101
|
Smith KA, Joziasse IC, Chocron S, van Dinther M, Guryev V, Verhoeven MC, Rehmann H, van der Smagt JJ, Doevendans PA, Cuppen E, Mulder BJ, Ten Dijke P, Bakkers J. Dominant-negative ALK2 allele associates with congenital heart defects. Circulation 2009; 119:3062-9. [PMID: 19506109 DOI: 10.1161/circulationaha.108.843714] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Serious congenital heart defects occur as a result of improper atrioventricular septum (AVS) development during embryogenesis. Despite extensive knowledge of the genetic control of AVS development, few genetic lesions have been identified that are responsible for AVS-associated congenital heart defects. METHODS AND RESULTS We sequenced 32 genes known to be important in AVS development in patients with AVS defects and identified 11 novel coding single-nucleotide polymorphisms that are predicted to impair protein function. We focused on variants identified in the bone morphogenetic protein receptor, ALK2, and subjected 2 identified variants to functional analysis. The coding single-nucleotide polymorphisms R307L and L343P are heterozygous missense substitutions and were each identified in single individuals. The L343P allele had impaired functional activity as measured by in vitro kinase and bone morphogenetic protein-specific transcriptional response assays and dominant-interfering activity in vivo. In vivo analysis of zebrafish embryos injected with ALK2 L343P RNA revealed improper atrioventricular canal formation. CONCLUSIONS These data identify the dominant-negative allele ALK2 L343P in a patient with AVS defects.
Collapse
Affiliation(s)
- Kelly A Smith
- Associate Professor, Cardiac Development and Genetics Group, Hubrecht Institute for Developmental Biology and Stem Cell Research, Uppsalalaan 8, 3584 CT Utrecht, Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Yamauchi H, Miyakawa N, Miyake A, Itoh N. Fgf4 is required for left-right patterning of visceral organs in zebrafish. Dev Biol 2009; 332:177-85. [PMID: 19481538 DOI: 10.1016/j.ydbio.2009.05.568] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Revised: 05/20/2009] [Accepted: 05/21/2009] [Indexed: 10/20/2022]
Abstract
Fgf signaling plays essential roles in many developmental events. To investigate the roles of Fgf4 signaling in zebrafish development, we generated Fgf4 knockdown embryos by injection with Fgf4 antisense morpholino oligonucleotides. Randomized LR patterning of visceral organs including the liver, pancreas, and heart was observed in the knockdown embryos. Prominent expression of Fgf4 was observed in the posterior notochord and Kupffer's vesicle region in the early stages of segmentation. Lefty1, lefty2, southpaw, and pitx2 are known to play crucial roles in LR patterning of visceral organs. Fgf4 was essential for the expression of lefty1, which is necessary for the asymmetric expression of southpaw and pitx2 in the lateral plate mesoderm, in the posterior notochord, and the expression of lefty2 and lefty1 in the left cardiac field. Fgf8 is also known to be crucial for the formation of Kupffer's vesicle, which is needed for the LR patterning of visceral organs. In contrast, Fgf4 was required for the formation of cilia in Kupffer's vesicle, indicating that the role of Fgf4 in the LR patterning is quite distinct from that of Fgf8. The present findings indicate that Fgf4 plays a unique role in the LR patterning of visceral organs in zebrafish.
Collapse
Affiliation(s)
- Hajime Yamauchi
- Department of Genetic Biochemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto 606-8501, Japan
| | | | | | | |
Collapse
|
103
|
Bakkers J, Verhoeven MC, Abdelilah-Seyfried S. Shaping the zebrafish heart: from left-right axis specification to epithelial tissue morphogenesis. Dev Biol 2009; 330:213-20. [PMID: 19371733 DOI: 10.1016/j.ydbio.2009.04.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 04/07/2009] [Accepted: 04/07/2009] [Indexed: 11/18/2022]
Abstract
Although vertebrates appear bilaterally symmetric on the outside, various internal organs, including the heart, are asymmetric with respect to their position and/or their orientation based on the left/right (L/R) axis. The L/R axis is determined during embryo development. Determination of the L/R axis is fundamentally different from the determination of the anterior-posterior or the dorsal-ventral axis. In all vertebrates a ciliated organ has been described that induces a left-sided gene expression program, which includes Nodal expression in the left lateral plate mesoderm. To have a better understanding of organ laterality it is important to understand how L/R patterning induces cellular responses during organogenesis. In this review, we discuss the current understanding of the mechanisms of L/R patterning during zebrafish development and focus on how this affects cardiac morphogenesis. Several recent studies have provided unprecedented insights into the intimate link between L/R signaling and the cellular responses that drive morphogenesis of this organ.
Collapse
Affiliation(s)
- Jeroen Bakkers
- Hubrecht Institute and University Medical Centre Utrecht, 3584 CT, Utrecht, The Netherlands.
| | | | | |
Collapse
|
104
|
Delvaeye M, De Vriese A, Zwerts F, Betz I, Moons M, Autiero M, Conway EM. Role of the 2 zebrafish survivin genes in vasculo-angiogenesis, neurogenesis, cardiogenesis and hematopoiesis. BMC DEVELOPMENTAL BIOLOGY 2009; 9:25. [PMID: 19323830 PMCID: PMC2670274 DOI: 10.1186/1471-213x-9-25] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2008] [Accepted: 03/26/2009] [Indexed: 12/22/2022]
Abstract
Background Normal growth and development of organisms requires maintenance of a dynamic balance between systems that promote cell survival and those that induce apoptosis. The molecular mechanisms that regulate these processes remain poorly understood, and thus further in vivo study is required. Survivin is a member of the inhibitor of apoptosis protein (IAP) family, that uniquely also promotes mitosis and cell proliferation. Postnatally, survivin is hardly detected in most tissues, but is upregulated in all cancers, and as such, is a potential therapeutic target. Prenatally, survivin is also highly expressed in several tissues. Fully delineating the properties of survivin in vivo in mice has been confounded by early lethal phenotypes following survivin gene inactivation. Results To gain further insights into the properties of survivin, we used the zebrafish model. There are 2 zebrafish survivin genes (Birc5a and Birc5b) with overlapping expression patterns during early development, prominently in neural and vascular structures. Morpholino-induced depletion of Birc5a causes profound neuro-developmental, hematopoietic, cardiogenic, vasculogenic and angiogenic defects. Similar abnormalities, all less severe except for hematopoiesis, were evident with suppression of Birc5b. The phenotypes induced by morpholino knockdown of one survivin gene, were rescued by overexpression of the other, indicating that the Birc5 paralogs may compensate for each. The potent vascular endothelial growth factor (VEGF) also entirely rescues the phenotypes induced by depletion of either Birc5a and Birc5b, highlighting its multi-functional properties, as well as the power of the model in characterizing the activities of growth factors. Conclusion Overall, with the zebrafish model, we identify survivin as a key regulator of neurogenesis, vasculo-angiogenesis, hematopoiesis and cardiogenesis. These properties of survivin, which are consistent with those identified in mice, indicate that its functions are highly conserved across species, and point to the value of the zebrafish model in understanding the role of this IAP in the pathogenesis of human disease, and for exploring its potential as a therapeutic target.
Collapse
Affiliation(s)
- Mieke Delvaeye
- KU Leuven, VIB Vesalius Research Center (VRC), Gasthuisberg O&N-1, Herestraat 49, 3000 Leuven, Belgium.
| | | | | | | | | | | | | |
Collapse
|
105
|
Furtado MB, Solloway MJ, Jones VJ, Costa MW, Biben C, Wolstein O, Preis JI, Sparrow DB, Saga Y, Dunwoodie SL, Robertson EJ, Tam PPL, Harvey RP. BMP/SMAD1 signaling sets a threshold for the left/right pathway in lateral plate mesoderm and limits availability of SMAD4. Genes Dev 2009; 22:3037-49. [PMID: 18981480 DOI: 10.1101/gad.1682108] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Bistability in developmental pathways refers to the generation of binary outputs from graded or noisy inputs. Signaling thresholds are critical for bistability. Specification of the left/right (LR) axis in vertebrate embryos involves bistable expression of transforming growth factor beta (TGFbeta) member NODAL in the left lateral plate mesoderm (LPM) controlled by feed-forward and feedback loops. Here we provide evidence that bone morphogenetic protein (BMP)/SMAD1 signaling sets a repressive threshold in the LPM essential for the integrity of LR signaling. Conditional deletion of Smad1 in the LPM led to precocious and bilateral pathway activation. NODAL expression from both the left and right sides of the node contributed to bilateral activation, indicating sensitivity of mutant LPM to noisy input from the LR system. In vitro, BMP signaling inhibited NODAL pathway activation and formation of its downstream SMAD2/4-FOXH1 transcriptional complex. Activity was restored by overexpression of SMAD4 and in embryos, elevated SMAD4 in the right LPM robustly activated LR gene expression, an effect reversed by superactivated BMP signaling. We conclude that BMP/SMAD1 signaling sets a bilateral, repressive threshold for NODAL-dependent Nodal activation in LPM, limiting availability of SMAD4. This repressive threshold is essential for bistable output of the LR system.
Collapse
Affiliation(s)
- Milena B Furtado
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Li D, Lu C, Wang J, Hu W, Cao Z, Sun D, Xia H, Ma X. Developmental mechanisms of arsenite toxicity in zebrafish (Danio rerio) embryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2009; 91:229-37. [PMID: 19110324 DOI: 10.1016/j.aquatox.2008.11.007] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 11/08/2008] [Accepted: 11/10/2008] [Indexed: 05/06/2023]
Abstract
Arsenic usually accumulates in soil, water and airborne particles, from which it is taken up by various organisms. Exposure to arsenic through food and drinking water is a major public health problem affecting some countries. At present there are limited laboratory data on the effects of arsenic exposure on early embryonic development and the mechanisms behind its toxicity. In this study, we used zebrafish as a model system to investigate the effects of arsenite on early development. Zebrafish embryos were exposed to a range of sodium arsenite concentrations (0-10.0mM) between 4 and 120h post-fertilization (hpf). Survival and early development of the embryos were not obviously influenced by arsenite concentrations below 0.5mM. However, embryos exposed to higher concentrations (0.5-10.0mM) displayed reduced survival and abnormal development including delayed hatching, retarded growth and changed morphology. Alterations in neural development included weak tactile responses to light (2.0-5.0mM, 30hpf), malformation of the spinal cord and disordered motor axon projections (2.0mM, 48hpf). Abnormal cardiac function was observed as bradycardia (0.5-2.0mM, 60hpf) and altered ventricular shape (2.0mM, 48hpf). Furthermore, altered cell proliferation (2.0mM, 24hpf) and apoptosis status (2.0mM, 24 and 48hpf), as well as abnormal genomic DNA methylation patterning (2.0mM, 24 and 48hpf) were detected in the arsenite-treated embryos. All of these indicate a possible relationship between arsenic exposure and developmental failure in early embryogenesis. Our studies suggest that the negative effects of arsenic on vertebrate embryogenesis are substantial.
