101
|
Baldassarre ME, Di Mauro A, Capozza M, Rizzo V, Schettini F, Panza R, Laforgia N. Dysbiosis and Prematurity: Is There a Role for Probiotics? Nutrients 2019; 11:E1273. [PMID: 31195600 PMCID: PMC6627287 DOI: 10.3390/nu11061273] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/07/2019] [Accepted: 05/20/2019] [Indexed: 12/23/2022] Open
Abstract
Healthy microbiota is a critical mediator in maintaining health and it is supposed that dysbiosis could have a role in the pathogenesis of a number of diseases. Evidence supports the hypothesis that maternal dysbiosis could act as a trigger for preterm birth; aberrant colonization of preterm infant gut might have a role in feeding intolerance and pathogenesis of necrotizing enterocolitis. Despite several clinical trials and meta-analyses, it is still not clear if modulation of maternal and neonatal microbiota with probiotic supplementation decreases the risk of preterm birth and its complications.
Collapse
Affiliation(s)
- Maria Elisabetta Baldassarre
- Neonatology and Neonatal Intensive Care Unit, Department of Biomedical Science and Human Oncology, "Aldo Moro" University of Bari, P.zza Giulio Cesare 11, 70124 Bari, Italy.
| | - Antonio Di Mauro
- Neonatology and Neonatal Intensive Care Unit, Department of Biomedical Science and Human Oncology, "Aldo Moro" University of Bari, P.zza Giulio Cesare 11, 70124 Bari, Italy.
| | - Manuela Capozza
- Neonatology and Neonatal Intensive Care Unit, Department of Biomedical Science and Human Oncology, "Aldo Moro" University of Bari, P.zza Giulio Cesare 11, 70124 Bari, Italy.
| | - Valentina Rizzo
- Neonatology and Neonatal Intensive Care Unit, Department of Biomedical Science and Human Oncology, "Aldo Moro" University of Bari, P.zza Giulio Cesare 11, 70124 Bari, Italy.
| | - Federico Schettini
- Neonatology and Neonatal Intensive Care Unit, Department of Biomedical Science and Human Oncology, "Aldo Moro" University of Bari, P.zza Giulio Cesare 11, 70124 Bari, Italy.
| | - Raffaella Panza
- Neonatology and Neonatal Intensive Care Unit, Department of Biomedical Science and Human Oncology, "Aldo Moro" University of Bari, P.zza Giulio Cesare 11, 70124 Bari, Italy.
| | - Nicola Laforgia
- Neonatology and Neonatal Intensive Care Unit, Department of Biomedical Science and Human Oncology, "Aldo Moro" University of Bari, P.zza Giulio Cesare 11, 70124 Bari, Italy.
| |
Collapse
|
102
|
Competition among Nasal Bacteria Suggests a Role for Siderophore-Mediated Interactions in Shaping the Human Nasal Microbiota. Appl Environ Microbiol 2019; 85:AEM.02406-18. [PMID: 30578265 DOI: 10.1128/aem.02406-18] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/14/2018] [Indexed: 12/26/2022] Open
Abstract
Resources available in the human nasal cavity are limited. Therefore, to successfully colonize the nasal cavity, bacteria must compete for scarce nutrients. Competition may occur directly through interference (e.g., antibiotics) or indirectly by nutrient sequestration. To investigate the nature of nasal bacterial competition, we performed coculture inhibition assays between nasal Actinobacteria and Staphylococcus spp. We found that isolates of coagulase-negative staphylococci (CoNS) were sensitive to growth inhibition by Actinobacteria but that Staphylococcus aureus isolates were resistant to inhibition. Among Actinobacteria, we observed that Corynebacterium spp. were variable in their ability to inhibit CoNS. We sequenced the genomes of 10 Corynebacterium species isolates, including 3 Corynebacterium propinquum isolates that strongly inhibited CoNS and 7 other Corynebacterium species isolates that only weakly inhibited CoNS. Using a comparative genomics approach, we found that the C. propinquum genomes were enriched in genes for iron acquisition and harbored a biosynthetic gene cluster (BGC) for siderophore production, absent in the noninhibitory Corynebacterium species genomes. Using a chrome azurol S assay, we confirmed that C. propinquum produced siderophores. We demonstrated that iron supplementation rescued CoNS from inhibition by C. propinquum, suggesting that inhibition was due to iron restriction through siderophore production. Through comparative metabolomics and molecular networking, we identified the siderophore produced by C. propinquum as dehydroxynocardamine. Finally, we confirmed that the dehydroxynocardamine BGC is expressed in vivo by analyzing human nasal metatranscriptomes from the NIH Human Microbiome Project. Together, our results suggest that bacteria produce siderophores to compete for limited available iron in the nasal cavity and improve their fitness.IMPORTANCE Within the nasal cavity, interference competition through antimicrobial production is prevalent. For instance, nasal Staphylococcus species strains can inhibit the growth of other bacteria through the production of nonribosomal peptides and ribosomally synthesized and posttranslationally modified peptides. In contrast, bacteria engaging in exploitation competition modify the external environment to prevent competitors from growing, usually by hindering access to or depleting essential nutrients. As the nasal cavity is a nutrient-limited environment, we hypothesized that exploitation competition occurs in this system. We determined that Corynebacterium propinquum produces an iron-chelating siderophore, and this iron-sequestering molecule correlates with the ability to inhibit the growth of coagulase-negative staphylococci. Furthermore, we found that the genes required for siderophore production are expressed in vivo Thus, although siderophore production by bacteria is often considered a virulence trait, our work indicates that bacteria may produce siderophores to compete for limited iron in the human nasal cavity.
Collapse
|
103
|
Wagner BD, Sontag MK, Harris JK, Miller JI, Morrow L, Robertson CE, Stephens MJ, Poindexter BB, Abman SH, Mourani PM. Prenatal complications are associated with the postnatal airway host response and microbiota in intubated preterm infants. J Matern Fetal Neonatal Med 2019; 32:1499-1506. [PMID: 29157044 PMCID: PMC6212338 DOI: 10.1080/14767058.2017.1407310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 11/06/2017] [Accepted: 11/15/2017] [Indexed: 10/18/2022]
Abstract
PURPOSE To prospectively examine the relationship between prenatal events, postnatal airway host response and microbiota, and clinical outcomes. MATERIALS AND METHODS Tracheal aspirates collected at seven days of age from 71 mechanically ventilated infants (median gestational age (GA), 25 weeks [range 23-28]) were simultaneously processed for a 12-plex protein assay and bacterial identification by 16S rRNA sequencing. Phenotypes were determined by unsupervised clustering of the protein analytes. Subject characteristics, microbial communities and clinical factors and outcomes were compared across the phenotype groups. RESULTS Three clusters were identified: 1 (high protein levels), 2 (high proinflammatory proteins and low anti-inflammatory proteins), and 3 (low protein levels), respectively. Antenatal hemorrhage was most common in cluster 1, while chorioamnionitis characterized cluster 2 and preeclampsia was most prevalent in cluster 3, which was characterized by a predominance of Staphylococcus and relative absence of Ureaplasma. There were higher rates of adverse clinical outcomes in cluster 1. CONCLUSIONS Airway protein profiles in seven days old mechanically ventilated preterm infants are associated with important antenatal events and unique airway microbial communities. These relationships may reveal new mechanisms by which antenatal events impact the course and outcomes of preterm infants.
Collapse
Affiliation(s)
- Brandie D Wagner
- a Department of Biostatistics, Colorado School of Public Health , University of Colorado , Aurora , CO , USA
| | - Marci K Sontag
- b Department of Epidemiology, Colorado School of Public Health , University of Colorado , Aurora , CO , USA
| | - J Kirk Harris
- c Department of Pediatrics, Section of Pulmonary Medicine , University of Colorado , Aurora , CO , USA
| | - Joshua I Miller
- b Department of Epidemiology, Colorado School of Public Health , University of Colorado , Aurora , CO , USA
| | - Lindsey Morrow
- a Department of Biostatistics, Colorado School of Public Health , University of Colorado , Aurora , CO , USA
| | - Charles E Robertson
- d Department of Medicine, Section of Infectious Disease , University of Colorado , Aurora , CO , USA
| | - Mark J Stephens
- c Department of Pediatrics, Section of Pulmonary Medicine , University of Colorado , Aurora , CO , USA
| | - Brenda B Poindexter
- e Perinatal Institute, Cincinnati Children's Hospital Medical Center , Cincinnati , OH , USA
| | - Steven H Abman
- c Department of Pediatrics, Section of Pulmonary Medicine , University of Colorado , Aurora , CO , USA
- f Pediatric Heart-Lung Center, Department of Pediatrics , University of Colorado , Aurora , CO , USA
| | - Peter M Mourani
- f Pediatric Heart-Lung Center, Department of Pediatrics , University of Colorado , Aurora , CO , USA
- g Department of Pediatrics, Section of Critical Care Medicine , University of Colorado , Aurora , CO , USA
| |
Collapse
|
104
|
Roberts AEL, Powell LC, Pritchard MF, Thomas DW, Jenkins RE. Anti-pseudomonad Activity of Manuka Honey and Antibiotics in a Specialized ex vivo Model Simulating Cystic Fibrosis Lung Infection. Front Microbiol 2019; 10:869. [PMID: 31105667 PMCID: PMC6491927 DOI: 10.3389/fmicb.2019.00869] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 04/04/2019] [Indexed: 01/22/2023] Open
Abstract
Pseudomonas aeruginosa causes problematic chronic lung infections in those suffering from cystic fibrosis. This is due to its antimicrobial resistance mechanisms and its ability to form robust biofilm communities with increased antimicrobial tolerances. Using novel antimicrobials or repurposing current ones is required in order to overcome these problems. Manuka honey is a natural antimicrobial agent that has been used for many decades in the treatment of chronic surface wounds with great success, particularly those infected with P. aeruginosa. Here we aim to determine whether the antimicrobial activity of manuka honey could potentially be repurposed to inhibit pulmonary P. aeruginosa infections using two ex vivo models. P. aeruginosa isolates (n = 28) from an international panel were tested for their susceptibility to manuka honey and clinically relevant antibiotics (ciprofloxacin, ceftazidime, and tobramycin), alone and in combination, using conventional antimicrobial susceptibility testing (AST). To increase clinical applicability, two ex vivo porcine lung (EVPL) models (using alveolar and bronchiolar tissue) were used to determine the anti-biofilm effects of manuka honey alone and in combination with antibiotics. All P. aeruginosa isolates were susceptible to manuka honey, however, varying incidences of resistance were seen against antibiotics. The combination of sub-inhibitory manuka honey and antibiotics using conventional AST had no effect on activity against the majority of isolates tested. Using the two ex vivo models, 64% (w/v) manuka honey inhibited many of the isolates where abnormally high concentrations of antibiotics could not. Typically, combinations of both manuka honey and antibiotics had increased antimicrobial activity. These results highlight the potential of manuka honey as a future antimicrobial for the treatment of pulmonary P. aeruginosa isolates, clearing potential infection reservoirs within the upper airway.
