101
|
Fukuda S, Kaneshige A, Kaji T, Noguchi YT, Takemoto Y, Zhang L, Tsujikawa K, Kokubo H, Uezumi A, Maehara K, Harada A, Ohkawa Y, Fukada SI. Sustained expression of HeyL is critical for the proliferation of muscle stem cells in overloaded muscle. eLife 2019; 8:48284. [PMID: 31545169 PMCID: PMC6768661 DOI: 10.7554/elife.48284] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 09/19/2019] [Indexed: 12/20/2022] Open
Abstract
In overloaded and regenerating muscle, the generation of new myonuclei depends on muscle satellite cells (MuSCs). Because MuSC behaviors in these two environments have not been considered separately, MuSC behaviors in overloaded muscle remain unexamined. Here, we show that most MuSCs in overloaded muscle, unlike MuSCs in regenerating muscle, proliferate in the absence of MyoD expression. Mechanistically, MuSCs in overloaded muscle sustain the expression of Heyl, a Notch effector gene, to suppress MyoD expression, which allows effective MuSC proliferation on myofibers and beneath the basal lamina. Although Heyl-knockout mice show no impairment in an injury model, in a hypertrophy model, their muscles harbor fewer new MuSC-derived myonuclei due to increased MyoD expression and diminished proliferation, which ultimately causes blunted hypertrophy. Our results show that sustained HeyL expression is critical for MuSC proliferation specifically in overloaded muscle, and thus indicate that the MuSC-proliferation mechanism differs in overloaded and regenerating muscle.
Collapse
Affiliation(s)
- Sumiaki Fukuda
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan.,Biological/Pharmacological Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc, Takatsuki, Japan.,Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Akihiro Kaneshige
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan.,Biological/Pharmacological Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc, Takatsuki, Japan.,Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Takayuki Kaji
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Yu-Taro Noguchi
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan.,Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Yusei Takemoto
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan.,Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Lidan Zhang
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan.,Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Kazutake Tsujikawa
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Hiroki Kokubo
- Department of Cardiovascular Physiology and Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Akiyoshi Uezumi
- Muscle Aging and Regenerative Medicine, Research Team for Geriatric Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Kazumitsu Maehara
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Akihito Harada
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - So-Ichiro Fukada
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| |
Collapse
|
102
|
Rosa-Caldwell ME, Greene NP. Muscle metabolism and atrophy: let's talk about sex. Biol Sex Differ 2019; 10:43. [PMID: 31462271 PMCID: PMC6714453 DOI: 10.1186/s13293-019-0257-3] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 08/16/2019] [Indexed: 02/07/2023] Open
Abstract
Skeletal muscle health is a strong predictor of overall health and longevity. Pathologies affecting skeletal muscle such as cancer cachexia, intensive care unit treatment, muscular dystrophies, and others are associated with decreased quality of life and increased mortality. Recent research has begun to determine that these muscular pathologies appear to present and develop differently between males and females. However, to our knowledge, there has yet to be a comprehensive review on musculoskeletal differences between males and females and how these differences may contribute to sex differences in muscle pathologies. Herein, we present a review of the current literature on muscle phenotype and physiology between males and females and how these differences may contribute to differential responses to atrophic stimuli. In general, females appear to be more susceptible to disuse induced muscle wasting, yet protected from inflammation induced (such as cancer cachexia) muscle wasting compared to males. These differences may be due in part to differences in muscle protein turnover, satellite cell content and proliferation, hormonal interactions, and mitochondrial differences between males and females. However, more works specifically examining muscle pathologies in females are necessary to more fully understand the inherent sex-based differences in muscle pathologies between the sexes and how they may correspond to different clinical treatments.
Collapse
Affiliation(s)
- Megan E Rosa-Caldwell
- Integrative Muscle Metabolism Laboratory, Exercise Science Research Center, Department of Human Health Performance and Recreation, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Nicholas P Greene
- Integrative Muscle Metabolism Laboratory, Exercise Science Research Center, Department of Human Health Performance and Recreation, University of Arkansas, Fayetteville, AR, 72701, USA.
| |
Collapse
|
103
|
Ato S, Kido K, Sato K, Fujita S. Type 2 diabetes causes skeletal muscle atrophy but does not impair resistance training-mediated myonuclear accretion and muscle mass gain in rats. Exp Physiol 2019; 104:1518-1531. [PMID: 31328833 PMCID: PMC6790689 DOI: 10.1113/ep087585] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 07/19/2019] [Indexed: 12/12/2022]
Abstract
New Findings What is the central question of this study? Type 2 diabetes mellitus (T2DM) causes skeletal muscle atrophy; does it affect resistance training (RT)‐mediated molecular adaptations and subsequent muscle hypertrophy? What is the main finding and its importance? Although skeletal muscle mass and regulation were not preserved under conditions of T2DM, the response of RT‐induced skeletal muscle hypertrophy was not impaired in T2DM rat skeletal muscle. These findings suggest that the capacity of RT‐mediated muscle mass gain is not diminished in the T2DM condition.
Abstract Type 2 diabetes mellitus (T2DM) is known to cause skeletal muscle atrophy. However, it is not known whether T2DM affects resistance training (RT)‐mediated molecular adaptations and subsequent muscle hypertrophy. Therefore, we investigated the effect of T2DM on response of skeletal muscle hypertrophy to chronic RT using a rat resistance exercise mimetic model. T2DM and healthy control rats were subjected to 18 bouts (3 times per week) of chronic RT on unilateral lower legs. RT significantly increased gastrocnemius muscle mass and myonuclei in both T2DM and healthy control rats to the same extent, even though T2DM caused muscle atrophy in the resting condition. Further, T2DM significantly reduced mechanistic target of rapamycin complex 1 (mTORC1) activity (phosphorylation of p70S6KThr389 and 4E‐BP1Thr37/46) to insulin stimulation and the number of myonuclei in the untrained basal condition, but RT‐mediated adaptations were not affected by T2DM. These findings suggested that although the skeletal muscle mass and regulation were not preserved under basal conditions of T2DM, the response of RT‐induced skeletal muscle hypertrophy was not impaired in T2DM rat skeletal muscle.
Collapse
Affiliation(s)
- Satoru Ato
- Graduate School of Sport and Health Science, Ritsumeikan University, Kusatsu, Japan
| | - Kohei Kido
- Graduate School of Sport and Health Science, Ritsumeikan University, Kusatsu, Japan
| | - Koji Sato
- Faculty of Human Development, Kobe University, Kobe, Japan
| | - Satoshi Fujita
- Graduate School of Sport and Health Science, Ritsumeikan University, Kusatsu, Japan
| |
Collapse
|
104
|
Brook MS, Wilkinson DJ, Smith K, Atherton PJ. It's not just about protein turnover: the role of ribosomal biogenesis and satellite cells in the regulation of skeletal muscle hypertrophy. Eur J Sport Sci 2019; 19:952-963. [PMID: 30741116 DOI: 10.1080/17461391.2019.1569726] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Skeletal muscle has indispensable roles in regulating whole body health (e.g. glycemic control, energy consumption) and, in being central in locomotion, is crucial in maintaining quality-of-life. Therefore, understanding the regulation of muscle mass is of significant importance. Resistance exercise training (RET) combined with supportive nutrition is an effective strategy to achieve muscle hypertrophy by driving chronic elevations in muscle protein synthesis (MPS). The regulation of muscle protein synthesis is a coordinated process, in requiring ribosomes to translate mRNA and sufficient myonuclei density to provide the platform for ribosome and mRNA transcription; as such MPS is determined by both translational efficiency (ribosome activity) and translational capacity (ribosome number). Moreover, as the muscle protein pool expands during hypertrophy, translation capacity (i.e. ribosomes and myonuclei content) could theoretically become rate-limiting such that an inability to expand these pools through ribosomal biogenesis and satellite cell (SC) mediated myonuclear addition could limit growth potential. Simple measures of RNA (ribosome content) and DNA (SC/Myonuclei number) concentrations reveal that these pools do increase with hypertrophy; yet whether these adaptations are a pre-requisite or a limiting factor for hypertrophy is unresolved and highly debated. This is primarily due to methodological limitations and many assumptions being made on static measures or correlative associations. However recent advances within the field using stable isotope tracers shows promise in resolving these questions in muscle adaptation.
Collapse
Affiliation(s)
- Matthew Stewart Brook
- a MRC-ARUK Centre for Musculoskeletal Ageing Research, University of Nottingham , Derby , UK
- b National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), Clinical, Metabolic and Molecular Physiology, University of Nottingham , Derby , UK
| | - Daniel James Wilkinson
- a MRC-ARUK Centre for Musculoskeletal Ageing Research, University of Nottingham , Derby , UK
- b National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), Clinical, Metabolic and Molecular Physiology, University of Nottingham , Derby , UK
| | - Ken Smith
- a MRC-ARUK Centre for Musculoskeletal Ageing Research, University of Nottingham , Derby , UK
- b National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), Clinical, Metabolic and Molecular Physiology, University of Nottingham , Derby , UK
| | - Philip James Atherton
- a MRC-ARUK Centre for Musculoskeletal Ageing Research, University of Nottingham , Derby , UK
- b National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), Clinical, Metabolic and Molecular Physiology, University of Nottingham , Derby , UK
| |
Collapse
|
105
|
Blaauw B. Platelet-Derived Growth Factor signaling and the role of cellular crosstalk in functional muscle growth. FEBS Lett 2019; 591:690-692. [PMID: 28297119 DOI: 10.1002/1873-3468.12602] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Bert Blaauw
- Department of Biomedical Sciences, University of Padova, Italy.,Venetian Institute of Molecular Medicine, Padova, Italy
| |
Collapse
|
106
|
Jin CL, Zhang ZM, Ye JL, Gao CQ, Yan HC, Li HC, Yang JZ, Wang XQ. Lysine-induced swine satellite cell migration is mediated by the FAK pathway. Food Funct 2019; 10:583-591. [PMID: 30672919 DOI: 10.1039/c8fo02066c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Lysine (Lys) is an essential amino acid for mammals in promoting protein synthesis and skeletal muscle growth. However, the underlying mechanism by which Lys governs muscle growth remains unknown. Lys is not only a material for protein synthesis but also a signaling molecule. Cell migration is a fundamental process for satellite cells (SCs) to promote muscle fiber hypertrophy and thus increase muscle mass. Nevertheless, the communication between Lys and SC has not yet attracted sufficient attention. In this study, we investigated whether Lys directly stimulates SC migration and whether this effect is mediated via the focal adhesion kinase (FAK) pathway. The results of a cell wound-healing assay and transwell assays indicated a significant inhibition of migration ability by Lys deficiency. In addition, the phosphorylation of FAK, paxillin and protein kinase B (Akt) was significantly suppressed, as were the level of integrin β3. Fortunately, we found that increasing Lys levels from deficiency to sufficiency rescued the migration ability to the control level. Moreover, compared with those in the Lys-deficiency group, the proteins in the FAK pathways were reactivated in the Lys-resupplementation group. In conclusion, these findings indicate that the FAK pathway mediates Lys-induced SC migration.
Collapse
Affiliation(s)
- Cheng-Long Jin
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
107
|
Munroe M, Dvoretskiy S, Lopez A, Leong J, Dyle MC, Kong H, Adams CM, Boppart MD. Pericyte transplantation improves skeletal muscle recovery following hindlimb immobilization. FASEB J 2019; 33:7694-7706. [PMID: 31021652 PMCID: PMC6529341 DOI: 10.1096/fj.201802580r] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 03/04/2019] [Indexed: 02/06/2023]
Abstract
Conditions of extended bed rest and limb immobilization can initiate rapid and significant loss of skeletal muscle mass and function. Physical rehabilitation is standard practice following a period of disuse, yet mobility may be severely compromised, and recovery is commonly delayed or incomplete in special populations. Thus, a novel approach toward recovery of muscle mass is highly desired. Pericytes [neuron-glial antigen 2 (NG2)+CD31-CD45- (Lineage- [Lin-]) and CD146+Lin-] demonstrate capacity to facilitate muscle repair, yet the ability to enhance myofiber growth following disuse is unknown. In the current study, 3-4-mo-old mice were unilaterally immobilized for 14 d (IM) or immobilized for 14 d followed by 14 d of remobilization (RE). Flow cytometry and targeted gene expression analyses were completed to assess pericyte quantity and function following IM and RE. In addition, a transplantation study was conducted to assess the impact of pericytes on recovery. Results from targeted analyses suggest minimal impact of disuse on pericyte gene expression, yet NG2+Lin- pericyte quantity is reduced following IM (P < 0.05). Remarkably, pericyte transplantation recovered losses in myofiber cross-sectional area and the capillary-to-fiber ratio following RE, whereas deficits remained with vehicle alone (P = 0.01). These findings provide the first evidence that pericytes effectively rehabilitate skeletal muscle mass following disuse atrophy.-Munroe, M., Dvoretskiy, S., Lopez, A., Leong, J., Dyle, M. C., Kong, H., Adams, C. M., Boppart, M. D. Pericyte transplantation improves skeletal muscle recovery following hindlimb immobilization.
