101
|
Kim K, Kim JH, Lee J, Jin HM, Kook H, Kim KK, Lee SY, Kim N. MafB negatively regulates RANKL-mediated osteoclast differentiation. Blood 2006; 109:3253-9. [PMID: 17158225 DOI: 10.1182/blood-2006-09-048249] [Citation(s) in RCA: 209] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Receptor activator of nuclear factor kappaB ligand (RANKL) induces osteoclast formation from hematopoietic cells via regulation of various transcription factors. Here, we show that MafB negatively regulates RANKL-induced osteoclast differentiation. Expression levels of MafB are significantly reduced by RANKL during osteoclastogenesis. Overexpression of MafB in bone marrow-derived monocyte/macrophage lineage cells (BMMs) inhibits the formation of TRAP(+) multinuclear osteoclasts, but phagocytic activity of BMMs is retained. Furthermore, overexpression of MafB in BMMs attenuates the gene induction of NFATc1 and osteoclast-associated receptor (OSCAR) during RANKL-mediated osteoclastogenesis. In addition, MafB proteins interfere with the DNA-binding ability of c-Fos, Mitf, and NFATc1, inhibiting their transactivation of NFATc1 and OSCAR. Furthermore, reduced expression of MafB by RNAi enhances osteoclastogenesis and increases expression of NFATc1 and OSCAR. Taken together, our results suggest that MafB can act as an important modulator of RANKL-mediated osteoclastogenesis.
Collapse
Affiliation(s)
- Kabsun Kim
- Research Institute of Medical Sciences and Medical Research Center for Gene Regulation, Chonnam National University Medical School, Hak-Dong 5, Dong-Ku, Gwangju 501-746, Korea
| | | | | | | | | | | | | | | |
Collapse
|
102
|
Abstract
Many transgenic and knockout mice exhibit pathogenic processes resembling human ocular surface diseases. Thus, the clinical manifestations of mouse lines can provide clues for identifying heritable human diseases of unknown etiology. However, mouse lines using conventional techniques of transgenesis and gene targeting often exhibit embryonic lethality and congenital defects, which preclude the use of such mouse models to study acquired ocular surface tissue diseases. These difficulties can be in part overcome by preparing mouse lines of inducible transgene expression, tissue-specific gene ablation, and inducible tissue-specific gene ablation. Conditional transgenic mouse lines live normally until administration of doxycycline and hormones that induce expression of the transgene and ablation of gene of interest. Toward this goal, we prepared 2 groups of genetically modified mouse lines: (1) transgenesis using keratocan promoter was used to create Kera-rtTA mice (doxycycline-inducible mice) and Cre-LoxP system (ie, Kera-Cre mice; conditional gene ablation in neural crest cell lineage and adult stromal keratocyte) and Kera-CrePR mice (RU-486 inducible); and (2) knock-in strategies were used to create Krt12-rtTA mice (doxycycline inducible), Krt12-Cre mice (conditional ablation in corneal epithelium), and Krt12rtTA-tet-O-Cre mice (doxycycline-inducible corneal epithelium-specific gene ablation). Using these mouse lines, we showed that transforming growth factor (TGF)-beta2 is essential for eye morphogenesis, TGF-alpha is a morphogen for eyelid formation, and lumican is a matrikine that has multiple regulatory functions on cell activities (eg, migration proliferation and gene expression) besides serving as a regulatory molecule of collagen fibrillogenesis. These mouse lines can also be used as models for development of therapeutic treatment regimens of ocular surface diseases using gene therapy and stem cell strategies.
Collapse
Affiliation(s)
- Winston W-Y Kao
- Department of Ophthalmology and Cell Biology, University of Cincinnati, 3225 Eden Avenue, Cincinnati, OH 45267, USA.
| |
Collapse
|
103
|
Yang YG, Frappart PO, Frappart L, Wang ZQ, Tong WM. A novel function of DNA repair molecule Nbs1 in terminal differentiation of the lens fibre cells and cataractogenesis. DNA Repair (Amst) 2006; 5:885-93. [PMID: 16790366 DOI: 10.1016/j.dnarep.2006.05.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2006] [Revised: 05/02/2006] [Accepted: 05/02/2006] [Indexed: 11/22/2022]
Abstract
The Nbs1 protein, hypomorphic mutant in Nijmegen breakage syndrome (NBS), is a component of the Mre11/Rad50/Nbs1 (M/R/N) complex that acts as a DNA double-strand break sensor and functions in cell cycle checkpoint in response to DNA damage and DNA repair. Here we report that targeted disruption of murine NBS1 gene (Nbn) in the lens alters the M/R/N complex nuclear localization and results in microphthalmia in mice due to reduced proliferation of the lens epithelial cells. Unexpectedly, all Nbn-deficient lenses develop cataracts at an early age due to altered lens fibre cell differentiation, including disruption of normal lens epithelial and fibre cell architecture and incomplete denucleation of fibre cells, and these changes are independent of the p53 pathway. In addition, Nbn-deficient lenses show dysregulated transcription of various crystallins. Thus, this study implicates a novel function of Nbs1 in terminal differentiation of the lens fibre cells and in cataractogenesis.
Collapse
Affiliation(s)
- Yun-Gui Yang
- International Agency for Research on Cancer (IARC), 150 cours Albert-Thomas, 69008 Lyon, France
| | | | | | | | | |
Collapse
|
104
|
Nishimura W, Kondo T, Salameh T, Khattabi IE, Dodge R, Bonner-Weir S, Sharma A. A switch from MafB to MafA expression accompanies differentiation to pancreatic beta-cells. Dev Biol 2006; 293:526-39. [PMID: 16580660 PMCID: PMC2390934 DOI: 10.1016/j.ydbio.2006.02.028] [Citation(s) in RCA: 233] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2005] [Revised: 01/27/2006] [Accepted: 02/16/2006] [Indexed: 01/05/2023]
Abstract
Major insulin gene transcription factors, such as PDX-1 or NeuroD1, have equally important roles in pancreatic development and the differentiation of pancreatic endocrine cells. Previously, we identified and cloned another critical insulin gene transcription factor MafA (RIPE3b1) and reported that other Maf factors were expressed in pancreatic endocrine cells. Maf factors are important regulators of cellular differentiation; to understand their role in differentiation of pancreatic endocrine cells, we analyzed the expression pattern of large-Maf factors in the pancreas of embryonic and adult mice. Ectopically expressed large-Maf factors, MafA, MafB, or cMaf, induced expression from insulin and glucagon reporter constructs, demonstrating a redundancy in their function. Yet in adult pancreas, cMaf was expressed in both alpha- and beta-cells, and MafA and MafB showed selective expression in the beta- and alpha-cells, respectively. Interestingly, during embryonic development, a significant proportion of MafB-expressing cells also expressed insulin. In embryos, MafB is expressed before MafA, and our results suggest that the differentiation of beta-cells proceeds through a MafB+ MafA- Ins+ intermediate cell to MafB- MafA+ Ins+ cells. Furthermore, the MafB to MafA transition follows induction of PDX-1 expression (Pdx-1(high)) in MafB+ Ins+ cells. We suggest that MafB may have a dual role in regulating embryonic differentiation of both beta- and alpha-cells while MafA may regulate replication/survival and function of beta-cells after birth. Thus, this redundancy in the function and expression of the large-Maf factors may explain the normal islet morphology observed in the MafA knockout mice at birth.
Collapse
Affiliation(s)
- Wataru Nishimura
- Section of Islet Transplantation & Cell Biology, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Takuma Kondo
- Section of Islet Transplantation & Cell Biology, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Therese Salameh
- Section of Islet Transplantation & Cell Biology, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Ilham El Khattabi
- Section of Islet Transplantation & Cell Biology, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Rikke Dodge
- Section of Islet Transplantation & Cell Biology, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Susan Bonner-Weir
- Section of Islet Transplantation & Cell Biology, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Arun Sharma
- Section of Islet Transplantation & Cell Biology, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
105
|
Yang Y, Stopka T, Golestaneh N, Wang Y, Wu K, Li A, Chauhan BK, Gao CY, Cveklová K, Duncan MK, Pestell RG, Chepelinsky AB, Skoultchi AI, Cvekl A. Regulation of alphaA-crystallin via Pax6, c-Maf, CREB and a broad domain of lens-specific chromatin. EMBO J 2006; 25:2107-18. [PMID: 16675956 PMCID: PMC1462985 DOI: 10.1038/sj.emboj.7601114] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Accepted: 04/04/2006] [Indexed: 11/08/2022] Open
Abstract
Pax6 and c-Maf regulate multiple stages of mammalian lens development. Here, we identified novel distal control regions (DCRs) of the alphaA-crystallin gene, a marker of lens fiber cell differentiation induced by FGF-signaling. DCR1 stimulated reporter gene expression in primary lens explants treated with FGF2 linking FGF-signaling with alphaA-crystallin synthesis. A DCR1/alphaA-crystallin promoter (including DCR2) coupled with EGFP virtually recapitulated the expression pattern of alphaA-crystallin in lens epithelium and fibers. In contrast, the DCR3/alphaA/EGFP reporter was expressed only in 'late' lens fibers. Chromatin immunoprecipitations showed binding of Pax6 to DCR1 and the alphaA-crystallin promoter in lens chromatin and demonstrated that high levels of alphaA-crystallin expression correlate with increased binding of c-Maf and CREB to the promoter and of CREB to DCR3, a broad domain of histone H3K9-hyperacetylation extending from DCR1 to DCR3, and increased abundance of chromatin remodeling enzymes Brg1 and Snf2h at the alphaA-crystallin locus. Our data demonstrate a novel mechanism of Pax6, c-Maf and CREB function, through regulation of chromatin-remodeling enzymes, and suggest a multistage model for the activation of alphaA-crystallin during lens differentiation.