Collapse
Affiliation(s)
- Aled E L Roberts
- Department of Biomedical Sciences, Cardiff School of Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
- Swansea University Medical School, Swansea University, Swansea, United Kingdom
| | - Lydia C Powell
- School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Manon F Pritchard
- School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - David W Thomas
- School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Rowena E Jenkins
- Department of Biomedical Sciences, Cardiff School of Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
- Swansea University Medical School, Swansea University, Swansea, United Kingdom
| |
Collapse
|
105
|
Szafrańska AK, Junker V, Steglich M, Nübel U. Rapid cell division of Staphylococcus aureus during colonization of the human nose. BMC Genomics 2019; 20:229. [PMID: 30894139 PMCID: PMC6425579 DOI: 10.1186/s12864-019-5604-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 03/13/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Staphylococcus aureus is an important opportunistic pathogen and a commensal bacterium, thriving in the nasal cavities of 20% of the human population. Little is known about the dynamics of asymptomatic colonization and the occasional transition to infectious disease. RESULTS In this study, we inferred that S. aureus cells replicate every one to three hours on average while colonizing the human nose, based on two independent lines of genomic evidence. First, we collected nasal swab samples from human subjects, extracted and sequenced metagenomic DNA, and analyzed the distribution of sequencing coverage along the staphylococcal chromosome. Calibration of this data by comparison to a laboratory culture enabled measuring S. aureus cell division rates in nasal samples. Second, we applied mutation accumulation experiments paired with genome sequencing to measure spontaneous mutation rates at a genome scale. Relating these mutation rates to annual evolutionary rates confirmed that nasal S. aureus continuously pass several thousand cell divisions per year when averaged over large, globally distributed populations and over many years, corresponding to generation times of less than two hours. CONCLUSIONS The cell division rates we determined were higher than the fastest documented rates during fulminant disease progression (in a mouse model of systemic infection) and much higher than those previously measured in expectorated sputum from cystic fibrosis patients. This paper supplies absolute in-vivo generation times for an important bacterial commensal, indicating that colonization of the human upper respiratory tract is characterized by a highly dynamic equilibrium between bacterial growth and removal.
Collapse
Affiliation(s)
- Anna K Szafrańska
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstr. 7B, 38124, Braunschweig, Germany.,German Center for Infection Research (DZIF), Braunschweig site, Germany
| | - Vera Junker
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstr. 7B, 38124, Braunschweig, Germany
| | - Matthias Steglich
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstr. 7B, 38124, Braunschweig, Germany.,German Center for Infection Research (DZIF), Braunschweig site, Germany
| | - Ulrich Nübel
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstr. 7B, 38124, Braunschweig, Germany. .,German Center for Infection Research (DZIF), Braunschweig site, Germany. .,Braunschweig Integrated Centre of Systems Biology (BRICS), Technical University Braunschweig, Braunschweig, Germany.
| |
Collapse
|
106
|
Yu YY, Xie XH, Ren L, Deng Y, Gao Y, Zhang Y, Li H, Luo J, Luo ZX, Liu EM. Epidemiological characteristics of nasopharyngeal Streptococcus pneumoniae strains among children with pneumonia in Chongqing, China. Sci Rep 2019; 9:3324. [PMID: 30824811 PMCID: PMC6397308 DOI: 10.1038/s41598-019-40088-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 01/29/2019] [Indexed: 12/22/2022] Open
Abstract
Streptococcus pneumoniae (pneumococcus) is the most common respiratory pathogen worldwide. Nasopharyngeal carriage with S. pneumoniae is the major source of lower respiratory tract infection and horizontal spread among children. Investigating nasopharyngeal S. pneumoniae is crucial for clinicians to control pneumococcus disease. Here, we retrospectively analyzed clinical information of 5,960 hospitalized children, focusing on pneumonia children less than five years with positive nasopharyngeal pneumococcal cultures. Nasopharyngeal aspirates (NPAs) were collected between June 2009 and December 2016, which were outside the pneumococcal conjugate vaccine(PCV) period. NPAs were subjected to common bacterial culture and antibiotic susceptibility tests, and serotypes were identified by both multiplex PCR and DNA sequencing. Results clearly revealed that clinical manifestations of the children whose NPAs were S. pneumoniae culture positive were serious, especially in those less than twelve months old. Fifteen different serotypes of nasopharyngeal S. pneumoniae were detected, the most common ones being 19F (35.2%), 6A/B (23.8%), 19A (11.4%), 15B/C (9.3%) and 23F (7.8%). Eight serotypes, accounting for 85.5% of the isolates, corresponded to the PCV13 serotypes. Approximately one-third of all S. pneumoniae strains were susceptible to penicillin. Overall, we consider nasopharyngeal S. pneumoniae culture is beneficial in assessing the situations of pneumonia children. Moreover, PCV13 could be useful in preventing pneumococcal disease in Chongqing, China.
Collapse
Affiliation(s)
- Yi-Yi Yu
- Ministry of Education Key Laboratory of Child Development and Disorders; Key Laboratory of Pediatrics in Chongqing, CSTC2009CA5002; Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.,Department of Pediatrics, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Xiao-Hong Xie
- Ministry of Education Key Laboratory of Child Development and Disorders; Key Laboratory of Pediatrics in Chongqing, CSTC2009CA5002; Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.,Department of Respiratory Medicine, Children´s Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Luo Ren
- Ministry of Education Key Laboratory of Child Development and Disorders; Key Laboratory of Pediatrics in Chongqing, CSTC2009CA5002; Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Yu Deng
- Ministry of Education Key Laboratory of Child Development and Disorders; Key Laboratory of Pediatrics in Chongqing, CSTC2009CA5002; Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.,Department of Respiratory Medicine, Children´s Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Yu Gao
- Ministry of Education Key Laboratory of Child Development and Disorders; Key Laboratory of Pediatrics in Chongqing, CSTC2009CA5002; Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Yao Zhang
- Ministry of Education Key Laboratory of Child Development and Disorders; Key Laboratory of Pediatrics in Chongqing, CSTC2009CA5002; Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Hui Li
- Ministry of Education Key Laboratory of Child Development and Disorders; Key Laboratory of Pediatrics in Chongqing, CSTC2009CA5002; Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Jian Luo
- Ministry of Education Key Laboratory of Child Development and Disorders; Key Laboratory of Pediatrics in Chongqing, CSTC2009CA5002; Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.,Department of Respiratory Medicine, Children´s Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Zheng-Xiu Luo
- Ministry of Education Key Laboratory of Child Development and Disorders; Key Laboratory of Pediatrics in Chongqing, CSTC2009CA5002; Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.,Department of Respiratory Medicine, Children´s Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - En-Mei Liu
- Ministry of Education Key Laboratory of Child Development and Disorders; Key Laboratory of Pediatrics in Chongqing, CSTC2009CA5002; Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China. .,Department of Respiratory Medicine, Children´s Hospital of Chongqing Medical University, Chongqing, 400014, China.
| |
Collapse
|
107
|
Increased susceptibility of airway epithelial cells from ataxia-telangiectasia to S. pneumoniae infection due to oxidative damage and impaired innate immunity. Sci Rep 2019; 9:2627. [PMID: 30796268 PMCID: PMC6385340 DOI: 10.1038/s41598-019-38901-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 12/19/2018] [Indexed: 12/25/2022] Open
Abstract
Respiratory disease is a major cause of morbidity and mortality in patients with ataxia-telangiectasia (A-T) who are prone to recurrent sinopulmonary infections, bronchiectasis, pulmonary fibrosis, and pulmonary failure. Upper airway infections are common in patients and S. pneumoniae is associated with these infections. We demonstrate here that the upper airway microbiome in patients with A-T is different from that to healthy controls, with S. pneumoniae detected largely in patients only. Patient-specific airway epithelial cells and differentiated air-liquid interface cultures derived from these were hypersensitive to infection which was at least in part due to oxidative damage since it was partially reversed by catalase. We also observed increased levels of the pro-inflammatory cytokines IL-8 and TNF-α (inflammasome-independent) and a decreased level of the inflammasome-dependent cytokine IL-β in patient cells. Further investigation revealed that the ASC-Caspase 1 signalling pathway was defective in A-T airway epithelial cells. These data suggest that the heightened susceptibility of these cells to S. pneumoniae infection is due to both increased oxidative damage and a defect in inflammasome activation, and has implications for lung disease in these patients.
Collapse
|
108
|
Abstract
Pneumonia is a type of acute lower respiratory infection that is common and severe. The outcome of lower respiratory infection is determined by the degrees to which immunity is protective and inflammation is damaging. Intercellular and interorgan signaling networks coordinate these actions to fight infection and protect the tissue. Cells residing in the lung initiate and steer these responses, with additional immunity effectors recruited from the bloodstream. Responses of extrapulmonary tissues, including the liver, bone marrow, and others, are essential to resistance and resilience. Responses in the lung and extrapulmonary organs can also be counterproductive and drive acute and chronic comorbidities after respiratory infection. This review discusses cell-specific and organ-specific roles in the integrated physiological response to acute lung infection, and the mechanisms by which intercellular and interorgan signaling contribute to host defense and healthy respiratory physiology or to acute lung injury, chronic pulmonary disease, and adverse extrapulmonary sequelae. Pneumonia should no longer be perceived as simply an acute infection of the lung. Pneumonia susceptibility reflects ongoing and poorly understood chronic conditions, and pneumonia results in diverse and often persistent deleterious consequences for multiple physiological systems.
Collapse
Affiliation(s)
- Lee J Quinton
- Pulmonary Center, Boston University School of Medicine , Boston, Massachusetts
| | - Allan J Walkey
- Pulmonary Center, Boston University School of Medicine , Boston, Massachusetts
| | - Joseph P Mizgerd
- Pulmonary Center, Boston University School of Medicine , Boston, Massachusetts
| |
Collapse
|
109
|
Pandey A, Cleary DW, Laver JR, Gorringe A, Deasy AM, Dale AP, Morris PD, Didelot X, Maiden MCJ, Read RC. Microevolution of Neisseria lactamica during nasopharyngeal colonisation induced by controlled human infection. Nat Commun 2018; 9:4753. [PMID: 30420631 PMCID: PMC6232127 DOI: 10.1038/s41467-018-07235-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 10/17/2018] [Indexed: 12/31/2022] Open
Abstract
Neisseria lactamica is a harmless coloniser of the infant respiratory tract, and has a mutually-excluding relationship with the pathogen Neisseria meningitidis. Here we report controlled human infection with genomically-defined N. lactamica and subsequent bacterial microevolution during 26 weeks of colonisation. We find that most mutations that occur during nasopharyngeal carriage are transient indels within repetitive tracts of putative phase-variable loci associated with host-microbe interactions (pgl and lgt) and iron acquisition (fetA promotor and hpuA). Recurrent polymorphisms occurred in genes associated with energy metabolism (nuoN, rssA) and the CRISPR-associated cas1. A gene encoding a large hypothetical protein was often mutated in 27% of the subjects. In volunteers who were naturally co-colonised with meningococci, recombination altered allelic identity in N. lactamica to resemble meningococcal alleles, including loci associated with metabolism, outer membrane proteins and immune response activators. Our results suggest that phase variable genes are often mutated during carriage-associated microevolution.