Collapse
Affiliation(s)
- Michael Munroe
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Svyatoslav Dvoretskiy
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Amber Lopez
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jiayu Leong
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Michael C. Dyle
- Departments of Internal Medicine and University of Iowa, Iowa City, Iowa, USA
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Hyunjoon Kong
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois–Urbana-Champaign, Urbana, Illinois, USA
| | - Christopher M. Adams
- Departments of Internal Medicine and University of Iowa, Iowa City, Iowa, USA
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Marni D. Boppart
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois–Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
108
|
Ghanim H, Dhindsa S, Batra M, Green K, Abuaysheh S, Kuhadiya ND, Makdissi A, Chaudhuri A, Dandona P. Effect of Testosterone on FGF2, MRF4, and Myostatin in Hypogonadotropic Hypogonadism: Relevance to Muscle Growth. J Clin Endocrinol Metab 2019; 104:2094-2102. [PMID: 30629183 PMCID: PMC6481910 DOI: 10.1210/jc.2018-01832] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 01/04/2019] [Indexed: 12/26/2022]
Abstract
CONTEXT Fibroblast growth factor (FGF)2 is an important stimulatory modulator of satellite cells in skeletal muscle. Satellite cells play a cardinal role in muscle growth and repair. OBJECTIVE We evaluated whether skeletal muscle expression of FGF2 and muscle growth and differentiation factors are reduced in patients with hypogonadotropic hypogonadism (HH) and whether testosterone replacement therapy results in their restoration. DESIGN This is a secondary analysis of a previously completed trial of testosterone replacement in men with type 2 diabetes and HH. SETTING Clinical Research Center at a university. PATIENTS Twenty-two men with HH and 20 eugonadal men were compared at baseline. INTERVENTIONS Twelve men with HH were treated with intramuscular injections of 250 mg testosterone every 2 weeks for 22 weeks, and 10 men received placebo injections. Quadriceps muscle biopsies and blood samples were obtained before and after testosterone therapy. OUTCOME MEASURES AND RESULTS The expression of FGF2 and FGF receptor (FGFR)2 in skeletal muscle of men with HH was significantly lower than that in eugonadal men by 57% and 39%, respectively (P < 0.05). After 22 weeks of testosterone, the expression of FGF2 increased, whereas that of myogenic regulatory factor (MRF)4 and myostatin decreased significantly. There was no change in expression of FGFR2, myogenin, or myogenic differentiation protein in the skeletal muscle. Plasma FGF2 and IGF-1 concentrations increased after testosterone therapy. CONCLUSIONS These data show that testosterone is a major modulator of FGF2, MRF4, and myostatin expression in skeletal muscle. These effects may contribute to the increase in muscle mass after testosterone therapy.
Collapse
Affiliation(s)
- Husam Ghanim
- Division of Endocrinology, Diabetes and Metabolism, State University of New York at Buffalo, Williamsville, New York 14221
| | - Sandeep Dhindsa
- Division of Endocrinology, Diabetes and Metabolism, State University of New York at Buffalo, Williamsville, New York 14221
- Division of Endocrinology, Diabetes and Metabolism, Saint Louis University, St. Louis, Missouri 63104
| | - Manav Batra
- Division of Endocrinology, Diabetes and Metabolism, State University of New York at Buffalo, Williamsville, New York 14221
| | - Kelly Green
- Division of Endocrinology, Diabetes and Metabolism, State University of New York at Buffalo, Williamsville, New York 14221
| | - Sanaa Abuaysheh
- Division of Endocrinology, Diabetes and Metabolism, State University of New York at Buffalo, Williamsville, New York 14221
| | - Nitesh D Kuhadiya
- Division of Endocrinology, Diabetes and Metabolism, State University of New York at Buffalo, Williamsville, New York 14221
| | - Antoine Makdissi
- Division of Endocrinology, Diabetes and Metabolism, State University of New York at Buffalo, Williamsville, New York 14221
| | - Ajay Chaudhuri
- Division of Endocrinology, Diabetes and Metabolism, State University of New York at Buffalo, Williamsville, New York 14221
| | - Paresh Dandona
- Division of Endocrinology, Diabetes and Metabolism, State University of New York at Buffalo, Williamsville, New York 14221
- Correspondence and Reprint Requests: Paresh Dandona, MD, PhD, Division of Endocrinology, Diabetes and Metabolism, State University of New York at Buffalo, 1000 Youngs Road, Suite 105, Williamsville, New York 14221. E-mail:
| |
Collapse
|
109
|
Piga D, Salani S, Magri F, Brusa R, Mauri E, Comi GP, Bresolin N, Corti S. Human induced pluripotent stem cell models for the study and treatment of Duchenne and Becker muscular dystrophies. Ther Adv Neurol Disord 2019; 12:1756286419833478. [PMID: 31105767 PMCID: PMC6501480 DOI: 10.1177/1756286419833478] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 11/27/2018] [Indexed: 12/31/2022] Open
Abstract
Duchenne and Becker muscular dystrophies are the most common muscle diseases and are both currently incurable. They are caused by mutations in the dystrophin gene, which lead to the absence or reduction/truncation of the encoded protein, with progressive muscle degeneration that clinically manifests in muscle weakness, cardiac and respiratory involvement and early death. The limits of animal models to exactly reproduce human muscle disease and to predict clinically relevant treatment effects has prompted the development of more accurate in vitro skeletal muscle models. However, the challenge of effectively obtaining mature skeletal muscle cells or satellite stem cells as primary cultures has hampered the development of in vitro models. Here, we discuss the recently developed technologies that enable the differentiation of skeletal muscle from human induced pluripotent stem cells (iPSCs) of Duchenne and Becker patients. These systems recapitulate key disease features including inflammation and scarce regenerative myogenic capacity that are partially rescued by genetic and pharmacological therapies and can provide a useful platform to study and realize future therapeutic treatments. Implementation of this model also takes advantage of the developing genome editing field, which is a promising approach not only for correcting dystrophin, but also for modulating the underlying mechanisms of skeletal muscle development, regeneration and disease. These data prove the possibility of creating an accurate Duchenne and Becker in vitro model starting from iPSCs, to be used for pathogenetic studies and for drug screening to identify strategies capable of stopping or reversing muscular dystrophinopathies and other muscle diseases.
Collapse
Affiliation(s)
- Daniela Piga
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Neurology Unit, IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Sabrina Salani
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Neurology Unit, IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Francesca Magri
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Neurology Unit, IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Roberta Brusa
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Neurology Unit, IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Eleonora Mauri
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Neurology Unit, IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Giacomo P. Comi
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Neurology Unit, IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Nereo Bresolin
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Neurology Unit, IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Stefania Corti
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Neurology Unit, IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy
| |
Collapse
|
110
|
Goh Q, Song T, Petrany MJ, Cramer AA, Sun C, Sadayappan S, Lee SJ, Millay DP. Myonuclear accretion is a determinant of exercise-induced remodeling in skeletal muscle. eLife 2019; 8:44876. [PMID: 31012848 PMCID: PMC6497442 DOI: 10.7554/elife.44876] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 04/22/2019] [Indexed: 01/03/2023] Open
Abstract
Skeletal muscle adapts to external stimuli such as increased work. Muscle progenitors (MPs) control muscle repair due to severe damage, but the role of MP fusion and associated myonuclear accretion during exercise are unclear. While we previously demonstrated that MP fusion is required for growth using a supra-physiological model (Goh and Millay, 2017), questions remained about the need for myonuclear accrual during muscle adaptation in a physiological setting. Here, we developed an 8 week high-intensity interval training (HIIT) protocol and assessed the importance of MP fusion. In 8 month-old mice, HIIT led to progressive myonuclear accretion throughout the protocol, and functional muscle hypertrophy. Abrogation of MP fusion at the onset of HIIT resulted in exercise intolerance and fibrosis. In contrast, ablation of MP fusion 4 weeks into HIIT, preserved exercise tolerance but attenuated hypertrophy. We conclude that myonuclear accretion is required for different facets of exercise-induced adaptive responses, impacting both muscle repair and hypertrophic growth.
Collapse
Affiliation(s)
- Qingnian Goh
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Taejeong Song
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, United States
| | - Michael J Petrany
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Alyssa Aw Cramer
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Chengyi Sun
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Sakthivel Sadayappan
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, United States
| | - Se-Jin Lee
- The Jackson Laboratory, Farmington, United States.,Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, United States
| | - Douglas P Millay
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, United States
| |
Collapse
|
111
|
Choi YH, Kim SH, Kim IG, Lee JH, Kwon SK. Injectable basic fibroblast growth factor-loaded alginate/hyaluronic acid hydrogel for rejuvenation of geriatric larynx. Acta Biomater 2019; 89:104-114. [PMID: 30849562 DOI: 10.1016/j.actbio.2019.03.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/28/2019] [Accepted: 03/04/2019] [Indexed: 01/01/2023]
Abstract
Increase in the geriatric population has led to an increase in the number of elderly patients with laryngeal atrophy and dysfunction. Symptoms of voice change, dysphagia, and aspiration pneumonia negatively influence patient's health status, quality of life, and life span. Injection laryngoplasty used to treat laryngeal dysfunctions does not recover intrinsic functions of the larynx. Thus, we fabricated an injectable basic fibroblast growth factor (bFGF)-loaded alginate (ALG)/hyaluronic acid (HA) hydrogel for inducing rejuvenation of geriatric laryngeal muscles. Optimal in situ-forming bFGF-loaded ALG/HA hydrogel for injection laryngoplasty was prepared and the release profile of bFGF was analyzed. For in vivo analysis, the bFGF-loaded ALG/HA hydrogel was injected into the laryngeal muscles of 18-month-old Sprague-Dawley rats. The rejuvenation efficacy of bFGF-loaded ALG/HA hydrogel in geriatric laryngeal muscle tissues 4- and 12-weeks post-injection was evaluated by quantitative polymerase chain reaction (qPCR), histology, immune-fluorescence staining and functionality analysis. The bFGF-loaded ALG/HA hydrogel induced an increase in the expression of myogenic regulatory factor-related genes, hypertrophy of muscle fiber, proliferation of muscle satellite cells, and angiogenesis and decreased interstitial fibrosis. Administration of the bFGF-loaded ALG/HA hydrogel caused successful glottal gap closure. Thus, the bFGF-loaded ALG/HA hydrogel could be a promising candidate for laryngoplasty aimed at rejuvenating geriatric larynx. STATEMENT OF SIGNIFICANCE: In this manuscript, optimal in situ-forming bFGF-loaded ALG/HA hydrogel for injection laryngoplasty was prepared and the release profile of bFGF was analyzed. Herein, we introduced the materials and methods of injection laryngoplasty for geriatric rat experiment. In addition, we studied effects of bFGF-loaded ALG/HA hydrogel on the therapeutic rejuvenation of geriatric rat larynx. The bFGF-loaded ALG/HA hydrogel induced an increase in the expression of myogenic regulatory factor-related genes, hypertrophy of muscle fiber, proliferation of muscle satellite cells, and angiogenesis and decreased interstitial fibrosis. Furthermore, our functional analysis through the high-speed camera setup demonstrated that the administration of the bFGF-loaded ALG/HA hydrogel induced successful glottal gap closure. Thus, the bFGF-loaded ALG/HA hydrogel could be a promising candidate for injection laryngoplasty with therapeutic effects.
Collapse
Affiliation(s)
- Young Hwan Choi
- Department of Otorhinolaryngology-Head and Neck, Seoul National University Hospital, Seoul 03080, Republic of Korea; School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Sae Hyun Kim
- Department of Advanced Materials and Chemical Engineering, Hannam University, Daejeon 34054, Republic of Korea
| | - In Gul Kim
- Department of Otorhinolaryngology-Head and Neck, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Jin Ho Lee
- Department of Advanced Materials and Chemical Engineering, Hannam University, Daejeon 34054, Republic of Korea.
| | - Seong Keun Kwon
- Department of Otorhinolaryngology-Head and Neck, Seoul National University Hospital, Seoul 03080, Republic of Korea; Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
112
|
Yoshihara T, Sugiura T, Miyaji N, Yamamoto Y, Shibaguchi T, Kakigi R, Naito H, Goto K, Ohmori D, Yoshioka T. Effect of a combination of astaxanthin supplementation, heat stress, and intermittent reloading on satellite cells during disuse muscle atrophy. J Zhejiang Univ Sci B 2019; 19:844-852. [PMID: 30387334 DOI: 10.1631/jzus.b1800076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We examined the effect of a combination of astaxanthin (AX) supplementation, repeated heat stress, and intermittent reloading (IR) on satellite cells in unloaded rat soleus muscles. Forty-nine male Wistar rats (8-week-old) were divided into control, hind-limb unweighting (HU), IR during HU, IR with AX supplementation, IR with repeated heat stress (41.0-41.5 °C for 30 min), and IR with AX supplementation and repeated heat stress groups. After the experimental period, the antigravitational soleus muscle was analyzed using an immunohistochemical technique. Our results revealed that the combination of dietary AX supplementation and heat stress resulted in protection against disuse muscle atrophy in the soleus muscle. This protective effect may be partially due to a higher satellite cell number in the atrophied soleus muscle in the IR/AX/heat stress group compared with the numbers found in the other groups. We concluded that the combination treatment with dietary AX supplementation and repeated heat stress attenuates soleus muscle atrophy, in part by increasing the number of satellite cells.
