101
|
Lilleväli K, Haugas M, Matilainen T, Pussinen C, Karis A, Salminen M. Gata3 is required for early morphogenesis and Fgf10 expression during otic development. Mech Dev 2006; 123:415-29. [PMID: 16806848 DOI: 10.1016/j.mod.2006.04.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Revised: 04/19/2006] [Accepted: 04/26/2006] [Indexed: 01/08/2023]
Abstract
Inner ear develops from an induced surface ectoderm placode that invaginates and closes to form the otic vesicle, which then undergoes a complex morphogenetic process to form the membranous labyrinth. Inner ear morphogenesis is severely affected in Gata3 deficient mouse embryos, but the onset and basis of the phenotype has not been known. We show here that Gata3 deficiency leads to severe and unique abnormalities during otic placode invagination. The invagination problems are accompanied often by the formation of a morphological boundary between the dorsal and ventral otic cup and by the precocious appearance of dorsal endolymphatic characteristics. In addition, the endolymphatic domain often detaches from the rest of the otic epithelium during epithelial closure. The expression of several cell adhesion mediating genes is altered in Gata3 deficient ears suggesting that Gata3 controls adhesion and morphogenetic movements in early otic epithelium. Inactivation of Gata3 leads also to a loss of Fgf10 expression in otic epithelium and auditory ganglion demonstrating that Gata3 is an important regulator of Fgf-signalling during otic development.
Collapse
Affiliation(s)
- Kersti Lilleväli
- Institute of Biotechnology, University of Helsinki, Viikinkaari 9, 00710 Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
102
|
Xia G, Kumar SR, Stein JP, Singh J, Krasnoperov V, Zhu S, Hassanieh L, Smith DL, Buscarini M, Broek D, Quinn DI, Weaver FA, Gill PS. EphB4 receptor tyrosine kinase is expressed in bladder cancer and provides signals for cell survival. Oncogene 2006; 25:769-80. [PMID: 16205642 DOI: 10.1038/sj.onc.1209108] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We sought to evaluate the biological function of the receptor tyrosine kinase EphB4 in bladder cancer. All of the nine bladder cancer cell lines examined express EphB4 and the receptor could be phosphorylated following stimulation with its cognate ligand, EphrinB2. Out of the 15 fresh bladder cancer specimens examined, 14 expressed EphB4 with a mean sevenfold higher level of expression compared to adjacent normal urothelium. EphB4 expression was regulated by several mechanisms: EPHB4 gene locus was amplified in 27% tumor specimens and 33% cell lines studied; inhibition of EGFR signaling downregulated EphB4 levels; and forced expression of wild-type p53 reduced EphB4 expression. EphB4 knockdown using specific siRNA and antisense oligodeoxynucleotides molecules led to a profound inhibition in cell viability associated with apoptosis via activation of caspase-8 pathway and downregulation of antiapoptotic factor, bcl-xl. Furthermore, EphB4 knockdown significantly inhibited tumor cell migration and invasion. EphB4 knockdown in an in vivo murine tumor xenograft model led to a nearly 80% reduction in tumor volume associated with reduced tumor proliferation, increased apoptosis and reduced tumor microvasculature. EphB4 is thus a potential candidate as a predictor of disease outcome in bladder cancer and as target for novel therapy.
Collapse
Affiliation(s)
- G Xia
- Department of Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Abraham S, Knapp DW, Cheng L, Snyder PW, Mittal SK, Bangari DS, Kinch M, Wu L, Dhariwal J, Mohammed SI. Expression of EphA2 and Ephrin A-1 in carcinoma of the urinary bladder. Clin Cancer Res 2006; 12:353-60. [PMID: 16428472 DOI: 10.1158/1078-0432.ccr-05-1505] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The EphA2 receptor tyrosine kinase is believed to play a role in tumor growth and metastasis. The clinical significance of the expression of EphA2 was observed in breast, prostate, colon, skin, cervical, ovarian, and lung cancers. The purpose of this work was to determine the expression of EphA2 and its ligand, Ephrin A-1, and E-cadherin in carcinoma of the urinary bladder, and determine EphA2 as a new target for therapy in bladder cancer. EXPERIMENTAL DESIGN EphA2 mRNA and protein expression was investigated by reverse transcription-PCR and Western blot, respectively, in bladder cancer cell lines. In addition, the expression of EphA2, Ephrin A-1, and E-cadherin in tissues from patients with different stages of urinary bladder cancer was determined by immunohistochemistry. Furthermore, the ability of Ephrin A-1 to inhibit growth of bladder cancer cells was also investigated using an adenoviral delivery system. RESULTS Western blot analysis showed high EphA2 expression in TCCSUP, T24, and UMUC-3 cell lines. In tissues, the staining intensity of EphA2 was less in normal urothelium but increased greatly in advancing stages of urothelial carcinoma (P < 0.05). Similarly, the staining intensity of Ephrin A-1 was low in normal tissues and high in cancerous tissues, but it was similar across the various stages of urothelial carcinoma (T(a)-T(4)). E-cadherin immunoreactivity decreased in urothelial cancer. Association of EphA2 and Ephrin A-1 expression was found to be significant between T(a) stage and T(1)-T(2) (P < 0.04) and T(a) and T(3)-T(4) stages (P < 0.0001). Adenovirus delivery of Ephrin A-1 inhibited proliferation of TCCSUP cells. CONCLUSION EphA2 may serve as a novel target for bladder cancer therapy.
Collapse
Affiliation(s)
- Shaji Abraham
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN 47909, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Erber R, Eichelsbacher U, Powajbo V, Korn T, Djonov V, Lin J, Hammes HP, Grobholz R, Ullrich A, Vajkoczy P. EphB4 controls blood vascular morphogenesis during postnatal angiogenesis. EMBO J 2006; 25:628-41. [PMID: 16424904 PMCID: PMC1383533 DOI: 10.1038/sj.emboj.7600949] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2005] [Accepted: 12/19/2005] [Indexed: 01/13/2023] Open
Abstract
Guidance molecules have attracted interest by demonstration that they regulate patterning of the blood vascular system during development. However, their significance during postnatal angiogenesis has remained unknown. Here, we demonstrate that endothelial cells of human malignant brain tumors also express guidance molecules, such as EphB4 and its ligand ephrinB2. To study their function, EphB4 variants were overexpressed in blood vessels of tumor xenografts. Our studies revealed that EphB4 acts as a negative regulator of blood vessel branching and vascular network formation, switching the vascularization program from sprouting angiogenesis to circumferential vessel growth. In parallel, EphB4 reduces the permeability of the tumor vascular system via activation of the angiopoietin-1/Tie2 system at the endothelium/pericyte interface. Furthermore, overexpression of EphB4 variants in blood vessels during (i) vascularization of non-neoplastic cell grafts and (ii) retinal vascularization revealed that these functions of EphB4 apply to postnatal, non-neoplastic angiogenesis in general. This implies that both neoplastic and non-neoplastic vascularization is driven not only by a vascular initiation program but also by a vascular patterning program mediated by guidance molecules.
Collapse
Affiliation(s)
- Ralf Erber
- Department of Neurosurgery, Faculty for Clinical Medicine of the University of Heidelberg, University Hospital Mannheim, Mannheim, Germany
| | - Uta Eichelsbacher
- Department of Molecular Biology, Max-Planck-Institute for Biochemistry, Martinsried, Germany
| | - Violetta Powajbo
- Department of Neurosurgery, Faculty for Clinical Medicine of the University of Heidelberg, University Hospital Mannheim, Mannheim, Germany
| | - Tobias Korn
- Department of Neurosurgery, Faculty for Clinical Medicine of the University of Heidelberg, University Hospital Mannheim, Mannheim, Germany
| | - Valentin Djonov
- Institute of Anatomy, University of Berne, Berne, Switzerland
| | - Jihong Lin
- Fifth Medical Clinic, Faculty for Clinical Medicine of the University of Heidelberg, University Hospital Mannheim, Mannheim, Germany
| | - Hans-Peter Hammes
- Fifth Medical Clinic, Faculty for Clinical Medicine of the University of Heidelberg, University Hospital Mannheim, Mannheim, Germany
| | - Rainer Grobholz
- Department of Pathology, Faculty for Clinical Medicine of the University of Heidelberg, University Hospital Mannheim, Mannheim, Germany
| | - Axel Ullrich
- Department of Molecular Biology, Max-Planck-Institute for Biochemistry, Martinsried, Germany
| | - Peter Vajkoczy
- Department of Neurosurgery, Faculty for Clinical Medicine of the University of Heidelberg, University Hospital Mannheim, Mannheim, Germany
- Department of Neurosurgery, Faculty for Clinical Medicine of the University of Heidelberg, University Hospital Mannheim, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany. Tel.: +49 621 383 2360; Fax: +49 621 383 2004; E-mail:
| |
Collapse
|
105
|
Xiao D, Miller GM, Jassen A, Westmoreland SV, Pauley D, Madras BK. Ephrin/Eph receptor expression in brain of adult nonhuman primates: Implications for neuroadaptation. Brain Res 2006; 1067:67-77. [PMID: 16360648 DOI: 10.1016/j.brainres.2005.10.073] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Accepted: 10/25/2005] [Indexed: 11/23/2022]
Abstract
In developing brain, Eph receptors and their ephrin ligands (Ephs/ephrins) are implicated in facilitating topographic guidance of a number of pathways, including the nigrostriatal and mesolimbic dopamine (DA) pathways. In adult rodent brain, these molecules are implicated in neuronal plasticity associated with learning and memory. Cocaine significantly alters the expression of select members of this family of axonal guidance molecules, implicating Ephs, ephrins in drug-induced neuroadaptation. The potential contribution of Ephs, ephrins to cocaine-induced reorganization of striatal circuitry brain in primates [Saka, E., Goodrich, C., Harlan, P., Madras, B.K., Graybiel, A.M., 2004. Repetitive behaviors in monkeys are linked to specific striatal activation patterns. J. Neurosci. 24, 7557-7565] is unknown because there are no documented reports of Eph/ephrin expression or function in adult primate brain. We now report that brains of adult old and new world monkeys express mRNA encoding EphA4 receptor and ephrin-B2 ligand, implicated in topographic guidance of dopamine and striatal neurons during development. Their encoded proteins distributed highly selectively in regions of adult monkey brain. EphA4 mRNA levels were prominent in the DA-rich caudate/putamen, nucleus accumbens and globus pallidus, as well as the medial and orbitofrontal cortices, hippocampus, amygdala, thalamus and cerebellum. Immunocytochemical localization of EphA4 protein revealed discrete expression in caudate/putamen, globus pallidus, substantia nigra, cerebellar Purkinje cells, pyramidal cells of frontal cortices (layers II, III and V) and the subgranular zone of the hippocampus. Evidence for EphA4 expression in dopamine neurons emerged from colocalization with tyrosine-hydroxylase-positive terminals in striatum and substantia nigra and ventral tegmental area cell bodies. The association of axonal guidance molecules with drug-induced reorganization of adult primate brain circuitry warrants investigation.