Collapse
Affiliation(s)
- Anish Pandey
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO166YD, UK.
| | - David W Cleary
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO166YD, UK
- Southampton NIHR Biomedical Research Centre, University Hospital Southampton, Southampton, SO166YD, UK
- Institute for Life Sciences, University of Southampton, Southampton, SO166YD, UK
| | - Jay R Laver
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO166YD, UK
| | | | - Alice M Deasy
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, S103JF, UK
- Department of Cardiology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, S103JF, UK
| | - Adam P Dale
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO166YD, UK
- Southampton NIHR Biomedical Research Centre, University Hospital Southampton, Southampton, SO166YD, UK
| | - Paul D Morris
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, S103JF, UK
- Department of Cardiology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, S103JF, UK
| | - Xavier Didelot
- School of Public Health, Faculty of Medicine, Imperial College London, London, SW72AZ, UK
- Department of Statistics, School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry, CV4 7AL, UK
| | - Martin C J Maiden
- Department of Zoology, Peter Medawar Building, University of Oxford, Oxford, OX13SY, UK
| | - Robert C Read
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO166YD, UK.
- Southampton NIHR Biomedical Research Centre, University Hospital Southampton, Southampton, SO166YD, UK.
- Institute for Life Sciences, University of Southampton, Southampton, SO166YD, UK.
| |
Collapse
|
110
|
Mukherjee S, Joardar N, Sengupta S, Sinha Babu SP. Gut microbes as future therapeutics in treating inflammatory and infectious diseases: Lessons from recent findings. J Nutr Biochem 2018; 61:111-128. [PMID: 30196243 PMCID: PMC7126101 DOI: 10.1016/j.jnutbio.2018.07.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 07/24/2018] [Accepted: 07/28/2018] [Indexed: 02/07/2023]
Abstract
The human gut microbiota has been the interest of extensive research in recent years and our knowledge on using the potential capacity of these microbes are growing rapidly. Microorganisms colonized throughout the gastrointestinal tract of human are coevolved through symbiotic relationship and can influence physiology, metabolism, nutrition and immune functions of an individual. The gut microbes are directly involved in conferring protection against pathogen colonization by inducing direct killing, competing with nutrients and enhancing the response of the gut-associated immune repertoire. Damage in the microbiome (dysbiosis) is linked with several life-threatening outcomes viz. inflammatory bowel disease, cancer, obesity, allergy, and auto-immune disorders. Therefore, the manipulation of human gut microbiota came out as a potential choice for therapeutic intervention of the several human diseases. Herein, we review significant studies emphasizing the influence of the gut microbiota on the regulation of host responses in combating infectious and inflammatory diseases alongside describing the promises of gut microbes as future therapeutics.
Collapse
Affiliation(s)
- Suprabhat Mukherjee
- Parasitology Laboratory, Department of Zoology (Centre for Advanced Studies), Siksha-Bhavana, Visva-Bharati University, Santiniketan, West Bengal, 731235, India
| | - Nikhilesh Joardar
- Parasitology Laboratory, Department of Zoology (Centre for Advanced Studies), Siksha-Bhavana, Visva-Bharati University, Santiniketan, West Bengal, 731235, India
| | - Subhasree Sengupta
- Parasitology Laboratory, Department of Zoology (Centre for Advanced Studies), Siksha-Bhavana, Visva-Bharati University, Santiniketan, West Bengal, 731235, India
| | - Santi P Sinha Babu
- Parasitology Laboratory, Department of Zoology (Centre for Advanced Studies), Siksha-Bhavana, Visva-Bharati University, Santiniketan, West Bengal, 731235, India.
| |
Collapse
|
111
|
Matilla MA, Krell T. The effect of bacterial chemotaxis on host infection and pathogenicity. FEMS Microbiol Rev 2018; 42:4563582. [PMID: 29069367 DOI: 10.1093/femsre/fux052] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 10/19/2017] [Indexed: 12/26/2022] Open
Abstract
Chemotaxis enables microorganisms to move according to chemical gradients. Although this process requires substantial cellular energy, it also affords key physiological benefits, including enhanced access to growth substrates. Another important implication of chemotaxis is that it also plays an important role in infection and disease, as chemotaxis signalling pathways are broadly distributed across a variety of pathogenic bacteria. Furthermore, current research indicates that chemotaxis is essential for the initial stages of infection in different human, animal and plant pathogens. This review focuses on recent findings that have identified specific bacterial chemoreceptors and corresponding chemoeffectors associated with pathogenicity. Pathogenicity-related chemoeffectors are either host and niche-specific signals or intermediates of the host general metabolism. Plant pathogens were found to contain an elevated number of chemotaxis signalling genes and functional studies demonstrate that these genes are critical for their ability to enter the host. The expanding body of knowledge of the mechanisms underlying chemotaxis in pathogens provides a foundation for the development of new therapeutic strategies capable of blocking infection and preventing disease by interfering with chemotactic signalling pathways.
Collapse
Affiliation(s)
- Miguel A Matilla
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain
| |
Collapse
|
112
|
Amatngalim GD, Hiemstra PS. Airway Epithelial Cell Function and Respiratory Host Defense in Chronic Obstructive Pulmonary Disease. Chin Med J (Engl) 2018; 131:1099-1107. [PMID: 29692382 PMCID: PMC5937320 DOI: 10.4103/0366-6999.230743] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Gimano D Amatngalim
- Department of Pulmonology, Leiden University Medical Center, Leiden; Department of Pediatrics, Wilhelmina Children's Hospital, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
113
|
Pérez-Losada M, Authelet KJ, Hoptay CE, Kwak C, Crandall KA, Freishtat RJ. Pediatric asthma comprises different phenotypic clusters with unique nasal microbiotas. MICROBIOME 2018; 6:179. [PMID: 30286807 PMCID: PMC6172741 DOI: 10.1186/s40168-018-0564-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 09/25/2018] [Indexed: 05/25/2023]
Abstract
BACKGROUND Pediatric asthma is the most common chronic childhood disease in the USA, currently affecting ~ 7 million children. This heterogeneous syndrome is thought to encompass various disease phenotypes of clinically observable characteristics, which can be statistically identified by applying clustering approaches to patient clinical information. Extensive evidence has shown that the airway microbiome impacts both clinical heterogeneity and pathogenesis in pediatric asthma. Yet, so far, airway microbiotas have been consistently neglected in the study of asthma phenotypes. Here, we couple extensive clinical information with 16S rRNA high-throughput sequencing to characterize the microbiota of the nasal cavity in 163 children and adolescents clustered into different asthma phenotypes. RESULTS Our clustering analyses identified three statistically distinct phenotypes of pediatric asthma. Four core OTUs of the pathogenic genera Moraxella, Staphylococcus, Streptococcus, and Haemophilus were present in at least 95% of the studied nasal microbiotas. Phyla (Proteobacteria, Actinobacteria, and Bacteroidetes) and genera (Moraxella, Corynebacterium, Dolosigranulum, and Prevotella) abundances, community composition, and structure varied significantly (0.05 < P ≤ 0.0001) across asthma phenotypes and one of the clinical variables (preterm birth). Similarly, microbial networks of co-occurrence of bacterial genera revealed different bacterial associations across asthma phenotypes. CONCLUSIONS This study shows that children and adolescents with different clinical characteristics of asthma also show different nasal bacterial profiles, which is indicative of different phenotypes of the disease. Our work also shows how clinical and microbial information could be integrated to validate and refine asthma classification systems and develop biomarkers of disease.
Collapse
Affiliation(s)
- Marcos Pérez-Losada
- Computational Biology Institute, Milken Institute School of Public Health,, George Washington University, Innovation Hall, Suite 305, 45085 University Drive, Ashburn, VA 20147 USA
- Department of Epidemiology and Biostatistics, Milken Institute School of Public Health, George Washington University, Washington, DC, 20052 USA
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal
| | - Kayla J Authelet
- Division of Emergency Medicine, Children’s National Medical Center, Washington, DC, 20010 USA
| | - Claire E Hoptay
- Division of Emergency Medicine, Children’s National Medical Center, Washington, DC, 20010 USA
| | - Christine Kwak
- Division of Emergency Medicine, Children’s National Medical Center, Washington, DC, 20010 USA
| | - Keith A Crandall
- Computational Biology Institute, Milken Institute School of Public Health,, George Washington University, Innovation Hall, Suite 305, 45085 University Drive, Ashburn, VA 20147 USA
- Department of Epidemiology and Biostatistics, Milken Institute School of Public Health, George Washington University, Washington, DC, 20052 USA
| | - Robert J Freishtat
- Division of Emergency Medicine, Children’s National Medical Center, Washington, DC, 20010 USA
| |
Collapse
|
114
|
Streptococcus pneumoniae inhibits Pseudomonas aeruginosa growth on nasal human epithelium in vitro. Toxicol Lett 2018. [DOI: 10.1016/j.toxlet.2018.06.668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
115
|
Paluscio E, Watson ME, Caparon MG. CcpA Coordinates Growth/Damage Balance for Streptococcus pyogenes Pathogenesis. Sci Rep 2018; 8:14254. [PMID: 30250043 PMCID: PMC6155242 DOI: 10.1038/s41598-018-32558-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/30/2018] [Indexed: 12/22/2022] Open
Abstract
To achieve maximum fitness, pathogens must balance growth with tissue damage, coordinating metabolism and virulence factor expression. In the gram-positive bacterium Streptococcus pyogenes, the DNA-binding transcriptional regulator Carbon Catabolite Protein A (CcpA) is a master regulator of both carbon catabolite repression and virulence, suggesting it coordinates growth/damage balance. To examine this, two murine models were used to compare the virulence of a mutant lacking CcpA with a mutant expressing CcpA locked into its high-affinity DNA-binding conformation (CcpAT307Y). In models of acute soft tissue infection and of long-term asymptomatic mucosal colonization, both CcpA mutants displayed altered virulence, albeit with distinct growth/damage profiles. Loss of CcpA resulted in a diminished ability to grow in tissue, leading to less damage and early clearance. In contrast, constitutive DNA-binding activity uncoupled the growth/damage relationship, such that high tissue burdens and extended time of carriage were achieved, despite reduced tissue damage. These data demonstrate that growth/damage balance can be actively controlled by the pathogen and implicate CcpA as a master regulator of this relationship. This suggests a model where the topology of the S. pyogenes virulence network has evolved to couple carbon source selection with growth/damage balance, which may differentially influence pathogenesis at distinct tissues.