Collapse
Affiliation(s)
- Toshinori Yoshihara
- Graduate School of Health and Sports Science, Juntendo University, Inzai, Chiba 270-1695, Japan
| | - Takao Sugiura
- Faculty of Education, Yamaguchi University, Yamaguchi, Yamaguchi 753-8513, Japan
| | | | - Yuki Yamamoto
- Institute of Health and Sports Science, Kurume University, Kurume, Fukuoka 839-8502, Japan
| | - Tsubasa Shibaguchi
- Institute of Liberal Arts and Science, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Ryo Kakigi
- Faculty of Medicine, Juntendo University, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hisashi Naito
- Graduate School of Health and Sports Science, Juntendo University, Inzai, Chiba 270-1695, Japan
| | - Katsumasa Goto
- Graduate School of Health Sciences, Toyohashi SOZO University, Toyohashi, Aichi 440-8511, Japan
| | - Daijiro Ohmori
- Department of Chemistry, School of Medicine, Juntendo University, Inzai, Chiba 270-1695, Japan
| | | |
Collapse
|
113
|
Schwartz LM. Skeletal Muscles Do Not Undergo Apoptosis During Either Atrophy or Programmed Cell Death-Revisiting the Myonuclear Domain Hypothesis. Front Physiol 2019; 9:1887. [PMID: 30740060 PMCID: PMC6356110 DOI: 10.3389/fphys.2018.01887] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/12/2018] [Indexed: 12/20/2022] Open
Abstract
Skeletal muscles are the largest cells in the body and are one of the few syncytial ones. There is a longstanding belief that a given nucleus controls a defined volume of cytoplasm, so when a muscle grows (hypertrophy) or shrinks (atrophy), the number of myonuclei change accordingly. This phenomenon is known as the “myonuclear domain hypothesis.” There is a general agreement that hypertrophy is accompanied by the addition of new nuclei from stem cells to help the muscles meet the enhanced synthetic demands of a larger cell. However, there is a considerable controversy regarding the fate of pre-existing nuclei during atrophy. Many researchers have reported that atrophy is accompanied by the dramatic loss of myonuclei via apoptosis. However, since there are many different non-muscle cell populations that reside within the tissue, these experiments cannot easily distinguish true myonuclei from those of neighboring mononuclear cells. Recently, two independent models, one from rodents and the other from insects, have demonstrated that nuclei are not lost from skeletal muscle fibers when they undergo either atrophy or programmed cell death. These and other data argue against the current interpretation of the myonuclear domain hypothesis and suggest that once a nucleus has been acquired by a muscle fiber it persists.
Collapse
Affiliation(s)
- Lawrence M Schwartz
- Department of Biology, Morrill Science Center, University of Massachusetts, Amherst, MA, United States
| |
Collapse
|
114
|
Franco I, Fernandez-Gonzalo R, Vrtačnik P, Lundberg TR, Eriksson M, Gustafsson T. Healthy skeletal muscle aging: The role of satellite cells, somatic mutations and exercise. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 346:157-200. [DOI: 10.1016/bs.ircmb.2019.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
115
|
Cho DS, Doles JD. Skeletal Muscle Progenitor Cell Heterogeneity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1169:179-193. [PMID: 31487024 DOI: 10.1007/978-3-030-24108-7_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Tissue-specific stem cells contribute to adult tissue maintenance, repair, and regeneration. In skeletal muscle, many different mononuclear cell types are capable of giving rise to differentiated muscle. Of these tissue stem-like cells, satellite cells (SCs) are the most studied muscle stem cell population and are widely considered the main cellular source driving muscle repair and regeneration in adult tissue. Within the satellite cell pool, many distinct subpopulations exist, each exhibiting differential abilities to exit quiescence, expand, differentiate, and self-renew. In this chapter, we discuss the different stem cell types that can give rise to skeletal muscle tissue and then focus on satellite cell heterogeneity during the process of myogenesis/muscle regeneration. Finally, we highlight emerging opportunities to better characterize muscle stem cell heterogeneity, which will ultimately deepen our appreciation of stem cells in muscle development, repair/regeneration, aging, and disease.
Collapse
Affiliation(s)
- Dong Seong Cho
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Jason D Doles
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
116
|
Snijders T, Nederveen JP, Bell KE, Lau SW, Mazara N, Kumbhare DA, Phillips SM, Parise G. Prolonged exercise training improves the acute type II muscle fibre satellite cell response in healthy older men. J Physiol 2018; 597:105-119. [PMID: 30370532 DOI: 10.1113/jp276260] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 10/22/2018] [Indexed: 01/08/2023] Open
Abstract
KEY POINTS Skeletal muscle stem cells, termed satellite cells, play a crucial role in repair and remodelling of muscle in response to exercise An age-related decline in satellite cell number and/or function has been hypothesized to be a key factor in the development of sarcopenia and/or the blunted muscle fibre adaptive response to prolonged exercise training in older persons We report that performing prolonged exercise training improves the acute type II muscle fibre satellite cell response following a single bout of resistance exercise in older men. The observed improvement in muscle satellite function is associated with an increase in muscle fibre capillarization following exercise training suggesting a possible functional link between capillarization and satellite cell function. ABSTRACT Age-related type II muscle fibre atrophy is accompanied by a fibre type-specific decline in satellite cell number and function. Exercise training restores satellite cell quantity in older adults; however, whether it can restore the impaired satellite cell response to exercise in older adults remains unknown. Therefore we assessed the acute satellite cell response to a single exercise session before and after prolonged exercise training in older men. Fourteen older men (74 ± 8 years) participated in a 12-week exercise training programme (resistance exercise performed twice per week, high intensity interval training once per week). Before and after training, percutaneous biopsies from the vastus lateralis muscle were taken prior to and following 24 and 48 h of post-exercise recovery. Muscle fibre characteristics were evaluated by immunohistochemistry and mRNA expression by RT-PCR. Whereas no changes were observed in type II muscle fibres, type I muscle fibre satellite cell content increased significantly at 24 and 48 h after a single bout of resistance exercise before the exercise training programme (P < 0.01). Following the exercise training programme, both type I and type II muscle fibre satellite cell content increased significantly at 24 and 48 h after a single bout of resistance exercise (P < 0.05). The greater acute increase in type II muscle fibre satellite cell content at 24 h post-exercise recovery after training was correlated with an increase in type II muscle fibre capillarization (r = 0.671, P = 0.012). We show that the acute muscle satellite cell response following exercise can be improved by prolonged exercise training in older men.
Collapse
Affiliation(s)
- Tim Snijders
- Department of Kinesiology and Medical Physics & Applied Radiation Sciences, McMaster University, Hamilton, Ontario, Canada, L8S 4K1.,Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Joshua P Nederveen
- Department of Kinesiology and Medical Physics & Applied Radiation Sciences, McMaster University, Hamilton, Ontario, Canada, L8S 4K1
| | - Kirsten E Bell
- Department of Kinesiology and Medical Physics & Applied Radiation Sciences, McMaster University, Hamilton, Ontario, Canada, L8S 4K1
| | - Sean W Lau
- Department of Kinesiology and Medical Physics & Applied Radiation Sciences, McMaster University, Hamilton, Ontario, Canada, L8S 4K1
| | - Nicole Mazara
- Department of Kinesiology and Medical Physics & Applied Radiation Sciences, McMaster University, Hamilton, Ontario, Canada, L8S 4K1
| | - Dinesh A Kumbhare
- Toronto Rehabilitation Institute, University of Toronto, Toronto, Ontario, Canada, M5G 2A2
| | - Stuart M Phillips
- Department of Kinesiology and Medical Physics & Applied Radiation Sciences, McMaster University, Hamilton, Ontario, Canada, L8S 4K1
| | - Gianni Parise
- Department of Kinesiology and Medical Physics & Applied Radiation Sciences, McMaster University, Hamilton, Ontario, Canada, L8S 4K1
| |
Collapse
|
117
|
Tsukamoto S, Shibasaki A, Naka A, Saito H, Iida K. Lactate Promotes Myoblast Differentiation and Myotube Hypertrophy via a Pathway Involving MyoD In Vitro and Enhances Muscle Regeneration In Vivo. Int J Mol Sci 2018; 19:ijms19113649. [PMID: 30463265 PMCID: PMC6274869 DOI: 10.3390/ijms19113649] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 11/16/2018] [Indexed: 12/25/2022] Open
Abstract
Lactate is a metabolic substrate mainly produced in muscles, especially during exercise. Recently, it was reported that lactate affects myoblast differentiation; however, the obtained results are inconsistent and the in vivo effect of lactate remains unclear. Our study thus aimed to evaluate the effects of lactate on myogenic differentiation and its underlying mechanism. The differentiation of C2C12 murine myogenic cells was accelerated in the presence of lactate and, consequently, myotube hypertrophy was achieved. Gene expression analysis of myogenic regulatory factors showed significantly increased myogenic determination protein (MyoD) gene expression in lactate-treated cells compared with that in untreated ones. Moreover, lactate enhanced gene and protein expression of myosin heavy chain (MHC). In particular, lactate increased gene expression of specific MHC isotypes, MHCIIb and IId/x, in a dose-dependent manner. Using a reporter assay, we showed that lactate increased promoter activity of the MHCIIb gene and that a MyoD binding site in the promoter region was necessary for the lactate-induced increase in activity. Finally, peritoneal injection of lactate in mice resulted in enhanced regeneration and fiber hypertrophy in glycerol-induced regenerating muscles. In conclusion, physiologically high lactate concentrations modulated muscle differentiation by regulating MyoD-associated networks, thereby enhancing MHC expression and myotube hypertrophy in vitro and, potentially, in vivo.
Collapse
Affiliation(s)
- Sakuka Tsukamoto
- Department of Nutrition and Food Science, Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1 Otsuka, Bunkyo, Tokyo 112-8610, Japan.
| | - Ayako Shibasaki
- Department of Nutrition and Food Science, Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1 Otsuka, Bunkyo, Tokyo 112-8610, Japan.
| | - Ayano Naka
- Laboratory of Applied Nutrition, Faculty of Human Life and Environmental Sciences, Ochanomizu University, Tokyo 112-8610, Japan..
| | - Hazuki Saito
- Department of Nutrition and Food Science, Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1 Otsuka, Bunkyo, Tokyo 112-8610, Japan.
| | - Kaoruko Iida
- Department of Nutrition and Food Science, Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1 Otsuka, Bunkyo, Tokyo 112-8610, Japan.
- The Institute for Human Life Innovation, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan.
| |
Collapse
|
118
|
Rudar M, Fiorotto ML, Davis TA. Regulation of Muscle Growth in Early Postnatal Life in a Swine Model. Annu Rev Anim Biosci 2018; 7:309-335. [PMID: 30388025 DOI: 10.1146/annurev-animal-020518-115130] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Skeletal muscle growth during the early postnatal period is rapid in the pig and dependent on the capacity of muscle to respond to anabolic and catabolic stimuli. Muscle mass is driven by the balance between protein synthesis and degradation. Among these processes, muscle protein synthesis in the piglet is exceptionally sensitive to the feeding-induced postprandial changes in insulin and amino acids, whereas muscle protein degradation is affected only during specific catabolic states. The developmental decline in the response of muscle to feeding is associated with changes in the signaling pathways located upstream and downstream of the mechanistic target of rapamycin protein complex. Additionally, muscle growth is supported by an accretion of nuclei derived from satellite cells. Activated satellite cells undergo proliferation, differentiation, and fusion with adjacent growing muscle fibers. Enhancing early muscle growth through modifying protein synthesis, degradation, and satellite cell activity is key to maximizing performance, productivity, and lifelong pig health.
