101
|
Gopisetty MK, Kovács D, Igaz N, Rónavári A, Bélteky P, Rázga Z, Venglovecz V, Csoboz B, Boros IM, Kónya Z, Kiricsi M. Endoplasmic reticulum stress: major player in size-dependent inhibition of P-glycoprotein by silver nanoparticles in multidrug-resistant breast cancer cells. J Nanobiotechnology 2019; 17:9. [PMID: 30670028 PMCID: PMC6341731 DOI: 10.1186/s12951-019-0448-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/07/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Development of multidrug resistance (MDR) is a major burden of successful chemotherapy, therefore, novel approaches to defeat MDR are imperative. Although the remarkable anti-cancer propensity of silver nanoparticles (AgNP) has been demonstrated and their potential application in MDR cancer has been proposed, the nanoparticle size-dependent cellular events directing P-glycoprotein (Pgp) expression and activity in MDR cancer have never been addressed. Hence, in the present study we examined AgNP size-dependent cellular features in multidrug resistant breast cancer cells. RESULTS In this study we report that 75 nm AgNPs inhibited significantly Pgp efflux activity in drug-resistant breast cancer cells and potentiated the apoptotic effect of doxorubicin, which features were not observed upon 5 nm AgNP treatment. Although both sized AgNPs induced significant ROS production and mitochondrial damage, 5 nm AgNPs were more potent than 75 nm AgNPs in this respect, therefore, these effects can not to be accounted for the reduced transport activity of ATP-driven pumps observed after 75 nm AgNP treatments. Instead we found that 75 nm AgNPs depleted endoplasmic reticulum (ER) calcium stores, caused notable ER stress and decreased plasma membrane positioning of Pgp. CONCLUSION Our study suggests that AgNPs are potent inhibitors of Pgp function and are promising agents for sensitizing multidrug resistant breast cancers to anticancer drugs. This potency is determined by their size, since 75 nm AgNPs are more efficient than smaller counterparts. This is a highly relevant finding as it renders AgNPs attractive candidates in rational design of therapeutically useful agents for tumor targeting. In the present study we provide evidence that exploitation of ER stress can be a propitious target in defeating multidrug resistance in cancers.
Collapse
Affiliation(s)
- Mohana Krishna Gopisetty
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary
| | - Dávid Kovács
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary
| | - Nóra Igaz
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary
| | - Andrea Rónavári
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich B. tér 1, Szeged, 6720, Hungary
| | - Péter Bélteky
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich B. tér 1, Szeged, 6720, Hungary
| | - Zsolt Rázga
- Department of Pathology, University of Szeged, Állomás u. 2, Szeged, 6725, Hungary
| | - Viktória Venglovecz
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Dóm tér 12, Szeged, 6720, Hungary
| | - Bálint Csoboz
- Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, Temesvári krt. 62, Szeged, 6726, Hungary
| | - Imre Miklós Boros
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary
- Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, Temesvári krt. 62, Szeged, 6726, Hungary
| | - Zoltán Kónya
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich B. tér 1, Szeged, 6720, Hungary
- MTA-SZTE Reaction Kinetics and Surface Chemistry Research Group, Rerrich B. tér 1, Szeged, 6720, Hungary
| | - Mónika Kiricsi
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary.
| |
Collapse
|
102
|
Forrester A, De Leonibus C, Grumati P, Fasana E, Piemontese M, Staiano L, Fregno I, Raimondi A, Marazza A, Bruno G, Iavazzo M, Intartaglia D, Seczynska M, van Anken E, Conte I, De Matteis MA, Dikic I, Molinari M, Settembre C. A selective ER-phagy exerts procollagen quality control via a Calnexin-FAM134B complex. EMBO J 2018; 38:embj.201899847. [PMID: 30559329 PMCID: PMC6331724 DOI: 10.15252/embj.201899847] [Citation(s) in RCA: 189] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 10/10/2018] [Accepted: 10/31/2018] [Indexed: 12/23/2022] Open
Abstract
Autophagy is a cytosolic quality control process that recognizes substrates through receptor‐mediated mechanisms. Procollagens, the most abundant gene products in Metazoa, are synthesized in the endoplasmic reticulum (ER), and a fraction that fails to attain the native structure is cleared by autophagy. However, how autophagy selectively recognizes misfolded procollagens in the ER lumen is still unknown. We performed siRNA interference, CRISPR‐Cas9 or knockout‐mediated gene deletion of candidate autophagy and ER proteins in collagen producing cells. We found that the ER‐resident lectin chaperone Calnexin (CANX) and the ER‐phagy receptor FAM134B are required for autophagy‐mediated quality control of endogenous procollagens. Mechanistically, CANX acts as co‐receptor that recognizes ER luminal misfolded procollagens and interacts with the ER‐phagy receptor FAM134B. In turn, FAM134B binds the autophagosome membrane‐associated protein LC3 and delivers a portion of ER containing both CANX and procollagen to the lysosome for degradation. Thus, a crosstalk between the ER quality control machinery and the autophagy pathway selectively disposes of proteasome‐resistant misfolded clients from the ER.
Collapse
Affiliation(s)
- Alison Forrester
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | | | - Paolo Grumati
- Institute of Biochemistry II, Goethe University Frankfurt - Medical Faculty, University Hospital, Frankfurt am Main, Germany
| | - Elisa Fasana
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Bellinzona, Switzerland
| | | | - Leopoldo Staiano
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Ilaria Fregno
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Bellinzona, Switzerland.,Department of Biology, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Andrea Raimondi
- Experimental Imaging Center, San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Marazza
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Bellinzona, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Gemma Bruno
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Maria Iavazzo
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | | | - Marta Seczynska
- Institute of Biochemistry II, Goethe University Frankfurt - Medical Faculty, University Hospital, Frankfurt am Main, Germany
| | - Eelco van Anken
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Ospedale San Raffaele, Milan, Italy
| | - Ivan Conte
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Maria Antonietta De Matteis
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.,Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Naples, Italy
| | - Ivan Dikic
- Institute of Biochemistry II, Goethe University Frankfurt - Medical Faculty, University Hospital, Frankfurt am Main, Germany .,Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Maurizio Molinari
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Bellinzona, Switzerland .,School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Carmine Settembre
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy .,Department of Medical and Translational Science, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
103
|
Gómez-Fernández P, Urtasun A, Paton AW, Paton JC, Borrego F, Dersh D, Argon Y, Alloza I, Vandenbroeck K. Long Interleukin-22 Binding Protein Isoform-1 Is an Intracellular Activator of the Unfolded Protein Response. Front Immunol 2018; 9:2934. [PMID: 30619294 PMCID: PMC6302113 DOI: 10.3389/fimmu.2018.02934] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 11/29/2018] [Indexed: 12/26/2022] Open
Abstract
The human IL22RA2 gene co-produces three protein isoforms in dendritic cells [IL-22 binding protein isoform-1 (IL-22BPi1), IL-22BPi2, and IL-22BPi3]. Two of these, IL-22BPi2 and IL-22BPi3, are capable of neutralizing the biological activity of IL-22. The function of IL-22BPi1, which differs from IL-22BPi2 through an in-frame 32-amino acid insertion provided by an alternatively spliced exon, remains unknown. Using transfected human cell lines, we demonstrate that IL-22BPi1 is secreted detectably, but at much lower levels than IL-22BPi2, and unlike IL-22BPi2 and IL-22BPi3, is largely retained in the endoplasmic reticulum (ER). As opposed to IL-22BPi2 and IL-22BPi3, IL-22BPi1 is incapable of neutralizing or binding to IL-22 measured in bioassay or assembly-induced IL-22 co-folding assay. We performed interactome analysis to disclose the mechanism underlying the poor secretion of IL-22BPi1 and identified GRP78, GRP94, GRP170, and calnexin as main interactors. Structure-function analysis revealed that, like IL-22BPi2, IL-22BPi1 binds to the substrate-binding domain of GRP78 as well as to the middle domain of GRP94. Ectopic expression of wild-type GRP78 enhanced, and ATPase-defective GRP94 mutant decreased, secretion of both IL-22BPi1 and IL-22BPi2, while neither of both affected IL-22BPi3 secretion. Thus, IL-22BPi1 and IL-22BPi2 are bona fide clients of the ER chaperones GRP78 and GRP94. However, only IL-22BPi1 activates an unfolded protein response (UPR) resulting in increased protein levels of GRP78 and GRP94. Cloning of the IL22RA2 alternatively spliced exon into an unrelated cytokine, IL-2, bestowed similar characteristics on the resulting protein. We also found that CD14++/CD16+ intermediate monocytes produced a higher level of IL22RA2 mRNA than classical and non-classical monocytes, but this difference disappeared in immature dendritic cells (moDC) derived thereof. Upon silencing of IL22RA2 expression in moDC, GRP78 levels were significantly reduced, suggesting that native IL22RA2 expression naturally contributes to upregulating GRP78 levels in these cells. The IL22RA2 alternatively spliced exon was reported to be recruited through a single mutation in the proto-splice site of a Long Terminal Repeat retrotransposon sequence in the ape lineage. Our work suggests that positive selection of IL-22BPi1 was not driven by IL-22 antagonism as in the case of IL-22BPi2 and IL-22BPi3, but by capacity for induction of an UPR response.
Collapse
Affiliation(s)
- Paloma Gómez-Fernández
- Neurogenomiks Group, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Spain
- Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Andoni Urtasun
- Neurogenomiks Group, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Spain
- Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Adrienne W. Paton
- Research for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA, Australia
| | - James C. Paton
- Research for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA, Australia
| | - Francisco Borrego
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Basque Center for Transfusion and Human Tissues, Galdakao, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Devin Dersh
- Division of Cell Pathology, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Yair Argon
- Division of Cell Pathology, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Iraide Alloza
- Neurogenomiks Group, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Spain
- Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Koen Vandenbroeck
- Neurogenomiks Group, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Spain
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
104
|
Kiuchi T, Izumi M, Mukogawa Y, Shimada A, Okamoto R, Seko A, Sakono M, Takeda Y, Ito Y, Kajihara Y. Monitoring of Glycoprotein Quality Control System with a Series of Chemically Synthesized Homogeneous Native and Misfolded Glycoproteins. J Am Chem Soc 2018; 140:17499-17507. [DOI: 10.1021/jacs.8b08653] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Tatsuto Kiuchi
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Masayuki Izumi
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Yuki Mukogawa
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Arisa Shimada
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Ryo Okamoto
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Akira Seko
- ERATO Ito Glycotrilogy Project, Japan Science and Technology Agency (JST), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Masafumi Sakono
- ERATO Ito Glycotrilogy Project, Japan Science and Technology Agency (JST), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yoichi Takeda
- ERATO Ito Glycotrilogy Project, Japan Science and Technology Agency (JST), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yukishige Ito
- ERATO Ito Glycotrilogy Project, Japan Science and Technology Agency (JST), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Synthetic Cellular Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yasuhiro Kajihara
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- ERATO Ito Glycotrilogy Project, Japan Science and Technology Agency (JST), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
105
|
Rapp CL, Li J, Badior KE, Williams DB, Casey JR, Reithmeier RAF. Role of N-glycosylation in the expression of human SLC26A2 and A3 anion transport membrane glycoproteins 1. Biochem Cell Biol 2018; 97:290-306. [PMID: 30462520 DOI: 10.1139/bcb-2018-0139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The human solute carrier 26 (SLC26) gene family of anion transporters consists of 10 members (SLC26A1-A11, A10 being a pseudogene) that encode membrane glycoproteins with 14 transmembrane segments and a C-terminal cytoplasmic sulfate transporter anti-sigma antagonist domain. Thus far, mutations in eight members of the SLC26 family (A1-A6, A8, and A9) have been linked to diseases in humans. Our goal is to characterize the role of N-glycosylation and the effect of mutations in SLC26A2 and A3 proteins on their functional expression in transfected HEK-293 cells. We found that certain mutants were retained in the endoplamic reticulum via an interaction with the lectin chaperone calnexin. Some could escape protein quality control and traffic to the cell surface upon removal of the N-glycosylation sites. Furthermore, we found that loss of N-glycosylation reduced expression of SLC26A2 at the cell surface. Loss of N-glycosylation had no effect on the stability of SLC26A3, yet resulted in a profound decrease in transport activity. Thus, N-glycosylation plays three roles in the functional expression of SLC26 proteins: (1) to retain misfolded proteins in the endoplamic reticulum, (2) to stabilize the protein at the cell surface, and (3) to maintain the transport protein in a functional state.