Collapse
Affiliation(s)
- Elyse Paluscio
- Department of Molecular Microbiology, Washington University School of Medicine St Louis, St. Louis, MO, 63110-1093, United States
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, United States
| | - Michael E Watson
- Department of Molecular Microbiology, Washington University School of Medicine St Louis, St. Louis, MO, 63110-1093, United States
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI, 48109-5624, United States
| | - Michael G Caparon
- Department of Molecular Microbiology, Washington University School of Medicine St Louis, St. Louis, MO, 63110-1093, United States.
| |
Collapse
|
116
|
Sande CJ, Mutunga M, Muteti J, Berkley JA, Nokes DJ, Njunge J. Untargeted analysis of the airway proteomes of children with respiratory infections using mass spectrometry based proteomics. Sci Rep 2018; 8:13814. [PMID: 30217988 PMCID: PMC6138648 DOI: 10.1038/s41598-018-32072-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 08/23/2018] [Indexed: 01/13/2023] Open
Abstract
The upper airway - which consists mainly of the naso- and oro-pharynx - is the first point of contact between the respiratory system and microbial organisms that are ubiquitous in the environment. It has evolved highly specialised functions to address these constant threats whilst facilitating seamless respiratory exchange with the lower respiratory tract. Dysregulation of its critical homeostatic and defence functions can lead to ingress of pathogens into the lower respiratory tract, potentially leading to serious illness. Systems-wide proteomic tools may facilitate a better understanding of mechanisms in the upper airways in health and disease. In this study, we aimed to develop a mass spectrometry based proteomics method for characterizing the upper airways proteome. Naso- and oropharyngeal swab samples used in all our experiments had been eluted in the Universal Transport Media (UTM) containing significantly high levels of bovine serum albumin. Our proteomic experiments tested the optimal approach to characterize airway proteome on swab samples eluted in UTM based on the number of proteins identified without BSA depletion (Total proteome: Protocol A) and with its depletion using a commercial kit; Allprep, Qiagen (cellular proteome: Protocol B, Ci, and Cii). Observations and lessons drawn from protocol A, fed into the design and implementation of protocol B, and from B to protocol Ci and finally Cii. Label free proteome quantification was used in Protocol A (n = 6) and B (n = 4) while commercial TMT 10plex reagents were used for protocols Ci and ii (n = 83). Protocols Ci and ii were carried out under similar conditions except for the elution gradient: 3 h and 6 h respectively. Swab samples tested in this study were from infants and children with and without upper respiratory tract infections from Kilifi County Hospital on the Kenyan Coast. Protocol A had the least number of proteins identified (215) while B produced the highest number of protein identifications (2396). When Protocol B was modified through sample multiplexing with TMT to enable higher throughput (Protocol Ci), the number of protein identified reduced to 1432. Modification of protocol Ci by increasing the peptide elution time generated Protocol Cii that substantially increased the number of proteins identified to 1875. The coefficient of variation among the TMT runs in Protocol Cii was <20%. There was substantial overlap in the identity of proteins using the four protocols. Our method was were able to identify marker proteins characteristically expressed in the upper airway. We found high expression levels of signature nasopharyngeal and oral proteins, including BPIFA1/2 and AMY1A, as well as a high abundance of proteins related to innate and adaptive immune function in the upper airway. We have developed a sensitive systems-level proteomic assay for the systematic quantification of naso-oro-pharyngeal proteins. The assay will advance mechanistic studies of respiratory pathology, by providing an untargeted and hypothesis-free approach of examining the airway proteome.
Collapse
Affiliation(s)
| | | | | | - James A Berkley
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - D James Nokes
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- School of Life Sciences and Zeeman Institute (SBIDER), University of Warwick, Coventry, United Kingdom
| | - James Njunge
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| |
Collapse
|
117
|
Thuy DB, Campbell J, Nhat LTH, Hoang NVM, Hao NV, Baker S, Geskus RB, Thwaites GE, Chau NVV, Thwaites CL. Hospital-acquired colonization and infections in a Vietnamese intensive care unit. PLoS One 2018; 13:e0203600. [PMID: 30192894 PMCID: PMC6128614 DOI: 10.1371/journal.pone.0203600] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 08/23/2018] [Indexed: 12/16/2022] Open
Abstract
Data concerning intensive care unit (ICU)-acquired bacterial colonization and infections are scarce from low and middle-income countries (LMICs). ICU patients in these settings are at high risk of becoming colonized and infected with antimicrobial-resistant organisms (AROs). We conducted a prospective observational study at the Ho Chi Minh City Hospital for Tropical Diseases, Vietnam from November 2014 to January 2016 to assess the ICU-acquired colonization and infections, focusing on the five major pathogens in our setting: Staphylococcus aureus (S. aureus), Escherichia coli (E. coli), Klebsiella spp., Pseudomonas spp. and Acinetobacter spp., among adult patients with more than 48 hours of ICU stay. We found that 61.3% (223/364) of ICU patients became colonized with AROs: 44.2% (161/364) with rectal ESBL-producing E. coli and Klebsiella spp.; 30.8% (40/130) with endotracheal carbapenemase-producing Acinetobacter spp.; and 14.3% (52/364) with nasal methicillin-resistant S. aureus. The incidence rate of ICU patients becoming colonized with AROs was 9.8 (223/2,276) per 100 patient days. Significant risk factor for AROs colonization was the Charlson Comorbidity Index score. The proportion of ICU patients with HAIs was 23.4% (85/364), and the incidence rate of ICU patients contracting HAIs was 2.3 (85/3,701) per 100 patient days. The vascular catheterization (central venous, arterial and hemofiltration catheter) was significantly associated with hospital-acquired bloodstream infection. Of the 77 patients who developed ICU-acquired infections with one of the five specified bacteria, 44 (57.1%) had prior colonization with the same organism. Vietnamese ICU patients have a high colonization rate with AROs and a high risk of subsequent infections. Future research should focus on monitoring colonization and the development of preventive measures that may halt spread of AROs in ICU settings.
Collapse
Affiliation(s)
- Duong Bich Thuy
- Hospital for Tropical Diseases, Wellcome Trust Asia Programme, Oxford University Clinical Research Unit (OUCRU), Ho Chi Minh City, Vietnam
- Adult Intensive Care Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - James Campbell
- Hospital for Tropical Diseases, Wellcome Trust Asia Programme, Oxford University Clinical Research Unit (OUCRU), Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, Oxford University, Oxford, United Kingdom
| | - Le Thanh Hoang Nhat
- Hospital for Tropical Diseases, Wellcome Trust Asia Programme, Oxford University Clinical Research Unit (OUCRU), Ho Chi Minh City, Vietnam
| | - Nguyen Van Minh Hoang
- Hospital for Tropical Diseases, Wellcome Trust Asia Programme, Oxford University Clinical Research Unit (OUCRU), Ho Chi Minh City, Vietnam
| | - Nguyen Van Hao
- Adult Intensive Care Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
- Department of Infectious Diseases, University of Medicine and Pharmacy, Ho Chi Minh City, Vietnam
| | - Stephen Baker
- Hospital for Tropical Diseases, Wellcome Trust Asia Programme, Oxford University Clinical Research Unit (OUCRU), Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, Oxford University, Oxford, United Kingdom
- Department of Medicine, Cambridge University, Cambridge, United Kingdom
| | - Ronald B. Geskus
- Hospital for Tropical Diseases, Wellcome Trust Asia Programme, Oxford University Clinical Research Unit (OUCRU), Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, Oxford University, Oxford, United Kingdom
| | - Guy E. Thwaites
- Hospital for Tropical Diseases, Wellcome Trust Asia Programme, Oxford University Clinical Research Unit (OUCRU), Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, Oxford University, Oxford, United Kingdom
| | - Nguyen Van Vinh Chau
- Department of Infectious Diseases, University of Medicine and Pharmacy, Ho Chi Minh City, Vietnam
- Board of Directors, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - C. Louise Thwaites
- Hospital for Tropical Diseases, Wellcome Trust Asia Programme, Oxford University Clinical Research Unit (OUCRU), Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, Oxford University, Oxford, United Kingdom
| |
Collapse
|
118
|
Behrouzi A, Vaziri F, Riazi Rad F, Amanzadeh A, Fateh A, Moshiri A, Khatami S, Siadat SD. Comparative study of pathogenic and non-pathogenic Escherichia coli outer membrane vesicles and prediction of host-interactions with TLR signaling pathways. BMC Res Notes 2018; 11:539. [PMID: 30068381 PMCID: PMC6071399 DOI: 10.1186/s13104-018-3648-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 07/24/2018] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE The intestine is the major defensive barrier in the body by having more than 60% of the immune cells in the intestinal mucosa. The aim of this study was to evaluate the Toll like receptor (TLR) signaling pathways and immune response profiles, against outer membrane vesicles (OMVs) in pathogenic and non-pathogenic strains of Escherichia coli. RESULTS Our results demonstrated that despite inducing inflammatory and regulatory responses to OMVs released by both strains, there is a remarkable difference in the nature and severity of these responses between the two strains. Following the production and release of OMV by the pathogenic strain, the expressions of the pro-inflammatory cytokines were significantly elevated, in comparison to the non-pathogenic strains. Eventually, our findings suggest that OMV released by the pathogen strain might be colonized, causing inflammation, eliminating the tight junctions of epithelial cells and damaging underlying cells, without the presence of IL-17 at the inflammation site. This could have happened to prevent the development of more severe inflammation, which could lead to the inhibition of colonization. The production of IL-10 is also preventing such inflammations. On the other hand, OMV released by non-pathogenic E. coli appears to influence intestinal homeostasis by causing more anti-inflammatory responses and mild inflammation.
Collapse
Affiliation(s)
- Ava Behrouzi
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Farzam Vaziri
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Farhad Riazi Rad
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Amir Amanzadeh
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
| | - Abolfazl Fateh
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Arfa Moshiri
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Shohreh Khatami
- Department of Biochemistry of Iran, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
119
|
Allard B, Panariti A, Martin JG. Alveolar Macrophages in the Resolution of Inflammation, Tissue Repair, and Tolerance to Infection. Front Immunol 2018; 9:1777. [PMID: 30108592 PMCID: PMC6079255 DOI: 10.3389/fimmu.2018.01777] [Citation(s) in RCA: 209] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 07/18/2018] [Indexed: 12/11/2022] Open
Abstract
Pathogen persistence in the respiratory tract is an important preoccupation, and of particular relevance to infectious diseases such as tuberculosis. The equilibrium between elimination of pathogens and the magnitude of the host response is a sword of Damocles for susceptible patients. The alveolar macrophage is the first sentinel of the respiratory tree and constitutes the dominant immune cell in the steady state. This immune cell is a key player in the balance between defense against pathogens and tolerance toward innocuous stimuli. This review focuses on the role of alveolar macrophages in limiting lung tissue damage from potentially innocuous stimuli and from infections, processes that are relevant to appropriate tolerance of potential causes of lung disease. Notably, the different anti-inflammatory strategies employed by alveolar macrophages and lung tissue damage control are explored. These two properties, in addition to macrophage manipulation by pathogens, are discussed to explain how alveolar macrophages may drive pathogen persistence in the airways.