Collapse
Affiliation(s)
- Marko Rudar
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas 77030, USA; , ,
| | - Marta L Fiorotto
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas 77030, USA; , ,
| | - Teresa A Davis
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas 77030, USA; , ,
| |
Collapse
|
119
|
Bachman JF, Klose A, Liu W, Paris ND, Blanc RS, Schmalz M, Knapp E, Chakkalakal JV. Prepubertal skeletal muscle growth requires Pax7-expressing satellite cell-derived myonuclear contribution. Development 2018; 145:dev.167197. [PMID: 30305290 PMCID: PMC6215399 DOI: 10.1242/dev.167197] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 09/18/2018] [Indexed: 12/14/2022]
Abstract
The functional role of Pax7-expressing satellite cells (SCs) in postnatal skeletal muscle development beyond weaning remains obscure. Therefore, the relevance of SCs during prepubertal growth, a period after weaning but prior to the onset of puberty, has not been examined. Here, we have characterized mouse skeletal muscle growth during prepuberty and found significant increases in myofiber cross-sectional area that correlated with SC-derived myonuclear number. Remarkably, genome-wide RNA-sequencing analysis established that post-weaning juvenile and early adolescent skeletal muscle have markedly different gene expression signatures. These distinctions are consistent with extensive skeletal muscle maturation during this essential, albeit brief, developmental phase. Indelible labeling of SCs with Pax7CreERT2/+; Rosa26nTnG/+ mice demonstrated SC-derived myonuclear contribution during prepuberty, with a substantial reduction at puberty onset. Prepubertal depletion of SCs in Pax7CreERT2/+; Rosa26DTA/+ mice reduced myofiber size and myonuclear number, and caused force generation deficits to a similar extent in both fast and slow-contracting muscles. Collectively, these data demonstrate SC-derived myonuclear accretion as a cellular mechanism that contributes to prepubertal hypertrophic skeletal muscle growth. Summary: Examination of gene expression and morphological changes in mouse skeletal muscle during prepuberty demonstrates that satellite cell-derived myonuclear accretion contributes to prepubertal hypertrophic skeletal muscle growth.
Collapse
Affiliation(s)
- John F Bachman
- Department of Pathology and Laboratory Medicine, Cell Biology of Disease Graduate Program, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY 14642, USA.,Department of Pharmacology and Physiology, University of Rochester Medical Center, 601 Elmwood Ave Box 711, Rochester, NY 14642, USA
| | - Alanna Klose
- Department of Pharmacology and Physiology, University of Rochester Medical Center, 601 Elmwood Ave Box 711, Rochester, NY 14642, USA
| | - Wenxuan Liu
- Department of Pharmacology and Physiology, University of Rochester Medical Center, 601 Elmwood Ave Box 711, Rochester, NY 14642, USA .,Department of Biomedical Genetics, Genetics, Development, and Stem Cells Graduate Program, University of Rochester Medical Center, 601 Elmwood Ave Box 633, Rochester, NY 14642, USA
| | - Nicole D Paris
- Department of Pharmacology and Physiology, University of Rochester Medical Center, 601 Elmwood Ave Box 711, Rochester, NY 14642, USA
| | - Roméo S Blanc
- Department of Pharmacology and Physiology, University of Rochester Medical Center, 601 Elmwood Ave Box 711, Rochester, NY 14642, USA
| | - Melissa Schmalz
- Department of Pharmacology and Physiology, University of Rochester Medical Center, 601 Elmwood Ave Box 711, Rochester, NY 14642, USA
| | - Emma Knapp
- Department of Orthopaedics and Rehabilitation, Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY 14642, USA
| | - Joe V Chakkalakal
- Department of Pharmacology and Physiology, University of Rochester Medical Center, 601 Elmwood Ave Box 711, Rochester, NY 14642, USA.,Wilmot Cancer Institute, Stem Cell and Regenerative Medicine Institute, The Rochester Aging Research Center, and Department of Biomedical Engineering, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY 14642, USA
| |
Collapse
|
120
|
Wackerhage H, Schoenfeld BJ, Hamilton DL, Lehti M, Hulmi JJ. Stimuli and sensors that initiate skeletal muscle hypertrophy following resistance exercise. J Appl Physiol (1985) 2018; 126:30-43. [PMID: 30335577 DOI: 10.1152/japplphysiol.00685.2018] [Citation(s) in RCA: 188] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
One of the most striking adaptations to exercise is the skeletal muscle hypertrophy that occurs in response to resistance exercise. A large body of work shows that a mammalian target of rapamycin complex 1 (mTORC1)-mediated increase of muscle protein synthesis is the key, but not sole, mechanism by which resistance exercise causes muscle hypertrophy. While much of the hypertrophy signaling cascade has been identified, the initiating, resistance exercise-induced and hypertrophy-stimulating stimuli have remained elusive. For the purpose of this review, we define an initiating, resistance exercise-induced and hypertrophy-stimulating signal as "hypertrophy stimulus," and the sensor of such a signal as "hypertrophy sensor." In this review we discuss our current knowledge of specific mechanical stimuli, damage/injury-associated and metabolic stress-associated triggers, as potential hypertrophy stimuli. Mechanical signals are the prime hypertrophy stimuli candidates, and a filamin-C-BAG3-dependent regulation of mTORC1, Hippo, and autophagy signaling is a plausible albeit still incompletely characterized hypertrophy sensor. Other candidate mechanosensing mechanisms are nuclear deformation-initiated signaling or several mechanisms related to costameres, which are the functional equivalents of focal adhesions in other cells. While exercise-induced muscle damage is probably not essential for hypertrophy, it is still unclear whether and how such muscle damage could augment a hypertrophic response. Interventions that combine blood flow restriction and especially low load resistance exercise suggest that resistance exercise-regulated metabolites could be hypertrophy stimuli, but this is based on indirect evidence and metabolite candidates are poorly characterized.
Collapse
Affiliation(s)
- Henning Wackerhage
- Department of Sport and Exercise Sciences, Technical University of Munich , Munich , Germany
| | | | - D Lee Hamilton
- Faculty of Health, School of Exercise and Nutrition Sciences, Deakin University , Victoria , Australia
| | - Maarit Lehti
- LIKES Research Centre for Physical Activity and Health , Jyväskylä , Finland
| | - Juha J Hulmi
- Neuromuscular Research Center, Biology of Physical Activity, Faculty of Sport and Health Sciences, University of Jyväskylä , Jyväskylä , Finland
| |
Collapse
|
121
|
Huey KA. Potential Roles of Vascular Endothelial Growth Factor During Skeletal Muscle Hypertrophy. Exerc Sport Sci Rev 2018; 46:195-202. [PMID: 29652692 DOI: 10.1249/jes.0000000000000152] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Vascular endothelial growth factor (VEGF) deletion in adult mouse muscle fibers contributes to impaired contractile and muscular adaptations to a hypertrophic stimulus suggesting a critical role in adult muscle growth. This review explores the hypothesis that VEGF is essential for adult muscle growth by impacting inflammatory processes, satellite-endothelial cell interactions, and contractile protein accumulation by functioning within known hypertrophic signaling pathways including insulin-like growth factor-1 (IGF-1-Akt) and Wnt-ß-catenin.
Collapse
Affiliation(s)
- Kimberly A Huey
- College of Pharmacy and Health Sciences, Drake University, Des Moines, IA
| |
Collapse
|
122
|
Brandt AM, Kania JM, Gonzalez ML, Johnson SE. Hepatocyte growth factor acts as a mitogen for equine satellite cells via protein kinase C δ-directed signaling. J Anim Sci 2018; 96:3645-3656. [PMID: 29917108 PMCID: PMC6127786 DOI: 10.1093/jas/sky234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/13/2018] [Indexed: 12/26/2022] Open
Abstract
Hepatocyte growth factor (HGF) signals mediate mouse skeletal muscle stem cell, or satellite cell (SC), reentry into the cell cycle and myoblast proliferation. Because the athletic horse experiences exercise-induced muscle damage, the objective of the experiment was to determine the effect of HGF on equine SC (eqSC) bioactivity. Fresh isolates of adult eqSC were incubated with increasing concentrations of HGF and the initial time to DNA synthesis was measured. Media supplementation with HGF did not shorten (P > 0.05) the duration of G0/G1 transition suggesting the growth factor does not affect activation. Treatment with 25 ng/mL HGF increased (P < 0.05) eqSC proliferation that was coincident with phosphorylation of extracellular signal-regulated kinase (ERK)1/2 and AKT serine/threonine kinase 1 (AKT1). Chemical inhibition of the upstream effectors of ERK1/2 or AKT1 elicited no effect (P > 0.05) on HGF-mediated 5-ethynyl-2'-deoxyuridine (EdU) incorporation. By contrast, treatment of eqSC with 2 µm Gö6983, a pan-protein kinase C (PKC) inhibitor, blocked (P < 0.05) HGF-initiated mitotic activity. Gene-expression analysis revealed that eqSC express PKCα, PKCδ, and PKCε isoforms. Knockdown of PKCδ with a small interfering RNA (siRNA) prevented (P > 0.05) HGF-mediated EdU incorporation. The siPKCδ was specific to the kinase and did not affect (P > 0.05) expression of either PKCα or PKCε. Treatment of confluent eqSC with 25 ng/mL HGF suppressed (P < 0.05) nuclear myogenin expression during the early stages of differentiation. These results demonstrate that HGF may not affect activation but can act as a mitogen and modest suppressor of differentiation.
Collapse
Affiliation(s)
- Amanda M Brandt
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg VA
| | - Joanna M Kania
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg VA
| | - Madison L Gonzalez
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg VA
| | - Sally E Johnson
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg VA
| |
Collapse
|
123
|
Heisterberg MF, Andersen JL, Schjerling P, Lund A, Dalskov S, Jønsson AO, Warming N, Fogelstrøm M, Kjaer M, Mackey AL. Losartan has no additive effect on the response to heavy-resistance exercise in human elderly skeletal muscle. J Appl Physiol (1985) 2018; 125:1536-1554. [PMID: 30091666 DOI: 10.1152/japplphysiol.00106.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Our purpose here was to investigate the potential of blocking the angiotensin II type I receptor (AT1R) on the hypertrophy response of elderly human skeletal muscle to 4 mo of heavy-resistance exercise training. Fifty-eight healthy elderly men (+65 yr) were randomized into three groups, consuming either AT1R blocker (losartan, 100 mg/day) or placebo for 4 mo. Two groups performed resistance training (RT) and were treated with either losartan or placebo, and one group did not train but was treated with losartan. Quadriceps muscle biopsies, MR scans, and strength tests were performed at baseline and after 8 and 16 wk. Biopsies were sectioned for immunohistochemistry to determine the number of satellite cells, capillaries, fiber type distribution, and fiber area. Gene expression levels of myostatin, connective tissue, and myogenic signaling pathways were determined by real-time RT-PCR. Four months of heavy-resistance training led in both training groups to expected improvements in quadriceps (∼3-4%) and vastus lateralis (∼5-6%), cross-sectional area, and type II fiber area (∼10-18%), as well as dynamic (∼13%) and isometric (∼19%) quadriceps peak force, but with absolutely no effect of losartan on these outcomes. Furthermore, no changes were seen in satellite cell number with training, and most gene targets failed to show any changes induced by training or losartan treatment. We conclude that there does not appear to be any effect of AT1R blocking in elderly men during 4 mo of resistance training. Therefore, we do not find any support for using AT1R blockers for promoting muscle adaptation to training in humans. NEW & NOTEWORTHY Animal studies have suggested that blocking angiotensin II type I receptor (AT1R) enhances muscle regeneration and prevents disuse atrophy, but studies in humans are limited. Focusing on hypertrophy, satellite cells, and gene expression, we found that AT1R blocking did not result in any greater responses with 4 mo of resistance training. These results do not support previous findings and question the value of blocking AT1R in the context of preserving aging human muscle.
Collapse
Affiliation(s)
- Mette Flindt Heisterberg
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Jesper L Andersen
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Peter Schjerling
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Alberte Lund
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Simone Dalskov
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Anders Overgård Jønsson
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Nichlas Warming
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Mathilde Fogelstrøm
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Michael Kjaer
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Abigail L Mackey
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark.,Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
124
|
Winje IM, Bengtsen M, Eftestøl E, Juvkam I, Bruusgaard JC, Gundersen K. Specific labelling of myonuclei by an antibody against pericentriolar material 1 on skeletal muscle tissue sections. Acta Physiol (Oxf) 2018; 223:e13034. [PMID: 29330928 DOI: 10.1111/apha.13034] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 01/05/2018] [Accepted: 01/08/2018] [Indexed: 01/11/2023]
Abstract
AIM Skeletal muscle is a heterogeneous tissue containing several different cell types, and only about 40%-50% of the cell nuclei within the tissue belong to myofibres. Existing technology, attempting to distinguish myonuclei from other nuclei at the light microscopy level, has led to controversies in our understanding of the basic cell biology of muscle plasticity. This study aims at demonstrating that an antibody against the protein pericentriolar material 1 (PCM1) can be used to reliably identify myonuclei on histological cross sections from humans, mice and rats. METHODS Cryosections were labelled with a polyclonal antibody against PCM1. The specificity of the labelling for myonuclei was verified using 3D reconstructions of confocal z-stacks triple-labelled for DNA, dystrophin and PCM1, and by co-localization with nuclear mCherry driven by the muscle-specific Alpha-Actin-1 promoter after viral transduction. RESULTS The PCM1 antibody specifically labelled all myonuclei, and myonuclei only, in cryosections of muscles from rats, mice and men. Nuclei in other cell types including satellite cells were not labelled. Both normal muscles and hypertrophic muscles after synergist ablation were investigated. CONCLUSION Pericentriolar material 1 can be used as a specific histological marker for myonuclei in skeletal muscle tissue without relying on counterstaining of other structures or cumbersome and subjective analysis of nuclear positioning.
