101
|
McGlinchey AJ, Govaere O, Geng D, Ratziu V, Allison M, Bousier J, Petta S, de Oliviera C, Bugianesi E, Schattenberg JM, Daly AK, Hyötyläinen T, Anstee QM, Orešič M. Metabolic signatures across the full spectrum of nonalcoholic fatty liver disease. JHEP REPORTS : INNOVATION IN HEPATOLOGY 2022; 4:100477. [PMID: 35434590 PMCID: PMC9006858 DOI: 10.1016/j.jhepr.2022.100477] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 12/29/2022]
Affiliation(s)
| | - Olivier Govaere
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Dawei Geng
- Department of Chemistry, Örebro University, Örebro, Sweden
| | - Vlad Ratziu
- Assistance Publique-Hôpitaux de Paris, Hôpital Beaujon, University Paris-Diderot, Paris, France
| | - Michael Allison
- Liver Unit, Department of Medicine, Cambridge Biomedical Research Centre, Cambridge University NHS Foundation Trust, Cambridge, UK
| | - Jerome Bousier
- Hepato-Gastroenterology Department, Angers University Hospital, Angers, France
| | - Salvatore Petta
- Dipartimento Biomedico di Medicina Interna e Specialistica Di.Bi.M.I.S, University of Palermo, Palermo, Italy
| | | | - Elisabetta Bugianesi
- Department of Medical Sciences, Division of Gastro-Hepatology, A.O. Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | | | - Ann K. Daly
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | | | - Quentin M. Anstee
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Newcastle NIHR Biomedical Research Centre, Newcastle upon Tyne Hospitals, NHS Foundation Trust, Newcastle upon Tyne, UK
- Corresponding authors. Addresses: Translational and Clinical Research Institute, The Medical School, Newcastle University, 4th Floor, William Leech Building, Framlington Place, Newcastle-upon-Tyne, NE2 4HH, UK. Tel.: + 44-0-191-208-7012
| | - Matej Orešič
- School of Medical Sciences, Örebro University, Örebro, Sweden
- Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland
- School of Medical Sciences, Örebro University, Örebro, Sweden. Tel.: +358-0-44-9726094.
| |
Collapse
|
102
|
Abram KJ, McCloskey D. A Comprehensive Evaluation of Metabolomics Data Preprocessing Methods for Deep Learning. Metabolites 2022; 12:202. [PMID: 35323644 PMCID: PMC8948616 DOI: 10.3390/metabo12030202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 12/04/2022] Open
Abstract
Machine learning has greatly advanced over the past decade, owing to advances in algorithmic innovations, hardware acceleration, and benchmark datasets to train on domains such as computer vision, natural-language processing, and more recently the life sciences. In particular, the subfield of machine learning known as deep learning has found applications in genomics, proteomics, and metabolomics. However, a thorough assessment of how the data preprocessing methods required for the analysis of life science data affect the performance of deep learning is lacking. This work contributes to filling that gap by assessing the impact of commonly used as well as newly developed methods employed in data preprocessing workflows for metabolomics that span from raw data to processed data. The results from these analyses are summarized into a set of best practices that can be used by researchers as a starting point for downstream classification and reconstruction tasks using deep learning.
Collapse
Affiliation(s)
| | - Douglas McCloskey
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark;
| |
Collapse
|
103
|
Surendran A, Atefi N, Ismail U, Shah A, Ravandi A. Impact of myocardial reperfusion on human plasma lipidome. iScience 2022; 25:103828. [PMID: 35198888 PMCID: PMC8850755 DOI: 10.1016/j.isci.2022.103828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/20/2021] [Accepted: 01/21/2022] [Indexed: 11/16/2022] Open
Abstract
The primary aim of the study is to investigate the temporal changes in plasma lipidome before and after reperfusion in patients with ST-segment elevation myocardial infarction (STEMI) and their association with myocardial injury. We found that 56% of the identified lipid species were significantly altered (corrected p< 0.05) in the first 24 h following reperfusion in patients with STEMI. Three lipid species, namely, acylcarnitine 18:2, TG 51:0, and LPC 17:1 were associated with a change in troponin concentration (delta troponin) and in-hospital cardiovascular events. Of these, acylcarnitine 18:2, and LPC 17:1 and their respective whole class levels, were significantly higher (p < 0.05) in the STEMI population than the age/sex-matched control subjects. Overall, our analyses showed a large shift in plasma lipidome in patients that undergo myocardial reperfusion. The differences found for acylcarnitines and LPC species and their association with both cardiac markers and cardiac outcomes need further validation. Human plasma lipidome rapidly shifts during myocardial reperfusion injury Novel plasma lipids are associated with cardiovascular events Acylcarnitines and lysoPCs correlate with the extent of myocardial injury Acute MI results in elevated plasma AC 18:2 and LPC 17:1 compared to controls
Collapse
Affiliation(s)
- Arun Surendran
- Cardiovascular Lipidomics Laboratory, St. Boniface Hospital, Albrechtsen Research Centre, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada
- Mass Spectrometry and Proteomics Core Facility, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014 Kerala, India
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, 66 Chancellors Cir, Winnipeg, MB R3T 2N2, Canada
| | - Negar Atefi
- Cardiovascular Lipidomics Laboratory, St. Boniface Hospital, Albrechtsen Research Centre, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada
| | - Umar Ismail
- Section of Cardiology, Department of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 66 Chancellors Cir, Winnipeg, MB R3T 2N2, Canada
| | - Ashish Shah
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, 66 Chancellors Cir, Winnipeg, MB R3T 2N2, Canada
- Section of Cardiology, Department of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 66 Chancellors Cir, Winnipeg, MB R3T 2N2, Canada
| | - Amir Ravandi
- Cardiovascular Lipidomics Laboratory, St. Boniface Hospital, Albrechtsen Research Centre, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, 66 Chancellors Cir, Winnipeg, MB R3T 2N2, Canada
- Section of Cardiology, Department of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 66 Chancellors Cir, Winnipeg, MB R3T 2N2, Canada
- Corresponding author
| |
Collapse
|
104
|
Comparative Evaluation of Plasma Metabolomic Data from Multiple Laboratories. Metabolites 2022; 12:metabo12020135. [PMID: 35208210 PMCID: PMC8877229 DOI: 10.3390/metabo12020135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 11/17/2022] Open
Abstract
In mass spectrometry-based metabolomics, the differences in the analytical results from different laboratories/machines are an issue to be considered because various types of machines are used in each laboratory. Moreover, the analytical methods are unique to each laboratory. It is important to understand the reality of inter-laboratory differences in metabolomics. Therefore, we have evaluated whether the differences in analytical methods, with the exception sample pretreatment and including metabolite extraction, are involved in the inter-laboratory differences or not. In this study, nine facilities are evaluated for inter-laboratory comparisons of metabolomic analysis. Identical dried samples prepared from human and mouse plasma are distributed to each laboratory, and the metabolites are measured without the pretreatment that is unique to each laboratory. In these measurements, hydrophilic and hydrophobic metabolites are analyzed using 11 and 7 analytical methods, respectively. The metabolomic data acquired at each laboratory are integrated, and the differences in the metabolomic data from the laboratories are evaluated. No substantial difference in the relative quantitative data (human/mouse) for a little less than 50% of the detected metabolites is observed, and the hydrophilic metabolites have fewer differences between the laboratories compared with hydrophobic metabolites. From evaluating selected quantitatively guaranteed metabolites, the proportion of metabolites without the inter-laboratory differences is observed to be slightly high. It is difficult to resolve the inter-laboratory differences in metabolomics because all laboratories cannot prepare the same analytical environments. However, the results from this study indicate that the inter-laboratory differences in metabolomic data are due to measurement and data analysis rather than sample preparation, which will facilitate the understanding of the problems in metabolomics studies involving multiple laboratories.
Collapse
|
105
|
Schoeny H, Rampler E, Binh Chu D, Schoeberl A, Galvez L, Blaukopf M, Kosma P, Koellensperger G. Achieving Absolute Molar Lipid Concentrations: A Phospholipidomics Cross-Validation Study. Anal Chem 2022; 94:1618-1625. [PMID: 35025205 PMCID: PMC8792901 DOI: 10.1021/acs.analchem.1c03743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 01/05/2022] [Indexed: 01/28/2023]
Abstract
Standardization is essential in lipidomics and part of a huge community effort. However, with the still ongoing lack of reference materials, benchmarking quantification is hampered. Here, we propose traceable lipid class quantification as an important layer for the validation of quantitative lipidomics workflows. 31P nuclear magnetic resonance (NMR) and inductively coupled plasma (ICP)-mass spectrometry (MS) can use certified species-unspecific standards to validate shotgun or liquid chromatography (LC)-MS-based lipidomics approaches. We further introduce a novel lipid class quantification strategy based on lipid class separation and mass spectrometry using an all ion fragmentation (AIF) approach. Class-specific fragments, measured over a mass range typical for the lipid classes, are integrated to assess the lipid class concentration. The concept proved particularly interesting as low absolute limits of detection in the fmol range were achieved and LC-MS platforms are widely used in the field of lipidomics, while the accessibility of NMR and ICP-MS is limited. Using completely independent calibration strategies, the introduced validation scheme comprised the quantitative assessment of the complete phospholipid sub-ome, next to the individual lipid classes. Komagataella phaffii served as a prime example, showcasing mass balances and supporting the value of benchmarks for quantification at the lipid species level.
Collapse
Affiliation(s)
- Harald Schoeny
- Department
of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 38, 1090 Vienna, Austria
| | - Evelyn Rampler
- Department
of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 38, 1090 Vienna, Austria
- Vienna
Metabolomics Center (VIME), University of
Vienna, Althanstraße
14, 1090 Vienna, Austria
- Chemistry
Meets Microbiology, Althanstraße
14, 1090 Vienna, Austria
| | - Dinh Binh Chu
- Department
of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 38, 1090 Vienna, Austria
- School
of Chemical Engineering, Hanoi University
of Science and Technology, 1 Dai Co Viet, Hai Ba Trung, Hanoi 100000, Vietnam
| | - Anna Schoeberl
- Department
of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 38, 1090 Vienna, Austria
| | - Luis Galvez
- Department
of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 38, 1090 Vienna, Austria
| | - Markus Blaukopf
- Department
of Chemistry, University of Natural Resources
and Life Sciences Vienna, 1190 Vienna, Austria
| | - Paul Kosma
- Department
of Chemistry, University of Natural Resources
and Life Sciences Vienna, 1190 Vienna, Austria
| | - Gunda Koellensperger
- Department
of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 38, 1090 Vienna, Austria
- Vienna
Metabolomics Center (VIME), University of
Vienna, Althanstraße
14, 1090 Vienna, Austria
- Chemistry
Meets Microbiology, Althanstraße
14, 1090 Vienna, Austria
| |
Collapse
|
106
|
Wolrab D, Jirásko R, Cífková E, Höring M, Mei D, Chocholoušková M, Peterka O, Idkowiak J, Hrnčiarová T, Kuchař L, Ahrends R, Brumarová R, Friedecký D, Vivo-Truyols G, Škrha P, Škrha J, Kučera R, Melichar B, Liebisch G, Burkhardt R, Wenk MR, Cazenave-Gassiot A, Karásek P, Novotný I, Greplová K, Hrstka R, Holčapek M. Lipidomic profiling of human serum enables detection of pancreatic cancer. Nat Commun 2022; 13:124. [PMID: 35013261 PMCID: PMC8748654 DOI: 10.1038/s41467-021-27765-9] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 12/13/2021] [Indexed: 12/30/2022] Open
Abstract
Pancreatic cancer has the worst prognosis among all cancers. Cancer screening of body fluids may improve the survival time prognosis of patients, who are often diagnosed too late at an incurable stage. Several studies report the dysregulation of lipid metabolism in tumor cells, suggesting that changes in the blood lipidome may accompany tumor growth. Here we show that the comprehensive mass spectrometric determination of a wide range of serum lipids reveals statistically significant differences between pancreatic cancer patients and healthy controls, as visualized by multivariate data analysis. Three phases of biomarker discovery research (discovery, qualification, and verification) are applied for 830 samples in total, which shows the dysregulation of some very long chain sphingomyelins, ceramides, and (lyso)phosphatidylcholines. The sensitivity and specificity to diagnose pancreatic cancer are over 90%, which outperforms CA 19-9, especially at an early stage, and is comparable to established diagnostic imaging methods. Furthermore, selected lipid species indicate a potential as prognostic biomarkers.
Collapse
Affiliation(s)
- Denise Wolrab
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czech Republic
| | - Robert Jirásko
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czech Republic
| | - Eva Cífková
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czech Republic
| | - Marcus Höring
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, Regensburg, Germany
| | - Ding Mei
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Michaela Chocholoušková
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czech Republic
| | - Ondřej Peterka
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czech Republic
| | - Jakub Idkowiak
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czech Republic
| | - Tereza Hrnčiarová
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czech Republic
| | - Ladislav Kuchař
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Robert Ahrends
- Department of Analytical Chemistry, University of Vienna, Vienna, Austria
| | - Radana Brumarová
- Palacký University Olomouc, Institute of Molecular and Translational Medicine, Olomouc, Czech Republic
| | - David Friedecký
- Palacký University Olomouc, Institute of Molecular and Translational Medicine, Olomouc, Czech Republic
| | | | - Pavel Škrha
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jan Škrha
- 3rd Department of Internal Medicine, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Radek Kučera
- Department of Immunochemistry Diagnostics, University Hospital in Pilsen, Pilsen, Czech Republic
| | - Bohuslav Melichar
- Department of Oncology, Faculty of Medicine and Dentistry, Palacký University and University Hospital, Olomouc, Czech Republic
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, Regensburg, Germany
| | - Ralph Burkhardt
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, Regensburg, Germany
| | - Markus R Wenk
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Amaury Cazenave-Gassiot
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Petr Karásek
- Clinic of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Ivo Novotný
- Clinic of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Kristína Greplová
- Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Roman Hrstka
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Michal Holčapek
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czech Republic.
| |
Collapse
|
107
|
Wise SA. From urban dust and marine sediment to Ginkgo biloba and human serum-a top ten list of Standard Reference Materials (SRMs). Anal Bioanal Chem 2022; 414:31-52. [PMID: 34291299 PMCID: PMC8748289 DOI: 10.1007/s00216-021-03527-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/25/2021] [Accepted: 07/02/2021] [Indexed: 02/07/2023]
Abstract
During the past 40 years, the National Institute of Standards and Technology (NIST) has developed over 180 natural matrix Standard Reference Materials® (SRMs) for the determination of trace organic constituents in environmental, clinical, food, and dietary supplement matrices. A list of the Top Ten SRMs intended for organic analysis was identified based on selection criteria including analytical challenge to assign certified values, challenges in material preparation, novel matrices, longevity, widespread use, and unique design concept or intended use. The environmental matrix SRMs include air particulate matter, marine sediment, mussel tissue, and human serum with the focus on contaminants such as polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), chlorinated pesticides, and polybrominated diphenyl ethers (PBDEs). Human serum and plasma SRMs for clinical diagnostic markers including vitamin D metabolites represent clinical analysis, whereas infant formula, multivitamin/multielement tablets, and Ginkgo biloba constitute the food and dietary supplement matrices on the list. Each of the SRMs on the Top Ten list is discussed relative to the selection criteria and significance of the material, and several overall lessons learned are summarized.
