101
|
ZEB1 imposes a temporary stage-dependent inhibition of muscle gene expression and differentiation via CtBP-mediated transcriptional repression. Mol Cell Biol 2013; 33:1368-82. [PMID: 23339872 DOI: 10.1128/mcb.01259-12] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Skeletal muscle development is orchestrated by the myogenic regulatory factor MyoD, whose activity is blocked in myoblasts by proteins preventing its nuclear translocation and/or binding to G/C-centered E-boxes in target genes. Recent evidence indicates that muscle gene expression is also regulated at the cis level by differential affinity for DNA between MyoD and other E-box binding proteins during myogenesis. MyoD binds to G/C-centered E-boxes, enriched in muscle differentiation genes, in myotubes but not in myoblasts. Here, we used cell-based and in vivo Drosophila, Xenopus laevis, and mouse models to show that ZEB1, a G/C-centered E-box binding transcriptional repressor, imposes a temporary stage-dependent inhibition of muscle gene expression and differentiation via CtBP-mediated transcriptional repression. We found that, contrary to MyoD, ZEB1 binds to G/C-centered E-boxes in muscle differentiation genes at the myoblast stage but not in myotubes. Its knockdown results in precocious expression of muscle differentiation genes and acceleration of myotube formation. Inhibition of muscle genes by ZEB1 occurs via transcriptional repression and involves recruitment of the CtBP corepressor. Lastly, we show that the pattern of gene expression associated with muscle differentiation is accelerated in ZEB1(-/-) mouse embryos. These results set ZEB1 as an important regulator of the temporal pattern of gene expression controlling muscle differentiation.
Collapse
|
102
|
Sánchez-Tilló E, de Barrios O, Siles L, Amendola PG, Darling DS, Cuatrecasas M, Castells A, Postigo A. ZEB1 Promotes invasiveness of colorectal carcinoma cells through the opposing regulation of uPA and PAI-1. Clin Cancer Res 2013; 19:1071-82. [PMID: 23340304 DOI: 10.1158/1078-0432.ccr-12-2675] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Carcinoma cells enhance their invasive capacity through dedifferentiation and dissolution of intercellular adhesions. A key activator of this process is the ZEB1 transcription factor, which is induced in invading cancer cells by canonical Wnt signaling (β-catenin/TCF4). Tumor invasiveness also entails proteolytic remodeling of the peritumoral stroma. This study aimed to investigate the potential regulation by ZEB1 of the plasminogen proteolytic system constituted by the urokinase plasminogen activator (uPA), and its inhibitor, plasminogen activator inhibitor-1 (PAI-1). EXPERIMENTAL DESIGN Through multiple experimental approaches, colorectal carcinoma (CRC) cell lines and samples from human primary CRC and ZEB1 (-/-) mice were used to examine ZEB1-mediated regulation of uPA and PAI-1 at the protein, mRNA, and transcriptional level. RESULTS ZEB1 regulates uPA and PAI-1 in opposite directions: induces uPA and inhibits PAI-1. In vivo expression of uPA depends on ZEB1 as it is severely reduced in the developing intestine of ZEB1 null (-/-) mice. Optimal induction of uPA by Wnt signaling requires ZEB1 expression. ZEB1 binds to the uPA promoter and activates its transcription through a mechanism implicating the histone acetyltransferase p300. In contrast, inhibition of PAI-1 by ZEB1 does not involve transcriptional repression but rather downregulation of mRNA stability. ZEB1-mediated tumor cell migration and invasion depend on its induction of uPA. ZEB1 coexpresses with uPA in cancer cells at the invasive front of CRCs. CONCLUSIONS ZEB1 promotes tumor invasiveness not only via induction in cancer cells of a motile dedifferentiated phenotype but also by differential regulation of genes involved in stroma remodeling.
Collapse
Affiliation(s)
- Ester Sánchez-Tilló
- Group of Transcriptional Regulation of Gene Expression, Department of Oncology and Hematology, IDIBAPS, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
103
|
Guo S, Li Y, Tong Q, Gu F, Zhu T, Fu L, Yang S. δEF1 down-regulates ER-α expression and confers tamoxifen resistance in breast cancer. PLoS One 2012; 7:e52380. [PMID: 23285017 PMCID: PMC3528679 DOI: 10.1371/journal.pone.0052380] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 11/12/2012] [Indexed: 12/26/2022] Open
Abstract
Resistance to tamoxifen therapy represents a major barrier to the successful treatment of breast cancer, where a loss of or reduced ER-α level is considered a primary mechanism. Understanding how ER-α expression is regulated would provide insights into new intervention points to overcome tamoxifen resistance. In this study, we report that the expression of δEF1 is up-regulated by 17β-estradiol (E2) in MCF-7 cells in an ER-α-dependent manner, through either PI3K or NF-κB pathway. Ectopic expression of δEF1 in turn repressed ER-α transcription by binding to the E(2)-box on the ER-α promoter. At the tissue level of breast cancer, there is a strong and inverse correlation between the expression levels of δEF1 and ER-α. In MCF-7 cells, an elevated expression of δEF1 made the cells less sensitive to tamoxifen treatment, whereas overexpression of ER-α compromised the effects of δEF1 and restored the sensitivity. Also, depletion of δEF1 by RNA interference in MDA-MB-231 cells restored the expression of ER-α and tamoxifen sensitivity. In conclusion, we have identified an important role of δEF1 in the development of tamoxifen resistance in breast cancer. Inhibiting δEF1 to restore ER-α expression might represent a potential therapeutic strategy for overcoming endocrine resistance in breast cancer.
Collapse
Affiliation(s)
- Shaocong Guo
- Medical College of Nankai University, Tianjin, China
| | - Yaqing Li
- Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Qi Tong
- Medical College of Nankai University, Tianjin, China
| | - Feng Gu
- Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Tianhui Zhu
- Medical College of Nankai University, Tianjin, China
| | - Li Fu
- Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Shuang Yang
- Medical College of Nankai University, Tianjin, China
- * E-mail:
| |
Collapse
|
104
|
Gheldof A, Hulpiau P, van Roy F, De Craene B, Berx G. Evolutionary functional analysis and molecular regulation of the ZEB transcription factors. Cell Mol Life Sci 2012; 69:2527-41. [PMID: 22349261 PMCID: PMC11115101 DOI: 10.1007/s00018-012-0935-3] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 01/23/2012] [Accepted: 01/26/2012] [Indexed: 02/07/2023]
Abstract
ZEB1 and ZEB2, which are members of the ZEB family of transcription factors, play a pivotal role in the development of the vertebrate embryo. However, recent evidence shows that both proteins can also drive the process of epithelial-mesenchymal transition during malignant cancer progression. The understanding of how both ZEBs act as transcription factors opens up new possibilities for future treatment of advanced carcinomas. This review gives insight into the molecular mechanisms that form the basis of the multitude of cellular processes controlled by both ZEB factors. By using an evolutionary approach, we analyzed how the specific organization of the different domains and regulatory sites in ZEB1 and ZEB2 came into existence. On the basis of this analysis, a detailed overview is provided of the different cofactors and post-translational mechanisms that are associated with ZEB protein functionality.
Collapse
Affiliation(s)
- Alexander Gheldof
- Unit of Molecular and Cellular Oncology, Department for Molecular Biomedical Research, VIB, Technologiepark 927, 9052 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Paco Hulpiau
- Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Frans van Roy
- Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
- Molecular Cell Biology Unit, Department for Molecular Biomedical Research, VIB, 9052 Ghent, Belgium
| | - Bram De Craene
- Unit of Molecular and Cellular Oncology, Department for Molecular Biomedical Research, VIB, Technologiepark 927, 9052 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Geert Berx
- Unit of Molecular and Cellular Oncology, Department for Molecular Biomedical Research, VIB, Technologiepark 927, 9052 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| |
Collapse
|
105
|
A forward genetic screen reveals roles for Nfkbid, Zeb1, and Ruvbl2 in humoral immunity. Proc Natl Acad Sci U S A 2012; 109:12286-93. [PMID: 22761313 DOI: 10.1073/pnas.1209134109] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Using chemical germ-line mutagenesis, we screened mice for defects in the humoral immune response to a type II T-independent immunogen and an experimental alphavirus vector. A total of 26 mutations that impair humoral immunity were recovered, and 19 of these mutations have been positionally cloned. Among the phenovariants were bumble, cellophane, and Worker ascribed to mutations in Nfkbid, Zeb1, and Ruvbl2, respectively. We show that IκBNS, the nuclear IκB-like protein encoded by Nfkbid, is required for the development of marginal zone and peritoneal B-1 B cells and additionally required for extrafollicular antibody responses to T-independent and -dependent immunogens. Zeb1 is also required for marginal zone and peritoneal B-1 B-cell development as well as T-cell development, germinal center formation, and memory B-cell responses. Finally, Ruvbl2 is required for T-cell development and maximal T-dependent antibody responses. Collectively, the mutations that we identified give us insight into the points at which disruption of an antibody response can occur. All of the mutations identified to date directly affect lymphocyte development or function; none have an exclusive effect on cells of the innate immune system.
Collapse
|
106
|
Shin JO, Kim EJ, Cho KW, Nakagawa E, Kwon HJ, Cho SW, Jung HS. BMP4 signaling mediates Zeb family in developing mouse tooth. Histochem Cell Biol 2012; 137:791-800. [PMID: 22350174 DOI: 10.1007/s00418-012-0930-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2012] [Indexed: 11/27/2022]
Abstract
Tooth morphogenesis is regulated by sequential and reciprocal interaction between oral epithelium and neural-crest-derived ectomesenchyme. The interaction is controlled by various signal molecules such as bone morphogenetic protein (BMP), Hedgehog, fibroblast growth factor (FGF), and Wnt. Zeb family is known as a transcription factor, which is essential for neural development and neural-crest-derived tissues, whereas the role of the Zeb family in tooth development remains unclear. Therefore, this study aimed to investigate the expression profiles of Zeb1 and Zeb2 during craniofacial development focusing on mesenchyme of palate, hair follicle, and tooth germ from E12.5 to E16.5. In addition, we examined the interaction between Zeb family and BMP4 during tooth development. Both Zeb1 and Zeb2 were expressed at mesenchyme of the palate, hair follicle, and tooth germ throughout the stages. In the case of tooth germ at the cap stage, the expression of Zeb1 and Zeb2 was lost in epithelium-separated dental mesenchyme. However, the expression of Zeb1 and Zeb2 in the dental mesenchyme was recovered by Bmp4 signaling via BMP4-soaked bead and tissue recombination. Our results suggest that Zeb1 and Zeb2, which were mediated by BMP4, play an important role in neural-crest-derived craniofacial organ morphogenesis, such as tooth development.
Collapse
Affiliation(s)
- Jeong-Oh Shin
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Research Center for Orofacial Hard Tissue Regeneration, Brain Korea 21 Project, Oral Science Research Center, College of Dentistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Korea
| | | | | | | | | | | | | |
Collapse
|
107
|
miR-200b regulates cell migration via Zeb family during mouse palate development. Histochem Cell Biol 2012; 137:459-70. [PMID: 22261924 DOI: 10.1007/s00418-012-0915-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2012] [Indexed: 01/07/2023]
Abstract
Palate development requires coordinating proper cellular and molecular events in palatogenesis, including the epithelial-mesenchymal transition (EMT), apoptosis, cell proliferation, and cell migration. Zeb1 and Zeb2 regulate epithelial cadherin (E-cadherin) and EMT during organogenesis. While microRNA 200b (miR-200b) is known to be a negative regulator of Zeb1 and Zeb2 in cancer progression, its regulatory effects on Zeb1 and Zeb2 in palatogenesis have not yet been clarified. The aim of this study is to investigate the relationship between the regulators of palatal development, specifically, miR-200b and the Zeb family. Expression of both Zeb1 and Zeb2 was detected in the mesenchyme of the mouse palate, while miR-200b was expressed in the medial edge epithelium. After contact with the palatal shelves, miR-200b was expressed in the palatal epithelial lining and epithelial island around the fusion region but not in the palatal mesenchyme. The function of miR-200b was examined by overexpression via a lentiviral vector in the palatal shelves. Ectopic expression of miR-200b resulted in suppression of the Zeb family, upregulation of E-cadherin, and changes in cell migration and palatal fusion. These results suggest that miR-200b plays crucial roles in cell migration and palatal fusion by regulating Zeb1 and Zeb2 as a noncoding RNA during palate development.
