase. Oncogene 2006; 25:6361-72. [PMID: 17041622 DOI: 10.1038/sj.onc.1209882] [Citation(s) in RCA: 245] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Target of Rapamycin (TOR), a giant protein kinase expressed by all eucaryotic cells, controls cell size in response to nutrient signals. In metazoans, cell and organismal growth is controlled by nutrients and the insulin/insulin-like growth factor (IGF) system, and the understanding of how these inputs coordinately regulate TOR signaling has advanced greatly in the past 5 years. In single-cell eucaryotes and Caenorhabditis elegans, TOR is a dominant regulator of overall mRNA translation, whereas in higher metazoans, TOR controls the expression of a smaller fraction of mRNAs that is especially important to cell growth. TOR signals through two physically distinct multiprotein complexes, and the control of cell growth is mediated primarily by TOR complex 1 (TORC1), which contains the polypeptides raptor and LST8. Raptor is the substrate binding element of TORC1, and the ability of raptor to properly present substrates, such as the translational regulators 4E-BP and p70 S6 kinase, to the TOR catalytic domain is essential for their TOR-catalysed phosphorylation, and is inhibited by the Rapamycin/FKBP-12 complex. The dominant proximal regulator of TORC1 signaling and kinase activity is the ras-like small GTPase Rheb. Rheb binds directly to the mTOR catalytic domain, and Rheb-GTP enables TORC1 to attain an active configuration. Insulin/IGF enhances Rheb GTP charging through the ability of activated Akt to inhibit the Rheb-GTPase-activating function of the tuberous sclerosis heterodimer (TSC1/TSC2). Conversely, energy depletion reduces Rheb-GTP charging through the ability of the adenosine monophosphate-activated protein kinase to phosphorylate TSC2 and stimulate its Rheb-GTPase activating function, as well as by HIFalpha-mediated transcriptional responses that act upstream of the TSC1/2 complex. Amino-acid depletion inhibits TORC1 acting predominantly downstream of the TSC complex, by interfering with the ability of Rheb to bind to mTOR. The components of the insulin/IGF pathway to TORC1 are now well established, whereas the elements mediating the more ancient and functionally dominant input of amino acids remain largely unknown.
Collapse
Affiliation(s)
- J Avruch
- Diabetes Research Lab, Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA.
| | | | | | | | | | | | | |
Collapse
|
125
|
Kim SK, Novak RF. The role of intracellular signaling in insulin-mediated regulation of drug metabolizing enzyme gene and protein expression. Pharmacol Ther 2006; 113:88-120. [PMID: 17097148 PMCID: PMC1828071 DOI: 10.1016/j.pharmthera.2006.07.004] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Accepted: 07/18/2006] [Indexed: 12/28/2022]
Abstract
Endogenous factors, including hormones, growth factors and cytokines, play an important role in the regulation of hepatic drug metabolizing enzyme expression in both physiological and pathophysiological conditions. Diabetes, fasting, obesity, protein-calorie malnutrition and long-term alcohol consumption produce changes in hepatic drug metabolizing enzyme gene and protein expression. This difference in expression alters the metabolism of xenobiotics, including procarcinogens, carcinogens, toxicants and therapeutic agents, potentially impacting the efficacy and safety of therapeutic agents, and/or resulting in drug-drug interactions. Although the mechanisms by which xenobiotics regulate drug metabolizing enzymes have been studied intensively, less is known regarding the cellular signaling pathways and components which regulate drug metabolizing enzyme gene and protein expression in response to hormones and cytokines. Recent findings, however, have revealed that several cellular signaling pathways are involved in hormone- and growth factor-mediated regulation of drug metabolizing enzymes. Our laboratory has reported that insulin and growth factors regulate drug metabolizing enzyme gene and protein expression, including cytochromes P450 (CYP), glutathione S-transferases (GST) and microsomal epoxide hydrolase (mEH), through receptors which are members of the large receptor tyrosine kinase (RTK) family, and by downstream effectors such as phosphatidylinositol 3-kinase, mitogen activated protein kinase (MAPK), Akt/protein kinase B (PKB), mammalian target of rapamycin (mTOR), and the p70 ribosomal protein S6 kinase (p70S6 kinase). Here, we review current knowledge of the signaling pathways implicated in regulation of drug metabolizing enzyme gene and protein expression in response to insulin and growth factors, with the goal of increasing our understanding of how disease affects these signaling pathways, components, and ultimately gene expression and translational control.
Collapse
Affiliation(s)
- Sang K. Kim
- Institute of Environmental Health Sciences, Wayne State University, 2727 Second Avenue, Room 4000, Detroit, MI 48201, USA
- College of Pharmacy and Research Center for Transgenic Cloned Pigs, Chungnam National University, Daejeon 305-764, South Korea
| | - Raymond F. Novak
- Institute of Environmental Health Sciences, Wayne State University, 2727 Second Avenue, Room 4000, Detroit, MI 48201, USA
| |
Collapse
|
126
|
Abstract
Following the discovery of insulin, it took the rest of the twentieth century to understand how this hormone regulates intracellular metabolism. What are the main discoveries that led to our current understanding of this process? And how is this new knowledge being exploited in an attempt to develop improved drugs to treat the epidemic of type-2 diabetes?