Collapse
Affiliation(s)
- Benoit Allard
- Department of Medicine, Meakins Christie Laboratories, Research Institute McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Alice Panariti
- Department of Medicine, Meakins Christie Laboratories, Research Institute McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - James G Martin
- Department of Medicine, Meakins Christie Laboratories, Research Institute McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
120
|
Liu J, Cao Y, Gao L, Zhang L, Gong S, Yang J, Zhao H, Yang D, Zhao J, Meng J, Gao Q, Qi C. Outer Membrane Lipoprotein Lip40 Modulates Adherence, Colonization, and Virulence of Actinobacillus pleuropneumoniae. Front Microbiol 2018; 9:1472. [PMID: 30018613 PMCID: PMC6038445 DOI: 10.3389/fmicb.2018.01472] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 06/13/2018] [Indexed: 12/13/2022] Open
Abstract
Bacterial lipoproteins are a set of membrane proteins with various functions; many of which are virulence factors of pathogenic bacteria. In the present study, we investigated the role of an outer membrane lipoprotein Lip40 in the pathogenesis of Actinobacillus pleuropneumoniae. A mutant strain (Δlip40) lacking Lip40 and a complemented strain (CΔlip40) were constructed. Δlip40 exhibited reduced adherence to the St. Jude porcine lung cells. The ability of the Δlip40 mutant to colonize the mouse lung tissues was significantly impaired compared to that of the wild type and complementation strains. Furthermore, an infection assay revealed that pigs infected with Δlip40 showed fewer clinical signs and lung lesions, indicating that Lip40 contributed to the development of porcine pleuropneumonia. Collectively, our data suggest that Lip40 is involved in the virulence of A. pleuropneumoniae.
Collapse
Affiliation(s)
- Jinlin Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, China
| | - Yurou Cao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, China
| | - Lulu Gao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, China
| | - Li Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, China
| | - Siying Gong
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, China
| | - Jihong Yang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, China
| | - Haobin Zhao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, China
| | - Dengfu Yang
- Lichuan Municipal Bureau of Animal Husbandry and Veterinary Medicine, Lichuan, China
| | - Jin Zhao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, China
| | - Jianzhong Meng
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, China
| | - Qishuang Gao
- Department of Animal Biotechnology and Cell Engineering, Wuhan Institute of Animal Husbandry and Veterinary Sciences, Wuhan Academy of Agricultural Sciences, Wuhan, China
| | - Chao Qi
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, China
| |
Collapse
|
121
|
Abstract
Despite advances in treatment and prevention, the pneumococcus continues to be a dominant cause of severe pneumonia and sepsis and of otitis media, sinusitis, and nonbacteremic pneumonia. Lewnard and colleagues (Infect Immun 86:e00727-17, 2018, https://doi.org/10.1128/IAI.00727-17) used a unique data set of nasopharyngeal and middle ear fluid samples to provide further insight into the progression of nasopharyngeal pneumococcal colonization to disease. They report the comparative rate of progression from colonization to otitis media by serotype, providing insight into how conjugate vaccines that do not reduce the overall prevalence of pneumococci in the nasopharynx dramatically impact the incidence of acute and complex otitis media.
Collapse
|
122
|
Ferrer-Navarro M, Strehlitz A, Medina E, Vila J. Changed Expression of Cytoskeleton Proteins During Lung Injury in a Mouse Model of Streptococcus pneumoniae Infection. Front Microbiol 2018; 9:928. [PMID: 29867838 PMCID: PMC5952171 DOI: 10.3389/fmicb.2018.00928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 04/20/2018] [Indexed: 11/13/2022] Open
Abstract
Infections by Streptococcus pneumoniae are a major cause of morbidity and mortality worldwide, often causing community-acquired pneumonia, otitis media and also bacteremia and meningitis. Studies on S. pneumoniae are mainly focused on its virulence or capacity to evade the host immune system, but little is known about the injury caused in lungs during a pneumococcal infection. Herein we investigated this issue comparing the proteome profile of lungs from S. pneumoniae-infected mice with control mice by means of difference gel electrophoresis (DIGE) technology. In order to obtain reliable results three biological replicas were used, and four technical replicas were carried out in each biological replica. Proteomic comparison was performed at two time points: 24 and 48 h post infection. A total of 91 proteins were identified with different abundance. We found important changes in the protein profiles during pneumococcal infection mainly associated with regulation of vesicle-mediated transport, wound healing, and cytoskeleton organization. In conclusion, the results obtained show that the cytoskeleton of the host cell is modified in S. pneumoniae infection.
Collapse
Affiliation(s)
- Mario Ferrer-Navarro
- Instituto Salud Global, Barcelona Centre, International Health Research, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - Anja Strehlitz
- Infection Immunology Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Eva Medina
- Infection Immunology Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Jordi Vila
- Instituto Salud Global, Barcelona Centre, International Health Research, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
123
|
Ealand CS, Machowski EE, Kana BD. β-lactam resistance: The role of low molecular weight penicillin binding proteins, β-lactamases and ld-transpeptidases in bacteria associated with respiratory tract infections. IUBMB Life 2018; 70:855-868. [PMID: 29717815 DOI: 10.1002/iub.1761] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/04/2018] [Indexed: 02/02/2023]
Abstract
Disruption of peptidoglycan (PG) biosynthesis in the bacterial cell wall by β-lactam antibiotics has transformed therapeutic options for bacterial infections. These antibiotics target the transpeptidase domains in penicillin binding proteins (PBPs), which can be classified into high and low molecular weight (LMW) counterparts. While the essentiality of the former has been extensively demonstrated, the physiological roles of LMW PBPs remain poorly understood. Herein, we review the function of LMW PBPs, β-lactamases and ld-transpeptidases (Ldts) in pathogens associated with respiratory tract infections. More specifically, we explore their roles in mediating β-lactam resistance. Using a comparative genomics approach, we identified a high degree of genetic redundancy for LMW PBPs which retain the motifs, SxxN, SxN and KTG required for catalytic activity. Differences in domain architecture suggest distinct physiological roles, possibly related to bacterial cell cycle and/or adaptation to various environmental conditions. Many of the LMW PBPs play an important role in β-lactam resistance either through mutation or variation in abundance. In all of the bacterial genomes assessed, at least one β-lactamase homologue is present, suggesting that enzymatic degradation of β-lactams is a highly conserved resistance mechanism. Furthermore, the presence of Ldt homologues in the majority of species surveyed suggests that alternative PG crosslinking may further mediate β-lactam drug resistance. A deeper understanding of the interplay between these different mechanisms of β-lactam resistance will provide a framework for new therapeutics, which are urgently required given the rapid emergence of antimicrobial resistance. © 2018 IUBMB Life, 70(9):855-868, 2018.
Collapse
Affiliation(s)
- Christopher S Ealand
- DST/NRF Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, Johannesburg, South Africa
| | - Edith E Machowski
- DST/NRF Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, Johannesburg, South Africa
| | - Bavesh D Kana
- DST/NRF Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, Johannesburg, South Africa.,MRC-CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Centre for the AIDS Programme of Research in South Africa, CAPRISA, Durban, South Africa
| |
Collapse
|
124
|
Hakansson AP, Orihuela CJ, Bogaert D. Bacterial-Host Interactions: Physiology and Pathophysiology of Respiratory Infection. Physiol Rev 2018; 98:781-811. [PMID: 29488821 PMCID: PMC5966719 DOI: 10.1152/physrev.00040.2016] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 09/08/2017] [Accepted: 09/11/2017] [Indexed: 02/06/2023] Open
Abstract
It has long been thought that respiratory infections are the direct result of acquisition of pathogenic viruses or bacteria, followed by their overgrowth, dissemination, and in some instances tissue invasion. In the last decades, it has become apparent that in contrast to this classical view, the majority of microorganisms associated with respiratory infections and inflammation are actually common members of the respiratory ecosystem and only in rare circumstances do they cause disease. This suggests that a complex interplay between host, environment, and properties of colonizing microorganisms together determines disease development and its severity. To understand the pathophysiological processes that underlie respiratory infectious diseases, it is therefore necessary to understand the host-bacterial interactions occurring at mucosal surfaces, along with the microbes inhabiting them, during symbiosis. Current knowledge regarding host-bacterial interactions during asymptomatic colonization will be discussed, including a plausible role for the human microbiome in maintaining a healthy state. With this as a starting point, we will discuss possible disruptive factors contributing to dysbiosis, which is likely to be a key trigger for pathobionts in the development and pathophysiology of respiratory diseases. Finally, from this renewed perspective, we will reflect on current and potential new approaches for treatment in the future.
Collapse
Affiliation(s)
- A P Hakansson
- Division of Experimental Infection Medicine, Department of Translational Medicine, Lund University , Lund , Sweden ; Department of Microbiology, University of Alabama at Birmingham , Birmingham, Alabama ; and Center for Inflammation Research, Queens Medical Research Institute, University of Edinburgh , Edinburgh , United Kingdom
| | - C J Orihuela
- Division of Experimental Infection Medicine, Department of Translational Medicine, Lund University , Lund , Sweden ; Department of Microbiology, University of Alabama at Birmingham , Birmingham, Alabama ; and Center for Inflammation Research, Queens Medical Research Institute, University of Edinburgh , Edinburgh , United Kingdom
| | - D Bogaert
- Division of Experimental Infection Medicine, Department of Translational Medicine, Lund University , Lund , Sweden ; Department of Microbiology, University of Alabama at Birmingham , Birmingham, Alabama ; and Center for Inflammation Research, Queens Medical Research Institute, University of Edinburgh , Edinburgh , United Kingdom
| |
Collapse
|
125
|
Fan RR, Howard LM, Griffin MR, Edwards KM, Zhu Y, Williams JV, Vidal JE, Klugman KP, Gil AI, Lanata CF, Grijalva CG. Nasopharyngeal Pneumococcal Density and Evolution of Acute Respiratory Illnesses in Young Children, Peru, 2009-2011. Emerg Infect Dis 2018; 22:1996-1999. [PMID: 27767919 PMCID: PMC5088003 DOI: 10.3201/eid2211.160902] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
We examined nasopharyngeal pneumococcal colonization density patterns surrounding acute respiratory illnesses (ARI) in young children in Peru. Pneumococcal densities were dynamic, gradually increasing leading up to an ARI, peaking during the ARI, and decreasing after the ARI. Rhinovirus co-infection was associated with higher pneumococcal densities.
Collapse
|
126
|
Abstract
Colonization of the human nasopharynx by pneumococcus is extremely common and is both the primary reservoir for transmission and a prerequisite for disease. Current vaccines targeting the polysaccharide capsule effectively prevent colonization, conferring herd protection within vaccinated communities. However, these vaccines cover only a subset of all circulating pneumococcal strains, and serotype replacement has been observed. Given the success of pneumococcal conjugate vaccine (PCV) in preventing colonization in unvaccinated adults within vaccinated communities, reducing nasopharyngeal colonization has become an outcome of interest for novel vaccines. Here, we discuss the immunological mechanisms that control nasopharyngeal colonization, with an emphasis on findings from human studies. Increased understanding of these immunological mechanisms is required to identify correlates of protection against colonization that will facilitate the early testing and design of novel vaccines.