Collapse
Affiliation(s)
- Danqing Xiao
- Department of Psychiatry, Harvard Medical School, Division of Neurochemistry, New England Primate Research Center, Southborough, MA 01772-9102, USA
| | | | | | | | | | | |
Collapse
|
106
|
Abstract
The prevailing approach within the field of craniofacial development is focused on finding a balance between tissues (e.g., facial epithelia, neuroectoderm, and neural crest) and molecules (e.g., bone morphogenetic proteins, fibroblast growth factors, Wnts) that play a role in sculpting the face. We are rapidly learning that neither these tissues nor molecular signals are able to act in isolation; in fact, molecular cues are constantly reciprocating signals between the epithelia and the neural crest in order to pattern and mold facial structures. More recently, it has been proposed that this crosstalk is often mediated and organized by discrete organizing centers within the tissues that are able to act as a self-contained unit of developmental potential (e.g., the rhombomere and perhaps the ectomere). Whatever the molecules are and however they are interpreted by these tissues, it appears that there is a remarkably conserved mechanism for setting up the initial organization of the facial prominences between species. Regardless of species, all vertebrates appear to have the same basic bauplan. However, sometime during mid-gestation, the vertebrate face begins to exhibit species-specific variations, in large part due to differences in the rates of growth and differentiation of cells comprising the facial prominences. How do these differences arise? Are they due to late changes in molecular signaling within the facial prominences themselves? Or are these late changes a reflection of earlier, more subtle alterations in boundaries and fields that are established at the earliest stages of head formation? We do not have clear answers to these questions yet, but in this chapter we present new studies that shed light on this age-old question. This chapter aims to present the known signals, both on a molecular and cellular level, responsible for craniofacial development while bringing to light the events that may serve to create difference in facial morphology seen from species to species.
Collapse
Affiliation(s)
- Samantha A Brugmann
- Department of Plastic and Reconstructive Surgery, Stanford University, California 94305, USA
| | | | | |
Collapse
|
107
|
Masood R, Kumar SR, Sinha UK, Crowe DL, Krasnoperov V, Reddy RK, Zozulya S, Singh J, Xia G, Broek D, Schönthal AH, Gill PS. EphB4 provides survival advantage to squamous cell carcinoma of the head and neck. Int J Cancer 2006; 119:1236-48. [PMID: 16615113 DOI: 10.1002/ijc.21926] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The receptor tyrosine kinase EphB4 and its ligand EphrinB2 play critical roles in blood vessel maturation, and are frequently overexpressed in a wide variety of cancers. We studied the aberrant expression and biological role of EphB4 in head and neck squamous cell carcinoma (HNSCC). We tested the effect of EphB4-specific siRNA and antisense oligonucleotides (AS-ODN) on cell growth, migration and invasion, and the effect of EphB4 AS-ODN on tumor growth in vivo. All HNSCC tumor samples express EphB4 and levels of expression correlate directly with higher stage and lymph node metastasis. Six of 7 (86%) HNSCC cell lines express EphB4, which is induced either by EGFR activation or by EPHB4 gene amplification. EphrinB2 was expressed in 65% tumors and 5 of 7 (71%) cell lines. EphB4 provides survival advantage to tumor cells in that EphB4 siRNA and AS-ODN significantly inhibit tumor cell viability, induce apoptosis, activate caspase-8, and sensitize cells to TRAIL-induced cell death. Furthermore, EphB4-specific AS-ODN significantly inhibits the growth of HNSCC tumor xenografts in vivo. Expression of EphB4 in HNSCC tumor cells confers survival and invasive properties, and thereby provides a strong rationale for targeting EphB4 as novel therapy for HNSCC.
Collapse
MESH Headings
- Animals
- Apoptosis
- Apoptosis Regulatory Proteins/pharmacology
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/mortality
- Caspase 8
- Caspases/metabolism
- Cell Line, Tumor
- Cell Movement
- Cell Survival
- Enzyme Activation
- Ephrin-B2/antagonists & inhibitors
- Ephrin-B2/genetics
- Ephrin-B2/metabolism
- ErbB Receptors/genetics
- ErbB Receptors/metabolism
- Gene Amplification
- Head and Neck Neoplasms/metabolism
- Head and Neck Neoplasms/mortality
- Humans
- Lymphatic Metastasis
- Male
- Membrane Glycoproteins/pharmacology
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Neoplasm Invasiveness/pathology
- Neoplasm Staging
- RNA, Small Interfering/pharmacology
- Receptor, EphB4/antagonists & inhibitors
- Receptor, EphB4/genetics
- Receptor, EphB4/metabolism
- TNF-Related Apoptosis-Inducing Ligand
- Transfection
- Transplantation, Heterologous
- Tumor Necrosis Factor-alpha/pharmacology
Collapse
Affiliation(s)
- Rizwan Masood
- Department of Pathology, University of Southern California, Los Angeles, CA 90033, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
García-Calero E, de Puelles E, Puelles L. EphA7 receptor is expressed differentially at chicken prosomeric boundaries. Neuroscience 2006; 141:1887-97. [PMID: 16844303 DOI: 10.1016/j.neuroscience.2006.04.074] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2006] [Revised: 04/05/2006] [Accepted: 04/07/2006] [Indexed: 10/24/2022]
Abstract
We reexamined tyrosine-kinase receptor EphA7 RNA signal in embryonic chicken forebrain, to clarify its topographic relationships with early regionalization processes, such as establishment of prosomeric boundaries. After neurulation, uniform alar expression appears across prospective prosomeres prosomere 1, prosomere 2 and prosomere 3 (prethalamus, thalamus and pretectum). This pattern soon changes by differential downregulation at or in between some of the prosomeric boundaries in an individual pattern for each limit, and by expansion of expression into the rostral midbrain. The secondary distribution highlights various transversal and longitudinal domains, notably the zona limitans intrathalamica and the pretectum limits, as well as two longitudinal bands in the basal plate, termed paramedian and parabasal. Strong expression of EphA7 appears at the mammillary pouch and a supramammillary tegmental arch from stage Hamburger and Hamilton stages 14-15 onwards. At the end of the developmental period examined, expression of EphA7 in the ventricular zone decreases generally (with some exceptions) and novel expression domains start to appear in the mantle layer, initiating a third phase of differential expression. Thus, while the expression of EphA7 does not show a fixed functional or topographic relationship to prosomeric boundaries, sequential transcription changes during chicken development are consistent with a differential involvement of the diverse interprosomeric boundaries, as well as dorsoventral patterning organizers, in the regulation of EphA7 expression.
Collapse
Affiliation(s)
- E García-Calero
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia (Campus Espinardo), E30100 Murcia, Spain
| | | | | |
Collapse
|
109
|
Fang WB, Brantley-Sieders DM, Parker MA, Reith AD, Chen J. A kinase-dependent role for EphA2 receptor in promoting tumor growth and metastasis. Oncogene 2005; 24:7859-68. [PMID: 16103880 DOI: 10.1038/sj.onc.1208937] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Receptor tyrosine kinases of the Eph family are upregulated in several different types of cancer. One family member in particular, the EphA2 receptor, has been linked to breast, prostate, lung and colon cancer, as well as melanoma. However, mechanisms by which EphA2 contributes to tumor progression are far from clear. In certain tumor cell lines, EphA2 receptor is underphosphorylated, raising the question of whether ligand-induced receptor phosphorylation and its kinase activity play a role in oncogenesis. To test directly the role of EphA2 receptor phosphorylation/kinase activity in tumor progression, we generated EphA2 receptor variants that were either lacking the cytoplasmic domain or carrying a point mutation that inhibits its kinase activity. Expression of these EphA2 mutants in breast cancer cells resulted in decreased tumor volume and increased tumor apoptosis in primary tumors. In addition, the numbers of lung metastases were significantly reduced in both experimental and spontaneous metastasis models. Reduced tumor volume and metastasis are not due to defects in tumor angiogenesis, as there is no significant difference in tumor vessel density between wild-type tumors and tumors expressing EphA2-signaling-defective mutants. In contrast, tumor cells expressing the EphA2 mutants are defective in RhoA GTPase activation and cell migration. Taken together, these results suggest that receptor phosphorylation and kinase activity of the EphA2 receptor, at least in part, contribute to tumor malignancy.
Collapse
Affiliation(s)
- Wei Bin Fang
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232-2363, USA
| | | | | | | | | |
Collapse
|
110
|
Chen J, Hicks D, Brantley-Sieders D, Cheng N, McCollum GW, Qi-Werdich X, Penn J. Inhibition of retinal neovascularization by soluble EphA2 receptor. Exp Eye Res 2005; 82:664-73. [PMID: 16359662 DOI: 10.1016/j.exer.2005.09.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2005] [Accepted: 09/11/2005] [Indexed: 12/18/2022]
Abstract
Eph receptor tyrosine kinases (RTKs) and their ligands, known as ephrins, play an important role in vascular remodeling during embryogenesis, but their functions in adult angiogenesis are just beginning to be investigated. In this report, we investigated the effect of blocking EphA receptor activation on VEGF-induced angiogenic responses of cultured retinal endothelial cells and on retinal neovascularization in a rodent model of retinopathy of prematurity (ROP). Soluble EphA2-Fc receptors inhibited ephrin-A1 ligand or VEGF-induced BRMEC migration and tube formation without affecting proliferation in vitro. Since EphA2-Fc receptors can inhibit activation of multiple EphA receptors, the specific role of EphA2 receptor in angiogenesis was further investigated in EphA2-deficient endothelial cells. Loss of EphA2 in endothelial cells leads to defective cell migration and assembly in response to either ephrin-A1 or VEGF. Finally, a significant reduction in the severity of abnormal retinal neovascularization was observed in the eyes treated with soluble EphA2-Fc receptors, yet the normal total retinal vascular area was not significantly changed. Because soluble Eph receptor significantly inhibited pathologic retinal angiogenesis without affecting normal intraretinal vessels, it may be a promising agent for treatment of retinal angiogenesis in a number of human ocular diseases.
Collapse
Affiliation(s)
- Jin Chen
- Department of Medicine, Division of Rheumatology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | | | | | | | | | | | | |
Collapse
|
111
|
Abstract
At the vertebrate optic chiasm there is major change in fibre order and, in many animals, a separation of fibres destined for different hemispheres of the brain. However, the structure of this region is not uniform among all species but rather shows marked variations both in terms of its gross architecture and the pathways taken by different fibres. There also are striking differences in the developmental mechanisms sculpting this region even between closely related animals. In spite of this, recent studies have provided strong evidence for a remarkable degree of conservation in the molecular nature of the guidance signals and regulatory genes driving chiasmatic development. Here differences and similarities in chiasmatic organisation and development between separate groups of animals will be reviewed. While it may not be possible to ascribe a single set of factors that are universal components of the vertebrate chiasm, there are both strikingly similar elements as well as diverse features to the development, organisation and architecture of this region. This review aims to highlight key issues in the organisation and development of the vertebrate optic chiasm with a focus on comparing and contrasting the data that has been gleaned to date from different vertebrate groups.