Collapse
Affiliation(s)
- Philip Cohen
- Medical Research Council Protein Phosphorylation Unit, College of Life Sciences, The Sir James Black Centre, University of Dundee, Dundee DD1 5EH, Scotland, UK.
| |
Collapse
|
127
|
Kim W, Khil LY, Clark R, Bok SH, Kim EE, Lee S, Jun HS, Yoon JW. Naphthalenemethyl ester derivative of dihydroxyhydrocinnamic acid, a component of cinnamon, increases glucose disposal by enhancing translocation of glucose transporter 4. Diabetologia 2006; 49:2437-48. [PMID: 16896937 DOI: 10.1007/s00125-006-0373-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Accepted: 06/01/2006] [Indexed: 01/31/2023]
Abstract
AIMS/HYPOTHESIS Cinnamon extracts have anti-diabetic effects. Phenolic acids, including hydrocinnamic acids, were identified as major components of cinnamon extracts. Against this background we sought to develop a new anti-diabetic compound using derivatives of hydroxycinnamic acids purified from cinnamon. METHODS We purified hydroxycinnamic acids from cinnamon, synthesised a series of derivatives, and screened them for glucose transport activity in vitro. We then selected the compound with the highest glucose transport activity in epididymal adipocytes isolated from male Sprague-Dawley rats in vitro, tested it for glucose-lowering activity in vivo, and studied the mechanisms involved. RESULTS A naphthalenemethyl ester of 3,4-dihydroxyhydrocinnamic acid (DHH105) showed the highest glucose transport activity in vitro. Treatment of streptozotocin-induced diabetic C57BL/6 mice and spontaneously diabetic ob/ob mice with DHH105 decreased blood glucose levels to near normoglycaemia. Further studies revealed that DHH105 increased the maximum speed of glucose transport and the translocation of glucose transporter 4 (GLUT4, now known as solute carrier family 2 [facilitated glucose transporter], member 4 [SLC2A4]) in adipocytes, resulting in increased glucose uptake. In addition, DHH105 enhanced phosphorylation of the insulin receptor-beta subunit and insulin receptor substrate-1 in adipocytes, both in vitro and in vivo. This resulted in the activation of phosphatidylinositol 3-kinase and Akt/protein kinase B, contributing to the translocation of GLUT4 to the plasma membrane. CONCLUSIONS/INTERPRETATION We conclude that DHH105 lowers blood glucose levels through the enhancement of glucose transport, mediated by an increase in insulin-receptor signalling. DHH105 may be a valuable candidate for a new anti-diabetic drug.
Collapse
Affiliation(s)
- W Kim
- Julia McFarlane Diabetes Research Centre and Department of Microbiology and Infectious Diseases, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
| | | | | | | | | | | | | | | |
Collapse
|
128
|
Pelletier A, Tardif A, Gingras MH, Chiasson JL, Coderre L. Chronic exposure to ketone bodies impairs glucose uptake in adult cardiomyocytes in response to insulin but not vanadate: the role of PI3-K. Mol Cell Biochem 2006; 296:97-108. [PMID: 16960657 DOI: 10.1007/s11010-006-9303-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Accepted: 08/10/2006] [Indexed: 12/31/2022]
Abstract
There is a strong positive correlation between insulin resistance and cardiac diseases. We have already shown that chronic exposure to the ketone body beta-hydroxybutyrate (OHB) decreases insulin-mediated activation of protein kinase B (PKB) and glucose uptake in cardiomyocytes. To gain further insights into the mechanism underlying ketone body-induced insulin resistance, we examined whether OHB alters activation of the insulin-signaling cascade and whether the insulinomimetic agent vanadate could bypass insulin resistance and stimulate glucose uptake in these cells. Cardiomyocytes were incubated with 5 mM OHB, 50 microM vanadate or both for 16 h before the measurement of glucose uptake or the activation of insulin-signaling molecules. While chronic exposure to OHB did not alter insulin- or vanadate-mediated activation of the insulin receptor, it suppressed insulin receptor substrate-1 (IRS-1) tyrosine phosphorylation in response to both agonists. Furthermore, this treatment decreased by 54 and 36% the phosphorylation of the p85 regulatory subunit of phosphatidylinositol 3-kinase (PI3-K) and PKB in response to insulin, whereas it did not alter vanadate-mediated activation of these enzymes. Although insulin did not significantly stimulate p38MAPK phosphorylation, vanadate increased it by 3.8-fold. Furthermore, chronic exposure to OHB potentiated vanadate's action, resulting in a 250% increase in enzyme activation compared to control cells. Though OHB induced a 2.1-fold increase of basal ERK1/2 phosphorylation, inhibition of this enzyme with the MEK inhibitor PD98059 demonstrated that ERK1/2 did not participate in OHB-induced insulin resistance. In conclusion, ketone bodies promote insulin resistance probably through decreased activation of the PI3-K/PKB signaling cascade. Furthermore, vanadate can bypass insulin resistance and stimulate glucose uptake in OHB-treated cardiomyocytes.
Collapse
Affiliation(s)
- Amélie Pelletier
- Montreal Diabetes Research Centre, Centre hospitalier de l'Université de Montréal (CHUM)-Hôtel-Dieu, 3850 St. Urbain, Montreal, Que., Canada, H2W 1T7
| | | | | | | | | |
Collapse
|
129
|
Wouters BG, van den Beucken T, Magagnin MG, Koritzinsky M, Fels D, Koumenis C. Control of the hypoxic response through regulation of mRNA translation. Semin Cell Dev Biol 2006; 16:487-501. [PMID: 15896987 DOI: 10.1016/j.semcdb.2005.03.009] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Hypoxia is a common feature of most solid tumors which negatively impacts their treatment response. This is due in part to the biological changes that result from a coordinated cellular response to hypoxia. A large part of this response is driven by a transcriptional program initiated via stabilization of HIF, promoting both angiogenesis and cell survival. However, hypoxia also results in a rapid inhibition of protein synthesis which occurs through the repression of the initiation step of mRNA translation. This inhibition is fully reversible and occurs in all cell lines tested to date. Inhibition of translation is mediated by two distinct mechanisms during hypoxia. The first is through phosphorylation and inhibition of an essential eukaryotic initiation factor, eIF2alpha. Phosphorylation of this factor occurs through activation of the PERK kinase as part of a coordinated ER stress response program known as the UPR. Activation of this program promotes cell survival during hypoxia and facilitates tumor growth. Translation during hypoxia can also be inhibited through the inactivation of a second eukaryotic initiation complex, eIF4F. At least part of this inhibition is mediated through a REDD1 and TSC1/TSC2 dependent inhibition of the mTOR kinase. Inhibition of mRNA translation is hypothesized to affect the cellular tolerance to hypoxia in part by promoting energy homeostasis. However, regulation of translation also results in a specific increase in the synthesis of a subset of hypoxia induced proteins. Consequently, both arms of translational control during hypoxia influence hypoxia induced gene expression and the hypoxic phenotype.