Collapse
Affiliation(s)
- Stephen A Wise
- Office of Dietary Supplements, National Institutes of Health, Bethesda, MD, 20892, USA.
- Chemical Sciences Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD, 20899, USA.
| |
Collapse
|
108
|
Hu C, Luo W, Xu J, Han X. RECOGNITION AND AVOIDANCE OF ION SOURCE-GENERATED ARTIFACTS IN LIPIDOMICS ANALYSIS. MASS SPECTROMETRY REVIEWS 2022; 41:15-31. [PMID: 32997818 PMCID: PMC8287896 DOI: 10.1002/mas.21659] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/24/2020] [Accepted: 08/31/2020] [Indexed: 05/04/2023]
Abstract
Lipid research is attracting more and more attention as various key roles and novel biological functions of lipids have been demonstrated and discovered in the organism. Mass spectrometry (MS)-based lipidomics approaches are the most powerful and effective tools for analysis of cellular lipidomes with very high sensitivity and specificity. However, the artifacts generated from in-source fragmentation are always present in all kinds of ion sources, even soft ionization techniques (i.e., electrospray ionization and matrix-assisted laser desorption/ionization [MALDI]). These artifacts can cause many problems for lipidomics, especially when the fragment ions correspond to/are isomeric species of other endogenous lipid species in complex biological samples. These commonly observed artifacts could lead to misannotation, false identification, and consequently, incorrect attribution of phenotypes, and will have negative impact on any MS-based lipidomics research including but not limited to biomarker discovery, drug development, etc. Liquid chromatography-MS, shotgun lipidomics, and MALDI-MS imaging are three representative lipidomics approaches in which ion source-generated artifacts are all manifested and are comprehensively summarized in this article. The strategies on how to avoid/reduce the artifacts of in-source fragmentation on lipidomics analysis are also discussed in detail. We believe that with the recognition and avoidance of ion source-generated artifacts, MS-based lipidomics approaches will provide better accuracy on comprehensive analysis of biological samples and will make greater contribution to the research on metabolism and translational/precision medicine (collectively termed functional lipidomics). © 2020 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- Changfeng Hu
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, 548 Bingwen Road, Hangzhou, Zhejiang 310053, China
| | - Wenqing Luo
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, 548 Bingwen Road, Hangzhou, Zhejiang 310053, China
| | - Jie Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003 China
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229 USA
- Department of Medicine – Diabetes, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229 USA
| |
Collapse
|
109
|
Castelli FA, Rosati G, Moguet C, Fuentes C, Marrugo-Ramírez J, Lefebvre T, Volland H, Merkoçi A, Simon S, Fenaille F, Junot C. Metabolomics for personalized medicine: the input of analytical chemistry from biomarker discovery to point-of-care tests. Anal Bioanal Chem 2022; 414:759-789. [PMID: 34432105 PMCID: PMC8386160 DOI: 10.1007/s00216-021-03586-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/24/2021] [Accepted: 07/27/2021] [Indexed: 12/30/2022]
Abstract
Metabolomics refers to the large-scale detection, quantification, and analysis of small molecules (metabolites) in biological media. Although metabolomics, alone or combined with other omics data, has already demonstrated its relevance for patient stratification in the frame of research projects and clinical studies, much remains to be done to move this approach to the clinical practice. This is especially true in the perspective of being applied to personalized/precision medicine, which aims at stratifying patients according to their risk of developing diseases, and tailoring medical treatments of patients according to individual characteristics in order to improve their efficacy and limit their toxicity. In this review article, we discuss the main challenges linked to analytical chemistry that need to be addressed to foster the implementation of metabolomics in the clinics and the use of the data produced by this approach in personalized medicine. First of all, there are already well-known issues related to untargeted metabolomics workflows at the levels of data production (lack of standardization), metabolite identification (small proportion of annotated features and identified metabolites), and data processing (from automatic detection of features to multi-omic data integration) that hamper the inter-operability and reusability of metabolomics data. Furthermore, the outputs of metabolomics workflows are complex molecular signatures of few tens of metabolites, often with small abundance variations, and obtained with expensive laboratory equipment. It is thus necessary to simplify these molecular signatures so that they can be produced and used in the field. This last point, which is still poorly addressed by the metabolomics community, may be crucial in a near future with the increased availability of molecular signatures of medical relevance and the increased societal demand for participatory medicine.
Collapse
Affiliation(s)
- Florence Anne Castelli
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (MTS), Gif-sur-Yvette cedex, 91191, France
- MetaboHUB, Gif-sur-Yvette, France
| | - Giulio Rosati
- Institut Català de Nanociència i Nanotecnologia (ICN2), Edifici ICN2 Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Christian Moguet
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (MTS), Gif-sur-Yvette cedex, 91191, France
| | - Celia Fuentes
- Institut Català de Nanociència i Nanotecnologia (ICN2), Edifici ICN2 Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Jose Marrugo-Ramírez
- Institut Català de Nanociència i Nanotecnologia (ICN2), Edifici ICN2 Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Thibaud Lefebvre
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (MTS), Gif-sur-Yvette cedex, 91191, France
- Centre de Recherche sur l'Inflammation/CRI, Université de Paris, Inserm, Paris, France
- CRMR Porphyrie, Hôpital Louis Mourier, AP-HP Nord - Université de Paris, Colombes, France
| | - Hervé Volland
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (MTS), Gif-sur-Yvette cedex, 91191, France
| | - Arben Merkoçi
- Institut Català de Nanociència i Nanotecnologia (ICN2), Edifici ICN2 Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Stéphanie Simon
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (MTS), Gif-sur-Yvette cedex, 91191, France
| | - François Fenaille
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (MTS), Gif-sur-Yvette cedex, 91191, France
- MetaboHUB, Gif-sur-Yvette, France
| | - Christophe Junot
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (MTS), Gif-sur-Yvette cedex, 91191, France.
- MetaboHUB, Gif-sur-Yvette, France.
| |
Collapse
|
110
|
Reis GB, Rees JC, Ivanova AA, Kuklenyik Z, Drew NM, Pirkle JL, Barr JR. Stability of lipids in plasma and serum: Effects of temperature-related storage conditions on the human lipidome. J Mass Spectrom Adv Clin Lab 2021; 22:34-42. [PMID: 34939053 DOI: 10.1016/j.jmsacl.2021.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 11/25/2022] Open
Abstract
Large epidemiological studies often require sample transportation and storage, presenting unique considerations when applying advanced lipidomics techniques. The goal of this study was to acquire lipidomics data on plasma and serum samples stored at potential preanalytical conditions (e.g., thawing, extracting, evaporating), systematically monitoring lipid species for a period of one month. Split aliquots of 10 plasma samples and 10 serum samples from healthy individuals were kept in three temperature-related environments: refrigerator, laboratory benchtop, or heated incubator. Samples were analyzed at six different time points over 28 days using a Bligh & Dyer lipid extraction protocol followed by direct infusion into a lipidomics platform using differential mobility with tandem mass spectrometry. The observed concentration changes over time were evaluated relative to method and inter-individual biological variability. In addition, to evaluate the effect of lipase enzyme levels on concentration changes during storage, we compared corresponding fasting and post-prandial plasma samples collected from 5 individuals. Based on our data, a series of low abundance free fatty acid (FFA), diacylglycerol (DAG), and cholesteryl ester (CE) species were identified as potential analytical markers for degradation. These FFA and DAG species are typically produced by endogenous lipases from numerous triacylglycerols (TAGs), and certain high abundance phosphatidylcholines (PCs). The low concentration CEs, which appeared to increase several fold, were likely mass-isobars from oxidation of other high concentration CEs. Although the concentration changes of the high abundant TAG, PC, and CE precursors remained within method variability, the concentration trends of FFA, DAG, and oxidized CE products should be systematically monitored over time to inform analysts about possible pre-analytical biases due to degradation in the study sample sets.
Collapse
Key Words
- 15-Hp-PGD2, 15-hydroperoxy-prostaglandin D2
- CE, Cholesteryl ester
- CER, Ceramide
- Cholesteryl Ester
- DAG, Diacylglycerol
- Degradation
- FFA, Free Fatty Acid
- Fatty Acids
- HpETE, hydroperoxyeicosatetraenoic acid
- HpODE, hydroperoxyoctadecadienoic acid
- Hydrolysis
- LPC, Lysophosphatidylcholine
- LPE, Lysophosphatidylethanolamine
- Lipidomics
- LysoPL, Lysophospholipid
- Oxidation
- PC, Phosphatidylcholine
- PE, Phosphatidylethanolamine
- PGD2, prostaglandin D2
- PL, Phospholipid
- PLA1, phospholipase A1
- PLA2, phospholipase A2
- SM, Sphingomyelin
- Stability
- TAG, Triacylglycerol
- Triglycerides
Collapse
Affiliation(s)
- Gregory B Reis
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Chamblee, GA, United States
| | - Jon C Rees
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Chamblee, GA, United States
| | - Anna A Ivanova
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Chamblee, GA, United States
| | - Zsuzsanna Kuklenyik
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Chamblee, GA, United States
| | - Nathan M Drew
- Division of Science Integration, National Institute for Occupational Safety & Health, Centers for Disease Control and Prevention, Cincinnati, OH, United States
| | - James L Pirkle
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Chamblee, GA, United States
| | - John R Barr
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Chamblee, GA, United States
| |
Collapse
|
111
|
Kawai T, Matsumori N, Otsuka K. Recent advances in microscale separation techniques for lipidome analysis. Analyst 2021; 146:7418-7430. [PMID: 34787600 DOI: 10.1039/d1an00967b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review paper highlights the recent research on liquid-phase microscale separation techniques for lipidome analysis over the last 10 years, mainly focusing on capillary liquid chromatography (LC) and capillary electrophoresis (CE) coupled with mass spectrometry (MS). Lipids are one of the most important classes of biomolecules which are involved in the cell membrane, energy storage, signal transduction, and so on. Since lipids include a variety of hydrophobic compounds including numerous structural isomers, lipidomes are a challenging target in bioanalytical chemistry. MS is the key technology that comprehensively identifies lipids; however, separation techniques like LC and CE are necessary prior to MS detection in order to avoid ionization suppression and resolve structural isomers. Separation techniques using μm-scale columns, such as a fused silica capillary and microfluidic device, are effective at realizing high-resolution separation. Microscale separation usually employs a nL-scale flow, which is also compatible with nanoelectrospray ionization-MS that achieves high sensitivity. Owing to such analytical advantages, microscale separation techniques like capillary/microchip LC and CE have been employed for more than 100 lipidome studies. Such techniques are still being evolved and achieving further higher resolution and wider coverage of lipidomes. Therefore, microscale separation techniques are promising as the fundamental technology in next-generation lipidome analysis.
Collapse
Affiliation(s)
- Takayuki Kawai
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Nobuaki Matsumori
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Koji Otsuka
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| |
Collapse
|
112
|
Masoodi M, Gastaldelli A, Hyötyläinen T, Arretxe E, Alonso C, Gaggini M, Brosnan J, Anstee QM, Millet O, Ortiz P, Mato JM, Dufour JF, Orešič M. Metabolomics and lipidomics in NAFLD: biomarkers and non-invasive diagnostic tests. Nat Rev Gastroenterol Hepatol 2021; 18:835-856. [PMID: 34508238 DOI: 10.1038/s41575-021-00502-9] [Citation(s) in RCA: 247] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/15/2021] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most common liver diseases worldwide and is often associated with aspects of metabolic syndrome. Despite its prevalence and the importance of early diagnosis, there is a lack of robustly validated biomarkers for diagnosis, prognosis and monitoring of disease progression in response to a given treatment. In this Review, we provide an overview of the contribution of metabolomics and lipidomics in clinical studies to identify biomarkers associated with NAFLD and nonalcoholic steatohepatitis (NASH). In addition, we highlight the key metabolic pathways in NAFLD and NASH that have been identified by metabolomics and lipidomics approaches and could potentially be used as biomarkers for non-invasive diagnostic tests. Overall, the studies demonstrated alterations in amino acid metabolism and several aspects of lipid metabolism including circulating fatty acids, triglycerides, phospholipids and bile acids. Although we report several studies that identified potential biomarkers, few have been validated.
Collapse
Affiliation(s)
- Mojgan Masoodi
- Institute of Clinical Chemistry, Bern University Hospital, Bern, Switzerland.
| | | | - Tuulia Hyötyläinen
- School of Natural Sciences and Technology, Örebro University, Örebro, Sweden
| | - Enara Arretxe
- OWL Metabolomics, Bizkaia Technology Park, Derio, Spain
| | | | | | | | - Quentin M Anstee
- Clinical & Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Oscar Millet
- Precision Medicine & Metabolism, CIC bioGUNE, CIBERehd, BRTA, Bizkaia Technology Park, Derio, Spain
| | - Pablo Ortiz
- OWL Metabolomics, Bizkaia Technology Park, Derio, Spain
| | - Jose M Mato
- Precision Medicine & Metabolism, CIC bioGUNE, CIBERehd, BRTA, Bizkaia Technology Park, Derio, Spain
| | - Jean-Francois Dufour
- University Clinic of Visceral Surgery and Medicine, Inselspital Bern, Bern, Switzerland.,Hepatology, Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Matej Orešič
- School of Medical Sciences, Örebro University, Örebro, Sweden. .,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.
| |
Collapse
|
113
|
Cerrato A, Aita SE, Capriotti AL, Cavaliere C, Montone CM, Piovesana S, Laganà A. Fully Automatized Detection of Phosphocholine-Containing Lipids through an Isotopically Labeled Buffer Modification Workflow. Anal Chem 2021; 93:15042-15048. [PMID: 34726396 DOI: 10.1021/acs.analchem.1c02944] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
High-resolution mass spectrometry is the foremost technique for qualitative and quantitative lipidomics analyses. Glycerophospholipids and sphingolipids, collectively termed polar lipids, are commonly investigated by hyphenated liquid chromatography-mass spectrometry (LC-MS) techniques that reduce aggregation effects and provide a greater dynamic range of detection sensitivity compared to shotgun lipidomics. However, automatic polar lipid identification is hindered by several isobaric and isomer mass overlaps, which cause software programs to often fail to correctly annotate the lipid species. In the present paper, a buffer modification workflow based on the use of labeled and unlabeled acetate ions in the chromatographic buffers was optimized by Box-Behnken design of the experiments and applied to the characterization of phosphocholine-containing lipids in human plasma samples. The contemporary generation of [M + CH3COO]-, [M + CD3COO]-, and [M - CH3]- coupled with a dedicated data processing workflow, which was specifically set up on Compound Discoverer software, allowed us to correctly determine adduct composition, molecular formulas, and grouping, as well as granting a lower false-positive rate and streamlining the manual validation step compared to commonly employed lipidomics platforms. The proposed workflow represents a robust yet easier alternative to the existing approaches for improving lipid annotation, as it does not require extensive sample pretreatment or prior isotopic enrichment or derivatization.