Collapse
Affiliation(s)
- Dan Li
- Department of Genetics, National Research Institute for Family Planning, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
107
|
DiBella LM, Park A, Sun Z. Zebrafish Tsc1 reveals functional interactions between the cilium and the TOR pathway. Hum Mol Genet 2009; 18:595-606. [PMID: 19008302 PMCID: PMC2722215 DOI: 10.1093/hmg/ddn384] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Accepted: 11/11/2008] [Indexed: 01/10/2023] Open
Abstract
The cell surface organelle called the cilium is essential for preventing kidney cyst formation and for establishing left-right asymmetry of the vertebrate body plan. Recent advances suggest that the cilium functions as a sensory organelle in vertebrate cells for multiple signaling pathways such as the hedgehog and the Wnt pathways. Prompted by kidney cyst formation in tuberous sclerosis complex (TSC) patients and rodent models, we investigated the role of the cilium in the TSC-target of rapamycin (TOR) pathway using zebrafish. TSC1 and TSC2 genes are causal for TSC, and their protein products form a complex in the TOR pathway that integrates environmental signals to regulate cell growth, proliferation and survival. Two TSC1 homologs were identified in zebrafish, which we refer to as tsc1a and tsc1b. Morpholino knockdown of tsc1a led to a ciliary phenotype including kidney cyst formation and left-right asymmetry defects. Tsc1a was observed to localize to the Golgi, but morpholinos against it, nonetheless, acted synthetically with ciliary genes in producing kidney cysts. Consistent with a role of the cilium in the same pathway as Tsc genes, the TOR pathway is aberrantly activated in ciliary mutants, resembling the effect of tsc1a knockdown. Moreover, kidney cyst formation in ciliary mutants was blocked by the Tor inhibitor, rapamycin. Surprisingly, we observed elongation of cilia in tsc1a knockdown animals. Together, these data suggest a signaling network between the cilium and the TOR pathway in that ciliary signals can feed into the TOR pathway and that Tsc1a regulates the length of the cilium itself.
Collapse
Affiliation(s)
| | | | - Zhaoxia Sun
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
108
|
Schwerte T. Cardio-respiratory control during early development in the model animal zebrafish. Acta Histochem 2009; 111:230-43. [PMID: 19121852 DOI: 10.1016/j.acthis.2008.11.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Independent of species, the cardiovascular system is the first functioning component of developing vertebrate embryos. One of the main hypotheses is the assumption that larval and juvenile stages of fish and amphibians are not just smaller versions of an adult phenotype. In this review, the cardiovascular and respiratory responses to environmental, genetic and epigenetic perturbations are discussed in detail to understand the relationships between cardiac and respiratory performance, haematopoiesis for embryonic or larval stages with special focus on the popular model animal, the zebrafish. Zebrafish are tiny animals which have many advantages as a model organism in analysis of the cardio-respiratory system. It obtains sufficient amounts of oxygen via bulk diffusion, in contrast to convection-dependent mammals. It is possible to study genetic mutants even with extreme defective phenotypes of the cardio-respiratory system in order to understand its developmental and physiological mechanisms. It has become apparent that the cardio-respiratory system and its control starts functioning very early during development, long before oxygen uptake becomes diffusion limited in zebrafish. Finally, recent improvements in imaging techniques for the use of fish models relevant for developmental physiology and biomedical research are discussed.
Collapse
|
109
|
de Campos-Baptista MIM, Holtzman NG, Yelon D, Schier AF. Nodal signaling promotes the speed and directional movement of cardiomyocytes in zebrafish. Dev Dyn 2008; 237:3624-33. [PMID: 18985714 PMCID: PMC2632806 DOI: 10.1002/dvdy.21777] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Members of the Nodal family regulate left-right asymmetry during vertebrate organogenesis, but it is unclear how Nodal signaling controls asymmetric morphogenesis at the cellular level. We used high-resolution time-lapse imaging in zebrafish to compare the movements of cardiomyocytes in the presence or absence of Nodal signaling. Loss of Nodal signaling in late-zygotic mutants for the Nodal co-receptor one-eyed pinhead (LZoep) abolished the leftward movement of cardiomyocytes. Global heart rotation was blocked but cardiomyocyte neighbor relationships were maintained as in wild type. Cardiomyocytes in LZoep mutants moved more slowly and less directionally than their wild-type counterparts. The phenotypes observed in the absence of Nodal signaling strongly resemble abnormalities found in BMP signaling mutants. These results indicate that a Nodal-BMP signaling cascade drives left-right heart morphogenesis by regulating the speed and direction of cardiomyocyte movement.
Collapse
Affiliation(s)
- Maria Ines Medeiros de Campos-Baptista
- Department of Molecular and Cellular Biology, Center for Brain Science, Broad Institute, Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | | | |
Collapse
|
110
|
Abstract
The establishment of a left-right axis during vertebrate development is essential for coordinating the relative positions of the internal organs to ensure that they function appropriately. Studies in numerous model organisms have revealed differences in regulative mechanisms upstream of nodal signaling, a conserved pathway in left-right axis specification. This review will summarize the diverse pathways involved in the break of left-right symmetry and explore in depth the multiple roles of calcium in vertebrate left-right axis specification.
Collapse
Affiliation(s)
- Adam Langenbacher
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | | |
Collapse
|
111
|
McCulley DJ, Kang JO, Martin JF, Black BL. BMP4 is required in the anterior heart field and its derivatives for endocardial cushion remodeling, outflow tract septation, and semilunar valve development. Dev Dyn 2008; 237:3200-9. [PMID: 18924235 PMCID: PMC2728547 DOI: 10.1002/dvdy.21743] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The endocardial cushions play a critical role in septation of the four-chambered mammalian heart and in the formation of the valve leaflets that control blood flow through the heart. Within the outflow tract (OFT), both cardiac neural crest and endocardial-derived mesenchymal cells contribute to the endocardial cushions. Bone morphogenetic protein 4 (BMP4) is required for endocardial cushion development and for normal septation of the OFT. In the present study, we show that anterior heart field (AHF)-derived myocardium is an essential source of BMP4 required for normal endocardial cushion expansion and remodeling. Loss of BMP4 from the AHF in mice results in an insufficient number of cells in the developing OFT endocardial cushions, defective cushion remodeling, ventricular septal defects, persistent truncus arteriosus, and abnormal semilunar valve formation.
Collapse
Affiliation(s)
- David J. McCulley
- Cardiovascular Research Institute, University of California, San Francisco, CA 94143-2240
| | - Ji-One Kang
- Cardiovascular Research Institute, University of California, San Francisco, CA 94143-2240
| | - James F. Martin
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030
| | - Brian L. Black
- Cardiovascular Research Institute, University of California, San Francisco, CA 94143-2240
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143-2240
| |
Collapse
|
112
|
Goldstone HMH, Stegeman JJ. Molecular Mechanisms of 2,3,7,8-Tetrachlorodibenzo-p-Dioxin Cardiovascular Embryotoxicity. Drug Metab Rev 2008; 38:261-89. [PMID: 16684661 DOI: 10.1080/03602530600570099] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
2,3,7,8 Tetrachlorodibenzo-p-dioxin (TCDD) and related planar halogenated aromatic hydrocarbons are widespread environmental contaminants and potent developmental toxicants. Hallmarks of embryonic exposure include edema, hemorrhage, and mortality. Recent studies in zebrafish and chicken have revealed direct impairment of cardiac muscle growth that may underlie these overt symptoms. TCDD toxicity is mediated by the aryl hydrocarbon receptor, but downstream targets remain unclear. Oxidative stress and growth factor modulation have been implicated in TCDD cardiovascular toxicity. Gene expression profiling is elucidating additional pathways by which TCDD might act. We review our understanding of the mechanism of TCDD embryotoxicity at morphological and molecular levels.
Collapse
Affiliation(s)
- Heather M H Goldstone
- The Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA 02543, USA.
| | | |
Collapse
|
113
|
Smith LL, Fessler JL, Alfaro ME, Streelman JT, Westneat MW. Phylogenetic relationships and the evolution of regulatory gene sequences in the parrotfishes. Mol Phylogenet Evol 2008; 49:136-52. [PMID: 18621133 PMCID: PMC3418665 DOI: 10.1016/j.ympev.2008.06.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Revised: 06/04/2008] [Accepted: 06/10/2008] [Indexed: 11/22/2022]
Abstract
Regulatory genes control the expression of other genes and are key components of developmental processes such as segmentation and embryonic construction of the skull in vertebrates. Here we examine the variability and evolution of three vertebrate regulatory genes, addressing issues of their utility for phylogenetics and comparing the rates of genetic change seen in regulatory loci to the rates seen in other genes in the parrotfishes. The parrotfishes are a diverse group of colorful fishes from coral reefs and seagrasses worldwide and have been placed phylogenetically within the family Labridae. We tested phylogenetic hypotheses among the parrotfishes, with a focus on the genera Chlorurus and Scarus, by analyzing eight gene fragments for 42 parrotfishes and eight outgroup species. We sequenced mitochondrial 12s rRNA (967 bp), 16s rRNA (577 bp), and cytochrome b (477 bp). From the nuclear genome, we sequenced part of the protein-coding genes rag2 (715 bp), tmo4c4 (485 bp), and the developmental regulatory genes otx1 (672 bp), bmp4 (488bp), and dlx2 (522 bp). Bayesian, likelihood, and parsimony analyses of the resulting 4903 bp of DNA sequence produced similar topologies that confirm the monophyly of the scarines and provide a phylogeny at the species level for portions of the genera Scarus and Chlorurus. Four major clades of Scarus were recovered, with three distributed in the Indo-Pacific and one containing Caribbean/Atlantic taxa. Molecular rates suggest a Miocene origin of the parrotfishes (22 mya) and a recent divergence of species within Scarus and Chlorurus, within the past 5 million years. Developmentally important genes made a significant contribution to phylogenetic structure, and rates of genetic evolution were high in bmp4, similar to other coding nuclear genes, but low in otx1 and the dlx2 exons. Synonymous and non-synonymous substitution patterns in developmental regulatory genes support the hypothesis of stabilizing selection during the history of these genes, with several phylogenetic regions of accelerated non-synonymous change detected in the phylogeny.