Collapse
Affiliation(s)
- Bradly G Wouters
- Department of Radiation Oncology, Maastricht Radiation Oncology (Maastro) Lab, GROW Research Institute, USN50/23 University of Maastricht, P.O. Box 616, 6200MD Maastricht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
130
|
Löwenberg M, Tuynman J, Scheffer M, Verhaar A, Vermeulen L, van Deventer S, Hommes D, Peppelenbosch M. Kinome analysis reveals nongenomic glucocorticoid receptor-dependent inhibition of insulin signaling. Endocrinology 2006; 147:3555-62. [PMID: 16574792 DOI: 10.1210/en.2005-1602] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Glucocorticoids (GCs) are powerful immunosuppressive agents that control genomic effects through GC receptor (GR)-dependent transcriptional changes. A common complication of GC therapy is insulin resistance, but the underlying molecular mechanism remains obscure. Evidence is increasing for rapid genomic-independent GC action on cellular physiology. Here, we generate a comprehensive description of nongenomic GC effects on insulin signaling using peptide arrays containing 1,176 different kinase consensus substrates. Reduced kinase activities of the insulin receptor (INSR) and several downstream INSR signaling intermediates (i.e. p70S6k, AMP-activated protein kinase, glycogen synthase kinase-3, and Fyn) were detected in adipocytes and T lymphocytes due to short-term treatment with dexamethasone (DEX), a synthetic fluorinated GC. Western blot analysis confirmed suppressed phosphorylation of the INSR and a series of downstream INSR targets (i.e. INSR substrate-1, p70S6k, protein kinase B, phosphoinositide-dependent protein kinase, Fyn, and glycogen synthase kinase-3) after DEX treatment. DEX inhibited insulin signaling through a GR-dependent (RU486 sensitive) and transcription-independent (actinomycin D insensitive) mechanism. Overall, we postulate here a molecular mechanism for GC-induced insulin resistance based on nongenomic GR-dependent inhibition of insulin signaling.
Collapse
Affiliation(s)
- Mark Löwenberg
- Laboratory of Experimental Internal Medicine, Academic Medical Center, Meibergdreef 9, NL-1105 AZ Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
131
|
Huang D, Khoe M, Ilic D, Bryer-Ash M. Reduced expression of focal adhesion kinase disrupts insulin action in skeletal muscle cells. Endocrinology 2006; 147:3333-43. [PMID: 16574795 DOI: 10.1210/en.2005-0382] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Integrins mediate interactions between cells and extracellular matrix proteins that modulate growth factor signaling. Focal adhesion kinase (FAK) is a key multifunctional integrin pathway protein. We recently reported that disruption of FAK impairs insulin-mediated glycogen synthesis in hepatocytes. To test the hypothesis that FAK regulates skeletal muscle insulin action, we reduced FAK expression in L6 myotubes using FAK antisense. In untransfected myotubes, insulin stimulated both FAK tyrosine phosphorylation and kinase activity. Cells treated with antisense FAK showed 78 and 53% reductions in FAK mRNA and FAK protein, respectively, whereas insulin receptor substrate 1/2 and paxillin abundance were unaffected. Insulin-stimulated U-(14)C-glucose incorporation into glycogen was abolished by FAK antisense, and 2-deoxy-glucose uptake and glucose transporter 4 (GLUT4) translocation were both markedly attenuated. Antisense FAK did not alter GLUT1 or GLUT3 protein abundance. Immunofluorescence staining showed decreased FAK Tyr(397) phosphorylation and reduced actin stress fibers. Thus, in skeletal myotubes, FAK regulates the insulin-mediated cytoskeletal rearrangement essential for normal glucose transport and glycogen synthesis. Integrin signaling may play an important regulatory role in muscle insulin action.
Collapse
Affiliation(s)
- Danshan Huang
- Division of Endocrinology, Diabetes and Hypertension, Diabetes Center, David Geffen School of Medicine at University of California, Los Angeles, 90095, USA
| | | | | | | |
Collapse
|
132
|
Abstract
The insulin resistance syndrome refers to a constellation of findings, including glucose intolerance, obesity, dyslipidemia, and hypertension, that promote the development of type 2 diabetes, cardiovascular disease, cancer, and other disorders. Defining the pathophysiological links between insulin resistance, the insulin resistance syndrome, and its sequelae is critical to understanding and treating these disorders. Over the past decade, two approaches have provided important insights into how changes in insulin signaling produce the spectrum of phenotypes associated with insulin resistance. First, studies using tissue-specific knockouts or tissue-specific reconstitution of the insulin receptor in vivo in mice have enabled us to deconstruct the insulin resistance syndromes by dissecting the contributions of different tissues to the insulin-resistant state. Second, in vivo and in vitro studies of the complex network of insulin signaling have provided insight into how insulin resistance can develop in some pathways whereas insulin sensitivity is maintained in others. These data, taken together, give us a framework for understanding the relationship between insulin resistance and the insulin resistance syndromes.
Collapse
Affiliation(s)
- Sudha B Biddinger
- Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts 02215, USA.
| | | |
Collapse
|
133
|
Abstract
In skeletal muscle and adipose tissue, insulin-stimulated glucose uptake is dependent upon translocation of the insulin-responsive glucose transporter GLUT4 from intracellular storage compartments to the plasma membrane. This insulin-induced redistribution of GLUT4 protein is achieved through a series of highly organized membrane trafficking events, orchestrated by insulin receptor signals. Recently, several key molecules linking insulin receptor signals and membrane trafficking have been identified, and emerging evidence supports the importance of subcellular compartmentalization of signaling components at the right time and in the right place. In addition, the translocation of GLUT4 in adipocytes requires insulin stimulation of dynamic actin remodeling at the inner surface of the plasma membrane (cortical actin) and in the perinuclear region. This results from at least two independent insulin receptor signals, one leading to the activation of phosphatidylinositol (PI) 3-kinase and the other to the activation of the Rho family small GTP-binding protein TC10. Thus, both spatial and temporal regulations of actin dynamics, both beneath the plasma membrane and around endomembranes, by insulin receptor signals are also involved in the process of GLUT4 translocation.