Collapse
Affiliation(s)
- Simon P. Jochems
- Department of Clinicial Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- * E-mail: (SPJ); (DMF)
| | - Jeffrey N. Weiser
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Richard Malley
- Division of Infectious Diseases, Boston Children′s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Daniela M. Ferreira
- Department of Clinicial Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- * E-mail: (SPJ); (DMF)
| |
Collapse
|
127
|
Trudzinski FC, Seiler F, Wilkens H, Metz C, Kamp A, Bals R, Gärtner B, Lepper PM, Becker SL. Microbiological airway colonization in COPD patients with severe emphysema undergoing endoscopic lung volume reduction. Int J Chron Obstruct Pulmon Dis 2017; 13:29-35. [PMID: 29296080 PMCID: PMC5741074 DOI: 10.2147/copd.s150705] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background Endoscopic lung volume reduction (eLVR) is a therapeutic option for selected patients with COPD and severe emphysema. Infectious exacerbations are serious events in these vulnerable patients; hence, prophylactic antibiotics are often prescribed postinterventionally. However, data on the microbiological airway colonization at the time of eLVR are scarce, and there are no evidence-based recommendations regarding a rational antibiotic regimen. Objective The aim of this study was to perform a clinical and microbiological analysis of COPD patients with advanced emphysema undergoing eLVR with endobronchial valves at a single German University hospital, 2012–2017. Patients and methods Bronchial aspirates were obtained prior to eLVR and sent for microbiological analysis. Antimicrobial susceptibility testing of bacterial isolates was performed, and pathogen colonization was retrospectively compared with clinical parameters. Results At least one potential pathogen was found in 47% (30/64) of patients. Overall, Gram-negative bacteria constituted the most frequently detected pathogens. The single most prevalent species were Haemophilus influenzae (9%), Streptococcus pneumoniae (6%), and Staphylococcus aureus (6%). No multidrug resistance was observed, and Pseudomonas aeruginosa occurred in <5% of samples. Patients without microbiological airway colonization showed more severe airflow limitation, hyperinflation, and chronic hypercapnia compared to those with detected pathogens. Conclusion Microbiological airway colonization was frequent in patients undergoing eLVR but not directly associated with poorer functional status. Resistance testing results do not support the routine use of antipseudomonal antibiotics in these patients.
Collapse
Affiliation(s)
- Franziska C Trudzinski
- Department of Internal Medicine V - Pneumology, Allergology and Critical Care Medicine, ECLS Center Saar, University Medical Center Saarland and Saarland University
| | - Frederik Seiler
- Department of Internal Medicine V - Pneumology, Allergology and Critical Care Medicine, ECLS Center Saar, University Medical Center Saarland and Saarland University
| | - Heinrike Wilkens
- Department of Internal Medicine V - Pneumology, Allergology and Critical Care Medicine, ECLS Center Saar, University Medical Center Saarland and Saarland University
| | - Carlos Metz
- Department of Internal Medicine V - Pneumology, Allergology and Critical Care Medicine, ECLS Center Saar, University Medical Center Saarland and Saarland University
| | - Annegret Kamp
- Department of Internal Medicine V - Pneumology, Allergology and Critical Care Medicine, ECLS Center Saar, University Medical Center Saarland and Saarland University
| | - Robert Bals
- Department of Internal Medicine V - Pneumology, Allergology and Critical Care Medicine, ECLS Center Saar, University Medical Center Saarland and Saarland University
| | - Barbara Gärtner
- Institute of Medical Microbiology and Hygiene, Saarland University, Homburg/Saar, Germany
| | - Philipp M Lepper
- Department of Internal Medicine V - Pneumology, Allergology and Critical Care Medicine, ECLS Center Saar, University Medical Center Saarland and Saarland University
| | - Sören L Becker
- Institute of Medical Microbiology and Hygiene, Saarland University, Homburg/Saar, Germany.,Swiss Tropical and Public Health Institute.,University of Basel, Basel, Switzerland
| |
Collapse
|
128
|
Abstract
The Human Microbiome Project began 10 years ago, leading to a significant growth in understanding of the role the human microbiome plays in health and disease. In this article, we explain with an emphasis on the lung, the origins of microbiome research. We discuss how 16S rRNA gene sequencing became the first major molecular tool to examine the bacterial communities present within the human body. We highlight the pitfalls of molecular-based studies, such as false findings resulting from contamination, and the limitations of 16S rRNA gene sequencing. Knowledge about the lung microbiome has evolved from initial scepticism to the realisation that it might have a significant influence on many illnesses. We also discuss the lung microbiome in the context of disease by giving examples of important respiratory conditions. In addition, we draw attention to the challenges for metagenomic studies of respiratory samples and the importance of systematic bacterial isolation to enable host-microbiome interactions to be understood. We conclude by discussing how knowledge of the lung microbiome impacts current clinical diagnostics.
Collapse
|
129
|
Zheng JJ, Perez AJ, Tsui HCT, Massidda O, Winkler ME. Absence of the KhpA and KhpB (JAG/EloR) RNA-binding proteins suppresses the requirement for PBP2b by overproduction of FtsA in Streptococcus pneumoniae D39. Mol Microbiol 2017; 106:793-814. [PMID: 28941257 DOI: 10.1111/mmi.13847] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2017] [Indexed: 12/11/2022]
Abstract
Suppressor mutations were isolated that obviate the requirement for essential PBP2b in peripheral elongation of peptidoglycan from the midcells of dividing Streptococcus pneumoniae D39 background cells. One suppressor was in a gene encoding a single KH-domain protein (KhpA). ΔkhpA suppresses deletions in most, but not all (mltG), genes involved in peripheral PG synthesis and in the gpsB regulatory gene. ΔkhpA mutations reduce growth rate, decrease cell size, minimally affect shape and induce expression of the WalRK cell-wall stress regulon. Reciprocal co-immunoprecipitations show that KhpA forms a complex in cells with another KH-domain protein (KhpB/JAG/EloR). ΔkhpA and ΔkhpB mutants phenocopy each other exactly, consistent with a direct interaction. RNA-immunoprecipitation showed that KhpA/KhpB bind an overlapping set of RNAs in cells. Phosphorylation of KhpB reported previously does not affect KhpB function in the D39 progenitor background. A chromosome duplication implicated FtsA overproduction in Δpbp2b suppression. We show that cellular FtsA concentration is negatively regulated by KhpA/B at the post-transcriptional level and that FtsA overproduction is necessary and sufficient for suppression of Δpbp2b. However, increased FtsA only partially accounts for the phenotypes of ΔkhpA mutants. Together, these results suggest that multimeric KhpA/B may function as a pleiotropic RNA chaperone controlling pneumococcal cell division.
Collapse
Affiliation(s)
- Jiaqi J Zheng
- Department of Biology, Indiana University Bloomington (IUB), Bloomington, IN 47405, USA
| | - Amilcar J Perez
- Department of Biology, Indiana University Bloomington (IUB), Bloomington, IN 47405, USA
| | - Ho-Ching Tiffany Tsui
- Department of Biology, Indiana University Bloomington (IUB), Bloomington, IN 47405, USA
| | - Orietta Massidda
- Dipartimento di Scienze Chirurgiche, Università di Cagliari, 09100 Cagliari, Italy
| | - Malcolm E Winkler
- Department of Biology, Indiana University Bloomington (IUB), Bloomington, IN 47405, USA
| |
Collapse
|
130
|
Cookson WOCM, Cox MJ, Moffatt MF. New opportunities for managing acute and chronic lung infections. Nat Rev Microbiol 2017; 16:111-120. [PMID: 29062070 DOI: 10.1038/nrmicro.2017.122] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Lung diseases caused by microbial infections affect hundreds of millions of children and adults throughout the world. In Western populations, the treatment of lung infections is a primary driver of antibiotic resistance. Traditional therapeutic strategies have been based on the premise that the healthy lung is sterile and that infections grow in a pristine environment. As a consequence, rapid advances in our understanding of the composition of the microbiota of the skin and bowel have not yet been matched by studies of the respiratory tree. The recognition that the lungs are as populated with microorganisms as other mucosal surfaces provides the opportunity to reconsider the mechanisms and management of lung infections. Molecular analyses of the lung microbiota are revealing profound adverse responses to widespread antibiotic use, urbanization and globalization. This Opinion article proposes how technologies and concepts flowing from the Human Microbiome Project can transform the diagnosis and treatment of common lung diseases.
Collapse
Affiliation(s)
- William O C M Cookson
- Asmarley Centre for Genomic Medicine, National Heart and Lung Institute, Imperial College London, Dovehouse Street, London SW3 6LY, UK
| | - Michael J Cox
- Asmarley Centre for Genomic Medicine, National Heart and Lung Institute, Imperial College London, Dovehouse Street, London SW3 6LY, UK
| | - Miriam F Moffatt
- Asmarley Centre for Genomic Medicine, National Heart and Lung Institute, Imperial College London, Dovehouse Street, London SW3 6LY, UK
| |
Collapse
|
131
|
Kaur R, Wischmeyer J, Morris M, Pichichero ME. Comparison of direct-plating and broth-enrichment culture methods for detection of potential bacterial pathogens in respiratory secretions. J Med Microbiol 2017; 66:1539-1544. [PMID: 29034852 DOI: 10.1099/jmm.0.000587] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
OBJECTIVE We compared the recovery of potential respiratory bacterial pathogens and normal flora from nasopharyngeal specimens collected from children during health and at the onset of acute otitis media (AOM) by selective direct-plating and overnight broth-enrichment. METHODS Overall, 3442 nasal wash (NW) samples collected from young children were analysed from a 10-year prospective study. NWs were cultured by (1) direct-plating to TSAII/5 % sheep blood agar and chocolate agar plates and (2) overnight broth-enrichment in BacT/ALERT SA-broth followed by plating. Standard microbiology techniques were applied to identify three dominant respiratory bacterial pathogens: Streptococcus pneumoniae (Spn), Haemophilus influenzae (Hflu) and Moraxella catarrhalis (Mcat) as well as two common nasal flora, Staphylococcus aureus (SA) and alpha-haemolytic Streptococci (AHS).Results/Key findings. Direct-plating of NW resulted in isolation of Spn from 37.8 %, Hflu from 13.6 % and Mcat from 33.2 % of samples. In comparison, overnight broth-enrichment isolated fewer Spn (30.1 %), Hflu (6.2 %) and Mcat (16.2 %) (P<0.001-0.0001). Broth-enrichment resulted in significant increased isolation of SA (6.0 %) and AHS (30.1 %) (P<0.0001). Competition between bacterial species in broth when both species were detected by direct-plating was assessed, and it was found that SA and AHS out-competed other species during broth-enrichment when samples were collected from healthy children but not during AOM. In middle ear fluids (MEF) at the onset of AOM, broth-enrichment resulted in higher recovery of Spn (+10.4 %, P<0.001), Hflu (+4.4 %, P=0.39) and Mcat (+13.5 %, <0.001). CONCLUSION Broth-enrichment significantly reduces the accurate detection of bacterial respiratory pathogens and increases identification of SA and AHS in NW. Broth-enrichment improves detection of bacterial respiratory pathogens in MEF samples.