Collapse
Affiliation(s)
- Lydia L. Smith
- Department of Zoology, Field Museum of Natural History, Chicago, IL 60605-2496
| | - Jennifer L. Fessler
- Department of Zoology, Field Museum of Natural History, Chicago, IL 60605-2496
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL
| | - Michael E. Alfaro
- Department of Zoology, Field Museum of Natural History, Chicago, IL 60605-2496
- Department of Ecology and Evolution, Washington State University, Pullman, WA
| | - J. Todd Streelman
- School of Biology, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology
| | - Mark W. Westneat
- Department of Zoology, Field Museum of Natural History, Chicago, IL 60605-2496
| |
Collapse
|
114
|
Baker K, Holtzman NG, Burdine RD. Direct and indirect roles for Nodal signaling in two axis conversions during asymmetric morphogenesis of the zebrafish heart. Proc Natl Acad Sci U S A 2008; 105:13924-9. [PMID: 18784369 PMCID: PMC2544555 DOI: 10.1073/pnas.0802159105] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Indexed: 11/18/2022] Open
Abstract
The Nodal signaling pathway plays a conserved role in determining left-sided identity in vertebrates with this early left-right (L/R) patterning influencing the asymmetric development and placement of visceral organs. We have studied the role of Nodal signaling in asymmetric cardiac morphogenesis in zebrafish and describe two distinct rotations occurring within the heart. The first is driven by an asymmetric migration of myocardial cells during cardiac jogging, resulting in the conversion of the L/R axis to the dorsal-ventral (D/V) axis of the linear heart. This first rotation is directly influenced by the laterality of asymmetric gene expression. The second rotation occurs before cardiac looping and positions the original left cells exposed to Nodal signaling back to the left of the wild-type (WT) heart by 48 hours postfertilization (hpf). The direction of this second rotation is determined by the laterality of cardiac jogging and is not directly influenced by asymmetric gene expression. Finally, we have identified a role for Nodal signaling in biasing the location of the inner ventricular and outer atrial curvature formations. These results suggest that Nodal signaling directs asymmetric cardiac morphogenesis through establishing and subsequently reinforcing laterality information over the course of cardiac development.
Collapse
Affiliation(s)
- Kari Baker
- *Department of Molecular Biology, Princeton University, Washington Road MOF433, Princeton, NJ 08550; and
| | - Nathalia G. Holtzman
- Biology Department, Queens College, City University of New York, 65-30 Kissena Boulevard, Flushing, NY 11367
| | - Rebecca D. Burdine
- *Department of Molecular Biology, Princeton University, Washington Road MOF433, Princeton, NJ 08550; and
| |
Collapse
|
115
|
Leung T, Humbert JE, Stauffer AM, Giger KE, Chen H, Tsai HJ, Wang C, Mirshahi T, Robishaw JD. The orphan G protein-coupled receptor 161 is required for left-right patterning. Dev Biol 2008; 323:31-40. [PMID: 18755178 DOI: 10.1016/j.ydbio.2008.08.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Revised: 07/28/2008] [Accepted: 08/01/2008] [Indexed: 11/18/2022]
Abstract
Gpr161 (also known as RE2) is an orphan G protein-coupled receptor (GPCR) that is expressed during embryonic development in zebrafish. Determining its biological function has proven difficult due to lack of knowledge regarding its natural or synthetic ligands. Here, we show that targeted knockdown of gpr161 disrupts asymmetric gene expression in the lateral plate mesoderm, resulting in aberrant looping of the heart tube. This is associated with elevated Ca(2+) levels in cells lining the Kupffer's vesicle and normalization of Ca(2+) levels, by over-expression of ncx1 or pmca-RNA, is able to partially rescue the cardiac looping defect in gpr161 knockdown embryos. Taken together, these data support a model in which gpr161 plays an essential role in left-right (L-R) patterning by modulating Ca(2+) levels in the cells surrounding the Kupffer's vesicle.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Animals, Genetically Modified
- Body Patterning/genetics
- Body Patterning/physiology
- Calcium/metabolism
- Calcium Signaling
- Embryo, Nonmammalian/metabolism
- Embryo, Nonmammalian/physiology
- Gene Expression Regulation, Developmental
- In Situ Hybridization
- Models, Biological
- Molecular Sequence Data
- Oligonucleotides, Antisense/pharmacology
- Protein Structure, Tertiary
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Receptors, G-Protein-Coupled/physiology
- Sequence Homology, Amino Acid
- Zebrafish/embryology
- Zebrafish/genetics
- Zebrafish/metabolism
- Zebrafish Proteins/antagonists & inhibitors
- Zebrafish Proteins/genetics
- Zebrafish Proteins/metabolism
- Zebrafish Proteins/physiology
Collapse
Affiliation(s)
- Tinchung Leung
- Weis Center for Research, Geisinger Clinic, Danville, PA 17822, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Hadjantonakis AK, Pisano E, Papaioannou VE. Tbx6 regulates left/right patterning in mouse embryos through effects on nodal cilia and perinodal signaling. PLoS One 2008; 3:e2511. [PMID: 18575602 PMCID: PMC2427182 DOI: 10.1371/journal.pone.0002511] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Accepted: 05/24/2008] [Indexed: 01/14/2023] Open
Abstract
Background The determination of left/right body axis during early embryogenesis sets up a developmental cascade that coordinates the development of the viscera and is essential to the correct placement and alignment of organ systems and vasculature. Defective left-right patterning can lead to congenital cardiac malformations, vascular anomalies and other serious health problems. Here we describe a novel role for the T-box transcription factor gene Tbx6 in left/right body axis determination in the mouse. Results Embryos lacking Tbx6 show randomized embryo turning and heart looping. Our results point to multiple mechanisms for this effect. First, Dll1, a direct target of Tbx6, is down regulated around the node in Tbx6 mutants and there is a subsequent decrease in nodal signaling, which is required for laterality determination. Secondly, in spite of a lack of expression of Tbx6 in the node, we document a profound effect of the Tbx6 mutation on the morphology and motility of nodal cilia. This results in the loss of asymmetric calcium signaling at the periphery of the node, suggesting that unidirectional nodal flow is disrupted. To carry out these studies, we devised a novel method for direct labeling and live imaging cilia in vivo using a genetically-encoded fluorescent protein fusion that labels tubulin, combined with laser point scanning confocal microscopy for direct visualization of cilia movement. Conclusions We conclude that the transcription factor gene Tbx6 is essential for correct left/right axis determination in the mouse and acts through effects on notch signaling around the node as well as through an effect on the morphology and motility of the nodal cilia.
Collapse
Affiliation(s)
| | - Elinor Pisano
- Department of Genetics and Development, College of Physicians and Surgeons of Columbia University, New York, New York, United States of America
| | - Virginia E. Papaioannou
- Department of Genetics and Development, College of Physicians and Surgeons of Columbia University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
117
|
Raya Á, Izpisúa Belmonte JC. Insights into the establishment of left–right asymmetries in vertebrates. ACTA ACUST UNITED AC 2008; 84:81-94. [DOI: 10.1002/bdrc.20122] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
118
|
Smith KA, Chocron S, von der Hardt S, de Pater E, Soufan A, Bussmann J, Schulte-Merker S, Hammerschmidt M, Bakkers J. Rotation and asymmetric development of the zebrafish heart requires directed migration of cardiac progenitor cells. Dev Cell 2008; 14:287-97. [PMID: 18267096 DOI: 10.1016/j.devcel.2007.11.015] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Revised: 10/23/2007] [Accepted: 11/16/2007] [Indexed: 12/11/2022]
Abstract
We have used high-resolution 4D imaging of cardiac progenitor cells (CPCs) in zebrafish to investigate the earliest left-right asymmetric movements during cardiac morphogenesis. Differential migratory behavior within the heart field was observed, resulting in a rotation of the heart tube. The leftward displacement and rotation of the tube requires hyaluronan synthase 2 expression within the CPCs. Furthermore, by reducing or ectopically activating BMP signaling or by implantation of BMP beads we could demonstrate that BMP signaling, which is asymmetrically activated in the lateral plate mesoderm and regulated by early left-right signals, is required to direct CPC migration and cardiac rotation. Together, these results support a model in which CPCs migrate toward a BMP source during development of the linear heart tube, providing a mechanism by which the left-right axis drives asymmetric development of the vertebrate heart.
Collapse
Affiliation(s)
- Kelly A Smith
- Hubrecht Institute for Developmental Biology and Stem Cell Research, 3584 CT Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Monteiro R, van Dinther M, Bakkers J, Wilkinson R, Patient R, ten Dijke P, Mummery C. Two novel type II receptors mediate BMP signalling and are required to establish left-right asymmetry in zebrafish. Dev Biol 2008; 315:55-71. [PMID: 18222420 DOI: 10.1016/j.ydbio.2007.11.038] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Revised: 11/12/2007] [Accepted: 11/29/2007] [Indexed: 11/20/2022]
Abstract
Ligands of the transforming growth factor beta (TGFbeta) superfamily, like Nodal and bone morphogenetic protein (BMP), are pivotal to establish left-right (LR) asymmetry in vertebrates. However, the receptors mediating this process are unknown. Here we identified two new type II receptors for BMPs in zebrafish termed bmpr2a and bmpr2b that induce a classical Smad1/5/8 response to BMP binding. Morpholino-mediated knockdown of bmpr2a and bmpr2b showed that they are required for the establishment of concomitant cardiac and visceral LR asymmetry. Expression of early laterality markers in morphants indicated that bmpr2a and bmpr2b act upstream of pitx2 and the nodal-related southpaw (spaw), which are expressed asymmetrically in the lateral plate mesoderm (LPM), and subsequently regulate lefty2 and bmp4 in the left heart field. We demonstrated that bmpr2a is required for lefty1 expression in the midline at early segmentation while bmpr2a/bmpr2b heteromers mediate left-sided spaw expression in the LPM. We propose a mechanism whereby this differential interpretation of BMP signalling through bmpr2a and bmpr2b is essential for the establishment of LR asymmetry in the zebrafish embryo.