Collapse
Affiliation(s)
- Andrea Cerrato
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Sara Elsa Aita
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Anna Laura Capriotti
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Chiara Cavaliere
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Carmela Maria Montone
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Susy Piovesana
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Aldo Laganà
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.,CNR NANOTEC, Campus Ecotekne, University of Salento, Via Monteroni, 73100 Lecce, Italy
| |
Collapse
|
114
|
Yoshinaga MY, Quintanilha BJ, Chaves-Filho AB, Miyamoto S, Sampaio GR, Rogero MM. Postprandial plasma lipidome responses to a high-fat meal among healthy women. J Nutr Biochem 2021; 97:108809. [PMID: 34192591 DOI: 10.1016/j.jnutbio.2021.108809] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 04/27/2021] [Accepted: 06/08/2021] [Indexed: 11/20/2022]
Abstract
Postprandial lipemia consists of changes in concentrations and composition of plasma lipids after food intake, commonly presented as increased levels of triglyceride-rich lipoproteins. Postprandial hypertriglyceridemia may also affect high-density lipoprotein (HDL) structure and function, resulting in a net decrease in HDL concentrations. Elevated triglycerides (TG) and reduced HDL levels have been positively associated with risk of cardiovascular diseases development. Here, we investigated the plasma lipidome composition of 12 clinically healthy, nonobese and young women in response to an acute high-caloric (1135 kcal) and high-fat (64 g) breakfast meal. For this purpose, we employed a detailed untargeted mass spectrometry-based lipidomic approach and data was obtained at four sampling points: fasting and 1, 3 and 5 h postprandial. Analysis of variance revealed 73 significantly altered lipid species between all sampling points. Nonetheless, two divergent subgroups have emerged at 5 h postprandial as a function of differential plasma lipidome responses, and were thereby designated slow and fast TG metabolizers. Late responses by slow TG metabolizers were associated with increased concentrations of several species of TG and phosphatidylinositol (PI). Lipidomic analysis of lipoprotein fractions at 5 h postprandial revealed higher TG and PI concentrations in HDL from slow relative to fast TG metabolizers, but not in apoB-containing fraction. These data indicate that modulations in HDL lipidome during prolonged postprandial lipemia may potentially impact HDL functions. A comprehensive characterization of plasma lipidome responses to acute metabolic challenges may contribute to a better understanding of diet/lifestyle regulation in the metabolism of lipid and glucose.
Collapse
Affiliation(s)
- Marcos Yukio Yoshinaga
- Laboratory of Modified Lipids, Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil.
| | - Bruna Jardim Quintanilha
- Nutritional Genomics and Inflammation Laboratory, Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil; Food Research Center (FoRC), CEPID-FAPESP, Research Innovation and Dissemination Centers São Paulo Research Foundation, São Paulo, Brazil
| | - Adriano Britto Chaves-Filho
- Laboratory of Modified Lipids, Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Sayuri Miyamoto
- Laboratory of Modified Lipids, Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Geni Rodrigues Sampaio
- Nutritional Genomics and Inflammation Laboratory, Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil
| | - Marcelo Macedo Rogero
- Nutritional Genomics and Inflammation Laboratory, Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil; Food Research Center (FoRC), CEPID-FAPESP, Research Innovation and Dissemination Centers São Paulo Research Foundation, São Paulo, Brazil.
| |
Collapse
|
115
|
Cabruja M, Priotti J, Domizi P, Papsdorf K, Kroetz DL, Brunet A, Contrepois K, Snyder MP. In-depth triacylglycerol profiling using MS 3 Q-Trap mass spectrometry. Anal Chim Acta 2021; 1184:339023. [PMID: 34625255 DOI: 10.1016/j.aca.2021.339023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/07/2021] [Accepted: 08/30/2021] [Indexed: 12/18/2022]
Abstract
Total triacylglycerol (TAG) level is a key clinical marker of metabolic and cardiovascular diseases. However, the roles of individual TAGs have not been thoroughly explored in part due to their extreme structural complexity. We present a targeted mass spectrometry-based method combining multiple reaction monitoring (MRM) and multiple stage mass spectrometry (MS3) for the comprehensive qualitative and semiquantitative profiling of TAGs. This method referred as TriP-MS3 - triacylglycerol profiling using MS3 - screens for more than 6,700 TAG species in a fully automated fashion. TriP-MS3 demonstrated excellent reproducibility (median interday CV ∼ 0.15) and linearity (median R2 = 0.978) and detected 285 individual TAG species in human plasma. The semiquantitative accuracy of the method was validated by comparison with a state-of-the-art reverse phase liquid chromatography (RPLC)-MS (R2 = 0.83), which is the most commonly used approach for TAGs profiling. Finally, we demonstrate the utility and the versatility of the method by characterizing the effects of a fatty acid desaturase inhibitor on TAG profiles in vitro and by profiling TAGs in Caenorhabditis elegans.
Collapse
Affiliation(s)
- Matias Cabruja
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Josefina Priotti
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Pablo Domizi
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | | | - Deanna L Kroetz
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Anne Brunet
- Department of Genetics, Stanford University, Stanford, CA, USA
| | | | | |
Collapse
|
116
|
Ly R, Ly N, Sasaki K, Suzuki M, Kami K, Ohashi Y, Britz-McKibbin P. Nontargeted Serum Lipid Profiling of Nonalcoholic Steatohepatitis by Multisegment Injection-Nonaqueous Capillary Electrophoresis-Mass Spectrometry: A Multiplexed Separation Platform for Resolving Ionic Lipids. J Proteome Res 2021; 21:768-777. [PMID: 34676758 DOI: 10.1021/acs.jproteome.1c00682] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
New methods are needed for global lipid profiling due to the complex chemical structures and diverse physicochemical properties of lipids. Herein we introduce a robust data workflow to unambiguously select lipid features from serum ether extracts by multisegment injection-nonaqueous capillary electrophoresis-mass spectrometry (MSI-NACE-MS). An iterative three-stage screening strategy is developed for nontargeted lipid analyses when using multiplexed electrophoretic separations coupled to an Orbitrap mass analyzer under negative ion mode. This approach enables the credentialing of 270 serum lipid features annotated based on their accurate mass and relative migration time, including 128 ionic lipids reliably measured (median CV ≈ 13%) in most serum samples (>75%) from nonalcoholic steatohepatitis (NASH) patients (n = 85). A mobility map is introduced to classify charged lipid classes over a wide polarity range with selectivity complementary to chromatographic separations, including lysophosphatidic acids, phosphatidylcholines, phosphatidylinositols, phosphatidylethanolamines, and nonesterified fatty acids (NEFAs). Serum lipidome profiles were also used to differentiate high- from low-risk NASH patients using a k-means clustering algorithm, where elevated circulating NEFAs (e.g., palmitic acid) were associated with increased glucose intolerance, more severe liver fibrosis, and greater disease burden. MSI-NACE-MS greatly expands the metabolome coverage of conventional aqueous-based CE-MS protocols and is a promising platform for large-scale lipidomic studies.
Collapse
Affiliation(s)
- Ritchie Ly
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Nicholas Ly
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Kazunori Sasaki
- Human Metabolome Technologies, Inc., Tsuruoka, Yamagata 997-0052, Japan
| | - Makoto Suzuki
- Human Metabolome Technologies, Inc., Tsuruoka, Yamagata 997-0052, Japan
| | - Kenjiro Kami
- Human Metabolome Technologies, Inc., Tsuruoka, Yamagata 997-0052, Japan
| | - Yoshiaki Ohashi
- Human Metabolome Technologies, Inc., Tsuruoka, Yamagata 997-0052, Japan
| | - Philip Britz-McKibbin
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| |
Collapse
|
117
|
Lange M, Angelidou G, Ni Z, Criscuolo A, Schiller J, Blüher M, Fedorova M. AdipoAtlas: A reference lipidome for human white adipose tissue. Cell Rep Med 2021; 2:100407. [PMID: 34755127 PMCID: PMC8561168 DOI: 10.1016/j.xcrm.2021.100407] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 07/29/2021] [Accepted: 08/26/2021] [Indexed: 01/16/2023]
Abstract
Obesity, characterized by expansion and metabolic dysregulation of white adipose tissue (WAT), has reached pandemic proportions and acts as a primer for a wide range of metabolic disorders. Remodeling of WAT lipidome in obesity and associated comorbidities can explain disease etiology and provide valuable diagnostic and prognostic markers. To support understanding of WAT lipidome remodeling at the molecular level, we provide in-depth lipidomics profiling of human subcutaneous and visceral WAT of lean and obese individuals. We generate a human WAT reference lipidome by performing tissue-tailored preanalytical and analytical workflows, which allow accurate identification and semi-absolute quantification of 1,636 and 737 lipid molecular species, respectively. Deep lipidomic profiling allows identification of main lipid (sub)classes undergoing depot-/phenotype-specific remodeling. Previously unanticipated diversity of WAT ceramides is now uncovered. AdipoAtlas reference lipidome serves as a data-rich resource for the development of WAT-specific high-throughput methods and as a scaffold for systems medicine data integration.
Collapse
Affiliation(s)
- Mike Lange
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, University of Leipzig, Leipzig, Germany
- Center for Biotechnology and Biomedicine, University of Leipzig, Leipzig, Germany
| | - Georgia Angelidou
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, University of Leipzig, Leipzig, Germany
- Center for Biotechnology and Biomedicine, University of Leipzig, Leipzig, Germany
| | - Zhixu Ni
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, University of Leipzig, Leipzig, Germany
- Center for Biotechnology and Biomedicine, University of Leipzig, Leipzig, Germany
| | - Angela Criscuolo
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, University of Leipzig, Leipzig, Germany
- Center for Biotechnology and Biomedicine, University of Leipzig, Leipzig, Germany
- Thermo Fisher Scientific, Dreieich, Germany
| | - Jürgen Schiller
- Institute of Medical Physics and Biophysics, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Matthias Blüher
- Medical Department III (Endocrinology, Nephrology and Rheumatology), University of Leipzig, Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Maria Fedorova
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, University of Leipzig, Leipzig, Germany
- Center for Biotechnology and Biomedicine, University of Leipzig, Leipzig, Germany
| |
Collapse
|
118
|
Köfeler HC, Ahrends R, Baker ES, Ekroos K, Han X, Hoffmann N, Holčapek M, Wenk MR, Liebisch G. Recommendations for good practice in MS-based lipidomics. J Lipid Res 2021; 62:100138. [PMID: 34662536 PMCID: PMC8585648 DOI: 10.1016/j.jlr.2021.100138] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 12/17/2022] Open
Abstract
In the last 2 decades, lipidomics has become one of the fastest expanding scientific disciplines in biomedical research. With an increasing number of new research groups to the field, it is even more important to design guidelines for assuring high standards of data quality. The Lipidomics Standards Initiative is a community-based endeavor for the coordination of development of these best practice guidelines in lipidomics and is embedded within the International Lipidomics Society. It is the intention of this review to highlight the most quality-relevant aspects of the lipidomics workflow, including preanalytics, sample preparation, MS, and lipid species identification and quantitation. Furthermore, this review just does not only highlights examples of best practice but also sheds light on strengths, drawbacks, and pitfalls in the lipidomic analysis workflow. While this review is neither designed to be a step-by-step protocol by itself nor dedicated to a specific application of lipidomics, it should nevertheless provide the interested reader with links and original publications to obtain a comprehensive overview concerning the state-of-the-art practices in the field.
Collapse
Affiliation(s)
- Harald C Köfeler
- Core Facility Mass Spectrometry, Medical University of Graz, Graz, Austria.
| | - Robert Ahrends
- Department for Analytical Chemistry, University of Vienna, Vienna, Austria
| | - Erin S Baker
- Department of Chemistry, North Carolina State University, Raleigh, NC, USA
| | - Kim Ekroos
- Lipidomics Consulting Ltd., Esbo, Finland
| | - Xianlin Han
- Barshop Inst Longev & Aging Studies, Univ Texas Hlth Sci Ctr San Antonio, San Antonio, TX, USA
| | - Nils Hoffmann
- Center for Biotechnology, Universität Bielefeld, Bielefeld, Germany
| | - Michal Holčapek
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czech Republic
| | - Markus R Wenk
- Singapore Lipidomics Incubator (SLING), Department of Biochemistry, YLL School of Medicine, National University of Singapore, Singapore, Singapore
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, Regensburg, Germany.
| |
Collapse
|
119
|
Surendran A, Atefi N, Zhang H, Aliani M, Ravandi A. Defining Acute Coronary Syndrome through Metabolomics. Metabolites 2021; 11:685. [PMID: 34677400 PMCID: PMC8540033 DOI: 10.3390/metabo11100685] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/19/2021] [Accepted: 09/25/2021] [Indexed: 02/06/2023] Open
Abstract
As an emerging platform technology, metabolomics offers new insights into the pathomechanisms associated with complex disease conditions, including cardiovascular diseases. It also facilitates assessing the risk of developing the disease before its clinical manifestation. For this reason, metabolomics is of growing interest for understanding the pathogenesis of acute coronary syndromes (ACS), finding new biomarkers of ACS, and its associated risk management. Metabolomics-based studies in ACS have already demonstrated immense potential for biomarker discovery and mechanistic insights by identifying metabolomic signatures (e.g., branched-chain amino acids, acylcarnitines, lysophosphatidylcholines) associated with disease progression. Herein, we discuss the various metabolomics approaches and the challenges involved in metabolic profiling, focusing on ACS. Special attention has been paid to the clinical studies of metabolomics and lipidomics in ACS, with an emphasis on ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Arun Surendran
- Cardiovascular Lipidomics Laboratory, St. Boniface Hospital, Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada; (A.S.); (N.A.); (H.Z.)