Collapse
Affiliation(s)
- Chloe L Rapp
- a Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jing Li
- a Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Katherine E Badior
- b Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - David B Williams
- a Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Joseph R Casey
- b Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | | |
Collapse
|
106
|
Nanini HF, Bernardazzi C, Castro F, de Souza HSP. Damage-associated molecular patterns in inflammatory bowel disease: From biomarkers to therapeutic targets. World J Gastroenterol 2018; 24:4622-4634. [PMID: 30416310 PMCID: PMC6224468 DOI: 10.3748/wjg.v24.i41.4622] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/08/2018] [Accepted: 10/16/2018] [Indexed: 02/06/2023] Open
Abstract
The chronic inflammatory process underlying inflammatory bowel disease (IBD), comprising Crohn's disease and ulcerative colitis, derives from the interplay of several components in a genetically susceptible host. These components include environmental elements and gut microbiota a dysbiosis. For decades, immune abnormalities have been investigated as critically important in IBD pathogenesis, and attempts to develop effective therapies have predominantly targeted the immune system. Nevertheless, immune events represent only one of the constituents contributing to IBD pathogenesis within the context of the complex cellular and molecular network underlying chronic intestinal inflammation. These factors need to be appreciated within the milieu of non-immune components. Damage-associated molecular patterns (DAMPs), which are essentially endogenous stress proteins expressed or released as a result of cell or tissue damage, have been shown to act as direct pro-inflammatory mediators. Excessive or persistent signalling mediated by such molecules can underlie several chronic inflammatory disorders, including IBD. The release of endogenous DAMPs amplifies the inflammatory response driven by immune and non-immune cells and promotes epigenetic reprogramming in IBD. The effects determine pathologic changes, which may sustain chronic intestinal inflammation and also underlie specific disease phenotypes. In addition to highlighting the potential use of DAMPs such as calprotectin as biomarkers, research on DAMPs may reveal novel mechanistic associations in IBD pathogenesis and is expected to uncover putative therapeutic targets.
Collapse
Affiliation(s)
- Hayandra Ferreira Nanini
- Serviço de Gastroenterologia e Laboratório Multidisciplinar de Pesquisa, Departamento de Clínica Médica, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-913, Brazil
| | - Claudio Bernardazzi
- Serviço de Gastroenterologia e Laboratório Multidisciplinar de Pesquisa, Departamento de Clínica Médica, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-913, Brazil
| | - Fernando Castro
- Serviço de Gastroenterologia e Laboratório Multidisciplinar de Pesquisa, Departamento de Clínica Médica, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-913, Brazil
| | - Heitor Siffert Pereira de Souza
- Serviço de Gastroenterologia e Laboratório Multidisciplinar de Pesquisa, Departamento de Clínica Médica, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-913, Brazil
- D’Or Institute for Research and Education (IDOR), Rua Diniz Cordeiro 30, Botafogo, Rio de Janeiro, RJ 22281-100, Brazil
| |
Collapse
|
107
|
Chen Y, Ma D, Wang X, Fang J, Liu X, Song J, Li X, Ren X, Li Q, Li Q, Wen S, Luo L, Xia J, Cui J, Zeng G, Chen L, Cheng B, Wang Z. Calnexin Impairs the Antitumor Immunity of CD4 + and CD8 + T Cells. Cancer Immunol Res 2018; 7:123-135. [PMID: 30401678 DOI: 10.1158/2326-6066.cir-18-0124] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 08/06/2018] [Accepted: 11/02/2018] [Indexed: 11/16/2022]
Abstract
Elucidation of the mechanisms of T-cell-mediated antitumor responses will provide information for the rational design and development of cancer immunotherapies. Here, we found that calnexin, an endoplasmic reticulum (ER) chaperone protein, is significantly upregulated in oral squamous cell carcinoma (OSCC). Upregulation of its membranous expression on OSCC cells is associated with inhibited T-cell infiltration in tumor tissues and correlates with poor survival of patients with OSCC. We found that calnexin inhibits the proliferation of CD4+ and CD8+ T cells isolated from the whole blood of healthy donors and patients with OSCC and inhibits the secretion of IFNγ, TNFα, and IL2 from these cells. Furthermore, in a melanoma model, knockdown of calnexin enhanced the infiltration and effector functions of T cells in the tumor microenvironment and conferred better control of tumor growth, whereas treatment with a recombinant calnexin protein impaired the infiltration and effector functions of T cells and promoted tumor growth. We also found that calnexin enhanced the expression of PD-1 on CD4+ and CD8+ T cells by restraining the DNA methylation status of a CpG island in the PD-1 promoter. Thus, this work uncovers a mechanism by which T-cell antitumor responses are regulated by calnexin in tumor cells and suggests that calnexin might serve as a potential target for the improvement of antitumor immunotherapy.
Collapse
Affiliation(s)
- Yichen Chen
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Stomatological Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Da Ma
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Stomatological Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Xi Wang
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Stomatological Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Juan Fang
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Stomatological Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Xiangqi Liu
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Stomatological Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Jingjing Song
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Stomatological Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Xinye Li
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Stomatological Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Xianyue Ren
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Stomatological Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Qiusheng Li
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Stomatological Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Qunxing Li
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Stomatological Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Shuqiong Wen
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Stomatological Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Liqun Luo
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, P.R. China
| | - Juan Xia
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Stomatological Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Jun Cui
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Gucheng Zeng
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, P.R. China
| | - Lieping Chen
- Department of Immunobiology and Yale Comprehensive Cancer Center, Yale University, New Haven, Connecticut
| | - Bin Cheng
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Stomatological Hospital, Sun Yat-Sen University, Guangzhou, P.R. China.
| | - Zhi Wang
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Stomatological Hospital, Sun Yat-Sen University, Guangzhou, P.R. China.
| |
Collapse
|
108
|
Depaoli MR, Hay JC, Graier WF, Malli R. The enigmatic ATP supply of the endoplasmic reticulum. Biol Rev Camb Philos Soc 2018; 94:610-628. [PMID: 30338910 PMCID: PMC6446729 DOI: 10.1111/brv.12469] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 08/20/2018] [Accepted: 08/30/2018] [Indexed: 12/11/2022]
Abstract
The endoplasmic reticulum (ER) is a functionally and morphologically complex cellular organelle largely responsible for a variety of crucial functions, including protein folding, maturation and degradation. Furthermore, the ER plays an essential role in lipid biosynthesis, dynamic Ca2+ storage, and detoxification. Malfunctions in ER‐related processes are responsible for the genesis and progression of many diseases, such as heart failure, cancer, neurodegeneration and metabolic disorders. To fulfill many of its vital functions, the ER relies on a sufficient energy supply in the form of adenosine‐5′‐triphosphate (ATP), the main cellular energy source. Despite landmark discoveries and clarification of the functional principles of ER‐resident proteins and key ER‐related processes, the mechanism underlying ER ATP transport remains somewhat enigmatic. Here we summarize ER‐related ATP‐consuming processes and outline our knowledge about the nature and function of the ER energy supply.
Collapse
Affiliation(s)
- Maria R Depaoli
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria
| | - Jesse C Hay
- Division of Biological Sciences and Center for Structural and Functional Neuroscience, The University of Montana, 32 Campus Drive, HS410, Missoula, MT 59812-4824, U.S.A
| | - Wolfgang F Graier
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria.,BioTechMed Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Roland Malli
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria.,BioTechMed Graz, Mozartgasse 12/II, 8010 Graz, Austria
| |
Collapse
|
109
|
Trowitzsch S, Tampé R. ABC Transporters in Dynamic Macromolecular Assemblies. J Mol Biol 2018; 430:4481-4495. [DOI: 10.1016/j.jmb.2018.07.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 07/24/2018] [Accepted: 07/30/2018] [Indexed: 12/28/2022]
|
110
|
Songprakhon P, Limjindaporn T, Perng GC, Puttikhunt C, Thaingtamtanha T, Dechtawewat T, Saitornuang S, Uthaipibull C, Thongsima S, Yenchitsomanus PT, Malasit P, Noisakran S. Human glucose-regulated protein 78 modulates intracellular production and secretion of nonstructural protein 1 of dengue virus. J Gen Virol 2018; 99:1391-1406. [PMID: 30102148 DOI: 10.1099/jgv.0.001134] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Virus-host interactions play important roles in virus infection and host cellular response. Several viruses, including dengue virus (DENV), usurp host chaperones to support their amplification and survival in the host cell. We investigated the interaction of nonstructural protein 1 (NS1) of DENV with three endoplasmic reticulum-resident chaperones (i.e. GRP78, calnexin and calreticulin) to delineate their functional roles and potential binding sites for protein complex formation. GRP78 protein showed prominent association with DENV NS1 in virus-infected Huh7 cells as evidenced by co-localization and co-immunoprecipitation assays. Further studies on the functional interaction of GRP78 protein were performed by using siRNA-mediated gene knockdown in a DENV replicon transfection system. GRP78 knockdown significantly decreased intracellular NS1 production and delayed NS1 secretion but had no effect on viral RNA replication. Dissecting the important domain of GRP78 required for DENV NS1 interaction showed co-immunoprecipitation of DENV NS1 with a full-length and substrate-binding domain (SBD), but not an ATPase domain, of GRP78, confirming their interaction through SBD binding. Molecular dynamics simulations of DENV NS1 and human GRP78 complex revealed their potential binding sites through hydrogen and hydrophobic bonding. The majority of GRP78-binding sites were located in a β-roll domain and connector subdomains on the DENV NS1 structure involved in hydrophobic surface formation. Taken together, our findings demonstrated the roles of human GRP78 in facilitating the intracellular production and secretion of DENV NS1 as well as predicted potential binding sites between the DENV NS1 and GRP78 complex, which could have implications in the future development of target-based antiviral drugs.
Collapse
Affiliation(s)
- Pucharee Songprakhon
- 1Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Thawornchai Limjindaporn
- 2Department of Anatomy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Guey Chuen Perng
- 3Department of Microbiology and Immunology, College of Medicine, and Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan 70101, Taiwan, ROC
| | - Chunya Puttikhunt
- 4Medical Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 10700, Thailand.,5Division of Dengue Hemorrhagic Fever Research, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | | | - Thanyaporn Dechtawewat
- 1Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Sawanan Saitornuang
- 4Medical Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 10700, Thailand
| | - Chairat Uthaipibull
- 7Protein-Ligand Engineering and Molecular Biology Laboratory, Medical Molecular Biology Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Sissades Thongsima
- 8Biostatistics and Informatic Laboratory, Genome Institute, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Pa-Thai Yenchitsomanus
- 1Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Prida Malasit
- 4Medical Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 10700, Thailand.,5Division of Dengue Hemorrhagic Fever Research, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Sansanee Noisakran
- 5Division of Dengue Hemorrhagic Fever Research, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.,4Medical Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 10700, Thailand
| |
Collapse
|
111
|
Kim P, Scott MR, Meador-Woodruff JH. Abnormal expression of ER quality control and ER associated degradation proteins in the dorsolateral prefrontal cortex in schizophrenia. Schizophr Res 2018; 197:484-491. [PMID: 29496332 PMCID: PMC6109614 DOI: 10.1016/j.schres.2018.02.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 11/27/2017] [Accepted: 02/12/2018] [Indexed: 11/19/2022]
Abstract
Abnormalities in posttranslational protein modifications (PTMs) that regulate protein targeting, trafficking, synthesis, and function have been implicated in the pathophysiology of schizophrenia. The endoplasmic reticulum (ER) contains specialized machinery that facilitate protein synthesis, ER entry and exit, quality control, and post-translational processing, steps required for protein maturation. Dysregulation of these systems could represent potential mechanisms for abnormalities of neurotransmitter associated proteins in schizophrenia. We hypothesized that expression of ER processing pathways is dysregulated in schizophrenia. We characterized protein and complex expression of essential components from protein folding, ER quality control (ERQC), and ER associated degradation (ERAD) processes in the dorsolateral prefrontal cortex of 12 matched pairs of elderly schizophrenia and comparison subjects. We found increased expression of proteins associated with recognizing and modifying misfolded proteins, including UDP-glucose/glycoprotein glucosyltransferase 2 (UGGT2), ER degradation enhancing alpha-mannosidase like protein 2 (EDEM2), and synoviolin (SYVN1)/HRD1. As SYVN1/HRD1 is a component of the ubiquitin ligase HRD1-SEL1L complex that facilitates ERAD, we immunoprecipitated SEL1L and measured expression of other proteins in this complex. In schizophrenia, SYVN1/HRD1 and OS-9, ERAD promoters, have increased association with SEL1L, while XTP3-B, which can prevent ERAD of substrates, has decreased association. Abnormal expression of proteins associated with ERQC and ERAD suggests dysregulation in ER localized protein processing pathways in schizophrenia. Interestingly, the deficits we found are not in the protein processing machinery itself, but in proteins that recognize and target incompletely or misfolded proteins. These changes may reflect potential mechanisms of abnormal neurotransmitter associated protein expression previously observed in schizophrenia.