Collapse
MESH Headings
- Animals
- Body Patterning/genetics
- Bone Morphogenetic Protein Receptors, Type II/genetics
- Bone Morphogenetic Protein Receptors, Type II/metabolism
- Bone Morphogenetic Proteins/genetics
- Bone Morphogenetic Proteins/physiology
- COS Cells
- Cells, Cultured
- Chlorocebus aethiops
- DNA, Complementary/biosynthesis
- Dose-Response Relationship, Drug
- Gene Expression Regulation, Developmental
- Genes, Reporter
- Genetic Linkage
- Immunohistochemistry
- In Situ Hybridization
- Luciferases/metabolism
- Microinjections
- Oligonucleotides, Antisense/genetics
- Oligonucleotides, Antisense/pharmacology
- Osteoblasts/cytology
- Phylogeny
- Plasmids
- RNA, Messenger/metabolism
- Signal Transduction
- Stem Cells/cytology
- Synteny
- Transcription, Genetic
- Zebrafish/embryology
- Zebrafish/genetics
- Zebrafish/metabolism
- Zebrafish Proteins/genetics
- Zebrafish Proteins/metabolism
- beta-Galactosidase/genetics
Collapse
Affiliation(s)
- Rui Monteiro
- Hubrecht Institute, Netherlands Institute for Developmental Biology, Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
120
|
Stickney HL, Imai Y, Draper B, Moens C, Talbot WS. Zebrafish bmp4 functions during late gastrulation to specify ventroposterior cell fates. Dev Biol 2007; 310:71-84. [PMID: 17727832 PMCID: PMC2683675 DOI: 10.1016/j.ydbio.2007.07.027] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Revised: 07/03/2007] [Accepted: 07/19/2007] [Indexed: 11/16/2022]
Abstract
Bone morphogenetic proteins (BMPs) are key mediators of dorsoventral patterning in vertebrates and are required for the induction of ventral fates in fish and frogs. A widely accepted model of dorsoventral patterning postulates that a morphogenetic BMP activity gradient patterns cell fates along the dorsoventral axis. Recent work in zebrafish suggests that the role of BMP signaling changes over time, with BMPs required for global dorsoventral patterning during early gastrulation and for tail patterning during late gastrulation and early somitogenesis. Key questions remain about the late phase, including which BMP ligands are required and how the functions of BMPs differ during the early and late gastrula stages. In a screen for dominant enhancers of mutations in the homeobox genes vox and vent, which function in parallel to bmp signaling, we identified an insertion mutation in bmp4. We then performed a reverse genetic screen to isolate a null allele of bmp4. We report the characterization of these two alleles and demonstrate that BMP4 is required during the later phase of BMP signaling for the specification of ventroposterior cell fates. Our results indicate that different bmp genes are essential at different stages. In addition, we present genetic evidence supporting a role for a morphogenetic BMP gradient in establishing mesodermal fates during the later phase of BMP signaling.
Collapse
Affiliation(s)
- Heather L Stickney
- Stanford University School of Medicine, Department of Developmental Biology, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
121
|
Pei W, Noushmehr H, Costa J, Ouspenskaia MV, Elkahloun AG, Feldman B. An early requirement for maternal FoxH1 during zebrafish gastrulation. Dev Biol 2007; 310:10-22. [PMID: 17719025 PMCID: PMC2121100 DOI: 10.1016/j.ydbio.2007.07.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Revised: 06/26/2007] [Accepted: 07/11/2007] [Indexed: 12/17/2022]
Abstract
The Forkhead Box H1 (FoxH1) protein is a co-transcription factor recruited by phosphorylated Smad2 downstream of several TGFbetas, including Nodal-related proteins. We have reassessed the function of zebrafish FoxH1 using antisense morpholino oligonucleotides (MOs). MOs targeting translation of foxH1 disrupt embryonic epiboly movements during gastrulation and cause death on the first day of development. The FoxH1 morphant phenotype is much more severe than that of zebrafish carrying foxh1/schmalspur (sur) DNA-binding domain mutations, FoxH1 splice-blocking morphants or other Nodal pathway mutants, and it cannot be altered by concomitant perturbations in Nodal signaling. Apart from disrupting epiboly, FoxH1 MO treatment disrupts convergence and internalization movements. Late gastrula-stage FoxH1 morphants exhibit delayed mesoderm and endoderm marker gene expression and failed patterning of the central nervous system. Probing FoxH1 morphant RNA by microarray, we identified a cohort of five keratin genes--cyt1, cyt2, krt4, krt8 and krt18--that are normally transcribed in the embryo's enveloping layer (EVL) and which have significantly reduced expression in FoxH1-depleted embryos. Simultaneously disrupting these keratins with a mixture of MOs reproduces the FoxH1 morphant phenotype. Our studies thus point to an essential role for maternal FoxH1 and downstream keratins during gastrulation that is epistatic to Nodal signaling.
Collapse
Affiliation(s)
- Wuhong Pei
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Houtan Noushmehr
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Justin Costa
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Maia V. Ouspenskaia
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Abdel G. Elkahloun
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Benjamin Feldman
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
122
|
Lee HC, Tsai JN, Liao PY, Tsai WY, Lin KY, Chuang CC, Sun CK, Chang WC, Tsai HJ. Glycogen synthase kinase 3 alpha and 3 beta have distinct functions during cardiogenesis of zebrafish embryo. BMC DEVELOPMENTAL BIOLOGY 2007; 7:93. [PMID: 17683539 PMCID: PMC1988812 DOI: 10.1186/1471-213x-7-93] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Accepted: 08/03/2007] [Indexed: 11/24/2022]
Abstract
Background Glycogen synthase kinase 3 (GSK3) encodes a serine/threonine protein kinase, is known to play roles in many biological processes. Two closely related GSK3 isoforms encoded by distinct genes: GSK3α (51 kDa) and GSK3β (47 kDa). In previously studies, most GSK3 inhibitors are not only inhibiting GSK3, but are also affecting many other kinases. In addition, because of highly similarity in amino acid sequence between GSK3α and GSK3β, making it difficult to identify an inhibitor that can be selective against GSK3α or GSK3β. Thus, it is relatively difficult to address the functions of GSK3 isoforms during embryogenesis. At this study, we attempt to specifically inhibit either GSK3α or GSK3β and uncover the isoform-specific roles that GSK3 plays during cardiogenesis. Results We blocked gsk3α and gsk3β translations by injection of morpholino antisense oligonucleotides (MO). Both gsk3α- and gsk3β-MO-injected embryos displayed similar morphological defects, with a thin, string-like shaped heart and pericardial edema at 72 hours post-fertilization. However, when detailed analysis of the gsk3α- and gsk3β-MO-induced heart defects, we found that the reduced number of cardiomyocytes in gsk3α morphants during the heart-ring stage was due to apoptosis. On the contrary, gsk3β morphants did not exhibit significant apoptosis in the cardiomyocytes, and the heart developed normally during the heart-ring stage. Later, however, the heart positioning was severely disrupted in gsk3β morphants. bmp4 expression in gsk3β morphants was up-regulated and disrupted the asymmetry pattern in the heart. The cardiac valve defects in gsk3β morphants were similar to those observed in axin1 and apcmcr mutants, suggesting that GSK3β might play a role in cardiac valve development through the Wnt/β-catenin pathway. Finally, the phenotypes of gsk3α mutant embryos cannot be rescued by gsk3β mRNA, and vice versa, demonstrating that GSK3α and GSK3β are not functionally redundant. Conclusion We conclude that (1) GSK3α, but not GSK3β, is necessary in cardiomyocyte survival; (2) the GSK3β plays important roles in modulating the left-right asymmetry and affecting heart positioning; and (3) GSK3α and GSK3β play distinct roles during zebrafish cardiogenesis.
Collapse
Affiliation(s)
- Huang-Chieh Lee
- Institute of Molecular and Cellular Biology, National Taiwan University, NO. 1, Roosevelt Road, Sec. 4, Taipei 106, Taiwan
| | - Jen-Ning Tsai
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 402, Taiwan
| | - Pei-Yin Liao
- Institute of Molecular and Cellular Biology, National Taiwan University, NO. 1, Roosevelt Road, Sec. 4, Taipei 106, Taiwan
| | - Wei-Yuan Tsai
- Institute of Molecular and Cellular Biology, National Taiwan University, NO. 1, Roosevelt Road, Sec. 4, Taipei 106, Taiwan
| | - Kai-Yen Lin
- Institute of Molecular and Cellular Biology, National Taiwan University, NO. 1, Roosevelt Road, Sec. 4, Taipei 106, Taiwan
| | - Chung-Cheng Chuang
- Graduate Institute of Photonics and Optoelectronics and Department of Electrical Engineering, National Taiwan University and Research Center for Applied Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Chi-Kuang Sun
- Graduate Institute of Photonics and Optoelectronics and Department of Electrical Engineering, National Taiwan University and Research Center for Applied Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Wen-Chang Chang
- Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan
- Institute of Biological Chemistry, Academia Sinica, Nankang 115, Taiwan
| | - Huai-Jen Tsai
- Institute of Molecular and Cellular Biology, National Taiwan University, NO. 1, Roosevelt Road, Sec. 4, Taipei 106, Taiwan
| |
Collapse
|
123
|
Amack JD, Wang X, Yost HJ. Two T-box genes play independent and cooperative roles to regulate morphogenesis of ciliated Kupffer's vesicle in zebrafish. Dev Biol 2007; 310:196-210. [PMID: 17765888 DOI: 10.1016/j.ydbio.2007.05.039] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Revised: 05/24/2007] [Accepted: 05/25/2007] [Indexed: 10/23/2022]
Abstract
The brain, heart and gastro-intestinal tract develop distinct left-right (LR) asymmetries. Asymmetric cilia-dependent fluid flow in the embryonic node in mouse, Kupffer's vesicle in zebrafish, notochordal plate in rabbit and gastrocoel roof plate in frog appears to be a conserved mechanism that directs LR asymmetric gene expression and establishes the orientation of organ asymmetry. However, the cellular processes and genetic pathways that control the formation of these essential ciliated structures are unknown. In zebrafish, migratory dorsal forerunner cells (DFCs) give rise to Kupffer's vesicle (KV), a ciliated epithelial sheet that forms a lumen and generates fluid flow. Using the epithelial marker atypical Protein Kinase C (aPKC) and other markers to analyze DFCs and KV cells, we describe a multi-step process by which DFCs form a functional KV. Using mutants and morpholinos, we show that two T-box transcription factors-No tail (Ntl)/Brachyury and Tbx16/Spadetail-cooperatively regulate an early step of DFC mesenchyme to epithelial transition (MET) and KV cell specification. Subsequently, each transcription factor independently controls a distinct step in KV formation: Tbx16 regulates apical clustering of KV cells and Ntl is necessary for KV lumen formation. By targeting morpholinos to DFCs, we show that these cell autonomous functions in KV morphogenesis are necessary for LR patterning throughout the embryo.