Collapse
Affiliation(s)
- Ying Yang
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Tomáš Stopka
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Yan Wang
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Kongming Wu
- Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Anping Li
- Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Bharesh K Chauhan
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Květa Cveklová
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Melinda K Duncan
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Richard G Pestell
- Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | | | - Arthur I Skoultchi
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Aleš Cvekl
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Ophthalmology and Visual Sciences and Molecular Genetics, Albert Einstein College of Medicine, 123 Ullmann, 1300 Morris Park Ave, Bronx, NY 10461, USA. Tel: +1 718 430 3217; Fax: +1 718 430 8778; E-mail:
| |
Collapse
|
106
|
Pouponnot C, Sii-Felice K, Hmitou I, Rocques N, Lecoin L, Druillennec S, Felder-Schmittbuhl MP, Eychène A. Cell context reveals a dual role for Maf in oncogenesis. Oncogene 2006; 25:1299-310. [PMID: 16247450 DOI: 10.1038/sj.onc.1209171] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Maf b-Zip transcription factors are involved in both terminal differentiation and oncogenesis. To investigate this apparent contradiction, we used two different primary cell types and performed an extensive analysis of transformation parameters induced by Maf proteins. We show that MafA and c-Maf are potent oncogenes in chicken embryo fibroblasts, while MafB appears weaker. We also provide the first evidence that MafA can confer growth factor independence and promote cell division at low density. Moreover, using MafA as a model, we identified several parameters that are critical for Maf transforming activities. Indeed, MafA ability to induce anchorage-independent cell growth was sensitive to culture conditions. In addition, the transforming activity of MafA was dependent on its phosphorylation state, since mutation on Ser65 impaired its ability to induce growth at low density and anchorage-independent growth. We next examined transforming activity of large Maf proteins in embryonic neuroretina cells, where they are known to induce differentiation. Unlike v-Jun, MafA, MafB and c-Maf did not show oncogenic activity in these cells. Moreover, they counteracted transformation induced by constitutive activation of the Ras/Raf/MEK pathway. Taken together, our results show that Maf proteins could display antagonistic functions in oncogenesis depending on the cellular context, and support a dual role for Maf as both oncogenes and tumor suppressor-like proteins.
Collapse
Affiliation(s)
- C Pouponnot
- Institut Curie, CNRS UMR 146, Centre Universitaire, Laboratoire 110, Orsay Cedex, France.
| | | | | | | | | | | | | | | |
Collapse
|
107
|
Hou HH, Kuo MYP, Luo YW, Chang BE. Recapitulation of human betaB1-crystallin promoter activity in transgenic zebrafish. Dev Dyn 2006; 235:435-43. [PMID: 16331646 DOI: 10.1002/dvdy.20652] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Development of the eye is morphologically similar among vertebrates, indicating that the underlying mechanism regulating the process may have been highly conserved during evolution. Herein we analyzed the promoter of the human betaB1-crytallin gene in zebrafish by transgenic experiments. To delineate the evolutionarily conserved regulatory elements, we performed serial deletion assays in the promoter region. The results demonstrated that the -90/+61-bp upstream proximal promoter region is sufficient to confer lens-tissue specificity to the human betaB1-crystallin gene in transgenic zebrafish. Through phylogenetic sequence comparisons and an electrophoretic mobility shift assay (EMSA), a highly conserved cis-element of a six-base pair sequence TG(A/C)TGA, the consensus sequence for the Maf protein binding site, within the proximal promoter region was revealed. Further, a site-mutational assay showed that this element is crucial for promoter activity. These data suggest that the fundamental transcriptional regulatory mechanism of the betaB1-crystallin gene has been well conserved between humans and zebrafish, and plausibly among all vertebrates, during evolution.
Collapse
Affiliation(s)
- Hsin-Han Hou
- Graduate Institute of Oral Biology, College of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
| | | | | | | |
Collapse
|
108
|
Nishimura W, Salameh T, Kondo T, Sharma A. Regulation of insulin gene expression by overlapping DNA-binding elements. Biochem J 2006; 392:181-9. [PMID: 16050808 PMCID: PMC1317677 DOI: 10.1042/bj20050970] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The transcription factor MafA/RIPE3b1 is an important regulator of insulin gene expression. MafA binds to the insulin enhancer element RIPE3b (C1-A2), now designated as insulin MARE (Maf response element). The insulin MARE element shares an overlapping DNA-binding region with another insulin enhancer element A2. A2.2, a beta-cell-specific activator, like the MARE-binding factor MafA, binds to the overlapping A2 element. Our previous results demonstrated that two nucleotides in the overlapping region are required for the binding of both factors. Surprisingly, instead of interfering with each other's binding activity, the MafA and the A2-binding factors co-operatively activated insulin gene expression. To understand the molecular mechanisms responsible for this functional co-operation, we have determined the nucleotides essential for the binding of the A2.2 factor. Using this information, we have constructed non-overlapping DNA-binding elements and their derivatives, and subsequently analysed the effect of these modifications on insulin gene expression. Our results demonstrate that the overlapping binding site is essential for maximal insulin gene expression. Furthermore, the overlapping organization is critical for MafA-mediated transcriptional activation, but has a minor effect on the activity of A2-binding factors. Interestingly, the binding affinities of both MafA and A2.2 to the overlapping or non-overlapping binding sites were not significantly different, implying that the overlapping binding organization may increase the activation potential of MafA by physical/functional interactions with A2-binding factors. Thus our results demonstrate a novel mechanism for the regulation of MafA activity, and in turn beta-cell function, by altering expression and/or binding of the A2.2 factor. Our results further suggest that the major downstream targets of MafA will in addition to the MARE element have a binding site for the A2.2 factor.
Collapse
Affiliation(s)
- Wataru Nishimura
- *Section of Islet Transplantation and Cell Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, U.S.A
- †Department of Medicine, Harvard Medical School, Boston, MA 02215, U.S.A
| | - Therese Salameh
- *Section of Islet Transplantation and Cell Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, U.S.A
| | - Takuma Kondo
- *Section of Islet Transplantation and Cell Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, U.S.A
- †Department of Medicine, Harvard Medical School, Boston, MA 02215, U.S.A
| | - Arun Sharma
- *Section of Islet Transplantation and Cell Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, U.S.A
- †Department of Medicine, Harvard Medical School, Boston, MA 02215, U.S.A
- To whom correspondence should be addressed, at Research Division, Joslin Diabetes Center, One Joslin Place, Boston, MA 02215, U.S.A. (email )
| |
Collapse
|
109
|
Morito N, Yoh K, Fujioka Y, Nakano T, Shimohata H, Hashimoto Y, Yamada A, Maeda A, Matsuno F, Hata H, Suzuki A, Imagawa S, Mitsuya H, Esumi H, Koyama A, Yamamoto M, Mori N, Takahashi S. Overexpression of c-Maf Contributes to T-Cell Lymphoma in Both Mice and Human. Cancer Res 2006; 66:812-9. [PMID: 16424013 DOI: 10.1158/0008-5472.can-05-2154] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
c-Maf translocation or overexpression has been observed in human multiple myeloma. Although c-maf might function as an oncogene in multiple myeloma, a role for this gene in other cancers has not been shown. In this study, we have found that mice transgenic for c-Maf whose expression was direct to the T-cell compartment developed T-cell lymphoma. Moreover, we showed that cyclin D2, integrin beta(7), and ARK5 were up-regulated in c-Maf transgenic lymphoma cells. Furthermore, 60% of human T-cell lymphomas (11 of 18 cases), classified as angioimmunoblastic T-cell lymphoma, were found to express c-Maf. These results suggest that c-Maf might cause a type of T-cell lymphoma in both mice and humans and that ARK5, in addition to cyclin D2 and integrin beta(7), might be downstream target genes of c-Maf leading to malignant transformation.
Collapse
Affiliation(s)
- Naoki Morito
- Department of Anatomy and Embryology, Biomolecular and Integrated Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Vanita V, Singh D, Robinson PN, Sperling K, Singh JR. A novel mutation in the DNA-binding domain ofMAF at 16q23.1 associated with autosomal dominant “cerulean cataract” in an Indian family. Am J Med Genet A 2006; 140:558-66. [PMID: 16470690 DOI: 10.1002/ajmg.a.31126] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Congenital cataract, a clinically and genetically highly heterogeneous eye disorder, is one of the significant causes of visual impairment or blindness in children. It is frequently inherited as an autosomal dominant trait. We investigated a three-generation family of Indian origin with 12 members affected with cerulean cataract. Linkage analysis was carried out in this family using more than 100 microsatellite markers for the known cataract candidate gene loci. A positive two-point lod score of 3.9 at theta = 0.000, indicative of linkage, was obtained with three microsatellite markers for chromosome 16. Multipoint and haplotype analysis narrowed the cataract locus to a 15.3 cM region between markers D16S518 and D16S511 that corresponds to the region 16q23.1. Direct sequencing of the candidate gene MAF, which lies in the critical linked region, revealed a novel heterozygous missense mutation in the basic region (BR) of the DNA-binding domain. This sequence change was considered pathogenic as it segregated in all affected family members, neither seen in unaffected family members nor in 106 unrelated controls. The mutation also results in substitution of highly conserved lysine 297 by arginine (K297R) that affects a residue that forms a part of a predicted DNA-interaction region of the protein. The association of microcornea with congenital cataract in some affected individuals further underlines the role of the MAF transcription factor in lens and anterior ocular development. Our findings expand the mutation spectrum of MAF in association with congenital cataract and highlight the genetic and phenotypic heterogeneity of congenital cataract.
Collapse
Affiliation(s)
- Vanita Vanita
- Centre for Genetic Disorders, Guru Nanak Dev University, Amritsar, India
| | | | | | | | | |
Collapse
|
111
|
Omoteyama K, Ikeda H, Imaki J, Sakai M. Activation of connective tissue growth factor gene by the c-Maf and Lc-Maf transcription factors. Biochem Biophys Res Commun 2005; 339:1089-97. [PMID: 16343439 DOI: 10.1016/j.bbrc.2005.11.119] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Accepted: 11/21/2005] [Indexed: 12/13/2022]
Abstract
The Maf family of transcription factors is expressed during development of various organs and tissues, and is involved in a variety of developmental and cellular differentiation processes. We previously found that c-maf and mafB are strongly expressed in hypertrophic chondrocytes during cartilage development. Connective tissue growth factor (CTGF) is also expressed in hypertrophic chondrocytes. Adenovirus mediated introduction of c-maf gene into the mouse fibroblast cell line C3H10T1/2 strongly induced CTGF expression. CTGF can be induced by TGF-beta via the SMAD pathway; however, the c-Maf could not induce TGF-beta, nor could TGF-beta induce the c-Maf, suggesting that activation of CTGF by Maf is TGF-beta independent. Reporter transfection analysis using C3H10T1/2 cells shows that c-Maf stimulates a CTGF reporter gene. Lc-Maf, a splice variant of c-Maf containing an extra 10 amino acids in the carboxyl terminus, was a stronger inducer of the CTGF reporter gene than c-Maf. Chromatin immunoprecipitation analysis showed that c-Maf binds to the promoter region of the CTGF gene, indicating that Maf directly activates the CTGF gene. Taken together, these data indicate that the CTGF gene is a target of c-Maf and Lc-Maf in cartilage development.