Collapse
Affiliation(s)
- Pitna Kim
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Madeline R Scott
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - James H Meador-Woodruff
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
112
|
Hou ZS, Ulloa-Aguirre A, Tao YX. Pharmacoperone drugs: targeting misfolded proteins causing lysosomal storage-, ion channels-, and G protein-coupled receptors-associated conformational disorders. Expert Rev Clin Pharmacol 2018; 11:611-624. [DOI: 10.1080/17512433.2018.1480367] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Zhi-Shuai Hou
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| | - Alfredo Ulloa-Aguirre
- Red de Apoyo a la Investigación (RAI), Universidad Nacional Autónoma de México (UNAM) and Instituto Nacional de Ciencias Médicas y Nutrición SZ, Mexico City, Mexico
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
113
|
ESCRT machinery components are required for Orthobunyavirus particle production in Golgi compartments. PLoS Pathog 2018; 14:e1007047. [PMID: 29723305 PMCID: PMC5953487 DOI: 10.1371/journal.ppat.1007047] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 05/15/2018] [Accepted: 04/18/2018] [Indexed: 01/10/2023] Open
Abstract
Peribunyaviridae is a large family of RNA viruses with several members that cause mild to severe diseases in humans and livestock. Despite their importance in public heath very little is known about the host cell factors hijacked by these viruses to support assembly and cell egress. Here we show that assembly of Oropouche virus, a member of the genus Orthobunyavirus that causes a frequent arboviral infection in South America countries, involves budding of virus particles toward the lumen of Golgi cisternae. As viral replication progresses, these Golgi subcompartments become enlarged and physically separated from Golgi stacks, forming Oropouche viral factory (Vfs) units. At the ultrastructural level, these virally modified Golgi cisternae acquire an MVB appearance, and while they lack typical early and late endosome markers, they become enriched in endosomal complex required for transport (ESCRT) proteins that are involved in MVB biogenesis. Further microscopy and viral replication analysis showed that functional ESCRT machinery is required for efficient Vf morphogenesis and production of infectious OROV particles. Taken together, our results indicate that OROV attracts ESCRT machinery components to Golgi cisternae to mediate membrane remodeling events required for viral assembly and budding at these compartments. This represents an unprecedented mechanism of how viruses hijack host cell components for coordinated morphogenesis.
Collapse
|
114
|
Interplay between P-Glycoprotein Expression and Resistance to Endoplasmic Reticulum Stressors. Molecules 2018; 23:molecules23020337. [PMID: 29415493 PMCID: PMC6017601 DOI: 10.3390/molecules23020337] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 01/30/2018] [Accepted: 02/01/2018] [Indexed: 12/13/2022] Open
Abstract
Multidrug resistance (MDR) is a phenotype of cancer cells with reduced sensitivity to a wide range of unrelated drugs. P-glycoprotein (P-gp)—a drug efflux pump (ABCB1 member of the ABC transporter gene family)—is frequently observed to be a molecular cause of MDR. The drug-efflux activity of P-gp is considered as the underlying mechanism of drug resistance against P-gp substrates and results in failure of cancer chemotherapy. Several pathological impulses such as shortages of oxygen and glucose supply, alterations of calcium storage mechanisms and/or processes of protein N-glycosylation in the endoplasmic reticulum (ER) leads to ER stress (ERS), characterized by elevation of unfolded protein cell content and activation of the unfolded protein response (UPR). UPR is responsible for modification of protein folding pathways, removal of misfolded proteins by ER associated protein degradation (ERAD) and inhibition of proteosynthesis. However, sustained ERS may result in UPR-mediated cell death. Neoplastic cells could escape from the death pathway induced by ERS by switching UPR into pro survival mechanisms instead of apoptosis. Here, we aimed to present state of the art information about consequences of P-gp expression on mechanisms associated with ERS development and regulation of the ERAD system, particularly focused on advances in ERS-associated therapy of drug resistant malignancies.
Collapse
|
115
|
Biosynthesis of human myeloperoxidase. Arch Biochem Biophys 2018; 642:1-9. [PMID: 29408362 DOI: 10.1016/j.abb.2018.02.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 01/31/2018] [Accepted: 02/02/2018] [Indexed: 01/30/2023]
Abstract
Members of Chordata peroxidase subfamily [1] expressed in mammals, including myeloperoxidase (MPO), eosinophil peroxidase (EPO), lactoperoxidase (LPO), and thyroid peroxidase (TPO), express conserved motifs around the heme prosthetic group essential for their activity, a calcium-binding site, and at least two covalent bonds linking the heme group to the protein backbone. Although most studies of the biosynthesis of these peroxidases have focused on MPO, many of the features described occur during biosynthesis of other members of the protein subfamily. Whereas MPO biosynthesis includes events typical for proteins generated in the secretory pathway, the importance and consequences of heme insertion are events uniquely associated with peroxidases. This Review summarizes decades of work elucidating specific steps in the biosynthetic pathway of human MPO. Discussion includes cotranslational glycosylation and subsequent modifications of the N-linked carbohydrate sidechains, contributions by molecular chaperones in the endoplasmic reticulum, cleavage of the propeptide from proMPO, and proteolytic processing of protomers and dimerization to yield mature MPO. Parallels between the biosynthesis of MPO and TPO as well as the impact of inherited mutations in the MPO gene on normal biosynthesis will be summarized. Lastly, specific gaps in our knowledge revealed by this review of our current understanding will be highlighted.
Collapse
|
116
|
Serrano-Perez MC, Tilley FC, Nevo F, Arrondel C, Sbissa S, Martin G, Tory K, Antignac C, Mollet G. Endoplasmic reticulum-retained podocin mutants are massively degraded by the proteasome. J Biol Chem 2018; 293:4122-4133. [PMID: 29382718 DOI: 10.1074/jbc.ra117.001159] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/23/2018] [Indexed: 12/13/2022] Open
Abstract
Podocin is a key component of the slit diaphragm in the glomerular filtration barrier, and mutations in the podocin-encoding gene NPHS2 are a common cause of hereditary steroid-resistant nephrotic syndrome. A mutant allele encoding podocin with a p.R138Q amino acid substitution is the most frequent pathogenic variant in European and North American children, and the corresponding mutant protein is poorly expressed and retained in the endoplasmic reticulum both in vitro and in vivo To better understand the defective trafficking and degradation of this mutant, we generated human podocyte cell lines stably expressing podocinwt or podocinR138Q Although it has been proposed that podocin has a hairpin topology, we present evidence for podocinR138QN-glycosylation, suggesting that most of the protein has a transmembrane topology. We find that N-glycosylated podocinR138Q has a longer half-life than non-glycosylated podocinR138Q and that the latter is far more rapidly degraded than podocinwt Consistent with its rapid degradation, podocinR138Q is exclusively degraded by the proteasome, whereas podocinwt is degraded by both the proteasomal and the lysosomal proteolytic machineries. In addition, we demonstrate an enhanced interaction of podocinR138Q with calnexin as the mechanism of endoplasmic reticulum retention. Calnexin knockdown enriches the podocinR138Q non-glycosylated fraction, whereas preventing exit from the calnexin cycle increases the glycosylated fraction. Altogether, we propose a model in which hairpin podocinR138Q is rapidly degraded by the proteasome, whereas transmembrane podocinR138Q degradation is delayed due to entry into the calnexin cycle.
Collapse
Affiliation(s)
- Maria-Carmen Serrano-Perez
- From the Laboratory of Hereditary Kidney Diseases, Inserm UMR 1163, Imagine Institute, Paris 75015, France.,the Université Paris Descartes-Sorbonne Paris Cité, Imagine Institute, Paris 75015, France
| | - Frances C Tilley
- From the Laboratory of Hereditary Kidney Diseases, Inserm UMR 1163, Imagine Institute, Paris 75015, France.,the Université Paris Descartes-Sorbonne Paris Cité, Imagine Institute, Paris 75015, France
| | - Fabien Nevo
- From the Laboratory of Hereditary Kidney Diseases, Inserm UMR 1163, Imagine Institute, Paris 75015, France.,the Université Paris Descartes-Sorbonne Paris Cité, Imagine Institute, Paris 75015, France
| | - Christelle Arrondel
- From the Laboratory of Hereditary Kidney Diseases, Inserm UMR 1163, Imagine Institute, Paris 75015, France.,the Université Paris Descartes-Sorbonne Paris Cité, Imagine Institute, Paris 75015, France
| | - Selim Sbissa
- From the Laboratory of Hereditary Kidney Diseases, Inserm UMR 1163, Imagine Institute, Paris 75015, France.,the Université Paris Descartes-Sorbonne Paris Cité, Imagine Institute, Paris 75015, France
| | - Gaëlle Martin
- From the Laboratory of Hereditary Kidney Diseases, Inserm UMR 1163, Imagine Institute, Paris 75015, France.,the Université Paris Descartes-Sorbonne Paris Cité, Imagine Institute, Paris 75015, France
| | - Kalman Tory
- the MTA-SE Lendület Nephrogenetic Laboratory, Hungarian Academy of Sciences and First Department of Pediatrics, Semmelweis University, Budapest 1083, Hungary, and
| | - Corinne Antignac
- From the Laboratory of Hereditary Kidney Diseases, Inserm UMR 1163, Imagine Institute, Paris 75015, France.,the Université Paris Descartes-Sorbonne Paris Cité, Imagine Institute, Paris 75015, France.,the Département de Génétique, Assistance Publique-Hôpitaux de Paris, Hôpital Necker-Enfants Malades, Paris 75015, France
| | - Géraldine Mollet
- From the Laboratory of Hereditary Kidney Diseases, Inserm UMR 1163, Imagine Institute, Paris 75015, France, .,the Université Paris Descartes-Sorbonne Paris Cité, Imagine Institute, Paris 75015, France
| |
Collapse
|
117
|
Xiao B, Wang JG, Han F, Shi YX. Effects of calcium-dependent molecular chaperones and endoplasmic reticulum in the amygdala in rats under single‑prolonged stress. Mol Med Rep 2017; 17:1099-1104. [PMID: 29115545 DOI: 10.3892/mmr.2017.7976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 10/17/2017] [Indexed: 11/05/2022] Open
Abstract
The purpose of the present study was to investigate the role of endoplasmic reticulum (ER)‑resident molecular chaperone proteins to identify whether these proteins were involved in post‑traumatic stress disorder (PTSD). The present study detected changes of calreticulin (CRT), calnexin (CNX) and ERp57 in the amygdala of rats, which may with aim of providing a novel insight into the modulation effect of amygdala in PTSD. Single‑prolonged stress (SPS) was applied to create the models of PTSD in rats. The expression levels of CRT, CNX and ERp57 were examined using immunohistochemistry or immunofluorescence, western blot analysis and reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR). The results showed that SPS induced significant changes in CRT, CNX and ERp57 expression levels. Furthermore, the expression levels of CRT, CNX and ERp57 were significantly upregulated when compared to that in the control group after SPS exposure by western blot analysis (P<0.05). RT‑qPCR analysis supported these results, indicating an upregulation of mRNA expression level. Taken together, the present findings suggest that SPS may induce changes to the expression of CRT, CNX and ERp57 in the amygdala of rats. The present study provides an insight into the effects of ER‑resident molecular chaperones in the amygdala participating in PTSD, and provides the experimental basis and a mechanism for the pathophysiology of PTSD.
Collapse
Affiliation(s)
- Bing Xiao
- Department of Histology and Embryology, Basic Medical Sciences College, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Jian-Gang Wang
- Department of Histology and Embryology, Basic Medical Sciences College, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Fang Han
- Department of Histology and Embryology, Basic Medical Sciences College, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Yu-Xiu Shi
- Department of Histology and Embryology, Basic Medical Sciences College, China Medical University, Shenyang, Liaoning 110122, P.R. China
| |
Collapse
|
118
|
Human Herpesvirus 8 Interleukin-6 Interacts with Calnexin Cycle Components and Promotes Protein Folding. J Virol 2017; 91:JVI.00965-17. [PMID: 28878084 DOI: 10.1128/jvi.00965-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/31/2017] [Indexed: 12/25/2022] Open
Abstract
Viral interleukin-6 (vIL-6) encoded by human herpesvirus 8 (HHV-8) is believed to contribute via mitogenic, survival, and angiogenic activities to HHV-8-associated Kaposi's sarcoma, primary effusion lymphoma (PEL), and multicentric Castleman's disease through autocrine or paracrine mechanisms during latency or productive replication. There is direct evidence that vIL-6 promotes latently infected PEL cell viability and proliferation and also viral productive replication in PEL and endothelial cells. These activities are mediated largely through endoplasmic reticulum (ER)-localized vIL-6, which can induce signal transduction via the gp130 signaling receptor, activating mitogen-activated protein kinase and signal transducer and activator of transcription signaling, and interactions of vIL-6 with the ER membrane protein vitamin K epoxide reductase complex subunit 1 variant 2 (VKORC1v2). The latter functional axis involves suppression of proapoptotic lysosomal protein cathepsin D by promotion of the ER-associated degradation of ER-transiting, preproteolytically processed procathepsin D. Other interactions of VKORC1v2 and activities of vIL-6 via the receptor have not been reported. We show here that both vIL-6 and VKORC1v2 interact with calnexin cycle proteins UDP-glucose:glycoprotein glucosyltransferase 1 (UGGT1), which catalyzes monoglucosylation of N-glycans, and oppositely acting glucosidase II (GlucII), and that vIL-6 can promote protein folding. This activity was found to require VKORC1v2 and UGGT1, to involve vIL-6 associations with VKORC1v2, UGGT1, and GlucII, and to operate in the context of productively infected cells. These findings document new VKORC1v2-associated interactions and activities of vIL-6, revealing novel mechanisms of vIL-6 function within the ER compartment.IMPORTANCE HHV-8 vIL-6 prosurvival (latent) and proreplication functions are mediated from the ER compartment through both gp130 receptor-mediated signal transduction and interaction of vIL-6 with the ER membrane protein VKORC1v2. This report identifies interactions of vIL-6 and VKORC1v2 with calnexin cycle enzymes GlucII and UGGT1, which are involved in glycan processing and nascent protein folding. The presented data show that vIL-6 and VKORC1v2 can cocomplex with GlucII and UGGT1, that vIL-6 promotes protein folding, and that VKORC1v2, UGGT1, and vIL-6 interactions with GlucII and UGGT1 are important for the profolding activity of vIL-6, which can be detected in the context of infected cells. This newly identified ER activity of vIL-6 involving VKORC1v2 may promote viral latency (in PEL cells) and productive replication by limiting the damaging effects of unfolded protein response signaling in addition to enhancing viral protein folding. This is the first report of such a function for a cytokine.