- Mass Spectrometry and Proteomics Core Facility, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala, India
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
| | - Negar Atefi
- Cardiovascular Lipidomics Laboratory, St. Boniface Hospital, Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada; (A.S.); (N.A.); (H.Z.)
| | - Hannah Zhang
- Cardiovascular Lipidomics Laboratory, St. Boniface Hospital, Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada; (A.S.); (N.A.); (H.Z.)
| | - Michel Aliani
- Faculty of Agricultural and Food Sciences, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R2H 2A6, Canada;
| | - Amir Ravandi
- Cardiovascular Lipidomics Laboratory, St. Boniface Hospital, Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada; (A.S.); (N.A.); (H.Z.)
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
- Section of Cardiology, Department of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
| |
Collapse
|
120
|
Carrard J, Gallart-Ayala H, Weber N, Colledge F, Streese L, Hanssen H, Schmied C, Ivanisevic J, Schmidt-Trucksäss A. How Ceramides Orchestrate Cardiometabolic Health-An Ode to Physically Active Living. Metabolites 2021; 11:metabo11100675. [PMID: 34677390 PMCID: PMC8538837 DOI: 10.3390/metabo11100675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 01/02/2023] Open
Abstract
Cardiometabolic diseases (CMD) represent a growing socioeconomic burden and concern for healthcare systems worldwide. Improving patients’ metabolic phenotyping in clinical practice will enable clinicians to better tailor prevention and treatment strategy to individual needs. Recently, elevated levels of specific lipid species, known as ceramides, were shown to predict cardiometabolic outcomes beyond traditional biomarkers such as cholesterol. Preliminary data showed that physical activity, a potent, low-cost, and patient-empowering means to reduce CMD-related burden, influences ceramide levels. While a single bout of physical exercise increases circulating and muscular ceramide levels, regular exercise reduces ceramide content. Additionally, several ceramide species have been reported to be negatively associated with cardiorespiratory fitness, which is a potent health marker reflecting training level. Thus, regular exercise could optimize cardiometabolic health, partly by reversing altered ceramide profiles. This short review provides an overview of ceramide metabolism and its role in cardiometabolic health and diseases, before presenting the effects of exercise on ceramides in humans.
Collapse
Affiliation(s)
- Justin Carrard
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Birsstrasse 320B, 4052 Basel, Switzerland; (L.S.); (H.H.); (A.S.-T.)
- Correspondence:
| | - Hector Gallart-Ayala
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Quartier UNIL-CHUV, Rue du Bugnon 19, 1005 Lausanne, Switzerland; (H.G.-A.); (J.I.)
| | - Nadia Weber
- Medical School, Department of Health Sciences and Technology, Swiss Federal Institute of Technology, Universitätstrasse 2, 8092 Zurich, Switzerland;
| | - Flora Colledge
- Division of Sports Science, Department of Sport, Exercise and Health, University of Basel, Birsstrasse 320B, 4052 Basel, Switzerland;
| | - Lukas Streese
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Birsstrasse 320B, 4052 Basel, Switzerland; (L.S.); (H.H.); (A.S.-T.)
| | - Henner Hanssen
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Birsstrasse 320B, 4052 Basel, Switzerland; (L.S.); (H.H.); (A.S.-T.)
| | - Christian Schmied
- Sports Cardiology Section, Department of Cardiology, University Heart Center Zurich, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland;
| | - Julijana Ivanisevic
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Quartier UNIL-CHUV, Rue du Bugnon 19, 1005 Lausanne, Switzerland; (H.G.-A.); (J.I.)
| | - Arno Schmidt-Trucksäss
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Birsstrasse 320B, 4052 Basel, Switzerland; (L.S.); (H.H.); (A.S.-T.)
| |
Collapse
|
121
|
Saigusa D, Hishinuma E, Matsukawa N, Takahashi M, Inoue J, Tadaka S, Motoike IN, Hozawa A, Izumi Y, Bamba T, Kinoshita K, Ekroos K, Koshiba S, Yamamoto M. Comparison of Kit-Based Metabolomics with Other Methodologies in a Large Cohort, towards Establishing Reference Values. Metabolites 2021; 11:652. [PMID: 34677367 PMCID: PMC8538467 DOI: 10.3390/metabo11100652] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 12/18/2022] Open
Abstract
Metabolic profiling is an omics approach that can be used to observe phenotypic changes, making it particularly attractive for biomarker discovery. Although several candidate metabolites biomarkers for disease expression have been identified in recent clinical studies, the reference values of healthy subjects have not been established. In particular, the accuracy of concentrations measured by mass spectrometry (MS) is unclear. Therefore, comprehensive metabolic profiling in large-scale cohorts by MS to create a database with reference ranges is essential for evaluating the quality of the discovered biomarkers. In this study, we tested 8700 plasma samples by commercial kit-based metabolomics and separated them into two groups of 6159 and 2541 analyses based on the different ultra-high-performance tandem mass spectrometry (UHPLC-MS/MS) systems. We evaluated the quality of the quantified values of the detected metabolites from the reference materials in the group of 2541 compared with the quantified values from other platforms, such as nuclear magnetic resonance (NMR), supercritical fluid chromatography tandem mass spectrometry (SFC-MS/MS) and UHPLC-Fourier transform mass spectrometry (FTMS). The values of the amino acids were highly correlated with the NMR results, and lipid species such as phosphatidylcholines and ceramides showed good correlation, while the values of triglycerides and cholesterol esters correlated less to the lipidomics analyses performed using SFC-MS/MS and UHPLC-FTMS. The evaluation of the quantified values by MS-based techniques is essential for metabolic profiling in a large-scale cohort.
Collapse
Affiliation(s)
- Daisuke Saigusa
- Department of Integrative Genomics, Tohoku University Tohoku Medical Megabank Organization, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8573, Japan; (E.H.); (N.M.); (J.I.); (S.T.); (I.N.M.); (K.K.); (S.K.); (M.Y.)
- Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Eiji Hishinuma
- Department of Integrative Genomics, Tohoku University Tohoku Medical Megabank Organization, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8573, Japan; (E.H.); (N.M.); (J.I.); (S.T.); (I.N.M.); (K.K.); (S.K.); (M.Y.)
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8573, Japan
| | - Naomi Matsukawa
- Department of Integrative Genomics, Tohoku University Tohoku Medical Megabank Organization, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8573, Japan; (E.H.); (N.M.); (J.I.); (S.T.); (I.N.M.); (K.K.); (S.K.); (M.Y.)
- Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Masatomo Takahashi
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (M.T.); (Y.I.); (T.B.)
| | - Jin Inoue
- Department of Integrative Genomics, Tohoku University Tohoku Medical Megabank Organization, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8573, Japan; (E.H.); (N.M.); (J.I.); (S.T.); (I.N.M.); (K.K.); (S.K.); (M.Y.)
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8573, Japan
| | - Shu Tadaka
- Department of Integrative Genomics, Tohoku University Tohoku Medical Megabank Organization, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8573, Japan; (E.H.); (N.M.); (J.I.); (S.T.); (I.N.M.); (K.K.); (S.K.); (M.Y.)
- Graduate School of Information Sciences, Tohoku University, 6-3-09, Aramaki Aza-Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Ikuko N. Motoike
- Department of Integrative Genomics, Tohoku University Tohoku Medical Megabank Organization, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8573, Japan; (E.H.); (N.M.); (J.I.); (S.T.); (I.N.M.); (K.K.); (S.K.); (M.Y.)
- Graduate School of Information Sciences, Tohoku University, 6-3-09, Aramaki Aza-Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Atsushi Hozawa
- Department of Preventive Medicine and Epidemiology, Tohoku University Tohoku Medical Megabank Organization, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8573, Japan;
| | - Yoshihiro Izumi
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (M.T.); (Y.I.); (T.B.)
- Department of Systems Life Sciences, Graduate School of Systems Life Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takeshi Bamba
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (M.T.); (Y.I.); (T.B.)
- Department of Systems Life Sciences, Graduate School of Systems Life Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kengo Kinoshita
- Department of Integrative Genomics, Tohoku University Tohoku Medical Megabank Organization, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8573, Japan; (E.H.); (N.M.); (J.I.); (S.T.); (I.N.M.); (K.K.); (S.K.); (M.Y.)
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8573, Japan
- Graduate School of Information Sciences, Tohoku University, 6-3-09, Aramaki Aza-Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Kim Ekroos
- Lipidomics Consulting Ltd., 02230 Espoo, Finland;
| | - Seizo Koshiba
- Department of Integrative Genomics, Tohoku University Tohoku Medical Megabank Organization, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8573, Japan; (E.H.); (N.M.); (J.I.); (S.T.); (I.N.M.); (K.K.); (S.K.); (M.Y.)
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8573, Japan
| | - Masayuki Yamamoto
- Department of Integrative Genomics, Tohoku University Tohoku Medical Megabank Organization, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8573, Japan; (E.H.); (N.M.); (J.I.); (S.T.); (I.N.M.); (K.K.); (S.K.); (M.Y.)
- Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8573, Japan
| |
Collapse
|
122
|
Vvedenskaya O, Rose TD, Knittelfelder O, Palladini A, Wodke JAH, Schuhmann K, Ackerman JM, Wang Y, Has C, Brosch M, Thangapandi VR, Buch S, Züllig T, Hartler J, Köfeler HC, Röcken C, Coskun Ü, Klipp E, von Schoenfels W, Gross J, Schafmayer C, Hampe J, Pauling JK, Shevchenko A. Nonalcoholic fatty liver disease stratification by liver lipidomics. J Lipid Res 2021; 62:100104. [PMID: 34384788 PMCID: PMC8488246 DOI: 10.1016/j.jlr.2021.100104] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/20/2021] [Accepted: 07/30/2021] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a common metabolic dysfunction leading to hepatic steatosis. However, NAFLD's global impact on the liver lipidome is poorly understood. Using high-resolution shotgun mass spectrometry, we quantified the molar abundance of 316 species from 22 major lipid classes in liver biopsies of 365 patients, including nonsteatotic patients with normal or excessive weight, patients diagnosed with NAFL (nonalcoholic fatty liver) or NASH (nonalcoholic steatohepatitis), and patients bearing common mutations of NAFLD-related protein factors. We confirmed the progressive accumulation of di- and triacylglycerols and cholesteryl esters in the liver of NAFL and NASH patients, while the bulk composition of glycerophospho- and sphingolipids remained unchanged. Further stratification by biclustering analysis identified sphingomyelin species comprising n24:2 fatty acid moieties as membrane lipid markers of NAFLD. Normalized relative abundance of sphingomyelins SM 43:3;2 and SM 43:1;2 containing n24:2 and n24:0 fatty acid moieties, respectively, showed opposite trends during NAFLD progression and distinguished NAFL and NASH lipidomes from the lipidome of nonsteatotic livers. Together with several glycerophospholipids containing a C22:6 fatty acid moiety, these lipids serve as markers of early and advanced stages of NAFL.
Collapse
Affiliation(s)
- Olga Vvedenskaya
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Tim Daniel Rose
- LipiTUM, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Munich, Germany
| | - Oskar Knittelfelder
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Alessandra Palladini
- Paul Langerhans Institute Dresden of the Helmholtz Zentrum Munich at the University Hospital Carl Gustav Carus, Technische Universität (TU) Dresden, Dresden, Germany; German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | | | - Kai Schuhmann
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | - Yuting Wang
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Canan Has
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Mario Brosch
- Department of Medicine I, University Hospital Dresden, Technische Universität (TU) Dresden, Dresden, Germany; Center for Regenerative Therapies Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, Germany
| | - Veera Raghavan Thangapandi
- Department of Medicine I, University Hospital Dresden, Technische Universität (TU) Dresden, Dresden, Germany; Center for Regenerative Therapies Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, Germany
| | - Stephan Buch
- Department of Medicine I, University Hospital Dresden, Technische Universität (TU) Dresden, Dresden, Germany; Center for Regenerative Therapies Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, Germany
| | - Thomas Züllig
- Core Facility Mass Spectrometry, Medical University of Graz, Graz, Austria
| | - Jürgen Hartler
- Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria; Field of Excellence BioHealth, University of Graz, Graz, Austria
| | - Harald C Köfeler
- Core Facility Mass Spectrometry, Medical University of Graz, Graz, Austria
| | - Christoph Röcken
- Department of Pathology, University Hospital Schleswig Holstein, Kiel, Schleswig-Holstein, Germany
| | - Ünal Coskun
- Paul Langerhans Institute Dresden of the Helmholtz Zentrum Munich at the University Hospital Carl Gustav Carus, Technische Universität (TU) Dresden, Dresden, Germany; German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany; Department of Membrane Biochemistry and Lipid Research, University Hospital Carl Gustav Carus of Technische Universität Dresden, Dresden, Germany
| | - Edda Klipp
- Theoretical Biophysics, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Witigo von Schoenfels
- Department of Visceral and Thoracic Surgery, University Hospital Schleswig-Holstein, Kiel Campus, Christian-Albrechts-University Kiel, Kiel, Germany; Christian Albrechts University in Kiel Center of Clinical Anatomy Kiel, Schleswig-Holstein, Germany
| | - Justus Gross
- Department of General, Visceral, Vascular and Transplant Surgery, Rostock University Medical Center, Rostock, Germany
| | - Clemens Schafmayer
- Department of General, Visceral, Vascular and Transplant Surgery, Rostock University Medical Center, Rostock, Germany
| | - Jochen Hampe
- Department of Medicine I, University Hospital Dresden, Technische Universität (TU) Dresden, Dresden, Germany
| | - Josch Konstantin Pauling
- LipiTUM, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Munich, Germany.
| | - Andrej Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| |
Collapse
|
123
|
Cebo M, Calderón Castro C, Schlotterbeck J, Gawaz M, Chatterjee M, Lämmerhofer M. Untargeted UHPLC-ESI-QTOF-MS/MS analysis with targeted feature extraction at precursor and fragment level for profiling of the platelet lipidome with ex vivo thrombin-activation. J Pharm Biomed Anal 2021; 205:114301. [PMID: 34391135 DOI: 10.1016/j.jpba.2021.114301] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 01/17/2023]
Abstract
Lipids play a major role in platelet signaling and activation. In this study, we analyzed the platelet lipidome in an untargeted manner by reversed-phase UHPLC for lipid species separation coupled to high-resolution QTOF-MS/MS in data-independent acquisition (DIA) mode with sequential window acquisition of all theoretical fragment ion mass spectra (SWATH) for compound detection. Lipid identification and peak picking was supported by the characteristic regular elution pattern of lipids differing in carbon and double bond numbers. It was primarily based on post-acquisition targeted feature extraction from the SWATH data. Multiple extracted ion chromatograms (EICs) from SWATH data of diagnostic ions on MS1 and MS2 level from both positive and negative ion mode allowed to distinguish between poorly resolved isomeric lipids based on their distinct fragment ions, which were used for relative quantification at a molecular lipid species level. It supports assay specificity for relative lipid quantitation via multiple quantifiably ions unlike to data-dependent acquisition methods which rely on precursor ions only. This approach was used to analyze human platelet samples. 457 lipids were annotated. Concentrations of lipids were estimated by stable isotope-labelled lipid class-specific internal standards as surrogate calibrants. Heatmaps of lipid concentrations in dependence on carbon and double bond numbers for the distinct lipid classes revealed a snapshot of the platelet lipidome in the resting state with lipid species distributions within classes supporting some functional interpretations. As expected, activation of the platelets by thrombin has led to significant alterations in the platelet lipidome as proven by univariate (volcano plot) and multivariate (PLS-DA) statistics. Several lipids were significantly up-regulated (lysophosphatidylinositols, oxylipins such as thromboxane B2 (TXB2), hydroxyheptadecatrienoic acid (HHT), hydroxyeicosatetraenoic acid (HETE), hydroxyoctadecadienoic acid (HODE), sphingoid-bases, (very) long chain saturated fatty acids) or down-regulated (lysophosphatidylethanolamines, polyunsaturated fatty acids, phosphatidylinositols). Several of them are well known as biomarkers of platelet activation while others may provide some further insights into pathways of platelet activation and platelet metabolism.