Collapse
Affiliation(s)
- I M Winje
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - M Bengtsen
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - E Eftestøl
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - I Juvkam
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - J C Bruusgaard
- Department of Biosciences, University of Oslo, Oslo, Norway
- Department of Health Sciences, Kristiania University College, Oslo, Norway
| | - K Gundersen
- Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
125
|
Roberts MD, Haun CT, Mobley CB, Mumford PW, Romero MA, Roberson PA, Vann CG, McCarthy JJ. Physiological Differences Between Low Versus High Skeletal Muscle Hypertrophic Responders to Resistance Exercise Training: Current Perspectives and Future Research Directions. Front Physiol 2018; 9:834. [PMID: 30022953 PMCID: PMC6039846 DOI: 10.3389/fphys.2018.00834] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/13/2018] [Indexed: 12/22/2022] Open
Abstract
Numerous reports suggest there are low and high skeletal muscle hypertrophic responders following weeks to months of structured resistance exercise training (referred to as low and high responders herein). Specifically, divergent alterations in muscle fiber cross sectional area (fCSA), vastus lateralis thickness, and whole body lean tissue mass have been shown to occur in high versus low responders. Differential responses in ribosome biogenesis and subsequent protein synthetic rates during training seemingly explain some of this individual variation in humans, and mechanistic in vitro and rodent studies provide further evidence that ribosome biogenesis is critical for muscle hypertrophy. High responders may experience a greater increase in satellite cell proliferation during training versus low responders. This phenomenon could serve to maintain an adequate myonuclear domain size or assist in extracellular remodeling to support myofiber growth. High responders may also express a muscle microRNA profile during training that enhances insulin-like growth factor-1 (IGF-1) mRNA expression, although more studies are needed to better validate this mechanism. Higher intramuscular androgen receptor protein content has been reported in high versus low responders following training, and this mechanism may enhance the hypertrophic effects of testosterone during training. While high responders likely possess “good genetics,” such evidence has been confined to single gene candidates which typically share marginal variance with hypertrophic outcomes following training (e.g., different myostatin and IGF-1 alleles). Limited evidence also suggests pre-training muscle fiber type composition and self-reported dietary habits (e.g., calorie and protein intake) do not differ between high versus low responders. Only a handful of studies have examined muscle biomarkers that are differentially expressed between low versus high responders. Thus, other molecular and physiological variables which could potentially affect the skeletal muscle hypertrophic response to resistance exercise training are also discussed including rDNA copy number, extracellular matrix and connective tissue properties, the inflammatory response to training, and mitochondrial as well as vascular characteristics.
Collapse
Affiliation(s)
| | - Cody T Haun
- School of Kinesiology, Auburn University, Auburn, AL, United States
| | | | - Petey W Mumford
- School of Kinesiology, Auburn University, Auburn, AL, United States
| | - Matthew A Romero
- School of Kinesiology, Auburn University, Auburn, AL, United States
| | - Paul A Roberson
- School of Kinesiology, Auburn University, Auburn, AL, United States
| | | | - John J McCarthy
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY, United States
| |
Collapse
|
126
|
Joanisse S, Snijders T, Nederveen JP, Parise G. The Impact of Aerobic Exercise on the Muscle Stem Cell Response. Exerc Sport Sci Rev 2018; 46:180-187. [DOI: 10.1249/jes.0000000000000153] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
127
|
Bamman MM, Roberts BM, Adams GR. Molecular Regulation of Exercise-Induced Muscle Fiber Hypertrophy. Cold Spring Harb Perspect Med 2018; 8:cshperspect.a029751. [PMID: 28490543 DOI: 10.1101/cshperspect.a029751] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Skeletal muscle hypertrophy is a widely sought exercise adaptation to counteract the muscle atrophy of aging and disease, or to improve athletic performance. While this desired muscle enlargement is a well-known adaptation to resistance exercise training (RT), the mechanistic underpinnings are not fully understood. The purpose of this review is thus to provide the reader with a summary of recent advances in molecular mechanisms-based on the most current literature-that are thought to promote RT-induced muscle hypertrophy. We have therefore focused this discussion on the following areas of fertile investigation: ribosomal function and biogenesis, muscle stem (satellite) cell activity, transcriptional regulation, mechanotransduction, and myokine signaling.
Collapse
Affiliation(s)
- Marcas M Bamman
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294.,UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35205.,Geriatric Research, Education, and Clinical Center, Veterans' Affairs Medical Center, Birmingham, Alabama 35233
| | - Brandon M Roberts
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294.,UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35205
| | - Gregory R Adams
- Department of Physiology and Biophysics, University of California Irvine, Irvine, California 92617
| |
Collapse
|
128
|
Snijders T, Bell KE, Nederveen JP, Saddler NI, Mazara N, Kumbhare DA, Phillips SM, Parise G. Ingestion of a Multi-Ingredient Supplement Does Not Alter Exercise-Induced Satellite Cell Responses in Older Men. J Nutr 2018; 148:891-899. [PMID: 29878269 DOI: 10.1093/jn/nxy063] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 12/08/2017] [Indexed: 11/13/2022] Open
Abstract
Background Nutritional supplementation can have beneficial effects on body composition, strength, and function in older adults. However, whether the response of satellite cells can be altered by nutritional supplementation in older adults remains unknown. Objective We assessed whether a multi-ingredient protein-based supplement taken over a prolonged period of time could alter the muscle satellite cell response after exercise in older men. Methods Twenty-seven older men [mean ± SD age: 73 ± 1 y; mean ± SD body mass index (kg/m2): 28 ± 1] participated in a randomized double-blind experiment. Participants were randomly divided into an experimental (EXP) group (n = 13) who consumed a multi-ingredient protein-based supplement [30 g whey protein, 2.5 g creatine, 500 IU vitamin D, 400 mg Ca, and 1500 mg n-3 (ω-3) polyunsaturated fatty acids] 2 times/d for 7 wk or a control (CON; 22 g maltodextrin) group (n = 14). After 7 wk of supplementation, all participants performed a single resistance exercise session, and muscle biopsy samples were taken from the vastus lateralis before and 24 and 48 h after exercise. Immunohistochemistry was used to assess the change in type I and II muscle fiber satellite cell content and activation status of the cells. In addition, mRNA expression of the myogenic regulatory factors was determined by using reverse transcriptase-polymerase chain reaction. Results In response to the single bout of exercise, type I muscle fiber satellite cell content was significantly increased at 24 h (0.132 ± 0.015 and 0.131 ± 0.011 satellite cells/fiber in CON and EXP groups, respectively) and 48 h (0.126 ± 0.010 and 0.120 ± 0.012 satellite cells/fiber in CON and EXP groups, respectively) compared with pre-exercise (0.092 ± 0.007 and 0.118 ± 0.017 satellite cells/fiber in CON and EXP groups, respectively) muscle biopsy samples (P < 0.01), with no difference between the 2 groups. In both groups, we observed no significant changes in type II muscle fiber satellite cell content after exercise. Conclusion Ingesting a multi-ingredient protein-based supplement for 7 wk did not alter the type I or II muscle fiber satellite cell response during postexercise recovery in older men. This trial was registered at www.clinicaltrials.gov as NCT02281331.
Collapse
Affiliation(s)
- Tim Snijders
- Department of Kinesiology and Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario, Canada.,Department of Human Biology and Movement Sciences, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands
| | - Kirsten E Bell
- Department of Kinesiology and Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Joshua P Nederveen
- Department of Kinesiology and Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Nelson I Saddler
- Department of Kinesiology and Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Nicole Mazara
- Department of Kinesiology and Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Dinesh A Kumbhare
- Toronto Rehabilitation Institute, University of Toronto, Toronto, Ontario, Canada
| | - Stuart M Phillips
- Department of Kinesiology and Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Gianni Parise
- Department of Kinesiology and Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
129
|
Murach KA, Englund DA, Dupont-Versteegden EE, McCarthy JJ, Peterson CA. Myonuclear Domain Flexibility Challenges Rigid Assumptions on Satellite Cell Contribution to Skeletal Muscle Fiber Hypertrophy. Front Physiol 2018; 9:635. [PMID: 29896117 PMCID: PMC5986879 DOI: 10.3389/fphys.2018.00635] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 05/11/2018] [Indexed: 12/29/2022] Open
Abstract
Satellite cell-mediated myonuclear accretion is thought to be required for skeletal muscle fiber hypertrophy, and even drive hypertrophy by preceding growth. Recent studies in humans and rodents provide evidence that challenge this axiom. Specifically, Type 2 muscle fibers reliably demonstrate a substantial capacity to hypertrophy in the absence of myonuclear accretion, challenging the notion of a tightly regulated myonuclear domain (i.e., area that each myonucleus transcriptionally governs). In fact, a “myonuclear domain ceiling”, or upper limit of transcriptional output per nucleus to support hypertrophy, has yet to be identified. Satellite cells respond to muscle damage, and also play an important role in extracellular matrix remodeling during loading-induced hypertrophy. We postulate that robust satellite cell activation and proliferation in response to mechanical loading is largely for these purposes. Future work will aim to elucidate the mechanisms by which Type 2 fibers can hypertrophy without additional myonuclei, the extent to which Type 1 fibers can grow without myonuclear accretion, and whether a true myonuclear domain ceiling exists.
Collapse
Affiliation(s)
- Kevin A Murach
- The Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, United States.,Department of Rehabilitation Sciences, College of Health Sciences, University of Kentucky, Lexington, KY, United States
| | - Davis A Englund
- The Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, United States.,Department of Rehabilitation Sciences, College of Health Sciences, University of Kentucky, Lexington, KY, United States
| | - Esther E Dupont-Versteegden
- The Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, United States.,Department of Rehabilitation Sciences, College of Health Sciences, University of Kentucky, Lexington, KY, United States
| | - John J McCarthy
- The Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, United States.,Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Charlotte A Peterson
- The Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, United States.,Department of Rehabilitation Sciences, College of Health Sciences, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
130
|
Fukada SI. The roles of muscle stem cells in muscle injury, atrophy and hypertrophy. J Biochem 2018; 163:353-358. [PMID: 29394360 DOI: 10.1093/jb/mvy019] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 12/29/2017] [Indexed: 02/06/2023] Open
Abstract
Skeletal muscle is composed of multinuclear cells called myofibers. Muscular dystrophy (a genetic muscle disorder) induces instability in the cell membrane of myofibers and eventually causes myofibre damage. Non-genetic muscle disorders, including sarcopenia, diabetes, bedridden immobility and cancer cachexia, lead to atrophy of myofibres. In contrast, resistance training induces myofibre hypertrophy. Thus, myofibres exhibit a plasticity that is strongly affected by both intrinsic and extrinsic factors. There is no doubt that muscle stem cells (MuSCs, also known as muscle satellite cells) are indispensable for muscle repair/regeneration, but their contributions to atrophy and hypertrophy are still controversial. The present review focuses on the relevance of MuSCs to (i) muscle diseases and (ii) hypertrophy. Further, this review addresses fundamental questions about MuSCs to clarify the onset or progression of these diseases and which might lead to development of a MuSC-based therapy.
Collapse
Affiliation(s)
- So-Ichiro Fukada
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita City, Osaka 565-0871, Japan
| |
Collapse
|
131
|
You JS, Dooley MS, Kim CR, Kim EJ, Xu W, Goodman CA, Hornberger TA. A DGKζ-FoxO-ubiquitin proteolytic axis controls fiber size during skeletal muscle remodeling. Sci Signal 2018; 11:11/530/eaao6847. [PMID: 29764991 DOI: 10.1126/scisignal.aao6847] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Skeletal muscle rapidly remodels in response to various stresses, and the resulting changes in muscle mass profoundly influence our health and quality of life. We identified a diacylglycerol kinase ζ (DGKζ)-mediated pathway that regulated muscle mass during remodeling. During mechanical overload, DGKζ abundance was increased and required for effective hypertrophy. DGKζ not only augmented anabolic responses but also suppressed ubiquitin-proteasome system (UPS)-dependent proteolysis. We found that DGKζ inhibited the transcription factor FoxO that promotes the induction of the UPS. This function was mediated through a mechanism that was independent of kinase activity but dependent on the nuclear localization of DGKζ. During denervation, DGKζ abundance was also increased and was required for mitigating the activation of FoxO-UPS and the induction of atrophy. Conversely, overexpression of DGKζ prevented fasting-induced atrophy. Therefore, DGKζ is an inhibitor of the FoxO-UPS pathway, and interventions that increase its abundance could prevent muscle wasting.