Collapse
|
119
|
Plattner H, Verkhratsky A. Inseparable tandem: evolution chooses ATP and Ca2+ to control life, death and cellular signalling. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0419. [PMID: 27377729 DOI: 10.1098/rstb.2015.0419] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2016] [Indexed: 01/01/2023] Open
Abstract
From the very dawn of biological evolution, ATP was selected as a multipurpose energy-storing molecule. Metabolism of ATP required intracellular free Ca(2+) to be set at exceedingly low concentrations, which in turn provided the background for the role of Ca(2+) as a universal signalling molecule. The early-eukaryote life forms also evolved functional compartmentalization and vesicle trafficking, which used Ca(2+) as a universal signalling ion; similarly, Ca(2+) is needed for regulation of ciliary and flagellar beat, amoeboid movement, intracellular transport, as well as of numerous metabolic processes. Thus, during evolution, exploitation of atmospheric oxygen and increasingly efficient ATP production via oxidative phosphorylation by bacterial endosymbionts were a first step for the emergence of complex eukaryotic cells. Simultaneously, Ca(2+) started to be exploited for short-range signalling, despite restrictions by the preset phosphate-based energy metabolism, when both phosphates and Ca(2+) interfere with each other because of the low solubility of calcium phosphates. The need to keep cytosolic Ca(2+) low forced cells to restrict Ca(2+) signals in space and time and to develop energetically favourable Ca(2+) signalling and Ca(2+) microdomains. These steps in tandem dominated further evolution. The ATP molecule (often released by Ca(2+)-regulated exocytosis) rapidly grew to be the universal chemical messenger for intercellular communication; ATP effects are mediated by an extended family of purinoceptors often linked to Ca(2+) signalling. Similar to atmospheric oxygen, Ca(2+) must have been reverted from a deleterious agent to a most useful (intra- and extracellular) signalling molecule. Invention of intracellular trafficking further increased the role for Ca(2+) homeostasis that became critical for regulation of cell survival and cell death. Several mutually interdependent effects of Ca(2+) and ATP have been exploited in evolution, thus turning an originally unholy alliance into a fascinating success story.This article is part of the themed issue 'Evolution brings Ca(2+) and ATP together to control life and death'.
Collapse
Affiliation(s)
- Helmut Plattner
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Alexei Verkhratsky
- Faculty of Biological Sciences, University of Manchester, Manchester M13 9PT, UK Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain University of Nizhny Novgorod, Nizhny Novgorod 603022, Russia
| |
Collapse
|
120
|
Tanaka Y, Sasaki M, Ito F, Aoyama T, Sato-Okamoto M, Takahashi-Nakaguchi A, Chibana H, Shibata N. Cooperation between ER stress and calcineurin signaling contributes to the maintenance of cell wall integrity in Candida glabrata. Fungal Biol 2017; 122:19-33. [PMID: 29248112 DOI: 10.1016/j.funbio.2017.09.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 09/04/2017] [Accepted: 09/30/2017] [Indexed: 10/18/2022]
Abstract
Candida glabrata is the second most common source of Candida infections in humans. In this pathogen, the maintenance of cell wall integrity (CWI) frequently precludes effective pharmacological treatment by antifungal agents. In numerous fungi, cell wall modulation is reported to be controlled by endoplasmic reticulum (ER) stress, but how the latter affects CWI maintenance in C. glabrata is not clearly understood. Here, we characterized a C. glabrata strain harboring a mutation in the CNE1 gene, which encodes a molecular chaperone associated with nascent glycoprotein maturation in the ER. Disruption of cne1 induced ER stress and caused changes in the normal cell wall structure, specifically a reduction in the β-1,6-glucan content and accumulation of chitin. Conversely, a treatment with the typical ER stress inducer tunicamycin up-regulated the production of cell wall chitin but did not affect β-1,6-glucan content. Our results also indicated that C. glabrata features a uniquely evolved ER stress-mediated CWI pathway, which differs from that in the closely related species Saccharomyces cerevisiae. Furthermore, we demonstrated that ER stress-mediated CWI pathway in C. glabrata is also induced by the disruption of other genes encoding proteins that function in a correlated manner in the quality control of N-linked glycoproteins in the ER. These results suggest that calcineurin and ER quality control system act as a platform for maintaining CWI in C. glabrata.
Collapse
Affiliation(s)
- Yutaka Tanaka
- Department of Infection and Host Defense, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Masato Sasaki
- Department of Infection and Host Defense, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Fumie Ito
- Department of Infection and Host Defense, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Toshio Aoyama
- Department of Electronic and Information Engineering, Suzuka National College of Technology, Shirako-tyo, Suzuka, Mie 510-0294, Japan
| | - Michiyo Sato-Okamoto
- Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8673, Japan
| | | | - Hiroji Chibana
- Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8673, Japan
| | - Nobuyuki Shibata
- Department of Infection and Host Defense, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan.
| |
Collapse
|
121
|
Jiang M, Karasawa T, Steyger PS. Aminoglycoside-Induced Cochleotoxicity: A Review. Front Cell Neurosci 2017; 11:308. [PMID: 29062271 PMCID: PMC5640705 DOI: 10.3389/fncel.2017.00308] [Citation(s) in RCA: 185] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/15/2017] [Indexed: 12/20/2022] Open
Abstract
Aminoglycoside antibiotics are used as prophylaxis, or urgent treatment, for many life-threatening bacterial infections, including tuberculosis, sepsis, respiratory infections in cystic fibrosis, complex urinary tract infections and endocarditis. Although aminoglycosides are clinically-essential antibiotics, the mechanisms underlying their selective toxicity to the kidney and inner ear continue to be unraveled despite more than 70 years of investigation. The following mechanisms each contribute to aminoglycoside-induced toxicity after systemic administration: (1) drug trafficking across endothelial and epithelial barrier layers; (2) sensory cell uptake of these drugs; and (3) disruption of intracellular physiological pathways. Specific factors can increase the risk of drug-induced toxicity, including sustained exposure to higher levels of ambient sound, and selected therapeutic agents such as loop diuretics and glycopeptides. Serious bacterial infections (requiring life-saving aminoglycoside treatment) induce systemic inflammatory responses that also potentiate the degree of ototoxicity and permanent hearing loss. We discuss prospective clinical strategies to protect auditory and vestibular function from aminoglycoside ototoxicity, including reduced cochlear or sensory cell uptake of aminoglycosides, and otoprotection by ameliorating intracellular cytotoxicity.
Collapse
Affiliation(s)
- Meiyan Jiang
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Takatoshi Karasawa
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Peter S Steyger
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, United States.,National Center for Rehabilitative Auditory Research, Portland VA Medical Center (VHA), Portland, OR, United States
| |
Collapse
|
122
|
Noda Y, Tsuruma K, Takata M, Ishisaka M, Tanaka H, Nakano Y, Nagahara Y, Shimazawa M, Hara H. GPNMB Induces BiP Expression by Enhancing Splicing of BiP Pre-mRNA during the Endoplasmic Reticulum Stress Response. Sci Rep 2017; 7:12160. [PMID: 28939899 PMCID: PMC5610265 DOI: 10.1038/s41598-017-11828-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 08/30/2017] [Indexed: 01/12/2023] Open
Abstract
Glycoprotein nonmetastatic melanoma protein B (GPNMB) has a neuroprotective effect against neuronal cell death caused by the accumulation of abnormal mutated proteins. It is known that the accumulation of pathological proteins induces endoplasmic-reticulum (ER) stress leading to cell damage. The aim of this study was to determine the role of GPNMB in the ER stress response. GPNMB was greatly up-regulated by thapsigargin-induced ER stress. Under the ER stress conditions, GPNMB relocated to the nucleus and specifically up-regulated expression of BiP at the mRNA level by promoting the BiP pre-mRNA splicing, not through the pathways initiated by the three major transducers of the unfolded protein response: IRE1, PERK, and ATF6. Furthermore, we found that the protein level of BiP and the infarction were increased and attenuated, respectively, in Gpnmb-transgenic mice after occlusion of the middle cerebral artery, in comparison with wild-type mice. Thus, our findings indicate that GPNMB enhances the BiP expression by promoting the splicing (thereby preventing cell death caused by ER stress) and could be a therapeutic target in ER stress-related disorders.
Collapse
Affiliation(s)
- Yasuhiro Noda
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Kazuhiro Tsuruma
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Masafumi Takata
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Mitsue Ishisaka
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Hirotaka Tanaka
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Yusuke Nakano
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Yuki Nagahara
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Masamitsu Shimazawa
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Hideaki Hara
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan.
| |
Collapse
|
123
|
Vanier G, Lucas PL, Loutelier-Bourhis C, Vanier J, Plasson C, Walet-Balieu ML, Tchi-Song PC, Remy-Jouet I, Richard V, Bernard S, Driouich A, Afonso C, Lerouge P, Mathieu-Rivet E, Bardor M. Heterologous expression of the N-acetylglucosaminyltransferase I dictates a reinvestigation of the N-glycosylation pathway in Chlamydomonas reinhardtii. Sci Rep 2017; 7:10156. [PMID: 28860654 PMCID: PMC5578997 DOI: 10.1038/s41598-017-10698-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 08/14/2017] [Indexed: 12/31/2022] Open
Abstract
Eukaryotic N-glycosylation pathways are dependent of N-acetylglucosaminyltransferase I (GnTI), a key glycosyltransferase opening the door to the formation of complex-type N-glycans by transferring a N-acetylglucosamine residue onto the Man5GlcNAc2 intermediate. In contrast, glycans N-linked to Chlamydomonas reinhardtii proteins arise from a GnTI-independent Golgi processing of oligomannosides giving rise to Man5GlcNAc2 substituted eventually with one or two xylose(s). Here, complementation of C. reinhardtii with heterologous GnTI was investigated by expression of GnTI cDNAs originated from Arabidopsis and the diatom Phaeodactylum tricornutum. No modification of the N-glycans was observed in the GnTI transformed cells. Consequently, the structure of the Man5GlcNAc2 synthesized by C. reinhardtii was reinvestigated. Mass spectrometry analyses combined with enzyme sequencing showed that C. reinhardtii proteins carry linear Man5GlcNAc2 instead of the branched structure usually found in eukaryotes. Moreover, characterization of the lipid-linked oligosaccharide precursor demonstrated that C. reinhardtii exhibit a Glc3Man5GlcNAc2 dolichol pyrophosphate precursor. We propose that this precursor is then trimmed into a linear Man5GlcNAc2 that is not substrate for GnTI. Furthermore, cells expressing GnTI exhibited an altered phenotype with large vacuoles, increase of ROS production and accumulation of starch granules, suggesting the activation of stress responses likely due to the perturbation of the Golgi apparatus.