Collapse
Affiliation(s)
- Jeffrey D Amack
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA
| | | | | |
Collapse
|
124
|
Selamet Tierney ES, Marans Z, Rutkin MB, Chung WK. Variants of the CFC1 gene in patients with laterality defects associated with congenital cardiac disease. Cardiol Young 2007; 17:268-74. [PMID: 17445335 DOI: 10.1017/s1047951107000455] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/12/2006] [Indexed: 11/05/2022]
Abstract
OBJECTIVES This study was designed to assess the frequency and types of genetic variants in CFC1 in children with laterality disorders associated with cardiovascular involvement. BACKGROUND Laterality syndromes are estimated to comprise 3% of neonates with congenital cardiac disease. Genetic predisposition in some cases of laterality defects has been suggested by associated chromosomal anomalies and familial aggregation, often within consanguineous families, suggesting autosomal recessive inheritance. Mice with induced homozygous mutations in cfc1, and heterozygous CFC1 mutations in humans, have been associated with laterality defects. METHODS Direct sequence analysis of the coding sequence of CFC1 was performed in 42 subjects with laterality defects and congenital cardiac disease. RESULTS We identified 3 synonymous coding variants, 3 non-synonymous coding variants (N21H, R47Q, and R78W), and 2 intronic variants in CFC1. The N21H variant was observed in 3 of 19 affected Caucasians, and the R47Q variant in another 2. Neither polymorphism was observed in Caucasian controls. Furthermore, all subjects with the N21H polymorphism had double outlet right ventricle. Transmission of both the N21H and R47Q polymorphisms from unaffected parents was demonstrated, and all three non-synonymous variants had significant allele frequencies in unaffected African-American subjects, suggesting that other factors must also contribute to laterality defects. CONCLUSIONS Three non-synonymous variants in CFC1 were identified, the N21H variant being associated with laterality defects in Caucasians, but not fully penetrant. One or more of these non-synonymous missense variants may act as a susceptibility allele in conjunction with other genes, and/or environmental factors, to cause laterality defects.
Collapse
Affiliation(s)
- Elif Seda Selamet Tierney
- Division of Pediatric Cardiology, Morgan Stanley Children's Hospital of New York Presbyterian, Columbia University, College of Physicians & Surgeons, New York, NY, USA.
| | | | | | | |
Collapse
|
125
|
Chocron S, Verhoeven MC, Rentzsch F, Hammerschmidt M, Bakkers J. Zebrafish Bmp4 regulates left-right asymmetry at two distinct developmental time points. Dev Biol 2007; 305:577-88. [PMID: 17395172 DOI: 10.1016/j.ydbio.2007.03.001] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Revised: 02/21/2007] [Accepted: 03/01/2007] [Indexed: 11/19/2022]
Abstract
Left-right (LR) asymmetry is regulated by early asymmetric signals within the embryo. Even though the role of the bone morphogenetic protein (BMP) pathway in this process has been reported extensively in various model organisms, opposing models for the mechanism by which BMP signaling operates still prevail. Here we show that in zebrafish embryos there are two distinct phases during LR patterning in which BMP signaling is required. Using transgenic lines that ectopically express either noggin3 or bmp2b, we show a requirement for BMP signaling during early segmentation to repress southpaw expression in the right lateral plate mesoderm and regulate both visceral and heart laterality. A second phase was identified during late segmentation, when BMP signaling is required in the left lateral plate mesoderm to regulate left-sided gene expression and heart laterality. Using morpholino knock down experiments, we identified Bmp4 as the ligand responsible for both phases of BMP signaling. In addition, we detected bmp4 expression in Kupffer's vesicle and show that restricted knock down of bmp4 in this structure results in LR patterning defects. The identification of these two distinct and opposing activities of BMP signaling provides new insight into how BMP signaling can regulate LR patterning.
Collapse
Affiliation(s)
- Sonja Chocron
- Cardiac Development and Genetics Group, Hubrecht Laboratory, Uppsalalaan 8, Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
126
|
Zhao C, Malicki J. Genetic defects of pronephric cilia in zebrafish. Mech Dev 2007; 124:605-16. [PMID: 17576052 DOI: 10.1016/j.mod.2007.04.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Revised: 03/13/2007] [Accepted: 04/19/2007] [Indexed: 01/01/2023]
Abstract
Cilia play key roles in many aspects of embryogenesis and adult physiology in vertebrates. Past genetic screens in zebrafish identified numerous defects of ciliogenesis, including several mutations in the components of the intraflagellar transport machinery. In contrast to previous studies, here we describe a collection of mutants that affect subpopulations of cilia. Mutant embryos are characterized by a shortening and an abnormal movement of kidney cilia, and in one case also a reduction of cilia length in the Kupffer's vesicle. In contrast to that, the cilia of sensory neurons, including photoreceptor cells, hair cells, and olfactory sensory cells, appear grossly intact. Motility defects of pronephric cilia vary in mutant strains from complete paralysis to an increased frequency of movement, and are associated with left-right asymmetry defects. While ciliary ultrastructure is normal in most mutants, one of the mutant loci is essential for the formation of proper microtubule architecture in the axoneme of pronephric cilia. Mutants characterized in this study reveal intriguing genetic differences between subpopulations of embryonic cilia, and provide an opportunity to study several aspects of cilia structure and function.
Collapse
Affiliation(s)
- Chengtian Zhao
- Department of Ophthalmology, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA
| | | |
Collapse
|
127
|
Gourronc F, Ahmad N, Nedza N, Eggleston T, Rebagliati M. Nodal activity around Kupffer's vesicle depends on the T-box transcription factors notail and spadetail and on notch signaling. Dev Dyn 2007; 236:2131-46. [PMID: 17654709 DOI: 10.1002/dvdy.21249] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The node, or its zebrafish equivalent, Kupffers Vesicle (KV), is thought to generate laterality cues through cilia-dependent signaling. An interaction between Nodal ligands and Nodal antagonists around the node/KV is also required. Here we investigate whether loss of Brachyury/Notail or Tbx16/Spadetail disrupts the balance of Nodal ligands (Southpaw) and antagonists (Charon) around Kupffers Vesicle. Reduction of Spadetail or Notail disrupts expression of southpaw in the perinodal domains flanking Kupffers Vesicle. Similar to what was published for Notail, we find Spadetail is also required for expression of charon. We present evidence for the model that Notail has a direct role in regulating the charon promoter. In particular, a flanking genomic region with putative Notail binding sites can drive KV expression of a reporter in a Notail-dependent fashion. This region also contains motifs for CSL/RBP-J/Su(H). Consistent with this, we find charon expression is strongly Notch-dependent whereas perinodal southpaw expression is not.
Collapse
Affiliation(s)
- Francoise Gourronc
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | |
Collapse
|
128
|
|
129
|
Peeters H, Voz ML, Verschueren K, De Cat B, Pendeville H, Thienpont B, Schellens A, Belmont JW, David G, Van De Ven WJM, Fryns JP, Gewillig M, Huylebroeck D, Peers B, Devriendt K. Sesn1 is a novel gene for left–right asymmetry and mediating nodal signaling. Hum Mol Genet 2006; 15:3369-77. [PMID: 17038485 DOI: 10.1093/hmg/ddl413] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Remarkable progress has been made in understanding the molecular mechanisms underlying left-right asymmetry in vertebrate animal models but little is known on left-right axis formation in humans. Previously, we identified SESN1 (also known as PA26) as a candidate gene for heterotaxia by positional cloning of the breakpoint regions of a de novo translocation in a heterotaxia patient. In this study, we show by means of a zebrafish sesn1-knockdown model that Sesn1 is required for normal embryonic left-right determination. In this model, developmental defects and expression data of genes implicated in vertebrate left-right asymmetry indicate a role for Sesn1 in mediating Nodal signaling. In the lateral plate mesoderm, Nodal signaling plays a central role in left-right axis formation in vertebrates and is mediated by FoxH1 transcriptional induction. In line with this, we show that Sesn1 physically interacts with FoxH1 or a FoxH1-containing complex. Mutation analysis in a panel of 234 patients with isolated heterotaxia did not reveal mutations, indicating that these are only exceptional causes of human heterotaxia. In this study, we identify SESN1 as an indispensable gene for vertebrate left-right asymmetry and a new player in mediating Nodal signaling.
Collapse
Affiliation(s)
- Hilde Peeters
- Department of Human Genetics, Clinical Genetics Unit, University of Leuven, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Wang WD, Huang CJ, Lu YF, Hsin JP, Prabhakar VR, Cheng CF, Hwang SPL. Heart-targeted overexpression of Nip3a in zebrafish embryos causes abnormal heart development and cardiac dysfunction. Biochem Biophys Res Commun 2006; 347:979-87. [PMID: 16854375 DOI: 10.1016/j.bbrc.2006.06.174] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Accepted: 06/29/2006] [Indexed: 11/30/2022]
Abstract
We transiently expressed a proapoptotic protein, Nip3a, by a heart-specific BMP4 promoter in zebrafish embryos and generated two variants of embryos with abnormal heart phenotypes (A and B). Embryos with phenotype A heart defects showed hypoplastic or elongated ventricles, elongated or enlarged atriums with no normal cardiac looping resulting a significant longer SV-BA distance, and bradycardia at 48 h post-fertilization (hpf). Embryos with phenotype B heart defects showed an enlarged fluid-filled pericardium, severe hypoplasia, non-contracting ventricles, and elongated or enlarged slowly beating atriums with no normal looping. Histological sections further revealed the absence of a proper atrioventricular boundary and no endocardial cells lining this region in both 48- and 72-hpf Nip3a-overexpressing embryos, implicating defective endocardial cushion formation. These phenotypes are reminiscent of atrioventricular canal defects in humans. In addition, induced apoptotic myocardium cells were clustered in the presumptive atrioventricular boundary as well as in the adjacent ventricle and atrium of 48- and 72-hpf Nip3a-overexpressing embryos. Nip3a expression was readily detected in 80% epiboly BMP4-Nip3a-injected embryos, and defects in heart development were observed in both the linear heart tube and subsequent chamber formation stages. These results showed that myocyte apoptosis is a universal pathogenic factor for congenital heart failure using zebrafish as a model organism.