Collapse
Affiliation(s)
- Jae-Sung You
- Program in Cellular and Molecular Biology, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706, USA. .,Department of Comparative Biosciences in the School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706, USA.,Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601 South Goodwin Avenue, Urbana, IL 61801, USA
| | - Matthew S Dooley
- Department of Comparative Biosciences in the School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706, USA
| | - Chan-Ran Kim
- Department of Comparative Biosciences in the School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706, USA
| | - Eui-Jun Kim
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705, USA
| | - Wei Xu
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705, USA
| | - Craig A Goodman
- Department of Comparative Biosciences in the School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706, USA.,College of Health and Biomedicine, Victoria University, Melbourne, Victoria 8001, Australia.,Institute for Sport, Exercise and Active Living, Victoria University, Melbourne, Victoria 8001, Australia.,Australian Institute of Musculoskeletal Science, Victoria University, St. Albans, Victoria 3021, Australia
| | - Troy A Hornberger
- Program in Cellular and Molecular Biology, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706, USA. .,Department of Comparative Biosciences in the School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706, USA
| |
Collapse
|
132
|
Moriya N, Miyazaki M. Akt1 deficiency diminishes skeletal muscle hypertrophy by reducing satellite cell proliferation. Am J Physiol Regul Integr Comp Physiol 2018; 314:R741-R751. [DOI: 10.1152/ajpregu.00336.2017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Skeletal muscle mass is determined by the net dynamic balance between protein synthesis and degradation. Although the Akt/mechanistic target of rapamycin (mTOR)-dependent pathway plays an important role in promoting protein synthesis and subsequent skeletal muscle hypertrophy, the precise molecular regulation of mTOR activity by the upstream protein kinase Akt is largely unknown. In addition, the activation of satellite cells has been indicated as a key regulator of muscle mass. However, the requirement of satellite cells for load-induced skeletal muscle hypertrophy is still under intense debate. In this study, female germline Akt1 knockout (KO) mice were used to examine whether Akt1 deficiency attenuates load-induced skeletal muscle hypertrophy through suppressing mTOR-dependent signaling and satellite cell proliferation. Akt1 KO mice showed a blunted hypertrophic response of skeletal muscle, with a diminished rate of satellite cell proliferation following mechanical overload. In contrast, Akt1 deficiency did not affect the load-induced activation of mTOR signaling and the subsequent enhanced rate of protein synthesis in skeletal muscle. These observations suggest that the load-induced activation of mTOR signaling occurs independently of Akt1 regulation and that Akt1 plays a critical role in regulating satellite cell proliferation during load-induced muscle hypertrophy.
Collapse
Affiliation(s)
- Nobuki Moriya
- Department of Physical Therapy, School of Rehabilitation Sciences, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Mitsunori Miyazaki
- Department of Physical Therapy, School of Rehabilitation Sciences, Health Sciences University of Hokkaido, Hokkaido, Japan
| |
Collapse
|
133
|
Shamim B, Hawley JA, Camera DM. Protein Availability and Satellite Cell Dynamics in Skeletal Muscle. Sports Med 2018; 48:1329-1343. [DOI: 10.1007/s40279-018-0883-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
134
|
Potential Roles of n-3 PUFAs during Skeletal Muscle Growth and Regeneration. Nutrients 2018; 10:nu10030309. [PMID: 29510597 PMCID: PMC5872727 DOI: 10.3390/nu10030309] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 03/01/2018] [Accepted: 03/02/2018] [Indexed: 01/06/2023] Open
Abstract
Omega-3 polyunsaturated fatty acids (n-3 PUFAs), which are commonly found in fish oil supplements, are known to possess anti-inflammatory properties and more recently alter skeletal muscle function. In this review, we discuss novel findings related to how n-3 PUFAs modulate molecular signaling responsible for growth and hypertrophy as well as the activity of muscle stem cells. Muscle stem cells commonly known as satellite cells, are primarily responsible for driving the skeletal muscle repair process to potentially damaging stimuli, such as mechanical stress elicited by exercise contraction. To date, there is a paucity of human investigations related to the effects of n-3 PUFAs on satellite cell content and activity. Based on current in vitro investigations, this review focuses on novel mechanisms linking n-3 PUFA’s to satellite cell activity and how they may improve muscle repair. Understanding the role of n-3 PUFAs during muscle growth and regeneration in association with exercise could lead to the development of novel supplementation strategies that increase muscle mass and strength, therefore possibly reducing the burden of muscle wasting with age.
Collapse
|
135
|
Kneppers A, Verdijk L, de Theije C, Corten M, Gielen E, van Loon L, Schols A, Langen R. A novel in vitro model for the assessment of postnatal myonuclear accretion. Skelet Muscle 2018; 8:4. [PMID: 29444710 PMCID: PMC5813369 DOI: 10.1186/s13395-018-0151-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 01/26/2018] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Due to the post-mitotic nature of myonuclei, postnatal myogenesis is essential for skeletal muscle growth, repair, and regeneration. This process is facilitated by satellite cells through proliferation, differentiation, and subsequent fusion with a pre-existing muscle fiber (i.e., myonuclear accretion). Current knowledge of myogenesis is primarily based on the in vitro formation of syncytia from myoblasts, which represents aspects of developmental myogenesis, but may incompletely portray postnatal myogenesis. Therefore, we aimed to develop an in vitro model that better reflects postnatal myogenesis, to study the cell intrinsic and extrinsic processes and signaling involved in the regulation of postnatal myogenesis. METHODS Proliferating C2C12 myoblasts were trypsinized and co-cultured for 3 days with 5 days differentiated C2C12 myotubes. Postnatal myonuclear accretion was visually assessed by live cell time-lapse imaging and cell tracing by cell labeling with Vybrant® DiD and DiO. Furthermore, a Cre/LoxP-based cell system was developed to semi-quantitatively assess in vitro postnatal myonuclear accretion by the conditional expression of luciferase upon myoblast-myotube fusion. Luciferase activity was assessed luminometrically and corrected for total protein content. RESULTS Live cell time-lapse imaging, staining-based cell tracing, and recombination-dependent luciferase activity, showed the occurrence of postnatal myonuclear accretion in vitro. Treatment of co-cultures with the myogenic factor IGF-I (p < 0.001) and the cytokines IL-13 (p < 0.05) and IL-4 (p < 0.001) increased postnatal myonuclear accretion, while the myogenic inhibitors cytochalasin D (p < 0.001), myostatin (p < 0.05), and TNFα (p < 0.001) decreased postnatal myonuclear accretion. Furthermore, postnatal myonuclear accretion was increased upon recovery from electrical pulse stimulation-induced fiber damage (p < 0.001) and LY29004-induced atrophy (p < 0.001). Moreover, cell type-specific siRNA-mediated knockdown of myomaker in myoblasts (p < 0.001), but not in myotubes, decreased postnatal myonuclear accretion. CONCLUSIONS We developed a physiologically relevant, sensitive, high-throughput cell system for semi-quantitative assessment of in vitro postnatal myonuclear accretion, which can be used to mimic physiological myogenesis triggers, and can distinguish the cell type-specific roles of signals and responses in the regulation of postnatal myogenesis. As such, this method is suitable for both basal and translational research on the regulation of postnatal myogenesis, and will improve our understanding of muscle pathologies that result from impaired satellite cell number or function.
Collapse
Affiliation(s)
- Anita Kneppers
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands.
| | - Lex Verdijk
- Department of Human Biology and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Chiel de Theije
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Mark Corten
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Ellis Gielen
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Luc van Loon
- Department of Human Biology and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Annemie Schols
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Ramon Langen
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| |
Collapse
|
136
|
Zhang L, Gong H, Sun Q, Zhao R, Jia Y. Spermidine-Activated Satellite Cells Are Associated with Hypoacetylation in ACVR2B and Smad3 Binding to Myogenic Genes in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:540-550. [PMID: 29224337 DOI: 10.1021/acs.jafc.7b04482] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Spermidine is an acetyltransferase inhibitor and a specific inducer of autophagy. Recently, spermidine is identified as a potential therapeutic agent for age-related muscle atrophy and inherited myopathies. However, the effect of spermidine on nonpathological skeletal muscle remains unclear. In this study, long-term spermidine administration in mice lowered the mean cross-sectional area of the gastrocnemius muscle and reduced the expression of myosin heavy chain isoforms in the muscle, which was associated with ubiquitination. Moreover, spermidine supplementation induced autophagy in satellite cells and enhanced satellite cell proliferation. ChIP assay revealed that spermidine repressed H3K56ac in the promoter of ACVR2B and lowered the binding affinity of Smad3 to the promoters of Myf5 and MyoD. Altogether, our results indicate that long-term administration of spermidine can activate satellite cells, as well as enhance autophagy, eventually resulting in muscle atrophy. In addition, H3K56ac and Smad3 emerged as key determinants of satellite cell activation.
Collapse
Affiliation(s)
- Luchu Zhang
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing 210095, P. R. China
| | - Huiying Gong
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing 210095, P. R. China
| | - Qinwei Sun
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing 210095, P. R. China
| | - Ruqian Zhao
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing 210095, P. R. China
- Quality and Safety Control, Jiangsu Collaborative Innovation Center of Meat Production and Processing , Nanjing 210095, P. R. China
| | - Yimin Jia
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing 210095, P. R. China
- Quality and Safety Control, Jiangsu Collaborative Innovation Center of Meat Production and Processing , Nanjing 210095, P. R. China
| |
Collapse
|
137
|
Murach KA, Fry CS, Kirby TJ, Jackson JR, Lee JD, White SH, Dupont-Versteegden EE, McCarthy JJ, Peterson CA. Starring or Supporting Role? Satellite Cells and Skeletal Muscle Fiber Size Regulation. Physiology (Bethesda) 2018; 33:26-38. [PMID: 29212890 PMCID: PMC5866409 DOI: 10.1152/physiol.00019.2017] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/18/2017] [Accepted: 09/18/2017] [Indexed: 12/22/2022] Open
Abstract
Recent loss-of-function studies show that satellite cell depletion does not promote sarcopenia or unloading-induced atrophy, and does not prevent regrowth. Although overload-induced muscle fiber hypertrophy is normally associated with satellite cell-mediated myonuclear accretion, hypertrophic adaptation proceeds in the absence of satellite cells in fully grown adult mice, but not in young growing mice. Emerging evidence also indicates that satellite cells play an important role in remodeling the extracellular matrix during hypertrophy.
Collapse
Affiliation(s)
- Kevin A Murach
- The Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
- Department of Rehabilitation Sciences, College of Health Sciences, University of Kentucky, Lexington, Kentucky
| | - Christopher S Fry
- Department of Nutrition and Metabolism, School of Health Professions, University of Texas Medical Branch at Galveston, Galveston, Texas
| | - Tyler J Kirby
- The Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York
| | - Janna R Jackson
- The Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
- Department of Rehabilitation Sciences, College of Health Sciences, University of Kentucky, Lexington, Kentucky
| | - Jonah D Lee
- Environment, Health, and Safety, University of Michigan, Ann Arbor, Michigan
| | - Sarah H White
- Department of Animal Science, Texas A&M University, College Station, Texas; and
| | - Esther E Dupont-Versteegden
- The Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
- Department of Rehabilitation Sciences, College of Health Sciences, University of Kentucky, Lexington, Kentucky
| | - John J McCarthy
- The Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Charlotte A Peterson
- The Center for Muscle Biology, University of Kentucky, Lexington, Kentucky;
- Department of Rehabilitation Sciences, College of Health Sciences, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
138
|
Brandt AM, Kania JM, Reinholt BM, Johnson SE. Human IL6 stimulates bovine satellite cell proliferation through a Signal transducer and activator of transcription 3 (STAT3)-dependent mechanism. Domest Anim Endocrinol 2018; 62:32-38. [PMID: 28917653 DOI: 10.1016/j.domaniend.2017.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/10/2017] [Accepted: 08/20/2017] [Indexed: 01/15/2023]
Abstract
Bovine satellite cell (bSC) myogenesis and skeletal muscle hypertrophy occur through the orchestrated actions of multiple autocrine and paracrine growth factors. Intimate to the bSC niche is IL6, a dual-purpose cytokine with proinflammatory and mitogenic properties. The objective of the experiment was to examine the effects of IL6 on proliferation and differentiation of bSC in vitro. Treatment of primary bSC cultures with recombinant bovine IL6 (bIL6) failed to alter myogenesis owing to the absence of intracellular signal transduction. The cytokine was able to stimulate phosphorylation of signal transducer and activator of transcription 3 tyrosine 705 (STAT3Y705) in Madin-Darby bovine kidney (MDBK) epithelial cells, thus demonstrating bioactivity. Media supplemented with recombinant human IL6 (hIL6) caused phosphorylation of STAT3Y705 in bSC and increased (P < 0.05) proliferation. Inclusion of a STAT3 inhibitor in the media blunted phosphorylation of the STAT3Y705 and suppressed (P < 0.05) hIL6-mediated bSC proliferation. Morphologic and biochemical measures of bSC differentiation remained unchanged (P > 0.05) following treatment for 48 h with hIL6. These results support a role for hIL6 as a bSC mitogen in vitro. The inability of bIL6 to initiate an intracellular signal in bSC requires further investigation.