Collapse
Affiliation(s)
- Gaëtan Vanier
- Normandie Univ, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire végétale, EA 4358, 76000, Rouen, France.,UMR FARE 614, Fractionnement des AgroRessources et Environnement, Chaire AFERE, Université de Reims-Champagne-Ardenne, INRA, 51686, Reims Cedex, France
| | - Pierre-Louis Lucas
- Normandie Univ, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire végétale, EA 4358, 76000, Rouen, France
| | - Corinne Loutelier-Bourhis
- Normandie Univ, UNIROUEN, COBRA, UMR 6014 et FR 3038, Université de Rouen, INSA de Rouen, CNRS, 76000, Rouen, France
| | - Jessica Vanier
- Normandie Univ, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire végétale, EA 4358, 76000, Rouen, France
| | - Carole Plasson
- Normandie Univ, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire végétale, EA 4358, 76000, Rouen, France
| | - Marie-Laure Walet-Balieu
- Normandie Univ, UNIROUEN, Plate-Forme de Protéomique PISSARO, 76000, Rouen, France.,Normandie Univ, UNIROUEN, Institut de Recherche et d'Innovation Biomédicale (IRIB), 76000, Rouen, France
| | - Philippe Chan Tchi-Song
- Normandie Univ, UNIROUEN, Plate-Forme de Protéomique PISSARO, 76000, Rouen, France.,Normandie Univ, UNIROUEN, Institut de Recherche et d'Innovation Biomédicale (IRIB), 76000, Rouen, France
| | - Isabelle Remy-Jouet
- Normandie Univ, UNIROUEN, Inserm UMR 1096, Plateforme BOSS, 76000, Rouen, France
| | - Vincent Richard
- Normandie Univ, UNIROUEN, Inserm UMR 1096, Plateforme BOSS, 76000, Rouen, France
| | - Sophie Bernard
- Normandie Univ, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire végétale, EA 4358, 76000, Rouen, France.,Normandie Univ, UNIROUEN, Plate-forme, PRIMACEN, Cell Imaging Platform of Normandy, 76000, Rouen, France
| | - Azeddine Driouich
- Normandie Univ, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire végétale, EA 4358, 76000, Rouen, France.,Normandie Univ, UNIROUEN, Plate-forme, PRIMACEN, Cell Imaging Platform of Normandy, 76000, Rouen, France
| | - Carlos Afonso
- Normandie Univ, UNIROUEN, COBRA, UMR 6014 et FR 3038, Université de Rouen, INSA de Rouen, CNRS, 76000, Rouen, France
| | - Patrice Lerouge
- Normandie Univ, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire végétale, EA 4358, 76000, Rouen, France
| | - Elodie Mathieu-Rivet
- Normandie Univ, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire végétale, EA 4358, 76000, Rouen, France
| | - Muriel Bardor
- Normandie Univ, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire végétale, EA 4358, 76000, Rouen, France. .,Institut Universitaire de France (I.U.F.) 1, rue Descartes, 75231, Paris, Cedex 05, France.
| |
Collapse
|
124
|
Esch L, Schaffrath U. An Update on Jacalin-Like Lectins and Their Role in Plant Defense. Int J Mol Sci 2017; 18:ijms18071592. [PMID: 28737678 PMCID: PMC5536079 DOI: 10.3390/ijms18071592] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/17/2017] [Accepted: 07/20/2017] [Indexed: 12/11/2022] Open
Abstract
Plant lectins are proteins that reversibly bind carbohydrates and are assumed to play an important role in plant development and resistance. Through the binding of carbohydrate ligands, lectins are involved in the perception of environmental signals and their translation into phenotypical responses. These processes require down-stream signaling cascades, often mediated by interacting proteins. Fusing the respective genes of two interacting proteins can be a way to increase the efficiency of this process. Most recently, proteins containing jacalin-related lectin (JRL) domains became a subject of plant resistance responses research. A meta-data analysis of fusion proteins containing JRL domains across different kingdoms revealed diverse partner domains ranging from kinases to toxins. Among them, proteins containing a JRL domain and a dirigent domain occur exclusively within monocotyledonous plants and show an unexpected high range of family member expansion compared to other JRL-fusion proteins. Rice, wheat, and barley plants overexpressing OsJAC1, a member of this family, are resistant against important fungal pathogens. We discuss the possibility that JRL domains also function as a decoy in fusion proteins and help to alert plants of the presence of attacking pathogens.
Collapse
Affiliation(s)
- Lara Esch
- Department of Plant Physiology, RWTH Aachen University, 52056 Aachen, Germany.
| | - Ulrich Schaffrath
- Department of Plant Physiology, RWTH Aachen University, 52056 Aachen, Germany.
| |
Collapse
|
125
|
The Lectin Chaperone Calnexin Is Involved in the Endoplasmic Reticulum Stress Response by Regulating Ca 2+ Homeostasis in Aspergillus nidulans. Appl Environ Microbiol 2017; 83:AEM.00673-17. [PMID: 28550061 DOI: 10.1128/aem.00673-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 05/18/2017] [Indexed: 12/23/2022] Open
Abstract
The Ca2+-mediated signaling pathway is crucial for environmental adaptation in fungi. Here we show that calnexin, a molecular chaperone located in the endoplasmic reticulum (ER), plays an important role in regulating the cytosolic free calcium concentration ([Ca2+]c) in Aspergillus nidulans Inactivation of calnexin (ClxA) in A. nidulans caused severe defects in hyphal growth and conidiation under ER stress caused by the ER stress-inducing agent dithiothreitol (DTT) or high temperature. Importantly, defects in the ΔclxA mutant were restored by the addition of extracellular calcium. Furthermore, the CchA/MidA complex (the high-affinity Ca2+ channels), calcineurin (calcium/calmodulin-dependent protein phosphatase), and PmrA (secretory pathway Ca2+ ATPase) were required for extracellular calcium-based restoration of the DTT/thermal stress sensitivity in the ΔclxA mutant. Interestingly, the ΔclxA mutant exhibited markedly reduced conidium formation and hyphal growth defects under the low-calcium condition, which is similar to defects caused by mutations in MidA/CchA. Moreover, the phenotypic defects were further exacerbated in the ΔclxA ΔmidA ΔcchA mutant, which suggested that ClxA and MidA/CchA are both required under the calcium-limiting condition. Using the calcium-sensitive photoprotein aequorin to monitor [Ca2+]c in living cells, we found that ClxA and MidA/CchA complex synergistically coordinate transient increase in [Ca2+]c in response to extracellular calcium. Moreover, ClxA, in particular its luminal domain, plays a role in mediating the transient [Ca2+]c in response to DTT-induced ER stress in the absence of extracellular calcium, indicating ClxA may mediate calcium release from internal calcium stores. Our findings provide new insights into the role of calnexin in the regulation of calcium-mediated response in fungal ER stress adaptation.IMPORTANCE Calnexin is a well-known molecular chaperone conserved from yeast to humans. Although it contains calcium binding domains, little is known about the role of calnexin in Ca2+ regulation. In this study, we demonstrate that calnexin (ClxA) in the filamentous fungus Aspergillus nidulans, similar to the high-affinity calcium uptake system (HACS), is required for normal growth and conidiation under the calcium-limiting condition. The ClxA dysfunction decreases the transient cytosolic free calcium concentration ([Ca2+]c) induced by a high extracellular calcium or DTT-induced ER stress. Our findings provide the direct evidence that calnexin plays important roles in regulating Ca2+ homeostasis in addition to its role as a molecular chaperone in fungi. These results provide new insights into the roles of calnexin and expand knowledge of fungal stress adaptation.
Collapse
|
126
|
Vincenz-Donnelly L, Hipp MS. The endoplasmic reticulum: A hub of protein quality control in health and disease. Free Radic Biol Med 2017; 108:383-393. [PMID: 28363604 DOI: 10.1016/j.freeradbiomed.2017.03.031] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 03/20/2017] [Accepted: 03/27/2017] [Indexed: 01/03/2023]
Abstract
One third of the eukaryotic proteome is synthesized at the endoplasmic reticulum (ER), whose unique properties provide a folding environment substantially different from the cytosol. A healthy, balanced proteome in the ER is maintained by a network of factors referred to as the ER quality control (ERQC) machinery. This network consists of various protein folding chaperones and modifying enzymes, and is regulated by stress response pathways that prevent the build-up as well as the secretion of potentially toxic and aggregation-prone misfolded protein species. Here, we describe the components of the ERQC machinery, investigate their response to different forms of stress, and discuss the consequences of ERQC break-down.
Collapse
Affiliation(s)
- Lisa Vincenz-Donnelly
- Max Planck Institute of Biochemistry, Department of Cellular Biochemistry, 82152 Martinsried, Germany
| | - Mark S Hipp
- Max Planck Institute of Biochemistry, Department of Cellular Biochemistry, 82152 Martinsried, Germany
| |
Collapse
|
127
|
Migliaccio AR, Uversky VN. Dissecting physical structure of calreticulin, an intrinsically disordered Ca 2+-buffering chaperone from endoplasmic reticulum. J Biomol Struct Dyn 2017; 36:1617-1636. [PMID: 28504081 DOI: 10.1080/07391102.2017.1330224] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Calreticulin (CALR) is a Ca2+ binding multifunctional protein that mostly resides in the endoplasmic reticulum (ER) and plays a number of important roles in various physiological and pathological processes. Although the major functions ascribed to CALR are controlling the Ca2+ homeostasis in ER and acting as a lectin-like ER chaperon for many glycoproteins, this moonlighting protein can be found in various cellular compartments where it has many non-ER functions. To shed more light on the mechanisms underlying polyfunctionality of this moonlighting protein that can be found in different cellular compartments and that possesses a wide spectrum of unrelated biological activities, being able to interact with Ca2+ (and potentially other metal ions), RNA, oligosaccharides, and numerous proteins, we used a set of experimental and computational tools to evaluate the intrinsic disorder status of CALR and the role of calcium binding on structural properties and conformational stability of the full-length CALR and its isolated P- and C-domains.
Collapse
Affiliation(s)
- Anna Rita Migliaccio
- a Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai (ISMMS) , New York , NY , USA.,b Department of Biomedical and Neuromotorial Sciences , Alma Mater University , Bologna , Italy
| | - Vladimir N Uversky
- c Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute , Morsani College of Medicine, University of South Florida , Tampa , FL , USA.,d Laboratory of New Methods in Biology , Institute for Biological Instrumentation, Russian Academy of Sciences , Pushchino , Moscow Region 142290 , Russia
| |
Collapse
|
128
|
Do Carmo S, Crynen G, Paradis T, Reed J, Iulita MF, Ducatenzeiler A, Crawford F, Cuello AC. Hippocampal Proteomic Analysis Reveals Distinct Pathway Deregulation Profiles at Early and Late Stages in a Rat Model of Alzheimer's-Like Amyloid Pathology. Mol Neurobiol 2017; 55:3451-3476. [PMID: 28502044 DOI: 10.1007/s12035-017-0580-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 04/26/2017] [Indexed: 01/01/2023]
Abstract
The cerebral accumulation and cytotoxicity of amyloid beta (Aβ) is central to Alzheimer's pathogenesis. However, little is known about how the amyloid pathology affects the global expression of brain proteins at different disease stages. In order to identify genotype and time-dependent significant changes in protein expression, we employed quantitative proteomics analysis of hippocampal tissue from the McGill-R-Thy1-APP rat model of Alzheimer-like amyloid pathology. McGill transgenic rats were compared to wild-type rats at early and late pathology stages, i.e., when intraneuronal Aβ amyloid burden is conspicuous and when extracellular amyloid plaques are abundant with more pronounced cognitive deficits. After correction for multiple testing, the expression levels of 64 proteins were found to be considerably different in transgenic versus wild-type rats at the pre-plaque stage (3 months), and 86 proteins in the post-plaque group (12 months), with only 9 differentially regulated proteins common to the 2 time-points. This minimal overlap supports the hypothesis that different molecular pathways are affected in the hippocampus at early and late stages of the amyloid pathology throughout its continuum. At early stages, disturbances in pathways related to cellular responses to stress, protein homeostasis, and neuronal structure are predominant, while disturbances in metabolic energy generation dominate at later stages. These results shed new light on the molecular pathways affected by the early accumulation of Aβ and how the evolving amyloid pathology impacts other complex metabolic pathways.
Collapse
Affiliation(s)
- Sonia Do Carmo
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | | | - Tiffany Paradis
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Jon Reed
- Roskamp Institute, Sarasota, FL, USA
| | - M Florencia Iulita
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Adriana Ducatenzeiler
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | | | - A Claudio Cuello
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada. .,Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada. .,Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.
| |
Collapse
|
129
|
N -glycan-dependent cell-surface expression of the P2Y 2 receptor and N -glycan-independent distribution to lipid rafts. Biochem Biophys Res Commun 2017; 485:427-431. [DOI: 10.1016/j.bbrc.2017.02.061] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 02/10/2017] [Indexed: 01/23/2023]
|
130
|
Berger BS, Acebron SP, Herbst J, Koch S, Niehrs C. Parkinson's disease-associated receptor GPR37 is an ER chaperone for LRP6. EMBO Rep 2017; 18:712-725. [PMID: 28341812 DOI: 10.15252/embr.201643585] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 02/14/2017] [Accepted: 02/22/2017] [Indexed: 11/09/2022] Open
Abstract
Wnt/β-catenin signaling plays a key role in embryonic development, stem cell biology, and neurogenesis. However, the mechanisms of Wnt signal transmission, notably how the receptors are regulated, remain incompletely understood. Here we describe that the Parkinson's disease-associated receptor GPR37 functions in the maturation of the N-terminal bulky β-propellers of the Wnt co-receptor LRP6. GPR37 is required for Wnt/β-catenin signaling and protects LRP6 from ER-associated degradation via CHIP (carboxyl terminus of Hsc70-interacting protein) and the ATPase VCP GPR37 is highly expressed in neural progenitor cells (NPCs) where it is required for Wnt-dependent neurogenesis. We conclude that GPR37 is crucial for cellular protein quality control during Wnt signaling.