Collapse
Affiliation(s)
- Wen-Der Wang
- Vanderbilt University, LH529, 2215 Garland Avenue, Nashville, TN 37232-0275, USA
| | | | | | | | | | | | | |
Collapse
|
131
|
Toyoizumi R, Takeuchi S, Mogi K. Subtilisin-like proprotein convertase activity is necessary for left–right axis determination in Xenopus neurula embryos. Dev Genes Evol 2006; 216:607-22. [PMID: 16820955 DOI: 10.1007/s00427-006-0081-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2006] [Accepted: 04/21/2006] [Indexed: 11/24/2022]
Abstract
Signaling by members of TGF-beta superfamily requires the activity of a family of site-specific endopeptidases, known as Subtilisin-like proprotein convertases (SPCs), which cleave these ligands into mature, active forms. To explore the role of SPCs in lateral plate mesoderm (LPM) differentiation in Xenopus, two SPC inhibitors, decanoyl-Arg-Val-Lys-Arg-chloromethylketone (Dec-RVKR-CMK) and hexa-arginine, were injected into the left and right LPM of Xenopus neurulae. Left-side injection caused heart-specific left-right reversal, and this phenotype was rescued by co-injection of mature Nodal protein. In contrast, right-side injection caused left-right reversal of both the heart and gut. Tailbud embryos were less sensitive to SPC inhibitors than neurula embryos. Injection of inhibitors into either side of neurula embryos completely abolished expression of the left-LPM-specific genes, Xnr-1, antivin, and pitx2. SPC1 enzyme (Furin) was injected into the left or right LPM of mid-neurula embryos to determine the effect of enhancing SPC activity. Left-side injection of SPC1 did not cause a significant left-right reversal of the internal organs. However, right-side injection of SPC1 strongly induced the expression of Xnr-1 and pitx2 in the right LPM, and caused 100% left-right reversal of both the heart and gut. These results suggest that moderate level of SPC activity in the right LPM of the neurulae is necessary for proper left-right specification. Taken together, SPC enzymatic activity must be present in both LPMs for expression of the left-handed genes and left-right axis determination of the heart and gut in Xenopus embryos.
Collapse
Affiliation(s)
- Ryuji Toyoizumi
- Department of Biological Sciences, Faculty of Science, Kanagawa University, Tsuchiya 2946, Hiratsuka, Kanagawa, 259-1293, Japan
| | | | | |
Collapse
|
132
|
Niikura Y, Tabata Y, Tajima A, Inoue I, Arai KI, Watanabe S. Zebrafish Numb homologue: Phylogenetic evolution and involvement in regulation of left–right asymmetry. Mech Dev 2006; 123:407-14. [PMID: 16701985 DOI: 10.1016/j.mod.2006.03.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2005] [Revised: 03/16/2006] [Accepted: 03/16/2006] [Indexed: 11/21/2022]
Abstract
Numb and its homologue, Numb-like (Numbl), play important roles in mammalian development, but their role in embryonic development of lower vertebrates remains unknown. We cloned a zebrafish numb homologue (znumb) by searching database. znumb shows approximately 60% identity with mammalian Numb orthologs. Interstingly, znumb lacks two specific sequence motifs unique to Numbl orthologs. However, chromosomal localization of znumb gene revealed colinearity with genes located around mouse and human Numbl genes. Furthermore, multi-species comparisons of conserved phosphotyrosine-binding (PTB) domain sequences in Numb and Numbl proteins suggest that znumb is more closely related to Numbl than Numb. znumb mRNA was expressed in a wide variety of zebrafish adult tissues. Overexpression of znumb in embryos resulted in an absence, or reversal, of the normal leftward shift of the developing heart tube. Furthermore, no or bi-lateral transcripts of lefty2 were observed in znumb-expressing embryos, suggesting that the Notch signaling was essential for left-right field formation and maintenance in zebrafish, and that znumb perturbed this process through down-regulation of endogenous Notch signaling.
Collapse
Affiliation(s)
- Yuichi Niikura
- Department of Molecular and Developmental Biology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | | | |
Collapse
|
133
|
Cheng L, Guo XF, Yang XY, Chong M, Cheng J, Li G, Gui YH, Lu DR. Delta-sarcoglycan is necessary for early heart and muscle development in zebrafish. Biochem Biophys Res Commun 2006; 344:1290-9. [PMID: 16650823 DOI: 10.1016/j.bbrc.2006.03.234] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Accepted: 03/31/2006] [Indexed: 10/24/2022]
Abstract
Delta-sarcoglycan, one member of the sarcoglycan complex, is a very conservative muscle-specific protein exclusively expressed in the skeletal and cardiac muscles of vertebrates. Mutations in sarcoglycans are known to be involved in limb-girdle muscular dystrophy (LGMD) and dilated cardiomyopathy (DCM) in humans. To address the role of delta-sarcoglycan gene in zebrafish development, we have studied expression pattern of delta-sarcoglycan in zebrafish embryos and examined the role of delta-sarcoglycan in zebrafish embryonic development by morpholino. Strong expression of delta-sarcoglycan was observed in various muscles including those of the segment, heart, eye, jaw, pectoral fin, branchial arches, and swim bladder in zebrafish embryo. Delta-sarcoglycan was also expressed in midbrain and retina. Knockdown of delta-sarcoglycan resulted in severe abnormality in both the cardiac and skeletal muscles. Some severe ones displayed serious morphological abnormality such as hypoplastic head, linear heart, very weak heartbeats, and runtish trunk, all dead within 5 dpf. Whole-mount in situ hybridization analysis showed that adaxial cells and muscle pioneers were affected in delta-sarcoglycan knockdown embryos. In addition, absence of delta-sarcoglycan protein severely delayed the cardiac development and influenced the differentiation of cardiac muscle, and the cardiac left-right asymmetry was dramatically changed in morpholino-treated embryos. These data together suggest that delta-sarcoglycan plays an important role in early heart and muscle development.
Collapse
Affiliation(s)
- Lu Cheng
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, PR China
| | | | | | | | | | | | | | | |
Collapse
|
134
|
Carney SA, Prasch AL, Heideman W, Peterson RE. Understanding dioxin developmental toxicity using the zebrafish model. ACTA ACUST UNITED AC 2006; 76:7-18. [PMID: 16333842 DOI: 10.1002/bdra.20216] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Zebrafish (Danio rerio) have advantages over mammals as an animal model for investigating developmental toxicity. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (dioxin, TCDD), a persistent global contaminant, is the most comprehensively studied developmental toxicant in zebrafish. The hallmark responses of TCDD developmental toxicity manifested in zebrafish larvae include edema, anemia, hemorrhage, and ischemia associated with arrested growth and development. Heart and vasculature development and function are severely impaired, and jaw malformations occur secondary to inhibited chondrogenesis. The swim bladder fails to inflate, and the switch from embryonic to adult erythropoiesis is blocked. This profile of developmental toxicity responses, commonly referred to as "blue sac syndrome" because the edematous yolk sac appears blue, is observed in the larval form of all freshwater fish species exposed to TCDD at the embryonic stage of development. Components of the aryl hydrocarbon receptor/aryl hydrocarbon receptor nuclear translocator (AHR/ARNT) signaling pathway in zebrafish have been identified and functionally characterized. Their role in mediating TCDD toxicity has been determined using morpholinos to specifically knockdown the translation of zfAHR1, zfAHR2, zfARNT1, and zfARNT2 mRNAs, respectively, and a line of zfARNT2 null mutant zebrafish has provided further insight. These studies have shown that zfAHR2 and zfARNT1 mediate TCDD developmental toxicity. In addition, the growing use of molecular and genomic tools for research on zebrafish have led to advances in our understanding of the mechanism of TCDD developmental toxicity at the molecular level, including the recent finding that toxicity is not mediated by increased cytochrome P4501A (zfCYP1A) expression.
Collapse
Affiliation(s)
- Sara A Carney
- Molecular and Environmental Toxicology Center, University of Wisconsin, Madison, Wisconsin 53705-2222, USA
| | | | | | | |
Collapse
|
135
|
Wu KM, Huang CJ, Hwang SPL, Chang YS. Molecular cloning, expression and characterization of the zebrafish bram1 gene, a BMP receptor-associated molecule. J Biomed Sci 2006; 13:345-55. [PMID: 16456708 DOI: 10.1007/s11373-005-9066-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2005] [Accepted: 12/21/2005] [Indexed: 01/10/2023] Open
Abstract
We have identified a cDNA clone encoding BMP receptor-associated molecule 1 (BRAM1) from the zebrafish expressed sequence tag (EST) database. The 2606 bp full-length bram1 cDNA was cloned, and further confirmed by nucleotide sequencing. The zebrafish sequence encodes a protein of 195 amino acids with an evolutionarily conserved MYND domain, which displays approximately approximately 98% homology with human and mouse BRAM1, and approximately approximately 64% homology with C. elegans BRA-1 and BRA-2. The bram1 gene, composed of five exons and four introns, spans approximately approximately 14 kb on linkage group 14 of the zebrafish genome. RT-PCR and whole mount in situ hybridization analyses disclosed that zebrafish BRAM1 is a maternal factor. The protein interacts directly with zebrafish BMP Receptor type IA, as observed from GST-pull down and co-immunoprecipitation assays. Furthermore, cotransfection of zebrafish BRAM1 with the corresponding BMP receptor resulted in down-regulation of BMP-mediated signaling. Our results collectively indicate that BRAM1 plays a biological role during zebrafish development.
Collapse
Affiliation(s)
- Kang-mai Wu
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | | | | | | |
Collapse
|
136
|
Abstract
The basic vertebrate body plan of the zebrafish embryo is established in the first 10 hours of development. This period is characterized by the formation of the anterior-posterior and dorsal-ventral axes, the development of the three germ layers, the specification of organ progenitors, and the complex morphogenetic movements of cells. During the past 10 years a combination of genetic, embryological, and molecular analyses has provided detailed insights into the mechanisms underlying this process. Maternal determinants control the expression of transcription factors and the location of signaling centers that pattern the blastula and gastrula. Bmp, Nodal, FGF, canonical Wnt, and retinoic acid signals generate positional information that leads to the restricted expression of transcription factors that control cell type specification. Noncanonical Wnt signaling is required for the morphogenetic movements during gastrulation. We review how the coordinated interplay of these molecules determines the fate and movement of embryonic cells.
Collapse
Affiliation(s)
- Alexander F Schier
- Developmental Genetics Program, Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York, NY 10016-6497, USA.
| | | |
Collapse
|
137
|
Ramsdell AF. Left–right asymmetry and congenital cardiac defects: Getting to the heart of the matter in vertebrate left–right axis determination. Dev Biol 2005; 288:1-20. [PMID: 16289136 DOI: 10.1016/j.ydbio.2005.07.038] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Revised: 07/21/2005] [Accepted: 07/26/2005] [Indexed: 01/20/2023]
Abstract
Cellular and molecular left-right differences that are present in the mesodermal heart fields suggest that the heart is lateralized from its inception. Left-right asymmetry persists as the heart fields coalesce to form the primary heart tube, and overt, morphological asymmetry first becomes evident when the heart tube undergoes looping morphogenesis. Thereafter, chamber formation, differentiation of the inflow and outflow tracts, and position of the heart relative to the midline are additional features of heart development that exhibit left-right differences. Observations made in human clinical studies and in animal models of laterality disease suggest that all of these features of cardiac development are influenced by the embryonic left-right body axis. When errors in left-right axis determination happen, they almost always are associated with complex congenital heart malformations. The purpose of this review is to highlight what is presently known about cardiac development and upstream processes of left-right axis determination, and to consider how perturbation of the left-right body plan might ultimately result in particular types of congenital heart defects.