Collapse
Affiliation(s)
- Makoto Kanzaki
- TUBERO/Tohoku University Biomedical Engineering Research Organization, Tohoku University, Sendai, Japan
| |
Collapse
|
134
|
Caperuto LC, Anhê GF, Amanso AM, Ribeiro LM, Medina MC, Souza LC, Carvalho OMF, Bordin S, Saad MJA, Carvalho CRO. Distinct regulation of IRS proteins in adipose tissue from obese aged and dexamethasone-treated rats. Endocrine 2006; 29:391-8. [PMID: 16943575 DOI: 10.1385/endo:29:3:391] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Revised: 01/10/2006] [Accepted: 03/06/2006] [Indexed: 11/11/2022]
Abstract
In the present study, we investigated the protein levels and phosphorylation status of the insulin receptor and insulin receptor substrates (IRS-1, IRS-2, and IRS-3) as well as their association with PI(3)-kinase in the rat adipose tissue of two models of insulin resistance: dexamethasone treatment and aging. AKT and atypical PKC phosphorylation detection were also performed. Both models showed decreased insulin-induced IRS-1 and IRS-2 tyrosine phosphorylation, accompanied by reduced protein levels of IRS-1 and IRS-2. Nevertheless, IRS-3 protein level was unchanged in aging but increased in dexamethasone-treated rats. PI(3)-kinase association with IRS-1 was reduced in aged rats, whereas dexamethasone-treated rats showed a reduced IRS-2/ PI(3)-kinase association. However, IRS-3 association with PI(3)-kinase was reduced in both models, as well as insulin-induced AKT and PKC phosphorylation. The alterations described in the present study show that the action of insulin is differently impaired depending on the origin of insulin resistance. These differences might be directly linked to the singular metabolic features of the models we tested.
Collapse
Affiliation(s)
- Luciana C Caperuto
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo, SP, Brasil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Badal S, Brown PD, Ragoobirsingh D. Nitric oxide agents impair insulin-mediated signal transduction in rat skeletal muscle. BMC BIOCHEMISTRY 2006; 7:17. [PMID: 16729893 PMCID: PMC1524779 DOI: 10.1186/1471-2091-7-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2006] [Accepted: 05/27/2006] [Indexed: 12/04/2022]
Abstract
Background Evidence demonstrates that exogenously administered nitric oxide (NO) can induce insulin resistance in skeletal muscle. We have investigated the modulatory effects of two NO donors, S-nitroso-N-acetyl-D, L-penicillamine (SNAP) and S-nitrosoglutathione (GSNO) on the early events in insulin signaling in rat skeletal myocytes. Results Skeletal muscle cells from 6–8 week old Sprague-Dawley rats were treated with SNAP or GSNO (25 ng/ml) in the presence or absence of glucose (25 mM) and insulin (100 nM). Cellular insulin receptor-β levels and tyrosine phosphorylation in IRS-1 were significantly reduced, while serine phosphorylation in IRS-1 was significantly increased in these cells, when compared to the insulin-stimulated control. Reversal to near normal levels was achieved using the NO scavenger, 2-(4-carboxyphenyl)-4, 4, 5, 5-tetramethylimidazoline-1-oxyl 3-oxide (carboxy-PTIO). Conclusion These data suggest that NO is a potent modulator of insulin-mediated signal transduction and may play a significant role in the pathogenesis of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Simone Badal
- Department of Basic Medical Sciences, Section of Biochemistry, The University of the West Indies, Kingston, Jamaica
| | - Paul D Brown
- Department of Basic Medical Sciences, Section of Biochemistry, The University of the West Indies, Kingston, Jamaica
| | - Dalip Ragoobirsingh
- Department of Basic Medical Sciences, Section of Biochemistry, The University of the West Indies, Kingston, Jamaica
| |
Collapse
|
136
|
Shane MA, Nofziger C, Blazer-Yost BL. Hormonal regulation of the epithelial Na+ channel: from amphibians to mammals. Gen Comp Endocrinol 2006; 147:85-92. [PMID: 16405890 DOI: 10.1016/j.ygcen.2005.11.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2005] [Revised: 11/15/2005] [Accepted: 11/21/2005] [Indexed: 11/15/2022]
Abstract
High-resistance epithelia derived from amphibian sources such as frog skin, toad urinary bladder, and the A6 Xenopus laevis kidney cell line have been widely used to elucidate the underlying mechanisms involved in the regulation of vectorial ion transport. More recently, the isolation of high-resistance mammalian cell lines has provided model systems in which to study differences and similarities between the regulation of ion transporter function in amphibian and mammalian renal epithelia. In the present study, we have compared the natriferic (Na+ retaining) responses to aldosterone, insulin, and vasotocin/vasopressin in the A6 and mpkCCDcl4 (mouse principal cells of the kidney cortical collecting duct) cell lines. The functional responses of the epithelial Na+ channel (ENaC) to hormonal stimulation were remarkably similar in both the amphibian and mammalian lines. In addition, insulin- and aldosterone-stimulated, reabsorptive Na+ transport in both cell lines requires the presence of functional PI3-kinase.
Collapse
Affiliation(s)
- Michael Anne Shane
- Department of Biology, Indiana University-Purdue University at Indianapolis, USA
| | | | | |
Collapse
|
137
|
Lazar DF, Saltiel AR. Lipid phosphatases as drug discovery targets for type 2 diabetes. Nat Rev Drug Discov 2006; 5:333-42. [PMID: 16582877 DOI: 10.1038/nrd2007] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The soaring incidence of type 2 diabetes has created pressure for new pharmaceutical strategies to treat this devastating disease. With much of the focus on overcoming insulin resistance, investigation has focused on finding ways to restore activation of the phosphatidylinositol 3'-kinase pathway, which is diminished in many patients with type 2 diabetes. Here we review the evidence that lipid phosphatases, specifically PTEN and SHIP2, attenuate this important insulin signalling pathway. Both in vivo and in vitro studies indicate their role in regulating whole-body energy metabolism, and possibly weight gain as well. The promise and challenges presented by this new class of drug discovery targets will also be discussed.