Collapse
|
108
|
Kurima K, Hertzano R, Gavrilova O, Monahan K, Shpargel KB, Nadaraja G, Kawashima Y, Lee KY, Ito T, Higashi Y, Eisenman DJ, Strome SE, Griffith AJ. A noncoding point mutation of Zeb1 causes multiple developmental malformations and obesity in Twirler mice. PLoS Genet 2011; 7:e1002307. [PMID: 21980308 PMCID: PMC3183090 DOI: 10.1371/journal.pgen.1002307] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 07/30/2011] [Indexed: 01/05/2023] Open
Abstract
Heterozygous Twirler (Tw) mice develop obesity and circling behavior associated with malformations of the inner ear, whereas homozygous Tw mice have cleft palate and die shortly after birth. Zeb1 is a zinc finger protein that contributes to mesenchymal cell fate by repression of genes whose expression defines epithelial cell identity. This developmental pathway is disrupted in inner ears of Tw/Tw mice. The purpose of our study was to comprehensively characterize the Twirler phenotype and to identify the causative mutation. The Tw/+ inner ear phenotype includes irregularities of the semicircular canals, abnormal utricular otoconia, a shortened cochlear duct, and hearing loss, whereas Tw/Tw ears are severely malformed with barely recognizable anatomy. Tw/+ mice have obesity associated with insulin-resistance and have lymphoid organ hypoplasia. We identified a noncoding nucleotide substitution, c.58+181G>A, in the first intron of the Tw allele of Zeb1 (Zeb1Tw). A knockin mouse model of c.58+181G>A recapitulated the Tw phenotype, whereas a wild-type knockin control did not, confirming the mutation as pathogenic. c.58+181G>A does not affect splicing but disrupts a predicted site for Myb protein binding, which we confirmed in vitro. In comparison, homozygosity for a targeted deletion of exon 1 of mouse Zeb1, Zeb1ΔEx1, is associated with a subtle abnormality of the lateral semicircular canal that is different than those in Tw mice. Expression analyses of E13.5 Twirler and Zeb1ΔEx1 ears confirm that Zeb1ΔEx1 is a null allele, whereas Zeb1Tw RNA is expressed at increased levels in comparison to wild-type Zeb1. We conclude that a noncoding point mutation of Zeb1 acts via a gain-of-function to disrupt regulation of Zeb1Tw expression, epithelial-mesenchymal cell fate or interactions, and structural development of the inner ear in Twirler mice. This is a novel mechanism underlying disorders of hearing or balance. Twirler (Tw) mice have a combination of abnormalities that includes cleft palate, malformations of the inner ear, hearing loss, vestibular dysfunction, obesity, and lymphoid hypoplasia. In this study, we show that the underlying mutation affects the Zeb1 gene. Zeb1 was already known to encode a protein normally expressed in mesenchymal cells, where it represses expression of genes that are uniquely expressed in epithelial cells. The Tw mutation is a rare example of a single-nucleotide substitution in a region of a gene that does not encode protein, promoter, or splice sites, so we engineered a mouse model with the mutation that confirmed its causative role. The Tw mutation disrupts a consensus DNA binding site sequence for the Myb family of regulatory proteins. We conclude that this mutation leads to abnormal expression of Zeb1, structural malformations of the inner ear, and a loss of hearing and balance function. A similar mechanism may underlie other features of Twirler, such as obesity and cleft palate.
Collapse
Affiliation(s)
- Kiyoto Kurima
- Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Rockville, Maryland, United States of America
| | - Ronna Hertzano
- Department of Otorhinolaryngology–Head and Neck Surgery, University of Maryland, Baltimore, Maryland, United States of America
| | - Oksana Gavrilova
- Mouse Metabolism Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kelly Monahan
- Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Rockville, Maryland, United States of America
| | - Karl B. Shpargel
- Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Rockville, Maryland, United States of America
| | - Garani Nadaraja
- Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Rockville, Maryland, United States of America
| | - Yoshiyuki Kawashima
- Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Rockville, Maryland, United States of America
| | - Kyu Yup Lee
- Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Rockville, Maryland, United States of America
| | - Taku Ito
- Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Rockville, Maryland, United States of America
| | - Yujiro Higashi
- Department of Perinatology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Japan
| | - David J. Eisenman
- Department of Otorhinolaryngology–Head and Neck Surgery, University of Maryland, Baltimore, Maryland, United States of America
| | - Scott E. Strome
- Department of Otorhinolaryngology–Head and Neck Surgery, University of Maryland, Baltimore, Maryland, United States of America
| | - Andrew J. Griffith
- Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Rockville, Maryland, United States of America
- * E-mail:
| |
Collapse
|
109
|
Yamamoto H, Kokame K, Okuda T, Nakajo Y, Yanamoto H, Miyata T. NDRG4 protein-deficient mice exhibit spatial learning deficits and vulnerabilities to cerebral ischemia. J Biol Chem 2011; 286:26158-65. [PMID: 21636852 DOI: 10.1074/jbc.m111.256446] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The N-myc downstream-regulated gene (NDRG) family consists of four related proteins, NDRG1-NDRG4, in mammals. We previously generated NDRG1-deficient mice that were unable to maintain myelin sheaths in peripheral nerves. This condition was consistent with human hereditary motor and sensory neuropathy, Charcot-Marie-Tooth disease type 4D, caused by a nonsense mutation of NDRG1. In contrast, the effects of genetic defects of the other NDRG members remain unknown. In this study, we focused on NDRG4, which is specifically expressed in the brain and heart. In situ mRNA hybridization on the brain revealed that NDRG4 was expressed in neurons of various areas. We generated NDRG4-deficient mice that were born normally with the expected Mendelian frequency. Immunochemical analysis demonstrated that the cortex of the NDRG4-deficient mice contained decreased levels of brain-derived neurotrophic factor (BDNF) and normal levels of glial cell line-derived neurotrophic factor, NGF, neurotrophin-3, and TGF-β1. Consistent with BDNF reduction, NDRG4-deficient mice had impaired spatial learning and memory but normal motor function in the Morris water maze test. When temporary focal ischemia of the brain was induced, the sizes of the infarct lesions were larger, and the neurological deficits were more severe in NDRG4-deficient mice compared with the control mice. These findings indicate that NDRG4 contributes to the maintenance of intracerebral BDNF levels within the normal range, which is necessary for the preservation of spatial learning and the resistance to neuronal cell death caused by ischemic stress.
Collapse
Affiliation(s)
- Hitomi Yamamoto
- Department of Molecular Pathogenesis, National Cerebral and Cardiovascular Center, Suita, Osaka 565-8565, Japan
| | | | | | | | | | | |
Collapse
|
110
|
Zhou YM, Cao L, Li B, Zhang RX, Sui CJ, Yin ZF, Yang JM. Clinicopathological significance of ZEB1 protein in patients with hepatocellular carcinoma. Ann Surg Oncol 2011; 19:1700-6. [PMID: 21584833 DOI: 10.1245/s10434-011-1772-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Indexed: 12/22/2022]
Abstract
BACKGROUND ZEB1, a member of the ZFH family of proteins (zinc-finger E-box binding homeobox), plays a central role in epithelial-mesenchymal transition (EMT) during carcinogenesis. In this study, we investigated the expression of ZEB1 in patients with hepatocellular carcinoma (HCC) and its clinical effects with underlying mechanisms. METHODS Expression levels of ZEB1 were assessed by Western blot in 5 HCC cell lines and in paired cancerous and noncancerous tissues from 110 patients with HCC. Short-hairpin RNA (shRNA) interference for ZEB1 was performed in MHCC-97H cell line. RESULTS ZEB1 protein was detected at a relatively high level in metastatic human HCC cell lines (MHCC-97L and MHCC-97H) when compared with that in nonmetastatic HCC cell lines (Hep3B, PLC and Huh-7). ZEB1 was expressed at high levels in 72 of 110 HCC patients (65.4%) and correlated with advanced TNM stage, tumor size >5 cm, intrahepatic metastasis, vascular invasion, and frequent early recurrence. The results of multivariate analysis revealed that ZEB1 high expression was a significant prognostic factor for poor overall and disease-free survivals. Silencing ZEB1 resulted in significant suppression of motility of MHCC-97H cell line, which was accompanied with increased expression of the epithelial marker E-cadherin and decreased expression of the mesenchymal markers N-cadherin and vimentin. Furthermore, silencing ZEB1 prevented the spread of intrahepatic metastasis and increased overall survival in mouse orthotopic tumor models. CONCLUSIONS This study shows that ZEB1 high expression was correlated with HCC malignant progression and subsequent poor patient survival by induction of EMT changes.
Collapse
Affiliation(s)
- Yan-Ming Zhou
- Department of Hepato-Biliary-Pancreato-Vascular Surgery, First Affiliated Hospital of Xiamen University, Xiamen, China
| | | | | | | | | | | | | |
Collapse
|
111
|
Lorenzatti G, Huang W, Pal A, Cabanillas AM, Kleer CG. CCN6 (WISP3) decreases ZEB1-mediated EMT and invasion by attenuation of IGF-1 receptor signaling in breast cancer. J Cell Sci 2011; 124:1752-8. [PMID: 21525039 DOI: 10.1242/jcs.084194] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
During progression of breast cancer, CCN6 protein exerts tumor inhibitory functions. CCN6 is a secreted protein that modulates the insulin-like growth factor-1 (IGF-1) signaling pathway. Knockdown of CCN6 in benign mammary epithelial cells triggers an epithelial to mesenchymal transition (EMT), with upregulation of the transcription factor ZEB1/δEF1. How CCN6 regulates ZEB1 expression is unknown. We hypothesized that CCN6 might regulate ZEB1, EMT and breast cancer invasion by modulating IGF-1 signaling. Exogenously added human recombinant CCN6 protein was sufficient to downregulate ZEB1 mRNA and protein levels in CCN6-deficient (CCN6 KD) HME cells and MDA-MB-231 breast cancer cells. Recombinant CCN6 protein decreased invasion of CCN6 KD cells compared with controls. We discovered that knockdown of CCN6 induced IGF-1 secretion in HME cells cultivated in serum-free medium to higher concentrations than found in MDA-MB-231 cells. Treatment with recombinant CCN6 protein was sufficient to decrease IGF-1 protein and mRNA to control levels, rescuing the effect of CCN6 knockdown. Specific inhibition of IGF-1 receptors using the pharmacological inhibitor NVP-AE541 or short hairpin shRNAs revealed that ZEB1 upregulation due to knockdown of CCN6 requires activation of IGF-1 receptor signaling. Recombinant CCN6 blunted IGF-1-induced ZEB1 upregulation in MDA-MB-231 cells. Our data define a pathway in which CCN6 attenuates IGF-1 signaling to decrease ZEB1 expression and invasion in breast cancer. These results suggest that CCN6 could be a target to prevent or halt breast cancer invasion.