Collapse
Affiliation(s)
- Kazuki Omoteyama
- Department of Biochemistry, Graduate School of Medicine, Hokkaido University, N14, W7, Kita-ku, Sapporo 060-8638, Japan
| | | | | | | |
Collapse
|
112
|
Yang Y, Cvekl A. Tissue-specific regulation of the mouse alphaA-crystallin gene in lens via recruitment of Pax6 and c-Maf to its promoter. J Mol Biol 2005; 351:453-69. [PMID: 16023139 PMCID: PMC2080862 DOI: 10.1016/j.jmb.2005.05.072] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2005] [Revised: 04/25/2005] [Accepted: 05/25/2005] [Indexed: 11/21/2022]
Abstract
Pax6 is a lineage-restricted DNA-binding transcription factor regulating the formation of mammalian organs including brain, eye and pancreas. Pax6 plays key roles during the initial formation of lens lineage, proliferation of lens progenitor and precursor cells and their terminal differentiation. In addition to Pax6, lens fiber cell differentiation is regulated by c-Maf, Prox1 and Sox1. Crystallins are essential lens structural proteins required for light refraction and transparency. Mouse alphaA-crystallin represents about 17% of all crystallins at the protein level and ranks as one of the most abundant tissue-specific proteins. Lens-specific expression of this gene is regulated at the level of transcription. A promoter fragment of -88 to +46 is capable of driving lens-specific expression in transgenic mouse. Here we provide data suggesting that this lens-specific promoter fragment is comprised of multiple Pax6 and Maf-binding sites. Site-directed mutagenesis of regions within these sites resulted in partially or completely reduced promoter activities in lens cells. Co-transfections using Pax6 and c-Maf alone revealed moderate and strong activations of this promoter, respectively. In contrast to synergistic activation of alphaB-crystallin by Pax6 and c-Maf, Pax6 has a neutral effect on c-Maf-mediated alphaA-crystallin promoter activation. Chromatin immunoprecipitations established in vivo interactions of Pax6 and c-Maf with the alphaA-crystallin promoter in lens cells. Collectively, the present data support a molecular model in which tissue-specific expression of alphaA-crystallin is regulated by recruitment of Pax6 and c-Maf, two proteins regulating multiple processes of lens differentiation, to its promoter. In addition, the data suggest a molecular model of temporal and spatial regulation of alphaB, alphaA and gamma-crystallin genes in mouse embryonic lens by using variants of the Pax6/Maf regulatory module.
Collapse
Affiliation(s)
| | - Ales Cvekl
- Corresponding author: E-mail address of the corresponding author:
| |
Collapse
|
113
|
Sii-Felice K, Pouponnot C, Gillet S, Lecoin L, Girault JA, Eychène A, Felder-Schmittbuhl MP. MafA transcription factor is phosphorylated by p38 MAP kinase. FEBS Lett 2005; 579:3547-54. [PMID: 15963504 DOI: 10.1016/j.febslet.2005.04.086] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2005] [Revised: 04/04/2005] [Accepted: 04/29/2005] [Indexed: 11/23/2022]
Abstract
Basic-leucine zipper transcription factors of the Maf family are key regulators of various developmental and differentiation processes. We previously reported that the phosphorylation status of MafA is a critical determinant of its biological functions. Using Western blot and mass spectrometry analysis, we now show that MafA is phosphorylated by p38 MAP kinase and identify three phosphoacceptor sites: threonine 113 and threonine 57, evolutionarily conserved residues located in the transcription activating domain, and serine 272. Mutation of these residues severely impaired MafA biological activity. Furthermore, we show that p38 also phosphorylates MafB and c-Maf. Together, these findings suggest that the p38 MAP kinase pathway is a novel regulator of large Maf transcription factors.
Collapse
Affiliation(s)
- Karine Sii-Felice
- UMR 146 CNRS-Institut Curie, Bâtiment 110, Centre Universitaire, 91405 Orsay Cedex, France
| | | | | | | | | | | | | |
Collapse
|
114
|
Hyer J. Looking at an oft-overlooked part of the eye: a new perspective on ciliary body development in chick. Dev Neurosci 2005; 26:456-65. [PMID: 15855774 DOI: 10.1159/000082287] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2004] [Accepted: 09/13/2004] [Indexed: 11/19/2022] Open
Abstract
The ciliary body is an essential tissue for the development and homeostasis of the vertebrate eye. Embryonically, the epithelial portion of the ciliary body derives from the neuroepithelium of the optic cup, however, it differentiates into a secretory tissue and produces an aqueous humor that sustains the lens and cornea, and maintains the requisite pressure within the orb. The unique differentiation of this portion of the optic cup is little understood. This article reviews what is known about the development of the ciliary body and presents some preliminary findings that may lead to a new model for the formation of the ciliary body.
Collapse
Affiliation(s)
- Jeanette Hyer
- Department of Neurosurgical Research, Box 0520, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
115
|
Coolen M, Sii-Felice K, Bronchain O, Mazabraud A, Bourrat F, Rétaux S, Felder-Schmittbuhl MP, Mazan S, Plouhinec JL. Phylogenomic analysis and expression patterns of large Maf genes in Xenopus tropicalis provide new insights into the functional evolution of the gene family in osteichthyans. Dev Genes Evol 2005; 215:327-39. [PMID: 15759153 DOI: 10.1007/s00427-005-0476-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2004] [Accepted: 02/15/2005] [Indexed: 10/25/2022]
Abstract
We have performed an exhaustive characterization of the large Maf family of basic leucine zipper transcription factors in vertebrates using the genome data available, and studied the embryonic expression patterns of the four paralogous genes thus identified in Xenopus tropicalis. Our phylogenetic analysis shows that, in osteichthyans, the large Maf family contains four orthology classes, MafA, MafB, c-Maf and Nrl, which have emerged in vertebrates prior to the split between actinopterygians and sarcopterygians. It leads to the unambiguous assignment of the Xenopus laevis XLmaf gene, previously considered a MafA orthologue, to the Nrl class, the identification of the amphibian MafA and c-Maf orthologues and the identification of the zebrafish Nrl gene. The four X. tropicalis paralogues display partially redundant but nevertheless distinct expression patterns in the somites, developing hindbrain, pronephros, ventral blood island and lens. Comparisons with the data available in the mouse, chick and zebrafish show that these large Maf expression territories are highly conserved among osteichthyans but also highlight a number of differences in the timing of large Maf gene expression, the precise extent of some labelled territories and the combinations of paralogues transcribed in some organs. In particular, the availability of robust phylogenies leads to a reinterpretation of previous expression pattern comparisons, suggesting an important part for function shuffling within the gene family in the developing lens. These data highlight the importance of exhaustive characterizations of gene families for comparative analyses of the genetic mechanisms, which control developmental processes in vertebrates.
Collapse
Affiliation(s)
- M Coolen
- Développement et Evolution des Vertébrés, UMR8080, Université Paris-Sud, 91405 Orsay cédex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Cao S, Liu J, Song L, Ma X. The protooncogene c-Maf is an essential transcription factor for IL-10 gene expression in macrophages. THE JOURNAL OF IMMUNOLOGY 2005; 174:3484-92. [PMID: 15749884 PMCID: PMC2955976 DOI: 10.4049/jimmunol.174.6.3484] [Citation(s) in RCA: 188] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
IL-10 is an important immunoregulatory factor. However, our understanding of IL-10 gene regulation remains very limited. In this study, following up on our previous novel finding that the protooncogene c-Maf of the basic leucine zipper family of transcription factors is expressed in monocytes and macrophages, we investigate the role of c-Maf in the transcriptional regulation of IL-10 and the underlying molecular mechanism in macrophages. c-Maf-null macrophages exhibit strongly impaired IL-10 protein production and mRNA expression upon LPS stimulation. Ectopic expression of c-Maf stimulates not only exogenously transfected IL-10 promoter-driven luciferase activity in a dose-dependent manner but also enhances endogenous IL-10 gene expression stimulated by LPS. Both in vitro and in vivo experiments identify a c-Maf response element localized to nucleotides -196/-184 relative to the transcription initiation site in the IL-10 promoter. This site represents an atypical 12-O-tetradecanoate-13-acetate-responsive element for musculoaponeurotic fibrosarcoma recognition and functions as an enhancer element in a heterologous and orientation-independent manner. Furthermore, c-Maf is expressed constitutively in resting monocytes/macrophages. IL-4 can up-regulate c-Maf expression, its binding to IL-10 promoter, and dose dependently enhance IL-10 production induced by LPS; moreover, IL-4 failed to enhance LPS-induced IL-10 production in c-Maf-null macrophages. Taken together, these data demonstrate that c-Maf is an indispensable yet constitutive transcription factor for IL-10 gene expression in LPS-activated macrophages, and IL-4 modulates IL-10 production in inflammatory macrophages likely via its ability to induce c-Maf expression. Thus, this study uncovers a novel and important function of c-Maf in macrophages and elucidates its transcriptional mechanism in the regulation of IL-10 gene expression.