Collapse
Affiliation(s)
- Dan F Lazar
- Eli Lilly and Co., Endocrine Division, Lilly Research Laboratories, Indianapolis, Indianapolis 46285, USA.
| | | |
Collapse
|
138
|
Lee MPS, Sweeney G. Insulin increases gelatinase activity in rat glomerular mesangial cells via ERK- and PI-3 kinase-dependent signalling. Diabetes Obes Metab 2006; 8:281-8. [PMID: 16634987 DOI: 10.1111/j.1463-1326.2005.00502.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Diabetic nephropathy is associated with increased accumulation of the extracellular matrix (ECM) in the kidney, which ultimately leads to kidney failure. This may occur due to excessive synthesis of ECM components or reduced degradation, a process primarily mediated by matrix metalloproteinases (MMPs). The direct effect of insulin on ECM synthesis and degradation in glomerular mesangial cells (GMCs) is unclear. Here, we show an increased gelatinase activity in conditioned media from insulin-treated rat GMCs, determined by gelatin zymography. Furthermore, we show using the specific inhibitors LY294002 and PD98059 that insulin induced increased gelatinase activity via an intracellular signalling mechanism involving phosphatidylinositol-3 kinase (PI-3K) and the extracellular signal-regulated kinase 1/2 (ERK1/2) mitogen-activated protein kinases (MAPKs) respectively. In addition, we demonstrate that PI-3 kinase and ERK1/2 MAPK are activated by insulin in GMCs. The appearance of protease activity at approximately 72 kDa suggested that MMP-2 activity may be induced by insulin, however, we did not detect an increase in MMP-2 expression by Western blotting. In summary, our results suggest that insulin can induce gelatinase activity in GMCs, and it is possible that loss of this input in insulin-resistant type 2 diabetic individuals may contribute to ECM accumulation and the development of nephropathy.
Collapse
Affiliation(s)
- M P S Lee
- Department of Biology, York University, Toronto, Canada
| | | |
Collapse
|
139
|
Pellegatta F, Catapano AL, Luzi L, Terruzzi I. In Human Endothelial Cells Amino Acids Inhibit Insulin-induced Akt and ERK1/2 Phosphorylation by an mTOR-dependent Mechanism. J Cardiovasc Pharmacol 2006; 47:643-9. [PMID: 16775502 DOI: 10.1097/01.fjc.0000211751.01326.fa] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In several cellular systems, amino acids synergize with insulin in promoting protein synthesis through the activation of the protein kinases p70/S6-K and PHAS-1. Such activations are mediated by the upstream kinase: mammalian target of rapamycin (mTor). In this work we have investigated the intracellular pathways involved in insulin-induced and amino acid-induced p70/S6-K activations in human endothelial cells. In human umbilical vein endothelial cells, insulin induces the phosphorylation of p70/S6-K at 5 minutes decreasing thereafter, whereas amino acids alone or associated with insulin phosphorylate p70/S6-K at all the time points analyzed (60 minutes). Insulin and amino acids phosphorylate p70/S6-K by mTor-dependent and phosphotidylinositol 3-kinase-dependent mechanisms, whereas the mitogen-activated protein kinase pathway is involved only when p70/S6-K is activated by insulin. Insulin induces the phosphorylation of Akt and extracellular signal-regulated protein kinase (ERK) 1/2, whereas amino acids did not. Moreover, amino acids suppress the phosphorylations induced by insulin. The inhibitory effects of amino acids are reverted by the mTor inhibitor rapamycin. Insulin-induced phosphorylation of Akt (at 15 and 30 minutes) is not accompanied by the phosphorylation of the downstream kinase p70/S6-K, indicating the existence of a negative feedback at this level. Our data demonstrate that at the level of human endothelial cells, amino acids synergize with insulin in the phosphorylation of the kinase that lies downstream mTor, as p70/S6-K, whereas they inhibit the upstream kinases Akt and extracellular signal-regulated protein kinase 1/2 when activated by insulin, by an mTor-dependent mechanism.
Collapse
Affiliation(s)
- Fabio Pellegatta
- Department of Pharmacological Sciences, University of Milan, via Balzaretti 9, Milan, Italy.
| | | | | | | |
Collapse
|
140
|
Abstract
Adipose tissue is a critical regulator of energy balance and substrate metabolism, and synthesizes several different substances with endocrine or paracrine functions, which regulate the overall energetic homeostasis. An excessive amount of adipose tissue has been associated with the development of type 2 diabetes, premature atherosclerosis, and cardiovascular disease. It is believed that the adverse metabolic impact of visceral fat relies on a relative resistance to the action of insulin in this depot compared to other adipose tissue depots. However, information on insulin signalling reactions in human fat is limited. In this paper, we review the major insulin signalling pathways in adipocytes and their relevance for metabolic regulation, and discuss recent data indicating different signalling properties of visceral fat as compared to other fat depots, which may explain the metabolic and hormonal specificity of this fat tissue depot in humans.
Collapse
Affiliation(s)
- Luigi Laviola
- Section of Internal Medicine, Endocrinology and Metabolic Diseases, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | | | | | | |
Collapse
|
141
|
Abe D, Saito T, Sekiya K. Sennidin stimulates glucose incorporation in rat adipocytes. Life Sci 2006; 79:1027-33. [PMID: 16603199 DOI: 10.1016/j.lfs.2006.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Revised: 02/05/2006] [Accepted: 03/06/2006] [Indexed: 11/18/2022]
Abstract
A novel small molecule compound which exerts insulin mimetic is desirable. Dozens of natural products that have quinone, naphthoquinone, or anthraquinone structure, were tested by a glucose incorporation assay. We found that sennidin A, anthraquinone derivative, stimulated glucose incorporation to near level of maximal insulin-stimulated and sennidin B, a stereoisomer of sennidin A, also stimulated, but the activity of sennidin B was lower than sennidin A. Sennidin A-stimulated glucose incorporation was completely inhibited by wortmannin. Sennidin A did not induce tyrosine phosphorylation of insulin receptor (IR) and insulin receptor substrate-1 (IRS-1), but induced phosphorylation of Akt and glucose transporter 4 (GLUT4) translocation. Our results suggest that in rat adipocytes, sennidin A stimulates glucose incorporation in the phosphatidylinositol 3-kinase (PI3K)- and Akt-dependent, but in the IR/IRS1-independent manner.