Collapse
Affiliation(s)
- A M Brandt
- Virginia Polytechnic Institute and State University, Animal and Poultry Sciences, Blacksburg, Virginia, USA
| | - J M Kania
- Virginia Polytechnic Institute and State University, Animal and Poultry Sciences, Blacksburg, Virginia, USA
| | - B M Reinholt
- Virginia Polytechnic Institute and State University, Animal and Poultry Sciences, Blacksburg, Virginia, USA
| | - S E Johnson
- Virginia Polytechnic Institute and State University, Animal and Poultry Sciences, Blacksburg, Virginia, USA.
| |
Collapse
|
139
|
Damas F, Libardi CA, Ugrinowitsch C. The development of skeletal muscle hypertrophy through resistance training: the role of muscle damage and muscle protein synthesis. Eur J Appl Physiol 2017; 118:485-500. [PMID: 29282529 DOI: 10.1007/s00421-017-3792-9] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 12/16/2017] [Indexed: 11/25/2022]
Abstract
Resistance training (RT)-induced skeletal muscle hypertrophy is a highly intricate process. Despite substantial advances, we are far from understanding exactly how muscle hypertrophy develops during RT. The aim of the present review is to discuss new insights related to the role of skeletal muscle damage and muscle protein synthesis (MPS) in mediating RT-induced hypertrophy. Specifically, the thesis that in the early phase of RT (≤ 4 previous RT sessions) increases in muscle cross-sectional area are mostly attributable to muscle damage-induced muscle swelling; then (after ~ 10 sessions), a modest magnitude of muscle hypertrophy ensues; but only during a latter phase of RT (after ~ 18 sessions) is true muscle hypertrophy observed. We argue that the initial increases in MPS post-RT are likely directed to muscle repair and remodelling due to damage, and do not correlate with eventual muscle hypertrophy induced by several RT weeks. Increases in MPS post-RT session only contribute to muscle hypertrophy after a progressive attenuation of muscle damage, and even more significantly when damage is minimal. Furthermore, RT protocols that do not promote significant muscle damage still induce similar muscle hypertrophy and strength gains compared to conditions that do promote initial muscle damage. Thus, we conclude that muscle damage is not the process that mediates or potentiates RT-induced muscle hypertrophy.
Collapse
Affiliation(s)
- Felipe Damas
- School of Physical Education and Sport, University of São Paulo, Av. Prof. Mello Moraes, 65, São Paulo, SP, 05508-030, Brazil. .,Laboratory of Neuromuscular Adaptations to Resistance Training-MUSCULAB, Department of Physical Education, Federal University of São Carlos, Rod. Washington Luiz, km 235-SP310, São Carlos, SP, 13565-905, Brazil.
| | - Cleiton A Libardi
- Laboratory of Neuromuscular Adaptations to Resistance Training-MUSCULAB, Department of Physical Education, Federal University of São Carlos, Rod. Washington Luiz, km 235-SP310, São Carlos, SP, 13565-905, Brazil
| | - Carlos Ugrinowitsch
- School of Physical Education and Sport, University of São Paulo, Av. Prof. Mello Moraes, 65, São Paulo, SP, 05508-030, Brazil
| |
Collapse
|
140
|
Randrianarison-Huetz V, Papaefthymiou A, Herledan G, Noviello C, Faradova U, Collard L, Pincini A, Schol E, Decaux JF, Maire P, Vassilopoulos S, Sotiropoulos A. Srf controls satellite cell fusion through the maintenance of actin architecture. J Cell Biol 2017; 217:685-700. [PMID: 29269426 PMCID: PMC5800804 DOI: 10.1083/jcb.201705130] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 10/20/2017] [Accepted: 11/21/2017] [Indexed: 01/17/2023] Open
Abstract
This work describes a crucial role for the transcription factor Srf and F-actin scaffold to drive muscle stem cell fusion in vitro and in vivo and provides evidence of how actin cytoskeleton architecture affects myoblast fusion in vertebrates. Satellite cells (SCs) are adult muscle stem cells that are mobilized when muscle homeostasis is perturbed. Here, we show that serum response factor (Srf) is needed for optimal SC-mediated hypertrophic growth. We identified Srf as a master regulator of SC fusion required in both fusion partners, whereas it was dispensable for SC proliferation and differentiation. We show that SC-specific Srf deletion leads to impaired actin cytoskeleton and report the existence of finger-like actin–based protrusions at fusion sites in vertebrates that were notoriously absent in fusion-defective myoblasts lacking Srf. Restoration of a polymerized actin network by overexpression of an α-actin isoform in Srf mutant SCs rescued their fusion with a control cell in vitro and in vivo and reestablished overload-induced muscle growth. These findings demonstrate the importance of Srf in controlling the organization of actin cytoskeleton and actin-based protrusions for myoblast fusion in mammals and its requirement to achieve efficient hypertrophic myofiber growth.
Collapse
Affiliation(s)
- Voahangy Randrianarison-Huetz
- Institut National de la Santé et de la Recherche Médicale U1016, Institut Cochin, Paris, France.,Centre National de la Recherche Scientifique UMR8104, Paris, France.,Université Paris Descartes, Paris, France
| | - Aikaterini Papaefthymiou
- Institut National de la Santé et de la Recherche Médicale U1016, Institut Cochin, Paris, France.,Centre National de la Recherche Scientifique UMR8104, Paris, France.,Université Paris Descartes, Paris, France
| | - Gaëlle Herledan
- Institut National de la Santé et de la Recherche Médicale U1016, Institut Cochin, Paris, France.,Centre National de la Recherche Scientifique UMR8104, Paris, France.,Université Paris Descartes, Paris, France
| | - Chiara Noviello
- Institut National de la Santé et de la Recherche Médicale U1016, Institut Cochin, Paris, France.,Centre National de la Recherche Scientifique UMR8104, Paris, France.,Université Paris Descartes, Paris, France
| | - Ulduz Faradova
- Institut National de la Santé et de la Recherche Médicale U1016, Institut Cochin, Paris, France.,Centre National de la Recherche Scientifique UMR8104, Paris, France.,Université Paris Descartes, Paris, France
| | | | - Alessandra Pincini
- Institut National de la Santé et de la Recherche Médicale U1016, Institut Cochin, Paris, France.,Centre National de la Recherche Scientifique UMR8104, Paris, France.,Université Paris Descartes, Paris, France
| | - Emilie Schol
- Institut National de la Santé et de la Recherche Médicale U1016, Institut Cochin, Paris, France.,Centre National de la Recherche Scientifique UMR8104, Paris, France.,Université Paris Descartes, Paris, France
| | - Jean François Decaux
- Université Pierre et Marie Curie Paris 6, Centre National de la Recherche Scientifique UMR8256, Institut National de la Santé et de la Recherche Médicale U1164, Institute of Biology Paris-Seine, Paris, France
| | - Pascal Maire
- Institut National de la Santé et de la Recherche Médicale U1016, Institut Cochin, Paris, France.,Centre National de la Recherche Scientifique UMR8104, Paris, France.,Université Paris Descartes, Paris, France
| | - Stéphane Vassilopoulos
- Institut National de la Santé et de la Recherche Médicale/University Pierre and Marie Curie UMR-S974, Institut de Myologie, Paris, France
| | - Athanassia Sotiropoulos
- Institut National de la Santé et de la Recherche Médicale U1016, Institut Cochin, Paris, France .,Centre National de la Recherche Scientifique UMR8104, Paris, France.,Université Paris Descartes, Paris, France
| |
Collapse
|
141
|
Abstract
Our understanding of satellite cells, now known to be the obligate stem cells of skeletal muscle, has increased dramatically in recent years due to the introduction of new molecular, genetic, and technical resources. In addition to their role in acute repair of damaged muscle, satellite cells are of interest in the fields of aging, exercise, neuromuscular disease, and stem cell therapy, and all of these applications have driven a dramatic increase in our understanding of the activity and potential of satellite cells. However, many fundamental questions of satellite cell biology remain to be answered, including their emergence as a specific lineage, the degree and significance of heterogeneity within the satellite cell population, the roles of their interactions with other resident and infiltrating cell types during homeostasis and regeneration, and the relative roles of intrinsic vs extrinsic factors that may contribute to satellite cell dysfunction in the context of aging or disease. This review will address the current state of these open questions in satellite cell biology.
Collapse
Affiliation(s)
- Ddw Cornelison
- University of Missouri, Columbia, MO, United States; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States.
| |
Collapse
|
142
|
Pereira MG, Dyar KA, Nogara L, Solagna F, Marabita M, Baraldo M, Chemello F, Germinario E, Romanello V, Nolte H, Blaauw B. Comparative Analysis of Muscle Hypertrophy Models Reveals Divergent Gene Transcription Profiles and Points to Translational Regulation of Muscle Growth through Increased mTOR Signaling. Front Physiol 2017; 8:968. [PMID: 29255421 PMCID: PMC5723052 DOI: 10.3389/fphys.2017.00968] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/14/2017] [Indexed: 01/07/2023] Open
Abstract
Skeletal muscle mass is a result of the balance between protein breakdown and protein synthesis. It has been shown that multiple conditions of muscle atrophy are characterized by the common regulation of a specific set of genes, termed atrogenes. It is not known whether various models of muscle hypertrophy are similarly regulated by a common transcriptional program. Here, we characterized gene expression changes in three different conditions of muscle growth, examining each condition during acute and chronic phases. Specifically, we compared the transcriptome of Extensor Digitorum Longus (EDL) muscles collected (1) during the rapid phase of postnatal growth at 2 and 4 weeks of age, (2) 24 h or 3 weeks after constitutive activation of AKT, and (3) 24 h or 3 weeks after overload hypertrophy caused by tenotomy of the Tibialis Anterior muscle. We observed an important overlap between significantly regulated genes when comparing each single condition at the two different timepoints. Furthermore, examining the transcriptional changes occurring 24 h after a hypertrophic stimulus, we identify an important role for genes linked to a stress response, despite the absence of muscle damage in the AKT model. However, when we compared all different growth conditions, we did not find a common transcriptional fingerprint. On the other hand, all conditions showed a marked increase in mTORC1 signaling and increased ribosome biogenesis, suggesting that muscle growth is characterized more by translational, than transcriptional regulation.
Collapse
Affiliation(s)
- Marcelo G Pereira
- Venetian Institute of Molecular Medicine, Padova, Italy.,Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Kenneth A Dyar
- Venetian Institute of Molecular Medicine, Padova, Italy.,Molecular Endocrinology, Institute for Diabetes and Obesity, Helmholtz Diabetes Center and German Center for Diabetes Research, Neuherberg, Germany
| | - Leonardo Nogara
- Venetian Institute of Molecular Medicine, Padova, Italy.,Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | | | - Martina Baraldo
- Venetian Institute of Molecular Medicine, Padova, Italy.,Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | - Elena Germinario
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Vanina Romanello
- Venetian Institute of Molecular Medicine, Padova, Italy.,Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Hendrik Nolte
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Bert Blaauw
- Venetian Institute of Molecular Medicine, Padova, Italy.,Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
143
|
Hindi SM, Shin J, Gallot YS, Straughn AR, Simionescu-Bankston A, Hindi L, Xiong G, Friedland RP, Kumar A. MyD88 promotes myoblast fusion in a cell-autonomous manner. Nat Commun 2017; 8:1624. [PMID: 29158520 PMCID: PMC5696367 DOI: 10.1038/s41467-017-01866-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 10/20/2017] [Indexed: 12/27/2022] Open
Abstract
Myoblast fusion is an indispensable step for skeletal muscle development, postnatal growth, and regeneration. Myeloid differentiation primary response gene 88 (MyD88) is an adaptor protein that mediates Toll-like receptors and interleukin-1 receptor signaling. Here we report a cell-autonomous role of MyD88 in the regulation of myoblast fusion. MyD88 protein levels are increased during in vitro myogenesis and in conditions that promote skeletal muscle growth in vivo. Deletion of MyD88 impairs fusion of myoblasts without affecting their survival, proliferation, or differentiation. MyD88 regulates non-canonical NF-κB and canonical Wnt signaling during myogenesis and promotes skeletal muscle growth and overload-induced myofiber hypertrophy in mice. Ablation of MyD88 reduces myofiber size during muscle regeneration, whereas its overexpression promotes fusion of exogenous myoblasts to injured myofibers. Our study shows that MyD88 modulates myoblast fusion and suggests that augmenting its levels may be a therapeutic approach to improve skeletal muscle formation in degenerative muscle disorders.