Collapse
Affiliation(s)
| | | | | | - Xiaojing Ma
- Address correspondence and reprint requests to Department of Microbiology and Immunology, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021.
| |
Collapse
|
117
|
Nikitina NV, Maughan-Brown B, O'Riain MJ, Kidson SH. Postnatal development of the eye in the naked mole rat (Heterocephalus glaber). ACTA ACUST UNITED AC 2004; 277:317-37. [PMID: 15052660 DOI: 10.1002/ar.a.20025] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The naked mole rat (Heterocephalus glaber) is a subterranean rodent whose eyes are thought to be visually nonfunctional and as such is an ideal animal with which to pursue questions in evolutionary developmental biology. This report is the first in-depth study on the development and morphology of the naked mole rat eye. Using standard histological analysis and scanning and transmission electron microscopy, we describe the structural features of the eye. We further report on the morphological changes that accompany the development of this eye from neonate to adult and compare them with those that occur during mouse eye development. We observed numerous abnormalities in the shape and cellular arrangement of the structures of the anterior chamber, with notable malformations of the lens. Cell proliferation and cell death assays were conducted to investigate the possible causes of lens malformation. We found that neither of these processes appeared abnormal, indicating that they were not responsible for the lens phenotype of the mole rat. In order to investigate the process of lens differentiation, we analyzed the expression of gamma-crystallins using Western blots and immunocytochemistry. At birth, levels of gamma-crystallin appear normal, but soon thereafter, the gamma-crystallin expression is terminated. Absence of detectable gamma-crystallins in adults suggests that there is a gradual degradation and loss of these proteins. The evolutionary factors that could be responsible for the eye morphology of the naked mole rat are discussed. A model for abnormal lens differentiation and the role it plays in the morphogenesis of the rest of the eye in the naked mole rats is proposed.
Collapse
Affiliation(s)
- Natalya V Nikitina
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | | | | | | |
Collapse
|
118
|
Yang Y, Chauhan BK, Cveklova K, Cvekl A. Transcriptional regulation of mouse alphaB- and gammaF-crystallin genes in lens: opposite promoter-specific interactions between Pax6 and large Maf transcription factors. J Mol Biol 2004; 344:351-68. [PMID: 15522290 DOI: 10.1016/j.jmb.2004.07.102] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2004] [Revised: 07/23/2004] [Accepted: 07/29/2004] [Indexed: 11/20/2022]
Abstract
Mammalian alphaB-crystallin is highly expressed both in lens epithelium and lens fibers. In contrast, gammaF-crystallin is highly expressed in the lens fiber cells. Crystallin gene expression in lens is regulated at the level of transcription by a sparse number of specific DNA-binding transcription factors. Here, we report studies on transcriptional regulation of mouse alphaB- and gammaF-crystallin promoters by specific combinations of Pax6/Pax6(5a), large Mafs (MafA, MafB, c-Maf, and NRL), Sox1, Sox2, Six3, and RARbeta/RXRbeta. Two sets of these factors, co-expressed both in lens epithelium and in lens fibers, were tested in co-transfection assays using cultured lens and non-lens cells. Regulation of alphaB-crystallin was studied in the presence of lens epithelial-factors Pax6, MafB, and RARbeta/RXRbeta, and lens fiber-factors Pax6, MafA, c-Maf, and NRL. Pax6 proteins activated the alphaB-crystallin promoter (-162 to +45) with any combination of Mafs. Addition of RARbeta/RXRbeta further increased its promoter activity. Gel shift assays using lens nuclear extracts demonstrated interactions of Pax6, Maf, and retinoic acid nuclear receptor proteins with two lens-specific regions, the distal LSR1 (-147/-118) and proximal LSR2 (-78/-40), of the alphaB-crystallin promoter. In contrast, Pax6 proteins acted as repressors of gammaF-crystallin promoter activity elicited by a combination of large Mafs, Sox, and RARbeta/RXRbeta proteins in transiently transfected lens and non-lens cells. The results show that Pax6 conversely regulates these two lens crystallin promoters. We propose that the opposite roles of Pax6 in crystallin gene regulation are results of different promoter architectures of the alphaB- and gammaF-crystallin genes, developmentally regulated association of transcription factors with the corresponding cis-regulatory sites, and specific recruitment of transcriptional co-activators and co-repressors by Pax6.
Collapse
Affiliation(s)
- Ying Yang
- The Department of Ophthalmology, Albert Einstein College of Medicine, 909 Ullmann, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
119
|
Bloemendal H, de Jong W, Jaenicke R, Lubsen NH, Slingsby C, Tardieu A. Ageing and vision: structure, stability and function of lens crystallins. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2004; 86:407-85. [PMID: 15302206 DOI: 10.1016/j.pbiomolbio.2003.11.012] [Citation(s) in RCA: 655] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The alpha-, beta- and gamma-crystallins are the major protein components of the vertebrate eye lens, alpha-crystallin as a molecular chaperone as well as a structural protein, beta- and gamma-crystallins as structural proteins. For the lens to be able to retain life-long transparency in the absence of protein turnover, the crystallins must meet not only the requirement of solubility associated with high cellular concentration but that of longevity as well. For proteins, longevity is commonly assumed to be correlated with long-term retention of native structure, which in turn can be due to inherent thermodynamic stability, efficient capture and refolding of non-native protein by chaperones, or a combination of both. Understanding how the specific interactions that confer intrinsic stability of the protein fold are combined with the stabilizing effect of protein assembly, and how the non-specific interactions and associations of the assemblies enable the generation of highly concentrated solutions, is thus of importance to understand the loss of transparency of the lens with age. Post-translational modification can have a major effect on protein stability but an emerging theme of the few studies of the effect of post-translational modification of the crystallins is one of solubility and assembly. Here we review the structure, assembly, interactions, stability and post-translational modifications of the crystallins, not only in isolation but also as part of a multi-component system. The available data are discussed in the context of the establishment, the maintenance and finally, with age, the loss of transparency of the lens. Understanding the structural basis of protein stability and interactions in the healthy eye lens is the route to solve the enormous medical and economical problem of cataract.
Collapse
Affiliation(s)
- Hans Bloemendal
- Department of Biochemistry, University of Nijmegen, 6500HB, The Netherlands
| | | | | | | | | | | |
Collapse
|
120
|
Lecoin L, Sii-Felice K, Pouponnot C, Eychène A, Felder-Schmittbuhl MP. Comparison of maf gene expression patterns during chick embryo development. Gene Expr Patterns 2004; 4:35-46. [PMID: 14678826 DOI: 10.1016/s1567-133x(03)00152-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Maf proteins are basic-leucine zipper transcription factors belonging to the AP1 superfamily. Several developmental processes require Maf proteins yet, the redundancy or complementarity of their respective roles in common processes has been only partially investigated. We present for the first time a complete comparative analysis of maf gene expression patterns in vertebrates. Expression of c-maf, mafB/kreisler, mafA/L-maf, mafF, mafG and mafK was analyzed by whole-mount in situ hybridization within chick embryos and their extraembryonic tissues ranging from embryonic day (E) 1 to 7. We carefully examined the extent of overlap between distinct maf genes and report that the developing lens, kidney, pancreas and apoptotic zones of limb buds show sustained co-expression of large maf genes. Small maf genes also exhibit overlap, for example in the dermomyotome. We also describe so far unidentified sites of maf gene expression. mafA is found in the developing neural tube and dorsal root ganglia. c-maf hybridization is detected in the neuroretina, the notochord and the endothelium of extraembryonic blood vessels.
Collapse
Affiliation(s)
- Laure Lecoin
- UMR 146 CNRS-Institut Curie, Bâtiment 110, Centre Universitaire, 91405 Orsay cedex, France
| | | | | | | | | |
Collapse
|
121
|
Abstract
Lens provides a good model for studying developmental cues relevant to cellular and molecular interactions. Basic region/leucine zipper (bZIP) transcription factors have been found to play key roles during eye formation in various species, including human, mouse, rat, Xenopus, zebrafish, chick, and quail. Different ocular developmental anomalies associated with MAF mutation in human implicate its active role during eye development. Several members of the maf gene family with this bZIP motif participate directly in lens morphogenesis. One vital Maf protein, L-Maf, is expressed in developing lens cells of chick embryos. Its homolog recently has been detected in lens placode of Xenopus embryos and regulates expression of lens fiber-specific genes in this species. Ectopic expression of L-Maf can induce lens-specific genes in cultured retina cells and embryonic ectoderm. The dominant-negative form of L-Maf causes the suppression of crystallin expression and subsequently inhibits lens formation, indicating that L-Maf plays a central role in chick lens development.
Collapse
Affiliation(s)
- Hasan Mahmud Reza
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan
| | | |
Collapse
|
122
|
Rajaram N, Kerppola TK. Synergistic transcription activation by Maf and Sox and their subnuclear localization are disrupted by a mutation in Maf that causes cataract. Mol Cell Biol 2004; 24:5694-709. [PMID: 15199128 PMCID: PMC480896 DOI: 10.1128/mcb.24.13.5694-5709.2004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Crystallin genes are selectively expressed during lens development. Maf and Sox family proteins synergistically enhanced gammaF-crystallin promoter activity in a lens cell line. Mutational analysis of the gammaF-crystallin promoter identified a composite regulatory element containing nonconsensus Maf and Sox recognition sequences. Mutations in these recognition sequences or changes in their spacing eliminated synergistic transcription activation. The transcriptional synergy was also affected by changes in the orientation of the Maf recognition sequence that had no detectable effect on binding affinity. The interaction between Maf and Sox proteins was visualized in living cells by bimolecular fluorescence complementation analysis. The N-terminal region of Maf mediated the interaction with Sox proteins in cells. Synergistic transcription activation required the N-terminal region of Maf as well as the ancillary DNA binding domain and the unique portion of the basic region that mediate specific recognition of the gammaF-crystallin promoter element. A mutation in the ancillary DNA binding domain of Maf (R288P) that has been shown to cause cataract eliminated the transcriptional activity of Maf but had no detectable effect on DNA binding in vitro. Whereas wild-type Maf was uniformly distributed in the nucleoplasm, R288P Maf was enriched in nuclear foci. Cajal bodies and gemini of coiled bodies were closely associated with the foci occupied by R288P Maf. Wild-type Maf formed complexes with Sox proteins in the nucleoplasm, whereas R288P Maf recruited Sox proteins as well as other interaction partners to the nuclear foci. The mislocalization of normal cellular proteins to these foci provides a potential explanation for the dominant disease phenotype of the R288P mutation in Maf.