Collapse
Affiliation(s)
- Guadalupe Lorenzatti
- CIBICI-CONICET, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000 Córdoba, Argentina
| | | | | | | | | |
Collapse
|
112
|
Gao Y, Lan Y, Liu H, Jiang R. The zinc finger transcription factors Osr1 and Osr2 control synovial joint formation. Dev Biol 2011; 352:83-91. [PMID: 21262216 PMCID: PMC3057278 DOI: 10.1016/j.ydbio.2011.01.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 01/11/2011] [Accepted: 01/13/2011] [Indexed: 11/29/2022]
Abstract
Synovial joints enable smooth articulations between different skeletal elements and are essential for the motility of vertebrates. Despite decades of extensive studies of the molecular and cellular mechanisms of limb and skeletal development, the molecular mechanisms governing synovial joint formation are still poorly understood. In particular, whereas several signaling pathways have been shown to play critical roles in joint maintenance, the mechanism controlling joint initiation is unknown. Here we report that Osr1 and Osr2, the mammalian homologs of the odd-skipped family of zinc finger transcription factors that are required for leg joint formation in Drosophila, are both strongly expressed in the developing synovial joint cells in mice. Whereas Osr1(-/-) mutant mice died at midgestation and Osr2(-/-) mutant mice had only subtle defects in synovial joint development, tissue-specific inactivation of Osr1 in the developing limb mesenchyme in Osr2(-/-) mutant mice caused fusion of multiple joints. We found that Osr1 and Osr2 function is required for maintenance of expression of signaling molecules critical for joint formation, including Gdf5, Wnt4 and Wnt9b. In addition, joint cells in the double mutants failed to upregulate expression of the articular cartilage marker gene Prg4. These data indicate that Osr1 and Osr2 function redundantly to control synovial joint formation.
Collapse
Affiliation(s)
- Yang Gao
- Center for Oral Biology and Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | - Yu Lan
- Center for Oral Biology and Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | - Han Liu
- Center for Oral Biology and Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | - Rulang Jiang
- Center for Oral Biology and Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| |
Collapse
|
113
|
Qiao L, Tasian GE, Zhang H, Cunha GR, Baskin L. ZEB1 is estrogen responsive in vitro in human foreskin cells and is over expressed in penile skin in patients with severe hypospadias. J Urol 2011; 185:1888-93. [PMID: 21421232 DOI: 10.1016/j.juro.2010.12.066] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Indexed: 11/29/2022]
Abstract
PURPOSE We determined the effect of estrogen on ZEB1 in vitro and tested the hypothesis that ZEB1 is over expressed in the penile skin of subjects with hypospadias. MATERIALS AND METHODS Hs68 cells, a fibroblast cell line derived from human foreskin, were exposed to 0, 1, 10 and 100 nM estrogen, and the expression level of ZEB1 was assessed using reverse transcription real-time polymerase chain reaction, Western blot and immunocytochemical analysis. Next, preputial skin was prospectively collected from case and control subjects at hypospadias repair (37 cases) and circumcision (11). Hypospadias was classified as severe (13 cases) or mild (24) based on the position of the urethral meatus. ZEB1 expression was quantified using reverse transcription real-time polymerase chain reaction, Western blot and immunohistochemical analysis. RESULTS Estrogen increased ZEB1 expression at the mRNA and protein levels in Hs68 cells in a concentration dependent fashion (p <0.01). Subjects with severe hypospadias had significantly higher ZEB1 mRNA levels and protein expression compared to controls or subjects with mild hypospadias (both p <0.01). Subjects with severe hypospadias had increased expression of ZEB1 in the basal layers of the preputial epidermis. CONCLUSIONS Estrogen increases ZEB1 expression in a human foreskin fibroblast cell line in vitro. Furthermore, ZEB1 is significantly over expressed in the penile skin of subjects with severe hypospadias. We propose that ZEB1 overexpression may contribute to development of hypospadias and may mediate the effect of estrogen on developing external male genitalia.
Collapse
Affiliation(s)
- Liang Qiao
- Frank Hinman, Jr. Urological Research Laboratory, Department of Urology, University of California, San Francisco, California 94143, USA
| | | | | | | | | |
Collapse
|
114
|
Hu F, Wang C, Guo S, Sun W, Mi D, Gao Y, Zhang J, Zhu T, Yang S. δEF1 promotes osteolytic metastasis of MDA-MB-231 breast cancer cells by regulating MMP-1 expression. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1809:200-10. [DOI: 10.1016/j.bbagrm.2011.01.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 01/07/2011] [Accepted: 01/11/2011] [Indexed: 11/16/2022]
|
115
|
Sun W, Yang S, Shen W, Li H, Gao Y, Zhu TH. Identification of DeltaEF1 as a novel target that is negatively regulated by LMO2 in T-cell leukemia. Eur J Haematol 2010; 85:508-19. [PMID: 20731704 DOI: 10.1111/j.1600-0609.2010.01519.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The lmo2 gene is a specific oncogene in T-cell leukemia, for its ectopic expression causes both increased pro-T-cell proliferation and differentiation arrest, leading to the onset of leukemia. Notably, DeltaEF1 (also known as ZEB1), a member of zinc finger-homeodomain family transcription factor, also exhibits crucial function in promoting T-cell differentiation. In this study, we found that DeltaEF1 was positively regulated by T-lineage-specific transcriptional regulator GATA3, while ectopically expressed LMO2 targeted to DeltaEF1 promoter by interaction with GATA3 and inhibited DeltaEF1 expression in transcriptional level. Moreover, LMO2 interacted with the N-terminal zinc finger domain of DeltaEF1 protein and inhibited its positive transcriptional regulatory function by this interaction. Taken together, our findings revealed that ectopically expressed LMO2 impaired the function of DeltaEF1 in both transcriptional and protein levels and identified DeltaEF1 as a novel pathogenic target of LMO2 in T-cell leukemia.
Collapse
Affiliation(s)
- Wei Sun
- Laboratory of Molecular Genetics, College of Medicine, Nankai University, Tianjin, China
| | | | | | | | | | | |
Collapse
|
116
|
Nguyen DQ, Hosseini M, Billingsley G, Héon E, Churchill AJ. Clinical phenotype of posterior polymorphous corneal dystrophy in a family with a novel ZEB1 mutation. Acta Ophthalmol 2010; 88:695-9. [PMID: 19432861 DOI: 10.1111/j.1755-3768.2009.01511.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE To describe the clinical phenotype in a family with posterior polymorphous corneal dystrophy (PPCD) and a novel mutation in the ZEB1 gene. METHODS Clinical examination, anterior segment photography, specular microscopy and electrophysiological investigations were performed and quantified. Genomic DNA extracted from peripheral blood was sequenced for ZEB1 exons. Cosegregation of identified mutation with the disease status in the family was confirmed using polymerase chain reaction and restriction fragment length polymorphism. RESULTS Ocular examination was performed on five family members from two generations. Three had anomalies of the corneal endothelium that were consistent with PPCD. Endothelial cell counts ranged from 2306 to 2987 mm(2) (ref. 2000-4000 cells/mm(2) ). No evidence of glaucoma or retinal abnormalities was observed. Extraocular abnormalities such as inguinal herniation, hydrocoele and possible bony or connective tissue anomalies were part of the disease spectrum in this family. Mutation analysis revealed a novel change in exon 5 of ZEB1 (c.672delA) that cosegregated with the affected disease status. CONCLUSION The detailed clinical features of PPCD associated with a novel ZEB1 mutation are supportive of the previously proposed range of phenotype parameters. Further phenotype-genotype correlations may provide insights into the clinical variability and pathological processes affecting the corneal endothelium, Descemet's membrane, retinal photoreceptor function and extraocular tissues of some patients.
Collapse
Affiliation(s)
- Dan Q Nguyen
- Department of Ophthalmology, Bristol Eye Hospital, UK
| | | | | | | | | |
Collapse
|
117
|
ZEB1 in Pancreatic Cancer. Cancers (Basel) 2010; 2:1617-28. [PMID: 24281177 PMCID: PMC3837326 DOI: 10.3390/cancers2031617] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 08/16/2010] [Accepted: 08/17/2010] [Indexed: 11/19/2022] Open
Abstract
Pancreatic cancer is one of the most malignant human neoplasias. On the molecular level, epithelial-mesenchymal transition (EMT) has been demonstrated to contribute to the malignant phenotype of pancreatic cancer cells. ZEB1 is a transcriptional repressor that has been identified as an inducer of EMT. A negative feedback loop between ZEB1 and microRNA-200c has been shown to regulate this EMT induction in various models. With respect to pancreatic cancer, primary effects of EMT comprise increased local and distant tumor cell dissemination. Another recently described feature of the EMT is the acquisition of cancer stem cell traits. For pancreatic cancer cells, antagonism between ZEB1 and stemness-inhibiting micro-RNAs has been demonstrated to contribute to this process, providing experimental support for the migrating cancer stem cell (MCSC) hypothesis. ZEB1 has also been shown to be associated with drug resistance of pancreatic cancer cells. This article reviews the biological functions of ZEB1 with a focus on pancreatic cancer.
Collapse
|
118
|
Duband JL. Diversity in the molecular and cellular strategies of epithelium-to-mesenchyme transitions: Insights from the neural crest. Cell Adh Migr 2010; 4:458-82. [PMID: 20559020 DOI: 10.4161/cam.4.3.12501] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Although epithelial to mesenchymal transitions (EMT) are often viewed as a unique event, they are characterized by a great diversity of cellular processes resulting in strikingly different outcomes. They may be complete or partial, massive or progressive, and lead to the complete disruption of the epithelium or leave it intact. Although the molecular and cellular mechanisms of EMT are being elucidated owing chiefly from studies on transformed epithelial cell lines cultured in vitro or from cancer cells, the basis of the diversity of EMT processes remains poorly understood. Clues can be collected from EMT occuring during embryonic development and which affect equally tissues of ectodermal, endodermal or mesodermal origins. Here, based on our current knowledge of the diversity of processes underlying EMT of neural crest cells in the vertebrate embryo, we propose that the time course and extent of EMT do not depend merely on the identity of the EMT transcriptional regulators and their cellular effectors but rather on the combination of molecular players recruited and on the possible coordination of EMT with other cellular processes.
Collapse
|
119
|
Jin JZ, Tan M, Warner DR, Darling DS, Higashi Y, Gridley T, Ding J. Mesenchymal cell remodeling during mouse secondary palate reorientation. Dev Dyn 2010; 239:2110-7. [PMID: 20549719 PMCID: PMC2919369 DOI: 10.1002/dvdy.22339] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The formation of mammalian secondary palate requires a series of developmental events such as growth, elevation, and fusion. Despite recent advances in the field of palate development, the process of palate elevation remains poorly understood. The current consensus on palate elevation is that the distal end of the vertical palatal shelf corresponds to the medial edge of the elevated horizontal palatal shelf. We provide evidence suggesting that the prospective medial edge of the vertical palate is located toward the interior side (the side adjacent to the tongue), instead of the distal end, of the vertical palatal shelf and that the horizontal palatal axis is generated through palatal outgrowth from the side of the vertical palatal shelf rather than rotating the pre-existing vertical axis orthogonally. Because palate elevation represents a classic example of embryonic tissue re-orientation, our findings here may also shed light on the process of tissue re-orientation in general.
