101
|
Tábara LC, Segawa M, Prudent J. Molecular mechanisms of mitochondrial dynamics. Nat Rev Mol Cell Biol 2025; 26:123-146. [PMID: 39420231 DOI: 10.1038/s41580-024-00785-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2024] [Indexed: 10/19/2024]
Abstract
Mitochondria not only synthesize energy required for cellular functions but are also involved in numerous cellular pathways including apoptosis, calcium homoeostasis, inflammation and immunity. Mitochondria are dynamic organelles that undergo cycles of fission and fusion, and these transitions between fragmented and hyperfused networks ensure mitochondrial function, enabling adaptations to metabolic changes or cellular stress. Defects in mitochondrial morphology have been associated with numerous diseases, highlighting the importance of elucidating the molecular mechanisms regulating mitochondrial morphology. Here, we discuss recent structural insights into the assembly and mechanism of action of the core mitochondrial dynamics proteins, such as the dynamin-related protein 1 (DRP1) that controls division, and the mitofusins (MFN1 and MFN2) and optic atrophy 1 (OPA1) driving membrane fusion. Furthermore, we provide an updated view of the complex interplay between different proteins, lipids and organelles during the processes of mitochondrial membrane fusion and fission. Overall, we aim to present a valuable framework reflecting current perspectives on how mitochondrial membrane remodelling is regulated.
Collapse
Affiliation(s)
- Luis-Carlos Tábara
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Mayuko Segawa
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Julien Prudent
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK.
| |
Collapse
|
102
|
Guan D, Liang C, Zheng D, Liu S, Luo J, Cai Z, Zhang H, Chen J. The role of mitochondrial remodeling in neurodegenerative diseases. Neurochem Int 2025; 183:105927. [PMID: 39798853 DOI: 10.1016/j.neuint.2024.105927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/27/2024] [Accepted: 12/29/2024] [Indexed: 01/15/2025]
Abstract
Neurodegenerative diseases are a group of diseases that pose a serious threat to human health, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and Amyotrophic Lateral Sclerosis (ALS). In recent years, it has been found that mitochondrial remodeling plays an important role in the onset and progression of neurodegenerative diseases. Mitochondrial remodeling refers to the dynamic regulatory process of mitochondrial morphology, number and function, which can affect neuronal cell function and survival by regulating mechanisms such as mitochondrial fusion, division, clearance and biosynthesis. Mitochondrial dysfunction is an important intrinsic cause of the pathogenesis of neurodegenerative diseases. Mitochondrial remodeling abnormalities are involved in energy metabolism in neurodegenerative diseases. Pathological changes in mitochondrial function and morphology, as well as interactions with other organelles, can affect the energy metabolism of dopaminergic neurons and participate in the development of neurodegenerative diseases. Since the number of patients with PD and AD has been increasing year by year in recent years, it is extremely important to take effective interventions to significantly reduce the number of morbidities and to improve people's quality of life. More and more researchers have suggested that mitochondrial remodeling and related dynamics may positively affect neurodegenerative diseases in terms of neuronal and self-adaptation to the surrounding environment. Mitochondrial remodeling mainly involves its own fission and fusion, energy metabolism, changes in channels, mitophagy, and interactions with other cellular organelles. This review will provide a systematic summary of the role of mitochondrial remodeling in neurodegenerative diseases, with the aim of providing new ideas and strategies for further research on the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Duanqin Guan
- Department of Environmental and Occupational Health, School of Public Health, Guangdong Medical University, Dongguan, 523808, PR China; Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, PR China
| | - Congmin Liang
- Department of Environmental and Occupational Health, School of Public Health, Guangdong Medical University, Dongguan, 523808, PR China; Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, PR China
| | - Dongyan Zheng
- Department of Environmental and Occupational Health, School of Public Health, Guangdong Medical University, Dongguan, 523808, PR China; Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, PR China
| | - Shizhen Liu
- Department of Environmental and Occupational Health, School of Public Health, Guangdong Medical University, Dongguan, 523808, PR China; Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, PR China
| | - Jiankun Luo
- Department of Environmental and Occupational Health, School of Public Health, Guangdong Medical University, Dongguan, 523808, PR China; Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, PR China
| | - Ziwei Cai
- Department of Environmental and Occupational Health, School of Public Health, Guangdong Medical University, Dongguan, 523808, PR China; Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, PR China
| | - He Zhang
- Department of Environmental and Occupational Health, School of Public Health, Guangdong Medical University, Dongguan, 523808, PR China; Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, PR China
| | - Jialong Chen
- Department of Environmental and Occupational Health, School of Public Health, Guangdong Medical University, Dongguan, 523808, PR China; Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, PR China.
| |
Collapse
|
103
|
Yang Z, Gao Y, Li D, Zhao L, Du Y. PANAXADIOL SAPONIN ALLEVIATES LPS-INDUCED CARDIOMYOPATHY SIMILAR TO DEXAMETHASONE VIA IMPROVING MITOCHONDRIAL QUALITY CONTROL. Shock 2025; 63:282-291. [PMID: 39178130 PMCID: PMC11776890 DOI: 10.1097/shk.0000000000002449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/30/2024] [Indexed: 08/25/2024]
Abstract
ABSTRACT Septic cardiomyopathy is linked to a dysregulation in mitochondrial integrity and elevated mortality rates, for which an efficacious treatment remains elusive. PDS is a panaxadiol saponin extracted from ginseng stem and leaf. This study identified the protective effects of PDS and DEX in LPS-induced cardiomyopathy and explored the mechanism of them treating LPS-induced cardiomyopathy from the perspectives of mitochondrial quality control. DEX and PDS enhance antioxidant defense by degrading Keap1 to activate Nrf2; activate mitochondrial occurrence protein PGC-1α and fusion protein OPA1, Mfn1, and Mfn2 expression; and inhibit phosphorylation of mitochondrial fission protein Drp1, aiming to maintain normal structure and function of mitochondrial, thereby preserving oxidative phosphorylation capacity. In summary, our findings highlighted the protective efficacy of PDS and DEX in maintaining mitochondrial in LPS-induced cardiomyopathy, and mechanism improving mitochondrial quality control at least in part by promoting Nrf2 activation.
Collapse
Affiliation(s)
- Zhaoyun Yang
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, China
| | - Yan Gao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biomedical Sciences, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Dongyang Li
- Clinical School of Medicine, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Lijing Zhao
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, China
| | - Yanwei Du
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, China
| |
Collapse
|
104
|
Ai Z, Yuan D, Dong R, Zhou S, Cao J. Rostellularia procumbens (L) Nees. extract attenuates adriamycin-induced nephropathy by maintaining mitochondrial dynamics balance via SIRT1/PGC-1α signaling pathway activation. JOURNAL OF ETHNOPHARMACOLOGY 2025; 340:119297. [PMID: 39733803 DOI: 10.1016/j.jep.2024.119297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 12/03/2024] [Accepted: 12/26/2024] [Indexed: 12/31/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rostellularia procumbens (L) Nees. (R. procumbens) is a classical Chinese herbal medicine that has been used for effective treatment of kidney disease for nearly a thousand years in China. Recently, significant progress has been achieved in understanding the abnormal mitochondrial structure and function from chronic kidney disease (CKD). However, the regulatory mechanisms underlying R. procumbens treatment for CKD and its association with dysfunctional mitochondrial function remain elusive. AIM OF THE STUDY To study the protective effect of N-butanol extract from R. procumbens (J-NE) on chronic glomerulonephritis (CGN) mice using a mice model and mitochondrial function-related experiments. MATERIALS AND METHODS A renal injury mouse model was developed using a single tail vein injection of adriamycin (9 mg/kg). Renal pathology was analyzed through hematoxylin-eosin (HE) staining and transmission electron microscopy (TEM). Cell apoptosis in kidney tissues was analyzed using TUNEL staining. Protein levels were measured via immunohistochemistry (HIF-1α, FN, α-SMA, and Collagen I) and Western blot (Mn-SOD, p-Drp-S637, MFN1, MFN2, OPA1, TFAM, Nrf1, ATP6, SIRT1, and PGC-1α) analysis. UHPLC-MS/MS was used to analyze the presence of bioactive phytocompounds in J-NE. RESULTS The results reported that the levels of kidney injury markers (urinary protein, glomerular atrophy, and renal cell apoptosis), mitochondrial dysfunction markers (mitochondrial ultrastructure, Mn-SOD, HIF-1α, FN and α-SMA),mitochondrial dynamic imbalance markers (p-Drp-S637, MFN1, MFN2 and OPA1) and SIRT1/PGC-1α signaling pathway markers (TFAM, Nrf1, ATP6, SIRT1, and PGC-1α) were settled to a significant improvement by the oral administration of J-NE. CONCLUSIONS In conclusion, R. procumbens could be able to protect the kidneys from podocyte injury caused mitochondrial dynamics and energy metabolism dysregulation by modulating the SIRT1/PGC-1α signaling pathway.
Collapse
Affiliation(s)
- Zhongzhu Ai
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Dongfeng Yuan
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruotong Dong
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Shanshan Zhou
- The First Clinical Medical School, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| | - Jigang Cao
- School of Basic Medical Science, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| |
Collapse
|
105
|
Cueva-Vargas JL, Belforte N, Vidal-Paredes IA, Dotigny F, Vande Velde C, Quintero H, Di Polo A. Stress-induced mitochondrial fragmentation in endothelial cells disrupts blood-retinal barrier integrity causing neurodegeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.21.629919. [PMID: 39975311 PMCID: PMC11838204 DOI: 10.1101/2024.12.21.629919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Increased vascular leakage and endothelial cell (EC) dysfunction are major features of neurodegenerative diseases. Here, we investigated the mechanisms leading to EC dysregulation and asked whether altered mitochondrial dynamics in ECs impinge on vascular barrier integrity and neurodegeneration. We show that ocular hypertension, a major risk factor to develop glaucoma, induced mitochondrial fragmentation in retinal capillary ECs accompanied by increased oxidative stress and ultrastructural defects. Analysis of EC mitochondrial components revealed overactivation of dynamin-related protein 1 (DRP1), a central regulator of mitochondrial fission, during glaucomatous damage. Pharmacological inhibition or EC-specific in vivo gene delivery of a dominant negative DRP1 mutant was sufficient to rescue mitochondrial volume, reduce vascular leakage, and increase expression of the tight junction claudin-5 (CLDN5). We further demonstrate that EC-targeted CLDN5 gene augmentation restored blood-retinal-barrier integrity, promoted neuronal survival, and improved light-evoked visual behaviors in glaucomatous mice. Our findings reveal that preserving mitochondrial homeostasis and EC function are valuable strategies to enhance neuroprotection and improve vision in glaucoma.
Collapse
Affiliation(s)
- Jorge L. Cueva-Vargas
- Department of Neurosciences, Université de Montréal, PO box 6128, Station centre-ville, Montreal, Quebec H3C 3J7, Canada
- Neuroscience Division, Centre de recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, Quebec H2X 0A9, Canada
| | - Nicolas Belforte
- Department of Neurosciences, Université de Montréal, PO box 6128, Station centre-ville, Montreal, Quebec H3C 3J7, Canada
- Neuroscience Division, Centre de recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, Quebec H2X 0A9, Canada
| | - Isaac A. Vidal-Paredes
- Department of Neurosciences, Université de Montréal, PO box 6128, Station centre-ville, Montreal, Quebec H3C 3J7, Canada
- Neuroscience Division, Centre de recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, Quebec H2X 0A9, Canada
| | - Florence Dotigny
- Department of Neurosciences, Université de Montréal, PO box 6128, Station centre-ville, Montreal, Quebec H3C 3J7, Canada
- Neuroscience Division, Centre de recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, Quebec H2X 0A9, Canada
| | - Christine Vande Velde
- Department of Neurosciences, Université de Montréal, PO box 6128, Station centre-ville, Montreal, Quebec H3C 3J7, Canada
- Neuroscience Division, Centre de recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, Quebec H2X 0A9, Canada
| | - Heberto Quintero
- Department of Neurosciences, Université de Montréal, PO box 6128, Station centre-ville, Montreal, Quebec H3C 3J7, Canada
- Neuroscience Division, Centre de recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, Quebec H2X 0A9, Canada
| | - Adriana Di Polo
- Department of Neurosciences, Université de Montréal, PO box 6128, Station centre-ville, Montreal, Quebec H3C 3J7, Canada
- Neuroscience Division, Centre de recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, Quebec H2X 0A9, Canada
- Department of Ophthalmology, Maisonneuve-Rosemont Research Centre, University of Montreal, Quebec H1T 2M4, Canada
| |
Collapse
|
106
|
Brown HJ, Fan RZ, Bell R, Salehe SS, Martínez CM, Lai Y, Tieu K. Imbalanced mitochondrial dynamics in human and mouse PD brains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.27.635175. [PMID: 39975346 PMCID: PMC11838350 DOI: 10.1101/2025.01.27.635175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Mitochondrial dysfunction is a major pathogenic mechanism in Parkinson's disease (PD). Emerging studies have shown that dysregulation in mitochondrial dynamics (fission/fusion/movement) has a major negative impact on mitochondria - both morphologically and functionally. Partial genetic deletion and pharmacological inhibition of the mitochondrial fission dynamin-related protein 1 (Drp1) have been demonstrated to be beneficial in experimental models of PD. However, the expression of DRP1 (and other fission and fusion genes/proteins) has not been investigated in the brains of Parkinson's patients. Without these data, the question remains whether targeting DRP1 is a valid therapeutic target for PD. To address this gap of knowledge, first, we used post-mortem substantia nigra specimens of Parkinson's patients and controls. Significant increases in the levels of both DNM1L , which encodes DRP1, as well as the DRP1 protein were detected in Parkinson's patients. Immunostaining revealed increased DRP1 expression in dopamine (DA) neurons, astrocytes, and microglia. In addition to DRP1, the levels of other fission and fusion genes/proteins were also altered in Parkinson's patients. To complement these human studies and given the significant role of α-synuclein in PD pathogenesis, we performed time-course studies (3-, 6- and 12-month) using transgenic mice overexpressing human wild-type SNCA under the mouse Thy-1 promoter. As early as 6 months old, we detected an upregulation of Dnm1l and Drp1 in the nigral DA neurons of the SNCA mice as compared to their WT littermates. Furthermore, these mutant animals exhibited more Drp1 phosphorylation at serine 616, which promotes its translocation to mitochondria to induce fragmentation. Together, this study shows an upregulation of DRP1/Drp1 and alterations in other fission/fusion proteins in both human and mouse PD brains, leading to a pro-fission phenotype, providing additional evidence that blocking mitochondrial fission or promoting fusion is a potential therapeutic strategy for PD.