Collapse
Affiliation(s)
- Glen Jeffery
- Institute of Ophthalmology, University College London, Bath Street, London EC1V 9EL, UK.
| | | |
Collapse
|
112
|
Olsson L, Ericsson R, Cerny R. Vertebrate head development: segmentation, novelties, and homology. Theory Biosci 2005; 124:145-63. [PMID: 17046353 DOI: 10.1007/bf02814481] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2005] [Accepted: 06/30/2005] [Indexed: 11/26/2022]
Abstract
Vertebrate head development is a classical topic lately invigorated by methodological as well as conceptual advances. In contrast to the classical segmentalist views going back to idealistic morphology, the head is now seen not as simply an extension of the trunk, but as a structure patterned by different mechanisms and tissues. Whereas the trunk paraxial mesoderm imposes its segmental pattern on adjacent tissues such as the neural crest derivatives, in the head the neural crest cells carry pattern information needed for proper morphogenesis of mesodermal derivatives, such as the cranial muscles. Neural crest cells make connective tissue components which attach the muscle fiber to the skeletal elements. These crest cells take their origin from the same visceral arch as the muscle cells, even when the skeletal elements to which the muscle attaches are from another arch. The neural crest itself receives important patterning influences from the pharyngeal endoderm. The origin of jaws can be seen as an exaptation in which a heterotopic shift of the expression domains of regulatory genes was a necessary step that enabled this key innovation. The jaws are patterned by Dlx genes expressed in a nested pattern along the proximo-distal axis, analogous to the anterior-posterior specification governed by Hox genes. Knocking out Dlx 5 and 6 transforms the lower jaw homeotically into an upper jaw. New data indicate that both upper and lower jaw cartilages are derived from one, common anlage traditionally labelled the "mandibular" condensation, and that the "maxillary" condensation gives rise to other structures such as the trabecula. We propose that the main contribution from evolutionary developmental biology to solving homology questions lies in deepening our biological understanding of characters and character states.
Collapse
Affiliation(s)
- Lennart Olsson
- Institut für Spezielle Zoologie und Evolutionsbiologie mit Phyletischem Museum, Friedrich-Schiller-Universität, D-07743 Jena, Germany.
| | | | | |
Collapse
|
113
|
Jékely G, Sung HH, Luque CM, Rørth P. Regulators of endocytosis maintain localized receptor tyrosine kinase signaling in guided migration. Dev Cell 2005; 9:197-207. [PMID: 16054027 DOI: 10.1016/j.devcel.2005.06.004] [Citation(s) in RCA: 181] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2004] [Revised: 04/23/2005] [Accepted: 06/09/2005] [Indexed: 01/01/2023]
Abstract
Guidance receptors detect extracellular cues and instruct migrating cells how to orient in space. Border cells perform a directional invasive migration during Drosophila oogenesis and use two receptor tyrosine kinases (RTKs), EGFR and PVR (PDGF/VEGF Receptor), to read guidance cues. We find that spatial localization of RTK signaling within these migrating cells is actively controlled. Border cells lacking Cbl, an RTK-associated E3 ubiquitin ligase, have delocalized guidance signaling, resulting in severe migration defects. Absence of Sprint, a receptor-recruited, Ras-activated Rab5 guanine exchange factor, gives related defects. In contrast, increasing the level of RTK signaling by receptor overexpression or removing Hrs and thereby decreasing RTK degradation does not perturb migration. Cbl and Sprint both regulate early steps of RTK endocytosis. Thus, a physiological role of RTK endocytosis is to ensure localized intracellular response to guidance cues by stimulating spatial restriction of signaling.
Collapse
Affiliation(s)
- Gáspár Jékely
- Developmental Biology Program, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | | | | | |
Collapse
|
114
|
Boyd LM, Richardson WJ, Chen J, Kraus VB, Tewari A, Setton LA. Osmolarity regulates gene expression in intervertebral disc cells determined by gene array and real-time quantitative RT-PCR. Ann Biomed Eng 2005; 33:1071-7. [PMID: 16133915 DOI: 10.1007/s10439-005-5775-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2004] [Accepted: 03/16/2005] [Indexed: 01/29/2023]
Abstract
Intervertebral disc (IVD) cells experience a broad range of physicochemical stimuli under physiologic conditions, including alterations in their osmotic environment. Cellular responses to altered osmolarity have been documented at the transcriptional and post-translational level, but mainly for extracellular matrix proteins. In this study, the gene expression profile of human IVD cells was quantified with gene array technology following exposure to increased osmolarity in order to capture the biological responses for a broad set of targets. A total of 42 genes were identified in IVD cells as significantly changed following culture under hyper-osmotic conditions. Gene expression patterns were verified using RT-PCR. Genes identified in this study include those related to cytoskeleton remodeling and stabilization (ephrin-B2, muskelin), as well as membrane transport (ion transporter SLC21A12, osmolyte transporter SLC5A3, monocarboxylic acid SLC16A6). An unexpected finding was the differential regulation of the gene for the neurotrophin, brain-derived neurotrophic factor, by hyper-osmotic stimuli that suggests a capability of IVD cells to respond to physicochemical stimuli with factors that may regulate discogenic pain.
Collapse
Affiliation(s)
- Lawrence M Boyd
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | | | | | | | | | | |
Collapse
|
115
|
Schröder HC, Perovic-Ottstadt S, Grebenjuk VA, Engel S, Müller IM, Müller WEG. Biosilica formation in spicules of the sponge Suberites domuncula: synchronous expression of a gene cluster. Genomics 2005; 85:666-78. [PMID: 15885494 DOI: 10.1016/j.ygeno.2005.02.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2004] [Accepted: 02/02/2005] [Indexed: 11/29/2022]
Abstract
The formation of spicules is a complicated morphogenetic process in sponges (phylum Porifera). The primmorph system was used to demonstrate that in the demosponge Suberites domuncula the synthesis of the siliceous spicules starts intracellularly and is dependent on the concentration of silicic acid. To understand spicule formation, a cluster of genes was isolated. In the center of this cluster is the silicatein gene, which codes for the enzyme that synthesizes spicules. This gene is flanked by an ankyrin repeat gene at one side and by a tumor necrosis factor receptor-associated factor and a protein kinase gene at the other side. All genes are strongly expressed in primmorphs and intact animals after exposure to silicic acid, and this expression is restricted to those areas where the spicule formation starts or where spicules are maintained in the animals. Our observations suggest that in S. domuncula a coordinated expression of physically linked genes is essential for the synthesis of the major skeletal elements.
Collapse
Affiliation(s)
- Heinz C Schröder
- Institut für Physiologische Chemie, Abteilung Angewandte Molekularbiologie, Johannes Gutenberg-Universität, Duesbergweg 6, D-55099 Mainz, Germany
| | | | | | | | | | | |
Collapse
|
116
|
Parri M, Buricchi F, Taddei ML, Giannoni E, Raugei G, Ramponi G, Chiarugi P. EphrinA1 Repulsive Response Is Regulated by an EphA2 Tyrosine Phosphatase. J Biol Chem 2005; 280:34008-18. [PMID: 16051609 DOI: 10.1074/jbc.m502879200] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ephrin kinases and their ephrin ligands transduce repulsion of cells in axon guidance, migration, invasiveness, and tumor growth, exerting a negative signaling on cell proliferation and adhesion. A key role of their kinase activity has been confirmed by mutant kinase inactive receptors that shift the cellular response from repulsion to adhesion. Our present study aimed to investigate the role of low molecular weight protein-tyrosine phosphatase (LMW-PTP) in ephrinA1/EphA2 signaling. LMW-PTP, by means of dephosphorylation of EphA2 kinase, negatively regulates the ephrinA1-mediated repulsive response, cell proliferation, cell adhesion and spreading, and the formation of retraction fibers, thereby confirming the relevance of the net level of tyrosine phosphorylation of Eph receptors. LMW-PTP interferes with ephrin-mediated mitogen-activated protein kinase signaling likely through inhibition of p120RasGAP binding to the activated EphA2 kinase, thereby confirming the key role of mitogen-activated protein kinase inhibition by ephrinA1 repulsive signaling. We conclude that LMW-PTP acts as a terminator of EphA2 signaling causing an efficient negative feedback loop on the biological response mediated by ephrinA1 and pointing on tyrosine phosphorylation as the main event orchestrating the repulsive response.
Collapse
Affiliation(s)
- Matteo Parri
- Department of Biochemical Sciences, University of Florence, Via le Morgagni 50, Florence 50134, Italy
| | | | | | | | | | | | | |
Collapse
|
117
|
Xia G, Kumar SR, Masood R, Koss M, Templeman C, Quinn D, Zhu S, Reddy R, Krasnoperov V, Gill PS. Up-regulation of EphB4 in mesothelioma and its biological significance. Clin Cancer Res 2005; 11:4305-15. [PMID: 15958611 DOI: 10.1158/1078-0432.ccr-04-2109] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Mesothelioma is a rare malignancy that is incurable and carries a short survival despite surgery, radiation, or chemotherapy. This study was designed to identify novel targets for diagnostic, prognostic, and therapeutic approaches. EXPERIMENTAL DESIGN The expression and functional significance of the receptor tyrosine kinase EphB4 was studied in vitro and in a murine model of mesothelioma. RESULTS EphB4 was highly expressed in mesothelioma cell lines and primary tumor tissues but not in normal mesothelium. Knockdown of EphB4 using small interfering RNA and antisense oligodeoxynucleotide showed reduction in cell survival, migration, and invasion. EphB4 knockdown initiated a caspase-8-mediated apoptosis and down-regulation of the anti-apoptotic protein bcl-xl. EphB4 knockdown also resulted in reduced phosphorylation of Akt and down-regulation of matrix metalloproteinase-2 transcription. In addition, murine tumor xenograft studies using EphB4 oligodeoxynucleotides showed a marked reduction in tumor growth accompanied by a specific decline in EphB4 protein levels, reduced cell division, apoptosis in tumor tissue, and decreased microvascular density. CONCLUSIONS EphB4 is expressed in mesothelioma, provides a survival advantage to tumor cells, and is therefore a potential novel therapeutic target.