Collapse
Affiliation(s)
- Birgit S Berger
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Sergio P Acebron
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Jessica Herbst
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Stefan Koch
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Christof Niehrs
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Heidelberg, Germany .,Institute of Molecular Biology, Mainz, Germany
| |
Collapse
|
131
|
Impact on Autophagy and Ultraviolet B Induced Responses of Treatment with the MTOR Inhibitors Rapamycin, Everolimus, Torin 1, and pp242 in Human Keratinocytes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:5930639. [PMID: 28400912 PMCID: PMC5376460 DOI: 10.1155/2017/5930639] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 01/15/2017] [Accepted: 02/13/2017] [Indexed: 12/21/2022]
Abstract
The mechanistic target of Rapamycin (MTOR) protein is a crucial signaling regulator in mammalian cells that is extensively involved in cellular biology. The function of MTOR signaling in keratinocytes remains unclear. In this study, we detected the MTOR signaling and autophagy response in the human keratinocyte cell line HaCaT and human epidermal keratinocytes treated with MTOR inhibitors. Moreover, we detected the impact of MTOR inhibitors on keratinocytes exposed to the common carcinogenic stressors ultraviolet B (UVB) and UVA radiation. As a result, keratinocytes were sensitive to the MTOR inhibitors Rapamycin, everolimus, Torin 1, and pp242, but the regulation of MTOR downstream signaling was distinct. Next, autophagy induction only was observed in HaCaT cells treated with Rapamycin. Furthermore, we found that MTOR signaling was insensitive to UVB but sensitive to UVA radiation. UVB treatment also had no impact on the inhibition of MTOR signaling by MTOR inhibitors. Finally, MTOR inhibition by Rapamycin, everolimus, or pp242 did not affect the series of biological events in keratinocytes exposed to UVB, including the downregulation of BiP and PERK, activation of Histone H2A and JNK, and cleavage of caspase-3 and PARP. Our study demonstrated that MTOR inhibition in keratinocytes cannot always induce autophagy, and the MTOR pathway does not play a central role in the UVB triggered cellular response.
Collapse
|
132
|
Xiao X, Chen C, Yu TM, Ou J, Rui M, Zhai Y, He Y, Xue L, Ho MS. Molecular Chaperone Calnexin Regulates the Function of Drosophila Sodium Channel Paralytic. Front Mol Neurosci 2017; 10:57. [PMID: 28326013 PMCID: PMC5339336 DOI: 10.3389/fnmol.2017.00057] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 02/20/2017] [Indexed: 12/20/2022] Open
Abstract
Neuronal activity mediated by voltage-gated channels provides the basis for higher-order behavioral tasks that orchestrate life. Chaperone-mediated regulation, one of the major means to control protein quality and function, is an essential route for controlling channel activity. Here we present evidence that Drosophila ER chaperone Calnexin colocalizes and interacts with the α subunit of sodium channel Paralytic. Co-immunoprecipitation analysis indicates that Calnexin interacts with Paralytic protein variants that contain glycosylation sites Asn313, 325, 343, 1463, and 1482. Downregulation of Calnexin expression results in a decrease in Paralytic protein levels, whereas overexpression of the Calnexin C-terminal calcium-binding domain triggers an increase reversely. Genetic analysis using adult climbing, seizure-induced paralysis, and neuromuscular junction indicates that lack of Calnexin expression enhances Paralytic-mediated locomotor deficits, suppresses Paralytic-mediated ghost bouton formation, and regulates minature excitatory junction potentials (mEJP) frequency and latency time. Taken together, our findings demonstrate a need for chaperone-mediated regulation on channel activity during locomotor control, providing the molecular basis for channlopathies such as epilepsy.
Collapse
Affiliation(s)
- Xi Xiao
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of MedicineShanghai, China; Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of MedicineShanghai, China; Department of Anatomy and Neurobiology, Tongji University School of MedicineShanghai, China
| | - Changyan Chen
- Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Institute of Intervention Vessel, Shanghai 10th People's Hospital, Tongji University Shanghai, China
| | - Tian-Ming Yu
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of MedicineShanghai, China; Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of MedicineShanghai, China; Department of Anatomy and Neurobiology, Tongji University School of MedicineShanghai, China
| | - Jiayao Ou
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of MedicineShanghai, China; Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of MedicineShanghai, China; Department of Anatomy and Neurobiology, Tongji University School of MedicineShanghai, China
| | - Menglong Rui
- Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University Nanjing, China
| | - Yuanfen Zhai
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of MedicineShanghai, China; Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of MedicineShanghai, China; Department of Anatomy and Neurobiology, Tongji University School of MedicineShanghai, China
| | - Yijing He
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of MedicineShanghai, China; Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of MedicineShanghai, China; Department of Anatomy and Neurobiology, Tongji University School of MedicineShanghai, China
| | - Lei Xue
- Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Institute of Intervention Vessel, Shanghai 10th People's Hospital, Tongji University Shanghai, China
| | - Margaret S Ho
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of MedicineShanghai, China; Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of MedicineShanghai, China; Department of Anatomy and Neurobiology, Tongji University School of MedicineShanghai, China
| |
Collapse
|
133
|
Vu KV, Nguyen NT, Jeong CY, Lee YH, Lee H, Hong SW. Systematic deletion of the ER lectin chaperone genes reveals their roles in vegetative growth and male gametophyte development in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:972-983. [PMID: 27888524 DOI: 10.1111/tpj.13435] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/18/2016] [Accepted: 11/21/2016] [Indexed: 05/27/2023]
Abstract
Calnexin (CNX) and calreticulin (CRT) are homologous lectin chaperones in the endoplasmic reticulum (ER) that facilitate glycoprotein folding and retain folding intermediates to prevent their transit via the secretary pathway. The Arabidopsis genome has two CNX (CNX1 and CNX2) and three CRT (CRT1, CRT2 and CRT3) homologs. Despite growing evidence of the biological roles of CNXs and CRTs, little is understood about their function in Arabidopsis growth and development under normal conditions. Here, we report that the deletion of CNX1, but not of CNX2, in the crt1 crt2 crt3 triple mutation background had an adverse effect on pollen viability and pollen tube growth, leading to a significant reduction in fertility. The cnx1 crt1 crt2 crt3 quadruple mutation also conferred severe defects in growth and development, including a shortened primary root, increased root hair length and density, and reduced plant height. Disruption of all five members of the CNX/CRT family was revealed to be lethal. Finally, the abnormal phenotype of the cnx1 crt1 crt2 crt3 quadruple mutants was completely rescued by either the CNX1 or CNX2 cDNA under the control of the CNX1 promoter, suggesting functional redundancy between CNX1 and CNX2. Taken together, these results provide genetic evidence that CNX and CRT play essential and overlapping roles during vegetative growth and male gametophyte development in Arabidopsis.
Collapse
Affiliation(s)
- Kien Van Vu
- Department of Molecular Biotechnology, College of Agriculture and Life Sciences, Bioenergy Research Institute, Chonnam National University, Gwangju, Korea
| | - Ngoc Trinh Nguyen
- Department of Molecular Biotechnology, College of Agriculture and Life Sciences, Bioenergy Research Institute, Chonnam National University, Gwangju, Korea
| | - Chan Young Jeong
- Department of Molecular Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Yong-Hwa Lee
- National Institute of Crop Science, Bioenergy Crop Research Center, Muan, Jeonnam, Korea
| | - Hojoung Lee
- Department of Molecular Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Suk-Whan Hong
- Department of Molecular Biotechnology, College of Agriculture and Life Sciences, Bioenergy Research Institute, Chonnam National University, Gwangju, Korea
| |
Collapse
|
134
|
Kim JE, Hyun HW, Min SJ, Kang TC. Sustained HSP25 Expression Induces Clasmatodendrosis via ER Stress in the Rat Hippocampus. Front Cell Neurosci 2017; 11:47. [PMID: 28275338 PMCID: PMC5319974 DOI: 10.3389/fncel.2017.00047] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 02/13/2017] [Indexed: 12/16/2022] Open
Abstract
Heat shock protein (HSP) 25 (murine/rodent 25 kDa, human 27 kDa) is one of the major astroglial HSP families, which has a potent anti-apoptotic factor contributing to a higher resistance of astrocytes to the stressful condition. However, impaired removals of HSP25 decrease astroglial viability. In the present study, we investigated whether HSP25 is involved in astroglial apoptosis or clasmatodendrosis (autophagic astroglial death) in the rat hippocampus induced by status epilepticus (SE). Following SE, HSP25 expression was transiently increased in astrocytes within the dentate gyrus (DG), while it was sustained in CA1 astrocytes until 4 weeks after SE. HSP25 knockdown exacerbated SE-induced apoptotic astroglial degeneration, but mitigated clasmatodendrosis accompanied by abrogation of endoplasmic reticulum (ER) stress without changed seizure susceptibility or severity. These findings suggest that sustained HSP25 induction itself may result in clasmatodendrosis via prolonged ER stress. To the best of our knowledge, the present study demonstrates for the first time the double-edge properties of HSP25 in astroglial death induced by SE.
Collapse
Affiliation(s)
- Ji-Eun Kim
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University Chuncheon, South Korea
| | - Hye-Won Hyun
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University Chuncheon, South Korea
| | - Su-Ji Min
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University Chuncheon, South Korea
| | - Tae-Cheon Kang
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University Chuncheon, South Korea
| |
Collapse
|
135
|
Falchi M, Varricchio L, Martelli F, Marra M, Picconi O, Tafuri A, Girelli G, Uversky VN, Migliaccio AR. The Calreticulin control of human stress erythropoiesis is impaired by JAK2V617F in polycythemia vera. Exp Hematol 2017; 50:53-76. [PMID: 28232234 DOI: 10.1016/j.exphem.2017.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 02/03/2017] [Accepted: 02/04/2017] [Indexed: 12/11/2022]
Abstract
Calreticulin (CALR) is a Ca2+-binding protein that shuttles among cellular compartments with proteins bound to its N/P domains. The knowledge that activation of the human erythropoietin receptor induces Ca2+ fluxes prompted us to investigate the role of CALR in human erythropoiesis. As shown by Western blot analysis, erythroblasts generated in vitro from normal sources and JAK2V617F polycythemia vera (PV) patients expressed robust levels of CALR. However, Ca2+ regulated CALR conformation only in normal cells. Normal erythroblasts expressed mostly the N-terminal domain of CALR (N-CALR) on their cell surface (as shown by flow cytometry) and C-terminal domain (C-CALR) in their cytoplasm (as shown by confocal microscopy) and expression of both epitopes decreased with maturation. In the proerythroblast (proEry) cytoplasm, C-CALR was associated with the glucocorticoid receptor (GR), which initiated the stress response. In these cells, Ca2+ deprivation and inhibition of nuclear export increased GR nuclear localization while decreasing cytoplasmic detection of C-CALR and C-CALR/GR association and proliferation in response to the GR agonist dexamethasone (Dex). C-CALR/GR association and Dex responsiveness were instead increased by Ca2+ and erythropoietin. In contrast, JAK2V617F proErys expressed normal cell-surface levels of N-CALR but barely detectable cytoplasmic levels of C-CALR. These cells contained GR mainly in the nucleus and were Dex unresponsive. Ruxolitinib rescued cytoplasmic detection of C-CALR, C-CALR/GR association, and Dex responsiveness in JAK2V617F proErys and its effects were antagonized by nuclear export and Ca2+ flux inhibitors. These results indicates that Ca2+-induced conformational changes of CALR regulate nuclear export of GR in normal erythroblasts and that JAK2V617F deregulates this function in PV.
Collapse
Affiliation(s)
- Mario Falchi
- National AIDS Center, Istituto Superiore Sanita, Rome, Italy
| | - Lilian Varricchio
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Fabrizio Martelli
- Hematology/Oncology and Molecular Medicine, Istituto Superiore di Sanità, Roma, Italy
| | - Manuela Marra
- Hematology/Oncology and Molecular Medicine, Istituto Superiore di Sanità, Roma, Italy
| | - Orietta Picconi
- National AIDS Center, Istituto Superiore Sanita, Rome, Italy
| | - Agostino Tafuri
- Sant'Andrea Hospital-Sapienza, Department of Clinic and Molecular Medicine Sapienza University of Rome, Rome, Italy
| | - Gabriella Girelli
- Immunohematology and Transfusion Medicine Unit, Sapienza University of Rome, Rome, Italy
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA; Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Anna Rita Migliaccio
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Biomedical and Neuromotorial Sciences, Alma Mater University, Bologna, Italy.
| |
Collapse
|
136
|
Wang B, Wang Y, Frabutt DA, Zhang X, Yao X, Hu D, Zhang Z, Liu C, Zheng S, Xiang SH, Zheng YH. Mechanistic understanding of N-glycosylation in Ebola virus glycoprotein maturation and function. J Biol Chem 2017; 292:5860-5870. [PMID: 28196864 DOI: 10.1074/jbc.m116.768168] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 02/12/2017] [Indexed: 01/04/2023] Open
Abstract
The Ebola virus (EBOV) trimeric envelope glycoprotein (GP) precursors are cleaved into the receptor-binding GP1 and the fusion-mediating GP2 subunits and incorporated into virions to initiate infection. GP1 and GP2 form heterodimers that have 15 or two N-glycosylation sites (NGSs), respectively. Here we investigated the mechanism of how N-glycosylation contributes to GP expression, maturation, and function. As reported before, we found that, although GP1 NGSs are not critical, the two GP2 NGSs, Asn563 and Asn618, are essential for GP function. Further analysis uncovered that Asn563 and Asn618 regulate GP processing, demannosylation, oligomerization, and conformation. Consequently, these two NGSs are required for GP incorporation into EBOV-like particles and HIV type 1 (HIV-1) pseudovirions and determine viral transduction efficiency. Using CRISPR/Cas9 technology, we knocked out the two classical endoplasmic reticulum chaperones calnexin (CNX) and/or calreticulin (CRT) and found that both CNX and CRT increase GP expression. Nevertheless, NGSs are not required for the GP interaction with CNX or CRT. Together, we conclude that, although Asn563 and Asn618 are not required for EBOV GP expression, they synergistically regulate its maturation, which determines its functionality.