Collapse
|
107
|
Chen Q, Zhang H, Wang D, Liao W, Liu Y, Cai Y, Wang S, Yu M. mTOR-related linc-PMB promotes mitochondrial biogenesis via stabilizing SIRT1 mRNA through binding to the HuR protein. Acta Biochim Biophys Sin (Shanghai) 2025. [PMID: 39910977 DOI: 10.3724/abbs.2024236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025] Open
Abstract
Mitochondrial dysfunction is implicated in numerous disorders, including type 2 diabetes, Alzheimer's disease and cancer. Long non-coding RNAs (lncRNAs) are emerging as pivotal regulators of cellular energy metabolism, yet their roles remain largely unclear. In this study, we identify an lncRNA named linc-PMB, which is associated with mTOR and promotes mitochondrial biogenesis, through microarray analysis. We demonstrate that the knockdown of linc-PMB results in significantly impaired mitochondrial respiration and biogenesis, along with altered expressions of related genes. Conversely, overexpression of linc-PMB markedly increases mitochondrial function. We further reveal that linc-PMB interacts with the RNA-binding protein HuR, promoting the stabilization of SIRT1 mRNA and a substantial increase in SIRT1 expression, which in turn activates the PGC-1α/mtTFA pathway and mitochondrial biogenesis. Collectively, our findings reveal a novel regulatory pathway in which linc-PMB, through its interaction with HuR, modulates the SIRT1/PGC-1α/mtTFA axis to maintain mitochondrial biogenesis and function.
Collapse
Affiliation(s)
- Qian Chen
- Department of Laboratory Medicine, Chengdu Second People's Hospital, Chengdu 610017, China
| | - Huaying Zhang
- Department of Clinical Laboratory, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310000, China
| | - Daokun Wang
- Department of Laboratory Medicine, Chengdu Second People's Hospital, Chengdu 610017, China
| | - Wenjing Liao
- Department of Laboratory Medicine, Chengdu Second People's Hospital, Chengdu 610017, China
| | - Yazhou Liu
- Department of Laboratory Medicine, Chengdu Second People's Hospital, Chengdu 610017, China
| | - Yurui Cai
- Department of Laboratory Medicine, Chengdu Second People's Hospital, Chengdu 610017, China
| | - Siyou Wang
- Department of Laboratory Medicine, Chengdu Second People's Hospital, Chengdu 610017, China
| | - Mengqian Yu
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310000, China
| |
Collapse
|
108
|
Zhang X, Li J, Fu M, Geng X, Hu J, Tang KJ, Chen P, Zou J, Liu X, Zeng B. Dysfunction in mitochondrial electron transport chain drives the pathogenesis of pulmonary arterial hypertension: insights from a multi-omics investigation. Respir Res 2025; 26:29. [PMID: 39833797 PMCID: PMC11749457 DOI: 10.1186/s12931-025-03099-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/02/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is a progressive disorder that can lead to right ventricular failure and severe consequences. Despite extensive efforts, limited progress has been made in preventing the progression of PAH. Mitochondrial dysfunction is implicated in the development of PAH, but the key mitochondrial functional alterations in the pathogenesis have yet to be elucidated. METHODS We integrated three microarray datasets from the Gene Expression Omnibus (GEO), including 222 lung samples (164 PAH, 58 controls), for differential expression and functional enrichment analyses. Machine learning identified key mitochondria-related signaling pathways. PAH and control lung tissue samples were collected, and transcriptomic and metabolomic profiling were performed. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis investigated shared pathways, and canonical correlation analysis assessed gene-metabolite relationships. RESULTS In the GEO datasets, mitochondria-related signaling pathways were significantly enriched in PAH samples, in particular the electron transport chain (ETC) in mitochondrial oxidative phosphorylation system. Notably, the electron transport from cytochrome c to oxygen in ETC was identified as the most crucial mitochondria-related pathway, which was down-regulated in PAH samples. Transcriptomic profiling of the clinical lung tissue analysis identified 14 differentially expressed genes (DEGs) related to mitochondrial function. Metabolomic analysis revealed three differential metabolites in PAH samples: increased 3-phenyllactic acid and ADP, and decreased citric acid. Mitochondria-related genes highly correlated with these metabolites included KIT, OTC, CAMK2A, and CHRNA1. CONCLUSIONS Down-regulation of electron transport from cytochrome c to oxygen in mitochondrial ETC and disruption of the citric acid cycle homeostasis may contribute to PAH pathogenesis. 3-phenyllactic acid emerges as a potential novel diagnostic biomarker for PAH. These findings offer insights for developing novel PAH therapies and diagnostics.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jieling Li
- Department of Pharmacy, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Minyi Fu
- Surgical and Anesthesia Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xijie Geng
- Surgical and Anesthesia Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Junjie Hu
- Department of Thoracic Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ke-Jing Tang
- Department of Pharmacy, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Pan Chen
- Department of Pharmacy, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jianyong Zou
- Department of Thoracic Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Xiaoman Liu
- Department of Pharmacy, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Bo Zeng
- Department of Thoracic Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
109
|
Wu ZJ, Li YC, Zheng Y, Zhou MQ, Li H, Wu SX, Zhao XY, Yang YH, Du L. Differential effects of EPA and DHA on aging-related sarcopenia in mice and possible mechanisms involved. Food Funct 2025; 16:601-616. [PMID: 39704327 DOI: 10.1039/d4fo04341c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Sarcopenia frequently occurs with aging and leads to major adverse impacts in elderly individuals. The protective effects of omega-3 polyunsaturated fatty acids against aging-related sarcopenia have been demonstrated; however, the effect and underlying mechanism of EPA or DHA alone remain inconclusive. Hence, the present study was aimed to clarify the differential effects and possible mechanisms of EPA and DHA on aging-related sarcopenia. In this study, two-month-old and eighteen-month-old male C57BL/6J mice were fed with an AIN-93M diet and an AIN-93M diet containing 1% EPA or 1% DHA for 24 weeks, respectively. The results revealed that EPA and DHA supplementation effectively alleviated the decline in grip strength, skeletal muscle mass, and myofiber cross-sectional areas in aged mice, with EPA exhibiting a better effect against aging-related sarcopenia than DHA. The ROS scavenging role of EPA in aged skeletal muscle was also superior to that of DHA. Additionally, EPA showed a stronger role in improving protein turnover and myogenesis in aged skeletal muscle, as evidenced by suppressing the activation of FoxO3a and NF-κB, blunting the expression levels of muscle atrophy markers MAFbx and MuRF1, activating the PI3K/Akt/mTOR signaling pathway, and elevating MyoD expression. Moreover, EPA also revealed a better effect on inhibiting mitochondria- and endoplasmic reticulum stress-mediated apoptosis in aged skeletal muscle. Furthermore, EPA manifested a more pronounced effect on improving mitochondrial damage of aged skeletal muscle than DHA, and the reason might be due to its superior capability of regulating mitochondrial quality control, as clearly shown by enhancing mitochondrial biogenesis through the AMPK/PGC-1α-dependent pathway, restraining the loss of mitochondrial fusion and fission proteins including Opa1, Mfn2, and Fis1, and promoting mitophagy via the PINK1/Parkin-dependent pathway.
Collapse
Affiliation(s)
- Zi-Jian Wu
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, No. 105 Jiefang Road, Jinan, Shandong, 250013, China.
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, No. 44 Wenhuaxi Road, Jinan, Shandong, 250012, China
| | - Ying-Chao Li
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, No. 44 Wenhuaxi Road, Jinan, Shandong, 250012, China
| | - Yan Zheng
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, No. 105 Jiefang Road, Jinan, Shandong, 250013, China
| | - Meng-Qing Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, No. 44 Wenhuaxi Road, Jinan, Shandong, 250012, China
- Suzhou Centers for Diseases Prevention and Control, No. 498 Qingyunbei Road, Suzhou, Anhui, 234000, China
| | - Hui Li
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, No. 44 Wenhuaxi Road, Jinan, Shandong, 250012, China
| | - Shi-Xiang Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, No. 44 Wenhuaxi Road, Jinan, Shandong, 250012, China
| | - Xin-Yue Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, No. 44 Wenhuaxi Road, Jinan, Shandong, 250012, China
| | - Yu-Hong Yang
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), No. 3501 Daxue Road, Jinan, Shandong, 250353, China.
- Shandong Haizhibao Ocean Science and Technology Co., Ltd., No. 259 Pinghai East Road, Rongcheng City, Shandong, 264300, China
| | - Lei Du
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, No. 105 Jiefang Road, Jinan, Shandong, 250013, China.
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, No. 44 Wenhuaxi Road, Jinan, Shandong, 250012, China
| |
Collapse
|
110
|
Ding Y, Li J, Zhang J, Li P, Bai H, Fang B, Fang H, Huang K, Wang G, Nowell CJ, Voelcker NH, Peng B, Li L, Huang W. Mitochondrial segmentation and function prediction in live-cell images with deep learning. Nat Commun 2025; 16:743. [PMID: 39820041 PMCID: PMC11739661 DOI: 10.1038/s41467-025-55825-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 12/20/2024] [Indexed: 01/19/2025] Open
Abstract
Mitochondrial morphology and function are intrinsically linked, indicating the opportunity to predict functions by analyzing morphological features in live-cell imaging. Herein, we introduce MoDL, a deep learning algorithm for mitochondrial image segmentation and function prediction. Trained on a dataset of 20,000 manually labeled mitochondria from super-resolution (SR) images, MoDL achieves superior segmentation accuracy, enabling comprehensive morphological analysis. Furthermore, MoDL predicts mitochondrial functions by employing an ensemble learning strategy, powered by an extended training dataset of over 100,000 SR images, each annotated with functional data from biochemical assays. By leveraging this large dataset alongside data fine-tuning and retraining, MoDL demonstrates the ability to precisely predict functions of heterogeneous mitochondria from unseen cell types through small sample size training. Our results highlight the MoDL's potential to significantly impact mitochondrial research and drug discovery, illustrating its utility in exploring the complex relationship between mitochondrial form and function within a wide range of biological contexts.
Collapse
Affiliation(s)
- Yang Ding
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Jintao Li
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Jiaxin Zhang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Panpan Li
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Hua Bai
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Bin Fang
- Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, China
- Future Display Institute in Xiamen, Xiamen, China
| | - Haixiao Fang
- Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, China
- Future Display Institute in Xiamen, Xiamen, China
| | - Kai Huang
- Future Display Institute in Xiamen, Xiamen, China
| | - Guangyu Wang
- State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China
| | - Cameron J Nowell
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Nicolas H Voelcker
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Bo Peng
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, China.
| | - Lin Li
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, China.
- Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, China.
- Future Display Institute in Xiamen, Xiamen, China.
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, China.
- Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, China.
- Future Display Institute in Xiamen, Xiamen, China.
| |
Collapse
|
111
|
Bao LL, Yu YQ, González-Acera M, Patankar JV, Giessl A, Sturm G, Kühl AA, Atreya R, Erkert L, Gámez-Belmonte R, Krug SM, Schmid B, Tripal P, Chiriac MT, Hildner K, Siegmund B, Wirtz S, Stürzl M, Mohamed Abdou M, Trajanoski Z, Neurath MF, Zorzano A, Becker C. Epithelial OPA1 links mitochondrial fusion to inflammatory bowel disease. Sci Transl Med 2025; 17:eadn8699. [PMID: 39813315 DOI: 10.1126/scitranslmed.adn8699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 10/01/2024] [Accepted: 12/18/2024] [Indexed: 01/18/2025]
Abstract
Dysregulation at the intestinal epithelial barrier is a driver of inflammatory bowel disease (IBD). However, the molecular mechanisms of barrier failure are not well understood. Here, we demonstrate dysregulated mitochondrial fusion in intestinal epithelial cells (IECs) of patients with IBD and show that impaired fusion is sufficient to drive chronic intestinal inflammation. We found reduced expression of mitochondrial fusion-related genes, such as the dynamin-related guanosine triphosphatase (GTPase) optic atrophy 1 (OPA1), and fragmented mitochondrial networks in crypt IECs of patients with IBD. Mice with Opa1 deficiency in the gut epithelium (Opa1i∆IEC) spontaneously developed chronic intestinal inflammation with mucosal ulcerations and immune cell infiltration. Intestinal inflammation in Opa1i∆IEC mice was driven by microbial translocation and associated with epithelial progenitor cell death and gut barrier dysfunction. Opa1-deficient epithelial cells and human organoids exposed to a pharmacological OPA1 inhibitor showed disruption of the mitochondrial network with mitochondrial fragmentation and changes in mitochondrial size, ultrastructure, and function, resembling changes observed in patient samples. Pharmacological inhibition of the GTPase dynamin-1-like protein in organoids derived from Opa1i∆IEC mice partially reverted this phenotype. Together, our data demonstrate a role for epithelial OPA1 in regulating intestinal immune homeostasis and epithelial barrier function. Our data provide a mechanistic explanation for the observed mitochondrial dysfunction in IBD and identify mitochondrial fusion as a potential therapeutic target in this disease.