Collapse
Affiliation(s)
- Jiu-Zhen Jin
- Department of Molecular, Cellular & Craniofacial Biology, University of Louisville, Kentucky 40202, USA
- Birth Defects Center, University of Louisville, Kentucky 40202, USA
| | - Min Tan
- Department of Molecular, Cellular & Craniofacial Biology, University of Louisville, Kentucky 40202, USA
- Birth Defects Center, University of Louisville, Kentucky 40202, USA
| | - Dennis R. Warner
- Department of Molecular, Cellular & Craniofacial Biology, University of Louisville, Kentucky 40202, USA
- Birth Defects Center, University of Louisville, Kentucky 40202, USA
| | - Douglas S. Darling
- Birth Defects Center, University of Louisville, Kentucky 40202, USA
- Department of Periodontics, Endodontics and Dental Hygiene, University of Louisville, Kentucky 40202, USA
| | - Yujiro Higashi
- Department of Perinatology, Institute for Developmental Research, Aichi Human Service Center, 713-8 Kagiya-cho, Kasugai, Aichi 480-0392, Japan
| | | | - Jixiang Ding
- Department of Molecular, Cellular & Craniofacial Biology, University of Louisville, Kentucky 40202, USA
- Birth Defects Center, University of Louisville, Kentucky 40202, USA
| |
Collapse
|
120
|
Abstract
The corneal endothelium maintains the level of hydration in the cornea. Dysfunction of the endothelium results in excess accumulation of water in the corneal stroma, leading to swelling of the stroma and loss of transparency. There are four different corneal endothelial dystrophies that are hereditary, progressive, non-inflammatory disorders involving dysfunction of the corneal endothelium. Each of the endothelial dystrophies is genetically heterogeneous with different modes of transmission and/or different genes involved in each subtype. Genes responsible for disease have been identified for only a subset of corneal endothelial dystrophies. Knowledge of genes involved and their function in the corneal endothelium can aid understanding the pathogenesis of the disorder as well as reveal pathways that are important for normal functioning of the endothelium.
Collapse
|
121
|
|
122
|
Hu F, Wang C, Du J, Sun W, Yan J, Mi D, Zhang J, Qiao Y, Zhu T, Yang S. DeltaEF1 promotes breast cancer cell proliferation through down-regulating p21 expression. Biochim Biophys Acta Mol Basis Dis 2009; 1802:301-12. [PMID: 20006705 DOI: 10.1016/j.bbadis.2009.12.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 11/20/2009] [Accepted: 12/03/2009] [Indexed: 01/20/2023]
Abstract
Although the zinc finger-homeodomain transcription factor deltaEF1 is implied as a regulatory factor at the crossroad between proliferation and differentiation in carcinogenesis, its potential effect in the regulation of cell cycle progression has not been well elucidated. In our present study, we provide novel finding that, in breast cancer, the ectopic expression of deltaEF1 in MDA-MB-231 cells significantly promoted cell proliferation by increasing the cell number in S phase of the cell cycle. In contrast, deltaEF1 knockdown by RNA interference exhibited an opposite effect, highlighting a potent role of deltaEF1 to promote G1-S transition of breast cancer cells. Moreover, we demonstrated that deltaEF1 down-regulated p21 and concurrently up-regulated the expressions of CDK2 and CDK4 during this process. Further, deltaEF1 inhibited p21 transcription by recruiting to the E(2) box element on the p21 promoter. Depletion of endogenous deltaEF1 in MDA-MB-231 cells was sufficient to allow an inherent release of p21 expression, thus resulting in the cell cycle arrest. In addition, the stimulatory effect of deltaEF1 on cell proliferation through p21 regulation was supported by an inverse correlation of deltaEF1 and p21 expressions observed in both breast cancer cell lines and clinical tumor specimens. Taken together, these observations suggest a dual effect of deltaEF1 in promoting breast cancer cell proliferation, by differentially regulating the cell cycle regulatory proteins.
Collapse
Affiliation(s)
- Fen Hu
- Medical College of Nankai University, Tianjin, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Bellon E, Luyten FP, Tylzanowski P. delta-EF1 is a negative regulator of Ihh in the developing growth plate. ACTA ACUST UNITED AC 2009; 187:685-99. [PMID: 19948490 PMCID: PMC2806579 DOI: 10.1083/jcb.200904034] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Indian hedgehog (Ihh) regulates proliferation and differentiation of chondrocytes in the growth plate. Although the biology of Ihh is currently well documented, its transcriptional regulation is poorly understood. delta-EF1 is a two-handed zinc finger/homeodomain transcriptional repressor. Targeted inactivation of mouse delta-EF1 leads to skeletal abnormalities including disorganized growth plates, shortening of long bones, and joint fusions, which are reminiscent of defects associated with deregulation of Ihh signaling. Here, we show that the absence of delta-EF1 results in delayed hypertrophic differentiation of chondrocytes and increased cell proliferation in the growth plate. Further, we demonstrate that delta-EF1 binds to the putative regulatory elements in intron 1 of Ihh in vitro and in vivo, resulting in down-regulation of Ihh expression. Finally, we show that delta-EF1 haploinsufficiency leads to a postnatal increase in trabecular bone mass associated with enhanced Ihh expression. In summary, we have identified delta-EF1 as an in vivo negative regulator of Ihh expression in the growth plate.
Collapse
Affiliation(s)
- Ellen Bellon
- Laboratory of Skeletal Development and Joint Disorders, Division of Rheumatology, Department of Musculoskeletal Sciences, University of Leuven, Leuven 3000, Belgium
| | | | | |
Collapse
|
124
|
Schmalhofer O, Brabletz S, Brabletz T. E-cadherin, beta-catenin, and ZEB1 in malignant progression of cancer. Cancer Metastasis Rev 2009; 28:151-66. [PMID: 19153669 DOI: 10.1007/s10555-008-9179-y] [Citation(s) in RCA: 622] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The embryonic program 'epithelial-mesenchymal transition' (EMT) is activated during tumor invasion in disseminating cancer cells. Characteristic to these cells is a loss of E-cadherin expression, which can be mediated by EMT-inducing transcriptional repressors, e.g. ZEB1. Consequences of a loss of E-cadherin are an impairment of cell-cell adhesion, which allows detachment of cells, and nuclear localization of beta-catenin. In addition to an accumulation of cancer stem cells, nuclear beta-catenin induces a gene expression pattern favoring tumor invasion, and mounting evidence indicates multiple reciprocal interactions of E-cadherin and beta-catenin with EMT-inducing transcriptional repressors to stabilize an invasive mesenchymal phenotype of epithelial tumor cells.
Collapse
Affiliation(s)
- Otto Schmalhofer
- Department of Visceral Surgery, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany
| | | | | |
Collapse
|
125
|
Jugessur A, Shi M, Gjessing HK, Lie RT, Wilcox AJ, Weinberg CR, Christensen K, Boyles AL, Daack-Hirsch S, Trung TN, Bille C, Lidral AC, Murray JC. Genetic determinants of facial clefting: analysis of 357 candidate genes using two national cleft studies from Scandinavia. PLoS One 2009; 4:e5385. [PMID: 19401770 PMCID: PMC2671138 DOI: 10.1371/journal.pone.0005385] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Accepted: 03/20/2009] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Facial clefts are common birth defects with a strong genetic component. To identify fetal genetic risk factors for clefting, 1536 SNPs in 357 candidate genes were genotyped in two population-based samples from Scandinavia (Norway: 562 case-parent and 592 control-parent triads; Denmark: 235 case-parent triads). METHODOLOGY/PRINCIPAL FINDINGS We used two complementary statistical methods, TRIMM and HAPLIN, to look for associations across these two national samples. TRIMM tests for association in each gene by using multi-SNP genotypes from case-parent triads directly without the need to infer haplotypes. HAPLIN on the other hand estimates the full haplotype distribution over a set of SNPs and estimates relative risks associated with each haplotype. For isolated cleft lip with or without cleft palate (I-CL/P), TRIMM and HAPLIN both identified significant associations with IRF6 and ADH1C in both populations, but only HAPLIN found an association with FGF12. For isolated cleft palate (I-CP), TRIMM found associations with ALX3, MKX, and PDGFC in both populations, but only the association with PDGFC was identified by HAPLIN. In addition, HAPLIN identified an association with ETV5 that was not detected by TRIMM. CONCLUSION/SIGNIFICANCE Strong associations with seven genes were replicated in the Scandinavian samples and our approach effectively replicated the strongest previously known association in clefting--with IRF6. Based on two national cleft cohorts of similar ancestry, two robust statistical methods and a large panel of SNPs in the most promising cleft candidate genes to date, this study identified a previously unknown association with clefting for ADH1C and provides additional candidates and analytic approaches to advance the field.
Collapse
Affiliation(s)
- Astanand Jugessur
- Craniofacial Development, Musculoskeletal Disorders, Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Australia
| | - Min Shi
- Biostatistics Branch, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, Durham, North Carolina, United States of America
| | - Håkon Kristian Gjessing
- Department of Epidemiology (EPAM), Norwegian Institute of Public Health, Oslo, Norway
- Section for Epidemiology and Medical Statistics, Department of Public Health and Primary Health Care, University of Bergen, Bergen, Norway
| | - Rolv Terje Lie
- Section for Epidemiology and Medical Statistics, Department of Public Health and Primary Health Care, University of Bergen, Bergen, Norway
- Medical Birth Registry of Norway, Norwegian Institute of Public Health, Bergen, Norway
| | - Allen James Wilcox
- Epidemiology Branch, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, Durham, North Carolina, United States of America
| | - Clarice Ring Weinberg
- Biostatistics Branch, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, Durham, North Carolina, United States of America
| | - Kaare Christensen
- Department of Epidemiology, University of Southern Denmark, Odense, Denmark
| | - Abee Lowman Boyles
- Epidemiology Branch, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, Durham, North Carolina, United States of America
| | - Sandra Daack-Hirsch
- College of Nursing, University of Iowa, Iowa City, Iowa, United States of America
| | - Truc Nguyen Trung
- Medical Birth Registry of Norway, Norwegian Institute of Public Health, Bergen, Norway
| | - Camilla Bille
- Department of Epidemiology, University of Southern Denmark, Odense, Denmark
| | - Andrew Carl Lidral
- Departments of Pediatrics, Epidemiology and Biological Sciences, University of Iowa, Iowa City, Iowa, United States of America
| | - Jeffrey Clark Murray
- Department of Epidemiology, University of Southern Denmark, Odense, Denmark
- Departments of Pediatrics, Epidemiology and Biological Sciences, University of Iowa, Iowa City, Iowa, United States of America
| |
Collapse
|
126
|
Imuta Y, Nishioka N, Kiyonari H, Sasaki H. Short limbs, cleft palate, and delayed formation of flat proliferative chondrocytes in mice with targeted disruption of a putative protein kinase gene, Pkdcc (AW548124). Dev Dyn 2009; 238:210-22. [PMID: 19097194 DOI: 10.1002/dvdy.21822] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
During long bone development, round proliferative chondrocytes (RPCs) differentiate into flat proliferative chondrocytes (FPCs), and then into hypertrophic chondrocytes (HCs). FPCs and HCs support longitudinal bone growth. Here we show that a putative protein kinase gene, Pkdcc (AW548124), is required for longitudinal bone growth. We originally found Pkdcc expressed in the head organizer, but it is also expressed throughout embryogenesis and in various adult tissues. Pkdcc-/- embryos had no head organizer-related defects, but showed various morphological abnormalities at birth, including short limbs, cleft palate, sternal dysraphia, and shortened intestine. In the long bones of the limbs, only the mineralized regions were shortened, and the cartilage length was normal. In the humerus, Pkdcc was strongly expressed in the early FPCs, and FPC and HC formation was delayed in Pkdcc-/- mutants. Together, these data indicate that Pkdcc encodes a protein kinase that is required for the appropriate timing of FPC differentiation.