Collapse
Affiliation(s)
- Daigo Abe
- National Agricultural Research Center for Western Region, 1-3-1 Senyu-cho, Zentsuji, Kagawa 765-8508, Japan
| | | | | |
Collapse
|
142
|
Fecchi K, Volonte D, Hezel MP, Schmeck K, Galbiati F. Spatial and temporal regulation of GLUT4 translocation by flotillin-1 and caveolin-3 in skeletal muscle cells. FASEB J 2006; 20:705-7. [PMID: 16455755 PMCID: PMC4288748 DOI: 10.1096/fj.05-4661fje] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Skeletal muscle tissue is one of the main sites where glucose uptake occurs in response to insulin. The glucose transporter type-4 (GLUT4) is primarily responsible for the insulin-stimulated increase in glucose uptake. Upon insulin stimulation, GLUT4 is recruited from intracellular reserves to the plasma membrane. The molecular mechanisms that regulate the translocation of GLUT4 to the sarcolemma remain to be fully identified. Here, we demonstrate that GLUT4 is localized to perinuclear stores that contain flotillin-1, a marker of lipid rafts, in skeletal muscle cells. Stimulation with insulin for 10 min results in the translocation of flotillin-1/GLUT4-containing domains to the plasma membrane in a PI3K- and PKCzeta-dependent manner. We also demonstrate that caveolin-3, a marker of caveolae, is required for the insulin receptor-mediated activation of the PI3K-dependent pathway, which occurs 2 min after insulin stimulation. In fact, we demonstrate that lack of caveolin-3 significantly reduces insulin-stimulated glucose uptake in caveolin-3 null myotubes by inhibiting both PI3K and Akt, as well as the movement of GLUT4 to the plasma membrane. Interestingly, caveolin-3 moves away from the plasma membrane toward the cytoplasm 5 min after insulin stimulation and temporarily interacts with flotillin-1/GLUT4-containing domains before they reach the sarcolemma, with the consequent movement of the insulin receptor from caveolin-3-containing domains to flotillin-1-containing domains. Such translocation temporally matches the insulin-stimulated movement of Cbl and CrkII in flotillin-1/GLUT4-containing domains, as well as the activation of the GDP-GTP exchange factor C3G. Disruption of flotillin-1-based domains prevents the activation of C3G, movement of GLUT4 to the sarcolemma, and glucose uptake in response to insulin. Thus, the activation of the Cbl/C3G/TC10-dependent pathway, which occurs before flotillin-1/GLUT4-containing domains reach the plasma membrane, is flotillin-1 mediated and follows the activation of the PI3K-mediated signaling. Taken together, these results indicate that flotillin-1 and caveolin-3 may regulate muscle energy metabolism through the spatial and temporal segregation of key components of the insulin signaling.
Collapse
Affiliation(s)
- Katia Fecchi
- Department of Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
143
|
Taniguchi CM, Emanuelli B, Kahn CR. Critical nodes in signalling pathways: insights into insulin action. Nat Rev Mol Cell Biol 2006; 7:85-96. [PMID: 16493415 DOI: 10.1038/nrm1837] [Citation(s) in RCA: 2012] [Impact Index Per Article: 105.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Physiologically important cell-signalling networks are complex, and contain several points of regulation, signal divergence and crosstalk with other signalling cascades. Here, we use the concept of 'critical nodes' to define the important junctions in these pathways and illustrate their unique role using insulin signalling as a model system.
Collapse
Affiliation(s)
- Cullen M Taniguchi
- Joslin Diabetes Center, One Joslin Place, Boston, Massachusetts 02215, USA
| | | | | |
Collapse
|
144
|
Bernard JR, Reeder DW, Herr HJ, Rivas DA, Yaspelkis BB. High-fat feeding effects on components of the CAP/Cbl signaling cascade in Sprague-Dawley rat skeletal muscle. Metabolism 2006; 55:203-12. [PMID: 16423627 DOI: 10.1016/j.metabol.2005.08.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2005] [Accepted: 08/21/2005] [Indexed: 10/25/2022]
Abstract
The aim of this investigation was to determine whether the CAP (Cbl-associated protein)/Cbl signaling cascade is present and responsive to insulin in skeletal muscle and if high-fat feeding impairs insulin-stimulated activation of this signaling cascade. Sprague-Dawley rats were assigned to either control (n = 16) or high fat-fed (n = 16) dietary groups. After a 12-week dietary period, animals were subjected to hind limb perfusions in the presence (n = 8 per group) or absence (n = 8 per group) of insulin. High-fat feeding reduced rates of insulin-stimulated skeletal muscle phosphatidylinositol 3-kinase activity and 3-O-methylglucose transport. In plasma membrane fractions, neither the high-fat diet nor insulin altered the insulin receptor beta subunit (IR-beta), APS (adaptor protein containing PH and SH2 domains), c-Cbl, or TC10 protein concentration, but high-fat feeding did decrease CAP protein concentration. APS, c-Cbl, CAP, and TC10 messenger RNA were present in the skeletal muscle and reflected the protein concentration of experimental groups. Despite insulin-stimulated plasma membrane IR-beta tyrosine phosphorylation being unaffected by high-fat feeding, c-Cbl tyrosine phosphorylation, the kinase activity of IR-beta toward APS, and glucose transporter 4 protein concentration were all significantly reduced in insulin-stimulated plasma membrane prepared from the skeletal muscle of high fat-fed animals. These findings suggest that the CAP/Cbl signaling cascade is present in skeletal muscle, activated by insulin, and impaired by high-fat feeding.