Collapse
Affiliation(s)
- Li-Li Bao
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91052 Erlangen, Germany
| | - Yu-Qiang Yu
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91052 Erlangen, Germany
| | - Miguel González-Acera
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91052 Erlangen, Germany
| | - Jay V Patankar
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91052 Erlangen, Germany
| | - Andreas Giessl
- Department of Ophthalmology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Gregor Sturm
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Anja A Kühl
- Medizinische Klinik für Gastroenterologie, Infektiologie und Rheumatologie, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- iPATH.Berlin, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117 Berlin, Germany
| | - Raja Atreya
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91052 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
| | - Lena Erkert
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91052 Erlangen, Germany
| | - Reyes Gámez-Belmonte
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91052 Erlangen, Germany
| | - Susanne M Krug
- Medizinische Klinik für Gastroenterologie, Infektiologie und Rheumatologie, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Benjamin Schmid
- Optical Imaging Centre Erlangen (OICE), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
| | - Philipp Tripal
- Optical Imaging Centre Erlangen (OICE), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
| | - Mircea T Chiriac
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91052 Erlangen, Germany
| | - Kai Hildner
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91052 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
| | - Britta Siegmund
- Medizinische Klinik für Gastroenterologie, Infektiologie und Rheumatologie, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Stefan Wirtz
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91052 Erlangen, Germany
| | - Michael Stürzl
- Division of Molecular and Experimental Surgery, Department of Surgery, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Mariam Mohamed Abdou
- Division of Molecular and Experimental Surgery, Department of Surgery, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Zlatko Trajanoski
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Markus F Neurath
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91052 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
| | - Antonio Zorzano
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Christoph Becker
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91052 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
| |
Collapse
|
112
|
Hu J, Li J, Zheng S, Chen Y, Zhang Y, Deng J, Fan J, Xu H, Lu Y, Liu X. Oxidative phosphorylation decline and mitochondrial dynamics disequilibrium are involved in chicken large white follicle atresia. Theriogenology 2025; 232:87-95. [PMID: 39520960 DOI: 10.1016/j.theriogenology.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/24/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
In domestic hens, the atresia of large white follicles (LWFs) directly affects the number of follicles that enter the hierarchical development and ovulation. Figuring out factors responsible for LWFs atresia is helpful to improve egg production of hens. At the LWF stage, yellow yolk begins to be deposited into the follicles via receptor mediated endocytosis, which requires large amounts of ATP. Mitochondrial oxidative phosphorylation (OXPHOS) is the primary source of ATP for follicular development. However, it is not clear whether the OXPHOS is changed along LWFs atresia. In this study, firstly, differences in morphological appearance, histology, cell proliferation, apoptosis, OXPHOS and mitochondrial dynamics between LWFs and atretic large white follicles (ALWFs) in hens at the peak laying stage (35W) were determined to elucidate whether OXPHOS changes in ALWFs. Then, these differences of LWFs between the peak laying hens (35W-LWFs) and the late laying hens (70W-LWFs) were detected to confirm whether OXPHOS changes during LWFs atresia. The results showed that ALWFs exhibited a wrinkled surface with several hemorrhage spots, and numerous intercellular vacuoles, as well as severe nuclear pyknosis. Compared to LWFs, a higher cell apoptosis rate and a lower proliferation rate were observed in ALWFs. In ALWFs, OXPHOS declined as manifested by reductions in ATP levels, ATP synthetase abundance, NAD+, NADH and NAD+/NADH ratio, and mRNA levels of genes associated with OXPHOS complexes I-V. Meanwhile, mitochondrial dynamics disequilibrium was detected in ALWFs as the expression levels of proteins and genes related to mitochondrial fusion (MFN1, MFN2, and OPA1) decreased, while the expression levels of proteins and genes related to mitochondrial fission (DRP1 and FIS1) increased. Further, compared to 35W-LWFs, 70W-LWFs showed a histology resembling to ALWFs, manifested as a slightly loosen structure of granulosa layers, and a lower cell proliferation rate. Moreover, both lower OXPHOS and impaired mitochondrial dynamics were detected in 70W-LWFs. In conclusion, our results indicated that OXPHOS decline and mitochondrial dynamics disequilibrium are involved in LWFs atresia in laying hens.
Collapse
Affiliation(s)
- Jianing Hu
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Jie Li
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Shanyou Zheng
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yan Chen
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yucheng Zhang
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Jiguang Deng
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Jiasheng Fan
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Huiyan Xu
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yangqing Lu
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Xingting Liu
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, China.
| |
Collapse
|
113
|
Sheng Z, Zhang R, Ji Z, Liu Z, Zhou Y. Identification of mitophagy-related key genes and their correlation with immune cell infiltration in acute myocardial infarction via bioinformatics analysis. Front Cardiovasc Med 2025; 11:1501608. [PMID: 39872885 PMCID: PMC11770045 DOI: 10.3389/fcvm.2024.1501608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/06/2024] [Indexed: 01/30/2025] Open
Abstract
Background Acute myocardial infarction (AMI), a subset of acute coronary syndrome, remains the major cause of mortality worldwide. Mitochondrial dysfunction is critically involved in AMI progression, and mitophagy plays a vital role in eliminating damaged mitochondria. This study aimed to explore mitophagy-related biomarkers and their potential molecular basis in AMI. Methods AMI datasets (GSE24519 and GSE34198) from the Gene Expression Omnibus database were combined and the batch effects were removed. Differentially expressed genes (DEGs) in AMI were selected, intersected with mitophagy-related genes for mitophagy-related DEGs (MRDEGs), and then subjected to enrichment analyses. Next, the MRDEGs were screened using machine learning methods (logistic regression analysis, RandomForest, least absolute shrinkage and selection operator) to construct a diagnostic risk model and select the key genes in AMI. The diagnostic efficacy of the model was evaluated using a nomogram. Moreover, the infiltration patterns of different immune cells in two risk groups were compared. We also explored the interactions between the key genes themselves or with miRNAs/transcription factors (TFs) and drug compounds and visualized the protein structure of the key genes. Finally, we explored and validated the expression of key genes in plasma samples of patients with an AMI and healthy individuals. Results We screened 28 MRDEGs in AMI. Based on machine learning methods, 12 key genes were screened for the diagnostic risk model, including AGPS, CA2, CAT, LTA4H, MYO9B, PRDX6, PYGB, SIRT3, TFEB, TOM1, UBA52, and UBB. The nomogram further revealed the accuracy of the model for AMI diagnosis. Moreover, we found a lower abundance of immune cells such as gamma delta T and natural killer cells in the high-risk group, and the expression of key genes showed a significant correlation with immune infiltration levels in both groups. Finally, 64 miRNA-mRNA pairs, 75 TF-mRNA pairs, 119 RNA-binding protein-mRNA pairs, and 32 drug-mRNA pairs were obtained in the interaction networks. Conclusions In total, 12 key MRDEGs were identified and a risk model was constructed for AMI diagnosis. The findings of this study might provide novel biomarkers for improving the detection of AMI.
Collapse
Affiliation(s)
- Zulong Sheng
- Department of Cardiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | | | | | | | | |
Collapse
|
114
|
Meng L, Wen W. Mitochondrial Dysfunction in Diabetic Periodontitis: Mechanisms and Therapeutic Potential. J Inflamm Res 2025; 18:115-126. [PMID: 39810976 PMCID: PMC11730282 DOI: 10.2147/jir.s492041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 11/05/2024] [Indexed: 01/16/2025] Open
Abstract
Diabetic periodontitis is a common oral complication of diabetes characterized by progressive destruction of periodontal tissues. Recent evidence suggests that mitochondrial dysfunction plays a crucial role in the pathogenesis and progression of this condition. This review aims to systematically summarize the role and potential mechanisms of mitochondrial dysfunction in diabetic periodontitis. We first explore the relationship between diabetes and mitochondrial dysfunction, then analyze the specific manifestations of mitochondrial dysfunction in diabetic periodontitis, including morphological changes, energy metabolism disorders, increased oxidative stress, and enhanced apoptosis. We further delve into the connections between mitochondrial dysfunction and the pathogenic mechanisms of diabetic periodontitis, such as exacerbated inflammatory responses, decreased tissue repair capacity, and autophagy dysregulation. Finally, we discuss potential therapeutic targets based on mitochondrial function, including antioxidant strategies, mitochondria-targeted drugs, and autophagy regulators. We also propose future research directions, emphasizing the need for in-depth exploration of molecular mechanisms, development of new diagnostic markers and therapeutic strategies, and personalized treatment approaches. This review provides new insights into understanding the pathogenic mechanisms of diabetic periodontitis and offers a theoretical basis for developing targeted prevention and treatment strategies to improve oral health in diabetic patients.
Collapse
Affiliation(s)
- Leilei Meng
- Anhui Province Engineering Research Center for Dental Materials and Application, School of Stomatology, Wannan Medical College, Wuhu, 241002, People’s Republic of China
- Department of Pathophysiology, Anhui Medical University, Hefei, 230000, People’s Republic of China
| | - Wenjie Wen
- Anhui Province Engineering Research Center for Dental Materials and Application, School of Stomatology, Wannan Medical College, Wuhu, 241002, People’s Republic of China
| |
Collapse
|
115
|
Chen J, Liang S, Li C, Li B, He M, Li K, Fu W, Li S, Mi H. Mitochondrial damage causes inflammation via cGAS-STING signaling in ketamine-induced cystitis. Inflamm Res 2025; 74:6. [PMID: 39762437 PMCID: PMC11703929 DOI: 10.1007/s00011-024-01973-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/21/2024] [Accepted: 11/25/2024] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Mitochondrial dysfunction and damage can result in the release of mitochondrial DNA (mtDNA) into the cytoplasm, which subsequently activates the cGAS-STING pathway, promoting the onset of inflammatory diseases. Various factors, such as oxidative stress, viral infection, and drug toxicity, have been identified as inducers of mitochondrial damage. This study aims to investigate the role of mtDNA as a critical inflammatory mediator in the pathogenesis of ketamine (KET)-induced cystitis (KC) through the cGAS-STING pathway. METHODS To investigate the role of the cGAS-STING pathway in KET-induced cystitis, we assessed the expression of cGAS and STING in rats with KET cystitis. Additionally, we evaluated STING expression in conditionally deficient Simian Virus-transformed Human Uroepithelial Cell Line 1 (SV-HUC-1) cells in vitro. Morphological changes in mitochondria were examined using transmission electron microscopy. We measured intracellular reactive oxygen species (ROS) production through flow cytometry and immunofluorescence techniques. Furthermore, alterations in associated inflammatory factors and cytokines were quantified using real-time quantitative PCR with fluorescence detection. RESULTS We observed up-regulation of cGAS and STING expressions in the bladder tissue of rats in the KET group, stimulation with KET also led to increased cGAS and STING levels in SV-HUC-1 cells. Notably, the knockdown of STING inhibited the nuclear translocation of NF-κB p65 and IRF3, resulting in a decrease in the expression of inflammatory cytokines, including IL-6, IL-8, and CXCL10. Additionally, KET induced damage to the mitochondria of SV-HUC-1 cells, facilitating the release of mtDNA into the cytoplasm. This significant depletion of mtDNA inhibited the activation of cGAS-STING pathway, subsequently affecting the expression of NF-κB p65 and IRF3. Importantly, the reintroduction of mtDNA after STING knockdown partially restored the inflammatory response. CONCLUSION Our findings confirmed the activation of the cGAS-STING pathway in KC rats and revealed mitochondrial damage in vitro. These results highlight the involvement of the cGAS-STING pathway in the pathogenesis of KC, suggesting its potential as a therapeutic target for intervention.
Collapse
Affiliation(s)
- Jinji Chen
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Shengsheng Liang
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Cheng Li
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Bowen Li
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Mingdong He
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Kezhen Li
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Weijin Fu
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Shenghua Li
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Hua Mi
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China.
| |
Collapse
|
116
|
Zhou J, Xi Y, Wu T, Zeng X, Yuan J, Peng L, Fu H, Zhou C. A potential therapeutic approach for ulcerative colitis: targeted regulation of mitochondrial dynamics and mitophagy through phytochemicals. Front Immunol 2025; 15:1506292. [PMID: 39840057 PMCID: PMC11747708 DOI: 10.3389/fimmu.2024.1506292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 12/02/2024] [Indexed: 01/23/2025] Open
Abstract
Mitochondria are important organelles that regulate cellular energy and biosynthesis, as well as maintain the body's response to environmental stress. Their dynamics and autophagy influence occurrence of cellular function, particularly under stressful conditions. They can generate reactive oxygen species (ROS) which is a major contributor to inflammatory diseases such as ulcerative colitis (UC). In this review, we discuss the key effects of mitochondrial dynamics and mitophagy on the pathogenesis of UC, with a particular focus on the cellular energy metabolism, oxidative stress, apoptosis, and immunoinflammatory activities. The therapeutic efficacy of existing drugs and phytochemicals targeting the mitochondrial pathway are discussed to reveal important insights for developing therapeutic strategies for treating UC. In addition, new molecular checkpoints with therapeutic potential are identified. We show that the integration of mitochondrial biology with the clinical aspects of UC may generate ideas for enhancing the clinical management of UC.
Collapse
Affiliation(s)
- Jianping Zhou
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuting Xi
- Zigong Hospital of Traditional Chinese Medicine, Zigong, China
| | - Ting Wu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoyu Zeng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jun Yuan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lei Peng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hao Fu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ce Zhou
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
117
|
Verhoeven N, Oshima Y, Cartier E, Bippes CC, Neutzner A, Boyman L, Karbowski M. Outer mitochondrial membrane E3 Ub ligase MARCH5 controls de novo peroxisome biogenesis. Dev Cell 2025; 60:40-50.e5. [PMID: 39423819 PMCID: PMC11706706 DOI: 10.1016/j.devcel.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 05/03/2024] [Accepted: 09/10/2024] [Indexed: 10/21/2024]
Abstract
We report that the outer mitochondrial membrane (OMM)-associated E3 Ub ligase MARCH5 is vital for generating mitochondria-derived pre-peroxisomes. In human immortalized cells, MARCH5 knockout leads to the accumulation of immature peroxisomes, reduced fatty-acid-induced peroxisomal biogenesis, and abnormal peroxisome biogenesis in MARCH5/Pex14 and MARCH5/Pex3 dko cells. Upon fatty-acid-induced peroxisomal biogenesis, MARCH5 redistributes to peroxisomes, and ubiquitination activity-deficient mutants of MARCH5 accumulate on peroxisomes containing high levels of the OMM protein Tom20 (mitochondria-derived pre-peroxisomes). Similarly, depletion of peroxisome biogenesis factor Pex14 leads to the accumulation of MARCH5- and Tom20-positive pre-peroxisomes, whereas no peroxisomes are detected in MARCH5/Pex14 dko cells. Inconsistent with MARCH5 merely acting as a quality factor, mitochondrial decline is not evident in tested models. Furthermore, reduced expression of peroxisomal proteins is detected in MARCH5-/- cells, whereas some of these proteins are stabilized in peroxisome biogenesis deficiency models lacking MARCH5 expression. Thus, MARCH5 is central for mitochondria-dependent peroxisome biogenesis.