Collapse
Affiliation(s)
- Nirmala Rajaram
- Howard Hughes Medical Institute and Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109-0650, USA
| | | |
Collapse
|
123
|
Cvekl A, Tamm ER. Anterior eye development and ocular mesenchyme: new insights from mouse models and human diseases. Bioessays 2004; 26:374-86. [PMID: 15057935 PMCID: PMC2094210 DOI: 10.1002/bies.20009] [Citation(s) in RCA: 230] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
During development of the anterior eye segment, cells that originate from the surface epithelium or the neuroepithelium need to interact with mesenchymal cells, which predominantly originate from the neural crest. Failures of proper interaction result in a complex of developmental disorders such Peters' anomaly, Axenfeld-Rieger's syndrome or aniridia. Here we review the role of transcription factors that have been identified to be involved in the coordination of anterior eye development. Among these factors is PAX6, which is active in both epithelial and mesenchymal cells during ocular development, albeit at different doses and times. We propose that PAX6 is a key element that synchronizes the complex interaction of cell types of different origin, which are all needed for proper morphogenesis of the anterior eye. We discuss several molecular mechanisms that might explain the effects of haploinsufficiency of PAX6 and other transcription factors, and the broad variation of the resulting phenotypes.
Collapse
Affiliation(s)
- Ales Cvekl
- The Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, USA.
| | | |
Collapse
|
124
|
Chen Q, Liang D, Fromm LD, Overbeek PA. Inhibition of Lens Fiber Cell Morphogenesis by Expression of a Mutant SV40 Large T Antigen That Binds CREB-binding Protein/p300 but Not pRb. J Biol Chem 2004; 279:17667-73. [PMID: 14742445 DOI: 10.1074/jbc.m311678200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Simian virus (SV) 40 large T antigen can both induce tumors and inhibit cellular differentiation. It is not clear whether these cellular changes are synonymous, sequential, or distinct responses to the protein. T antigen is known to bind to p53, to the retinoblastoma (Rb) family of tumor suppressor proteins, and to other cellular proteins such as p300 family members. To test whether SV40 large T antigen inhibits cellular differentiation in vivo in the absence of cell cycle induction, we generated transgenic mice that express in the lens a mutant version of the early region of SV40. This mutant, which we term E107KDelta, has a deletion that eliminates synthesis of small t antigen and a point mutation (E107K) that results in loss of the ability to bind to Rb family members. At embryonic day 15.5 (E15.5), the transgenic lenses show dramatic defects in lens fiber cell differentiation. The fiber cells become post-mitotic, but do not elongate properly. The cells show a dramatic reduction in expression of their beta- and gamma-crystallins. Because CBP and p300 are co-activators for crystallin gene expression, we assayed for interactions between E107KDelta and CBP/p300. Our studies demonstrate that cellular differentiation can be inhibited by SV40 large T antigen in the absence of pRb inactivation, and that interaction of large T antigen with CBP/p300 may be enhanced by a mutation that eliminates the binding to pRb.
Collapse
Affiliation(s)
- Qin Chen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
125
|
Cui W, Tomarev SI, Piatigorsky J, Chepelinsky AB, Duncan MK. Mafs, Prox1, and Pax6 can regulate chicken betaB1-crystallin gene expression. J Biol Chem 2004; 279:11088-95. [PMID: 14707122 DOI: 10.1074/jbc.m312414200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During lens fiber cell differentiation, the regulation of crystallin gene expression is coupled with dramatic morphological changes. Here we report that Mafs, Prox1, and Pax6, which are essential transcription factors for normal lens development, bind to three functionally important cis elements, PL1, PL2, and OL2, in the chicken betaB1-crystallin promoter and may cooperatively direct the transcription of this lens fiber cell preferred gene. Gel shift assays demonstrated that Mafs bind to the MARE-like sequences in the PL1 and PL2 elements, whereas Prox1, a sequence-specific DNA-binding protein like its Drosophila homolog Prospero, interacts with the OL2 element. Furthermore, Pax6, a known repressor of the chicken betaB1-crystallin promoter, binds to all three of these cis elements. In transfection assays, Mafs and Prox1 activated the chicken betaB1-crystallin promoter; however, their transactivation ability was repressed when co-transfected with Pax6. Taken together with the known spatiotemporal expression patterns of Mafs, Prox1, and Pax6 in the developing lens, we propose that Pax6 occupies and represses the chicken betaB1-crystallin promoter in lens epithelial cells, and is displaced by Prox1 and Mafs, which activate the promoter, in differentiating cortical fiber cells.
Collapse
Affiliation(s)
- Wenwu Cui
- Department of Biological Sciences, University of Delaware, Newark, Delaware 19716, USA
| | | | | | | | | |
Collapse
|
126
|
Serria MS, Ikeda H, Omoteyama K, Hirokawa J, Nishi S, Sakai M. Regulation and differential expression of the c-maf gene in differentiating cultured cells. Biochem Biophys Res Commun 2003; 310:318-26. [PMID: 14521912 DOI: 10.1016/j.bbrc.2003.08.144] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Maf transcription factors are involved in a variety of developmental and cellular differentiation processes, but their role in the differentiation of mesenchymal cells has not been described. Here, we have analyzed c-maf expression during the differentiation of adipocytes and muscle cells in cultured systems. The expression of c-maf mRNA was down-regulated during adipogenesis and up-regulated during myogenesis. In adipogenesis, the c-maf mRNA was down-regulated 58h after switching to the differentiation medium and just after PPARgamma2 mRNA was induced. A transient transfection analysis of a reporter gene containing the 5(')-flanking region of the c-maf gene showed that PPARgamma2 represses c-maf gene expression. We previously found that c-Maf, c-Jun, and Pax6 bind to and stimulate the c-maf gene. The PPARgamma2 repression of c-maf expression seems to be due, at least in part, to inhibition of the transactivation functions of c-Maf, c-Jun, and Pax6. The repression of c-maf was partly reversed by CBP, suggesting that these transcription factors compete for CBP or related transcription co-factors. In myogenesis, there was a differentiation-dependent stimulation of c-maf mRNA expression. The increased expression correlated with myoD expression. A transient transfection analysis showed that myoD stimulated a c-maf reporter gene through binding to two typical E-box elements located between 160 and 180 nucleotides upstream of the cap site. Binding of MyoD to the E-boxes was confirmed by a gel mobility shift assay and DNaseI footprinting analysis. Combined, these results suggest that the c-maf gene plays an important role during the differentiation of adipocyte and muscle cells from mesenchymal fibroblast cells.
Collapse
Affiliation(s)
- Mohamed Saad Serria
- Department of Biochemistry, Hokkaido University Graduate School of Medicine N15, W7, Kita-ku, Sapporo 060-8638, Japan
| | | | | | | | | | | |
Collapse
|
127
|
Abstract
The mature eye is a complex organ that develops through a highly organized process during embryogenesis. Alterations in its genetic programming can lead to severe disorders that become apparent at birth or shortly afterwards; for example, one-half of the cases of blindness in children have a genetic cause. This review outlines the genetic basis of eye development, as determined by mutation analysis in patients and in model organisms. A better understanding of how this intricate organ develops at the genetic and cellular level is central to our understanding of the pathologies that afflict it.
Collapse
Affiliation(s)
- Jochen Graw
- GSF-National Research Center for Environment and Health, Institute of Developmental Genetics, D-85764 Neuherberg, Germany.
| |
Collapse
|
128
|
MacLean HE, Kim JI, Glimcher MJ, Wang J, Kronenberg HM, Glimcher LH. Absence of transcription factor c-maf causes abnormal terminal differentiation of hypertrophic chondrocytes during endochondral bone development. Dev Biol 2003; 262:51-63. [PMID: 14512017 DOI: 10.1016/s0012-1606(03)00324-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this study, we report that the transcription factor c-Maf is required for normal chondrocyte differentiation during endochondral bone development. c-maf is expressed in hypertrophic chondrocytes during fetal development (E14.5-E18.5), with maximal expression in the tibia occurring at E15.5 and E16.5, in terminally differentiated chondrocytes. In c-maf-null mice, fetal bone length is decreased approximately 10%, and hypertrophic chondrocyte differentiation is perturbed. There is an initial decrease in the number of mature hypertrophic chondrocytes at E15.5 in c-maf-null tibiae, with decreased expression domains of collagen X and osteopontin, markers of hypertrophic and terminal hypertrophic chondrocytes, respectively. By E16.5, there is an expanded domain of late hypertrophic, osteopontin-positive chondrocytes in the c-maf-/-. This accumulation of hypertrophic chondrocytes persists and is still observed at 4 weeks of age. These data suggest that c-Maf facilitates the initial chondrocyte terminal differentiation and influences the disappearance of hypertrophic chondrocytes. BrdU and TUNEL analyses show normal proliferation rate and apoptosis in the c-maf-null. There is a specific decrease in MMP-13 expression at E15.5 in the c-maf-null. MMP-13 is known to be regulated by AP-1 and may also be a target of c-Maf. Thus, cartilage is a novel system in which c-Maf acts during development, where c-Maf is required for normal chondrocyte differentiation.
Collapse
Affiliation(s)
- Helen E MacLean
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | | |
Collapse
|
129
|
Nishizawa M, Kataoka K, Vogt PK. MafA has strong cell transforming ability but is a weak transactivator. Oncogene 2003; 22:7882-90. [PMID: 12970735 DOI: 10.1038/sj.onc.1206526] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The maf oncogene of the avian oncogenic retrovirus AS42 encodes a nuclear bZip protein, v-Maf, that recognizes sequences related to the AP-1 target site. The corresponding cellular protein, c-Maf belongs to a family of related bZip proteins together with MafA and MafB. In this paper, we compare the transactivation and cell transforming abilities of MafA and MafB along with two forms of the c-Maf protein. These proteins induce cellular transformation when expressed in chicken embryo fibroblasts. In reporter assays, MafA is a much less effective transactivator than the other Maf proteins, but unexpectedly shows the strongest activity in cell transformation. Chimeras of MafA and MafB correlate the strong cell transforming ability of MafA with its DNA-binding domain. The DNA-binding domain of MafA is also correlated with weak transactivation. Additional mutagenesis experiments show that transactivation and transformation by MafA are also controlled by phosphorylation of two conserved serine residues in the transactivation domain. Finally, we constructed MafA-estrogen receptor fusion molecules that show tightly hormone-dependent cell transforming ability. These regulatable constructs permit a kinetic characterization of target gene responses and facilitate discrimination between direct and indirect targets.