Collapse
MESH Headings
- Animals
- Apoptosis
- Blotting, Western
- Cell Line
- Cell Line, Tumor
- Cell Movement
- Cell Survival
- Gene Expression Regulation, Neoplastic
- Humans
- In Situ Hybridization
- Male
- Mesothelioma/genetics
- Mesothelioma/pathology
- Mesothelioma/therapy
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Neoplasm Invasiveness
- Oligonucleotides, Antisense/genetics
- Oligonucleotides, Antisense/therapeutic use
- Phosphorylation
- RNA Interference
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Receptor, EphB4/genetics
- Receptor, EphB4/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Up-Regulation
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Guangbin Xia
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California 90033-9172, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Xia G, Kumar SR, Masood R, Zhu S, Reddy R, Krasnoperov V, Quinn DI, Henshall SM, Sutherland RL, Pinski JK, Daneshmand S, Buscarini M, Stein JP, Zhong C, Broek D, Roy-Burman P, Gill PS. EphB4 expression and biological significance in prostate cancer. Cancer Res 2005; 65:4623-32. [PMID: 15930280 DOI: 10.1158/0008-5472.can-04-2667] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Prostate cancer is the most common cancer in men. Advanced prostate cancer spreading beyond the gland is incurable. Identifying factors that regulate the spread of tumor into the regional nodes and distant sites would guide the development of novel diagnostic, prognostic, and therapeutic targets. The aim of our study was to examine the expression and biological role of EphB4 in prostate cancer. EphB4 mRNA is expressed in 64 of 72 (89%) prostate tumor tissues assessed. EphB4 protein expression is found in the majority (41 of 62, 66%) of tumors, and 3 of 20 (15%) normal prostate tissues. Little or no expression was observed in benign prostate epithelial cell line, but EphB4 was expressed in all prostate cancer cell lines to varying degrees. EphB4 protein levels are high in the PC3 prostate cancer cell line and several folds higher in a metastatic clone of PC3 (PC3M) where overexpression was accompanied by EphB4 gene amplification. EphB4 expression is induced by loss of PTEN, p53, and induced by epidermal growth factor/epidermal growth factor receptor and insulin-like growth factor-I/insulin-like growth factor-IR. Knockdown of the EphB4 protein using EphB4 short interfering RNA or antisense oligodeoxynucleotide significantly inhibits cell growth/viability, migration, and invasion, and induces apoptosis in prostate cancer cell lines. Antisense oligodeoxynucleotide targeting EphB4 in vivo showed antitumor activity in murine human tumor xenograft model. These data show a role for EphB4 in prostate cancer and provide a rationale to study EphB4 for diagnostic, prognostic, and therapeutic applications.
Collapse
MESH Headings
- Animals
- Cell Cycle/genetics
- Cell Line, Tumor
- Cell Movement/physiology
- Cell Survival/physiology
- Gene Expression Regulation, Neoplastic
- Genes, Tumor Suppressor
- Humans
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Neoplasm Invasiveness
- Oligonucleotides, Antisense/genetics
- Oligonucleotides, Antisense/pharmacology
- Prostatic Neoplasms/enzymology
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/pathology
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Small Interfering/genetics
- Receptor, EphB4/biosynthesis
- Receptor, EphB4/genetics
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Guangbin Xia
- Department of Medicine, University of Southern California Keck School of Medicine, Los Angeles, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Hafner C, Meyer S, Langmann T, Schmitz G, Bataille F, Hagen I, Becker B, Roesch A, Rogler G, Landthaler M, Vogt T. Ephrin-B2 is differentially expressed in the intestinal epithelium in Crohn’s disease and contributes to accelerated epithelial wound healing in vitro. World J Gastroenterol 2005; 11:4024-31. [PMID: 15996027 PMCID: PMC4502098 DOI: 10.3748/wjg.v11.i26.4024] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: Eph receptor tyrosine kinases and their membrane bound receptor-like ligands, the ephrins, represent a bi-directional cell-cell contact signaling system that directs epithelial movements in development. The meaning of this system in the adult human gut is unknown. We investigated the Eph/ephrin mRNA expression in the intestinal epithelium of healthy controls and patients with inflammatory bowel disease (IBD).
METHODS: mRNA expression profiles of all Eph/ephrin family members in normal small intestine and colon were established by real-time RT-PCR. In addition, differential expression in IBD was investigated by cDNA array technology, and validated by both real-time RT-PCR and immunohistochemistry. Potential effects of enhanced EphB/ephrin-B signaling were analyzed in an in vitro IEC-6 cell scratch wound model.
RESULTS: Human adult intestinal mucosa exhibits a complex pattern of Eph receptors and ephrins. Beside the known prominent co-expression of EphA2 and ephrinA1, we found abundantly co-expressed EphB2 and ephrin-B1/2. Interestingly, cDNA array data, validated by real-time PCR and immunohistochemistry, showed upregulation of ephrin-B2 in both perilesional and lesional intestinal epithelial cells of IBD patients, suggesting a role in epithelial homeostasis. Stimulation of ephrin-B signaling in ephrin-B1/2 expressing rat IEC-6-cells with recombinant EphB1-Fc resulted in a significant dose-dependent acceleration of wound closure. Furthermore, fluorescence microscopy showed that EphB1-Fc induced coordinated migration of wound edge cells is associated with enhanced formation of lamellipodial protrusions into the wound, increased actin stress fiber assembly and production of laminin at the wound edge.
CONCLUSION: EphB/ephrin-B signaling might represent a novel protective mechanism that promotes intestinal epithelial wound healing, with potential impact on epithelial restitution in IBD.
Collapse
Affiliation(s)
- Christian Hafner
- Department of Dermatology, University of Regensburg, D-93042 Regensburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Matsuoka H, Obama H, Kelly ML, Matsui T, Nakamoto M. Biphasic functions of the kinase-defective Ephb6 receptor in cell adhesion and migration. J Biol Chem 2005; 280:29355-63. [PMID: 15955811 DOI: 10.1074/jbc.m500010200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
EphB6 is a unique member in the Eph family of receptor tyrosine kinases in that its kinase domain contains several alterations in conserved amino acids and is catalytically inactive. Although EphB6 is expressed both in a variety of embryonic and adult tissues, biological functions of this receptor are largely unknown. In the present study, we examined the function of EphB6 in cell adhesion and migration. We demonstrated that EphB6 exerted biphasic effects in response to different concentrations of the ephrin-B2 ligand; EphB6 promoted cell adhesion and migration when stimulated with low concentrations of ephrin-B2, whereas it induced repulsion and inhibited migration upon stimulation with high concentrations of ephrin-B2. A truncated EphB6 receptor lacking the cytoplasmic domain showed monophasic-positive effects on cell adhesion and migration, indicating that the cytoplasmic domain is essential for the negative effects. EphB6 is constitutively associated with the Src family kinase Fyn. High concentrations of ephrin-B2 induced tyrosine phosphorylation of EphB6 through an Src family kinase activity. These results indicate that EphB6 can both positively and negatively regulate cell adhesion and migration, and suggest that tyrosine phosphorylation of the receptor by an Src family kinase acts as the molecular switch for the functional transition.
Collapse
Affiliation(s)
- Hiroshi Matsuoka
- Department of Neurosciences, Lerner Research Institute, The Cleveland Clinic Foundation, and Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| | | | | | | | | |
Collapse
|
121
|
Altick AL, Dravis C, Bowdler T, Henkemeyer M, Mastick GS. EphB receptor tyrosine kinases control morphological development of the ventral midbrain. Mech Dev 2005; 122:501-12. [PMID: 15804564 DOI: 10.1016/j.mod.2004.11.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2004] [Revised: 11/18/2004] [Accepted: 11/21/2004] [Indexed: 11/21/2022]
Abstract
EphB receptor tyrosine kinases and ephrin-B ligands regulate several types of cell-cell interactions during brain development, generally by modulating the cytoskeleton. EphB/ephrinB genes are expressed in the developing neural tube of early mouse embryos with distinct overlapping expression in the ventral midbrain. To test EphB function in midbrain development, mouse embryos compound homozygous for mutations in the EphB2 and EphB3 receptor genes were examined for early brain phenotypes. These mutants displayed a morphological defect in the ventral midbrain, specifically an expanded ventral midline evident by embryonic day E9.5-10.5, which formed an abnormal protrusion into the cephalic flexure. The affected area was comprised of cells that normally express EphB2 and ephrin-B3. A truncated EphB2 receptor caused a more severe phenotype than a null mutation, implying a dominant negative effect through interference with EphB forward (intracellular) signaling. In mutant embryos, the overall number, size, and identity of the ventral midbrain cells were unaltered. Therefore, the defect in ventral midline morphology in the EphB2;EphB3 compound mutant embryos appears to be caused by cellular changes that thin the tissue, forcing a protrusion of the ventral midline into the cephalic space. Our data suggests a role for EphB signaling in morphological organization of specific regions of the developing neural tube.
Collapse
Affiliation(s)
- Amy L Altick
- Biochemistry Graduate Program, Department of Biology, University of Nevada, Mail stop 200, Reno, NV 89557, USA
| | | | | | | | | |
Collapse
|
122
|
Aasheim HC, Delabie J, Finne EF. Ephrin-A1 binding to CD4+ T lymphocytes stimulates migration and induces tyrosine phosphorylation of PYK2. Blood 2005; 105:2869-76. [PMID: 15585656 DOI: 10.1182/blood-2004-08-2981] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractEph receptors, the largest subfamily of receptor tyrosine kinases, and their ephrin ligands are important mediators of cell-cell communication regulating cell attachment, shape, and mobility. Here we demonstrate that CD4+ T lymphocytes express the EphA1 and EphA4 receptors and that these cells bind the ligand ephrin-A1. Further we show ephrin-A1 expression in vivo on high endothelial venule (HEV) endothelial cells. Ephrin-A1 binding to CD4+ T cells stimulates both stromal cell-derived factor 1α (SDF-1α)- and macrophage inflammatory protein 3β (MIP3β)-mediated chemotaxis. In line with the increased chemotactic response, increased actin polymerization is observed in particular with the combination of ephrin-A1 and SDF-1α. Signaling through EphA receptors induces intracellular tyrosine phosphorylation. In particular, proline-rich tyrosine kinase 2 (PYK2) is phosphorylated on tyrosine residues 402 and 580. Ephrin-A1-induced chemotaxis and intracellular tyrosine phosphorylation, including EphA1 and Pyk2, was inhibited by Tyrphostin-A9. In conclusion, ligand engagement of EphA receptors on CD4+ T cells stimulates chemotaxis, induces intracellular tyrosine phosphorylation, and affects actin polymerization. This, together with our finding that ephrin-A1 is expressed by HEV endothelial cells, suggests a role for Eph receptors in transendothelial migration.