Collapse
Affiliation(s)
- Ravinder Kaur
- Rochester General Hospital Research Institute, Center for Infectious Diseases and Immunology, 1425 Portland Avenue, Rochester, NY 14621, USA
| | - Jareth Wischmeyer
- Rochester General Hospital Research Institute, Center for Infectious Diseases and Immunology, 1425 Portland Avenue, Rochester, NY 14621, USA
| | - Matthew Morris
- Rochester General Hospital Research Institute, Center for Infectious Diseases and Immunology, 1425 Portland Avenue, Rochester, NY 14621, USA
| | - Michael E Pichichero
- Rochester General Hospital Research Institute, Center for Infectious Diseases and Immunology, 1425 Portland Avenue, Rochester, NY 14621, USA
| |
Collapse
|
132
|
Zafar MA, Wang Y, Hamaguchi S, Weiser JN. Host-to-Host Transmission of Streptococcus pneumoniae Is Driven by Its Inflammatory Toxin, Pneumolysin. Cell Host Microbe 2017; 21:73-83. [PMID: 28081446 DOI: 10.1016/j.chom.2016.12.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 10/28/2016] [Accepted: 12/06/2016] [Indexed: 01/05/2023]
Abstract
Host-to-host transmission is a critical step for infection. Here we studied transmission of the opportunistic pathogen Streptococcus pneumoniae in an infant mouse model. Transmission from nasally colonized pups required high levels of bacterial shedding in nasal secretions and was temporally correlated with, and dependent upon, the acute inflammatory response. Pneumolysin, a pore-forming cytotoxin and major virulence determinant, was both necessary and sufficient to promote inflammation, which increased shedding and allowed for intralitter transmission. Direct contact between pups was not required for transmission indicating the importance of an environmental reservoir. An additional in vivo effect of pneumolysin was to enhance bacterial survival outside of the host. Our findings provide experimental evidence of a microbial strategy for transit to new hosts and explain why an organism expresses a toxin that damages the host upon which it depends.
Collapse
Affiliation(s)
- M Ammar Zafar
- Department of Microbiology, New York University, New York, NY 10016, USA
| | - Yang Wang
- School of Medicine, Tsinghua University, 100084 Beijing, China; Department of Microbiology, New York University, New York, NY 10016, USA
| | - Shigeto Hamaguchi
- Department of Microbiology, New York University, New York, NY 10016, USA
| | - Jeffrey N Weiser
- Department of Microbiology, New York University, New York, NY 10016, USA.
| |
Collapse
|
133
|
Nasopharyngeal infection by Streptococcus pyogenes requires superantigen-responsive Vβ-specific T cells. Proc Natl Acad Sci U S A 2017; 114:10226-10231. [PMID: 28794279 DOI: 10.1073/pnas.1700858114] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The globally prominent pathogen Streptococcus pyogenes secretes potent immunomodulatory proteins known as superantigens (SAgs), which engage lateral surfaces of major histocompatibility class II molecules and T-cell receptor (TCR) β-chain variable domains (Vβs). These interactions result in the activation of numerous Vβ-specific T cells, which is the defining activity of a SAg. Although streptococcal SAgs are known virulence factors in scarlet fever and toxic shock syndrome, mechanisms by how SAgs contribute to the life cycle of S. pyogenes remain poorly understood. Herein, we demonstrate that passive immunization against the Vβ8-targeting SAg streptococcal pyrogenic exotoxin A (SpeA), or active immunization with either wild-type or a nonfunctional SpeA mutant, protects mice from nasopharyngeal infection; however, only passive immunization, or vaccination with inactive SpeA, resulted in high-titer SpeA-specific antibodies in vivo. Mice vaccinated with wild-type SpeA rendered Vβ8+ T cells poorly responsive, which prevented infection. This phenotype was reproduced with staphylococcal enterotoxin B, a heterologous SAg that also targets Vβ8+ T cells, and rendered mice resistant to infection. Furthermore, antibody-mediated depletion of T cells prevented nasopharyngeal infection by S. pyogenes, but not by Streptococcus pneumoniae, a bacterium that does not produce SAgs. Remarkably, these observations suggest that S. pyogenes uses SAgs to manipulate Vβ-specific T cells to establish nasopharyngeal infection.
Collapse
|
134
|
Rabes A, Suttorp N, Opitz B. Inflammasomes in Pneumococcal Infection: Innate Immune Sensing and Bacterial Evasion Strategies. Curr Top Microbiol Immunol 2017; 397:215-27. [PMID: 27460812 DOI: 10.1007/978-3-319-41171-2_11] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Streptococcus pneumoniae frequently colonizes the upper respiratory tract of healthy individuals, but also commonly causes severe invasive infections such as community-acquired pneumonia and meningitis. One of the key virulence factors of pneumococci is the pore-forming toxin pneumolysin which stimulates cell death and is involved in the evasion of some defense mechanisms. The immune system, however, employs different inflammasomes to sense pneumolysin-induced pore formation, cellular membrane damage, and/or subsequent leakage of bacterial nucleic acid into the host cell cytosol. Canonical inflammasomes are cytosolic multiprotein complexes consisting of a receptor molecule such as NLRP3 or AIM2, the adapter ASC, and caspase-1. NLRP3 and AIM2 inflammasomes mediate cell death and production of important IL-1 family cytokines to recruit leukocytes and defend against S. pneumoniae. Here, we review recent evidence that highlights inflammasomes as critical sensors of S. pneumoniae-induced cellular perturbations, summarize their role in pneumococcal infections, and discuss potential evasion strategies of some emerging pneumococcal strains.
Collapse
Affiliation(s)
- Anne Rabes
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Norbert Suttorp
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Bastian Opitz
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
| |
Collapse
|
135
|
Abstract
Bacterial pneumonias exact unacceptable morbidity on patients with cancer. Although the risk is often most pronounced among patients with treatment-induced cytopenias, the numerous contributors to life-threatening pneumonias in cancer populations range from derangements of lung architecture and swallow function to complex immune defects associated with cytotoxic therapies and graft-versus-host disease. These structural and immunologic abnormalities often make the diagnosis of pneumonia challenging in patients with cancer and impact the composition and duration of therapy. This article addresses host factors that contribute to pneumonia susceptibility, summarizes diagnostic recommendations, and reviews current guidelines for management of bacterial pneumonia in patients with cancer.
Collapse
Affiliation(s)
- Justin L Wong
- Division of Internal Medicine, Department of Pulmonary, Critical Care and Sleep Medicine, The University of Texas Health Sciences Center, 6431 Fannin Street, MSB 1.434, Houston, TX 77030, USA
| | - Scott E Evans
- Division of Internal Medicine, Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 1100, Houston, TX 77030, USA.
| |
Collapse
|
136
|
Inhibitory role of acyl homoserine lactones in hemolytic activity and viability of Streptococcus pyogenes M6 S165. Sci Rep 2017; 7:44902. [PMID: 28303956 PMCID: PMC5355980 DOI: 10.1038/srep44902] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 02/14/2017] [Indexed: 12/28/2022] Open
Abstract
Streptococcus pyogenes an adapted human pathogen asymptomatically colonizes the nasopharynx, among other polymicrobial communities. However, information on the events leading to the colonization and expression of virulence markers subject to interspecies and host-bacteria interactions are limited. The interference of acyl homoserine lactones (AHLs) with the hemolytic activity and viability of S. pyogenes M6 S165 was examined. AHLs, with fatty acid side chains ≥12 carbon atoms, inhibited hemolytic activity by downregulating the expression of the sag operon involved in the production of streptolysin S. Inhibitory AHLs upregulated the expression of transcriptional regulator LuxR. Electrophoretic mobility shift assays revealed the interaction of LuxR with the region upstream of sagA. AHL-mediated bactericidal activity observed at higher concentrations (mM range) was an energy-dependent process, constrained by the requirement of glucose and iron. Ferrichrome transporter FtsABCD facilitated transport of AHLs across the streptococcal membrane. The study demonstrates a previously unreported role for AHLs in S. pyogenes virulence.
Collapse
|
137
|
Domínguez-Hüttinger E, Boon NJ, Clarke TB, Tanaka RJ. Mathematical Modeling of Streptococcus pneumoniae Colonization, Invasive Infection and Treatment. Front Physiol 2017; 8:115. [PMID: 28303104 PMCID: PMC5332394 DOI: 10.3389/fphys.2017.00115] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 02/13/2017] [Indexed: 12/26/2022] Open
Abstract
Streptococcus pneumoniae (Sp) is a commensal bacterium that normally resides on the upper airway epithelium without causing infection. However, factors such as co-infection with influenza virus can impair the complex Sp-host interactions and the subsequent development of many life-threatening infectious and inflammatory diseases, including pneumonia, meningitis or even sepsis. With the increased threat of Sp infection due to the emergence of new antibiotic resistant Sp strains, there is an urgent need for better treatment strategies that effectively prevent progression of disease triggered by Sp infection, minimizing the use of antibiotics. The complexity of the host-pathogen interactions has left the full understanding of underlying mechanisms of Sp-triggered pathogenesis as a challenge, despite its critical importance in the identification of effective treatments. To achieve a systems-level and quantitative understanding of the complex and dynamically-changing host-Sp interactions, here we developed a mechanistic mathematical model describing dynamic interplays between Sp, immune cells, and epithelial tissues, where the host-pathogen interactions initiate. The model serves as a mathematical framework that coherently explains various in vitro and in vitro studies, to which the model parameters were fitted. Our model simulations reproduced the robust homeostatic Sp-host interaction, as well as three qualitatively different pathogenic behaviors: immunological scarring, invasive infection and their combination. Parameter sensitivity and bifurcation analyses of the model identified the processes that are responsible for qualitative transitions from healthy to such pathological behaviors. Our model also predicted that the onset of invasive infection occurs within less than 2 days from transient Sp challenges. This prediction provides arguments in favor of the use of vaccinations, since adaptive immune responses cannot be developed de novo in such a short time. We further designed optimal treatment strategies, with minimal strengths and minimal durations of antibiotics, for each of the three pathogenic behaviors distinguished by our model. The proposed mathematical framework will help to design better disease management strategies and new diagnostic markers that can be used to inform the most appropriate patient-specific treatment options.
Collapse
Affiliation(s)
- Elisa Domínguez-Hüttinger
- Department of Bioengineering, Imperial College LondonLondon, UK; Instituto de Ecología, Universidad Nacional Autónoma de MéxicoMexico City, Mexico
| | - Neville J Boon
- Department of Bioengineering, Imperial College London London, UK
| | | | - Reiko J Tanaka
- Department of Bioengineering, Imperial College London London, UK
| |
Collapse
|
138
|
Wilkening RV, Federle MJ. Evolutionary Constraints Shaping Streptococcus pyogenes-Host Interactions. Trends Microbiol 2017; 25:562-572. [PMID: 28216292 DOI: 10.1016/j.tim.2017.01.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/15/2016] [Accepted: 01/23/2017] [Indexed: 02/07/2023]
Abstract
Research on the Gram-positive human-restricted pathogen Streptococcus pyogenes (Group A Streptococcus, GAS) has long focused on invasive illness, the most severe manifestations of GAS infection. Recent advances in descriptions of molecular mechanisms of GAS virulence, coupled with massive sequencing efforts to isolate genomes, have allowed the field to better understand the molecular and evolutionary changes leading to pandemic strains. These findings suggest that it is necessary to rethink the dogma involving GAS pathogenesis, and that the most productive avenues for research going forward may be investigations into GAS in its 'normal' habitat, the nasopharynx, and its ability to either live with its host in an asymptomatic lifestyle or as an agent of superficial infections. This review will consider these advances, focusing on the natural history of GAS, the evolution of pandemic strains, and novel roles for several key virulence factors that may allow the field to better understand their physiological role.