Collapse
Affiliation(s)
- Nicolas Verhoeven
- Center for Biomedical Engineering and Technology, University Hospital Basel, University of Basel, Basel, Switzerland; Department of Biochemistry and Molecular Biology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Yumiko Oshima
- Center for Biomedical Engineering and Technology, University Hospital Basel, University of Basel, Basel, Switzerland; Department of Biochemistry and Molecular Biology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Etienne Cartier
- Center for Biomedical Engineering and Technology, University Hospital Basel, University of Basel, Basel, Switzerland; Department of Biochemistry and Molecular Biology, University Hospital Basel, University of Basel, Basel, Switzerland
| | | | - Albert Neutzner
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Liron Boyman
- Center for Biomedical Engineering and Technology, University Hospital Basel, University of Basel, Basel, Switzerland; Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Mariusz Karbowski
- Center for Biomedical Engineering and Technology, University Hospital Basel, University of Basel, Basel, Switzerland; Department of Biochemistry and Molecular Biology, University Hospital Basel, University of Basel, Basel, Switzerland; Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
118
|
Xu M, Feng P, Yan J, Li L. Mitochondrial quality control: a pathophysiological mechanism and potential therapeutic target for chronic obstructive pulmonary disease. Front Pharmacol 2025; 15:1474310. [PMID: 39830343 PMCID: PMC11739169 DOI: 10.3389/fphar.2024.1474310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 12/11/2024] [Indexed: 01/22/2025] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a prevalent chronic respiratory disease worldwide. Mitochondrial quality control mechanisms encompass processes such as mitochondrial biogenesis, fusion, fission, and autophagy, which collectively maintain the quantity, morphology, and function of mitochondria, ensuring cellular energy supply and the progression of normal physiological activities. However, in COPD, due to the persistent stimulation of harmful factors such as smoking and air pollution, mitochondrial quality control mechanisms often become deregulated, leading to mitochondrial dysfunction. Mitochondrial dysfunction plays a pivotal role in the pathogenesis of COPD, contributing toinflammatory response, oxidative stress, cellular senescence. However, therapeutic strategies targeting mitochondria remain underexplored. This review highlights recent advances in mitochondrial dysfunction in COPD, focusing on the role of mitochondrial quality control mechanisms and their dysregulation in disease progression. We emphasize the significance of mitochondria in the pathophysiological processes of COPD and explore potential strategies to regulate mitochondrial quality and improve mitochondrial function through mitochondrial interventions, aiming to treat COPD effectively. Additionally, we analyze the limitations and challenges of existing therapeutic strategies, aiming to provide new insights and methods for COPD treatment.
Collapse
Affiliation(s)
- Mengjiao Xu
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Peng Feng
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Ferguson Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jun Yan
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Lei Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
119
|
Ying Q, Luo H, Xie Z, Huang Y, Hu H, Jin M, Xu K, Pang Y, Song Y, Zhang X. SIRT4 Protects Retina Against Excitotoxic Injury by Promoting OPA1-Mediated Müller Glial Cell Mitochondrial Fusion and GLAST Expression. Invest Ophthalmol Vis Sci 2025; 66:62. [PMID: 39873651 PMCID: PMC11781329 DOI: 10.1167/iovs.66.1.62] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/31/2024] [Indexed: 01/30/2025] Open
Abstract
Purpose This study aimed to investigate the role of SIRT4 in retinal protection, specifically its ability to mitigate excitotoxic damage to Müller glial cells through the regulation of mitochondrial dynamics and glutamate transporters (GLASTs). Methods A model of retinal excitatory neurotoxicity was established in mice. Proteins related to mitochondrial dynamics, GLAST, and SIRT4 were analyzed on days 0, 1, 3, and 5 following toxic injury. The influence of SIRT4 on mitochondrial dynamics-related proteins and GLAST was examined by inducing SIRT4 overexpression through intraperitoneal injection of resveratrol or by using SIRT4 knockout (KO) mice. Additionally, the effects of upregulating and downregulating SIRT4 expression in rat Müller glial cell lines (rMC-1) were explored via lentiviral vector transfection to assess changes in mitochondrial morphology and GLAST expression. Results After excitotoxic injury to the mouse retina, the retinal thickness and structure were disrupted, the number of retinal ganglion cells (RGCs) decreased, and Müller glial cells were activated by day 1. The levels of OPA1, GLAST, and SIRT4 proteins peaked on the first day after injury and then gradually decreased, indicating a synchronized dynamic trend. The upregulation of SIRT4 expression promoted OPA1 and GLAST protein expression, thereby alleviating retinal excitotoxic injury. Furthermore, the upregulation of SIRT4 expression promoted mitochondrial fusion and increased GLAST expression in rMC-1 cells, reducing cellular excitotoxic damage. Conversely, downregulation of SIRT4 had the opposite effect. Conclusions SIRT4 plays a significant role in mitigating excitotoxic damage in the retina, modulating Müller glial cell injury by regulating mitochondrial dynamics and glutamate transporter expression, ultimately influencing retinal health.
Collapse
Affiliation(s)
- Qian Ying
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China
| | - Hongdou Luo
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China
| | - Zhi Xie
- Xingguo Hospital Affiliated to Gannan Medical University, Xingguo, China
| | - Yi Huang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China
| | - Haijian Hu
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China
| | - Ming Jin
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China
| | - Ke Xu
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China
| | - Yulian Pang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China
| | - Yuning Song
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China
| | - Xu Zhang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China
| |
Collapse
|
120
|
Gupta S, Cassel SL, Sutterwala FS, Dagvadorj J. Regulation of the NLRP3 inflammasome by autophagy and mitophagy. Immunol Rev 2025; 329:e13410. [PMID: 39417249 DOI: 10.1111/imr.13410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The NLRP3 inflammasome is a multiprotein complex that upon activation by the innate immune system drives a broad inflammatory response. The primary initial mediators of this response are pro-IL-1β and pro-IL-18, both of which are in an inactive form. Formation and activation of the NLRP3 inflammasome activates caspase-1, which cleaves pro-IL-1β and pro-IL-18 and triggers the formation of gasdermin D pores. Gasdermin D pores allow for the secretion of active IL-1β and IL-18 initiating the organism-wide inflammatory response. The NLRP3 inflammasome response can be beneficial to the host; however, if the NLRP3 inflammasome is inappropriately activated it can lead to significant pathology. While the primary components of the NLRP3 inflammasome are known, the precise details of assembly and activation are less well defined and conflicting. Here, we discuss several of the proposed pathways of activation of the NLRP3 inflammasome. We examine the role of subcellular localization and the reciprocal regulation of the NLRP3 inflammasome by autophagy. We focus on the roles of mitochondria and mitophagy in activating and regulating the NLRP3 inflammasome. Finally, we detail the impact of pathologic NLRP3 responses in the development and manifestations of pulmonary disease.
Collapse
Affiliation(s)
- Suman Gupta
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Suzanne L Cassel
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Fayyaz S Sutterwala
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Jargalsaikhan Dagvadorj
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
121
|
Trajano LADSN, Siqueira PB, Rodrigues MMDS, Pires BRB, da Fonseca ADS, Mencalha AL. Does photobiomodulation alter mitochondrial dynamics? Photochem Photobiol 2025; 101:21-37. [PMID: 38774941 DOI: 10.1111/php.13963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 01/18/2025]
Abstract
Mitochondrial dysfunction is one of the leading causes of disease development. Dysfunctional mitochondria limit energy production, increase reactive oxygen species generation, and trigger apoptotic signals. Photobiomodulation is a noninvasive, nonthermal technique involving the application of monochromatic light with low energy density, inducing non-thermal photochemical effects at the cellular level, and it has been used due to its therapeutic potential. This review focuses on the mitochondrial dynamic's role in various diseases, evaluating the possible therapeutic role of low-power lasers (LPL) and light-emitting diodes (LED). Studies increasingly support that mitochondrial dysfunction is correlated with severe neurodegenerative diseases such as Parkinson's, Huntington's, Alzheimer's, and Charcot-Marie-Tooth diseases. Furthermore, a disturbance in mitofusin activity is also associated with metabolic disorders, including obesity and type 2 diabetes. The effects of PBM on mitochondrial dynamics have been observed in cells using a human fibroblast cell line and in vivo models of brain injury, diabetes, spinal cord injury, Alzheimer's disease, and skin injury. Thus, new therapies aiming to improve mitochondrial dynamics are clinically relevant. Several studies have demonstrated that LPL and LED can be important therapies to improve health conditions when there is dysfunction in mitochondrial dynamics.
Collapse
Affiliation(s)
- Larissa Alexsandra da Silva Neto Trajano
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
- Pró-Reitoria de Pesquisa e pós-graduação, Mestrado Profissional em Ciências Aplicadas em Saúde, Universidade de Vassouras, Rio de Janeiro, Brazil
| | - Priscyanne Barreto Siqueira
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mariana Moreno de Sousa Rodrigues
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruno Ricardo Barreto Pires
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adenilson de Souza da Fonseca
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Ciências Fisiológicas, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andre Luiz Mencalha
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
122
|
Tian B, Wu Y, Du X, Zhang Y. Osteosarcoma stem cells resist chemotherapy by maintaining mitochondrial dynamic stability via DRP1. Int J Mol Med 2025; 55:10. [PMID: 39513621 PMCID: PMC11554380 DOI: 10.3892/ijmm.2024.5451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/27/2024] [Indexed: 11/15/2024] Open
Abstract
Osteosarcoma malignancy exhibits significant heterogeneity, comprising both osteosarcoma stem cells (OSCs) and non‑OSCs. OSCs demonstrate increased resistance to chemotherapy due to their distinctive cellular and molecular characteristics. Alterations in mitochondrial morphology and homeostasis may enhance chemoresistance by modulating metabolic and regulatory processes. However, the relationship between mitochondrial homeostasis and chemoresistance in OSCs remains to be elucidated. The present study employed high‑resolution microscopy to perform multi‑layered image reconstructions for a quantitative analysis of mitochondrial morphology. The results indicated that OSCs exhibited larger mitochondria in comparison with non‑OSCs. Furthermore, treatment of OSCs with cisplatin (CIS) or doxorubicin (DOX) resulted in preserved mitochondrial morphological stability, which was not observed in non‑OSCs. This finding suggested a potential association between mitochondrial homeostasis and chemoresistance. Further analysis indicated that dynamin‑related protein 1 (DRP1) might play a pivotal role in maintaining the stability of mitochondrial homeostasis in OSCs. Depletion of DRP1 resulted in the disruption of mitochondrial stability when OSCs were treated with CIS or DOX. Additionally, knocking out DRP1 in OSCs led to a reduction in chemoresistance. These findings unveil a novel mechanism underlying chemoresistance in osteosarcoma and suggest that targeting DRP1 could be a promising therapeutic strategy to overcome chemoresistance in OSCs. This provided valuable insights for enhancing treatment outcomes among patients with osteosarcoma.
Collapse
Affiliation(s)
- Boren Tian
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, P.R. China
| | - Yaxuan Wu
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, P.R. China
| | - Xiaoyun Du
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, P.R. China
| | - Yan Zhang
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, P.R. China
| |
Collapse
|
123
|
Bandaru M, Sultana OF, Islam MA, Rainier A, Reddy PH. Rlip76 in ageing and Alzheimer's disease: Focus on oxidative stress and mitochondrial mechanisms. Ageing Res Rev 2025; 103:102600. [PMID: 39617058 DOI: 10.1016/j.arr.2024.102600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/12/2024] [Accepted: 11/25/2024] [Indexed: 12/13/2024]
Abstract
RLIP76 (Rlip), a stress-responsive protein, plays a multifaceted role in cellular function. This protein acts primarily as a glutathione-electrophile conjugate (GS-E) transporter, crucial for detoxifying hazardous compounds and converting them into mercapturic acids. RLIP76 also modulates cytoskeletal motility and membrane plasticity through its role in the Ral-signaling pathway, interacting with RalA and RalB, key small GTPases involved in growth and metastasis. Beyond its ATP-dependent transport functions in various tissues, RLIP76 also demonstrates GTPase Activating Protein (GAP) activity towards Rac1 and Cdc42, with a preference for Ral-GTP over Ral-GDP. Its functions span critical physiological processes including membrane dynamics, oxidative stress response, and mitochondrial dynamics. The protein's widespread expression and evolutionary conservation underscore its significance. Our lab discovered that Rlip interacts with Alzheimer's disease (AD) proteins, amyloid beta and phosphorylated and induce oxidative stress, mitochondrial dysfnction and synaptic damage in AD. Our in vitro studies revealed that overexpression of Rlip reduces mitochondrial abnormalities. Further, our in vivo studies (Rlip+/- mice) revealed that a partial reduction of Rlip in mice (Rlip+/-), leads to mitochondrial abnormalities, elevated oxidative stress, and cognitive deficits resembling late-onset AD, emphasizing the protein's crucial role in neuronal health and disease. Finally, we discuss the experimental cross-breedings of overexpression of mice Rlip TG/TG or Rlip + /- mice with Alzheimer's disease models - earlyonset 5XFAD, late-onset APPKI and Tau transgenic mice, providing new insights into RLIP76's role in AD progression and development. This review summarizes RLIP76's structure, function, and cellular pathways, highlighting its implications in AD and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Madhuri Bandaru
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Omme Fatema Sultana
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Md Ariful Islam
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Alvir Rainier
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, United States; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA 5. Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
124
|
Wang W, Yuan G, Li G, Zhao T, Chen Y, Xu Y. Cigarette smoking extract induces mitochondrial dysfunction and apoptosis in HUVECs via the Sirt1-SHH axis. Hum Exp Toxicol 2025; 44:9603271251332251. [PMID: 40170556 DOI: 10.1177/09603271251332251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
IntroductionCigarette smoking extract (CSE) can cause endothelial cell (EC) dysfunction, and then promote the occurrence and development of atherosclerosis. However, the molecular mechanisms underlying CSE-induced EC dysfunction are unknown. Sirt1, as a deacetylase, is involved in various biological processes of ECs. Therefore, this study investigated whether CSE induces apoptosis and mitochondrial dysfunction in human umbilical vein endothelial cells (HUVECs) via Sirt1-dependent mechanisms.MethodsHUVEC activity was assessed using MTT and crystal violet staining following treatment with different concentrations of CSE. Lentiviral transfection technology was used to generate HUVECs overexpressing Sirt1. Apoptosis was detected by Tunnel staining. MitoTracker™ Deep Red FM and JC-1 were used to assess mitochondrial structure and membrane potential. ELISA was used to detect the expression of superoxide dismutase (SOD) and malondialdehyde (MDA). qPCR was used to determine mRNA expression. Atherosclerosis was evaluated by oil red O staining in ApoE-KO mice after cigarette smoke exposure.ResultsCSE decreased Sirt1 and sonic hedgehog (SHH) expression, leading to mitochondrial dysfunction and apoptosis in HUVECs. Overexpressing Sirt1 or activating the SHH signaling pathway attenuated CSE-induced apoptosis and mitochondrial dysfunction. However, inhibiting the SHH signaling axis attenuated the protective effect of Sirt1 overexpression on CSE-induced apoptosis and mitochondrial dysfunction. In vivo studies also showed that cigarette smoke exacerbated atherosclerosis in ApoE-KO mice, downregulating Sirt1, SHH, and Gli1 expression in the aorta. Additionally, cigarette smoke increased Bax expression and decreased Bcl-2 expression in ApoE-KO mice aortas.DiscussionsSmoking can affect all stages of the atherosclerosis process, and the specific mechanism remains unclear. This study confirms that CSE can induce mitochondrial dysfunction and apoptosis of HUVECs by reducing Sirt1 expression and inhibiting SHH signaling activation. These findings provide new insights into the prevention and treatment of smoking-induced atherosclerosis.