Collapse
Affiliation(s)
- Jeffrey R Bernard
- Department of Kinesiology, College of Health and Human Development, California State University Northridge, Northridge, CA 91330-8287, USA
| | | | | | | | | |
Collapse
|
145
|
Vijayakumar MV, Singh S, Chhipa RR, Bhat MK. The hypoglycaemic activity of fenugreek seed extract is mediated through the stimulation of an insulin signalling pathway. Br J Pharmacol 2005; 146:41-8. [PMID: 15980869 PMCID: PMC1576255 DOI: 10.1038/sj.bjp.0706312] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The in vivo hypoglycaemic activity of a dialysed fenugreek seed extract (FSE) was studied in alloxan (AXN)-induced diabetic mice and found to be comparable to that of insulin (1.5 U kg(-1)). FSE also improved intraperitoneal glucose tolerance in normal mice. The mechanism by which FSE attenuated hyperglycaemia was investigated in vitro. FSE stimulated glucose uptake in CHO-HIRc-mycGLUT4eGFP cells in a dose-dependent manner. This effect was shown to be mediated by the translocation of glucose transporter 4 (GLUT4) from the intracellular space to the plasma membrane. These effects of FSE on GLUT4 translocation and glucose uptake were inhibited by wortmannin, a phosphatidylinositol 3-kinase (PI3-K) inhibitor, and bisindolylmaleimide 1, a protein kinase C (PKC)-specific inhibitor. In vitro phosphorylation analysis revealed that, like insulin, FSE also induces tyrosine phosphorylation of a number of proteins including the insulin receptor, insulin receptor substrate 1 and p85 subunit of PI3-K, in both 3T3-L1 adipocytes and human hepatoma cells, HepG2. However, unlike insulin, FSE had no effect on protein kinase B (Akt) activation. These results suggest that in vivo the hypoglycaemic effect of FSE is mediated, at least in part, by the activation of an insulin signalling pathway in adipocytes and liver cells.
Collapse
|
146
|
Robertson LK, Mireau LR, Ostergaard HL. A Role for Phosphatidylinositol 3-Kinase in TCR-Stimulated ERK Activation Leading to Paxillin Phosphorylation and CTL Degranulation. THE JOURNAL OF IMMUNOLOGY 2005; 175:8138-45. [PMID: 16339552 DOI: 10.4049/jimmunol.175.12.8138] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
PI3K is an important regulator of a number of cellular processes. We examined the contribution of PI3K to mouse CTL signaling, leading to degranulation. We show that TCR-triggered, but not phorbol ester and calcium ionophore-induced, CTL degranulation is dependent on PI3K activity. Although PI3K activity is required for optimal LFA-1-mediated adhesion and cell spreading, this most likely does not account for its full contribution to degranulation. We demonstrate that PI3K is required for TCR-stimulated ERK activation in CTL, which we have shown previously to be required for CTL degranulation. We thus define a pathway through which PI3K most likely regulates degranulation and in which ERK appears to be a key signaling molecule. Furthermore, we identified the cytoskeletal adaptor paxillin as a target of ERK downstream of TCR stimulation. Consistent with a role in degranulation, we demonstrate that paxillin is localized to the microtubule organizing center in resting cells and upon target cell binding is recruited to the contact point with the target cell. These studies demonstrate that PI3K regulates ERK activity leading to CTL degranulation, and identify paxillin as a target of ERK downstream of the TCR. That paxillin is independently phosphorylated by both tyrosine kinase(s) and ERK downstream of the TCR and localized both at the microtubule organizing center and at the target cell contact point suggests an important role for paxillin in CTL-mediated killing.
Collapse
Affiliation(s)
- Leslie K Robertson
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
147
|
Pereira RI, Draznin B. Inhibition of the phosphatidylinositol 3'-kinase signaling pathway leads to decreased insulin-stimulated adiponectin secretion from 3T3-L1 adipocytes. Metabolism 2005; 54:1636-43. [PMID: 16311098 DOI: 10.1016/j.metabol.2005.07.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Adiponectin is a protein secreted by adipocytes, which modulates insulin resistance and is thought to confer protection from atherosclerosis. Decreased circulating adiponectin is seen in states of insulin resistance, yet the cause of this decrease remains unclear. We investigated the role of insulin in adiponectin secretion and the effect of selective insulin resistance on insulin-stimulated adiponectin secretion by 3T3-L1 adipocytes. Inhibition of the phosphatidylinositol 3'-kinase (PI3K) insulin-signaling pathway was induced with wortmannin (WT) or with a kinase-inactive Akt adenoviral construct (Akt-KD), and inhibition of the mitogen-activated protein kinase pathway was induced with PD98059 or with a dominant-negative ras adenoviral construct (DNras). The PI3K pathway was activated with a constitutively active Akt adenoviral construct (Akt-myr). Adiponectin was measured by Western blot, and adiponectin messenger RNA (mRNA) levels were determined by real-time reverse transcription-polymerase chain reaction. Insulin treatment increased adiponectin secretion and decreased intracellular adiponectin. Treatment with 100 nmol/L insulin for 24 hours resulted in a 78% increase in secreted adiponectin (P < .05). Insulin had no effect on adiponectin mRNA. WT or Akt-KD, but not PD98059 or DNras, inhibited insulin-stimulated adiponectin secretion (P < .05). Activation of the PI3K pathway resulted in increased insulin-independent adiponectin secretion. Inhibition of the PI3K- or mitogen-activated protein kinase-dependent pathway decreased adiponectin mRNA by 50% (P < .01). We demonstrate a decrease in insulin-stimulated adiponectin secretion with selective inhibition of the PI3K pathway. These results suggest a mechanism for the observed decreased adiponectin levels associated with insulin resistance, when defects in the PI3K-dependent insulin-signaling pathway lead to decreased adiponectin production, inadequate adiponectin secretion, and therefore low circulating adiponectin levels.