Collapse
Affiliation(s)
- Reid V Wilkening
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60607, USA; Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Michael J Federle
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, IL 60607, USA; Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA.
| |
Collapse
|
139
|
Garg N, Luzzatto-Knaan T, Melnik AV, Caraballo-Rodríguez AM, Floros DJ, Petras D, Gregor R, Dorrestein PC, Phelan VV. Natural products as mediators of disease. Nat Prod Rep 2017; 34:194-219. [PMID: 27874907 PMCID: PMC5299058 DOI: 10.1039/c6np00063k] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Covering: up to 2016Humans are walking microbial ecosystems, each harboring a complex microbiome with the genetic potential to produce a vast array of natural products. Recent sequencing data suggest that our microbial inhabitants are critical for maintaining overall health. Shifts in microbial communities have been correlated to a number of diseases including infections, inflammation, cancer, and neurological disorders. Some of these clinically and diagnostically relevant phenotypes are a result of the presence of small molecules, yet we know remarkably little about their contributions to the health of individuals. Here, we review microbe-derived natural products as mediators of human disease.
Collapse
Affiliation(s)
- Neha Garg
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Tal Luzzatto-Knaan
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Alexey V. Melnik
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093
| | | | - Dimitrios J. Floros
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093
| | - Daniel Petras
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Rachel Gregor
- Department of Chemistry and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
| | - Pieter C. Dorrestein
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Vanessa V. Phelan
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
140
|
Novick S, Shagan M, Blau K, Lifshitz S, Givon-Lavi N, Grossman N, Bodner L, Dagan R, Mizrachi Nebenzahl Y. Adhesion and invasion of Streptococcus pneumoniae to primary and secondary respiratory epithelial cells. Mol Med Rep 2016; 15:65-74. [PMID: 27922699 PMCID: PMC5355668 DOI: 10.3892/mmr.2016.5996] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 09/30/2016] [Indexed: 11/06/2022] Open
Abstract
The interaction between Streptococcus pneumoniae (S. pneumoniae) and the mucosal epithelial cells of its host is a prerequisite for pneumococcal disease development, yet the specificity of this interaction between different respiratory cells is not fully understood. In the present study, three areas were examined: i) The capability of the encapsulated S. pneumoniae serotype 3 strain (WU2) to adhere to and invade primary nasal‑derived epithelial cells in comparison to primary oral‑derived epithelial cells, A549 adenocarcinoma cells and BEAS‑2B viral transformed bronchial cells; ii) the capability of the unencapsulated 3.8DW strain (a WU2 derivative) to adhere to and invade the same cells over time; and iii) the ability of various genetically‑unrelated encapsulated and unencapsulated S. pneumoniae strains to adhere to and invade A549 lung epithelial cells. The results of the present study demonstrated that the encapsulated WU2 strain adhesion to and invasion of primary nasal epithelial cells was greatest, followed by BEAS‑2B, A549 and primary oral epithelial cells. By contrast, the unencapsulated 3.8‑DW strain invaded oral epithelial cells significantly more efficiently when compared to the nasal epithelial cells. In addition, unencapsulated S. pneumoniae strains adhered to and invaded the A459 cells significantly more efficiently than the encapsulated strains; this is consistent with previously published data. In conclusion, the findings presented in the current study indicated that the adhesion and invasion of the WU2 strain to primary nasal epithelial cells was more efficient compared with the other cultured respiratory epithelial cells tested, which corresponds to the natural course of S. pneumoniae infection and disease development. The target cell preference of unencapsulated strains was different from that of the encapsulated strains, which may be due to the exposure of cell wall proteins.
Collapse
Affiliation(s)
- Sara Novick
- Shraga Segal Department of Microbiology and Immunology, Faculty of Health Sciences, Ben‑Gurion University of The Negev, Beer Sheva 84101, Israel
| | - Marilous Shagan
- Shraga Segal Department of Microbiology and Immunology, Faculty of Health Sciences, Ben‑Gurion University of The Negev, Beer Sheva 84101, Israel
| | - Karin Blau
- Shraga Segal Department of Microbiology and Immunology, Faculty of Health Sciences, Ben‑Gurion University of The Negev, Beer Sheva 84101, Israel
| | - Sarit Lifshitz
- Shraga Segal Department of Microbiology and Immunology, Faculty of Health Sciences, Ben‑Gurion University of The Negev, Beer Sheva 84101, Israel
| | - Noga Givon-Lavi
- Pediatric Infectious Disease Unit, Soroka University Medical Center, Faculty of Health Sciences, Ben‑Gurion University of The Negev, Beer Sheva 84101, Israel
| | - Nili Grossman
- Shraga Segal Department of Microbiology and Immunology, Faculty of Health Sciences, Ben‑Gurion University of The Negev, Beer Sheva 84101, Israel
| | - Lipa Bodner
- Oral and Maxillofacial Surgery Unit, Soroka University Medical Center, Beer Sheva 84105, Israel
| | - Ron Dagan
- Faculty of Health Sciences, Ben‑Gurion University of The Negev, Beer Sheva 84101, Israel
| | - Yaffa Mizrachi Nebenzahl
- Shraga Segal Department of Microbiology and Immunology, Faculty of Health Sciences, Ben‑Gurion University of The Negev, Beer Sheva 84101, Israel
| |
Collapse
|
141
|
Schenck LP, Surette MG, Bowdish DME. Composition and immunological significance of the upper respiratory tract microbiota. FEBS Lett 2016; 590:3705-3720. [PMID: 27730630 PMCID: PMC7164007 DOI: 10.1002/1873-3468.12455] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 09/30/2016] [Accepted: 10/07/2016] [Indexed: 11/13/2022]
Abstract
The intestinal microbiota is essential for nutrient acquisition, immune development, and exclusion of invading pathogens. The upper respiratory tract (URT) microbiota is less well studied and does not appear to abide by many of the paradigms of the gastrointestinal tract. Decades of carriage studies in children have demonstrated that microbe–microbe competition and collusion occurs in the URT. Whether colonization with common pathogens (e.g., Staphylococcus aureus and Streptococcus pneumoniae) alters immune development or susceptibility to respiratory conditions is just beginning to be understood. Herein, we discuss the biogeography of the URT microbiota, the succession and evolution of the microbiota through the life course, and discuss the evidence for microbe–microbe interactions in colonization and infection.
Collapse
Affiliation(s)
- Louis Patrick Schenck
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Canada
| | - Michael G Surette
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Canada.,Department of Medicine, McMaster University, Hamilton, Canada
| | - Dawn M E Bowdish
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| |
Collapse
|
142
|
Zafar MA, Kono M, Wang Y, Zangari T, Weiser JN. Infant Mouse Model for the Study of Shedding and Transmission during Streptococcus pneumoniae Monoinfection. Infect Immun 2016; 84:2714-22. [PMID: 27400721 PMCID: PMC4995895 DOI: 10.1128/iai.00416-16] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/05/2016] [Indexed: 12/21/2022] Open
Abstract
One of the least understood aspects of the bacterium Streptococcus pneumoniae (pneumococcus) is its transmission from host to host, the critical first step in both the carrier state and the disease state. To date, transmission models have depended on influenza A virus coinfection, which greatly enhances pneumococcal shedding to levels that allow acquisition by a new host. Here, we describe an infant mouse model that can be utilized to study pneumococcal colonization, shedding, and transmission during bacterial monoinfection. Using this model, we demonstrated that the level of bacterial shedding is highest in pups infected intranasally at age 4 days and peaks over the first 4 days postchallenge. Shedding results differed among isolates of five different pneumococcal types. Colonization density was found to be a major factor in the level of pneumococcal shedding and required expression of capsule. Transmission within a litter occurred when there was a high ratio of colonized "index" pups to uncolonized "contact" pups. Transmission was observed for each of the well-colonizing pneumococcal isolates, with the rate of transmission proportional to the level of shedding. This model can be used to examine bacterial and host factors that contribute to pneumococcal transmission without the effects of viral coinfection.
Collapse
Affiliation(s)
- M Ammar Zafar
- Department of Microbiology, New York University, New York, New York, USA
| | - Masamitsu Kono
- Department of Microbiology, New York University, New York, New York, USA Department of Otolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama, Japan
| | - Yang Wang
- Department of Microbiology, New York University, New York, New York, USA School of Medicine, Tsing Hua University, Beijing, China
| | - Tonia Zangari
- Department of Microbiology, New York University, New York, New York, USA
| | - Jeffrey N Weiser
- Department of Microbiology, New York University, New York, New York, USA
| |
Collapse
|
143
|
Mirza S, Benjamin WH, Coan PA, Hwang SA, Winslett AK, Yother J, Hollingshead SK, Fujihashi K, Briles DE. The effects of differences in pspA alleles and capsular types on the resistance of Streptococcus pneumoniae to killing by apolactoferrin. Microb Pathog 2016; 99:209-219. [PMID: 27569531 DOI: 10.1016/j.micpath.2016.08.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 08/15/2016] [Accepted: 08/23/2016] [Indexed: 11/18/2022]
Abstract
Pneumococcal surface protein A (PspA) is the only pneumococcal surface protein known to strongly bind lactoferrin on the bacterial surface. In the absence of PspA Streptococcus pneumoniae becomes more susceptible to killing by human apolactoferrin (apo-hLf), the iron-free form of lactoferrin. In the present study we examined diverse strains of S. pneumoniae that differed by 2 logs in their susceptibility to apo-hLf. Among these strains, the amount of apo-hLf that bound to cell surface PspA correlated directly with the resistance of the strain to killing by apo-hLf. Moreover examination of different pspA alleles on shared genetic backgrounds revealed that those PspAs that bound more lactoferrin conferred greater resistance to killing by apo-hLf. The effects of capsule on killing of pneumococci by apo-hLf were generally small, but on one genetic background, however, the lack of capsule was associated with 4-times as much apo-hLf binding and 30-times more resistance to killing by apo-hLf. Overall these finding strongly support the hypothesis that most of the variation in the ability of apo-hLf is dependent on the variation in the binding of apo-hLf to surface PspA and this binding is dependent on variation in PspA as well as variation in capsule which may enhance killing by reducing the binding of apo-hLf to PspA.
Collapse
Affiliation(s)
- Shaper Mirza
- Department of Biology, Lahore University of Management Sciences, Pakistan; Division of Epidemiology, Human Genetics and Environmental Health, School of Public Health, University of Texas, Health Science Center, Brownsville Regional Campus, TX, USA.
| | - William H Benjamin
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA; Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Patricia A Coan
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Shen-An Hwang
- Department of Pathology and Laboratory Medicine, Medical School University of Texas Health Science Center, Houston, TX, USA
| | - Anne-Kathryn Winslett
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Janet Yother
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Susan K Hollingshead
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Kohtaro Fujihashi
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA; Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA; Department of Pediatrics Dentistry, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - David E Briles
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA; Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| |
Collapse
|