Collapse
Affiliation(s)
- Malgorzata Cebo
- University of Tübingen, Institute of Pharmaceutical Sciences, Pharmaceutical (Bio)Analysis, Auf der Morgenstelle 8, 72076, Tübingen, Germany
| | | | - Jörg Schlotterbeck
- University of Tübingen, Institute of Pharmaceutical Sciences, Pharmaceutical (Bio)Analysis, Auf der Morgenstelle 8, 72076, Tübingen, Germany
| | - Meinrad Gawaz
- Department of Cardiology and Angiology, University Hospital Tübingen, Otfried-Müller-Strasse 10, 72076, Tübingen, Germany
| | - Madhumita Chatterjee
- Department of Cardiology and Angiology, University Hospital Tübingen, Otfried-Müller-Strasse 10, 72076, Tübingen, Germany
| | - Michael Lämmerhofer
- University of Tübingen, Institute of Pharmaceutical Sciences, Pharmaceutical (Bio)Analysis, Auf der Morgenstelle 8, 72076, Tübingen, Germany.
| |
Collapse
|
124
|
Lipidomics study of plasma from patients suggest that ALS and PLS are part of a continuum of motor neuron disorders. Sci Rep 2021; 11:13562. [PMID: 34193885 PMCID: PMC8245424 DOI: 10.1038/s41598-021-92112-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 12/14/2020] [Indexed: 12/04/2022] Open
Abstract
Motor neuron disorders (MND) include a group of pathologies that affect upper and/or lower motor neurons. Among them, amyotrophic lateral sclerosis (ALS) is characterized by progressive muscle weakness, with fatal outcomes only in a few years after diagnosis. On the other hand, primary lateral sclerosis (PLS), a more benign form of MND that only affects upper motor neurons, results in life-long progressive motor dysfunction. Although the outcomes are quite different, ALS and PLS present with similar symptoms at disease onset, to the degree that both disorders could be considered part of a continuum. These similarities and the lack of reliable biomarkers often result in delays in accurate diagnosis and/or treatment. In the nervous system, lipids exert a wide variety of functions, including roles in cell structure, synaptic transmission, and multiple metabolic processes. Thus, the study of the absolute and relative concentrations of a subset of lipids in human pathology can shed light into these cellular processes and unravel alterations in one or more pathways. In here, we report the lipid composition of longitudinal plasma samples from ALS and PLS patients initially, and after 2 years following enrollment in a clinical study. Our analysis revealed common aspects of these pathologies suggesting that, from the lipidomics point of view, PLS and ALS behave as part of a continuum of motor neuron disorders.
Collapse
|
125
|
Up-Regulation of Specific Bioactive Lipids in Celiac Disease. Nutrients 2021; 13:nu13072271. [PMID: 34209150 PMCID: PMC8308317 DOI: 10.3390/nu13072271] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/12/2021] [Accepted: 06/25/2021] [Indexed: 12/29/2022] Open
Abstract
Celiac disease (CD) is an autoimmune enteropathy linked to alterations of metabolism. Currently, limited untargeted metabolomic studies evaluating differences in the plasma metabolome of CD subjects have been documented. We engage in a metabolomic study that analyzes plasma metabolome in 17 children with CD treated with a gluten-free diet and 17 healthy control siblings in order to recognize potential changes in metabolic networks. Our data demonstrates the persistence of metabolic defects in CD subjects in spite of the dietary treatment, affecting a minor but significant fraction (around 4%, 209 out of 4893 molecular features) of the analyzed plasma metabolome. The affected molecular species are mainly, but not exclusively, lipid species with a particular affectation of steroids and derivatives (indicating an adrenal gland affectation), glycerophospholipids (to highlight phosphatidic acid), glycerolipids (with a special affectation of diacylglycerols), and fatty acyls (eicosanoids). Our findings are suggestive of an activation of the diacylglycerol-phosphatidic acid signaling pathway in CD that may potentially have detrimental effects via activation of several targets including protein kinases such as mTOR, which could be the basis of the morbidity and mortality connected with untreated CD. However, more studies are necessary to validate this idea regarding CD.
Collapse
|
126
|
Hepatic resistance to cold ferroptosis in a mammalian hibernator Syrian hamster depends on effective storage of diet-derived α-tocopherol. Commun Biol 2021; 4:796. [PMID: 34172811 PMCID: PMC8233303 DOI: 10.1038/s42003-021-02297-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 06/03/2021] [Indexed: 02/07/2023] Open
Abstract
Mammalian hibernators endure severe and prolonged hypothermia that is lethal to non-hibernators, including humans and mice. The mechanisms responsible for the cold resistance remain poorly understood. Here, we found that hepatocytes from a mammalian hibernator, the Syrian hamster, exhibited remarkable resistance to prolonged cold culture, whereas murine hepatocytes underwent cold-induced cell death that fulfills the hallmarks of ferroptosis such as necrotic morphology, lipid peroxidation and prevention by an iron chelator. Unexpectedly, hepatocytes from Syrian hamsters exerted resistance to cold- and drug-induced ferroptosis in a diet-dependent manner, with the aid of their superior ability to retain dietary α-tocopherol (αT), a vitamin E analog, in the liver and blood compared with those of mice. The liver phospholipid composition is less susceptible to peroxidation in Syrian hamsters than in mice. Altogether, the cold resistance of the hibernator’s liver is established by the ability to utilize αT effectively to prevent lipid peroxidation and ferroptosis. Daisuke Anegawa et al. investigated the mechanisms responsible for cold resistance in the Syrian hamster’s hepatocytes, which exhibited remarkable resistance to prolonged cold culture. Their results suggest that hepatocytes exhibit diet-dependent resistance to cold, which is linked to the retention of α-tocopherol in the liver.
Collapse
|
127
|
Ren H, Triebl A, Muralidharan S, Wenk MR, Xia Y, Torta F. Mapping the distribution of double bond location isomers in lipids across mouse tissues. Analyst 2021; 146:3899-3907. [PMID: 34009216 DOI: 10.1039/d1an00449b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Lipids are highly diverse and essential biomolecules in all living systems. As lipid homeostasis is often perturbed in metabolic diseases, these molecules can serve as both biomarkers and drug targets. The development of modern mass spectrometry (MS) provided the platform for large-scale lipidomic studies at the level of molecular species. Traditionally, more detailed structural information, such as the C[double bond, length as m-dash]C location, was mostly assumed instead of properly measured, though the specific isomers were indicated as potential biomarkers of cancers or cardiovascular diseases. Recent C[double bond, length as m-dash]C localization methods, including the Paternò-Büchi (PB) reaction, have shown the prevalent and heterogeneous distribution of C[double bond, length as m-dash]C location in lipids across tissues. Mapping the lipidome of model animals at the level of C[double bond, length as m-dash]C position would increase the understanding of the metabolism and function of lipid isomers, facilitating clinical research. In this study, we employed an online PB reaction on a liquid chromatography-high resolution MS platform to map C[double bond, length as m-dash]C location isomers in five different murine tissues. We analyzed phosphatidylcholines, phosphatidylethanolamines, and sphingomyelins; we relatively quantified and mapped the distribution of ∼30 groups of co-existing isomers, characterized by different chain lengths and degrees of unsaturation. More specifically, we performed relative quantitation of four isomers of the C16:1 fatty acyl, which included rarely reported n-10 and n-5 species besides n-9 and n-7 isomers. We showed a small variation of the isomers' relative composition among individual animals (<20%) but significant differences across different lipid species and mouse tissues. Our results provided an initial database to map alternative lipid metabolic pathways at the tissue level.
Collapse
Affiliation(s)
- Hanlin Ren
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Alexander Triebl
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore. and Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Sneha Muralidharan
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore.
| | - Markus R Wenk
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore. and Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yu Xia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Federico Torta
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore. and Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
128
|
Enhancement of acidic lipid analysis by nanoflow ultrahigh performance liquid chromatography–mass spectrometry. Anal Chim Acta 2021; 1166:338573. [DOI: 10.1016/j.aca.2021.338573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/31/2021] [Accepted: 04/22/2021] [Indexed: 01/11/2023]
|
129
|
Tkachev A, Stekolshchikova E, Anikanov N, Zozulya S, Barkhatova A, Klyushnik T, Petrova D. Shorter Chain Triglycerides Are Negatively Associated with Symptom Improvement in Schizophrenia. Biomolecules 2021; 11:biom11050720. [PMID: 34064997 PMCID: PMC8151512 DOI: 10.3390/biom11050720] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 04/30/2021] [Accepted: 05/08/2021] [Indexed: 12/29/2022] Open
Abstract
Schizophrenia is a serious mental disorder requiring lifelong treatment. While medications are available that are effective in treating some patients, individual treatment responses can vary, with some patients exhibiting resistance to one or multiple drugs. Currently, little is known about the causes of the difference in treatment response observed among individuals with schizophrenia, and satisfactory markers of poor response are not available for clinical practice. Here, we studied the changes in the levels of 322 blood plasma lipids between two time points assessed in 92 individuals diagnosed with schizophrenia during their inpatient treatment and their association with the extent of symptom improvement. We found 20 triglyceride species increased in individuals with the least improvement in Positive and Negative Syndrome Scale (PANSS) scores, but not in those with the largest reduction in PANSS scores. These triglyceride species were distinct from the rest of the triglyceride species present in blood plasma. They contained a relatively low number of carbons in their fatty acid residues and were relatively low in abundance compared to the principal triglyceride species of blood plasma.
Collapse
Affiliation(s)
- Anna Tkachev
- V. Zelman Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia; (E.S.); (N.A.); (D.P.)
- Correspondence:
| | - Elena Stekolshchikova
- V. Zelman Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia; (E.S.); (N.A.); (D.P.)
| | - Nickolay Anikanov
- V. Zelman Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia; (E.S.); (N.A.); (D.P.)
| | - Svetlana Zozulya
- Mental Health Research Center, 115522 Moscow, Russia; (S.Z.); (A.B.); (T.K.)
| | | | - Tatiana Klyushnik
- Mental Health Research Center, 115522 Moscow, Russia; (S.Z.); (A.B.); (T.K.)
| | - Daria Petrova
- V. Zelman Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia; (E.S.); (N.A.); (D.P.)
| |
Collapse
|
130
|
A Novel Solid Phase Extraction Sample Preparation Method for Lipidomic Analysis of Human Plasma Using Liquid Chromatography/Mass Spectrometry. Metabolites 2021; 11:metabo11050294. [PMID: 34064397 PMCID: PMC8147762 DOI: 10.3390/metabo11050294] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 02/02/2023] Open
Abstract
Lipidomic approaches are widely used to investigate the relationship between lipids, human health, and disease. Conventional sample preparation techniques for the extraction of lipids from biological matrices like human plasma are based on liquid-liquid extraction (LLE). However, these methods are labor-intensive, time-consuming, and can show poor reproducibility and selectivity on lipid extraction. A novel, solid-phase extraction (SPE) approach was demonstrated to extract lipids from human plasma using a lipid extraction SPE in both cartridge and 96-well-plate formats, followed by analysis using a combination of targeted and untargeted liquid chromatography/mass spectrometry. The Lipid Extraction SPE method was compared to traditional LLE methods for lipid class recovery, lipidome coverage, and reproducibility. The novel SPE method used a simplified protocol with significant time and labor savings and provided equivalent or better qualitative and quantitative results than traditional LLE methods with respect to several critical performance metrics; recovery, reproducibility, and lipidome coverage.