Collapse
Affiliation(s)
- Makoto Nishizawa
- Department of Molecular and Experimental Medicine, BCC239, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | | | | |
Collapse
|
130
|
Matsuoka TA, Zhao L, Artner I, Jarrett HW, Friedman D, Means A, Stein R. Members of the large Maf transcription family regulate insulin gene transcription in islet beta cells. Mol Cell Biol 2003; 23:6049-62. [PMID: 12917329 PMCID: PMC180917 DOI: 10.1128/mcb.23.17.6049-6062.2003] [Citation(s) in RCA: 243] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The C1/RIPE3b1 (-118/-107 bp) binding factor regulates pancreatic-beta-cell-specific and glucose-regulated transcription of the insulin gene. In the present study, the C1/RIPE3b1 activator from mouse beta TC-3 cell nuclear extracts was purified by DNA affinity chromatography and two-dimensional gel electrophoresis. C1/RIPE3b1 binding activity was found in the roughly 46-kDa fraction at pH 7.0 and pH 4.5, and each contained N- and C-terminal peptides to mouse MafA as determined by peptide mass mapping and tandem spectrometry. MafA was detected in the C1/RIPE3b1 binding complex by using MafA peptide-specific antisera. In addition, MafA was shown to bind within the enhancer region (-340/-91 bp) of the endogenous insulin gene in beta TC-3 cells in the chromatin immunoprecipitation assay. These results strongly suggested that MafA was the beta-cell-enriched component of the RIPE3b1 activator. However, reverse transcription-PCR analysis demonstrated that mouse islets express not only MafA but also other members of the large Maf family, specifically c-Maf and MafB. Furthermore, immunohistochemical studies revealed that at least MafA and MafB were present within the nuclei of islet beta cells and not within pancreas acinar cells. Because MafA, MafB, and c-Maf were each capable of specifically binding to and activating insulin C1 element-mediated expression, our results suggest that all of these factors play a role in islet beta-cell function.
Collapse
Affiliation(s)
- Taka-aki Matsuoka
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | |
Collapse
|
131
|
Lyon MF, Jamieson RV, Perveen R, Glenister PH, Griffiths R, Boyd Y, Glimcher LH, Favor J, Munier FL, Black GCM. A dominant mutation within the DNA-binding domain of the bZIP transcription factor Maf causes murine cataract and results in selective alteration in DNA binding. Hum Mol Genet 2003. [DOI: 10.1093/hmg/ddg063] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
132
|
Ochi H, Ogino H, Kageyama Y, Yasuda K. The stability of the lens-specific Maf protein is regulated by fibroblast growth factor (FGF)/ERK signaling in lens fiber differentiation. J Biol Chem 2003; 278:537-44. [PMID: 12393904 DOI: 10.1074/jbc.m208380200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fibroblast growth factor (FGF) signaling is necessary for both proliferation and differentiation of lens cells. However, the molecular mechanisms by which FGFs exert their effects on the lens remain poorly understood. In this study, we show that FGF-2 repressed the expression of lens-specific genes at the proliferative phase in primary cultured lens cells. Using transfected cells, we also found that the activity of L-Maf, a lens differentiation factor, is repressed by FGF/ERK signaling. L-Maf is shown to be phosphorylated by ERK, and introduction of mutations into the ERK target sites on L-Maf promotes its stabilization. The stable L-Maf mutant protein promotes the differentiation of lens cells from neural retina cells. Taken together, these results indicate that FGF/ERK signaling negatively regulates the function of L-Maf in proliferative lens cells and that stabilization of the L-Maf protein is important for lens fiber differentiation.
Collapse
Affiliation(s)
- Haruki Ochi
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma 630-0101, Japan
| | | | | | | |
Collapse
|
133
|
Hashizume H, Hamalainen H, Sun Q, Sucharczuk A, Lahesmaa R. Downregulation of mafB expression in T-helper cells during early differentiation in vitro. Scand J Immunol 2003; 57:28-34. [PMID: 12542795 DOI: 10.1046/j.1365-3083.2003.01181.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We have studied the expression of a human homologue of mafB (maf-1), a member of the family of large maf transcription factors. In support of the suggested key role that mafB expression plays in differentiating macrophages, we found mafB to be expressed at a very high level in monocytic U937 and THP-1 cell lines. However, we show here that mafB transcription is not restricted to myeloid cells but can also be detected in lymphoid cells, indicating transcriptional plasticity during haematopoiesis. In conclusion, strong proliferative signals mediated by T-cell activation and interleukins (IL-4 and IL-12) downregulate the mafB messenger RNA transcript level when resting naïve CD4+ T-helper cells enter the differentiation pathway in vitro.
Collapse
Affiliation(s)
- H Hashizume
- Inflammatory Disease Unit, Roche Bioscience, Palo Alto, CA, USA
| | | | | | | | | |
Collapse
|
134
|
Henry JJ. The cellular and molecular bases of vertebrate lens regeneration. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 228:195-265. [PMID: 14667045 DOI: 10.1016/s0074-7696(03)28005-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Lens regeneration takes place in some vertebrates through processes of cellular dedifferentiation and transdifferentiation, processes by which certain differentiated cell types can give rise to others. This review describes the principal forms of lens regeneration that occur in vivo as well as related in vitro systems of transdifferentiation. Classic experimental studies are reviewed that define the tissue interactions that trigger these events in vivo. Recent molecular analyses have begun to identify the genes associated with these processes. These latter studies generally reveal tremendous similarities between embryonic lens development and lens regeneration. Different models are proposed to describe basic molecular pathways that define the processes of lens regeneration and transdifferentiation. Finally, studies are discussed suggesting that fibroblast growth factors play key roles in supporting the process of lens regeneration. Retinoids, such as retinoic acid, may also play important roles in this process.
Collapse
Affiliation(s)
- Jonathan J Henry
- Department of Cell and Structural Biology, University of Illinois, Urbana, Illinois 61801, USA
| |
Collapse
|
135
|
Cao S, Liu J, Chesi M, Bergsagel PL, Ho IC, Donnelly RP, Ma X. Differential regulation of IL-12 and IL-10 gene expression in macrophages by the basic leucine zipper transcription factor c-Maf fibrosarcoma. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:5715-25. [PMID: 12421951 DOI: 10.4049/jimmunol.169.10.5715] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IL-12 is a principal activator of both innate and adaptive immunity against infectious agents and malignancies. Regulation of proinflammatory IL-12 gene expression in phagocytes by the anti-inflammatory cytokine IL-10 represents a major homeostatic process underlying host-pathogen and host-self interactions. Delineation of the signaling pathway of IL-10 is crucial to the understanding of immunological regulatory networks. In this study, we report that IL-10 and c-musculoaponeurotic fibrosarcoma (Maf) induce their mutual expression in inflammatory macrophages. We demonstrate that c-Maf is one of the physiological mediators of IL-10's immunosuppressive activities. When overexpressed, c-Maf selectively inhibits transcriptional activation of IL-12 p40 and p35 genes while potently activating IL-10 and IL-4 expression, potentially contributing to the development of a state of anti-inflammation and dichotomy of immunologic polarization. c-Maf induces changes in nuclear DNA-binding activities at multiple sites including the ets, GA-12, NF-kappaB, C/EBP, and AP-1 elements. Nonetheless, the essential c-Maf-responsive element appears to be located elsewhere. Inhibition of IL-12 p40 gene expression by c-Maf requires the N-terminal transactivation domain, suggesting an indirect mechanism of transcriptional inhibition involving the induction of an unidentified repressor. In c-Maf-deficient murine macrophages, IL-10 production is impaired. However, IL-10-mediated inhibition of IL-12 production remains intact, indicating the existence of alternative mediators in the absence of c-Maf, consistent with the observation that a functional AP-1 is required for this pathway.
Collapse
Affiliation(s)
- Shanjin Cao
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA
| | | | | | | | | | | | | |
Collapse
|
136
|
Sadl V, Jin F, Yu J, Cui S, Holmyard D, Quaggin S, Barsh G, Cordes S. The mouse Kreisler (Krml1/MafB) segmentation gene is required for differentiation of glomerular visceral epithelial cells. Dev Biol 2002; 249:16-29. [PMID: 12217315 DOI: 10.1006/dbio.2002.0751] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Molecular components of the glomerular filtration mechanism play critical roles in renal diseases. Many of these components are produced during the final stages of differentiation of glomerular visceral epithelial cells, also known as podocytes. While basic domain leucine zipper (bZip) transcription factors of the Maf subfamily have been implicated in cellular differentiation processes, Kreisler (Krml1/MafB), the gene affected in the mouse kreisler (kr) mutation, is known for its role in hindbrain patterning. Here we show that mice homozygous for the kr(enu) mutation develop renal disease and that Kreisler is essential for cellular differentiation of podocytes. Consistent with abnormal podocyte differentiation, kr(enu) homozygotes show proteinuria, and fusion and effacement of podocyte foot processes, which are also observed in the nephrotic syndrome. Kreisler acts during the final stages of glomerular development-the transition between the capillary loop and mature stages-and downstream of the Pod1 basic domain helix-loop-helix transcription factor. The levels of Podocin, the gene mutated in autosomal recessive steroid-resistant nephrotic syndrome (NPHS2), and Nephrin, the gene mutated in congenital nephrotic syndrome of the Finnish type (NPHS1), are slightly reduced in kr(enu)/kr(enu) podocytes. However, these observations alone are unlikely to account for the aberrant podocyte foot process formation. Thus, Kreisler must regulate other unknown genes required for podocyte function and with possible roles in kidney disease.