Collapse
Affiliation(s)
- Bin Wang
- From the Harbin Veterinary Research Institute, CAAS-Michigan State University Joint Laboratory of Innate Immunity, State Key Laboratory of Veterinary Biotechnology, Chinese Academy of Agricultural Sciences, Harbin 150059, China
| | - Yujie Wang
- From the Harbin Veterinary Research Institute, CAAS-Michigan State University Joint Laboratory of Innate Immunity, State Key Laboratory of Veterinary Biotechnology, Chinese Academy of Agricultural Sciences, Harbin 150059, China
| | - Dylan A Frabutt
- the Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824
| | - Xihe Zhang
- the Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824
| | - Xiaoyu Yao
- From the Harbin Veterinary Research Institute, CAAS-Michigan State University Joint Laboratory of Innate Immunity, State Key Laboratory of Veterinary Biotechnology, Chinese Academy of Agricultural Sciences, Harbin 150059, China
| | - Dan Hu
- From the Harbin Veterinary Research Institute, CAAS-Michigan State University Joint Laboratory of Innate Immunity, State Key Laboratory of Veterinary Biotechnology, Chinese Academy of Agricultural Sciences, Harbin 150059, China
| | - Zhuo Zhang
- From the Harbin Veterinary Research Institute, CAAS-Michigan State University Joint Laboratory of Innate Immunity, State Key Laboratory of Veterinary Biotechnology, Chinese Academy of Agricultural Sciences, Harbin 150059, China
| | - Chaonan Liu
- the College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Shimin Zheng
- the College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Shi-Hua Xiang
- the Nebraska Center for Virology and School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, Nebraska 68583, and
| | - Yong-Hui Zheng
- From the Harbin Veterinary Research Institute, CAAS-Michigan State University Joint Laboratory of Innate Immunity, State Key Laboratory of Veterinary Biotechnology, Chinese Academy of Agricultural Sciences, Harbin 150059, China, .,the Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
137
|
Santiago Valtierra FX, Mateos MV, Aveldaño MI, Oresti GM. Sphingomyelins and ceramides with VLCPUFAs are excluded from low-density raft-like domains in differentiating spermatogenic cells. J Lipid Res 2017; 58:529-542. [PMID: 28082410 DOI: 10.1194/jlr.m072595] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 12/25/2016] [Indexed: 11/20/2022] Open
Abstract
Rat spermatogenic cells contain sphingomyelins (SMs) and ceramides (Cers) with very long-chain PUFAs (VLCPUFAs) in nonhydroxylated (n-V) and 2-hydroxylated (h-V) forms. How these atypical species distribute among membrane fractions during differentiation was investigated here using a detergent-free procedure to isolate a small light raft-like low-density fraction and a large heavy fraction, mostly derived from the plasma membrane of spermatocytes, round spermatids, and late spermatids. The light fraction contained cholesterol, glycerophospholipids (GPLs), and SM with the same saturated fatty acids in all three stages. In the heavy fraction, as PUFA increased in the GPL and VLCPUFA in SM from spermatocytes to spermatids, the concentration of cholesterol was also augmented. The heavy fraction had mostly n-V SM in spermatocytes, but accumulated h-V SM and h-V Cer in spermatids. A fraction containing intracellular membranes had less SM and more Cer than the latter, but in both fractions SM and Cer species with h-V increased over species with n-V with differentiation. This accretion of h-V was consistent with the differentiation-dependent expression of fatty acid 2-hydroxylase (Fa2h), as it increased significantly from spermatocytes to spermatids. The non-raft region of the plasma membrane is thus the main target of the dynamic lipid synthesis and remodeling that is involved in germ cell differentiation.
Collapse
Affiliation(s)
- Florencia X Santiago Valtierra
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y Universidad Nacional del Sur (UNS), 8000 Bahía Blanca, Argentina
| | - Melina V Mateos
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y Universidad Nacional del Sur (UNS), 8000 Bahía Blanca, Argentina
| | - Marta I Aveldaño
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y Universidad Nacional del Sur (UNS), 8000 Bahía Blanca, Argentina
| | - Gerardo M Oresti
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y Universidad Nacional del Sur (UNS), 8000 Bahía Blanca, Argentina
| |
Collapse
|
138
|
The Distribution of Lectins across the Phylum Nematoda: A Genome-Wide Search. Int J Mol Sci 2017; 18:ijms18010091. [PMID: 28054982 PMCID: PMC5297725 DOI: 10.3390/ijms18010091] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 12/20/2016] [Accepted: 12/28/2016] [Indexed: 12/13/2022] Open
Abstract
Nematodes are a very diverse phylum that has adapted to nearly every ecosystem. They have developed specialized lifestyles, dividing the phylum into free-living, animal, and plant parasitic species. Their sheer abundance in numbers and presence in nearly every ecosystem make them the most prevalent animals on earth. In this research nematode-specific profiles were designed to retrieve predicted lectin-like domains from the sequence data of nematode genomes and transcriptomes. Lectins are carbohydrate-binding proteins that play numerous roles inside and outside the cell depending on their sugar specificity and associated protein domains. The sugar-binding properties of the retrieved lectin-like proteins were predicted in silico. Although most research has focused on C-type lectin-like, galectin-like, and calreticulin-like proteins in nematodes, we show that the lectin-like repertoire in nematodes is far more diverse. We focused on C-type lectins, which are abundantly present in all investigated nematode species, but seem to be far more abundant in free-living species. Although C-type lectin-like proteins are omnipresent in nematodes, we have shown that only a small part possesses the residues that are thought to be essential for carbohydrate binding. Curiously, hevein, a typical plant lectin domain not reported in animals before, was found in some nematode species.
Collapse
|
139
|
Structured States of Disordered Proteins from Genomic Sequences. Cell 2016; 167:158-170.e12. [PMID: 27662088 DOI: 10.1016/j.cell.2016.09.010] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 07/08/2016] [Accepted: 09/06/2016] [Indexed: 12/22/2022]
Abstract
Protein flexibility ranges from simple hinge movements to functional disorder. Around half of all human proteins contain apparently disordered regions with little 3D or functional information, and many of these proteins are associated with disease. Building on the evolutionary couplings approach previously successful in predicting 3D states of ordered proteins and RNA, we developed a method to predict the potential for ordered states for all apparently disordered proteins with sufficiently rich evolutionary information. The approach is highly accurate (79%) for residue interactions as tested in more than 60 known disordered regions captured in a bound or specific condition. Assessing the potential for structure of more than 1,000 apparently disordered regions of human proteins reveals a continuum of structural order with at least 50% with clear propensity for three- or two-dimensional states. Co-evolutionary constraints reveal hitherto unseen structures of functional importance in apparently disordered proteins.
Collapse
|
140
|
Hashiguchi A, Komatsu S. Impact of Post-Translational Modifications of Crop Proteins under Abiotic Stress. Proteomes 2016; 4:proteomes4040042. [PMID: 28248251 PMCID: PMC5260974 DOI: 10.3390/proteomes4040042] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 11/30/2016] [Accepted: 12/16/2016] [Indexed: 12/15/2022] Open
Abstract
The efficiency of stress-induced adaptive responses of plants depends on intricate coordination of multiple signal transduction pathways that act coordinately or, in some cases, antagonistically. Protein post-translational modifications (PTMs) can regulate protein activity and localization as well as protein-protein interactions in numerous cellular processes, thus leading to elaborate regulation of plant responses to various external stimuli. Understanding responses of crop plants under field conditions is crucial to design novel stress-tolerant cultivars that maintain robust homeostasis even under extreme conditions. In this review, proteomic studies of PTMs in crops are summarized. Although the research on the roles of crop PTMs in regulating stress response mechanisms is still in its early stage, several novel insights have been retrieved so far. This review covers techniques for detection of PTMs in plants, representative PTMs in plants under abiotic stress, and how PTMs control functions of representative proteins. In addition, because PTMs under abiotic stresses are well described in soybeans under submergence, recent findings in PTMs of soybean proteins under flooding stress are introduced. This review provides information on advances in PTM study in relation to plant adaptations to abiotic stresses, underlining the importance of PTM study to ensure adequate agricultural production in the future.
Collapse
Affiliation(s)
- Akiko Hashiguchi
- Faculty of Medicine, University of Tsukuba, Tsukuba 305-8577, Japan.
| | - Setsuko Komatsu
- National Institute of Crop Science, NARO, Tsukuba 305-8518, Japan.
| |
Collapse
|
141
|
The accessory proteins REEP5 and REEP6 refine CXCR1-mediated cellular responses and lung cancer progression. Sci Rep 2016; 6:39041. [PMID: 27966653 PMCID: PMC5155276 DOI: 10.1038/srep39041] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 11/17/2016] [Indexed: 01/28/2023] Open
Abstract
Some G-protein-coupled receptors have been reported to require accessory proteins with specificity for proper functional expression. In this study, we found that CXCR1 interacted with REEP5 and REEP6, but CXCR2 did not. Overexpression of REEP5 and REEP6 enhanced IL-8-stimulated cellular responses through CXCR1, whereas depletion of the proteins led to the downregulation of the responses. Although REEPs enhanced the expression of a subset of GPCRs, in the absence of REEP5 and REEP6, CXCR1 was expressed in the plasma membrane, but receptor internalization and intracellular clustering of β-arrestin2 following IL-8 treatment were impaired, suggesting that REEP5 and REEP6 might be involved in the ligand-stimulated endocytosis of CXCR1 rather than membrane expression, which resulted in strong cellular responses. In A549 lung cancer cells, which endogenously express CXCR1, the depletion of REEP5 and REEP6 significantly reduced growth and invasion by downregulating IL-8-stimulated ERK phosphorylation, actin polymerization and the expression of genes related to metastasis. Furthermore, an in vivo xenograft model showed that proliferation and metastasis of A549 cells lacking REEP5 and REEP6 were markedly decreased compared to the control group. Thus, REEP5 and REEP6 could be novel regulators of G-protein-coupled receptor signaling whose functional mechanisms differ from other accessory proteins.
Collapse
|
142
|
Quality control of glycoprotein folding and ERAD: the role of N-glycan handling, EDEM1 and OS-9. Histochem Cell Biol 2016; 147:269-284. [DOI: 10.1007/s00418-016-1513-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2016] [Indexed: 02/03/2023]
|
143
|
Pagliassotti MJ, Kim PY, Estrada AL, Stewart CM, Gentile CL. Endoplasmic reticulum stress in obesity and obesity-related disorders: An expanded view. Metabolism 2016; 65:1238-46. [PMID: 27506731 PMCID: PMC4980576 DOI: 10.1016/j.metabol.2016.05.002] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/01/2016] [Accepted: 05/06/2016] [Indexed: 02/07/2023]
Abstract
The endoplasmic reticulum (ER) is most notable for its central roles in calcium ion storage, lipid biosynthesis, and protein sorting and processing. By virtue of its extensive membrane contact sites that connect the ER to most other organelles and to the plasma membrane, the ER can also regulate diverse cellular processes including inflammatory and insulin signaling, nutrient metabolism, and cell proliferation and death via a signaling pathway called the unfolded protein response (UPR). Chronic UPR activation has been observed in liver and/or adipose tissue of dietary and genetic murine models of obesity, and in human obesity and non-alcoholic fatty liver disease (NAFLD). Activation of the UPR in obesity and obesity-related disorders likely has two origins. One linked to classic ER stress involving the ER lumen and one linked to alterations to the ER membrane environment. This review discusses both of these origins and also considers the role of post-translational protein modifications, such as acetylation and palmitoylation, and ER-mitochondrial interactions to obesity-mediated impairments in the ER and activation of the UPR.