Collapse
Affiliation(s)
- Weiming Wang
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, China
- Department of General Surgery (Vascular Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases) Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Gang Yuan
- Department of Intervention Radiology, Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou, China
| | - Guang Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases) Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Tingting Zhao
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, China
| | - Yue Chen
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Youhua Xu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, China
| |
Collapse
|
125
|
Hu D, Cui Y, Hou X, Wang X, Shen Z, Pang H, Ge Y, Ning H. Drp1-Dependent Mitochondrial Fission Contributes to Lactic Acid-Induced Chicken Cardiomyocyte Damage. J Biochem Mol Toxicol 2025; 39:e70128. [PMID: 39756064 DOI: 10.1002/jbt.70128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/18/2024] [Accepted: 12/25/2024] [Indexed: 01/07/2025]
Abstract
Enhanced glycolysis and elevated lactic acid (LA) production are observed during sudden death syndrome (SDS) in broilers. However, the mechanism underlying LA-induced cardiomyocyte damage and heart failure in fast-growing broilers remains unclear. In this study, chicken embryo cardiomyocytes (CECs) were cultured and treated with LA to investigate LA-induced CEC injury and its mechanism, aiming to develop strategies to prevent LA-induced SDS in broilers. Results showed that LA inhibited CEC proliferation and contraction whereas inducing apoptosis. Furthermore, LA disrupted mitochondrial ultrastructure, reduced mitochondrial membrane potential, activated mitophagy, and disturbed mitochondrial dynamics. Treatment with Mdivi-1, a selective Drp1 inhibitor, improved CEC viability, restored mitochondrial network integrity, reduced reactive oxygen species production, and inhibited LA-induced apoptosis. These findings suggest that LA-induced cardiomyocyte injury during SDS in broilers is associated with mitochondrial damage and increased mitochondrial fission. The inhibition of mitochondrial hyperfission by Mdivi-1 effectively preserves CEC morphology, structure, and function, playing a critical role in preventing LA-induced damage. This study provides a foundation for strategies to prevent and control SDS in broilers.
Collapse
Affiliation(s)
- Dongfang Hu
- College of Animal Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Yunli Cui
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Xueke Hou
- College of Animal Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Xueying Wang
- College of Animal Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Zihui Shen
- College of Animal Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Huiqing Pang
- College of Animal Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Yaming Ge
- College of Animal Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Hongmei Ning
- College of Animal Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| |
Collapse
|
126
|
Shi Y, Zeng Y, Zuo R, Wu S, Zhang L, Zhang Y, Wang T. Antimicrobial peptide Mt 5 inhibits human hepatocellular carcinoma cell HepG2 proliferation. Biochem Biophys Res Commun 2025; 742:151126. [PMID: 39647456 DOI: 10.1016/j.bbrc.2024.151126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/05/2024] [Accepted: 12/02/2024] [Indexed: 12/10/2024]
Abstract
The Mt 5 peptide is an antimicrobial peptide, its effect on hepatocellular carcinoma (HCC) and its underlying mechanism is not understood. Therefore, this study aimed to investigate the effects of the Mt 5 peptide in a human HCC cell line, namely HepG2, in vitro. Notably, Mt 5 markedly reduced the growth of HepG2 cells by disrupting the cell membrane while exhibiting minimal toxicity to healthy liver cells. Furthermore, Mt 5 treatment increased intracellular reactive oxygen species levels and decreased the mitochondria membrane potential, suggesting the induction of mitochondrial damage-mediated apoptosis. Additionally, Mt 5-mediated cytoskeleton disruption suggested the potential inhibition of cell metastasis. Altogether, the findings of this study indicate the potential of the Mt 5 peptide as a drug candidate against HCC.
Collapse
Affiliation(s)
- Yanping Shi
- School of Basic Medical Sciences, Guizhou Medical University, 561113, Anshun, China; Department of Microbiology, China; Key Laboratory of Medical Microbiology and Parasitology of Education Department of Guizhou, China.
| | - Ye Zeng
- School of Basic Medical Sciences, Guizhou Medical University, 561113, Anshun, China; Department of Microbiology, China; Key Laboratory of Medical Microbiology and Parasitology of Education Department of Guizhou, China
| | - Ruifeng Zuo
- School of Basic Medical Sciences, Guizhou Medical University, 561113, Anshun, China; Department of Microbiology, China
| | - Shenghua Wu
- School of Basic Medical Sciences, Guizhou Medical University, 561113, Anshun, China; Department of Microbiology, China; Key Laboratory of Medical Microbiology and Parasitology of Education Department of Guizhou, China
| | - Lihua Zhang
- School of Basic Medical Sciences, Guizhou Medical University, 561113, Anshun, China; Department of Microbiology, China
| | - Yingchun Zhang
- School of Basic Medical Sciences, Guizhou Medical University, 561113, Anshun, China; Department of Biology, China
| | - Tao Wang
- School of Basic Medical Sciences, Guizhou Medical University, 561113, Anshun, China; Department of Microbiology, China; Key Laboratory of Medical Microbiology and Parasitology of Education Department of Guizhou, China.
| |
Collapse
|
127
|
Li P, Zhou M, Wang J, Tian J, Zhang L, Wei Y, Yang F, Xu Y, Wang G. Important Role of Mitochondrial Dysfunction in Immune Triggering and Inflammatory Response in Rheumatoid Arthritis. J Inflamm Res 2024; 17:11631-11657. [PMID: 39741752 PMCID: PMC11687318 DOI: 10.2147/jir.s499473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 12/15/2024] [Indexed: 01/03/2025] Open
Abstract
Rheumatoid arthritis (RA) is an inflammatory autoimmune disease, primarily characterized by chronic symmetric synovial inflammation and erosive bone destruction.Mitochondria, the primary site of cellular energy production, play a crucial role in energy metabolism and possess homeostatic regulation capabilities. Mitochondrial function influences the differentiation, activation, and survival of both immune and non-immune cells involved in RA pathogenesis. If the organism experiences hypoxia, genetic predisposition, and oxidative stress, it leads to mitochondrial dysfunction, which further affects immune cell energy metabolism, synovial cell proliferation, apoptosis, and inflammatory signaling, causing the onset and progression of RA; and, mitochondrial regulation is becoming increasingly important in the treatment of RA.In this review, we examine the structure and function of mitochondria, analyze the potential causes of mitochondrial dysfunction in RA, and focus on the mechanisms by which mitochondrial dysfunction triggers chronic inflammation and immune disorders in RA. We also explore the effects of mitochondrial dysfunction on RA immune cells and osteoblasts, emphasizing its key role in the immune response and inflammatory processes in RA. Furthermore, we discuss potential biological processes that regulate mitochondrial homeostasis, which are of great importance for the prevention and treatment of RA.
Collapse
Affiliation(s)
- Pingshun Li
- College of Integrative Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
- Department of Rheumatology and Bone Disease, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| | - Mengru Zhou
- Department of Rheumatology and Bone Disease, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| | - Jia Wang
- Department of Rheumatology and Bone Disease, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| | - Jiexiang Tian
- Department of Rheumatology and Bone Disease, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| | - Lihuan Zhang
- Department of Rheumatology and Bone Disease, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| | - Yong Wei
- Department of Rheumatology and Bone Disease, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| | - Fang Yang
- Department of Rheumatology and Bone Disease, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| | - Yali Xu
- College of Integrative Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| | - Gang Wang
- Department of Rheumatology and Bone Disease, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| |
Collapse
|
128
|
Sun T, Yu H, Zhang D, Li D, Fu J. Activated DRP1 promotes mitochondrial fission and induces glycolysis in ATII cells under hyperoxia. Respir Res 2024; 25:443. [PMID: 39725939 DOI: 10.1186/s12931-024-03083-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUD Recent studies have reported mitochondrial damage and metabolic dysregulation in BPD, but the changes in mitochondrial dynamics and glucose metabolic reprogramming in ATII cells and their regulatory relationship have not been reported. METHODS Neonatal rats in this study were divided into model (FIO2:85%) and control (FIO2: 21%) groups. Lung tissues were extracted at 3, 7, 10 and 14 postnatal days and then conducted HE staining for histopathological observation. We assessed the expression of mitochondria dynamic associated proteins and glycolysis associated enzymes in lung tissues, primary ATII cells and RLE-6TN cells. Double immunofluorescence staining was used to confirm the co-localization of DRP1 and ATII cells. Real-time analyses of ECAR and OCR were performed with primary ATII cells using Seahorse XF96. ATP concentration was measured using an ATP kit. We treated RLE-6TN cells at 85% hyperoxia for 48 h with mitochondrial fission inhibitor Mdivi-1 to verify the role of DRP1 in regulating glucose metabolic reprogramming. FINDINGS We found that hyperoxia causes ATII cells' mitochondrial morphological change. The expression of DRP1 and p-DRP1 increased in lung tissue and primary ATII cells of neonatal rats exposed to hyperoxia. Glycolysis related enzymes including PFKM, HK2, and LDHA were also increased. Hyperoxia inhibited ATP production in ATII cells. In RLE-6TN cells, we verified that the administration of Mdivi-1 could alleviate the enhancement of aerobic glycolysis and fragmentation of mitochondria caused by hyperoxia. INTERPRETATIONS Hyperoxia exposure leads to increased mitochondrial fission in ATII cells and mediates the reprogramming of glucose metabolism via the DRP1 signaling pathway. Inhibiting the activation of DRP1 signaling pathway may be a promising therapeutic target for BPD.
Collapse
Affiliation(s)
- Tong Sun
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Haiyang Yu
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Dingning Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Danni Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Jianhua Fu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
129
|
Zhang T, Fan J, Wen X, Duan X. ECSIT: Biological function and involvement in diseases. Int Immunopharmacol 2024; 143:113524. [PMID: 39488037 DOI: 10.1016/j.intimp.2024.113524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/28/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024]
Abstract
Evolutionary conserved signaling intermediate in Toll pathways (ECSIT), a multi-functional protein, was first identified as a cytosolic adaptor protein in Toll-like receptors (TLRs) signaling-mediated innate immune responses. In the past two decades, studies have expanded the understanding of ECSIT. Nevertheless, there are still large knowledge gaps due to the inadequate number of studies regarding ECSIT, especially an overall review of ECSIT is lacking. Here, we first comprehensively summarize the biological functions of ECSIT with particular focus on innate immune responses and mitochondrial homeostasis. Cumulative studies have reinforced that ECSIT is involved in the regulation of innate immune responses through activating NF-κB signaling and potentiating the Retinoic acid-induced gene Ⅰ (RIG-Ⅰ)/ mitochondrial antiviral- signaling protein (MAVS) pathway-mediated innate antiviral immunity. In addition, ECSIT determines the mitochondrial morphology and function including mitochondrial complex Ⅰ (CⅠ) assembly, mitochondrial reactive oxygen species (mROS) production, mitochondrial membrane potential (MMP) maintenance and mitochondrial quality control. Owing to these distinct functions, ECSIT is involved in the etiology and pathology of human diseases including Alzheimer's disease (AD), cardiac hypertrophy, musculoskeletal disintegration, cancer, extranodal natural killer/T cell lymphoma (ENKTL) and ischemic stroke. Collectively, the roles and mechanisms of ECSIT under physiological and pathological conditions are critically discussed to provide a clearer view of the therapeutic potential of ECSIT.
Collapse
Affiliation(s)
- Tan Zhang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, PR China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai 200438, PR China.
| | - Jingcheng Fan
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, PR China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai 200438, PR China
| | - Xin Wen
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, PR China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai 200438, PR China
| | - Xuemei Duan
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, PR China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai 200438, PR China
| |
Collapse
|
130
|
Luo X, Zhang S, Wang L, Li J. Pathological roles of mitochondrial dysfunction in endothelial cells during the cerebral no-reflow phenomenon: A review. Medicine (Baltimore) 2024; 103:e40951. [PMID: 39705421 PMCID: PMC11666140 DOI: 10.1097/md.0000000000040951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 11/18/2024] [Accepted: 11/25/2024] [Indexed: 12/22/2024] Open
Abstract
Emergency intravascular interventional therapy is the most effective approach to rapidly restore blood flow and manage occlusion of major blood vessels during the initial phase of acute ischemic stroke. Nevertheless, several patients continue to experience ineffective reperfusion or cerebral no-reflow phenomenon, that is, hypoperfusion of cerebral blood supply after treatment. This is primarily attributed to downstream microcirculation disturbance. As integral components of the cerebral microvascular structure, endothelial cells (ECs) attach importance to regulating microcirculatory blood flow. Unlike neurons and microglia, ECs harbor a relatively low abundance of mitochondria, acting as key sensors of environmental and cellular stress in regulating the viability, structural integrity, and function of ECs rather than generating energy. Mitochondria dysfunction including increased mitochondrial reactive oxygen species levels and disturbed mitochondrial dynamics causes endothelial injury, further causing microcirculation disturbance involved in the cerebral no-reflow phenomenon. Therefore, this review aims to discuss the role of mitochondrial changes in regulating the role of ECs and cerebral microcirculation blood flow during I/R injury. The outcomes of the review will provide promising potential therapeutic targets for future prevention and effective improvement of the cerebral no-reflow phenomenon.