Collapse
Affiliation(s)
- Virginia Sadl
- Samuel Lunenfeld Research Institute, Mt. Sinai Hospital, University of Toronto, 600 University Avenue, Toronto, Ontario, M5G 1X5, Canada
| | | | | | | | | | | | | | | |
Collapse
|
137
|
Muta M, Kamachi Y, Yoshimoto A, Higashi Y, Kondoh H. Distinct roles of SOX2, Pax6 and Maf transcription factors in the regulation of lens-specific delta1-crystallin enhancer. Genes Cells 2002; 7:791-805. [PMID: 12167158 DOI: 10.1046/j.1365-2443.2002.00560.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The eye lens provides a good model for the study of regulation of cell differentiation, in which lens-specific delta1-crystallin expression serves as an indicator of the differentiated state of the cells. It has been indicated that the SOX2, Pax6 and Maf proteins are the major regulators of lens cell differentiation. To clarify the individual roles of these transcription factors, we analysed their participation in regulation of the delta1-crystallin enhancer. RESULTS We defined the major binding sites of SOX2, Pax6 and Maf transcription factors in the delta1-crystallin enhancer and assessed the effect of mutations at these sites in the cultured lens epithelial cells and in developing lenses of transgenic mouse embryos. SOX2 (or SOX1/SOX3) is essential for activation of the enhancer under all conditions. Pax6 bound at the deltaEF3 site is required for activation of the enhancer, while Pax6 at the Pax6U site appears to be involved in the Pax6-dependent suppression of the enhancer. In contrast, Maf proteins are only required for high enhancer activity in lens fibre cells. CONCLUSION The distinct roles of these transcription factors in the regulation of delta1-crystallin enhancer would tend to indicate their individual functions in lens differentiation. The activity of SOX2 and the related SOX1/3 is essential at all stages of lens development as transcriptional activators. Pax6, although it is required in all steps, probably exerts complex regulatory effects, since it possesses both the potential to activate and repress. The major function of Maf proteins presumably resides in the activation of the genes in lens fibre cells.
Collapse
Affiliation(s)
- Mayumi Muta
- Laboratory of Developmental Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | | | | | | | | |
Collapse
|
138
|
Abstract
During lens development in vertebrates, the orchestration of multiple transcriptional regulators is essential for fate determination and terminal differentiation. In early development, Pax6, Sox2 and Six3 are expressed in the head ectoderm, while L-maf, Prox1 and crystallin genes are expressed at a later stage in the lens placode in a more restricted fashion. To uncover the genetic interactions among these factors during lens development, we examined the effects of dominant-negative molecules of Pax6 and L-Maf, which play decisive roles in lens formation. The two dominant-negative isoforms of Pax6 repress L-maf, Prox1 and delta-crystallin expression, resulting in failure of lens formation. These effects of dominant-negative Pax6 are fully rescued by co-expression with wild-type L-Maf. In addition, dominant-negative L-Maf inhibits the expression of Prox1 and delta-crystallin, while misexpression of L-Maf causes ectopic induction of these genes in a Sox-2-dependent fashion. Our results demonstrate that L-Maf is a downstream target of Pax6 and mediates Pax6 activity in developing lens cells.
Collapse
Affiliation(s)
- Hasan Mahmud Reza
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma 630-0101, Japan
| | | | | |
Collapse
|
139
|
Chen Q, Dowhan DH, Liang D, Moore DD, Overbeek PA. CREB-binding protein/p300 co-activation of crystallin gene expression. J Biol Chem 2002; 277:24081-9. [PMID: 11943779 DOI: 10.1074/jbc.m201821200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although some of the transcription factors that are required for expression of crystallins during lens development have been identified, the molecular interactions that contribute to enhanced crystallin expression are not yet well defined. In this study, we designed experiments to test whether the co-activators CREB-binding protein (CBP) and/or p300 interact with c-Maf, Prox-1, or Sox-1 to enhance transcription of crystallin genes. Promoter regions from the mouse alphaA-, betaB2-, and gammaF-crystallin genes were linked to a luciferase reporter. Expression of c-Maf transactivated each of these promoters. Of particular interest, co-expression of CBP or p300 with c-Maf was found to synergistically co-activate each promoter. CBP and p300 were less effective or ineffective at co-activation with Prox-1 or Sox-1. Co-immunoprecipitation and mammalian two-hybrid experiments revealed that CBP and p300 bind to c-Maf and Prox-1 but not to Sox-1. The co-activation of c-Maf by CBP/p300 requires histone acetyltransferase activity. Our results suggest that c-Maf recruits CBP and/or p300 to crystallin promoters leading to up-regulation of crystallin gene expression through localized histone acetylation and consequent chromatin re-modeling. In a promoter-specific fashion, co-activation can be modulated by Prox-1 and/or Sox-1. This modulation may help to specify the endogenous levels of crystallin gene expression.
Collapse
Affiliation(s)
- Qin Chen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
140
|
Yoshida T, Yasuda K. Characterization of the chicken L-Maf, MafB and c-Maf in crystallin gene regulation and lens differentiation. Genes Cells 2002; 7:693-706. [PMID: 12081646 DOI: 10.1046/j.1365-2443.2002.00548.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Members of the Maf family, including L-Maf, MafB and c-Maf, are "basic region/leucine zipper" (bZIP) transcription factors. Maf proteins contain a highly conserved acidic transactivation domain (AD), and a bZIP region that mediates DNA-binding activity. The hinge region between AD and bZIP varies considerably in length between different proteins. Recent studies reveal that L-Maf, c-Maf and MafB play key roles in vertebrate lens development. RESULTS We investigated the transactivation activity of individual factors in culture cells to analyse their specific functions. In transient transfection assays with a reporter gene containing Maf responsive elements, MafB and c-Maf activated higher levels of the reporter gene than L-Maf. However, L-Maf transactivated the alphaA-crystallin promoter as effectively as MafB and c-Maf, and induced the expression of the endogenous delta-crystallin gene more efficiently than the other two proteins. Domain-swapping experiments reveal that the bZIP region of MafB takes part in strong transcriptional activity, while the acidic and hinge regions (AH) of c-Maf collectively serve as a strong transactivation domain. The AH region of L-Maf (but not c-Maf) conferred transactivation activity to induce delta-crystallin gene expression. CONCLUSIONS These results suggest that despite their similar DNA binding properties, L-Maf, MafB and c-Maf regulate different sets of target genes by complex interactions with multiple factors that recognize cis-elements in promoters. The AH region of L-Maf has a distinct role in inducing endogenous delta-crystallin gene.
Collapse
Affiliation(s)
- Tomonori Yoshida
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma 630-0101, Japan
| | | |
Collapse
|
141
|
Olbrot M, Rud J, Moss LG, Sharma A. Identification of beta-cell-specific insulin gene transcription factor RIPE3b1 as mammalian MafA. Proc Natl Acad Sci U S A 2002; 99:6737-42. [PMID: 12011435 PMCID: PMC124472 DOI: 10.1073/pnas.102168499] [Citation(s) in RCA: 244] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Of the three critical enhancer elements that mediate beta-cell-specific and glucose-responsive expression of the insulin gene, only the identity of the transcription factor binding to the RIPE3b element (RIPE3b1) has remained elusive. Using a biochemical purification approach, we have identified the RIPE3b1 factor as a mammalian homologue of avian MafA/L-Maf (mMafA). The avian MafA is a cell-type determination factor that expressed ectopically can trigger lens differentiation program, but no mammalian homologue of avian MafA has previously been identified. Here, we report cloning of the human mafA (hMafA) and demonstrate that it can specifically bind the insulin enhancer element RIPE3b and activate insulin-gene expression. In addition, mMafA has a very restrictive cellular distribution and is selectively expressed in pancreatic beta but not in alpha cells. We suggest that mMafA has an essential role in the function and differentiation of beta-cells and thus may be associated with the pathophysiological origins of diabetes.
Collapse
Affiliation(s)
- Martin Olbrot
- Section of Islet Transplantation and Cell Biology, Joslin Diabetes Center, Boston, MA 02215, USA
| | | | | | | |
Collapse
|
142
|
McKeller RN, Fowler JL, Cunningham JJ, Warner N, Smeyne RJ, Zindy F, Skapek SX. The Arf tumor suppressor gene promotes hyaloid vascular regression during mouse eye development. Proc Natl Acad Sci U S A 2002; 99:3848-53. [PMID: 11891301 PMCID: PMC122612 DOI: 10.1073/pnas.052484199] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A key tumor suppressor mechanism that is disrupted frequently in human cancer involves the ARF and p53 genes. In mouse fibroblasts, the Arf gene product responds to abnormal mitogenic signals to activate p53 and trigger either cell cycle arrest or apoptosis. Recent evidence indicates that Arf also has p53-independent functions that may contribute to its tumor suppressor activity. Using Arf(-/-) and p53(-/-) mice, we have discovered a p53-independent requirement for Arf in the developmental regression of the hyaloid vascular system (HVS) in the mouse eye. Arf is expressed in the vitreous of the eye and is induced before HVS regression in the first postnatal week. In the absence of Arf, failed HVS regression causes a pathological process that resembles persistent hyperplastic primary vitreous, a developmental human eye disease thought to have a genetic basis. These findings demonstrate an essential and unexpected role for Arf during mouse eye development, provide insights into the potential genetic basis for persistent hyperplastic primary vitreous, and indicate that Arf regulates vascular regression in a p53-independent manner. The latter finding raises the possibility that Arf may function as a tumor suppressor at least in part by regulating tumor angiogenesis.
Collapse
Affiliation(s)
- Robyn N McKeller
- Department of Hematology/Oncology, Developmental Neurobiology, St. Jude Children's Research Hospital, 332 North Lauderdale Street, Memphis, TN 38105, USA
| | | | | | | | | | | | | |
Collapse
|
143
|
Abstract
Prox1, the vertebrate cognate of Drosophila Prospero, is a homeodomain protein essential for the development of the lens, liver and lymphatic system. While it is well established that the subcellular distribution of Prospero changes during development, this had not been demonstrated for Prox1. Here, high-resolution confocal microscopy demonstrated that Prox1 protein is predominately cytoplasmic in the lens placode as well as the lens epithelium and germinative zone throughout development. However during fiber cell differentiation, Prox1 protein redistributes to cell nuclei. Finally, as lens fiber cells condense their chromatin in response to lens denucleation, Prox1 remains in the nucleus but does not appear to interact with DNA. Thus, it appears that the function of Prox1, like that of its Drosophila cognate Prospero, is at least partially controlled by changes in its subcellular distribution during development.