Collapse
Affiliation(s)
- Hans-Christian Aasheim
- Department of Immunology and Pathology, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway.
| | | | | |
Collapse
|
123
|
Midorikawa T, Chikazawa T, Yoshino T, Takada K, Arase S. Different gene expression profile observed in dermal papilla cells related to androgenic alopecia by DNA macroarray analysis. J Dermatol Sci 2005; 36:25-32. [PMID: 15488702 DOI: 10.1016/j.jdermsci.2004.05.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2004] [Revised: 05/06/2004] [Accepted: 05/12/2004] [Indexed: 11/28/2022]
Abstract
BACKGROUND Androgenic alopecia (AGA) is the most common type of baldness in men. Although etiological studies have proved that androgen is one of the causes of this symptom, the defined molecular mechanism underlying androgen-related actions remains largely unknown. OBJECTIVES To clarify the difference in the gene expression profile of dermal papilla cells (DPCs) in skin affected by baldness. METHODS DNA macroarray study was carried out on cultured DPCs from AGA skin comparing with DPCs from skin that is not affected by baldness. RESULTS From DNA macroarray analysis, we observed that 107 of the 1185 analyzed genes had differing expression levels. A marked difference was observed in the decreased gene expression of BMP2 and ephrin A3 and up-regulated in NT-4 gene. In order to clarify the roles of BMP2 and ephrin A3 in the hair follicles, we examined the proliferation of hair follicle keratinocyte and expression of a hair acidic keratin gene. Both BMP2 and ephrin A3 raised the proliferation rate of the outer root sheath cells (ORSCs) and induced gene expression in acidic hair keratin 3-II. CONCLUSION These results lead us to the hypothesis that both BMP2 and ephrin A3 function as hair growth promoting factors in the hair cycle.
Collapse
Affiliation(s)
- Tatsuyuki Midorikawa
- Biological Science Research Center, Lion Corporation, Odawara City, 100 Tajima Odawara, Kanagawa 256-0811, Japan
| | | | | | | | | |
Collapse
|
124
|
Ran X, Song J. Structural insight into the binding diversity between the Tyr-phosphorylated human ephrinBs and Nck2 SH2 domain. J Biol Chem 2005; 280:19205-12. [PMID: 15764601 DOI: 10.1074/jbc.m500330200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The binding interaction between the Nck2 SH2 domain and the phosphorylated ephrinB initiates a critical pathway for the reverse signaling network mediated by Eph receptor-ephrinB. Previously, the NMR structure and Tyr phosphorylations of the human ephrinB cytoplasmic domain have been studied. To obtain a complete story, it would be of significant interest to determine the structure of the Nck2 SH2 domain that shows a low sequence identity to other SH2 domains with known structures. Here, we report the determination of the solution structure of the human Nck2 SH2 domain and investigate its interactions with three phosphorylated ephrinB fragments by NMR spectroscopy. The results indicate that: 1) although the human Nck2 SH2 domain adopts a core tertiary fold common to all SH2 domains, it owns some unique properties such as a shorter C-terminal helix and unusual electrostatic potential surface. However, the most striking finding is that the C-terminal tail of the human Nck2 SH2 domain adopts a short antiparallel beta-sheet that, to the best of our knowledge, has never been identified in other SH2 domains. The truncation study suggests that one function of the C-terminal tail is to control the folding/solubility of the SH2 domain. 2) In addition to [Tyr(P)304]ephrinB2(301-322) and [Tyr(P)316]ephrinB2(301-322), here we identified [Tyr(P)330]ephrinB2(324-333) also capable of binding to the SH2 domain. The detailed NMR study indicated that the binding mechanisms for the three ephrinB fragments might be different. The binding with [Tyr(P)304]-ephrinB2(301-322) and [Tyr(P)316]ephrinB2(301-322) might be mostly involved in the residues over the N-half of the SH2 domain and provoked a significant increase in the backbone and side chain dynamics of the SH2 domain on the microsecond-millisecond time scale. In contrast, binding with [Tyr(P)330]ephrinB2(324-333) might have most residues over both halves engaged but induced less profound conformational dynamics on the mus-ms time scale.
Collapse
Affiliation(s)
- Xiaoyuan Ran
- Department of Biochemistry, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260
| | | |
Collapse
|
125
|
Aasheim HC, Patzke S, Hjorthaug HS, Finne EF. Characterization of a novel Eph receptor tyrosine kinase, EphA10, expressed in testis. Biochim Biophys Acta Gen Subj 2005; 1723:1-7. [PMID: 15777695 DOI: 10.1016/j.bbagen.2005.01.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2004] [Revised: 01/12/2005] [Accepted: 01/18/2005] [Indexed: 11/28/2022]
Abstract
In mammals, 14 members of the Eph receptor tyrosine kinase family have been described so far. Here we present a not yet described member of this family denoted EphA10. We report the identification of three putative EphA10 isoforms: one soluble and two transmembrane isoforms. One of the latter isoforms lacked the sterile alpha motif commonly found in Eph receptors. The gene encoding EphA10 is located on chromosome 1p34 and expression studies show that EphA10 mRNA is mainly expressed in testis. Binding studies to ephrin ligands suggests that this receptor belongs to the EphA subclass of Eph receptors binding mainly to ephrin-A ligands.
Collapse
|
126
|
Liadaki K, Kho AT, Sanoudou D, Schienda J, Flint A, Beggs AH, Kohane IS, Kunkel LM. Side Population cells isolated from different tissues share transcriptome signatures and express tissue-specific markers. Exp Cell Res 2005; 303:360-74. [PMID: 15652349 DOI: 10.1016/j.yexcr.2004.10.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2004] [Revised: 09/28/2004] [Accepted: 10/04/2004] [Indexed: 12/22/2022]
Abstract
Side Population (SP) cells, isolated from murine adult bone marrow (BM) based on the exclusion of the DNA dye Hoechst 33342, exhibit potent hematopoietic stem cell (HSC) activity when compared to Main Population (MP) cells. Furthermore, SP cells derived from murine skeletal muscle exhibit both hematopoietic and myogenic potential in vivo. The multipotential capacity of SP cells isolated from variable tissues is supported by an increasing number of studies. To investigate whether the SP phenotype is associated with a unique transcriptional profile, we characterized gene expression of SP cells isolated from two biologically distinct tissues, bone marrow and muscle. Comparison of SP cells with differentiated MP cells within a tissue revealed that SP cells are in an active transcriptional and translational status and underexpress genes reflecting tissue-specific functions. Direct comparison of gene expression of SP cells isolated from different tissues identified genes common to SP cells as well as genes specific to SP cells within a particular tissue and further define a muscle and bone marrow environment. This study reports gene expression of muscle SP cells, common features and differences between SP cells isolated from muscle and bone marrow, and further identifies common signaling pathways that might regulate SP cell functions.
Collapse
Affiliation(s)
- K Liadaki
- Genomics Program, Genetics Division, Children's Hospital Boston, Harvard Medical School, 320 Longwood Avenue, Enders 570, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
127
|
Silver L, Qiang L, Loudon R, Gallo G. Bidirectional inhibitory interactions between the embryonic chicken metanephros and lumbosacral nerves in vitro. Dev Dyn 2005; 231:190-8. [PMID: 15305299 DOI: 10.1002/dvdy.20111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
During chicken embryonic development the metanephros forms from the uretic duct at embryonic day (E) 7. As the metanephric tissue develops between E7 and E10, it comes into close apposition with lumbosacral nerves. Coculturing of metanephric and nerve explants demonstrated that the Schwann cells of the sciatic nerve inhibit the migration of metanephric cells in a contact-dependent manner. Conversely, metanephric cells inhibit dorsal root ganglion axon extension in a contact-dependent manner. However, metanephric cells are not inhibited by contact with growth cones or axons. Dorsal root ganglion growth cones become sensitive to the inhibitory signals on the surfaces of metanephric cells around E8, a time when the metanephros is expanding into the territory occupied by nerves in vivo. These observations demonstrate inhibitory bidirectional tissue-tissue interactions in vitro and provide a novel model system for the study of contact-based guidance of both neuronal and non-neuronal cell migration.
Collapse
Affiliation(s)
- Lee Silver
- Drexel College of Medicine, Department of Neurobiology and Anatomy, Philadelphia, Pennsylvania, USA
| | | | | | | |
Collapse
|
128
|
Jayasena CS, Flood WD, Koblar SA. High EphA3 expressing ophthalmic trigeminal sensory axons are sensitive to ephrin-A5-Fc: Implications for lobe specific axon guidance. Neuroscience 2005; 135:97-109. [PMID: 16054765 DOI: 10.1016/j.neuroscience.2005.05.052] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2005] [Revised: 05/16/2005] [Accepted: 05/16/2005] [Indexed: 11/17/2022]
Abstract
The ophthalmic, maxillary and mandibular axon branches of the trigeminal ganglion provide cutaneous sensory innervation to the vertebrate face. In the chick embryo, the trigeminal ganglion is bilobed, with ophthalmic axons projecting from the ophthalmic lobe, while maxillary and mandibular projections emerge from the maxillomandibular lobe. To date, target tissue specific guidance cues that discriminately guide the axon projections from the two trigeminal ganglion lobes are unknown. EphA receptor tyrosine kinases and ephrin-A ligands are excellent candidates for this process as they are known to mediate axon guidance in the developing nervous system. Accordingly, the expression of EphAs and ephrin-As was investigated at stages 13, 15, 20 of chick embryogenesis when peripheral axons from the trigeminal ganglion are pathfinding. EphA3 is expressed highly in the ophthalmic trigeminal ganglion lobe neurons in comparison to maxillomandibular trigeminal ganglion lobe neurons. Furthermore, from stages 13-20 ephrin-A2 and ephrin-A5 ligands are only localized to the mesenchyme of the first branchial arch (maxillary and mandibular processes), the target fields for maxillomandibular trigeminal ganglion axons. We found that ophthalmic and not maxillomandibular lobe axons were responsive to ephrin-A5-Fc utilizing a substratum choice assay. The implication of these results is that EphA3 forward signaling in ophthalmic sensory axons may be an important mechanism in vivo for lobe specific guidance of trigeminal ganglion ophthalmic projections.
Collapse
Affiliation(s)
- C S Jayasena
- ARC Centre for Molecular Genetics of Development (CMGD), School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | | | | |
Collapse
|
129
|
Goldman-Wohl D, Greenfield C, Haimov-Kochman R, Ariel I, Anteby EY, Hochner-Celnikier D, Farhat M, Yagel S. Eph and ephrin expression in normal placental development and preeclampsia. Placenta 2004; 25:623-30. [PMID: 15193868 DOI: 10.1016/j.placenta.2004.01.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/20/2004] [Indexed: 10/26/2022]
Abstract
Eph receptors and their ephrin ligands play a fundamental role in embryogenesis. Their functions include cell targeting and angiogenesis. In placental development, trophoblasts migrate and invade maternal tissue and spiral arteries, where they play a role in both anchoring the placenta to the uterus and increasing blood flow to the developing fetus (interstitial and endovascular invasions). We investigated the cellular distribution and expression patterns of representative Eph and ephrin RNA and protein in an effort to identify the molecules involved in trophoblast migration during normal placental development and placental pathologies. We found ephrin-A1 expressed exclusively in the invasive extravillous trophoblast (EVT) cell lineage. We therefore proceeded to investigate ephrin-A1 in placental pathologies with defects in EVT invasion. In preeclampsia, where trophoblast invasion is shallow, we observed ephrin-A1 expression similar to normal placenta. Furthermore, in initial experiments on the deeply invading trophoblasts of placenta accreta, which lacks decidua, ephrin-A1 is found to be expressed highly in extravillous trophoblasts that have invaded the myometrium. In addition, we found the prototype ephrin-A1 receptor, EphA2, localized in several placental cell types. EphB4 and ephrin-B2 molecules, which have specific expression patterns during artery and vein development, respectively, were also expressed in the placenta. The cell specific distribution of ephrin-A1 suggests that it may play a role in targeting and migration of trophoblasts, and in the vascular remodeling induced by the invading extravillous trophoblasts. Failure of ephrin-A1 expression is unlikely to be the primary cause in defective migration of trophoblasts observed in preeclampsia. Specific roles for other Eph and ephrin proteins remain to be investigated.