Collapse
Affiliation(s)
- Xia Luo
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Shaotao Zhang
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Longbing Wang
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jinglun Li
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
131
|
Zhang M, Wei J, He C, Sui L, Jiao C, Zhu X, Pan X. Inter- and intracellular mitochondrial communication: signaling hubs in aging and age-related diseases. Cell Mol Biol Lett 2024; 29:153. [PMID: 39695918 DOI: 10.1186/s11658-024-00669-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/14/2024] [Indexed: 12/20/2024] Open
Abstract
Mitochondria are versatile and complex organelles that can continuously communicate and interact with the cellular milieu. Deregulated communication between mitochondria and host cells/organelles has significant consequences and is an underlying factor of many pathophysiological conditions, including the process of aging. During aging, mitochondria lose function, and mitocellular communication pathways break down; mitochondrial dysfunction interacts with mitochondrial dyscommunication, forming a vicious circle. Therefore, strategies to protect mitochondrial function and promote effective communication of mitochondria can increase healthy lifespan and longevity, which might be a new treatment paradigm for age-related disorders. In this review, we comprehensively discuss the signal transduction mechanisms of inter- and intracellular mitochondrial communication, as well as the interactions between mitochondrial communication and the hallmarks of aging. This review emphasizes the indispensable position of inter- and intracellular mitochondrial communication in the aging process of organisms, which is crucial as the cellular signaling hubs. In addition, we also specifically focus on the status of mitochondria-targeted interventions to provide potential therapeutic targets for age-related diseases.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Jin Wei
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Chang He
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Liutao Sui
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Chucheng Jiao
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Xiaoyan Zhu
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
| | - Xudong Pan
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
| |
Collapse
|
132
|
Mu C, Wang S, Wang Z, Tan J, Yin H, Wang Y, Dai Z, Ding D, Yang F. Mechanisms and therapeutic targets of mitochondria in the progression of metabolic dysfunction-associated steatotic liver disease. Ann Hepatol 2024; 30:101774. [PMID: 39701281 DOI: 10.1016/j.aohep.2024.101774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/13/2024] [Accepted: 12/14/2024] [Indexed: 12/21/2024]
Abstract
Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) includes liver disease processes from simple fatty liver to nonalcoholic steatohepatitis, which may progress to liver fibrosis, cirrhosis, and even hepatocellular carcinoma (HCC). As the incidence of HCC derived from viral hepatitis decreases, MASLD has emerged as a significant health threat, driven by lifestyle changes and rising obesity rates among patients. The pathogenesis of MASLD is complex, involving factors such as insulin resistance, gut microbiota imbalance, and genetic and epigenetic factors. In recent years, the role of mitochondrial dysfunction in MASLD has gained significant attention, involving β-oxidation imbalance, oxidative stress increase, mitophagy defects, and mitochondrial DNA (mtDNA) mutations. This article reviews the pathophysiological mechanisms of mitochondrial dysfunction in MASLD, diagnostic methods, and potential therapeutic strategies. By synthesizing current research findings, the review aims to highlight the critical role of mitochondrial dysfunction as a target for future diagnostic and therapeutic interventions. This focus could pave the way for innovative clinical strategies, ultimately improving treatment options and patient prognosis in MASLD.
Collapse
Affiliation(s)
- Chenyang Mu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China; Department of Medical Genetics, Naval Medical University, Shanghai, China
| | - Sijie Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China; Department of Medical Genetics, Naval Medical University, Shanghai, China
| | - Zenghan Wang
- Department of Medical Genetics, Naval Medical University, Shanghai, China
| | - Jian Tan
- Department of Medical Genetics, Naval Medical University, Shanghai, China
| | - Haozan Yin
- Department of Medical Genetics, Naval Medical University, Shanghai, China
| | - Yuefan Wang
- Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Zhihui Dai
- Department of Medical Genetics, Naval Medical University, Shanghai, China
| | - Dongyang Ding
- Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Fu Yang
- Department of Medical Genetics, Naval Medical University, Shanghai, China; Shanghai Key Laboratory of Medical Bioprotection, Shanghai, China; Key Laboratory of Biological Defense, Ministry of Education, Shanghai, China.
| |
Collapse
|
133
|
Gao X, Feng S, Wu B, Liu L, Xu Y, Zhang J, Miao J. Staphylococcus aureus Conquers Host by Hijacking Mitochondria via PFKFB3 in Epithelial Cells. J Infect Dis 2024; 230:1488-1500. [PMID: 38805184 DOI: 10.1093/infdis/jiae263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/09/2024] [Accepted: 05/25/2024] [Indexed: 05/29/2024] Open
Abstract
Staphylococcus aureus persists within mammary epithelial cells for an extended duration, exploiting the host metabolic resources to facilitate replication. This study revealed a mechanism by which intracellular S aureus reprograms host metabolism, with PFKFB3 playing a crucial role in this process. Mechanistically, S aureus induced mitochondrial damage, leading to increased levels of mitochondrial reactive oxygen species and dysfunction in the electron transport chain. Moreover, S aureus shifted the balance of mitochondrial dynamics from fusion to fission, subsequently activating PINK1-PRKN-dependent mitophagy, causing loss of sirtuin 3 to stabilize hypoxic inducible factor 1α, and shifting the host metabolism toward enhanced glycolysis. The inhibition of PFKFB3 reversed the mitochondrial damage and degradation of sirtuin 3 induced by S aureus. Overall, our findings elucidate the mechanism by which S aureus reprograms host metabolism, thereby offering insights into the treatment of S aureus infection.
Collapse
Affiliation(s)
- Xing Gao
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing
| | - Shiyuan Feng
- Sanya Research Institute, Nanjing Agricultural University, Sanya
| | - Binfeng Wu
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing
| | - Laizhen Liu
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing
| | - Yuanyuan Xu
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing
| | - Jinqiu Zhang
- Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing
- Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, China
| | - Jinfeng Miao
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing
| |
Collapse
|
134
|
Pan X, Zhao Y, Li Y, Chen J, Zhang W, Yang L, Xiong YZ, Ying Y, Xu H, Zhang Y, Gao C, Sun Y, Li N, Chen L, Chen Z, Lei K. Mitochondrial dynamics govern whole-body regeneration through stem cell pluripotency and mitonuclear balance. Nat Commun 2024; 15:10681. [PMID: 39672898 PMCID: PMC11645412 DOI: 10.1038/s41467-024-54720-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 11/19/2024] [Indexed: 12/15/2024] Open
Abstract
Tissue regeneration is a complex process involving large changes in cell proliferation, fate determination, and differentiation. Mitochondrial dynamics and metabolism play a crucial role in development and wound repair, but their function in large-scale regeneration remains poorly understood. Planarians offer an excellent model to investigate this process due to their remarkable regenerative abilities. In this study, we examine mitochondrial dynamics during planarian regeneration. We find that knockdown of the mitochondrial fusion gene, opa1, impairs both tissue regeneration and stem cell pluripotency. Interestingly, the regeneration defects caused by opa1 knockdown are rescued by simultaneous knockdown of the mitochondrial fission gene, drp1, which partially restores mitochondrial dynamics. Furthermore, we discover that Mitolow stem cells exhibit an enrichment of pluripotency due to their fate choices at earlier stages. Transcriptomic analysis reveals the delicate mitonuclear balance in metabolism and mitochondrial proteins in regeneration, controlled by mitochondrial dynamics. These findings highlight the importance of maintaining mitochondrial dynamics in large-scale tissue regeneration and suggest the potential for manipulating these dynamics to enhance stem cell functionality and regenerative processes.
Collapse
Affiliation(s)
- Xue Pan
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Yun Zhao
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
- Fudan University, Shanghai, China
| | - Yucong Li
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
- Fudan University, Shanghai, China
| | - Jiajia Chen
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Wenya Zhang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
- Fudan University, Shanghai, China
| | - Ling Yang
- HPC Center, Westlake University, Hangzhou, Zhejiang, China
| | - Yuanyi Zhou Xiong
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
- Fudan University, Shanghai, China
| | - Yuqing Ying
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Hao Xu
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Yuhong Zhang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Chong Gao
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Yuhan Sun
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Nan Li
- HPC Center, Westlake University, Hangzhou, Zhejiang, China
| | - Liangyi Chen
- College of Future Technology, Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, National Biomedical Imaging Center, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
- State Key Laboratory of Membrane Biology, Peking University, Beijing, China.
- PKU-Nanjing Institute of Translational Medicine, Nanjing, China.
| | - Zhixing Chen
- College of Future Technology, Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, National Biomedical Imaging Center, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
| | - Kai Lei
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| |
Collapse
|
135
|
Urrutia K, Chen YH, Tang J, Hung TI, Zhang G, Xu W, Zhao W, Tonthat D, Chang CEA, Zhao L. DNA sequence and lesion-dependent mitochondrial transcription factor A (TFAM)-DNA-binding modulates DNA repair activities and products. Nucleic Acids Res 2024; 52:14093-14111. [PMID: 39607700 DOI: 10.1093/nar/gkae1144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/23/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024] Open
Abstract
Mitochondrial DNA (mtDNA) is indispensable for mitochondrial function and is maintained by DNA repair, turnover, mitochondrial dynamics and mitophagy, along with the inherent redundancy of mtDNA. Base excision repair (BER) is a major DNA repair mechanism in mammalian mitochondria. Mitochondrial BER enzymes are implicated in mtDNA-mediated immune response and inflammation. mtDNA is organized into mitochondrial nucleoids by mitochondrial transcription factor A (TFAM). The regulation of DNA repair activities by TFAM-DNA interactions remains understudied. Here, we demonstrate the modulation of DNA repair enzymes by TFAM concentrations, DNA sequences and DNA modifications. Unlike previously reported inhibitory effects, we observed that human uracil-DNA glycosylase 1 (UNG1) and AP endonuclease I (APE1) have optimal activities at specific TFAM/DNA molar ratios. High TFAM/DNA ratios inhibited other enzymes, OGG1 and AAG. In addition, TFAM reduces the accumulation of certain repair intermediates. Molecular dynamics simulations and DNA-binding experiments demonstrate that the presence of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) in certain sequence motifs enhances TFAM-DNA binding, partially explaining the inhibition of OGG1 activity. Bioinformatic analysis of published 8-oxodG, dU, and TFAM-footprint maps reveals a correlation between 8-oxodG and TFAM locations in mtDNA. Collectively, these results highlight the complex regulation of mtDNA repair by DNA sequence, TFAM concentrations, lesions and repair enzymes.
Collapse
Affiliation(s)
- Kathleen Urrutia
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Yu Hsuan Chen
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Jin Tang
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Ta I Hung
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Guodong Zhang
- Department of Chemistry, University of California, Riverside, CA 92521, USA
- Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Wenyan Xu
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Wenxin Zhao
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Dylan Tonthat
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Chia-En A Chang
- Department of Chemistry, University of California, Riverside, CA 92521, USA
- Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521, USA
| | - Linlin Zhao
- Department of Chemistry, University of California, Riverside, CA 92521, USA
- Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521, USA
| |
Collapse
|
136
|
Cao M, Zou J, Shi M, Zhao D, Liu C, Liu Y, Li L, Jiang H. A promising therapeutic: Exosome-mediated mitochondrial transplantation. Int Immunopharmacol 2024; 142:113104. [PMID: 39270344 DOI: 10.1016/j.intimp.2024.113104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024]
Abstract
Mitochondrial dysfunction has been identified as a trigger for cellular autophagy dysfunction and programmed cell death. Emerging studies have revealed that, in pathological contexts, intercellular transfer of mitochondria takes place, facilitating the restoration of mitochondrial function, energy metabolism, and immune homeostasis. Extracellular vesicles, membranous structures released by cells, exhibit reduced immunogenicity and enhanced stability during the transfer of mitochondria. Thus, this review provides a concise overview of mitochondrial dysfunction related diseases and the mechanism of mitochondrial dysfunction in diseases progression, and the composition and functions of the extracellular vesicles, along with elucidating the principal mechanisms underlying intercellular mitochondrial transfer. In this article, we will focus on the advancements in both animal models and clinical trials concerning the therapeutic efficacy of extracellular vesicle-mediated mitochondrial transplantation across various systemic diseases in neurodegenerative diseases and cardiovascular diseases. Additionally, the review delves into the multifaceted roles of extracellular vesicle-transplanted mitochondria, encompassing anti-inflammatory actions, promotion of tissue repair, enhancement of cellular function, and modulation of metabolic and immune homeostasis within diverse pathological contexts, aiming to provide novel perspectives for extracellular vesicle transplantation of mitochondria in the treatment of various diseases.
Collapse
Affiliation(s)
- Meiling Cao
- Department of Neonatology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Jiahui Zou
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Mingyue Shi
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Danyang Zhao
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Chang Liu
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Yanshan Liu
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Lei Li
- Department of Orthopaedic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| | - Hongkun Jiang
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| |
Collapse
|
137
|
Wang J, Wang D. Mitophagy in gynecological malignancies: roles, advances, and therapeutic potential. Cell Death Discov 2024; 10:488. [PMID: 39639053 PMCID: PMC11621523 DOI: 10.1038/s41420-024-02259-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/20/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024] Open
Abstract
Mitophagy is a process in which impaired or dysfunctional mitochondria are selectively eliminated through the autophagy mechanism to maintain mitochondrial quality control and cellular homeostasis. Based on specific target signals, several mitophagy processes have been identified. Defects in mitophagy are associated with various pathological conditions, including neurodegenerative disorders, cardiovascular diseases, metabolic diseases, and cancer. Mitophagy has been shown to play a critical role in the pathogenesis of gynecological malignancies and the development of drug resistance. In this review, we have summarized and discussed the role and recent advances in understanding the therapeutic potential of mitophagy in the development of gynecological malignancies. Therefore, the valuable insights provided in this review may serve as a basis for further studies that contribute to the development of novel treatment strategies and improved patient outcomes.
Collapse
Affiliation(s)
- Jiao Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Dandan Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
138
|
Lian H, Xu K, Chang A, Wang Y, Ma S, Cheng L, Zhao W, Xia C, Wang L, Yu G. Loss of PTPN21 disrupted mitochondrial metabolic homeostasis and aggravated experimental pulmonary fibrosis. Respir Res 2024; 25:426. [PMID: 39633451 PMCID: PMC11619687 DOI: 10.1186/s12931-024-03041-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/13/2024] [Indexed: 12/07/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a high-mortality lung disease with unclear pathogenesis. Convincing evidence suggests that an imbalance in mitochondrial homeostasis resulting from repeated injury to alveolar epithelial type 2 cells (AEC2) underlies IPF. Non-receptor protein tyrosine phosphatase 21 (PTPN21) performs various functions in cancer; however, its role in IPF has not been studied. This study aimed to investigate the role of PTPN21 in lung fibrosis. The experimental results showed that loss of PTPN21 exacerbated lung fibrosis by increasing cell numbers in bronchoalveolar lavage fluid, lung hydroxyproline content, and extracellular matrix protein expression of fibronectin and α-smooth muscle actin (α-SMA) in bleomycin-challenged mouse lungs. In A549 cells (AEC2), knockdown of PTPN21 suppressed focal adhesion and migration, reduced mitochondrial fission and increased fusion, increased the level of mitochondrial superoxide, decreased mitochondrial membrane potential and ATP levels. Simultaneously, knockdown of PTPN21 impaired autophagy, and increased intracellular reactive oxygen species levels. Treatment of fibroblasts (MRC-5) and primary human lung fibroblasts (PHLF)) with the supernatant from PTPN21-knockdown A549 cells increased the expression of fibronectin, collagen 1 and α-SMA. Conversely, overexpression of PTPN21 in A549 cells produced opposite effects. However, treatment of MRC-5 and PHLF with the supernatant from PTPN21-overexpressing A549 cells only slightly reduced the expression of fibronectin, collagen 1 in MRC-5 cells, but did not change the expression of α-SMA. In summary, this study revealed that the loss of PTPN21 in epithelial cells disrupted mitochondrial metabolic homeostasis, leading to epithelial cell inactivation and increased the deposition of extracellular matrix proteins in fibroblasts, thereby exacerbating experimental pulmonary fibrosis.