Collapse
Affiliation(s)
- Melinda K Duncan
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.
| | | | | | | |
Collapse
|
144
|
Chen Q, Ash JD, Branton P, Fromm L, Overbeek PA. Inhibition of crystallin expression and induction of apoptosis by lens-specific E1A expression in transgenic mice. Oncogene 2002; 21:1028-37. [PMID: 11850820 DOI: 10.1038/sj.onc.1205050] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2001] [Revised: 09/19/2001] [Accepted: 10/09/2001] [Indexed: 11/09/2022]
Abstract
Previous studies have shown that the adenovirus E1A oncoprotein can bind to and inactivate the retinoblastoma tumor suppressor protein (pRb) and the transcriptional coactivators CBP/p300. In this study, wild-type E1A12S or two deletion mutants (delN, which binds pRb but not CBP/p300; delCR2, which binds to CBP/p300 but not pRb) were linked to the lens-specific alphaA-crystallin promoter, and used to generate transgenic mice. Lens fiber cells expressing E1A12S or delCR2, both of which bind to CBP/p300, failed to upregulate beta-crystallin and gamma-crystallin expression. In contrast, lens fiber cells expressing delN showed significant expression of beta- and gamma-crystallins. Lens fiber cells expressing delN showed cell cycle entry, marked apoptosis, and evidence for p53 activation, while cells expressing either 12S or delCR2 showed limited apoptosis and no evidence for upregulation of the p53-inducible gene p21. Our results suggest that the transcriptional coactivators CBP and/or p300 are required for the dramatic increases in crystallin expression that accompany terminal differentiation in the lens, and also for activation of p53 in response to inactivation of pRb in the lens.
Collapse
Affiliation(s)
- Qin Chen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
145
|
Abstract
This review provides a synthesis that combines data from classical experimentation and recent advances in our understanding of early eye development. Emphasis is placed on the events that underlie and direct neural retina formation and lens induction. Understanding these events represents a longstanding problem in developmental biology. Early interest can be attributed to the curiosity generated by the relatively frequent occurrence of disorders such as cyclopia and anophthalmia, in which dramatic changes in eye development are readily observed. However, it was the advent of experimental embryology at the turn of the century that transformed curiosity into active investigation. Pioneered by investigators such as Spemann and Adelmann, these embryological manipulations have left a profound legacy. Questions about early eye development first addressed using tissue manipulations remain topical as we try to understand the molecular basis of this process.
Collapse
Affiliation(s)
- R L Chow
- Program in Developmental Biology, The Research Institute, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, Canada.
| | | |
Collapse
|
146
|
Abstract
Recent reports have exposed the temporal and spatial functions of the transcription factor Pax6 in the developing vertebrate eye. Pax6 is demonstrated to play essential roles in successive steps triggering lens differentiation while in the retina it functions to maintain multipotency and proliferation of retinal progenitor cells. These findings, together with the identification of Pax6 protein partners and downstream targets, pave the way for future work aimed to understand the molecular mechanism of eye development.
Collapse
Affiliation(s)
- R Ashery-Padan
- Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University Ramat Aviv, Tel Aviv 69978, Israel.
| | | |
Collapse
|
147
|
Planque N, Leconte L, Coquelle FM, Benkhelifa S, Martin P, Felder-Schmittbuhl MP, Saule S. Interaction of Maf transcription factors with Pax-6 results in synergistic activation of the glucagon promoter. J Biol Chem 2001; 276:35751-60. [PMID: 11457839 DOI: 10.1074/jbc.m104523200] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the endocrine pancreas, alpha-cell-specific expression of the glucagon gene is mediated by DNA-binding proteins that interact with the G1 proximal promoter element. Among these proteins, the paired domain transcription factor Pax-6 has been shown to bind to G1 and to transactivate glucagon gene expression. Close to the Pax-6-binding site, we observed the presence of a binding site for a basic leucine zipper transcription factor of the Maf family. In the present study, we demonstrate the presence of Maf family members in the endocrine pancreas that bind to G1 and transactivate glucagon promoter expression. In transient transfection experiments, we found that the transactivating effect on the glucagon promoter was greatly enhanced by the simultaneous expression of Maf transcription factors and Pax-6. This enhancement on glucagon transactivation could be correlated with the ability of these proteins to interact together but does not require binding of Maf proteins to the G1 element. Furthermore, we found that Maf enhanced the Pax-6 DNA binding capacity. Our data indicate that Maf transcription factors may contribute to glucagon gene expression in the pancreas.
Collapse
Affiliation(s)
- N Planque
- CNRS-UMR 146, Institut Curie-Section de Recherche, Bât 110, Centre Universitaire, 91405 Orsay, France
| | | | | | | | | | | | | |
Collapse
|
148
|
Benkhelifa S, Provot S, Nabais E, Eychène A, Calothy G, Felder-Schmittbuhl MP. Phosphorylation of MafA is essential for its transcriptional and biological properties. Mol Cell Biol 2001; 21:4441-52. [PMID: 11416124 PMCID: PMC87104 DOI: 10.1128/mcb.21.14.4441-4452.2001] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We previously described the identification of quail MafA, a novel transcription factor of the Maf bZIP (basic region leucine zipper) family, expressed in the differentiating neuroretina (NR). In the present study, we provide the first evidence that MafA is phosphorylated and that its biological properties strongly rely upon phosphorylation of serines 14 and 65, two residues located in the transcriptional activating domain within a consensus for phosphorylation by mitogen-activated protein kinases and which are conserved among Maf proteins. These residues are phosphorylated by ERK2 but not by p38, JNK, and ERK5 in vitro. However, the contribution of the MEK/ERK pathway to MafA phosphorylation in vivo appears to be moderate, implicating another kinase. The integrity of serine 14 and serine 65 residues is required for transcriptional activity, since their mutation into alanine severely impairs MafA capacity to activate transcription. Furthermore, we show that the MafA S14A/S65A mutant displays reduced capacity to induce expression of QR1, an NR-specific target of Maf proteins. Likewise, the integrity of serines 14 and 65 is essential for the MafA ability to stimulate expression of crystallin genes in NR cells and to induce NR-to-lens transdifferentiation. Thus, the MafA capacity to induce differentiation programs is dependent on its phosphorylation.
Collapse
Affiliation(s)
- S Benkhelifa
- UMR 146 CNRS-Institut Curie, Centre Universitaire, 91405 Orsay cedex, France
| | | | | | | | | | | |
Collapse
|
149
|
Abstract
The vertebrate lens has a distinct polarity with cuboidal epithelial cells on the anterior side and differentiated fiber cells on the posterior side. It has been proposed that the anterior-posterior polarity of the lens is imposed by factors present in the ocular media surrounding the lens (aqueous and vitreous humor). The differentiation factors have been hypothesized to be members of the fibroblast growth factor (FGF) family. Though FGFs have been shown to be sufficient for induction of lens differentiation both in vivo and in vitro, they have not been demonstrated to be necessary for endogenous initiation of fiber cell differentiation. To test this possibility, we have generated transgenic mice with ocular expression of secreted self-dimerizing versions of FGFR1 (FR1) and FGFR3 (FR3). Expression of FR3, but not FR1, leads to an expansion of proliferating epithelial cells from the anterior to the posterior side of the lens due to a delay in the initiation of fiber cell differentiation. This delay is most apparent postnatally and correlates with appropriate changes in expression of marker genes including p57(KIP2), Maf and Prox1. Phosphorylation of Erk1 and Erk2 was reduced in the lenses of FR3 mice compared with nontransgenic mice. Though differentiation was delayed in FR3 mice, the lens epithelial cells still retained their intrinsic ability to respond to FGF stimulation. Based on these results we propose that the initiation of lens fiber cell differentiation in mice requires FGF receptor signaling and that one of the lens differentiation signals in the vitreous humor is a ligand for FR3, and is therefore likely to be an FGF or FGF-like factor.
Collapse
MESH Headings
- Animals
- Body Patterning
- Cell Differentiation
- Crystallins/biosynthesis
- Cyclin-Dependent Kinase Inhibitor p57
- DNA-Binding Proteins/isolation & purification
- Embryonic Induction
- Epithelial Cells
- Fibroblast Growth Factors
- Homeodomain Proteins/isolation & purification
- Lens, Crystalline/blood supply
- Lens, Crystalline/cytology
- Lens, Crystalline/embryology
- Mice
- Mice, Transgenic
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3
- Mitogen-Activated Protein Kinases/metabolism
- Models, Biological
- Nuclear Proteins/isolation & purification
- Phosphorylation
- Protein-Tyrosine Kinases
- Proto-Oncogene Proteins/isolation & purification
- Proto-Oncogene Proteins c-maf
- Receptor Protein-Tyrosine Kinases/metabolism
- Receptor, Fibroblast Growth Factor, Type 1
- Receptor, Fibroblast Growth Factor, Type 3
- Receptors, Fibroblast Growth Factor/metabolism
- Transgenes
- Tumor Suppressor Proteins
Collapse
Affiliation(s)
- V Govindarajan
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
150
|
Abstract
Cranial placodes are focal regions of thickened ectoderm in the head of vertebrate embryos that give rise to a wide variety of cell types, including elements of the paired sense organs and neurons in cranial sensory ganglia. They are essential for the formation of much of the cranial sensory nervous system. Although relatively neglected today, interest in placodes has recently been reawakened with the isolation of molecular markers for different stages in their development. This has enabled a more finely tuned approach to the understanding of placode induction and development and in some cases has resulted in the isolation of inducing molecules for particular placodes. Both morphological and molecular data support the existence of a preplacodal domain within the cranial neural plate border region. Nonetheless, multiple tissues and molecules (where known) are involved in placode induction, and each individual placode is induced at different times by a different combination of these tissues, consistent with their diverse fates. Spatiotemporal changes in competence are also important in placode induction. Here, we have tried to provide a comprehensive review that synthesises the highlights of a century of classical experimental research, together with more modern evidence for the tissues and molecules involved in the induction of each placode.
Collapse
Affiliation(s)
- C V Baker
- Division of Biology 139-74, California Institute of Technology, Pasadena, California, 91125, USA.
| | | |
Collapse
|