Collapse
Affiliation(s)
- D Goldman-Wohl
- Department of Obstetrics and Gynecology, Hadassah University Hospital - Mt. Scopus, PO Box 24035, Jerusalem, Israel 91240
| | | | | | | | | | | | | | | |
Collapse
|
130
|
Poliakov A, Cotrina M, Wilkinson DG. Diverse roles of eph receptors and ephrins in the regulation of cell migration and tissue assembly. Dev Cell 2004; 7:465-80. [PMID: 15469835 DOI: 10.1016/j.devcel.2004.09.006] [Citation(s) in RCA: 341] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Eph receptor tyrosine kinases and ephrins have key roles in regulation of the migration and adhesion of cells required to form and stabilize patterns of cell organization during development. Activation of Eph receptors or ephrins can lead either to cell repulsion or to cell adhesion and invasion, and recent work has found that cells can switch between these distinct responses. This review will discuss biochemical mechanisms and developmental roles of the diverse cell responses controlled by Eph receptors and ephrins.
Collapse
Affiliation(s)
- Alexei Poliakov
- Division of Developmental Neurobiology, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom
| | | | | |
Collapse
|
131
|
Parker M, Roberts R, Enriquez M, Zhao X, Takahashi T, Pat Cerretti D, Daniel T, Chen J. Reverse endocytosis of transmembrane ephrin-B ligands via a clathrin-mediated pathway. Biochem Biophys Res Commun 2004; 323:17-23. [PMID: 15351694 DOI: 10.1016/j.bbrc.2004.07.209] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2004] [Indexed: 10/26/2022]
Abstract
Eph/ephrin receptors and ligands mediate cell-cell interaction through reciprocal signaling upon juxtacrine contact, and play a critical role in embryonic patterning, neuronal targeting, and vascular assembly. To study transmembrane ephrin-B ligand trafficking, we determined the cellular localization of ephrin-B1-GFP upon engagement by EphB1. Under normal culture conditions ephrin-B1-GFP is localized to the plasma membrane, mostly at the lateral cell borders. Addition of soluble EphB1-Fc receptor induces ephrin-B1-GFP clustering on the cell surface and subsequent internalization, as judged by biochemical studies, electron microscopy, and co-localization with endosomal markers. A dominant-negative mutant of dynamin or potassium depletion blocks ephrin-B1 endocytosis. These results suggest that ephrin-B1 internalization is an active receptor-mediated process that utilizes the clathrin-mediated endocytic pathway.
Collapse
Affiliation(s)
- Monica Parker
- Division of Rheumatology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | |
Collapse
|
132
|
Luukko K, Løes S, Kvinnsland IH, Kettunen P. Expression of ephrin-A ligands and EphA receptors in the developing mouse tooth and its supporting tissues. Cell Tissue Res 2004; 319:143-52. [PMID: 15517401 DOI: 10.1007/s00441-004-0951-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2003] [Accepted: 06/22/2004] [Indexed: 10/26/2022]
Abstract
Ephrins are cell-membrane-bound ligands for Eph receptor tyrosine kinases and regulate a variety of developmental processes. In order to investigate the potential roles of the ephrin-Eph system in tooth formation, we studied the cellular mRNA expression of Ephrin-A1-A5 and EphA2, EphA3, EphA4, EphA7, and EphA8 receptors during embryonic histomorphogenesis of the mouse first molar (embryonic days 11.5-18.5). Ephrin-A1, ephrin-A5, EphA2, EphA3, EphA4, and EphA7 were expressed in the tooth germ at the epithelial thickening stage, and later, ephrin-A1, ephrin-A5, EphA2, EphA4, and EphA7 showed distinct expression patterns in the enamel organ undergoing epithelial folding morphogenesis. Prior to birth, ephrin-A1, ephrin-A5, EphA2, and EphA4 transcripts were present in the cuspal area of the dental papilla including the preodontoblasts. In addition, ephrin-A1 and ephrin-A5 were seen in the forming blood vessels and alveolar bone, respectively. In contrast, ephrin-A2, ephrin-A3, and ephrin-A4 showed ubiquitous expression during odontogenesis, whereas EphA8 transcripts were not observed. During dental trigeminal axon pathfinding (embryonic days 12.5-13.5), ephrin-A2, ephrin-A4, and ephrin-A5 were evenly distributed in the trigeminal ganglion, whereas EphA7 was expressed in a subset of ganglion cells. These results suggest regulatory roles for ephrin-A/EphA signaling in the formation of the tooth organ proper and its supporting tissues.
Collapse
Affiliation(s)
- Keijo Luukko
- Section of Anatomy and Cell Biology, Department of Biomedicine, University of Bergen, Jonas Lies Vei 91, 5009 Bergen, Norway
| | | | | | | |
Collapse
|
133
|
Abstract
Ephrins are cell-surface-tethered ligands for Eph receptors, the largest family of receptor tyrosine kinases. During development, the Eph/ephrin cell communication system appears to influence cell behavior such as attraction/repulsion, adhesion/de-adhesion and migration, thereby influencing cell fate, morphogenesis and organogenesis. During adulthood, the Eph/ephrin system continues to play roles in tissue plasticity, for example in shaping dendritic spines during neuronal plasticity. Mechanistically, Eph-ephrin repulsive behavior appears to require ligand-receptor internalization and signaling to Rho GTPases.
Collapse
Affiliation(s)
- Rüdiger Klein
- Department of Molecular Neurobiology, Max-Planck Institute of Neurobiology, Am Klopferspitz 18, 82152 Munich-Martinsried, Germany.
| |
Collapse
|
134
|
Wimmer-Kleikamp SH, Janes PW, Squire A, Bastiaens PIH, Lackmann M. Recruitment of Eph receptors into signaling clusters does not require ephrin contact. ACTA ACUST UNITED AC 2004; 164:661-6. [PMID: 14993233 PMCID: PMC2172175 DOI: 10.1083/jcb.200312001] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Eph receptors and their cell membrane-bound ephrin ligands regulate cell positioning and thereby establish or stabilize patterns of cellular organization. Although it is recognized that ephrin clustering is essential for Eph function, mechanisms that relay information of ephrin density into cell biological responses are poorly understood. We demonstrate by confocal time-lapse and fluorescence resonance energy transfer microscopy that within minutes of binding ephrin-A5-coated beads, EphA3 receptors assemble into large clusters. While remaining positioned around the site of ephrin contact, Eph clusters exceed the size of the interacting ephrin surface severalfold. EphA3 mutants with compromised ephrin-binding capacity, which alone are incapable of cluster formation or phosphorylation, are recruited effectively and become phosphorylated when coexpressed with a functional receptor. Our findings reveal consecutive initiation of ephrin-facilitated Eph clustering and cluster propagation, the latter of which is independent of ephrin contacts and cytosolic Eph signaling functions but involves direct Eph-Eph interactions.
Collapse
Affiliation(s)
- Sabine H Wimmer-Kleikamp
- Dept. of Biochemistry and Molecular Biology, P.O. Box 13D, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | | | |
Collapse
|
135
|
Duxbury MS, Ito H, Zinner MJ, Ashley SW, Whang EE. Ligation of EphA2 by Ephrin A1-Fc inhibits pancreatic adenocarcinoma cellular invasiveness. Biochem Biophys Res Commun 2004; 320:1096-102. [PMID: 15249202 DOI: 10.1016/j.bbrc.2004.06.054] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2004] [Indexed: 11/18/2022]
Abstract
The Eph tyrosine kinases interact with ligands of the Ephrin family and have diverse cellular functions. EphA2 has been recognized to be an oncoprotein of importance in a range of cancers. Here, we examine the effect of EphA2 overexpression and ligation by chimeric Ephrin A1-Fc on the invasive phenotype of pancreatic adenocarcinoma cells. We show that EphA2 overexpression induces a FAK-dependent increase in MMP-2 expression and invasiveness. EphA2 ligation induces proteosomal degradation of EphA2, attenuates the invasive phenotype, and decreases both FAK phosphorylation and MMP-2 expression. EphA2 appears to represent a rational therapeutic target and ligation by Ephrin A1-Fc is one strategy to modulate levels of this oncoprotein.
Collapse
Affiliation(s)
- Mark S Duxbury
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | |
Collapse
|
136
|
Umeda N, Ozaki H, Hayashi H, Oshima K. Expression of ephrinB2 and its receptors on fibroproliferative membranes in ocular angiogenic diseases. Am J Ophthalmol 2004; 138:270-9. [PMID: 15289137 DOI: 10.1016/j.ajo.2004.04.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2004] [Indexed: 11/21/2022]
Abstract
PURPOSE To determine whether ephrinB2 plays a role in ocular angiogenesis, we investigated the expression of ephrinB2 and EphB receptors on retinal fibroproliferative membranes. DESIGN Experimental study of the expression of ephrinB2 and EphB receptors within fibroproliferative membranes in patients with ocular angiogenic diseases collected during vitrectomy. METHODS Fibroproliferative membranes were obtained at the time of vitrectomy from 20 patients with proliferative diabetic retinopathy (PDR) and from 40 patients who had stage 5 retinopathy of prematurity. Specimens were investigated with immunohistochemistry using polyclonal antibodies directed against ephrinB2 and the EphB2, EphB3, and EphB4 receptors. Immunoreactivity for von Willebrand factor (factor VIII) and alpha-smooth muscle actin (alpha-SMA) was also determined to confirm the identity of the target vascular endothelial cells. RESULTS Positive staining for ephrinB2 was observed on fibroproliferative membranes that were obtained from patients with PDR (65.0%) and retinopathy of prematurity (25.0%). Specifically, ephrinB2 was found to be present on endothelial cells, as confirmed by its colocalization with factor VIII and alpha-SMA staining. EphB2 and EphB3 expression was observed on fibroproliferative membranes that were harvested from patients with PDR (EphB2, 90.0%; EphB3, 70.0%) and retinopathy of prematurity (EphB2, 35.0%; EphB3, 45.0%). However, EphB4 expression was not observed in any of the membranes derived from patients with PDR or retinopathy of prematurity. The rate of ephrinB2 expression in patients with PDR was significantly higher than that seen in patients with retinopathy of prematurity, which probably reflected differences in the vascular density of their fibroproliferative membranes. CONCLUSION These data suggest that the ephrinB2-EphB2/B3 system may play an important role in ocular angiogenesis.