Collapse
Affiliation(s)
- Ann F Ramsdell
- Department of Cell and Developmental Biology and Anatomy, School of Medicine and Program in Women's Studies, College of Arts and Sciences, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
138
|
Bisgrove BW, Snarr BS, Emrazian A, Yost HJ. Polaris and Polycystin-2 in dorsal forerunner cells and Kupffer's vesicle are required for specification of the zebrafish left-right axis. Dev Biol 2005; 287:274-88. [PMID: 16216239 DOI: 10.1016/j.ydbio.2005.08.047] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2005] [Revised: 08/23/2005] [Accepted: 08/26/2005] [Indexed: 11/15/2022]
Abstract
Recently, it has become clear that motile cilia play a central role in initiating a left-sided signaling cascade important in establishing the LR axis during mouse and zebrafish embryogenesis. Two genes proposed to be important in this cilia-mediated signaling cascade are polaris and polycystin-2 (pkd2). Polaris is involved in ciliary assembly, while Pkd2 is proposed to function as a Ca(2+)-permeable cation channel. We have cloned zebrafish homologues of polaris and pkd2. Both genes are expressed in dorsal forerunner cells (DFCs) from gastrulation to early somite stages when these cells form a ciliated Kupffer's vesicle (KV). Morpholino-mediated knockdown of Polaris or Pkd2 in zebrafish results in misexpression of left-side-specific genes, including southpaw, lefty1 and lefty2, and randomization of heart and gut looping. By targeting morpholinos to DFCs/KV, we show that polaris and pkd2 are required in DFCs/KV for normal LR development. Polaris morphants have defects in KV cilia, suggesting that the laterality phenotype is due to problems in cilia function per se. We further show that expression of polaris and pkd2 is dependent on the T-box transcription factors no tail and spadetail, respectively, suggesting that these genes have a previously unrecognized role in regulating ciliary structure and function. Our data suggest that the functions of polaris and pkd2 in LR patterning are conserved between zebrafish and mice and that Kupffer's vesicle functions as a ciliated organ of asymmetry.
Collapse
Affiliation(s)
- Brent W Bisgrove
- Huntsman Cancer Institute Center for Children, Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | | |
Collapse
|
139
|
Albertson RC, Yelick PC. Roles for fgf8 signaling in left-right patterning of the visceral organs and craniofacial skeleton. Dev Biol 2005; 283:310-21. [PMID: 15932752 DOI: 10.1016/j.ydbio.2005.04.025] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2004] [Revised: 04/19/2005] [Accepted: 04/20/2005] [Indexed: 12/01/2022]
Abstract
Laterality is fundamental to the vertebrate body plan. Here, we investigate the roles of fgf8 signaling in LR patterning of the zebrafish embryo. We find that fgf8 is required for proper asymmetric development of the brain, heart and gut. When fgf8 is absent, nodal signaling is randomized in the lateral plate mesoderm, leading to aberrant LR orientation of the brain and visceral organs. We also show that fgf8 is necessary for proper symmetric development of the pharyngeal skeleton. Attenuated fgf8 signaling results in consistently biased LR asymmetric development of the pharyngeal arches and craniofacial skeleton. Approximately 1/3 of zebrafish ace/fgf8 mutants are missing Kupffer's vesicle (KV), a ciliated structure similar to Hensen's node. We correlate fgf8 deficient laterality defects in the brain and viscera with the absence of KV, supporting a role for KV in proper LR patterning of these structures. Strikingly, we also correlate asymmetric craniofacial development in ace/fgf8 mutants with the presence of KV, suggesting roles for KV in lateralization of the pharyngeal skeleton when fgf8 is absent. These data provide new insights into vertebrate laterality and offer the zebrafish ace/fgf8 mutant as a novel molecular tool to investigate tissue-specific molecular laterality mechanisms.
Collapse
Affiliation(s)
- R Craig Albertson
- Department of Cytokine Biology, The Forsyth Institute, Harvard School of Dental Medicine, Boston, MA 02115, USA.
| | | |
Collapse
|
140
|
Sarmah B, Latimer AJ, Appel B, Wente SR. Inositol polyphosphates regulate zebrafish left-right asymmetry. Dev Cell 2005; 9:133-45. [PMID: 15992547 DOI: 10.1016/j.devcel.2005.05.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2004] [Revised: 03/30/2005] [Accepted: 05/03/2005] [Indexed: 01/24/2023]
Abstract
Vertebrate body plans have a conserved left-right (LR) asymmetry manifested in the position and anatomy of the heart, visceral organs, and brain. Recent studies have suggested that LR asymmetry is established by asymmetric Ca2+ signaling resulting from cilia-driven flow of extracellular fluid across the node. We report here that inositol 1,3,4,5,6-pentakisphosphate 2-kinase (Ipk1), which generates inositol hexakisphosphate, is critical for normal LR axis determination in zebrafish. Zebrafish embryos express ipk1 symmetrically during gastrulation and early segmentation. ipk1 knockdown by antisense morpholino oligonucleotide injection randomized LR-specific gene expression and organ placement, effects that were associated with reduced intracellular Ca2+ flux in cells surrounding the ciliated Kupffer's vesicle, a structure analogous to the mouse node. Our data suggest that the pathway for inositol hexakisphosphate production is a key regulator of asymmetric Ca(2+) flux during LR specification.
Collapse
Affiliation(s)
- Bhaskarjyoti Sarmah
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, U-3209 MRBIII, 465 21(st) Avenue South, Nashville, Tennessee 37232, USA
| | | | | | | |
Collapse
|
141
|
Levin M. Left-right asymmetry in embryonic development: a comprehensive review. Mech Dev 2005; 122:3-25. [PMID: 15582774 DOI: 10.1016/j.mod.2004.08.006] [Citation(s) in RCA: 336] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2004] [Revised: 08/22/2004] [Accepted: 08/23/2004] [Indexed: 12/17/2022]
Abstract
Embryonic morphogenesis occurs along three orthogonal axes. While the patterning of the anterior-posterior and dorsal-ventral axes has been increasingly well characterized, the left-right (LR) axis has only recently begun to be understood at the molecular level. The mechanisms which ensure invariant LR asymmetry of the heart, viscera, and brain represent a thread connecting biomolecular chirality to human cognition, along the way involving fundamental aspects of cell biology, biophysics, and evolutionary biology. An understanding of LR asymmetry is important not only for basic science, but also for the biomedicine of a wide range of birth defects and human genetic syndromes. This review summarizes the current knowledge regarding LR patterning in a number of vertebrate and invertebrate species, discusses several poorly understood but important phenomena, and highlights some important open questions about the evolutionary origin and conservation of mechanisms underlying embryonic asymmetry.
Collapse
Affiliation(s)
- Michael Levin
- Cytokine Biology Department, The Forsyth Institute, Boston, MA 02115, USA.
| |
Collapse
|
142
|
Raya A, Izpisua Belmonte JC. Unveiling the establishment of left-right asymmetry in the chick embryo. Mech Dev 2005; 121:1043-54. [PMID: 15296970 DOI: 10.1016/j.mod.2004.05.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2004] [Revised: 05/11/2004] [Accepted: 05/11/2004] [Indexed: 11/17/2022]
Abstract
Vertebrates display striking left-right asymmetries in the placement of internal organs, which are concealed by a seemingly bilaterally symmetric body plan. The establishment of asymmetries about the left-right axis occurs early during embryo development and requires the concerted and sequential action of several epigenetic, genetic and cellular mechanisms. Experiments in the chick embryo model have contributed crucially to our current understanding of such mechanisms and are reviewed here. Particular emphasis is given to the elucidation of a genetic network that conveys left-right information from Hensen's node to the organ primordia, characterized to a significant degree of detail in the chick embryo. We also point out a number of early and late events in the determination of left-right asymmetries that are currently poorly understood and for whose study the chick embryo model presents several advantages. We anticipate that the availability of the chick genome sequence will be combined with multidisciplinary approaches from experimental embryology, biophysics, live-cell imaging, and mathematical modeling to boost up our knowledge of left-right organ asymmetry in the near future.
Collapse
Affiliation(s)
- Angel Raya
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd., La Jolla, CA 92037, USA.
| | | |
Collapse
|
143
|
Cain JE, Nion T, Jeulin D, Bertram JF. Exogenous BMP-4 amplifies asymmetric ureteric branching in the developing mouse kidney in vitro. Kidney Int 2005; 67:420-31. [PMID: 15673289 DOI: 10.1111/j.1523-1755.2005.67098.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Exogenous bone morphogenetic protein 4 (BMP-4) has been reported to inhibit ureteric branching morphogenesis and regulate the anterior-posterior axis of the developing kidney in vitro. We examined the role of BMP-4 on ureteric branching in vitro using three-dimensional image analysis software and statistical models. Additionally, in vivo ureteric branching was analyzed and the effect of reduced levels of BMP-4 in vivo on nephron number was examined. METHODS Embryonic day 12.5 (E12.5) Balb/c mouse metanephroi cultured for 48 hours with or without 260 ng/mL recombinant human BMP-4 (rhBMP-4) were immunostained to identify the ureteric epithelium which was quantified in three dimensions. In vivo ureteric branching morphogenesis in Hoxb7/GFP mice was also analyzed. The effect of reduced in vivo levels of BMP-4 on nephron number was examined in BMP-4(+/-) and wild-type mice using an unbiased stereologic method. RESULTS Qualitative and quantitative studies identified a decrease in total ureteric length and branch number in wild-type mouse metanephroi cultured in the presence of BMP-4. A marked anterior-posterior asymmetry in both ureteric length and branch number was observed in BMP-4-treated metanephroi. A similar asymmetry was revealed in control metanephroi, both in vitro and in vivo. This asymmetry is the result of reduced ureteric branching morphogenesis in the posterior region of the kidney and appears to be due to slower growth rather than the adoption of an alternate branching pattern. Reduction of endogenous BMP-4 in BMP-4(+/-) mice resulted in no change in total nephron number in macroscopically normal kidneys. CONCLUSION These results suggest that BMP-4 plays an important role in the regulation of ureteric branching morphogenesis, and that excess BMP-4 in vitro can amplify the existing asymmetry of the normal mouse kidney.