Collapse
Affiliation(s)
- Yu Imuta
- Laboratory for Embryonic Induction, RIKEN Center for Developmental Biology, Hyogo, Japan
| | | | | | | |
Collapse
|
127
|
Inuzuka T, Tsuda M, Tanaka S, Kawaguchi H, Higashi Y, Ohba Y. Integral role of transcription factor 8 in the negative regulation of tumor angiogenesis. Cancer Res 2009; 69:1678-84. [PMID: 19208835 DOI: 10.1158/0008-5472.can-08-3620] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Angiogenesis is involved in various physiologic and pathological conditions, including tumor growth, and is tightly regulated by the orchestration of proangiogenic and antiangiogenic factors. Inhibition of vascular endothelial growth factor (VEGF), the best-established antiangiogenic treatment in cancer, has shown some effectiveness; however, the identification of novel regulators, whose function is independent of VEGF, is required to achieve better outcomes. Here, we show that transcription factor 8 (TCF8) is up-regulated in endothelial cells during angiogenesis, acting as a negative regulator. Furthermore, TCF8 is specifically expressed in the endothelium of tumor vessels. Tcf8-heterozygous knockout mice are more permissive than wild-type mice to the formation of tumor blood vessels in s.c. implanted melanoma, which seems to contribute to the more aggressive growth and the lung metastases of the tumor in mutant mice. Suppression of TCF8 facilitates angiogenesis in both in vitro and ex vivo models, and displays comprehensive cellular phenotypes, including enhanced cell invasion, impaired cell adhesion, and increased cell monolayer permeability due to, at least partly, MMP1 overexpression, attenuation of focal adhesion formation, and insufficient VE-cadherin recruitment, respectively. Taken together, our findings define a novel, integral role for TCF8 in the regulation of pathologic angiogenesis, and propose TCF8 as a target for therapeutic intervention in cancer.
Collapse
Affiliation(s)
- Takayuki Inuzuka
- Laboratory of Pathophysiology and Signal Transduction, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | | | | | | | | | | |
Collapse
|
128
|
Wang J, Lee S, Teh CEY, Bunting K, Ma L, Shannon MF. The transcription repressor, ZEB1, cooperates with CtBP2 and HDAC1 to suppress IL-2 gene activation in T cells. Int Immunol 2009; 21:227-35. [PMID: 19181930 DOI: 10.1093/intimm/dxn143] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Activation of T cells leads to the induction of many cytokine genes that are required for appropriate immune responses, including IL-2, a key cytokine for T cell proliferation and homeostasis. The activating transcription factors such as nuclear factor of activated T cells, nuclear factor kappaB/Rel and activated protein-1 family members that regulate inducible IL-2 gene expression have been well documented. However, negative regulation of the IL-2 gene is less studied. Here we examine the role of zinc finger E-box-binding protein (ZEB) 1, a homeodomain/Zn finger transcription factor, as a repressor of IL-2 gene transcription. We show here that ZEB1 is expressed in non-stimulated and stimulated T cells and using chromatin immunoprecipitation assays we show that ZEB1 binds to the IL-2 promoter. Over-expression of ZEB1 can repress IL-2 promoter activity, as well as endogenous IL-2 mRNA production in EL-4 T cells, and this repression is dependent on the ZEB-binding site at -100. ZEB1 cooperates with the co-repressor C-terminal-binding protein (CtBP) 2 and with histone deacetylase 1 to repress the IL-2 promoter and this cooperation depends on the ZEB-binding site in the promoter as well as the Pro-X-Asp-Leu-Ser protein-protein interaction domain in CtBP2. Thus, ZEB1 may function to recruit a repressor complex to the IL-2 promoter.
Collapse
Affiliation(s)
- Jun Wang
- Division of Molecular Bioscience, John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601 Australia
| | | | | | | | | | | |
Collapse
|
129
|
Inuzuka T, Tsuda M, Kawaguchi H, Ohba Y. Transcription factor 8 activates R-Ras to regulate angiogenesis. Biochem Biophys Res Commun 2008; 379:510-3. [PMID: 19116136 DOI: 10.1016/j.bbrc.2008.12.101] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Accepted: 12/17/2008] [Indexed: 10/21/2022]
Abstract
We have recently reported that transcription factor 8 (TCF8) negatively regulates pathological angiogenesis by regulating endothelial invasiveness by acting as a transcriptional attenuator of matrix metalloproteinase 1. TCF8 also modulates cell-matrix and cell-cell adhesion; however molecular mechanism of this TCF8 function remains obscure. Here, we provide evidence that TCF8 activates R-Ras, another class of angiogenic regulator, to suppress angiogenesis by a mechanism other than a transcriptional attenuator. Tube formation by human umbilical vein endothelial cells (HUVECs) facilitated by TCF8 suppression was significantly inhibited by the expression of constitutive active mutant of R-Ras. When we examined the mRNA expression levels of R-Ras regulators, no significant changes were observed to explain the R-Ras activation by TCF8. Interestingly, we found that TCF8 bound to CalDAG-GEFIII, an R-Ras activator, in the cytosol, indicating that TCF8 emanates signaling for R-Ras activation from cytosol to regulate angiogenesis negatively.
Collapse
Affiliation(s)
- Takayuki Inuzuka
- Laboratory of Pathophysiology and Signal Transduction, Hokkaido University, Graduate School of Medicine, N15W7, Kita-ku, Sapporo 060-8638, Japan
| | | | | | | |
Collapse
|
130
|
Hurt EM, Saykally JN, Anose BM, Kalli KR, Sanders MM. Expression of the ZEB1 (deltaEF1) transcription factor in human: additional insights. Mol Cell Biochem 2008; 318:89-99. [PMID: 18622689 DOI: 10.1007/s11010-008-9860-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Accepted: 06/25/2008] [Indexed: 01/13/2023]
Abstract
The zinc finger E-box binding transcription factor ZEB1 (deltaEF1/Nil-2-a/AREB6/zfhx1a/TCF8/zfhep/BZP) is emerging as an important regulator of the epithelial to mesenchymal transitions (EMT) required for development and cancer metastasis. ZEB1 promotes EMT by repressing genes contributing to the epithelial phenotype while activating those associated with the mesenchymal phenotype. TCF8 (zfhx1a), the gene encoding ZEB1, is induced by several potentially oncogenic ligands including TGF-beta, estrogen, and progesterone. TGF-beta appears to activate EMT, at least in part, by inducing ZEB1. However, our understanding of how ZEB1 contributes to signaling pathways elicited by estrogen and progesterone is quite limited, as is our understanding of its functional roles in normal adult tissues. To begin to address these questions, a human tissue mRNA array analysis was done. In adults, the highest ZEB1 mRNA expression is in bladder and uterus, whereas in the fetus highest expression is in lung, thymus, and heart. To further investigate the regulation of TCF8 by estrogen, ZEB1 mRNA was measured in ten estrogen-responsive cell lines, but it is only induced in the OV266 ovarian carcinoma line. Although high expression of ZEB1 mRNA is estrogen-dependent in normal human ovarian and endometrial biopsies, high expression is estrogen-independent in late stage ovarian and endometrial carcinomas, raising the possibility that deregulated expression promotes cancer progression. In contrast, TCF8 is at least partially deleted in 4 of 5 well-differentiated, grade I endometrial carcinomas, which may contribute to their non-aggressive phenotype. These data support the contention that high ZEB1 encourages gynecologic carcinoma progression.
Collapse
Affiliation(s)
- Elaine M Hurt
- Cancer Stem Cell Section, Laboratory of Cancer Prevention, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD 21702, USA
| | | | | | | | | |
Collapse
|
131
|
Jin JZ, Li Q, Higashi Y, Darling DS, Ding J. Analysis of Zfhx1a mutant mice reveals palatal shelf contact-independent medial edge epithelial differentiation during palate fusion. Cell Tissue Res 2008; 333:29-38. [PMID: 18470539 PMCID: PMC2516965 DOI: 10.1007/s00441-008-0612-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Accepted: 03/18/2008] [Indexed: 11/25/2022]
Abstract
Cleft palate is a common birth defect that involves disruptions in multiple developmental steps such as growth, differentiation, elevation, and fusion. Medial edge epithelial (MEE) differentiation is essential for palate fusion. An important question is whether the MEE differentiation that occurs during fusion is induced by palate shelf contact or is programmed intrinsically by the palate shelf itself. Here, we report that the loss of Zfhx1a function in mice leads to a cleft palate phenotype that is mainly attributable to a delay in palate elevation. Zfhx1a encodes a transcription regulatory protein that modulates several signaling pathways including those activated by members of the transforming growth factor-beta (TGF-beta) superfamily. Loss of Zfhx1a function in mice leads to a complete cleft palate with 100% penetrance. Zfhx1a mutant palatal shelves display normal cell differentiation and proliferation and are able to fuse in an in vitro culture system. The only defect detected was a delay of 24-48 h in palatal shelf elevation. Using the Zfhx1a mutant as a model, we studied the relationship between MEE differentiation and palate contact/adhesion. We found that down-regulation of Jag2 expression in the MEE cells, a key differentiation event establishing palate fusion competence, was independent of palate contact/adhesion. Moreover, the expression of several key factors essential for fusion, such as TGF-beta3 and MMP13, was also down-regulated at embryonic stage 16.5 in a contact-independent manner, suggesting that differentiation of the medial edge epithelium was largely programmed through an intrinsic mechanism within the palate shelf.
Collapse
Affiliation(s)
- Jiu-Zhen Jin
- Department of Molecular, Cellular & Craniofacial Biology, University of Louisville, Louisville, KY 40202, USA
| | - Qun Li
- Department of Molecular, Cellular & Craniofacial Biology, University of Louisville, Louisville, KY 40202, USA
| | - Yujiro Higashi
- Graduate School of Frontier Biosciences, Osaka University, Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Douglas S. Darling
- Department of Periodontics, Endodontics and Dental Hygiene, and Birth Defects Center, University of Louisville, Louisville, KY 40202, USA
| | - Jixiang Ding
- Department of Molecular, Cellular & Craniofacial Biology, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
132
|
Singh M, Spoelstra NS, Jean A, Howe E, Torkko KC, Clark HR, Darling DS, Shroyer KR, Horwitz KB, Broaddus RR, Richer JK. ZEB1 expression in type I vs type II endometrial cancers: a marker of aggressive disease. Mod Pathol 2008; 21:912-23. [PMID: 18487993 DOI: 10.1038/modpathol.2008.82] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Zinc-finger E-box-binding homeobox 1 (ZEB1) is a transcription factor containing two clusters of Kruppel-type zinc-fingers, by which it binds E-box-like sequences on target DNAs. A role for ZEB1 in tumor progression, specifically, epithelial to mesenchymal transitions, has recently been revealed. ZEB1 acts as a master repressor of E-cadherin and other epithelial markers. We previously demonstrated that ZEB1 is confined to the stromal compartment in normal endometrium and low-grade endometrial cancers. Here, we quantify ZEB1 protein expression in endometrial samples from 88 patients and confirm that it is expressed at significantly higher levels in the tumor-associated stroma of low-grade endometrioid adenocarcinomas (type I endometrial cancers) compared to hyperplastic or normal endometrium. In addition, as we previously reported, ZEB1 is aberrantly expressed in the epithelial-derived tumor cells of highly aggressive endometrial cancers, such as FIGO grade 3 endometrioid adenocarcinomas, uterine serous carcinomas, and malignant mixed Müllerian tumors (classified as type II endometrial cancers). We now demonstrate, in both human endometrial cancer specimens and cell lines, that when ZEB1 is inappropriately expressed in epithelial-derived tumor cells, E-cadherin expression is repressed, and that this inverse relationship correlates with increased migratory and invasive potential. Forced expression of ZEB1 in the nonmigratory, low-grade, relatively differentiated Ishikawa cell line renders them migratory. Conversely, reduction of ZEB1 in a highly migratory and aggressive type II cell line, Hec50co, results in reduced migratory capacity. Thus, ZEB1 may be a biomarker of aggressive endometrial cancers at high risk of recurrence. It may help identify women who would most benefit from chemotherapy. Furthermore, if expression of ZEB1 in type II endometrial cancers could be reversed, it might be exploited as therapy for these highly aggressive tumors.