Collapse
|
131
|
Züllig T, Köfeler HC. HIGH RESOLUTION MASS SPECTROMETRY IN LIPIDOMICS. MASS SPECTROMETRY REVIEWS 2021; 40:162-176. [PMID: 32233039 PMCID: PMC8049033 DOI: 10.1002/mas.21627] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 03/06/2020] [Indexed: 05/04/2023]
Abstract
The boost of research output in lipidomics during the last decade is tightly linked to improved instrumentation in mass spectrometry. Associated with this trend is the shift from low resolution-toward high-resolution lipidomics platforms. This review article summarizes the state of the art in the lipidomics field with a particular focus on the merits of high mass resolution. Following some theoretical considerations on the benefits of high mass resolution in lipidomics, it starts with a historical perspective on lipid analysis by sector instruments and moves further to today's instrumental approaches, including shotgun lipidomics, liquid chromatography-mass spectrometry, matrix-assisted laser desorption ionization-time-of-flight, and imaging lipidomics. Subsequently, several data processing and data analysis software packages are critically evaluated with all their pros and cons. Finally, this article emphasizes the importance and necessity of quality standards as the field evolves from its pioneering phase into a mature and robust omics technology and lists various initiatives for improving the applicability of lipidomics. © 2020 The Authors. Mass Spectrometry Reviews published by John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- Thomas Züllig
- Core Facility Mass SpectrometryMedical University of Graz, ZMFGrazAustria
| | - Harald C. Köfeler
- Core Facility Mass SpectrometryMedical University of Graz, ZMFGrazAustria
| |
Collapse
|
132
|
Buchanan CDC, Lust CAC, Burns JL, Hillyer LM, Martin SA, Wittert GA, Ma DWL. Analysis of major fatty acids from matched plasma and serum samples reveals highly comparable absolute and relative levels. Prostaglandins Leukot Essent Fatty Acids 2021; 168:102268. [PMID: 33831721 DOI: 10.1016/j.plefa.2021.102268] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/19/2021] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
Measuring fatty acid (FA) levels in blood as a risk factor for chronic disease has been studied extensively. Previous research has used either plasma or serum samples to examine these associations. However, whether results from plasma and serum samples can be compared remains unclear, as differences in methodology related to the separation of plasma and serum from whole blood may impact FA levels. This study analyzed the individual FA content of matched plasma and serum samples in both absolute (μg/mL) and relative percent (%) composition. Analyses were performed using archived fasted morning samples from the Florey Adelaide Male Ageing Study (FAMAS). Matched plasma and serum samples were available from 98 male subjects aged 40-85. Total FA were analyzed by gas-liquid chromatography equipped with a flame ionization detector (GLC-FID). Analyses comprised of over 60 FA including major FA such as Palmitic Acid (PA), Palmitoleic acid (POA), Stearic Acid (SA), Oleic Acid (OA), Linoleic Acid (LNA), alpha-linolenic acid (ALA), Eicosapentaenoic acid (EPA), Arachidonic Acid (ARA), and Docosahexaenoic acid (DHA). Differences between groups was determined by t-test. Correlation and Bland-Altman analyses were also performed to examine the relationship between plasma and serum samples. There were no significant differences between major plasma and serum fatty acids expressed in μg/mL and relative % composition. Correlation analysis determined a strong and significantly positive association (r ≥ 0.65, p < 0.05) between major plasma and serum FA in absolute and relative terms. Bland-Altman analysis further supported the strong agreement between plasma and serum values in both absolute and relative terms. These findings demonstrate that studies reporting plasma or serum fatty acid analyzed by GLC-FID can be compared with one another.
Collapse
Affiliation(s)
- Connor D C Buchanan
- Department of Kinesiology, University of Guelph-Humber, Toronto, ON, M9W 5L7, Canada
| | - Cody A C Lust
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, N1G2W1, Canada
| | - Jessie L Burns
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, N1G2W1, Canada
| | - Lyn M Hillyer
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, N1G2W1, Canada
| | - Sean A Martin
- Freemasons Centre for Male Health and Wellness, Faculty of Health Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Gary A Wittert
- Freemasons Centre for Male Health and Wellness, Faculty of Health Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| | - David W L Ma
- Department of Kinesiology, University of Guelph-Humber, Toronto, ON, M9W 5L7, Canada; Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, N1G2W1, Canada.
| |
Collapse
|
133
|
Amez Martín M, Wuhrer M, Falck D. Serum and Plasma Immunoglobulin G Fc N-Glycosylation Is Stable during Storage. J Proteome Res 2021; 20:2935-2941. [PMID: 33909442 PMCID: PMC8155565 DOI: 10.1021/acs.jproteome.1c00148] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
![]()
Immunoglobulin G
(IgG) glycosylation is studied in biological samples
to develop clinical markers for precision medicine, for example, in
autoimmune diseases and oncology. Inappropriate storage of proteins,
lipids, or metabolites can lead to degradation or modification of
biomolecular features, which can have a strong negative impact on
accuracy and precision of clinical omics studies. Regarding the preservation
of IgG glycosylation, the range of appropriate storage conditions
and time frame is understudied. Therefore, we investigated the effect
of storage on IgG Fc N-glycosylation in the commonly analyzed biofluids,
serum and plasma. Short-term storage and accelerated storage stability
were tested by incubating samples from three healthy donors under
stress conditions of up to 50 °C for 2 weeks using −80
°C for 2 weeks as the reference condition. All tested IgG glycosylation
features—sialylation, galactosylation, bisection, and fucosylation—remained
unchanged up to room temperature as well as during multiple freeze–thaw
cycles and exposure to light. Only when subjected to 37 °C or
50 °C for 2 weeks, galactosylation and sialylation subtly changed.
Therefore, clinical IgG glycosylation analysis does not rely as heavily
on mild serum and plasma storage conditions and timely analysis as
many other omics analyses.
Collapse
Affiliation(s)
- Manuela Amez Martín
- Center of Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Manfred Wuhrer
- Center of Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - David Falck
- Center of Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
134
|
A normalized signal calibration with a long-term reference improves the robustness of RPLC-MRM/MS lipidomics in plasma. Anal Bioanal Chem 2021; 413:4077-4090. [PMID: 33907864 DOI: 10.1007/s00216-021-03364-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 04/19/2021] [Indexed: 10/21/2022]
Abstract
Improving the reliability of quantification in lipidomic analyses is crucial for its successful application in the discovery of new biomarkers or in clinical practice. In this study, we propose a workflow to improve the accuracy and precision of lipidomic results issued by the laboratory. Lipid species from 11 classes were analyzed by a targeted RPLC-MRM/MS method. The peak areas of species were used to estimate concentrations by an internal standard calibration approach (IS-calibration) and by an alternative normalization signal calibration schema (NS-calibration). The latter uses a long-term reference plasma material as a matrix-matched external calibrator whose accuracy was compared to the NIST SRM-1950 mean consensus values reported by the Interlaboratory Lipidomics Comparison Exercise. The bias of lipid concentrations showed a good accuracy for 69 of 89 quantified lipids. The quantitation of species by the NS-calibration schema improved the within- and between-batch reproducibility in quality control samples, in comparison to the usual IS-calibration approach. Moreover, the NS-calibration workflow improved the robustness of the lipidomics measurements reducing the between-batch variability (relative standard deviation <10% for 95% of lipid species) in real conditions tested throughout the analysis of 120 plasma samples. In addition, we provide a free access web tool to obtain the concentration of lipid species by the two previously mentioned quantitative approaches, providing an easy follow-up of quality control tasks related to lipidomics.
Collapse
|
135
|
Schoeny H, Rampler E, El Abiead Y, Hildebrand F, Zach O, Hermann G, Koellensperger G. A combined flow injection/reversed-phase chromatography-high-resolution mass spectrometry workflow for accurate absolute lipid quantification with 13C internal standards. Analyst 2021; 146:2591-2599. [PMID: 33734229 DOI: 10.1039/d0an02443k] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We propose a fully automated novel workflow for lipidomics based on flow injection, followed by liquid chromatography-high-resolution mass spectrometry (FI/LC-HRMS). The workflow combined in-depth characterization of the lipidome achieved via reversed-phase LC-HRMS with absolute quantification by using a large number of lipid species-specific and/or retention time (RT)-matched/class-specific calibrants. The lipidome of 13C-labelled yeast (LILY) provided a large panel of cost-effective internal standards (ISTDs) covering triacylglycerols (TG), steryl esters (SE), free fatty acids (FA), diacylglycerols (DG), sterols (ST), ceramides (Cer), hexosyl ceramides (HexCer), phosphatidylglycerols (PG), phosphatidylethanolamines (PE), phosphatidic acids (PA), cardiolipins (CL), phosphatidylinositols (PI), phosphatidylserines (PS), phosphatidylcholines (PC), lysophosphatidylcholines (LPC) and lysophosphatidylethanolamines (LPE). The workflow in combination with the LILY lipid panel enables simultaneous quantification via (1) external multi-point calibration with internal standardization and (2) internal one-point calibration with LILY as a surrogate ISTD, increasing the coverage while keeping the accuracy and throughput high. Extensive measures on quality control allowed us to rank the calibration strategies and to automatically select the calibration strategy of the highest metrological order for the respective lipid species. Overall, the workflow enabled a streamlined analysis, with a limit of detection in the low femtomolar range, and provided validation tools together with absolute concentration values for >350 lipids in human plasma on a species level. Based on the selected standard panel, lipids from 7 classes (LPC, LPE, PC, PE, PI, DG, TG) passed stringent quality filters, which included QC accuracy, a precision and recovery bias of <30% and concentrations within the 99% confidence interval of the international laboratory comparison of SRM 1950, NIST, USA. The quantitative values are independent of common deuterated or non-endogenous ISTDs, thus offering cross-validation of different lipid methods and further standardizing lipidomics.
Collapse
Affiliation(s)
- Harald Schoeny
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 38, 1090 Vienna, Austria.
| | - Evelyn Rampler
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 38, 1090 Vienna, Austria. and Vienna Metabolomics Center (VIME), University of Vienna, Althanstrasse 14, 1090 Vienna, Austria and Chemistry Meets Microbiology, Althanstrasse 14, 1090 Vienna, Austria
| | - Yasin El Abiead
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 38, 1090 Vienna, Austria.
| | - Felina Hildebrand
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 38, 1090 Vienna, Austria.
| | - Olivia Zach
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 38, 1090 Vienna, Austria.
| | - Gerrit Hermann
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 38, 1090 Vienna, Austria. and ISOtopic solutions, Waehringer Strasse 38, 1090 Vienna, Austria
| | - Gunda Koellensperger
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 38, 1090 Vienna, Austria. and Vienna Metabolomics Center (VIME), University of Vienna, Althanstrasse 14, 1090 Vienna, Austria and Chemistry Meets Microbiology, Althanstrasse 14, 1090 Vienna, Austria
| |
Collapse
|
136
|
Slade E, Irvin MR, Xie K, Arnett DK, Claas SA, Kind T, Fardo DW, Graf GA. Age and sex are associated with the plasma lipidome: findings from the GOLDN study. Lipids Health Dis 2021; 20:30. [PMID: 33812378 PMCID: PMC8019182 DOI: 10.1186/s12944-021-01456-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/18/2021] [Indexed: 12/15/2022] Open
Abstract
Background Developing an understanding of the biochemistry of aging in both sexes is critical for managing disease throughout the lifespan. Lipidomic associations with age and sex have been reported, but prior studies are limited by measurements in serum rather than plasma or by participants taking lipid-lowering medications. Methods Our study included lipidomic data from 980 participants aged 18–87 years old from the Genetics of Lipid-Lowering Drugs and Diet Network (GOLDN). Participants were off lipid-lowering medications for at least 4 weeks, and signal intensities of 413 known lipid species were measured in plasma. We examined linear age and sex associations with signal intensity of (a) 413 lipid species; (b) 6 lipid classes (glycerolipids, glycerophospholipids, sphingolipids, sterol lipids, fatty acids, and acylcarnitines); and (c) 15 lipid subclasses; as well as with the particle sizes of three lipoproteins. Results Significant age associations were identified in 4 classes, 11 subclasses, 147 species, and particle size of one lipoprotein while significant sex differences were identified in 5 classes, 12 subclasses, 248 species, and particle sizes of two lipoproteins. For many lipid species (n = 97), age-related associations were significantly different between males and females. Age*sex interaction effects were most prevalent among phosphatidylcholines, sphingomyelins, and triglycerides. Conclusion We identified several lipid species, subclasses, and classes that differ by age and sex; these lipid phenotypes may serve as useful biomarkers for lipid changes and associated cardiovascular risk with aging in the future. Future studies of age-related changes throughout the adult lifespan of both sexes are warranted. Trial registration ClinicalTrials.gov NCT00083369; May 21, 2004. Supplementary Information The online version contains supplementary material available at 10.1186/s12944-021-01456-2.
Collapse
Affiliation(s)
- Emily Slade
- Department of Biostatistics, University of Kentucky, 725 Rose St, Multidisciplinary Science Building, Suite 205, Lexington, KY, 40536, USA.
| | - Marguerite R Irvin
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kevin Xie
- Department of Biostatistics, University of Kentucky, 725 Rose St, Multidisciplinary Science Building, Suite 205, Lexington, KY, 40536, USA
| | - Donna K Arnett
- College of Public Health, University of Kentucky, Lexington, KY, USA
| | - Steven A Claas
- College of Public Health, University of Kentucky, Lexington, KY, USA
| | - Tobias Kind
- West Coast Metabolomics Center, University of California, Davis, CA, USA
| | - David W Fardo
- Department of Biostatistics, University of Kentucky, 725 Rose St, Multidisciplinary Science Building, Suite 205, Lexington, KY, 40536, USA
| | - Gregory A Graf
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
137
|
Chocholoušková M, Wolrab D, Jirásko R, Študentová H, Melichar B, Holčapek M. Intra-laboratory comparison of four analytical platforms for lipidomic quantitation using hydrophilic interaction liquid chromatography or supercritical fluid chromatography coupled to quadrupole - time-of-flight mass spectrometry. Talanta 2021; 231:122367. [PMID: 33965032 DOI: 10.1016/j.talanta.2021.122367] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 11/18/2022]
Abstract
The lipidomic research is currently devoting considerable effort to the harmonization that should enable the generation of comparable and accurate quantitative lipidomic data across different laboratories and regardless of the mass spectrometry-based platform used. In the present study, we systematically investigate the effects of the experimental setup on quantitative lipidomics data obtained by two lipid class separation approaches, hydrophilic interaction liquid chromatography (HILIC) and ultrahigh-performance supercritical fluid chromatography (UHPSFC), coupled to two different quadrupole - time of flight (QTOF) mass spectrometers from the same vendor. This approach is applied for measurements of 268 human plasma samples of healthy volunteers and renal cell carcinoma patients resulting in four data sets. We investigate and visualize differences among these data sets by multivariate data analysis methods, such as principal component analysis (PCA), orthogonal partial least square discriminant analysis (OPLS-DA), box plots, and logarithmic correlations of molar concentrations of individual lipid species. The results indicate that even measurements in the same laboratory for the same samples using different analytical platforms may yield slight variations in the molar concentrations determined. The normalization to a reference sample with defined lipid concentrations can further diminish these small differences, resulting in highly homogenous molar concentrations of individual lipid species. This strategy indicates a potential approach towards the reporting of comparable quantitative results independent from the quantitative approach and mass spectrometer used, which is important for a wider acceptance of lipidomics data in various biomarker inter-laboratory studies and ring trials.