Collapse
Affiliation(s)
- Jason E Cain
- Department of Anatomy and Cell Biology, School of Biomedical Sciences, Monash University, Victoria, Australia
| | | | | | | |
Collapse
|
144
|
Leung AYH, Mendenhall EM, Kwan TTF, Liang R, Eckfeldt C, Chen E, Hammerschmidt M, Grindley S, Ekker SC, Verfaillie CM. Characterization of expanded intermediate cell mass in zebrafish chordin morphant embryos. Dev Biol 2005; 277:235-54. [PMID: 15572152 DOI: 10.1016/j.ydbio.2004.09.032] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2004] [Revised: 08/30/2004] [Accepted: 09/24/2004] [Indexed: 11/30/2022]
Abstract
We investigated the mechanisms of intermediate cell mass (ICM) expansion in zebrafish chordin (Chd) morphant embryos and examined the role of BMPs in relation to this phenotype. At 24 h post-fertilization (hpf), the expanded ICM of embryos injected with chd morpholino (MO) (ChdMO embryos) contained a monotonous population of hematopoietic progenitors. In situ hybridization showed that hematopoietic transcription factors were ubiquitously expressed in the ICM whereas vascular gene expression was confined to the periphery. BMP4 (but not BMP2b or 7) and smad5 mRNA were ectopically expressed in the ChdMO ICM. At 48 hpf, monocytic cells were evident in both the ICM and circulation of ChdMO but not WT embryos. While injection of BMP4 MO had no effect on WT hematopoiesis, co-injecting BMP4 with chd MOs significantly reduced ICM expansion. Microarray studies revealed a number of genes that were differentially expressed in ChdMO and WT embryos and their roles in hematopoiesis has yet to be determined. In conclusion, the expanded ICM in ChdMO embryos represented an expansion of embryonic hematopoiesis that was skewed towards a monocytic lineage. BMP4, but not BMP2b or 7, was involved in this process. The results provide ground for further research into the mechanisms of embryonic hematopoietic cell expansion.
Collapse
Affiliation(s)
- Anskar Y H Leung
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Cooke J. Developmental mechanism and evolutionary origin of vertebrate left/right asymmetries. Biol Rev Camb Philos Soc 2004; 79:377-407. [PMID: 15191229 DOI: 10.1017/s1464793103006298] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The systematically 'handed', or directionally asymmetrical way in which the major viscera are packed within the vertebrate body is known as situs. Other less obvious vertebrate lateralisations concern cognitive neural function, and include the human phenomena of hand-use preference and language-associated cognitive partitioning. An overview, rather than an exhaustive scholarly review, is given of recent advances in molecular understanding of the mechanism that ensures normal development of 'correct' situs. While the asymmetry itself and its left/right direction are clearly vertebrate-conserved characters, data available from various embryo types are compared in order to assess the likelihood that the developmental mechanism is evolutionarily conserved in its entirety. A conserved post-gastrular 'phylotypic' stage, with left- and right-specific cascades of key, orthologous gene expressions, clearly exists. It now seems probable that earlier steps, in which symmetry-breaking information is reliably transduced to trigger these cascades on the correct sides, are also conserved at depth although it remains unclear exactly how these steps operate. Earlier data indicated that the initiation of symmetry-breaking had been transformed, among the different vertebrate classes, as drastically as has the anatomy of pre-gastrular development itself, but it now seems more likely that this apparent diversity is deceptive. Ideas concerning the functional advantages to the vertebrate lifestyle of a systematically asymmetrical visceral packing arrangement, while untestable, are accepted because they form a plausible adaptationist 'just-so' story. Nevertheless, two contrasting beliefs are possible about the evolutionary origins of situs. Major recent advances in analysis of its developmental mechanism are largely due not to zoologists, comparative anatomists or evolutionary systematists, but to molecular geneticists, and these workers have generally assumed that the asymmetry is an evolutionary novelty imposed on a true bilateral symmetry, at or close to the origin of the vertebrate clade. A major purpose of this review is to advocate an alternative view, on the grounds of comparative anatomy and molecular systematics together with the comparative study of expressions of orthologous genes in different forms. This view is that situs represents a co-optation of a pre-existing, evolutionarily ancient non-bilaterality of the adult form in a vertebrate ancestor. Viewed this way, vertebrate or chordate origins are best understood as the novel imposition of an adaptively bilateral locomotory-skeletal-neural system, around a retained non-symmetrical 'visceral' animal. One component of neuro-anatomical asymmetry, the habenular/parapineal one that originates in the diencephalon, has recently been found (in teleosts) to be initiated from the same 'phylotypic' gene cascade that controls situs development. But the function of this particular diencephalic asymmetry is currently unclear. Other left-right partitionings of brain function, including the much more recently evolved, cerebral cortically located one associated with human language and hand-use, may be controlled entirely separately from situs even though their directionality has a particular relation to it in a majority of individuals. Finally, possible relationships are discussed between the vertebrate directional asymmetries and those that occur sporadically among protostome bilaterian forms. These may have very different evolutionary and molecular bases, such that there may have been constraints, in protostome evolution, upon any exploitation of left and right for complex organismic, and particularly cognitive neural function.
Collapse
Affiliation(s)
- Jonathan Cooke
- Department of Zoology and Museum of Comparative Zoology, University of Cambridge, Downing Street, Cambridge, UK.
| |
Collapse
|
146
|
Shentu H, Wen HJ, Her GM, Huang CJ, Wu JL, Hwang SPL. Proximal upstream region of zebrafish bone morphogenetic protein 4 promoter directs heart expression of green fluorescent protein. Genesis 2004; 37:103-12. [PMID: 14595833 DOI: 10.1002/gene.10240] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We examined the activity of the bone morphogenetic protein 4 (BMP4) promoter in zebrafish embryos via transient and stable transgenic expression analyses in order to obtain a better understanding of the regulation of BMP4 tissue-specific expression. Transient expression studies showed that the 9.0-kb BMP4 promoter/upstream region drove green fluorescent protein (GFP) expression mainly in the heart. Deletion analyses indicated the existence of multiple regulatory elements in the 7.5-kb BMP4 promoter/proximal upstream region. In addition, a coinjection experiment further demonstrated the 2.4-kb Bgl II-Hind III DNA region contains major positive regulatory elements. In addition, stable transgenic lines were established to further confirm the heart-specificity of this segment in BMP4 promoter. The results showed that GFP was mainly localized in the myocardium of developing ventricles of 48-hpf (hours postfertilization), 72-hpf, and 100-hpf transgenic F(1) embryos. Together, these results indicate that the 7.5-kb BMP4 promoter/proximal upstream region specifically contains regulatory elements for BMP4 expression in the heart, while regulatory elements for other endogenous BMP4-expressing tissues may reside in more distal regions and/or in introns.
Collapse
Affiliation(s)
- Hsuan Shentu
- Institute of Zoology, Academia Sinica, Nankang, Taipei, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
147
|
Amack JD, Yost HJ. The T box transcription factor no tail in ciliated cells controls zebrafish left-right asymmetry. Curr Biol 2004; 14:685-90. [PMID: 15084283 DOI: 10.1016/j.cub.2004.04.002] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2004] [Revised: 02/19/2004] [Accepted: 02/20/2004] [Indexed: 12/21/2022]
Abstract
The heart, brain, and gut develop essential left-right (LR) asymmetries. Specialized groups of ciliated cells have been implicated in LR patterning in mouse, chick, frog, and zebrafish embryos. In zebrafish, these ciliated cells are found in Kupffer's vesicle (KV) and are progeny of dorsal forerunner cells (DFCs). However, there is no direct evidence in any vertebrate that the genes involved in LR development are specifically required in ciliated cells. By using a novel method in zebrafish, we knocked down the function of no tail (ntl, homologous to mouse brachyury) in DFCs without affecting its expression in other cells in the embryo. We find that the Ntl transcription factor functions cell autonomously in DFCs to regulate KV morphogenesis and LR determination. This is the first evidence that loss-of-gene function exclusively in ciliated cells perturbs vertebrate LR patterning. Our results demonstrate that the ciliated KV, a transient embryonic organ of previously unknown function, is involved in the earliest known step in zebrafish LR development, suggesting that a ciliary-based mechanism establishes the LR axis in all vertebrate embryos.
Collapse
Affiliation(s)
- Jeffrey D Amack
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | | |
Collapse
|
148
|
Abstract
Members of the transforming growth factor beta (TGF-beta) family of multifunctional peptides are involved in almost every aspect of development. Model systems, ranging from genetically tractable invertebrates to genetically engineered mice, have been used to determine the mechanisms of TGF-beta signaling in normal development and in pathological situations. Furthermore, mutations in genes for the ligands, receptors, extracellular modulators, and intracellular signaling molecules have been associated with several human disorders. The most common are those associated with the development and maintenance of the skeletal system and axial patterning. This review focuses on the mechanisms of TGF-beta signaling with special emphasis on the molecules involved in human disorders of patterning and skeletal development.
Collapse
Affiliation(s)
- Rosa Serra
- Department of Cell Biology, University of Alabama, Birmingham 35294-0005, USA.
| | | |
Collapse
|
149
|
Affiliation(s)
- Le A Trinh
- Department of Biochemistry and Biophysics, Programs in Developmental Biology, Genetics, and Human Genetics, University of California, San Francisco, California 94143-0448, USA
| | | |
Collapse
|
150
|
Bisgrove BW, Morelli SH, Yost HJ. Genetics of human laterality disorders: insights from vertebrate model systems. Annu Rev Genomics Hum Genet 2003; 4:1-32. [PMID: 12730129 DOI: 10.1146/annurev.genom.4.070802.110428] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Many internal organs in the vertebrate body are asymmetrically oriented along the left-right (L-R) body axis. Organ asymmetry and some components of the molecular signaling pathways that direct L-R development are highly conserved among vertebrate species. Although individuals with full reversal of organ L-R asymmetry (situs inversus totalis) are healthy, significant morbidity and mortality is associated with perturbations in laterality that result in discordant orientation of organ systems and complex congenital heart defects. In humans and other vertebrates, genetic alterations of L-R signaling pathways can result in a wide spectrum of laterality defects. In this review we categorize laterality defects in humans, mice, and zebrafish into specific classes based on altered patterns of asymmetric gene expression, organ situs defects, and midline phenotypes. We suggest that this classification system provides a conceptual framework to help consolidate the disparate laterality phenotypes reported in humans and vertebrate model organisms, thereby refining our understanding of the genetics of L-R development. This approach helps suggest candidate genes and genetic pathways that might be perturbed in human laterality disorders and improves diagnostic criteria.
Collapse
Affiliation(s)
- Brent W Bisgrove
- Huntsman Cancer Institute, Center for Children, Department of Oncological Sciences, University of Utah, Salt Lake City, Utah 84112, USA.
| | | | | |
Collapse
|