Collapse
Affiliation(s)
- Meenakshi Singh
- Department of Pathology, University of Colorado Health Sciences Center, Aurora, CO 80045, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Al-oanzi ZH, Tuck SP, Mastana SS, Summers GD, Cook DB, Francis RM, Datta HK. Vitamin D-binding protein gene microsatellite polymorphism influences BMD and risk of fractures in men. Osteoporos Int 2008; 19:951-60. [PMID: 18038108 DOI: 10.1007/s00198-007-0516-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2007] [Accepted: 10/29/2007] [Indexed: 02/05/2023]
Abstract
UNLABELLED Here we report the results of a vitamin D-binding protein gene microsatellite polymorphism study in 170 men, comprising healthy male subjects and men with osteoporosis-related symptomatic vertebral fractures. We confirm the results of an earlier study in a different cohort, showing relationship between certain genotypes of (TAAAn)-Alu repeats and reduced BMD and vertebral fractures. INTRODUCTION Vitamin D-binding protein (DBP) plays a critical role in the transport and metabolism of metabolites of vitamin D, including the key calciotropic hormone 1alpha,25-dihydroxyvitamin D3 (1,25(OH)2D3). METHODS We have investigated intra-intronic variable tandem (TAAA)n-Alu repeat expansion in the DBP gene in 170 men, comprising healthy male subjects and men with idiopathic osteoporosis and low trauma fractures. RESULTS AND CONCLUSIONS The predominant DBP-Alu genotype in the control subjects was 10/10 (frequency 0.421), whereas the frequency of this genotype in men with osteoporosis was 0.089. DBP-Alu alleles *10, *8 and *9, respectively, were the three commonest in both healthy subjects and men with osteoporosis. Allele *10 was associated with a lower risk of osteoporosis (OR 0.39, 95% CI 0.25-0.64; p < 0.0005), as was allele *11 (odds ratio 0.09, 95% CI 0.01-0.67; p < 0.007). Logistic regression gave similar results, showing that individuals with genotype 10/10 and 19-20 repeats (genotypes 9/10, 9/11, 10/10,) are protected from fracture or osteoporosis. Overall, there was a relationship between DBP Alu genotype and BMD, suggesting that DBP-Alu genotype may influence fracture risk. This effect may be mediated by changes in the circulating concentrations of DBP which influences free concentrations of vitamin D.
Collapse
Affiliation(s)
- Z H Al-oanzi
- School of Clinical & Laboratory Sciences, The Medical School, University of Newcastle, Newcastle upon Tyne, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | | | | | | | | | | | | |
Collapse
|
134
|
Down-regulation of TCF8 is involved in the leukemogenesis of adult T-cell leukemia/lymphoma. Blood 2008; 112:383-93. [PMID: 18467597 DOI: 10.1182/blood-2008-01-131185] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Adult T-cell leukemia/lymphoma (ATLL) is caused by latent human T-lymphotropic virus-1 (HTLV-1) infection. To clarify the molecular mechanism underlying leukemogenesis after viral infection, we precisely mapped 605 chromosomal breakpoints in 61 ATLL cases by spectral karyotyping and identified frequent chromosomal breakpoints in 10p11, 14q11, and 14q32. Single nucleotide polymorphism (SNP) array-comparative genomic hybridization (CGH), genetic, and expression analyses of the genes mapped within a common breakpoint cluster region in 10p11.2 revealed that in ATLL cells, transcription factor 8 (TCF8) was frequently disrupted by several mechanisms, including mainly epigenetic dysregulation. TCF8 mutant mice frequently developed invasive CD4(+) T-cell lymphomas in the thymus or in ascitic fluid in vivo. Down-regulation of TCF8 expression in ATLL cells in vitro was associated with resistance to transforming growth factor beta1 (TGF-beta1), a well-known characteristic of ATLL cells, suggesting that escape from TGF-beta1-mediated growth inhibition is important in the pathogenesis of ATLL. These findings indicate that TCF8 has a tumor suppressor role in ATLL.
Collapse
|
135
|
Liu Y, Costantino M, Montoya-Durango D, Higashi Y, Darling D, Dean D. The zinc finger transcription factor ZFHX1A is linked to cell proliferation by Rb-E2F1. Biochem J 2007; 408:79-85. [PMID: 17655524 PMCID: PMC2049079 DOI: 10.1042/bj20070344] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2007] [Revised: 07/16/2007] [Accepted: 07/27/2007] [Indexed: 11/17/2022]
Abstract
ZFHX1A is expressed in proliferating cells in the developing embryo, and in the present study we provide evidence that its expression is confined to proliferating cells through dependence on the Rb (retinoblastoma protein) family/E2F cell cycle pathway. Mutation of the Rb or E2F1 genes lead to induction of ZFHX1A mRNA, implying that the Rb-E2F1 repressor complex is important for repression of ZFHX1A. This repression is associated with recruitment of an E2F-Rb-histone deacetylase repressor complex to the promoter. A dominant-negative form of E2F1 inhibited ZFHX1A expression in p16INK4a- cells where Rb is constitutively hyperphosphorylated and inactive, suggesting that E2F can contribute to ZFHX1A transactivation in the absence of functional Rb. ZFHX1A is an E-box-binding transcription factor whose binding sites overlap with those bound by Snail1 and 2, and ZFHX1B/SIP1 (leading to at least partially overlapping function; for example, each of the proteins can repress E-cadherin expression). We found that expression of Snail1 and ZFHX1B/SIP1 is also regulated by E2Fs, but in contrast with ZFHX1A this regulation is Rb-family-independent. Snail2 expression was unaffected by either E2F or the Rb family. We propose that the differential effects of the Rb family/E2F pathway on expression of these E-box-binding proteins are important in maintaining their distinct patterns (and thus distinct functions) during embryogenesis.
Collapse
Key Words
- proliferation
- retinoblastoma protein
- zfhx1a
- zinc finger transcription factor
- cdk, cyclin-dependent kinase
- chip, chromatin immunoprecipitation
- cmv, cytomegalovirus
- cns, central nervous system
- ctbp, c-terminal-binding protein
- db, dna-binding domain
- gapdh, glyceraldehyde-3-phosphate dehydrogenase
- hdac, histone deacetylase
- iptg, isopropyl β-d-thiogalactoside
- mef, mouse embryonic fibroblast
- mer, mutant oestrogen receptor
- oht, tamoxifen
- rb, retinoblastoma protein
- rt, reverse transcriptase
- tgf-β, transforming growth factor-β
- tko, triple knockout
Collapse
Affiliation(s)
- Yongqing Liu
- *James Graham Brown Cancer Center, Department of Ophthalmology and Visual Sciences, University of Louisville Health Sciences Center, Louisville, KY 40202, U.S.A
| | - Mary E. Costantino
- †Departments of Peiodontics, Endodontics and Dental Hygiene, Center for Oral Health and Systemic Disease, University of Louisville School of Dentistry, Louisville, KY 40292, U.S.A
| | - Diego Montoya-Durango
- ‡Department of Biochemistry, University of Louisville Health Sciences Center, Louisville, KY 40202, U.S.A
| | - Yujiro Higashi
- §Developmental Biology Group, Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
| | - Douglas S. Darling
- †Departments of Peiodontics, Endodontics and Dental Hygiene, Center for Oral Health and Systemic Disease, University of Louisville School of Dentistry, Louisville, KY 40292, U.S.A
| | - Douglas C. Dean
- *James Graham Brown Cancer Center, Department of Ophthalmology and Visual Sciences, University of Louisville Health Sciences Center, Louisville, KY 40202, U.S.A
| |
Collapse
|
136
|
van Grunsven LA, Taelman V, Michiels C, Opdecamp K, Huylebroeck D, Bellefroid EJ. deltaEF1 and SIP1 are differentially expressed and have overlapping activities during Xenopus embryogenesis. Dev Dyn 2007; 235:1491-500. [PMID: 16518800 DOI: 10.1002/dvdy.20727] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The zinc finger/homeo-domain transcription factor (zfh x 1) family in vertebrates consists of two members, deltaEF1 and SIP1. They have been proposed to display antagonistic activities in the interpretation of Smad-dependent TGFbeta signaling during mesoderm formation. We cloned Xenopus deltaEF1 cDNA, analyzed the expression profile of the gene, and compared the inducing and interacting properties of the protein to that of XSIP1. Whereas XSIP1 RNA is selectively expressed in the early developing nervous system, we show that XdeltaEF1 gene transcription is only activated during neurulation and that its expression is restricted to the paraxial mesoderm. From early tail bud stage, XdeltaEF1 and XSIP1 are coexpressed in migratory cranial neural crest, in the retina, and in the neural tube. Overproduction of XdeltaEF1 in RNA-injected embryos, like that of XSIP1, reduced the expression of BMP-dependent genes but only XSIP1 has the ability to induce neural markers. We find that XdeltaEF1 and XSIP1 can both form complexes, although with different efficiency, with Smad3, with the coactivators p300 and pCAF, and with the corepressor CtBP1. Together, these results indicate that deltaEF1 and SIP1 do not function as antagonists during Xenopus early embryogenesis but do display different repression efficiencies and interaction properties.
Collapse
Affiliation(s)
- Leo A van Grunsven
- Department of Developmental Biology (VIB7), Flanders Interuniversity Institute for Biotechnology (VIB) and Laboratory of Molecular Biology (Celgen), University of Leuven, Campus Gasthuisberg, Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
137
|
Abstract
Recent studies demonstrated a number of links between chromatin structure, gene expression, extracellular signaling and cellular differentiation during lens development. Lens progenitor cells originate from a pool of common progenitor cells, the pre-placodal region (PPR) which is formed from a combination of extracellular signaling between the neural plate, naïve ectoderm and mesendoderm. A specific commitment to the lens program over alternate choices such as the formation of olfactory epithelium or the anterior pituitary is manifested by the formation of a thickened surface ectoderm, the lens placode. Mouse lens progenitor cells are characterized by the expression of a complement of lens lineage-specific transcription factors including Pax6, Six3 and Sox2, controlled by FGF and BMP signaling, followed later by c-Maf, Mab21like1, Prox1 and FoxE3. Proliferation of lens progenitors together with their morphogenetic movements results in the formation of the lens vesicle. This transient structure, comprised of lens precursor cells, is polarized with its anterior cells retaining their epithelial morphology and proliferative capacity, whereas the posterior lens precursor cells initiate terminal differentiation forming the primary lens fibers. Lens differentiation is marked by expression and accumulation of crystallins and other structural proteins. The transcriptional control of crystallin genes is characterized by the reiterative use of transcription factors required for the establishment of lens precursors in combination with more ubiquitously expressed factors (e.g. AP-1, AP-2alpha, CREB and USF) and recruitment of histone acetyltransferases (HATs) CBP and p300, and chromatin remodeling complexes SWI/SNF and ISWI. These studies have poised the study of lens development at the forefront of efforts to understand the connections between development, cell signaling, gene transcription and chromatin remodeling.
Collapse
Affiliation(s)
- Ales Cvekl
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | |
Collapse
|
138
|
Davies SR, Chang LW, Patra D, Xing X, Posey K, Hecht J, Stormo GD, Sandell LJ. Computational identification and functional validation of regulatory motifs in cartilage-expressed genes. Genome Res 2007; 17:1438-47. [PMID: 17785538 PMCID: PMC1987341 DOI: 10.1101/gr.6224007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chondrocyte gene regulation is important for the generation and maintenance of cartilage tissues. Several regulatory factors have been identified that play a role in chondrogenesis, including the positive transacting factors of the SOX family such as SOX9, SOX5, and SOX6, as well as negative transacting factors such as C/EBP and delta EF1. However, a complete understanding of the intricate regulatory network that governs the tissue-specific expression of cartilage genes is not yet available. We have taken a computational approach to identify cis-regulatory, transcription factor (TF) binding motifs in a set of cartilage characteristic genes to better define the transcriptional regulatory networks that regulate chondrogenesis. Our computational methods have identified several TFs, whose binding profiles are available in the TRANSFAC database, as important to chondrogenesis. In addition, a cartilage-specific SOX-binding profile was constructed and used to identify both known, and novel, functional paired SOX-binding motifs in chondrocyte genes. Using DNA pattern-recognition algorithms, we have also identified cis-regulatory elements for unknown TFs. We have validated our computational predictions through mutational analyses in cell transfection experiments. One novel regulatory motif, N1, found at high frequency in the COL2A1 promoter, was found to bind to chondrocyte nuclear proteins. Mutational analyses suggest that this motif binds a repressive factor that regulates basal levels of the COL2A1 promoter.