Collapse
Affiliation(s)
- Michaela Chocholoušková
- University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, Studentská 573, 532 10, Pardubice, Czech Republic
| | - Denise Wolrab
- University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, Studentská 573, 532 10, Pardubice, Czech Republic
| | - Robert Jirásko
- University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, Studentská 573, 532 10, Pardubice, Czech Republic
| | - Hana Študentová
- Palacký University, Medical School and Teaching Hospital, Department of Oncology, I.P. Pavlova 6, 775 20, Olomouc, Czech Republic
| | - Bohuslav Melichar
- Palacký University, Medical School and Teaching Hospital, Department of Oncology, I.P. Pavlova 6, 775 20, Olomouc, Czech Republic
| | - Michal Holčapek
- University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, Studentská 573, 532 10, Pardubice, Czech Republic.
| |
Collapse
|
138
|
Hyötyläinen T. Analytical challenges in human exposome analysis with focus on environmental analysis combined with metabolomics. J Sep Sci 2021; 44:1769-1787. [PMID: 33650238 DOI: 10.1002/jssc.202001263] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/23/2021] [Accepted: 02/23/2021] [Indexed: 12/19/2022]
Abstract
Environmental factors, such as chemical exposures, are likely to play a crucial role in the development of several human chronic diseases. However, how the specific exposures contribute to the onset and progress of various diseases is still poorly understood. In part, this is because comprehensive characterization of the chemical exposome is a highly challenging task, both due to its complex dynamic nature as well as due to the analytical challenges. Herein, the analytical challenges in the field of exposome research are reviewed, with specific emphasis on the sampling, sample preparation, and analysis, as well as challenges in the compound identification. The primary focus is on the human chemical exposome, that is, exposures to mixtures of environmental chemicals and its impact on human metabolome. In order to highlight the recent progress in the exposome research in relation to human health and disease, selected examples of human exposome studies are presented.
Collapse
Affiliation(s)
- Tuulia Hyötyläinen
- MTM Research Centre, School of Science and Technology, Örebro University, Örebro, Sweden
| |
Collapse
|
139
|
Spanier B, Laurençon A, Weiser A, Pujol N, Omi S, Barsch A, Korf A, Meyer SW, Ewbank JJ, Paladino F, Garvis S, Aguilaniu H, Witting M. Comparison of lipidome profiles of Caenorhabditis elegans-results from an inter-laboratory ring trial. Metabolomics 2021; 17:25. [PMID: 33594638 PMCID: PMC7886748 DOI: 10.1007/s11306-021-01775-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/28/2021] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Lipidomic profiling allows 100s if not 1000s of lipids in a sample to be detected and quantified. Modern lipidomics techniques are ultra-sensitive assays that enable the discovery of novel biomarkers in a variety of fields and provide new insight in mechanistic investigations. Despite much progress in lipidomics, there remains, as for all high throughput "omics" strategies, the need to develop strategies to standardize and integrate quality control into studies in order to enhance robustness, reproducibility, and usability of studies within specific fields and beyond. OBJECTIVES We aimed to understand how much results from lipid profiling in the model organism Caenorhabditis elegans are influenced by different culture conditions in different laboratories. METHODS In this work we have undertaken an inter-laboratory study, comparing the lipid profiles of N2 wild type C. elegans and daf-2(e1370) mutants lacking a functional insulin receptor. Sample were collected from worms grown in four separate laboratories under standardized growth conditions. We used an UPLC-UHR-ToF-MS system allowing chromatographic separation before MS analysis. RESULTS We found common qualitative changes in several marker lipids in samples from the individual laboratories. On the other hand, even in this controlled experimental system, the exact fold-changes for each marker varied between laboratories. CONCLUSION Our results thus reveal a serious limitation to the reproducibility of current lipid profiling experiments and reveal challenges to the integration of such data from different laboratories.
Collapse
Affiliation(s)
- Britta Spanier
- Chair of Metabolic Programming, Technische Universität München, Gregor-Mendel-Straße 2, 85354, Freising, Germany
| | - Anne Laurençon
- UMR5242, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université de Lyon, Lyon, France
| | - Anna Weiser
- Chair of Metabolic Programming, Technische Universität München, Gregor-Mendel-Straße 2, 85354, Freising, Germany
| | - Nathalie Pujol
- Turing Center for Living Systems, Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | - Shizue Omi
- Turing Center for Living Systems, Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | - Aiko Barsch
- Bruker Daltonics, Fahrenheitstr. 4, 28359, Bremen, Germany
| | - Ansgar Korf
- Bruker Daltonics, Fahrenheitstr. 4, 28359, Bremen, Germany
| | - Sven W Meyer
- Bruker Daltonics, Fahrenheitstr. 4, 28359, Bremen, Germany
| | - Jonathan J Ewbank
- Turing Center for Living Systems, Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | - Francesca Paladino
- Laboratoire de Biologie Moléculaire de la Cellule UMR5239 CNRS/ENS Lyon/UCBL/HCL Ecole Normale Supérieure de Lyon 46, allée d'Italie, 69364, Lyon cedex 07, France
| | - Steve Garvis
- Laboratoire de Biologie Moléculaire de la Cellule UMR5239 CNRS/ENS Lyon/UCBL/HCL Ecole Normale Supérieure de Lyon 46, allée d'Italie, 69364, Lyon cedex 07, France
| | - Hugo Aguilaniu
- UMR5242, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université de Lyon, Lyon, France
- Instituto Serrapilheira, Rua Dias Ferreira 78, Leblon, Rio de Janeiro, Brazil
| | - Michael Witting
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany.
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany.
- Chair of Analytical Food Chemistry, Technische Universität München, Alte Akademie 10, 85354, Freising-Weihenstephan, Germany.
| |
Collapse
|
140
|
Höring M, Ejsing CS, Krautbauer S, Ertl VM, Burkhardt R, Liebisch G. Accurate quantification of lipid species affected by isobaric overlap in Fourier-transform mass spectrometry. J Lipid Res 2021; 62:100050. [PMID: 33600775 PMCID: PMC8010702 DOI: 10.1016/j.jlr.2021.100050] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/21/2021] [Accepted: 02/05/2021] [Indexed: 11/05/2022] Open
Abstract
Lipidomics data require consideration of ions with near-identical masses, which comprises among others the Type-II isotopic overlap. This overlap occurs in series of lipid species differing only by number of double bonds (DBs) mainly because of the natural abundance of 13C-atoms. High-resolution mass spectrometry, such as Fourier-transform mass spectrometry (FTMS), is capable of resolving Type-II overlap depending on mass resolving power. In this work, we evaluated FTMS quantification accuracy of lipid species affected by Type-II overlap. Spike experiments with lipid species pairs of various lipid classes were analyzed by flow injection analysis-FTMS. Accuracy of quantification was evaluated without and with Type-II correction (using relative isotope abundance) as well as utilizing the first isotopic peak (M+1). Isobaric peaks, which were sufficiently resolved, were most accurate without Type-II correction. In cases of partially resolved peaks, we observed peak interference causing distortions in mass and intensity, which is a well-described phenomenon in FTMS. Concentrations of respective species were more accurate when calculated from M+1. Moreover, some minor species, affected by considerable Type-II overlap, could only be quantified by M+1. Unexpectedly, even completely unresolved peaks were substantially overcorrected by Type-II correction because of peak interference. The described method was validated including intraday and interday precisions for human serum and fibroblast samples. Taken together, our results show that accurate quantification of lipid species by FTMS requires resolution-depended data analysis.
Collapse
Affiliation(s)
- Marcus Höring
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, Regensburg, Germany
| | - Christer S Ejsing
- Department of Biochemistry and Molecular Biology, Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark; Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Sabrina Krautbauer
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, Regensburg, Germany
| | - Verena M Ertl
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, Regensburg, Germany
| | - Ralph Burkhardt
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, Regensburg, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, Regensburg, Germany.
| |
Collapse
|
141
|
Yutuc E, Dickson AL, Pacciarini M, Griffiths L, Baker PRS, Connell L, Öhman A, Forsgren L, Trupp M, Vilarinho S, Khalil Y, Clayton PT, Sari S, Dalgic B, Höflinger P, Schöls L, Griffiths WJ, Wang Y. Deep mining of oxysterols and cholestenoic acids in human plasma and cerebrospinal fluid: Quantification using isotope dilution mass spectrometry. Anal Chim Acta 2021; 1154:338259. [PMID: 33736801 PMCID: PMC7988461 DOI: 10.1016/j.aca.2021.338259] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 01/25/2021] [Indexed: 01/01/2023]
Abstract
Both plasma and cerebrospinal fluid (CSF) are rich in cholesterol and its metabolites. Here we describe in detail a methodology for the identification and quantification of multiple sterols including oxysterols and sterol-acids found in these fluids. The method is translatable to any laboratory with access to liquid chromatography – tandem mass spectrometry. The method exploits isotope-dilution mass spectrometry for absolute quantification of target metabolites. The method is applicable for semi-quantification of other sterols for which isotope labelled surrogates are not available and approximate quantification of partially identified sterols. Values are reported for non-esterified sterols in the absence of saponification and total sterols following saponification. In this way absolute quantification data is reported for 17 sterols in the NIST SRM 1950 plasma along with semi-quantitative data for 8 additional sterols and approximate quantification for one further sterol. In a pooled (CSF) sample used for internal quality control, absolute quantification was performed on 10 sterols, semi-quantification on 9 sterols and approximate quantification on a further three partially identified sterols. The value of the method is illustrated by confirming the sterol phenotype of a patient suffering from ACOX2 deficiency, a rare disorder of bile acid biosynthesis, and in a plasma sample from a patient suffering from cerebrotendinous xanthomatosis, where cholesterol 27-hydroxylase is deficient. Absolute quantification of oxysterols and cholestenoic acids. Methodology applicable to plasma and cerebrospinal fluid. Data generated for non-esterified and total sterols. Diastereoisomers at C-24 and C-25 separated and quantified.
Collapse
Affiliation(s)
- Eylan Yutuc
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea, SA2 8PP, Wales, UK
| | - Alison L Dickson
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea, SA2 8PP, Wales, UK
| | - Manuela Pacciarini
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea, SA2 8PP, Wales, UK
| | - Lauren Griffiths
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea, SA2 8PP, Wales, UK
| | | | | | - Anders Öhman
- Department of Integrative Medical Biology, Umeå University, SE-901 87, Umeå, Sweden
| | - Lars Forsgren
- Department of Clinical Science, Neurosciences, Umeå University, SE-901 85, Umeå, Sweden
| | - Miles Trupp
- Department of Clinical Science, Neurosciences, Umeå University, SE-901 85, Umeå, Sweden
| | - Sílvia Vilarinho
- Departments of Internal Medicine, Section of Digestive Diseases, and of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Youssef Khalil
- Inborn Errors of Metabolism, Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Peter T Clayton
- Inborn Errors of Metabolism, Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Sinan Sari
- Department of Pediatrics, Division of Gastroenterology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Buket Dalgic
- Department of Pediatrics, Division of Gastroenterology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Philip Höflinger
- Department of Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Ludger Schöls
- Department of Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany; German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - William J Griffiths
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea, SA2 8PP, Wales, UK.
| | - Yuqin Wang
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea, SA2 8PP, Wales, UK
| |
Collapse
|
142
|
Gao L, Ji S, Burla B, Wenk MR, Torta F, Cazenave-Gassiot A. LICAR: An Application for Isotopic Correction of Targeted Lipidomic Data Acquired with Class-Based Chromatographic Separations Using Multiple Reaction Monitoring. Anal Chem 2021; 93:3163-3171. [PMID: 33535740 DOI: 10.1021/acs.analchem.0c04565] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Lipidomics is developing as an important area in biomedical and clinical research. Reliable quantification of lipid species is required for clinical translation of lipidomic studies. Hydrophilic interaction chromatography (HILIC), normal-phase liquid chromatography (NPLC), and supercritical fluid chromatography (SFC) are commonly used techniques in lipidomics and provide class-based separation of lipids. While co-elution of lipid species and their internal standards is an advantage for accurate quantification, it leads to isotopic overlap between species of the same lipid class. In shotgun lipidomics, isotopic correction is typically done based on elemental formulas of precursor ions. In multiple reaction monitoring (MRM) analyses, however, this approach should not be used, as the overall contribution of heavy isotopes to the MRM transitions' intensities depends on their location in the molecule with respect to the fragmentation pattern. We present an algorithm, provided in the R programming language, for isotopic correction in class-based separation using MRM, extracting relevant structural information from MRM transitions to apply adequate isotopic correction factors. Using standards, we show that our algorithm accurately estimates the isotopic contribution of isotopologues to MRM transitions' measured intensities. Using human plasma as an example, we demonstrate the necessity of adequate isotopic correction for accurate quantitation of lipids measured by MRM with class-based chromatographic separation. We show that over a third of the measured phosphatidylcholine species had their intensity corrected by more than 10%. This isotopic correction algorithm and R-implemented application enable a more accurate quantification of lipids in class-based separation-MRM, a prerequisite for successful translation of lipidomic applications.