Collapse
Affiliation(s)
- Hui Lian
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal university, Xinxiang, 453007, China
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Kai Xu
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal university, Xinxiang, 453007, China
| | - Airu Chang
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal university, Xinxiang, 453007, China
| | - Yaxuan Wang
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal university, Xinxiang, 453007, China
| | - Shuaichen Ma
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal university, Xinxiang, 453007, China
| | - Lianhui Cheng
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal university, Xinxiang, 453007, China
| | - Wenyu Zhao
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal university, Xinxiang, 453007, China
| | - Cong Xia
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal university, Xinxiang, 453007, China
| | - Lan Wang
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal university, Xinxiang, 453007, China.
| | - Guoying Yu
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal university, Xinxiang, 453007, China.
| |
Collapse
|
139
|
Zhang Y, Wu X, Yao W, Ni Y, Ding X. Advances of traditional Chinese medicine preclinical mechanisms and clinical studies on diabetic peripheral neuropathy. PHARMACEUTICAL BIOLOGY 2024; 62:544-561. [PMID: 38946248 PMCID: PMC11218592 DOI: 10.1080/13880209.2024.2369301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/06/2024] [Indexed: 07/02/2024]
Abstract
CONTEXT Diabetic peripheral neuropathy (DPN) results in an enormous burden and reduces the quality of life for patients. Considering there is no specific drug for the management of DPN, traditional Chinese medicine (TCM) has increasingly drawn attention of clinicians and researchers around the world due to its characteristics of multiple targets, active components, and exemplary safety. OBJECTIVE To summarize the current status of TCM in the treatment of DPN and provide directions for novel drug development, the clinical effects and potential mechanisms of TCM used in treating DPN were comprehensively reviewed. METHODS Existing evidence on TCM interventions for DPN was screened from databases such as PubMed, the Cochrane Neuromuscular Disease Group Specialized Register (CENTRAL), and the Chinese National Knowledge Infrastructure Database (CNKI). The focus was on summarizing and analyzing representative preclinical and clinical TCM studies published before 2023. RESULTS This review identified the ameliorative effects of about 22 single herbal extracts, more than 30 herbal compound prescriptions, and four Chinese patent medicines on DPN in preclinical and clinical research. The latest advances in the mechanism highlight that TCM exerts its beneficial effects on DPN by inhibiting inflammation, oxidative stress and apoptosis, endoplasmic reticulum stress and improving mitochondrial function. CONCLUSIONS TCM has shown the power latent capacity in treating DPN. It is proposed that more large-scale and multi-center randomized controlled clinical trials and fundamental experiments should be conducted to further verify these findings.
Collapse
Affiliation(s)
- Yuna Zhang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xianglong Wu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Wenhui Yao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yadong Ni
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xuansheng Ding
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Precision Medicine Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
140
|
Zhou Y, Xie W, Kong C, Luo W, Wei H, Zheng J. Regulatory roles of histamine receptor in astrocytic glutamate clearance under conditions of increased glucose variability. Biochem Pharmacol 2024; 230:116611. [PMID: 39510195 DOI: 10.1016/j.bcp.2024.116611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/26/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
In diabetic patients, repeated episodes of hypoglycemia can increase glucose variability (GV), which may lead to glutamate neurotoxicity in the brain and consequently affect cognitive functions. Astrocytes play a crucial role in regulating the balance of glutamate within the brain, and their function is influenced by the histamine receptor (HR) signaling pathway. However, the specific role of this mechanism under conditions of high GV is not yet clear. The results showed that increased GV resulted in decreased expression of HRs in mice hippocampus and astrocytes cultured in vitro. Additionally, a decrease in the expression of proteins related to glutamate metabolic clearance was observed, accompanied by a reduction in glutamate reuptake capacity. Notably, the intervention with histidine/histamine was able to reverse the above changes. Further mechanistic studies showed that inhibition of HRs that increased GV led to significant disturbances in astrocytic mitochondrial function. These abnormalities encompassed increased fragmentation morphology and the accumulation of reactive oxygen species, accompanied by decreased mitochondrial respiratory capacity and dysregulation of dynamics. Distinct HR subtypes exhibited variations in the modulation of mitochondrial function, with H3R demonstrating the most pronounced impact. The overexpression of H3R could enhance glutamate metabolic by reversing disturbances in mitochondrial dynamics. Therefore, this study suggests that H3R is able to maintain glutamate metabolic clearance capacity and exert neuroprotective effects in astrocytes that increased GV by regulating mitochondrial dynamic balance. This provides an important basis for potential therapeutic targets for diabetes-related cognitive dysfunction.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Wenhuo Xie
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Chenghua Kong
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Wei Luo
- Department of Rehabilitation Medicine, School of Health, Fujian Medical University, Fuzhou, China
| | - Hong Wei
- Shengli Clinical Medical College of Fujian Medical University, Cadres's Healthcare Office, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China.
| | - Jiaping Zheng
- Department of Rehabilitation Medicine, School of Health, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
141
|
An Z, Liu G, Shen L, Qi Y, Hu Q, Song J, Li J, Du J, Bai Y, Wu W. Mitochondrial dysfunction induced by ambient fine particulate matter and potential mechanisms. ENVIRONMENTAL RESEARCH 2024; 262:119930. [PMID: 39237017 DOI: 10.1016/j.envres.2024.119930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/07/2024]
Abstract
Air pollution is one of the major environmental threats contributing to the global burden of disease. Among diverse air pollutants, fine particulate matter (PM2.5) poses a significant adverse health impact and causes multi-system damage. As a highly dynamic organelle, mitochondria are essential for cellular energy metabolism and vital for cellular homeostasis and body fitness. Moreover, mitochondria are vulnerable to external insults and common targets for PM2.5-induced cellular damage. The resultant impairment of mitochondrial structure and function initiates the pathogenesis of diverse human diseases. This review mainly summarizes the in vivo and in vitro findings of PM2.5-induced mitochondrial dysfunction and its implication in PM2.5-induced health effects. Furthermore, recent advances toward the underlying mechanisms of PM2.5 and its components-induced mitochondrial dysfunction are also discussed, with an attempt to provide insights into the toxicity of PM2.5 and basic information for devising appropriate intervention strategies.
Collapse
Affiliation(s)
- Zhen An
- International Collaborative Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China
| | - Guangyong Liu
- International Collaborative Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China
| | - Lingling Shen
- International Collaborative Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yongmei Qi
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Qinan Hu
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | - Jie Song
- International Collaborative Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China
| | - Juan Li
- International Collaborative Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China
| | - Jinge Du
- International Collaborative Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yichun Bai
- International Collaborative Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China
| | - Weidong Wu
- International Collaborative Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
142
|
He J, Qin W, Zhang Y, Yan J, Han X, Gao J, Li Q, Jiao K. Upregulated Mitochondrial Dynamics Is Responsible for the Procatabolic Changes of Chondrocyte Induced by α2-Adrenergic Signal Activation. Cartilage 2024; 15:440-452. [PMID: 37646151 PMCID: PMC11520003 DOI: 10.1177/19476035231189841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
OBJECTIVE Activation of sympathetic tone is important for cartilage degradation in osteoarthritis (OA). Recent studies reported that sympathetic signals can affect the mitochondrial function of target cells. It is unknown whether this effect exits in chondrocytes and affects chondrocyte catabolism. The contribution of mitochondrial dynamics in the activation of α2-adrenergic signal-mediated chondrocyte catabolism was investigated in this study. DESIGN Primary chondrocytes were stimulated with norepinephrine (NE) alone, or pretreated with an α2-adrenergic receptor (Adra2) antagonist (yohimbine) and followed by stimulation with NE. Changes in chondrocyte metabolism and their mitochondrial dynamics were investigated. RESULTS We demonstrated that NE stimulation induced increased gene and protein expressions of matrix metalloproteinase-3 and decreased level of aggrecan by chondrocytes. This was accompanied by upregulated mitochondriogenesis and the number of mitochondria, when compared with the vehicle-treated controls. Mitochondrial fusion and fission, and mitophagy also increased significantly in response to NE stimulation. Inhibition of Adra2 attenuated chondrocyte catabolism and mitochondrial dynamics induced by NE. CONCLUSIONS The present findings indicate that upregulation of mitochondrial dynamics through mitochondriogenesis, fusion, fission, and mitophagy is responsible for activation of α2-adrenergic signal-mediated chondrocyte catabolism. The hypothesis that "α2-adrenergic signal activation promotes cartilage degeneration in temporomandibular joint osteoarthritis (TMJ-OA) by upregulating mitochondrial dynamics in chondrocytes" is validated. This represents a new regulatory mechanism in the chondrocytes of TMJ-OA that inhibits abnormal activation of mitochondrial fusion and fission is a potential regulator for improving mitochondrial function and inhibiting chondrocyte injury and contrives a potentially innovative therapeutic direction for the prevention of TMJ-OA.
Collapse
Affiliation(s)
- Jiaying He
- Department of Stomatology, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
| | - Wenpin Qin
- Department of Stomatology, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
| | - Yusong Zhang
- Department of Stomatology, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
| | - Jianfei Yan
- Department of Stomatology, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
| | - Xiaoxiao Han
- Department of Stomatology, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
- The College of Life Sciences, Northwest University, Xi’an, China
| | - Jialu Gao
- Department of Stomatology, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
| | - Qihong Li
- Department of Stomatology, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Kai Jiao
- Department of Stomatology, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
| |
Collapse
|
143
|
Wisniewski BT, Casler JC, Lackner LL. Significantly reduced, but balanced, rates of mitochondrial fission and fusion are sufficient to maintain the integrity of yeast mitochondrial DNA. Mol Biol Cell 2024; 35:br25. [PMID: 39535883 PMCID: PMC11656474 DOI: 10.1091/mbc.e24-07-0306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/04/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Mitochondria exist as dynamic tubular networks and the morphology of these networks impacts organelle function and cell health. Mitochondrial morphology is maintained in part by the opposing activities of mitochondrial fission and fusion. Mitochondrial fission and fusion are also required to maintain mitochondrial DNA (mtDNA) integrity. In Saccharomyces cerevisiae, the simultaneous inhibition of mitochondrial fission and fusion results in increased mtDNA mutation and the consequent loss of respiratory competence. The mechanism by which fission and fusion maintain mtDNA integrity is not fully understood. Previous work demonstrates that mtDNA is spatially linked to mitochondrial fission sites. Here, we extend this finding using live-cell imaging to localize mtDNA to mitochondrial fusion sites. While mtDNA is present at sites of mitochondrial fission and fusion, mitochondrial fission and fusion rates are not altered in cells lacking mtDNA. Using alleles that alter mitochondrial fission and fusion rates, we find that mtDNA integrity can be maintained in cells with significantly reduced, but balanced, rates of fission and fusion. In addition, we find that increasing mtDNA copy number reduces the loss of respiratory competence in double mitochondrial fission-fusion mutants. Our findings add novel insights into the relationship between mitochondrial dynamics and mtDNA integrity.
Collapse
Affiliation(s)
- Brett T. Wisniewski
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| | - Jason C. Casler
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| | - Laura L. Lackner
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| |
Collapse
|
144
|
Soares ES, Queiroz LY, Gerhardt E, Prediger RDS, Outeiro TF, Cimarosti HI. SUMOylation modulates mitochondrial dynamics in an in vitro rotenone model of Parkinson's disease. Mol Cell Neurosci 2024; 131:103969. [PMID: 39260456 DOI: 10.1016/j.mcn.2024.103969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024] Open
Abstract
SUMOylation is a post-translational modification essential for various biological processes. SUMO proteins bind to target substrates in a three-step enzymatic pathway, which is rapidly reversible by the action of specific proteases, known as SENPs. Studies have shown that SUMOylation is dysregulated in several human disorders, including neurodegenerative diseases that are characterized by the progressive loss of neurons, mitochondrial dysfunction, deficits in autophagy, and oxidative stress. Considering the potential neuroprotective roles of SUMOylation, the aim of this study was to investigate the effects of SENP3 knockdown in H4 neuroglioma cells exposed to rotenone, an in vitro model of cytotoxicity that mimics dopaminergic loss in Parkinson's disease (PD). The current data show that SENP3 knockdown increases SUMO-2/3 conjugates, which is accompanied by reduced levels of the mitochondrial fission protein Drp1 and increased levels of the mitochondrial fusion protein OPA1. Of high interest, SENP3 knockdown prevented rotenone-induced superoxide production and cellular death. Taken together, these findings highlight the importance of SUMOylation in maintaining mitochondrial homeostasis and the neuroprotective potential of this modification in PD.