Collapse
Affiliation(s)
- Sherri R. Davies
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Li-Wei Chang
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri 63130, USA
| | - Debabrata Patra
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Xiaoyun Xing
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Karen Posey
- Department of Pediatrics, University of Texas Medical School at Houston, Houston, Texas 77030, USA
| | - Jacqueline Hecht
- Department of Pediatrics, University of Texas Medical School at Houston, Houston, Texas 77030, USA
- Shriners Hospital for Children, Houston, Texas 77030, USA
| | - Gary D. Stormo
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri 63130, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Linda J. Sandell
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Corresponding author.E-mail ; fax (314) 454-5900
| |
Collapse
|
139
|
Lee HK, Lundell MJ. Differentiation of the Drosophila serotonergic lineage depends on the regulation of Zfh-1 by Notch and Eagle. Mol Cell Neurosci 2007; 36:47-58. [PMID: 17702602 PMCID: PMC2716093 DOI: 10.1016/j.mcn.2007.05.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Revised: 05/28/2007] [Accepted: 05/31/2007] [Indexed: 11/18/2022] Open
Abstract
Elucidating mechanisms that differentiate motor neurons from interneurons are fundamental to understanding CNS development. Here we demonstrate that within the Drosophila NB 7-3/serotonergic lineage, different levels of Zfh-1 are required to specify unique properties of both motor neurons and interneurons. We present evidence that Zfh-1 is induced by Notch signaling and suppressed by the transcription factor Eagle. The antagonistic regulation of zfh-1 by Notch and Eagle results in Zfh-1 being expressed at low levels in the NB 7-3 interneurons and at higher levels in the NB 7-3 motor neurons. Furthermore, we present evidence that the induction of Zfh-1 by Notch occurs independently from canonical Notch signaling. We present a model where the differentiation of cell fates within the NB 7-3 lineage requires both canonical and non-canonical Notch signaling. Our observations on the regulation of Zfh-1 provide a new approach for examining the function of Zfh-1 in motor neurons and larval locomotion.
Collapse
MESH Headings
- Analysis of Variance
- Animals
- Animals, Genetically Modified
- Axons/physiology
- Behavior, Animal
- Cell Differentiation/physiology
- Cell Lineage/physiology
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Drosophila
- Drosophila Proteins/genetics
- Drosophila Proteins/metabolism
- Embryo, Nonmammalian
- Gene Expression Regulation, Developmental/physiology
- Genes, Insect/physiology
- Models, Biological
- Motor Activity/physiology
- Motor Neurons/cytology
- Motor Neurons/physiology
- Receptors, Notch/genetics
- Receptors, Notch/metabolism
- Receptors, Steroid/genetics
- Receptors, Steroid/metabolism
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Serotonin/metabolism
- Signal Transduction/physiology
Collapse
Affiliation(s)
- Hyung-Kook Lee
- Department of Biology, California Institute of Technology, 1200 East California Blvd., Pasadena, CA 91125, 626-395-8353 phone,
| | - Martha J. Lundell
- Department of Biology, University of Texas at San Antonio, 6900 North Loop 1604 West, San Antonio, TX 78249, 210-458-5769 phone, 210-458-5658 fax,
| |
Collapse
|
140
|
Manavella PA, Roqueiro G, Darling DS, Cabanillas AM. The ZFHX1A gene is differentially autoregulated by its isoforms. Biochem Biophys Res Commun 2007; 360:621-6. [PMID: 17610840 PMCID: PMC2770808 DOI: 10.1016/j.bbrc.2007.06.088] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Accepted: 06/19/2007] [Indexed: 11/20/2022]
Abstract
The Zfhx1a gene expresses two different isoforms; the full length Zfhx1a-1 and a truncated isoform termed Zfhx1a-2 lacking the first exon. Deletion analysis of the Zfhx1a-1 promoter localized cell-specific repressors, and a proximal G-string that is critically required for transactivation. Transfection of Zfhx1a-1 cDNA, but not Zfhx1a-2, downregulates Zfhx1a-1 promoter activity. Mutation of an E2-box disrupted the binding of both Zfhx1a isoforms. Consistent with this, transfected Zfhx1a-1 does not regulate the transcriptional activity of the E-box mutated Zfhx1a-1 promoter. Competitive EMSAs and transfection assays show that Zfhx1a-2 can function as a dominant negative isoform since it is able to compete and displace Zfhx1a-1 from its binding site and overcome Zfhx1a-1 induced repression of the Zfhx1a-1 promoter in cells. Hence, the Zfhx1a-1 gene is autoregulated in part by negative feedback on its own promoter which is, in turn, modified by the availability of the negative dominant isoform Zfhx1a-2.
Collapse
Affiliation(s)
- Pablo A Manavella
- CIBICI-CONICET, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, 5000 Córdoba, Argentina
| | | | | | | |
Collapse
|
141
|
Fang M, Chen R, Cai Q, Duan S, Lv K, Cheng N, Sun S. Association of HLA genes with ankylosing spondylitis in Han population of eastern China. Scand J Immunol 2007; 65:559-66. [PMID: 17523949 DOI: 10.1111/j.1365-3083.2007.01936.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ankylosing spondylitis (AS) is a chronic inflammatory disorder with a multifactorial genetic basis. HLA-B27 was reported with the greatest susceptibility to AS but did not act alone. The aim of this study was to search for other gene(s) associated with AS independently of HLA-B27 using 13 microsatellite markers spanning 1.5 Mb from locus TAP1 to HLA-Cw and a single-nucleotide polymorphism marker within NFkappaBIL1 gene promoter. Genotyping for microsatellites was performed in 175 AS patients of eastern Chinese and 219 ethnically matched healthy controls using polymerase chain reaction with fluorescence-labelled primers, whereas the SNP marker was genotyped by direct DNA sequencing. Allele as well as haplotype frequencies were compared between cases and controls, and a linkage disequilibrium analysis was performed to estimate the LD relationship between the candidate regions. The frequencies of alleles D6S2811*128, STR_MICA*A5.1 and D6S2672*109, as well as haplotypes D6S2811*128-D6S2927*213-D6S2810*340, D6S2927* 221-D6S2810*350-MICA*A5.1, and D6S2810*350-MICA*A5.1-D6S2800* 136 were significantly increased in B27-positive AS patients when compared with B27-positive controls. The results indicated that there may be other gene(s) within the HLA region, especially around locus HLA-B or HLA-Cw, with susceptibility to AS independently of HLA-B27.
Collapse
Affiliation(s)
- M Fang
- Department of Medical Genetics, Changhai Hospital, Second Military Medical University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
142
|
Harris MJ, Juriloff DM. Mouse mutants with neural tube closure defects and their role in understanding human neural tube defects. ACTA ACUST UNITED AC 2007; 79:187-210. [PMID: 17177317 DOI: 10.1002/bdra.20333] [Citation(s) in RCA: 241] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND The number of mouse mutants and strains with neural tube closure defects (NTDs) now exceeds 190, including 155 involving known genes, 33 with unidentified genes, and eight "multifactorial" strains. METHODS The emerging patterns of mouse NTDs are considered in relation to the unknown genetics of the common human NTDs, anencephaly, and spina bifida aperta. RESULTS Of the 150 mouse mutants that survive past midgestation, 20% have risk of either exencephaly and spina bifida aperta or both, parallel to the majority of human NTDs, whereas 70% have only exencephaly, 5% have only spina bifida, and 5% have craniorachischisis. The primary defect in most mouse NTDs is failure of neural fold elevation. Most null mutations (>90%) produce syndromes of multiple affected structures with high penetrance in homozygotes, whereas the "multifactorial" strains and several null-mutant heterozygotes and mutants with partial gene function (hypomorphs) have low-penetrance nonsyndromic NTDs, like the majority of human NTDs. The normal functions of the mutated genes are diverse, with clusters in pathways of actin function, apoptosis, and chromatin methylation and structure. The female excess observed in human anencephaly is found in all mouse exencephaly mutants for which gender has been studied. Maternal agents, including folate, methionine, inositol, or alternative commercial diets, have specific preventative effects in eight mutants and strains. CONCLUSIONS If the human homologs of the mouse NTD mutants contribute to risk of common human NTDs, it seems likely to be in multifactorial combinations of hypomorphs and low-penetrance heterozygotes, as exemplified by mouse digenic mutants and the oligogenic SELH/Bc strain.
Collapse
Affiliation(s)
- Muriel J Harris
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.
| | | |
Collapse
|
143
|
Yang S, Zhao L, Yang J, Chai D, Zhang M, Zhang J, Ji X, Zhu T. deltaEF1 represses BMP-2-induced differentiation of C2C12 myoblasts into the osteoblast lineage. J Biomed Sci 2007; 14:663-79. [PMID: 17479358 DOI: 10.1007/s11373-007-9155-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Accepted: 02/21/2007] [Indexed: 10/23/2022] Open
Abstract
Osteoblasts, derived from pluripotent mesenchymal precursor cells, acquire their differentiated phenotypes under the control of a series of regulatory factors, the best known of which is BMP-2. Our recent preliminary studies suggest that expression of deltaEF1, a member of the zinc finger-homeodomain transcription factor family, is significantly down-regulated as human mesenchymal stem cells (MSCs) are subjected to osteoblastic differentiation in the presence of BMP-2. Here we demonstrate that overexpression of deltaEF1 in murine pre-myoblast C2C12 cells resulted in a decrease in the mRNA levels of early osteoblast marker genes induced by BMP-2 including osterix and collagen type I. This inhibitory effect was further confirmed by decreased alkaline phosphatase (ALP) activities. Neither of the zinc finger clusters of deltaEF1 is necessary for its repressive effect on BMP-2-induced osteoblastic differentiation of C2C12 cells. Immunoprecipitation results indicated that deltaEF1 did not physically associate with Smads proteins, suggesting that the inhibitory effect of deltaEF1 may be Smad-independent. deltaEF1 overexpression in C2C12 cells resulted in down-regulation of activating protein-1 (AP-1) activities promoted by BMP-2. Moreover, deltaEF1 exhibited transrepression on murine osteocalcin gene which effect is partially mediated through diminishing of AP-1 signaling. These results suggest that deltaEF1 acts as a potent inhibitor of BMP-2-induced osteogenesis in vitro, in part, by differentially regulating the AP-1 signaling pathway.
Collapse
Affiliation(s)
- Shuang Yang
- Medical College of Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | | | | | | | | | | | | | | |
Collapse
|
144
|
Weston AD, Ozolins TRS, Brown NA. Thoracic skeletal defects and cardiac malformations: a common epigenetic link? ACTA ACUST UNITED AC 2007; 78:354-70. [PMID: 17315248 DOI: 10.1002/bdrc.20084] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Congenital heart defects (CHDs) are the most common birth defects in humans. In addition, cardiac malformations represent the most frequently identified anomaly in teratogenicity experiments with laboratory animals. To explore the mechanisms of these drug-induced defects, we developed a model in which pregnant rats are treated with dimethadione, resulting in a high incidence of heart malformations. Interestingly, these heart defects were accompanied by thoracic skeletal malformations (cleft sternum, fused ribs, extra or missing ribs, and/or wavy ribs), which are characteristic of anterior-posterior (A/P) homeotic transformations and/or disruptions at one or more stages in somite development. A review of other teratogenicity studies suggests that the co-occurrence of these two disparate malformations is not unique to dimethadione, rather it may be a more general phenomenon caused by various structurally unrelated agents. The coexistence of cardiac and thoracic skeletal malformations has also presented clinically, suggesting a mechanistic link between cardiogenesis and skeletal development. Evidence from genetically modified mice reveals that several genes are common to heart development and to formation of the axial skeleton. Some of these genes are important in regulating chromatin architecture, while others are tightly controlled by chromatin-modifying proteins. This review focuses on the role of these epigenetic factors in development of the heart and axial skeleton, and examines the hypothesis that posttranslational modifications of core histones may be altered by some developmental toxicants.