Collapse
Affiliation(s)
- Rocio I Pereira
- Research Service, Denver Veterans Affairs Medical Center, Denver, CO 80220, USA
| | | |
Collapse
|
148
|
Bloch-Damti A, Bashan N. Proposed mechanisms for the induction of insulin resistance by oxidative stress. Antioxid Redox Signal 2005; 7:1553-67. [PMID: 16356119 DOI: 10.1089/ars.2005.7.1553] [Citation(s) in RCA: 277] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In diabetes (type 1 and type 2), increased flux of free fatty acids and glucose is associated with increased mitochondrial reactive oxygen species (ROS) production and, as a consequence, increased oxidative stress. ROS have been shown to activate various cellular stress-sensitive pathways, which can interfere with cellular signaling pathways. Exposure of different cell lines to micromolar concentrations of hydrogen peroxide leads to the activation of stress kinases such as c-Jun N-terminal kinase, p38, I kappaB kinase, and extracellular receptor kinase 1/2. This activation is accompanied by a down-regulation of the cellular response to insulin, leading to a reduced ability of insulin to promote glucose uptake, and glycogen and protein synthesis. The mechanisms leading to this down-regulation in oxidized cells are complicated, involving increased serine/threonine phosphorylation of insulin receptor substrate-1 (IRS1), impaired insulin-stimulated redistribution of IRS1 and phosphatidylinositol-kinase between cytosol and low-density microsomal fraction, followed by a reduced protein kinase-B phosphorylation and GLUT4 translocation to the plasma membrane. In addition, prolonged exposure to ROS affects transcription of glucose transporters: whereas the level of GLUT1 is increased, GLUT4 level is reduced. As can be expected, administration of antioxidants such as lipoic acid in oxidized cells, in animal models of diabetes, and in type 2 diabetes shows improved insulin sensitivity. Thus, oxidative stress is presently accepted as a likely causative factor in the development of insulin resistance.
Collapse
Affiliation(s)
- Asnat Bloch-Damti
- Department of Clinical Biochemistry, Soroka Medical Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | |
Collapse
|
149
|
Abstract
Anionic phospholipids such as phosphatidylinositol 4,5-bisphosphate (PIP(2)) and phosphatidylinositol 3,4,5-trisphosphate (PIP(3)) are normally located in the inner leaflet of the plasma membrane, where these anionic phospholipids can regulate transmembrane proteins, including ion channels and transporters. Recent work has demonstrated that (1) ATP inhibits the renal epithelial sodium channel (ENaC) via a phospholipase C-dependent pathway that reduces PIP(2), (2) aldosterone stimulates ENaC via phosphoinositide 3-kinase, and (3) PIP(2) and PIP(3) regulate ENaC. Several lines of evidence show that ATP stimulation of purinergic P2Y receptors hydrolyzes PIP(2) and that aldosterone stimulation of steroid receptors induces PIP(3) formation. These studies together suggest that one primary mechanism for regulating ENaC is by alteration of anionic phospholipids and that the receptor-mediated and hormonal regulation of ENaC works through a variety of signaling pathways, but many of these pathways finally alter ENaC activity by regulating the formation or degradation of anionic phospholipids. Therefore, changes in the concentration of PIP(2) and PIP(3) are hypothesized to participate in the regulation of ENaC by purinergic and corticoid receptors. The underlying mechanism may be associated with a physical interaction of the positively charged cytoplasmic domains of the beta- and gamma-ENaC with the negatively charged membrane phospholipids. The exact nature of this interaction will require further investigation.
Collapse
Affiliation(s)
- He-Ping Ma
- Department of Medicine, Division of Nephrology, University of Alabama at Birmingham, 1530 Third Avenue South, Sparks Center 865, Birmingham, AL 35294, USA.
| | | |
Collapse
|
150
|
Yu Y, Ross SA, Halseth AE, Hollenbach PW, Hill RJ, Gulve EA, Bond BR. Role of PYK2 in the development of obesity and insulin resistance. Biochem Biophys Res Commun 2005; 334:1085-91. [PMID: 16039993 DOI: 10.1016/j.bbrc.2005.06.198] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2005] [Accepted: 06/29/2005] [Indexed: 11/21/2022]
Abstract
Non-receptor proline-rich tyrosine kinase-2 (PYK2), which is activated by phosphorylation of one or more of its tyrosine residues, has been implicated in the regulation of GLUT4 glucose transporter translocation and glucose transport. Some data favor a positive role of PYK2 in stimulating glucose transport, whereas other studies suggest that PYK2 may participate in the induction of insulin resistance. To ascertain the importance of PYK2 in the setting of obesity and insulin resistance, we (1) evaluated the regulation of PYK2 in mice fed a high-fat diet and (2) characterized body and glucose homeostasis in wild type (WT) and PYK2(-/-) mice on different diets. We found that both PYK2 expression and phosphorylation were significantly increased in liver and adipose tissues harvested from high-fat diet fed mice. Wild type and PYK2(-/-) mice were fed a high-fat diet for 8 weeks to induce insulin resistance/obesity. Surprisingly, in response to this diet PYK2(-/-) mice gained significantly more weight than WT mice (18.7+/-1.2g vs. 9.5+/-0.6g). Fasting serum leptin and insulin and blood glucose levels were significantly increased in high-fat diet fed mice irrespective of the presence of PYK2 protein. There was a close correlation between serum leptin and body weight. Intraperitoneal glucose tolerance tests revealed that as expected, the high-fat diet resulted in increased blood glucose levels following glucose administration in wild type mice compared to those fed normal chow. An even greater increase in blood glucose levels was observed in PYK2(-/-) mice compared to wild type mice. These results demonstrate that a lack of PYK2 exacerbates weight gain and development of glucose intolerance/insulin resistance induced by a high-fat diet, suggesting that PYK2 may play a role in slowing the development of obesity, insulin resistance, and/or frank diabetes.
Collapse
Affiliation(s)
- Ying Yu
- PFIZER Global Research and Development, Cardiovascular Pharmacology, 700 Chesterfield Parkway West, Chesterfield, MO 63017, USA
| | | | | | | | | | | | | |
Collapse
|