Collapse
Affiliation(s)
- Sajedah M Hindi
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Jonghyun Shin
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Yann S Gallot
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Alex R Straughn
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Adriana Simionescu-Bankston
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Lubna Hindi
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Guangyan Xiong
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Robert P Friedland
- Department of Neurology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Ashok Kumar
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
| |
Collapse
|
144
|
Huh MS, Young KG, Yan K, Price-O’Dea T, Picketts DJ. Recovery from impaired muscle growth arises from prolonged postnatal accretion of myonuclei in Atrx mutant mice. PLoS One 2017; 12:e0186989. [PMID: 29095838 PMCID: PMC5667798 DOI: 10.1371/journal.pone.0186989] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 10/11/2017] [Indexed: 01/13/2023] Open
Abstract
Reduced muscle mass due to pathological development can occur through several mechanisms, including the loss or reduced proliferation of muscle stem cells. Muscle-specific ablation of the α-thalassemia mental retardation syndrome mutant protein, Atrx, in transgenic mice results in animals with a severely reduced muscle mass at three weeks of age; yet this muscle mass reduction resolves by adult age. Here, we explore the cellular mechanism underlying this effect. Analysis of Atrx mutant mice included testing for grip strength and rotorod performance. Muscle fiber length, fiber volume and numbers of myofiber-associated nuclei were determined from individual EDL or soleus myofibers isolated at three, five, or eight weeks. Myofibers from three week old Atrx mutant mice are smaller with fewer myofiber-associated nuclei and reduced volume compared to control animals, despite similar fiber numbers. Nonetheless, the grip strength of Atrx mutant mice was comparable to control mice when adjusted for body weight. Myofiber volume remained smaller at five weeks, becoming comparable to controls by 8 weeks of age. Concomitantly, increased numbers of myofiber-associated nuclei and Ki67+ myoblasts indicated that the recovery of muscle mass likely arises from the prolonged accretion of new myonuclei. This suggests that under disease conditions the muscle satellite stem cell niche can remain in a prolonged active state, allowing for the addition of a minimum number of myonuclei required to achieve a normal muscle size.
Collapse
Affiliation(s)
- Michael S. Huh
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON Canada
| | - Kevin G. Young
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON Canada
| | - Keqin Yan
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON Canada
| | - Tina Price-O’Dea
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON Canada
| | - David J. Picketts
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON Canada
- Department of Biochemistry, Microbiology & Immunology, University of Ottawa, Ottawa, ON Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON Canada
- * E-mail:
| |
Collapse
|
145
|
Cho DS, Doles JD. Single cell transcriptome analysis of muscle satellite cells reveals widespread transcriptional heterogeneity. Gene 2017; 636:54-63. [PMID: 28893664 DOI: 10.1016/j.gene.2017.09.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/03/2017] [Accepted: 09/07/2017] [Indexed: 02/03/2023]
Abstract
Tissue specific stem cells are indispensable contributors to adult tissue maintenance, repair, and regeneration. In skeletal muscle, satellite cells (SCs) are the resident muscle stem cell population and are required to maintain skeletal muscle homeostasis throughout life. Increasing evidence suggests that SCs are a heterogeneous cell population with substantial biochemical and functional diversity. A major limitation in the field is an incomplete understanding of the nature and extent of this cellular heterogeneity. Single cell analyses are well suited to addressing this issue, especially when coupled to unbiased profiling paradigms such as high throughout RNA sequencing. We performed single cell RNA sequencing (scRNA-seq) on freshly isolated muscle satellite cells and found a surprising degree of heterogeneity at multiple levels, from muscle-specific transcripts to the broader SC transcriptome. We leveraged several comparative bioinformatics techniques and found that individual SCs enrich for unique transcript clusters. We propose that these gene expression "fingerprints" may contribute to observed functional SC diversity. Overall, these studies underscore the importance of several established SC signaling pathways/processes on a single cell level, implicate novel regulators of SC heterogeneity, and lay the groundwork for further investigation into SC heterogeneity in health and disease.
Collapse
Affiliation(s)
- Dong Seong Cho
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA.
| | - Jason D Doles
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
146
|
Brook MS, Wilkinson DJ, Atherton PJ, Smith K. Recent developments in deuterium oxide tracer approaches to measure rates of substrate turnover: implications for protein, lipid, and nucleic acid research. Curr Opin Clin Nutr Metab Care 2017; 20:375-381. [PMID: 28650854 DOI: 10.1097/mco.0000000000000392] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW Methods that inform on dynamic metabolism that can be applied to clinical populations to understand disease progression and responses to therapeutic interventions are of great importance. This review perspective will highlight recent advances, development, and applications of the multivalent stable isotope tracer deuterium oxide (D2O) to the study of substrate metabolism with particular reference to protein, lipids, and nucleic acids, and how these methods can be readily applied within clinical and pharmaceutical research. RECENT FINDINGS Advances in the application of D2O techniques now permit the simultaneous dynamic measurement of a range of substrates (i.e. protein, lipid, and nucleic acids, along with the potential for OMICs methodologies) with minimal invasiveness further creating opportunities for long-term 'free living' measures that can be used in clinical settings. These techniques have recently been applied to ageing populations and further in cancer patients revealing altered muscle protein metabolism. Additionally, the efficacy of numerous drugs in improving lipoprotein profiles and controlling cellular proliferation in leukaemia have been revealed. SUMMARY D2O provides opportunities to create a more holistic picture of in-vivo metabolic phenotypes, providing a unique platform for development in clinical applications, and the emerging field of personalized medicine.
Collapse
Affiliation(s)
- Matthew S Brook
- MRC-ARUK Centre for Musculoskeletal Ageing Research, Clinical, Metabolic and Molecular Physiology, Royal Derby Hospital Centre, University of Nottingham MIHR BRC, University of Nottingham, Derby, UK
| | | | | | | |
Collapse
|
147
|
The Influence and Delivery of Cytokines and their Mediating Effect on Muscle Satellite Cells. CURRENT STEM CELL REPORTS 2017. [DOI: 10.1007/s40778-017-0089-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
148
|
Murach KA, White SH, Wen Y, Ho A, Dupont-Versteegden EE, McCarthy JJ, Peterson CA. Differential requirement for satellite cells during overload-induced muscle hypertrophy in growing versus mature mice. Skelet Muscle 2017; 7:14. [PMID: 28693603 PMCID: PMC5504676 DOI: 10.1186/s13395-017-0132-z] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 06/26/2017] [Indexed: 01/30/2023] Open
Abstract
Background Pax7+ satellite cells are required for skeletal muscle fiber growth during post-natal development in mice. Satellite cell-mediated myonuclear accretion also appears to persist into early adulthood. Given the important role of satellite cells during muscle development, we hypothesized that the necessity of satellite cells for adaptation to an imposed hypertrophic stimulus depends on maturational age. Methods Pax7CreER-R26RDTA mice were treated for 5 days with vehicle (satellite cell-replete, SC+) or tamoxifen (satellite cell-depleted, SC-) at 2 months (young) and 4 months (mature) of age. Following a 2-week washout, mice were subjected to sham surgery or 10 day synergist ablation overload of the plantaris (n = 6–9 per group). The surgical approach minimized regeneration, de novo fiber formation, and fiber splitting while promoting muscle fiber growth. Satellite cell density (Pax7+ cells/fiber), embryonic myosin heavy chain expression (eMyHC), and muscle fiber cross sectional area (CSA) were evaluated via immunohistochemistry. Myonuclei (myonuclei/100 mm) were counted on isolated single muscle fibers. Results Tamoxifen treatment depleted satellite cells by ≥90% and prevented myonuclear accretion with overload in young and mature mice (p < 0.05). Satellite cells did not recover in SC- mice after overload. Average muscle fiber CSA increased ~20% in young SC+ (p = 0.07), mature SC+ (p < 0.05), and mature SC- mice (p < 0.05). In contrast, muscle fiber hypertrophy was prevented in young SC- mice. Muscle fiber number increased only in mature mice after overload (p < 0.05), and eMyHC expression was variable, specifically in mature SC+ mice. Conclusions Reliance on satellite cells for overload-induced hypertrophy is dependent on maturational age, and global responses to overload differ in young versus mature mice. Electronic supplementary material The online version of this article (doi:10.1186/s13395-017-0132-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kevin A Murach
- Department of Rehabilitation Sciences, College of Health Sciences, 900 South Limestone, Lexington, KY 40536 USA.,The Center for Muscle Biology, University of Kentucky, 900 South Limestone, Lexington, KY 40536 USA
| | - Sarah H White
- Department of Rehabilitation Sciences, College of Health Sciences, 900 South Limestone, Lexington, KY 40536 USA.,The Center for Muscle Biology, University of Kentucky, 900 South Limestone, Lexington, KY 40536 USA.,Department of Animal Science, Texas A&M University, College Station, TX 77843 USA
| | - Yuan Wen
- Department of Physiology, College of Medicine, 800 Rose Street, Lexington, KY 40536 USA.,The Center for Muscle Biology, University of Kentucky, 900 South Limestone, Lexington, KY 40536 USA
| | - Angel Ho
- Department of Rehabilitation Sciences, College of Health Sciences, 900 South Limestone, Lexington, KY 40536 USA.,The Center for Muscle Biology, University of Kentucky, 900 South Limestone, Lexington, KY 40536 USA
| | - Esther E Dupont-Versteegden
- Department of Rehabilitation Sciences, College of Health Sciences, 900 South Limestone, Lexington, KY 40536 USA.,The Center for Muscle Biology, University of Kentucky, 900 South Limestone, Lexington, KY 40536 USA
| | - John J McCarthy
- Department of Physiology, College of Medicine, 800 Rose Street, Lexington, KY 40536 USA.,The Center for Muscle Biology, University of Kentucky, 900 South Limestone, Lexington, KY 40536 USA
| | - Charlotte A Peterson
- Department of Rehabilitation Sciences, College of Health Sciences, 900 South Limestone, Lexington, KY 40536 USA.,The Center for Muscle Biology, University of Kentucky, 900 South Limestone, Lexington, KY 40536 USA
| |
Collapse
|
149
|
Abstract
PURPOSE OF REVIEW The review is an update on recent research investigating the role of skeletal muscle stem cells (also known as satellite cells) during muscle fiber regeneration and growth in animal and human skeletal muscle, with an emphasis on their role in age-related sarcopenia. RECENT FINDINGS Studies indicate clear impairments in satellite cell function with aging, resulting in an impaired muscle fiber regenerative response. The autophagy-mediated switch to an irreversible presenescent state of geriatric satellite cells appears to play a key role in age-related impaired satellite cell function. In addition, inadequate muscle fiber vascularization may be a crucial factor underlying impaired regulation of satellite cells in older adults. Controversy remains on the actual contribution of satellite cells to the development of sarcopenia in later life, this clearly requires further research. Nevertheless, exercise training remains to be a potent intervention strategy, mediated through satellite cells or not, to counteract the ill effects of sarcopenia. SUMMARY Although important strides are made investigating the importance of satellite cells in the development and/or treatment of sarcopenia, the idea that satellite cell function is a therapeutic target to treat sarcopenia remains controversial.
Collapse
Affiliation(s)
- Tim Snijders
- aNUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands bDepartment of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
150
|
Egner IM, Bruusgaard JC, Gundersen K. An apparent lack of effect of satellite cell depletion on hypertrophy could be due to methodological limitations. Response to ‘Methodological issues limit interpretation of negative effects of satellite cell depletion on adult muscle hypertrophy’. Development 2017; 144:1365-1367. [DOI: 10.1242/dev.148163] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Ingrid M. Egner
- Department of Biosciences, University of Oslo, Blindern, Oslo N-0316, Norway
| | - Jo C. Bruusgaard
- Department of Biosciences, University of Oslo, Blindern, Oslo N-0316, Norway
- Department of Health Sciences, Kristiania University College, P.O. Box 1190, Sentrum, Oslo N-0107, Norway
| | - Kristian Gundersen
- Department of Biosciences, University of Oslo, Blindern, Oslo N-0316, Norway
| |
Collapse
|