Collapse
MESH Headings
- Abnormalities, Drug-Induced/etiology
- Abnormalities, Drug-Induced/genetics
- Abnormalities, Drug-Induced/metabolism
- Abnormalities, Multiple/etiology
- Abnormalities, Multiple/genetics
- Abnormalities, Multiple/metabolism
- Animals
- Bone and Bones/abnormalities
- Chromosomal Proteins, Non-Histone
- Epigenesis, Genetic
- Female
- Heart Defects, Congenital/etiology
- Heart Defects, Congenital/genetics
- Heart Defects, Congenital/metabolism
- Histones/metabolism
- Humans
- MicroRNAs/genetics
- Models, Biological
- Pregnancy
- Protein Processing, Post-Translational
- Ribs/abnormalities
- Sternum/abnormalities
- Teratogens/toxicity
- Transcription Factors/genetics
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- Andrea D Weston
- Developmental and Reproductive Toxicology Center of Emphasis, Drug Safety Research, and Development, Pfizer Global Research and Development, Groton, Connecticut 06340, USA
| | | | | |
Collapse
|
145
|
Khan IM, Redman SN, Williams R, Dowthwaite GP, Oldfield SF, Archer CW. The development of synovial joints. Curr Top Dev Biol 2007; 79:1-36. [PMID: 17498545 DOI: 10.1016/s0070-2153(06)79001-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
During vertebrate evolution, successful adaptation of animal limbs to a variety of ecological niches depended largely on the formation and positioning of synovial joints. The function of a joint is to allow smooth articulation between opposing skeletal elements and to transmit biomechanical loads through the structure, and this is achieved through covering the ends of bones with articular cartilage, lubricating the joint with synovial fluid, using ligaments to bind the skeletal elements together, and encapsulating the joint in a protective fibrous layer of tissue. The diversity of limb generation has been proposed to occur through sequential branching and segmentation of precartilaginous skeletal elements along the proximodistal axis of the limb. The position of future joints is first delimited by areas of higher cell density called interzones initially through an as yet unidentified inductive signal, subsequently specification of these regions is controlled hierarchically by wnt14 and gdf5, respectively. Joint-forming cell fate although specified is not fixed, and joints will fuse if growth factor signaling is perturbed. Cavitation, the separation of the two opposing skeletal elements, and joint morphogenesis, the process whereby the joint cells organize and mature to establish a functional interlocking and reciprocally shaped joint, are slowly being unraveled through studying the plethora of molecules that make up the unique extracellular matrix of the forming structure. The joint lining tissue, articular cartilage, is avascular, and this limits its reparative capacity such that arthritis and associated joint pathologies are the single largest cause of disability in the adult population. Recent discoveries of adult stem cells and more specifically the isolation of chondroprogenitor cells from articular cartilage are extending available therapeutic options, though only with a more complete understanding of synovial joint development can such options have greater chances of success.
Collapse
Affiliation(s)
- I M Khan
- Cardiff School of Biosciences, Cardiff University, Cardiff CF103US, Wales, United Kingdom
| | | | | | | | | | | |
Collapse
|
146
|
Liu M, Su M, Lyons GE, Bodmer R. Functional conservation of zinc-finger homeodomain gene zfh1/SIP1 in Drosophila heart development. Dev Genes Evol 2006; 216:683-93. [PMID: 16957952 DOI: 10.1007/s00427-006-0096-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2006] [Accepted: 06/07/2006] [Indexed: 01/18/2023]
Abstract
Comparative genetic studies of diverse animal model systems have revealed that similar developmental mechanisms operate across the Metazoa. In many cases, the genes from one organism can functionally replace homologues in other phyla, a result consistent with a high degree of evolutionarily conserved gene function. We investigated functional conservation among the Drosophila zinc-finger homeodomain protein 1 (zfh1) and its mouse functional homologue Smad-interacting protein 1 (SIP1). Northern blot analyses of SIP1 expression patterns detected three novel variants (8.3, 2.7, and 1.9 kb) in addition to the previously described 5.3 kb SIP1 transcript. The two shorter novel SIP1 transcripts were encountered only in developing embryos and both lacked zinc-finger clusters or homeodomain regions. The SIP1 transcripts showed complex embryonic expression patterns consistent with that observed for Drosophila zfh1. They were highly expressed in the developing nervous systems and in a number of mesoderm-derived tissues including lungs, heart, developing myotomes, skeletal muscle, and visceral smooth muscle. The expression of the mammalian 5.3 kb SIP1 transcript in Drosophila zfh1 null mutant embryos completely restored normal heart development in the fly, demonstrating their functional equivalence in cardiogenic pathways. Our present data, together with the previously described heart defects associated with both SIP1 and Drosophila zfh1 mutations, solidify the conclusion that the zfh1 family members participate in an evolutionary conserved program of metazoan cardiogenesis.
Collapse
Affiliation(s)
- Margaret Liu
- Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
| | | | | | | |
Collapse
|
147
|
Peña C, García JM, García V, Silva J, Domínguez G, Rodríguez R, Maximiano C, García de Herreros A, Muñoz A, Bonilla F. The expression levels of the transcriptional regulators p300 and CtBP modulate the correlations between SNAIL, ZEB1, E-cadherin and vitamin D receptor in human colon carcinomas. Int J Cancer 2006; 119:2098-104. [PMID: 16804902 DOI: 10.1002/ijc.22083] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
ZEB1 and SNAIL repress CDH1 and induce epithelial-mesenchymal transition (EMT). However, SNAIL and ZEB1 also activate or regulate other target genes in different ways. For instance, vitamin D receptor (VDR), which activates CDH1 expression upon ligand binding, is repressed by SNAIL but induced by ZEB1. We examined whether the biological activity of SNAIL and ZEB1 in colon cancer is regulated by interacting cofactors. The mRNA expression levels of SNAIL and ZEB1, and of transcriptional regulators p300 and CtBP, were measured by RT-PCR in tumor and normal tissue from 101 colon carcinoma patients. Overexpression of SNAIL was associated with down-regulation of CDH1 and VDR (p = 0.004 and p < 0.001). CDH1 correlated with VDR (r = 0.49; p < 0.001). ZEB1 expression also correlated with VDR (r = 0.23; p = 0.019). However, when CtBP was strongly expressed, ZEB1 was inversely correlated with CDH1 (r = -0.39; p = 0.053). Furthermore, when there were elevated p300 expression levels, the correlation between expression of ZEB1 and VDR was stronger (r = 0.38; p = 0.070). Association between SNAIL expression and down-regulation of CDH1 and VDR was lost in tumors in which p300 and CtBP were strongly expressed. These results indicate that the levels of expression of CtBP and p300 are critical for the action of SNAIL and ZEB1, which have a pivotal role in EMT, and show the importance of CtBP and p300 for tumor progression.
Collapse
Affiliation(s)
- Cristina Peña
- Department of Medical Oncology, Hospital Universitario Puerta de Hierro, Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Nishimura G, Manabe I, Tsushima K, Fujiu K, Oishi Y, Imai Y, Maemura K, Miyagishi M, Higashi Y, Kondoh H, Nagai R. DeltaEF1 mediates TGF-beta signaling in vascular smooth muscle cell differentiation. Dev Cell 2006; 11:93-104. [PMID: 16824956 DOI: 10.1016/j.devcel.2006.05.011] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2005] [Revised: 03/21/2006] [Accepted: 05/10/2006] [Indexed: 10/24/2022]
Abstract
Alteration in the differentiated state of smooth muscle cells (SMCs) is known to be integral to vascular development and the pathogenesis of vascular disease. However, it is still largely unknown how environmental cues translate into transcriptional control of SMC genes. We found that deltaEF1 is upregulated during SMC differentiation and selectively transactivates the promoters of SMC differentiation marker genes, SM alpha-actin and SM myosin heavy chain (SM-MHC). DeltaEF1 physically interacts with SRF and Smad3, resulting in a synergistic activation of SM alpha-actin promoter. Chromatin immunoprecipitation assays and knockdown experiments showed that deltaEF1 is involved in the control of the SMC differentiation programs induced by TGF-beta signaling. Overexpression of deltaEF1 inhibited neointima formation and promoted SMC differentiation, whereas heterozygous deltaEF1 knockout mice exhibited exaggerated neointima formation. It thus appears deltaEF1 mediates SMC differentiation via interaction with SRF and Smad3 during development and in vascular disease.
Collapse
Affiliation(s)
- Go Nishimura
- Department of Cardiovascular Medicine, School of Engineering, The University of Tokyo, Bunkyo, Tokyo 113-8655, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Abstract
The Fgf8 gene encodes a series of secreted signalling molecules important in the normal development of the face, brain and limbs. The genomic structure of the chick Fgf8 gene has been analysed and compared to the human and mouse sequences. Divergence between the chick, human and mouse genomic structure was observed. Data indicates that the long alternatively spliced form of exon 1b observed in mouse and exon 1c observed in human and mouse do not exist in the chick Fgf8 gene. RT-PCR analysis indicates that chick Fgf8, like its mouse and human counterpart is alternatively spliced. This data along with the genomic structure data indicates that in the chick there are only two isoforms of Fgf8. This is in contrast to the human and mouse, where evidence suggests that there are 4 and 8 isoforms, respectively. Approximately 400 bp of intron 1d is highly conserved between chick, human and mouse genomic sequences. Using TRANSFAC possible conserved regulatory element binding sites within this domain were identified.
Collapse
Affiliation(s)
- Kim E Haworth
- Department of Craniofacial Development, GKT Dental Institute, Kings College London, Guys Hospital, UK
| | | | | |
Collapse
|
150
|
Méchaly I, Bourane S, Piquemal D, Al-Jumaily M, Ventéo S, Puech S, Scamps F, Valmier J, Carroll P. Gene profiling during development and after a peripheral nerve traumatism reveals genes specifically induced by injury in dorsal root ganglia. Mol Cell Neurosci 2006; 32:217-29. [PMID: 16769221 DOI: 10.1016/j.mcn.2006.04.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2005] [Revised: 04/03/2006] [Accepted: 04/11/2006] [Indexed: 12/22/2022] Open
Abstract
In order to shed light on transcriptional networks involved in adult peripheral nerve repair program, we propose for the first time an organization of the transcriptional dynamics of the mouse dorsal root ganglia (DRG) following a sciatic nerve lesion. This was done by a non-hierarchical bioinformatical clustering of four Serial Analysis of Gene Expression libraries performed on DRG at embryonic day E13, neonatal day P0, adult and adult 3 days post-sciatic nerve section. Grouping genes according to their expression profiles shows that a combination of down-regulation of genes expressed at the adult stages, re-expression of embryonic genes and induction of a set of de novo genes takes place in injured neurons. Focusing on this latter event highlights Ddit3, Timm8b and Oazin as potential new injury-induced molecular actors involved in a stress response pathway. Their association with the traumatic state was confirmed by real-time PCR and in situ hybridization investigations. Clustering analysis allows us to distinguish developmental re-programming events from nerve-injury-induced processes and thus provides a basis for molecular understanding of transcriptional alterations taking place in the DRG after a sciatic nerve lesion.
Collapse
Affiliation(s)
- Ilana Méchaly
- I.N.S.E.R.M. U583, Institut des Neurosciences de Montpellier-Hôpital St Eloi. 80, rue Augustin Fliche. BP 74103. 34091 Montpellier cedex 5, France.
| | | | | | | | | | | | | | | | | |
Collapse
|