Collapse
Affiliation(s)
- Liang Gao
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 28 Medical Drive #03-03, 117456 Singapore.,Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, 28 Medical Drive #03-03, 117456 Singapore
| | - Shanshan Ji
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, 28 Medical Drive #03-03, 117456 Singapore
| | - Bo Burla
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, 28 Medical Drive #03-03, 117456 Singapore
| | - Markus R Wenk
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 28 Medical Drive #03-03, 117456 Singapore.,Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, 28 Medical Drive #03-03, 117456 Singapore
| | - Federico Torta
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 28 Medical Drive #03-03, 117456 Singapore.,Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, 28 Medical Drive #03-03, 117456 Singapore
| | - Amaury Cazenave-Gassiot
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 28 Medical Drive #03-03, 117456 Singapore.,Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, 28 Medical Drive #03-03, 117456 Singapore
| |
Collapse
|
143
|
Carvalho LSF, Chaves-Filho AB, Yoshinaga MY. Orchestrating a ceramide-phosphatidylcholine cardiovascular risk score: it ain't over 'til the fat layer sings. Eur J Prev Cardiol 2021; 29:892-894. [PMID: 34038516 DOI: 10.1093/eurjpc/zwab012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Luiz Sérgio F Carvalho
- Data Lab Department, Clarity Healthcare Intelligence. Marginal Via Anhanguera, 480, Engordadouro, Jundiaí, SP, Postal code 13.214-658 Brazil.,Laboratory of Data for Quality of Care and Outcomes Research, Institute for Strategic Management in Healthcare DF (IGESDF). SMHS Área Especial A, Asa Sul, Brasilia, DF, Postal code 70335900 Brazil.,Cardiology Division, Faculty of Medical Sciences, State University of Campinas (Unicamp). Rua Tessália Vieira de Camargo, 126, Cidade Universitária Zeferino Vaz, Campinas, SP, Postal code 13083-887 Brazil
| | - Adriano B Chaves-Filho
- Department of Biochemistry, Institute of Chemistry, University of São Paulo. Av. Prof. Lineu Prestes, 748 - Butantã, São Paulo, SP, Postal code 05508-000 Brazil
| | - Marcos Y Yoshinaga
- Department of Biochemistry, Institute of Chemistry, University of São Paulo. Av. Prof. Lineu Prestes, 748 - Butantã, São Paulo, SP, Postal code 05508-000 Brazil
| |
Collapse
|
144
|
Claus RA, Graeler MH. Sphingolipidomics in Translational Sepsis Research-Biomedical Considerations and Perspectives. Front Med (Lausanne) 2021; 7:616578. [PMID: 33553212 PMCID: PMC7854573 DOI: 10.3389/fmed.2020.616578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022] Open
Abstract
Scientific Background: Sphingolipids are a highly diverse group of lipids with respect to physicochemical properties controlling either structure, distribution, or function, all of them regulating cellular response in health and disease. Mass spectrometry, on the other hand, is an analytical technique characterizing ionized molecules or fragments thereof by mass-to-charge ratios, which has been prosperingly developed for rapid and reliable qualitative and quantitative identification of lipid species. Parallel to best performance of in-depth chromatographical separation of lipid classes, preconditions of precise quantitation of unique molecular species by preprocessing of biological samples have to be fulfilled. As a consequence, “lipid profiles” across model systems and human individuals, esp. complex (clinical) samples, have become eminent over the last couple of years due to sensitivity, specificity, and discriminatory capability. Therefore, it is significance to consider the entire experimental strategy from sample collection and preparation, data acquisition, analysis, and interpretation. Areas Covered: In this review, we outline considerations with clinical (i.e., human) samples with special emphasis on sample handling, specific physicochemical properties, target measurements, and resulting profiling of sphingolipids in biomedicine and translational research to maximize sensitivity and specificity as well as to provide robust and reproducible results. A brief commentary is also provided regarding new insights of “clinical sphingolipidomics” in translational sepsis research. Expert Opinion: The role of mass spectrometry of sphingolipids and related species (“sphingolipidomics”) to investigate cellular and compartment-specific response to stress, e.g., in generalized infection and sepsis, is on the rise and the ability to integrate multiple datasets from diverse classes of biomolecules by mass spectrometry measurements and metabolomics will be crucial to fostering our understanding of human health as well as response to disease and treatment.
Collapse
Affiliation(s)
- Ralf A Claus
- Department for Anesthesiology and Intensive Care Medicine, Sepsis Research, Jena University Hospital, Jena, Germany
| | - Markus H Graeler
- Department for Anesthesiology and Intensive Care Medicine, Sepsis Research, Jena University Hospital, Jena, Germany.,Center for Sepsis Care & Control, Jena University Hospital, Jena, Germany.,Center for Molecular Biomedicine (CMB), Jena University Hospital, Jena, Germany
| |
Collapse
|
145
|
Saito K. Application of comprehensive lipidomics to biomarker research on adverse drug reactions. Drug Metab Pharmacokinet 2021; 37:100377. [PMID: 33454388 DOI: 10.1016/j.dmpk.2020.100377] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/24/2020] [Accepted: 12/09/2020] [Indexed: 02/06/2023]
Abstract
Lipidomics is a relatively new field of omics that focuses on lipids, one of the major categories of metabolites. Owing to their various functions, lipids are considered suitable targets for biomarker development; in addition, lipidomics analysis of adverse drug reactions (ADRs) has been conducted recently. In this review, I have summarized information on comprehensive lipidomics, which involves the analysis of global lipids in a non-targeted manner. Mass spectrometry-based platforms are currently the dominant lipidomics platform owing to their versatile features. I have also summarized the application of lipidomics in biomarker research on ADRs caused by therapeutic drugs in humans and rodents. Additionally, general concerns in and emerging approaches of lipidomics research on ADR have been highlighted. Although biomarkers identified using the lipidomics analysis of ADRs have not been qualified, reported candidates will be evaluated for clinical application. In addition, novel biomarker candidates will be developed via classical and new approaches exemplified in this review.
Collapse
Affiliation(s)
- Kosuke Saito
- Division of Medical Safety Science, National Institute of Health Sciences, Kanagawa, 210-9501, Japan.
| |
Collapse
|
146
|
Volumetric Absorptive Microsampling of Blood for Untargeted Lipidomics. Molecules 2021; 26:molecules26020262. [PMID: 33430231 PMCID: PMC7825730 DOI: 10.3390/molecules26020262] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 12/28/2020] [Accepted: 01/04/2021] [Indexed: 01/20/2023] Open
Abstract
In the present, proof-of-concept paper, we explore the potential of one common solid support for blood microsampling (dried blood spot, DBS) and a device (volumetric absorptive microsampling, VAMS) developed for the untargeted lipidomic profiling of human whole blood, performed by high-resolution LC-MS/MS. Dried blood microsamples obtained by means of DBS and VAMS were extracted with different solvent compositions and compared with fluid blood to evaluate their efficiency in profiling the lipid chemical space in the most broad way. Although more effort is needed to better characterize this approach, our results indicate that VAMS is a viable option for untargeted studies and its use will bring all the corresponding known advantages in the field of lipidomics, such as haematocrit independence.
Collapse
|
147
|
Mota-Martorell N, Jové M, Borrás C, Berdún R, Obis È, Sol J, Cabré R, Pradas I, Galo-Licona JD, Puig J, Viña J, Pamplona R. Methionine transsulfuration pathway is upregulated in long-lived humans. Free Radic Biol Med 2021; 162:38-52. [PMID: 33271279 DOI: 10.1016/j.freeradbiomed.2020.11.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/10/2020] [Accepted: 11/23/2020] [Indexed: 01/04/2023]
Abstract
Available evidences point to methionine metabolism as a key target to study the molecular adaptive mechanisms underlying differences in longevity. The plasma methionine metabolic profile was determined using a LC-MS/MS platform to systematically define specific phenotypic patterns associated with genotypes of human extreme longevity (centenarians). Our findings demonstrate the presence of a specific plasma profile associated with human longevity characterized by an enhanced transsulfuration pathway and tricarboxylic acid (TCA) cycle intermediates, as well as a reduced content of specific amino acids. Furthermore, our work reveals that centenarians maintain a strongly correlated methionine metabolism, suggesting an improved network integrity, homeostasis and more tightly regulated metabolism. We have discovered a particular methionine signature related to the condition of extreme longevity, allowing the identification of potential mechanisms and biomarkers of healthy aging.
Collapse
Affiliation(s)
- Natàlia Mota-Martorell
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida (UdL-IRBLleida), Lleida, Catalonia, Spain.
| | - Mariona Jové
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida (UdL-IRBLleida), Lleida, Catalonia, Spain.
| | - Consuelo Borrás
- Freshage Research Group, Department of Physiology, University of Valencia, CIBERFES, INCLIVA, Valencia, Spain.
| | - Rebeca Berdún
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida (UdL-IRBLleida), Lleida, Catalonia, Spain.
| | - Èlia Obis
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida (UdL-IRBLleida), Lleida, Catalonia, Spain.
| | - Joaquim Sol
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida (UdL-IRBLleida), Lleida, Catalonia, Spain; Institut Català de la Salut, Atenció Primària, Lleida, Spain; Research Support Unit Lleida, Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Lleida, Spain.
| | - Rosanna Cabré
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida (UdL-IRBLleida), Lleida, Catalonia, Spain.
| | - Irene Pradas
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida (UdL-IRBLleida), Lleida, Catalonia, Spain.
| | - José Daniel Galo-Licona
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida (UdL-IRBLleida), Lleida, Catalonia, Spain.
| | - Josep Puig
- Department of Radiology (Institut de Diagnòstic per la Imatge, IDI), University Hospital Dr Josep Trueta, Girona Biomedical Research Institute (IDIBGI), Girona, Catalonia, Spain.
| | - José Viña
- Freshage Research Group, Department of Physiology, University of Valencia, CIBERFES, INCLIVA, Valencia, Spain.
| | - Reinald Pamplona
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida (UdL-IRBLleida), Lleida, Catalonia, Spain.
| |
Collapse
|
148
|
|
149
|
Lavrynenko O, Titz B, Dijon S, Santos DD, Nury C, Schneider T, Guedj E, Szostak J, Kondylis A, Phillips B, Ekroos K, Martin F, Peitsch MC, Hoeng J, Ivanov NV. Ceramide ratios are affected by cigarette smoke but not heat-not-burn or e-vapor aerosols across four independent mouse studies. Life Sci 2020; 263:118753. [PMID: 33189821 DOI: 10.1016/j.lfs.2020.118753] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/03/2020] [Accepted: 11/10/2020] [Indexed: 11/16/2022]
Abstract
AIMS Smoking is an important risk factor for the development of chronic obstructive pulmonary disease and cardiovascular diseases. This study aimed to further elucidate the role of ceramides, as a key lipid class dysregulated in disease states. MAIN METHODS In this article we developed and validated LC-MS/MS method for ceramides (Cer(d18:1/16:0), Cer(d18:1/18:0), Cer(d18:1/24:0) and Cer(d18:1/24:1(15Z)) for the absolute quantification. We deployed it together with proteomics and transcriptomic analysis to assess the effects of cigarette smoke (CS) from the reference cigarette as well as aerosols from heat-not-burn (HnB) tobacco and e-vapor products in apolipoprotein E-deficient (ApoE-/-) mice over several time points. KEY FINDINGS In the lungs, CS exposure substantially elevated the ratios of Cer(d18:1/24:0) and Cer(d18:1/24:1) to Cer(d18:1/18:0) in two independent ApoE-/- mouse inhalation studies. Data from previous studies, in both ApoE-/- and wild-type mice, further confirmed the reproducibility of this finding. Elevation of these ceramide ratios was also observed in plasma/serum, the liver, and-for the Cer(d18:1/24:1(15Z)) to Cer(d18:1/18:0) ratio-the abdominal aorta. Also, the levels of acid ceramidase (Asah1) and glucocerebrosidase (Gba)-lysosomal enzymes involved in the hydrolysis of glucosylceramides-were consistently elevated in the lungs after CS exposure. In contrast, exposure to HnB tobacco product and e-vapor aerosols did not induce significant changes in the ceramide profiles or associated enzymes. SIGNIFICANCE Our work in mice contributes to the accumulating evidence on the importance of ceramide ratios as biologically relevant markers for respiratory disorders, adding to their already demonstrated role in cardiovascular disease risk assessment in humans.
Collapse
Affiliation(s)
- Oksana Lavrynenko
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland.
| | - Bjoern Titz
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Sophie Dijon
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Daniel Dos Santos
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Catherine Nury
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Thomas Schneider
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Emmanuel Guedj
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Justyna Szostak
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Athanasios Kondylis
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Blaine Phillips
- Philip Morris International Research Laboratories Pte. Ltd., Science Park II, 117406, Singapore
| | - Kim Ekroos
- Lipidomics Consulting Ltd., Irisviksvägen 31D, 02230 Esbo, Finland
| | - Florian Martin
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Manuel C Peitsch
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Julia Hoeng
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Nikolai V Ivanov
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| |
Collapse
|
150
|
West AL, Michaelson LV, Miles EA, Haslam RP, Lillycrop KA, Georgescu R, Han L, Napier JA, Calder PC, Burdge GC. Lipidomic Analysis of Plasma from Healthy Men and Women Shows Phospholipid Class and Molecular Species Differences between Sexes. Lipids 2020; 56:229-242. [PMID: 33284478 PMCID: PMC8048887 DOI: 10.1002/lipd.12293] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/14/2020] [Accepted: 10/29/2020] [Indexed: 12/19/2022]
Abstract
The phospholipid composition of lipoproteins is determined by the specificity of hepatic phospholipid biosynthesis. Plasma phospholipid 20:4n‐6 and 22:6n‐3 concentrations are higher in women than in men. We used this sex difference in a lipidomics analysis of the impact of endocrine factors on the phospholipid class and molecular species composition of fasting plasma from young men and women. Diester species predominated in all lipid classes measured. 20/54 Phosphatidylcholine (PtdCho) species were alkyl ester, 15/48 phosphatidylethanolamine (PtdEtn) species were alkyl ester, and 12/48 PtdEtn species were alkenyl ester. There were no significant differences between sexes in the proportions of alkyl PtdCho species. The proportion of alkyl ester PtdEtn species was greater in women than men, while the proportion of alkenyl ester PtdEtn species was greater in men than women. None of the phosphatidylinositol (PtdIns) or phosphatidylserine (PtdSer) molecular species contained ether‐linked fatty acids. The proportion of PtdCho16:0_22:6, and the proportions of PtdEtn O‐16:0_20:4 and PtdEtn O‐18:2_20:4 were greater in women than men. There were no sex differences in PtdIns and PtdSer molecular species compositions. These findings show that plasma phospholipids can be modified by sex. Such differences in lipoprotein phospholipid composition could contribute to sexual dimorphism in patterns of health and disease.
Collapse
Affiliation(s)
- Annette L West
- School of Human Development and Health, Faculty of Medicine, Southampton General Hospital, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - Louise V Michaelson
- Department of Plant Sciences, Rothamsted Research, West Common, Harpenden, AL5 2JQ, UK
| | - Elizabeth A Miles
- School of Human Development and Health, Faculty of Medicine, Southampton General Hospital, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - Richard P Haslam
- Department of Plant Sciences, Rothamsted Research, West Common, Harpenden, AL5 2JQ, UK
| | - Karen A Lillycrop
- Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, University Road, Southampton, SO17 1BJ, UK
| | - Ramona Georgescu
- School of Human Development and Health, Faculty of Medicine, Southampton General Hospital, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - Lihua Han
- Department of Plant Sciences, Rothamsted Research, West Common, Harpenden, AL5 2JQ, UK
| | - Johnathan A Napier
- Department of Plant Sciences, Rothamsted Research, West Common, Harpenden, AL5 2JQ, UK
| | - Philip C Calder
- School of Human Development and Health, Faculty of Medicine, Southampton General Hospital, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK.,NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - Graham C Burdge
- School of Human Development and Health, Faculty of Medicine, Southampton General Hospital, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
| |
Collapse
|