Collapse
Affiliation(s)
- Naoyasu Umeda
- Department of Ophthalmology, Fukuoka University, School of Medicine, Fukuoka, Japan.
| | | | | | | |
Collapse
|
137
|
Yin Y, Yamashita Y, Noda H, Okafuji T, Go MJ, Tanaka H. EphA receptor tyrosine kinases interact with co-expressed ephrin-A ligands in cis. Neurosci Res 2004; 48:285-96. [PMID: 15154674 DOI: 10.1016/j.neures.2003.11.009] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2003] [Accepted: 11/19/2003] [Indexed: 11/26/2022]
Abstract
Eph receptor tyrosine kinases have been implicated in various developmental processes, including axonal guidance, angiogenesis and morphogenesis. In general, Eph receptors and their ligands, ephrins, are reciprocally compartmentalized during embryogenesis. However, they are expressed in an overlapping fashion in some developing neural and non-neural tissues. Results from the overexpression or mutant mice of ephrin ligands in the retino-tectal system suggest that ephrin-As regulate co-expressed EphA receptor activity, but little is known about the molecular mechanisms. Here we show that EphA receptors and co-expressed ephrin-A ligands interact directly in cis via their functional binding domains, and that this interaction does not seem to mediate intracellular signals, but has an inhibitory effect on the trans interaction.
Collapse
Affiliation(s)
- Yanzhi Yin
- Division of Developmental Neurobiology, Kumamoto University Graduate School of Medical Sciences, Honjo 2, Kumamoto 860-0811, Japan
| | | | | | | | | | | |
Collapse
|
138
|
Sieber BA, Kuzmin A, Canals JM, Danielsson A, Paratcha G, Arenas E, Alberch J, Ogren SO, Ibáñez CF. Disruption of EphA/ephrin-A signaling in the nigrostriatal system reduces dopaminergic innervation and dissociates behavioral responses to amphetamine and cocaine. Mol Cell Neurosci 2004; 26:418-28. [PMID: 15234346 DOI: 10.1016/j.mcn.2004.03.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2004] [Accepted: 03/25/2004] [Indexed: 01/28/2023] Open
Abstract
We have investigated functional roles of EphA/ephrin-A signaling in the development and function of the nigrostriatal system by overexpressing a soluble, broad-range EphA receptor antagonist in the central nervous system of transgenic mice. Adult transgenic mice showed a 30-40% reduction in the total volume of the substantia nigra (SN) without detectable differences in the number of dopaminergic neurons. Using fluorogold retrograde tracing from the striatum, we detected a 40-50% reduction in the number of dopaminergic neurons that could be traced from this structure in transgenic mice, suggesting that, a lower proportion of these cells were able to reach the striatum after disruption of EphA/ephrin-A signaling. In spite of this, total dopamine content in the striatum of transgenic mice was comparable to wild type. Analysis of locomotor activity and its regulation by pharmacological treatments that stimulate dopaminergic transmission revealed an unexpected dissociation of the behavioral responses to amphetamine and cocaine. In particular, transgenic mice were relatively insensitive to amphetamine while retaining normal responsiveness to cocaine, which, to the best of our knowledge, represents the first report of a dissociation of the behavioral responses to these two psychostimulants. Together, these results reveal an unexpected role for EphA/ephrin-A signaling in the normal connectivity and function of midbrain dopaminergic neurons.
Collapse
Affiliation(s)
- Beth-Anne Sieber
- Division of Molecular Neurobiology, Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Affiliation(s)
- Stevan R Hubbard
- Skirball Institute of Biomolecular Medicine and Department of Pharmacology, New York University School of Medicine, New York 10016, USA.
| |
Collapse
|
140
|
Abstract
Although the majority of hemangiomas of infancy can be expected to follow a benign course, a significant subset may result in serious complications. Recently, hemangiomas of segmental morphology, or those which are large, plaque-like, and patterned in distribution, have been recognized as important markers for potential complications. PHACE syndrome represents the best known example of the variety of problems that can occur in this setting. The PHACE acronym, which stands for posterior fossa brain malformations, segmental cervicofacial hemangiomas, arterial anomalies, cardiac defects and coarctation of the aorta, and eye anomalies, is sometimes referred to as PHACE(S) when ventral developmental defects such as sternal clefting and supraumbilical raphe are present. This article reviews the specific manifestations of PHACE, reflects on pathogenesis, and discusses appropriate work-up and future directions for this complex and fascinating syndrome. We also discuss other complications associated with hemangiomas of segmental morphology, including ulceration, potential visceral involvement, and underlying anomalies related to the lumbosacral location.
Collapse
Affiliation(s)
- Denise W Metry
- Departments of Dermatology and Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030-2399, USA.
| |
Collapse
|
141
|
Sandvig A, Berry M, Barrett LB, Butt A, Logan A. Myelin-, reactive glia-, and scar-derived CNS axon growth inhibitors: expression, receptor signaling, and correlation with axon regeneration. Glia 2004; 46:225-51. [PMID: 15048847 DOI: 10.1002/glia.10315] [Citation(s) in RCA: 285] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Axon regeneration is arrested in the injured central nervous system (CNS) by axon growth-inhibitory ligands expressed in oligodendrocytes/myelin, NG2-glia, and reactive astrocytes in the lesion and degenerating tracts, and by fibroblasts in scar tissue. Growth cone receptors (Rc) bind inhibitory ligands, activating a Rho-family GTPase intracellular signaling pathway that disrupts the actin cytoskeleton inducing growth cone collapse/repulsion. The known inhibitory ligands include the chondroitin sulfate proteoglycans (CSPG) Neurocan, Brevican, Phosphacan, Tenascin, and NG2, as either membrane-bound or secreted molecules; Ephrins expressed on astrocyte/fibroblast membranes; the myelin/oligodendrocyte-derived growth inhibitors Nogo, MAG, and OMgp; and membrane-bound semaphorins (Sema) produced by meningeal fibroblasts invading the scar. No definitive CSPG Rc have been identified, although intracellular signaling through the Rho family of G-proteins is probably common to all the inhibitory ligands. Ephrins bind to signalling Ephs. The ligand-binding Rc for all the myelin inhibitors is NgR and requires p75(NTR) for transmembrane signaling. The neuropilin (NP)/plexin (Plex) Rc complex binds Sema. Strategies for promoting axon growth after CNS injury are thwarted by the plethora of inhibitory ligands and the ligand promiscuity of some of their Rc. There is also paradoxical reciprocal expression of many of the inhibitory ligands/Rc in normal and damaged neurons, and NgR expression is restricted to a limited number of neuronal populations. All these factors, together with an incomplete understanding of the normal functions of many of these molecules in the intact CNS, presently confound interpretive acumen in regenerative studies.
Collapse
Affiliation(s)
- Axel Sandvig
- Laboratory of Regenerative Neurobiology, Institute for Experimental Medical Research, Ullevål University Hospital, Oslo, Norway.
| | | | | | | | | |
Collapse
|
142
|
Shepherd BR, Chen HYS, Smith CM, Gruionu G, Williams SK, Hoying JB. Rapid Perfusion and Network Remodeling in a Microvascular Construct After Implantation. Arterioscler Thromb Vasc Biol 2004; 24:898-904. [PMID: 14988090 DOI: 10.1161/01.atv.0000124103.86943.1e] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE We have previously demonstrated the ability to construct 3-dimensional microvascular beds in vitro via angiogenesis from isolated, intact, microvessel fragments that retain endothelial cells and perivascular cells. Our objective was to develop and characterize an experimental model of tissue vascularization, based on the implantation of this microvascular construct, which recapitulated angiogenesis, vessel differentiation, and network maturation. METHODS AND RESULTS On implantation in a severe combined-immunodeficient mouse model, vessels in the microvascular constructs rapidly inosculated with the recipient host circulation. Ink perfusion of implants via the left ventricle of the host demonstrated that vessel inosculation begins within the first day after implantation. Evaluation of explanted constructs over the course of 28 days revealed the presence of a mature functional microvascular bed. Using a probe specific for the original microvessel source, 91.7%+/-11% and 88.6%+/-19% of the vessels by day 5 and day 28 after implantation, respectively, were derived from the original microvessel isolate. Similar results were obtained when human-derived microvessels were used to build the microvascular construct. CONCLUSIONS With this model, we reproduce the important aspects of vascularization, angiogenesis, inosculation, and network remodeling. Furthermore, we demonstrate that the model accommodates human-derived vessel fragments, enabling the construction of human-mouse vascular chimeras.
Collapse
Affiliation(s)
- Benjamin R Shepherd
- Biomedical Engineering Program, Vascular Research Group, University of Arizona, Tucson 85724, USA
| | | | | | | | | | | |
Collapse
|
143
|
Wohlfahrt JG, Karagiannidis C, Kunzmann S, Epstein MM, Kempf W, Blaser K, Schmidt-Weber CB. Ephrin-A1 suppresses Th2 cell activation and provides a regulatory link to lung epithelial cells. THE JOURNAL OF IMMUNOLOGY 2004; 172:843-50. [PMID: 14707054 DOI: 10.4049/jimmunol.172.2.843] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Gene expression screening showed decreased ephrin-A1 expression in CD4+ T cells of asthma patients. Ephrin-A1 is the ligand of the Eph receptor family of tyrosine kinases, forming the largest family of receptor tyrosine kinases. Their immune regulatory properties are largely unknown. This study demonstrates significantly reduced ephrin-A1 expression in T cells of asthma patients using real time-PCR. Immunohistological analyses revealed strong ephrin-A1 expression in lung tissue and low expression in cortical areas of lymph nodes. It is absent in T cell/B cell areas of the spleen. Colocalization of ephrin-A1 and its receptors was found only in the lung, but not in lymphoid tissues. In vitro activation of T cells reduced ephrin-A1 at mRNA and protein levels. T cell proliferation, activation-induced, and IL-2-dependent cell death were inhibited by cross-linking ephrin-A1, and not by engagement of Eph receptors. However, anti-EphA1 receptor slightly enhances Ag-specific and polyclonal proliferation of PBMC cultures. Furthermore, activation-induced CD25 up-regulation was diminished by ephrin-A1 engagement. Ephrin-A1 engagement reduced IL-2 expression by 82% and IL-4 reduced it by 69%; the IFN-gamma expression remained unaffected. These results demonstrate that ephrin-A1 suppresses T cell activation and Th2 cytokine expression, while preventing activation-induced cell death. The reduced ephrin-A1 expression in asthma patients may reflect the increased frequency of activated T cells in peripheral blood. That the natural ligands of ephrin-A1 are most abundantly expressed in the lung may be relevant for Th2 cell regulation in asthma and Th2 cell generation by mucosal allergens.