Collapse
Affiliation(s)
- Ericks Sousa Soares
- Postgraduate Program in Pharmacology, Department of Pharmacology, Centre of Biological Sciences, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil
| | - Letícia Yoshitome Queiroz
- Postgraduate Program in Pharmacology, Department of Pharmacology, Centre of Biological Sciences, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil; Postgraduate Program in Neuroscience, Centre of Biological Sciences, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil
| | - Ellen Gerhardt
- Department of Experimental Neurodegeneration, Centre for Biostructural Imaging of Neurodegeneration, University Medical Centre Göttingen, 37073 Göttingen, Germany
| | - Rui Daniel S Prediger
- Postgraduate Program in Pharmacology, Department of Pharmacology, Centre of Biological Sciences, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil; Postgraduate Program in Neuroscience, Centre of Biological Sciences, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Centre for Biostructural Imaging of Neurodegeneration, University Medical Centre Göttingen, 37073 Göttingen, Germany; Max Planck Institute for Multidisciplinary Sciences, 37075 Göttingen, Germany; Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne NE2 4HH, UK
| | - Helena Iturvides Cimarosti
- Postgraduate Program in Pharmacology, Department of Pharmacology, Centre of Biological Sciences, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil; Postgraduate Program in Neuroscience, Centre of Biological Sciences, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil.
| |
Collapse
|
145
|
Lei K, Wu R, Wang J, Lei X, Zhou E, Fan R, Gong L. Sirtuins as Potential Targets for Neuroprotection: Mechanisms of Early Brain Injury Induced by Subarachnoid Hemorrhage. Transl Stroke Res 2024; 15:1017-1034. [PMID: 37779164 PMCID: PMC11522081 DOI: 10.1007/s12975-023-01191-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/26/2023] [Accepted: 08/31/2023] [Indexed: 10/03/2023]
Abstract
Subarachnoid hemorrhage (SAH) is a prevalent cerebrovascular disease with significant global mortality and morbidity rates. Despite advancements in pharmacological and surgical approaches, the quality of life for SAH survivors has not shown substantial improvement. Traditionally, vasospasm has been considered a primary contributor to death and disability following SAH, but anti-vasospastic therapies have not demonstrated significant benefits for SAH patients' prognosis. Emerging studies suggest that early brain injury (EBI) may play a crucial role in influencing SAH prognosis. Sirtuins (SIRTs), a group of NAD + -dependent deacylases comprising seven mammalian family members (SIRT1 to SIRT7), have been found to be involved in neural tissue development, plasticity, and aging. They also exhibit vital functions in various central nervous system (CNS) processes, including cognition, pain perception, mood, behavior, sleep, and circadian rhythms. Extensive research has uncovered the multifaceted roles of SIRTs in CNS disorders, offering insights into potential markers for pathological processes and promising therapeutic targets (such as SIRT1 activators and SIRT2 inhibitors). In this article, we provide an overview of recent research progress on the application of SIRTs in subarachnoid hemorrhage and explore their underlying mechanisms of action.
Collapse
Affiliation(s)
- Kunqian Lei
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University CN, Zunyi, China
| | - Rui Wu
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University CN, Zunyi, China
| | - Jin Wang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University CN, Zunyi, China
| | - Xianze Lei
- Department of Neurology, Affiliated Hospital of Zunyi Medical University CN, Zunyi, China
| | - Erxiong Zhou
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University CN, Zunyi, China
| | - Ruiming Fan
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University CN, Zunyi, China.
| | - Lei Gong
- Department of Pharmacy, Institute of Medical Biotechnology, Affiliated Hospital of Zunyi Medical University CN, Zunyi, China.
| |
Collapse
|
146
|
Romani P, Benedetti G, Cusan M, Arboit M, Cirillo C, Wu X, Rouni G, Kostourou V, Aragona M, Giampietro C, Grumati P, Martello G, Dupont S. Mitochondrial mechanotransduction through MIEF1 coordinates the nuclear response to forces. Nat Cell Biol 2024; 26:2046-2060. [PMID: 39433949 PMCID: PMC11628398 DOI: 10.1038/s41556-024-01527-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/12/2024] [Indexed: 10/23/2024]
Abstract
Tissue-scale architecture and mechanical properties instruct cell behaviour under physiological and diseased conditions, but our understanding of the underlying mechanisms remains fragmentary. Here we show that extracellular matrix stiffness, spatial confinements and applied forces, including stretching of mouse skin, regulate mitochondrial dynamics. Actomyosin tension promotes the phosphorylation of mitochondrial elongation factor 1 (MIEF1), limiting the recruitment of dynamin-related protein 1 (DRP1) at mitochondria, as well as peri-mitochondrial F-actin formation and mitochondrial fission. Strikingly, mitochondrial fission is also a general mechanotransduction mechanism. Indeed, we found that DRP1- and MIEF1/2-dependent fission is required and sufficient to regulate three transcription factors of broad relevance-YAP/TAZ, SREBP1/2 and NRF2-to control cell proliferation, lipogenesis, antioxidant metabolism, chemotherapy resistance and adipocyte differentiation in response to mechanical cues. This extends to the mouse liver, where DRP1 regulates hepatocyte proliferation and identity-hallmark YAP-dependent phenotypes. We propose that mitochondria fulfil a unifying signalling function by which the mechanical tissue microenvironment coordinates complementary cell functions.
Collapse
Affiliation(s)
- Patrizia Romani
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Giada Benedetti
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Martina Cusan
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Mattia Arboit
- Department of Biology, University of Padova, Padova, Italy
| | - Carmine Cirillo
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Xi Wu
- Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Georgia Rouni
- Institute for Bioinnovation, Biomedical Sciences Research Centre "Alexander Fleming", Athens, Greece
| | - Vassiliki Kostourou
- Institute for Bioinnovation, Biomedical Sciences Research Centre "Alexander Fleming", Athens, Greece
| | - Mariaceleste Aragona
- Novo Nordisk Foundation Center for Stem Cell Medicine (ReNEW), University of Copenhagen, Copenhagen, Denmark
| | - Costanza Giampietro
- Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
- Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Paolo Grumati
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | | | - Sirio Dupont
- Department of Molecular Medicine, University of Padova, Padova, Italy.
| |
Collapse
|
147
|
Tang X, He J, Hao Y. Extracellular Vesicles Derived Ectonucleoside Triphosphate Diphosphohydrolase 3 Alleviates Mitochondrial Dysfunction of Osteoarthritis Chondrocytes via Ectonucleotide Pyrophosphatase/Phosphodiesterase 1-Induced Suppression of the AKT/Notch2 Pathway. J Biochem Mol Toxicol 2024; 38:e70064. [PMID: 39569601 DOI: 10.1002/jbt.70064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 11/22/2024]
Abstract
Osteoarthritis (OA) is the most common joint disease that usually starts from joint cartilage injury. Notch2, a versatile signaling in human development and diseases, was recently uncovered to be an important regulator in chondrocyte damage. However, in OA chondrocytes, how Notch2 activation is dysregulated is largely unknown. Here, integrated bioinformatic analysis was performed on GEO datasets (GSE199193 and GSE224255) to search potential extracellular vesicles (EVs) derived regulators of Notch2 in OA chondrocytes. Ectonucleoside triphosphate diphosphohydrolase 3 (Entpd3), a most differentially expressed gene both in LPS-induced macrophage EV and Notch2 mutant chondrocytes, was screened as the candidate regulator of Notch2 in OA chondrocytes. Gain-of-function experiments in cultured human chondrocytes revealed that recombinant Entpd3 protein and macrophage EV both had a protective effect on LPS-induced inflammation, oxidative stress, apoptosis, and collagen loss in chondrocytes. In terms of mechanism, Entpd3 directly interacted with ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) and suppressed AKT/Notch2-mediated mitochondrial dysfunction. Finally, we verified that either macrophage EV administration or Entpd3 overexpression was able to alleviate osteoarthritis in mice in vivo. In conclusion, Entpd3 is identified as a new regulator in OA, which alleviates mitochondrial dysfunction induced chondrocyte damage via ENPP1-induced suppression of the AKT/Notch2 pathway.
Collapse
Affiliation(s)
- Xin Tang
- Department of Orthopedic Joint Surgery, Shijingshan Teaching Hospital of Capital Medical University, Beijing Shijingshan Hospital, Beijing, China
| | - Jingsheng He
- Department of Orthopedic Joint Surgery, Shijingshan Teaching Hospital of Capital Medical University, Beijing Shijingshan Hospital, Beijing, China
| | - Ye Hao
- Department of Orthopedic Joint Surgery, Shijingshan Teaching Hospital of Capital Medical University, Beijing Shijingshan Hospital, Beijing, China
| |
Collapse
|
148
|
Zeng Q, Jiang T. Molecular mechanisms of ferroptosis in cardiovascular disease. Mol Cell Biochem 2024; 479:3181-3193. [PMID: 38374233 DOI: 10.1007/s11010-024-04940-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/12/2024] [Indexed: 02/21/2024]
Abstract
Ferroptosis is a newly recognized type of regulated cell death that is characterized by the accumulation of iron and lipid peroxides in cells. Studies have shown that ferroptosis plays a significant role in the pathogenesis of various diseases, including cardiovascular diseases. In cardiovascular disease, ferroptosis is associated with ischemia-reperfusion injury, myocardial infarction, heart failure, and atherosclerosis. The molecular mechanisms underlying ferroptosis include the iron-dependent accumulation of lipid peroxidation products, glutathione depletion, and dysregulation of lipid metabolism, among others. This review aims to summarize the current knowledge of the molecular mechanisms of ferroptosis in cardiovascular disease and discuss the potential therapeutic strategies targeting ferroptosis as a treatment for cardiovascular disease.
Collapse
Affiliation(s)
- Qun Zeng
- Department of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Tingting Jiang
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| |
Collapse
|
149
|
Hou D, Liu R, Hao S, Dou Y, Chen G, Liu L, Li T, Cao Y, Huang H, Duan C. Notoginsenoside R1 improves intestinal microvascular functioning in sepsis by targeting Drp1-mediated mitochondrial quality imbalance. PHARMACEUTICAL BIOLOGY 2024; 62:250-260. [PMID: 38389274 PMCID: PMC10896147 DOI: 10.1080/13880209.2024.2318349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 02/08/2024] [Indexed: 02/24/2024]
Abstract
CONTEXT Sepsis can result in critical organ failure, and notoginsenoside R1 (NGR1) offers mitochondrial protection. OBJECTIVE To determine whether NGR1 improves organ function and prognosis after sepsis by protecting mitochondrial quality. MATERIALS AND METHODS A sepsis model was established in C57BL/6 mice using cecum ligation puncture (CLP) and an in vitro model with lipopolysaccharide (LPS, 10 µg/mL)-stimulated primary intestinal microvascular endothelial cells (IMVECs) and then determine NGR1's safe dosage. Groups for each model were: in vivo-a control group, a CLP-induced sepsis group, and a CLP + NGR1 treatment group (30 mg/kg/d for 3 d); in vitro-a control group, a LPS-induced sepsis group, and a LPS + NGR1 treatment group (4 μM for 30 min). NGR1's effects on survival, intestinal function, mitochondrial quality, and mitochondrial dynamic-related protein (Drp1) were evaluated. RESULTS Sepsis resulted in approximately 60% mortality within 7 days post-CLP, with significant reductions in intestinal microvascular perfusion and increases in vascular leakage. Severe mitochondrial quality imbalance was observed in IMVECs. NGR1 (IC50 is 854.1 μM at 30 min) targeted Drp1, inhibiting mitochondrial translocation, preventing mitochondrial fragmentation and restoring IMVEC morphology and function, thus protecting against intestinal barrier dysfunction, vascular permeability, microcirculatory flow, and improving sepsis prognosis. DISCUSSION AND CONCLUSIONS Drp1-mediated mitochondrial quality imbalance is a potential therapeutic target for sepsis. Small molecule natural drugs like NGR1 targeting Drp1 may offer new directions for organ protection following sepsis. Future research should focus on clinical trials to evaluate NGR1's efficacy across various patient populations, potentially leading to novel treatments for sepsis.
Collapse
Affiliation(s)
- Dongyao Hou
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Ruixue Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Shuai Hao
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, P.R. China
| | - Yong Dou
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Guizhen Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Liangming Liu
- Department of Shock and Transfusion, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, P.R. China
| | - Tao Li
- Department of Shock and Transfusion, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, P.R. China
| | - Yunxing Cao
- Department of Intensive Care Unit, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - He Huang
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Chenyang Duan
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| |
Collapse
|
150
|
Luo W, Xu Z, Li F, Ding L, Wang R, Lin Y, Mao X, Chen X, Li Y, Lu Z, Xie H, Wang H, Zhu Z, Lu Y, Guo L, Yu X, Xia L, He HH, Li G. m6Am Methyltransferase PCIF1 Promotes LPP3 Mediated Phosphatidic Acid Metabolism and Renal Cell Carcinoma Progression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404033. [PMID: 39422663 PMCID: PMC11633504 DOI: 10.1002/advs.202404033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/29/2024] [Indexed: 10/19/2024]
Abstract
N6-methyl-2'-O-methyladenosine (m6Am), occurring adjacent to the 7-methylguanosine (m7G) cap structure and catalyzed by the newly identified writer PCIF1 (phosphorylated CTD interacting factor 1), has been implicated in the pathogenesis of various diseases. However, its involvement in renal cell carcinoma (RCC) remains unexplored. Here, significant upregulation of PCIF1 and m6Am levels in RCC tissues are identified, unveiling their oncogenic roles both in vitro and in vivo. Mechanically, employing m6Am-Exo-Seq, LPP3 (phospholipid phosphatase 3) mRNA is identified as a key downstream target whose translation is enhanced by m6Am modification. Furthermore, LPP3 is revealed as a key regulator of phosphatidic acid metabolism, critical for preventing its accumulation in mitochondria and facilitating mitochondrial fission. Consequently, Inhibition of the PCIF1/LPP3 axis significantly altered mitochondrial morphology and reduced RCC tumor progression. In addition, depletion of PCIF1 sensitizes RCC to sunitinib treatment. This study highlights the intricate interplay between m6Am modification, phosphatidic acid metabolism, and mitochondrial dynamics, offering a promising therapeutic avenue for RCC.
Collapse
Affiliation(s)
- Wenqin Luo
- Department of UrologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310016China
| | - Zhehao Xu
- Department of UrologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310016China
| | - Fan Li
- Department of UrologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310016China
| | - Lifeng Ding
- Department of UrologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310016China
| | - Ruyue Wang
- Department of UrologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310016China
| | - Yudong Lin
- Department of UrologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310016China
| | - Xudong Mao
- Department of UrologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310016China
| | - Xianjiong Chen
- Department of UrologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310016China
| | - Yang Li
- Department of UrologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310016China
| | - Zeyi Lu
- Department of UrologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310016China
| | - Haiyun Xie
- Department of UrologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310016China
| | - Huan Wang
- Department of UrologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310016China
| | - Ziwei Zhu
- Department of UrologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310016China
| | - Yi Lu
- Department of UrologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310016China
| | - Luying Guo
- Kidney Disease Center of First Affiliated HospitalZhejiang University School of MedicineHangzhou310000China
| | - Xiaojing Yu
- Department of RadiologySir Run Run Shaw hospitalZhejiang University School of MedicineHangzhou310016China
| | - Liqun Xia
- Department of UrologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310016China
| | - Housheng Hansen He
- Princess Margaret Cancer CentreUniversity Health NetworkTorontoOntarioM5G 1L7Canada
- Department of Medical BiophysicsUniversity of TorontoTorontoOntarioM5G 1L7Canada
| | - Gonghui Li
- Department of UrologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310016China
| |
Collapse
|