Collapse
Affiliation(s)
| | - Paul Y Kim
- Department of Biological Sciences, Grambling State University
| | - Andrea L Estrada
- Department of Food Science and Human Nutrition, Colorado State University
| | - Claire M Stewart
- Department of Food Science and Human Nutrition, Colorado State University
| | | |
Collapse
|
144
|
Huang Y, Wang W, Ren Q. Function of gC1qR in innate immunity of Chinese mitten crab, Eriocheir sinensis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 61:34-41. [PMID: 26993663 DOI: 10.1016/j.dci.2016.03.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/12/2016] [Accepted: 03/13/2016] [Indexed: 06/05/2023]
Abstract
gC1qR is identified as the globular "head" binding protein of the C1q protein and performs an important function in innate immunity. A EsgC1qR gene was identified from the hepatopancreas of Eriocheir sinensis. EsgC1qR encodes a protein with 275 amino acids. Phylogenetic analysis showed that, together with crustaceans gC1qRs, EsgC1qR belongs to one group. EsgC1qR mRNA was detected in hemocytes, intestine, hepatopancreas, gills, eyestalk, heart, muscle, and nerve. The expression of the EsgC1qR transcript in the hepatopancreas could be regulated by lipopolysaccharides (LPS), peptidoglycans (PGN), Staphyloccocus aureus, or Vibrio parahaemolyticus. Recombinant EsgC1qR (rEsgC1qR) protein could bind to various bacteria, LPS, and PGN. rEsgC1qR protein also presents direct bacteria inhibitory activity. rEsgC1qR could interact with EsCnx or EsCrt. Therefore, from the results, we could speculate that EsgC1qR is involved in the innate immunity of Chinese mitten crab, E. sinensis.
Collapse
Affiliation(s)
- Ying Huang
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210046, PR China
| | - Wen Wang
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210046, PR China
| | - Qian Ren
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210046, PR China.
| |
Collapse
|
145
|
Lum R, Ahmad S, Hong SJ, Chapman DC, Kozlov G, Williams DB. Contributions of the Lectin and Polypeptide Binding Sites of Calreticulin to Its Chaperone Functions in Vitro and in Cells. J Biol Chem 2016; 291:19631-41. [PMID: 27413183 DOI: 10.1074/jbc.m116.746321] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Indexed: 11/06/2022] Open
Abstract
Calreticulin is a lectin chaperone of the endoplasmic reticulum that interacts with newly synthesized glycoproteins by binding to Glc1Man9GlcNAc2 oligosaccharides as well as to the polypeptide chain. In vitro, the latter interaction potently suppresses the aggregation of various non-glycosylated proteins. Although the lectin-oligosaccharide association is well understood, the polypeptide-based interaction is more controversial because the binding site on calreticulin has not been identified, and its significance in the biogenesis of glycoproteins in cells remains unknown. In this study, we identified the polypeptide binding site responsible for the in vitro aggregation suppression function by mutating four candidate hydrophobic surface patches. Mutations in only one patch, P19K/I21E and Y22K/F84E, impaired the ability of calreticulin to suppress the thermally induced aggregation of non-glycosylated firefly luciferase. These mutants also failed to bind several hydrophobic peptides that act as substrate mimetics and compete in the luciferase aggregation suppression assay. To assess the relative contributions of the glycan-dependent and -independent interactions in living cells, we expressed lectin-deficient, polypeptide binding-deficient, and doubly deficient calreticulin constructs in calreticulin-negative cells and monitored the effects on the biogenesis of MHC class I molecules, the solubility of mutant forms of α1-antitrypsin, and interactions with newly synthesized glycoproteins. In all cases, we observed a profound impairment in calreticulin function when its lectin site was inactivated. Remarkably, inactivation of the polypeptide binding site had little impact. These findings indicate that the lectin-based mode of client interaction is the predominant contributor to the chaperone functions of calreticulin within the endoplasmic reticulum.
Collapse
Affiliation(s)
- Ronnie Lum
- From the Departments of Biochemistry and Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada and
| | - Samar Ahmad
- From the Departments of Biochemistry and Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada and
| | - Seo Jung Hong
- From the Departments of Biochemistry and Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada and
| | - Daniel C Chapman
- From the Departments of Biochemistry and Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada and
| | - Guennadi Kozlov
- the Groupe de Recherche Axé sur la Structure des Proteines, Department of Biochemistry, McGill University, Montréal, Québec H3G 0B1, Canada
| | - David B Williams
- From the Departments of Biochemistry and Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada and
| |
Collapse
|
146
|
Wang X, Komatsu S. Gel-Free/Label-Free Proteomic Analysis of Endoplasmic Reticulum Proteins in Soybean Root Tips under Flooding and Drought Stresses. J Proteome Res 2016; 15:2211-27. [PMID: 27224218 DOI: 10.1021/acs.jproteome.6b00190] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Soybean is a widely cultivated crop; however, it is sensitive to flooding and drought stresses. The adverse environmental cues cause the endoplasmic reticulum (ER) stress due to accumulation of unfolded or misfolded proteins. To investigate the mechanisms in response to flooding and drought stresses, ER proteomics was performed in soybean root tips. The enzyme activity of NADH cytochrome c reductase was two-fold higher in the ER than other fractions, indicating that the ER was isolated with high purity. Protein abundance of ribosomal proteins was decreased under both stresses compared to control condition; however, the percentage of increased ribosomes was two-fold higher in flooding compared to drought. The ER proteins related to protein glycosylation and signaling were in response to both stresses. Compared to control condition, calnexin was decreased under both stresses; however, protein disulfide isomerase-like proteins and heat shock proteins were markedly decreased under flooding and drought conditions, respectively. Furthermore, fewer glycoproteins and higher levels of cytosolic calcium were identified under both stresses compared to control condition. These results suggest that reduced accumulation of glycoproteins in response to both stresses might be due to dysfunction of protein folding through calnexin/calreticulin cycle. Additionally, the increased cytosolic calcium levels induced by flooding and drought stresses might disturb the ER environment for proper protein folding in soybean root tips.
Collapse
Affiliation(s)
- Xin Wang
- Graduate School of Life and Environmental Sciences, University of Tsukuba , Tsukuba 305-8572, Japan
- National Institute of Crop Science, National Agriculture and Food Research Organization , Tsukuba 305-8518, Japan
| | - Setsuko Komatsu
- Graduate School of Life and Environmental Sciences, University of Tsukuba , Tsukuba 305-8572, Japan
- National Institute of Crop Science, National Agriculture and Food Research Organization , Tsukuba 305-8518, Japan
| |
Collapse
|
147
|
Wang X, Komatsu S. Plant subcellular proteomics: Application for exploring optimal cell function in soybean. J Proteomics 2016; 143:45-56. [PMID: 26808589 DOI: 10.1016/j.jprot.2016.01.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/06/2016] [Accepted: 01/13/2016] [Indexed: 01/11/2023]
Abstract
UNLABELLED Plants have evolved complicated responses to developmental changes and stressful environmental conditions. Subcellular proteomics has the potential to elucidate localized cellular responses and investigate communications among subcellular compartments during plant development and in response to biotic and abiotic stresses. Soybean, which is a valuable legume crop rich in protein and vegetable oil, can grow in several climatic zones; however, the growth and yield of soybean are markedly decreased under stresses. To date, numerous proteomic studies have been performed in soybean to examine the specific protein profiles of cell wall, plasma membrane, nucleus, mitochondrion, chloroplast, and endoplasmic reticulum. In this review, methods for the purification and purity assessment of subcellular organelles from soybean are summarized. In addition, the findings from subcellular proteomic analyses of soybean during development and under stresses, particularly flooding stress, are presented and the proteins regulated among subcellular compartments are discussed. Continued advances in subcellular proteomics are expected to greatly contribute to the understanding of the responses and interactions that occur within and among subcellular compartments during development and under stressful environmental conditions. BIOLOGICAL SIGNIFICANCE Subcellular proteomics has the potential to investigate the cellular events and interactions among subcellular compartments in response to development and stresses in plants. Soybean could grow in several climatic zones; however, the growth and yield of soybean are markedly decreased under stresses. Numerous proteomics of cell wall, plasma membrane, nucleus, mitochondrion, chloroplast, and endoplasmic reticulum was carried out to investigate the respecting proteins and their functions in soybean during development or under stresses. In this review, methods of subcellular-organelle enrichment and purity assessment are summarized. In addition, previous findings of subcellular proteomics are presented, and functional proteins regulated among different subcellular are discussed. Subcellular proteomics contributes greatly to uncovering responses and interactions among subcellular compartments during development and under stressful environmental conditions in soybean.
Collapse
Affiliation(s)
- Xin Wang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan; National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan
| | - Setsuko Komatsu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan; National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan.
| |
Collapse
|
148
|
Homozygous calreticulin mutations in patients with myelofibrosis lead to acquired myeloperoxidase deficiency. Blood 2016; 127:3253-9. [DOI: 10.1182/blood-2016-02-696310] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 03/22/2016] [Indexed: 12/18/2022] Open
Abstract
Key Points
Acquired MPO deficiency in patients with MPN is uniquely associated with homozygous CALR mutations. In line with a posttranscriptional defect, MPO deficiency results from reduced MPO protein levels, but not from decreased MPO mRNA.
Collapse
|
149
|
Huang Y, Hui K, Jin M, Yin S, Wang W, Ren Q. Two endoplasmic reticulum proteins (calnexin and calreticulin) are involved in innate immunity in Chinese mitten crab (Eriocheir sinensis). Sci Rep 2016; 6:27578. [PMID: 27279413 PMCID: PMC4899775 DOI: 10.1038/srep27578] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 05/23/2016] [Indexed: 01/19/2023] Open
Abstract
Calnexin (Cnx) and calreticulin (Crt), which are important chaperones in the endoplasmic reticulum (ER), participate in the folding and quality control of client proteins. Cnx and Crt identified from Chinese mitten crab (Eriocheir sinensis) are designated as EsCnx and EsCrt, respectively. EsCnx and EsCrt are expressed in the hemocyte, hepatopancrea, gill, and intestine at the mRNA and protein level. Immunofluorescence analysis indicated that EsCnx and EsCRT are located in the ER. Moreover, the mRNA and protein expression levels of EsCnx and EsCrt were altered by challenge with lipopolysaccharides (LPS), peptidoglycans (PGN), Staphyloccocus aureus, and Vibrio parahaemolyticus. Recombinant EsCnx and EsCrt (rEsCnx and rEsCrt, respectively) proteins can bind to various Gram-positive and Gram-negative bacteria, as well as to different polysaccharides (LPS and PGN). rEsCnx and rEsCrt assisted in the clearance of V. parahaemolyticus in vivo, and the clearance efficiency was impaired after silencing of EsCnx and EsCrt. Our results suggest that the two ER proteins are involved in anti-bacterial immunity in E. sinensis.
Collapse
Affiliation(s)
- Ying Huang
- Jiangsu Key Laboratory for Biodiversity &Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, Nanjing 210046, China
| | - Kaimin Hui
- Jiangsu Key Laboratory for Biodiversity &Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, Nanjing 210046, China
| | - Min Jin
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, SOA, Xiamen 361005, China
| | - Shaowu Yin
- Jiangsu Key Laboratory for Biodiversity &Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, Nanjing 210046, China.,Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, PR China
| | - Wen Wang
- Jiangsu Key Laboratory for Biodiversity &Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, Nanjing 210046, China
| | - Qian Ren
- Jiangsu Key Laboratory for Biodiversity &Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, Nanjing 210046, China
| |
Collapse
|
150
|
Izumi M, Komaki S, Okamoto R, Seko A, Takeda Y, Ito Y, Kajihara Y. Synthesis of misfolded glycoprotein dimers through native chemical ligation of a dimeric peptide thioester. Org Biomol Chem 2016; 14:6088-94. [PMID: 27248046 DOI: 10.1039/c6ob00928j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glycoprotein quality control processes are very important for an efficient production of glycoproteins and for avoiding the accumulation of unwanted toxic species in cells. These complex processes consist of multiple enzymes and chaperones such as UGGT, calnexin/calreticulin, and glucosidase II. We designed and synthesized monomeric and dimeric misfolded glycoprotein probes. Synthetic homogeneous monomeric glycoproteins proved to be useful substrates for kinetic analyses of the folding sensor enzyme UGGT. For a concise synthesis of a bismaleimide-linked dimer, we examined double native chemical ligation (dNCL) of a dimeric peptide-α-thioester. The dNCL to two equivalents of glycopeptides gave a homodimer. The dNCL to a 1 : 1 mixture of a glycopeptide and a non-glycosylated peptide gave all the three possible ligation products consisting of two homodimers and a heterodimer. Both the homodimer bearing two Man9GlcNAc2 (M9) oligosaccharides and the heterodimer bearing one M9 oligosaccharide were found to be good substrates of UGGT.
Collapse
Affiliation(s)
- Masayuki Izumi
- Department of Chemistry, Graduate School of Science, Osaka Univeristy, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan.
| | | | | | | | | | | | | |
Collapse
|