Collapse
Affiliation(s)
- Jan G Wohlfahrt
- Swiss Institute of Allergy and Asthma Research, Obere Strasse 22, CH-7270 Davos, Switzerland
| | | | | | | | | | | | | |
Collapse
|
144
|
Fuss B, Josten F, Feix M, Hoch M. Cell movements controlled by the Notch signalling cascade during foregut development inDrosophila. Development 2004; 131:1587-95. [PMID: 14998929 DOI: 10.1242/dev.01057] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Notch signalling is an evolutionarily conserved cell interaction mechanism,the role of which in controlling cell fate choices has been studied extensively. Recent studies in both vertebrates and invertebrates revealed additional functions of Notch in proliferation and apoptotic events. We provide evidence for an essential role of the Notch signalling pathway during morphogenetic cell movements required for the formation of the foregut-associated proventriculus organ in the Drosophila embryo. We demonstrate that the activation of the Notch receptor occurs in two rows of boundary cells in the proventriculus primordium. The boundary cells delimit a population of foregut epithelial cells that invaginate into the endodermal midgut layer during proventriculus morphogenesis. Notch receptor activation requires the expression of its ligand Delta in the invaginating cells and apical Notch receptor localisation in the boundary cells. We further show that the movement of the proventricular cells is dependent on the short stop gene that encodes the Drosophila plectin homolog of vertebrates and is a cytoskeletal linker protein of the spectraplakin superfamily. short stop is transcriptionally activated in response to the Notch signalling pathway in boundary cells and we demonstrate that the localisation of the Notch receptor and Notch signalling activity depend on short stop activity. Our results provide a novel link between the Notch signalling pathway and cytoskeletal reorganisation controlling cell movement during the development of foregut-associated organs.
Collapse
Affiliation(s)
- Bernhard Fuss
- Universität Bonn, Institut für Molekulare Physiologie und Entwicklungsbiologie, Abteilung für Molekulare Entwicklungsbiologie, Poppelsdorfer Schloss, D-53115 Bonn, Germany
| | | | | | | |
Collapse
|
145
|
Barrios A, Poole RJ, Durbin L, Brennan C, Holder N, Wilson SW. Eph/Ephrin signaling regulates the mesenchymal-to-epithelial transition of the paraxial mesoderm during somite morphogenesis. Curr Biol 2004; 13:1571-82. [PMID: 13678588 DOI: 10.1016/j.cub.2003.08.030] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND During somitogenesis, segmental patterns of gene activity provide the instructions by which mesenchymal cells epithelialize and form somites. Various members of the Eph family of transmembrane receptor tyrosine kinases and their Ephrin ligands are expressed in a segmental pattern in the rostral presomitic mesoderm. This pattern establishes a receptor/ligand interface at each site of somite furrow formation. In the fused somites (fss/tbx24) mutant, lack of intersomitic boundaries and epithelial somites is accompanied by a lack of Eph receptor/Ephrin signaling interfaces. These observations suggest a role for Eph/Ephrin signaling in the regulation of somite epithelialization. RESULTS We show that restoration of Eph/Ephrin signaling in the paraxial mesoderm of fss mutants rescues most aspects of somite morphogenesis. First, restoration of bidirectional or unidirectional EphA4/Ephrin signaling results in the formation and maintenance of morphologically distinct boundaries. Second, activation of EphA4 leads to the cell-autonomous acquisition of a columnar morphology and apical redistribution of beta-catenin, aspects of epithelialization characteristic of cells at somite boundaries. Third, activation of EphA4 leads to nonautonomous acquisition of columnar morphology and polarized relocalization of the centrosome and nucleus in cells on the opposite side of the forming boundary. These nonautonomous aspects of epithelialization may involve interplay of EphA4 with other intercellular signaling molecules. CONCLUSIONS Our results demonstrate that Eph/Ephrin signaling is an important component of the molecular mechanisms driving somite morphogenesis. We propose a new role for Eph receptors and Ephrins as intercellular signaling molecules that establish cell polarity during mesenchymal-to-epithelial transition of the paraxial mesoderm.
Collapse
Affiliation(s)
- Arantza Barrios
- Department of Anatomy and Developmental Biology, University College London, London WC1E 6BT, United Kingdom.
| | | | | | | | | | | |
Collapse
|
146
|
Duxbury MS, Ito H, Zinner MJ, Ashley SW, Whang EE. EphA2: a determinant of malignant cellular behavior and a potential therapeutic target in pancreatic adenocarcinoma. Oncogene 2004; 23:1448-56. [PMID: 14973554 DOI: 10.1038/sj.onc.1207247] [Citation(s) in RCA: 173] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The EphA2 receptor tyrosine kinase is overexpressed in a variety of human cancers. We sought to characterize the role of EphA2 in pancreatic adenocarcinoma and, using RNA interference (RNAi) mediated by small interfering RNA (siRNA), we determined the effects of suppressing EphA2 expression in vitro and in vivo. EphA2 expression in PANC1, MIAPaCa2, BxPC3 and Capan2 cells was assessed by Northern and Western blot. We artificially overexpressed EphA2 by transient transfection and suppressed EphA2 expression using RNAi. Cellular invasiveness was quantified by modified Boyden chamber assay. Anoikis was induced by anchorage-independent polyHEMA culture and caspase 3 activity was quantified fluorometrically. Focal adhesion kinase (FAK) phosphorylation was assessed by immunoprecipitation. EphA2 siRNA treatment was assessed in a nude mouse xenograft model. Pancreatic adenocarcinoma cells differentially express EphA2. Inherent and induced EphA2 overexpression is associated with increased cellular invasiveness and anoikis resistance. EphA2 siRNA suppresses EphA2 expression, cellular invasiveness, anoikis resistance and FAK phosphorylation in vitro and retards tumor growth and inhibits metastasis in vivo. EphA2 is both a determinant of malignant cellular behavior and a potential therapeutic target in pancreatic adenocarcinoma.
Collapse
Affiliation(s)
- Mark S Duxbury
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
147
|
Mao W, Luis E, Ross S, Silva J, Tan C, Crowley C, Chui C, Franz G, Senter P, Koeppen H, Polakis P. EphB2 as a Therapeutic Antibody Drug Target for the Treatment of Colorectal Cancer. Cancer Res 2004; 64:781-8. [PMID: 14871799 DOI: 10.1158/0008-5472.can-03-1047] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Analysis of human colorectal cancer specimens revealed overexpression of the EphB2 receptor tyrosine kinase. Monoclonal antibodies (MAbs) to extracellular sequence of EphB2 were raised and tested for activity against colorectal cancer cells. One of the MAbs, 2H9, effectively blocked the interaction of ephB2 with ephrin ligands and inhibited the resulting autophosphorylation of the receptor. However, this antibody did not affect the proliferation of cancer cells expressing ephB2. Immunocytochemical analysis revealed rapid internalization of the MAb 2H9 on binding ephB2, suggesting that target-dependent cell killing could be achieved with an antibody-drug conjugate. When MAb 2H9 was conjugated to monomethylauristatin E through a cathepsin B-cleavable linker, it specifically killed ephB2-expressing cancer cells in vitro and in vivo. Our results suggest that ephB2 is an attractive target for immunoconjugate cancer therapy.
Collapse
Affiliation(s)
- Weiguang Mao
- Department of Molecular Biology, Genentech, Inc., South San Francisco, California, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Cerny R, Meulemans D, Berger J, Wilsch-Bräuninger M, Kurth T, Bronner-Fraser M, Epperlein HH. Combined intrinsic and extrinsic influences pattern cranial neural crest migration and pharyngeal arch morphogenesis in axolotl. Dev Biol 2004; 266:252-69. [PMID: 14738875 DOI: 10.1016/j.ydbio.2003.09.039] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cranial neural crest cells migrate in a precisely segmented manner to form cranial ganglia, facial skeleton and other derivatives. Here, we investigate the mechanisms underlying this patterning in the axolotl embryo using a combination of tissue culture, molecular markers, scanning electron microscopy and vital dye analysis. In vitro experiments reveal an intrinsic component to segmental migration; neural crest cells from the hindbrain segregate into distinct streams even in the absence of neighboring tissue. In vivo, separation between neural crest streams is further reinforced by tight juxtapositions that arise during early migration between epidermis and neural tube, mesoderm and endoderm. The neural crest streams are dense and compact, with the cells migrating under the epidermis and outside the paraxial and branchial arch mesoderm with which they do not mix. After entering the branchial arches, neural crest cells conduct an "outside-in" movement, which subsequently brings them medially around the arch core such that they gradually ensheath the arch mesoderm in a manner that has been hypothesized but not proven in zebrafish. This study, which represents the most comprehensive analysis of cranial neural crest migratory pathways in any vertebrate, suggests a dual process for patterning the cranial neural crest. Together with an intrinsic tendency to form separate streams, neural crest cells are further constrained into channels by close tissue apposition and sorting out from neighboring tissues.
Collapse
Affiliation(s)
- Robert Cerny
- Department of Anatomy, TU Dresden, Dresden 01307, Germany.
| | | | | | | | | | | | | |
Collapse
|
149
|
Gauthier LR, Robbins SM. Ephrin signaling: One raft to rule them all? One raft to sort them? One raft to spread their call and in signaling bind them? Life Sci 2004; 74:207-16. [PMID: 14607248 DOI: 10.1016/j.lfs.2003.09.029] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The Eph receptor tyrosine kinases (RTK) and their membrane-bound ligands, the ephrins, mediate cell-contact-dependent signaling events that control multiple aspects of metazoan embryonic development. The ephrins and their receptors regulate cell movement that is essential for forming and stabilizing the spatial organization of tissues and cell types. This includes the guidance of migrating cells or neuronal growth cones to specific targets. Although the biological responses mediated by the ephrin-Eph system were thought to be imparted by the Eph receptor via 'classical' RTK signaling pathways, there is now accumulating evidence that the ephrins are not merely ligands but have biological activity independent of the kinase activity of their cognate Eph receptor. This activity is commonly referred to as 'reverse' or 'bi-directional' signaling. Furthermore, ephrin-mediated signaling is restricted to specific membrane microdomains known as 'lipid rafts', which we believe imparts specificity to the extracellular signal. This review highlights the current data to support a role for lipid rafts in regulating aspects of ephrin-mediated signaling.
Collapse
Affiliation(s)
- Laura R Gauthier
- Department of Oncology, University of Calgary, T2N-4N1, Calgary, Alberta, Canada
| | | |
Collapse
|
150
|
Affiliation(s)
- Lisa D Urness
- Division of Cardiology, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | | |
Collapse
|