101
|
Abstract
Conserved flavivirus protein holds potential as target for versatile vaccines and therapies.
Collapse
Affiliation(s)
- Scott B Biering
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
102
|
miR-573 rescues endothelial dysfunction during dengue infection under PPARγ regulation. J Virol 2022; 96:e0199621. [PMID: 35108097 DOI: 10.1128/jvi.01996-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Early prognosis of abnormal vasculopathy is essential for effective clinical management of severe dengue patients. An exaggerated interferon (IFN) response and release of vasoactive factors from endothelial cells cause vasculopathy. This study shows that dengue 2 (DENV2) infection of human umbilical vein endothelial cells (HUVEC) results in differentially regulated miRNAs important for endothelial function. miR-573 was significantly down-regulated in DENV2-infected HUVEC due to decreased Peroxisome Proliferator Activator Receptor Gamma (PPARγ) activity. Restoring miR-573 expression decreased endothelial permeability by suppressing the expression of vasoactive angiopoietin 2 (ANGPT2). We also found that miR-573 suppressed the proinflammatory IFN response through direct downregulation of toll like receptor 2 (TLR2) expression. Our study provides a novel insight into miR-573 mediated regulation of endothelial function during DENV2 infection which can be further translated into a potential therapeutic and prognostic agent for severe dengue patients. IMPORTANCE: We need to identify molecular factors which can predict the onset of endothelial dysfunction in dengue patients. Increase in endothelial permeability during severe dengue infections is poorly understood. In this study we focus on factors which regulate endothelial function and are dysregulated during DENV2 infection. We show that miR-573 rescues endothelial permeability and is downregulated during DENV2 infection in endothelial cells. This finding can have diagnostic as well as therapeutic applications.
Collapse
|
103
|
Puerta-Guardo H. Editorial: From Pathogenic Infections to Inflammation and Disease - the Tumultuous Road of the 'Cytokine Storm'. Front Cell Infect Microbiol 2022; 11:827151. [PMID: 35083169 PMCID: PMC8785243 DOI: 10.3389/fcimb.2021.827151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Henry Puerta-Guardo
- Collaborative Unit for Entomological Bioassays, Campus of Biological Sciences and Agriculture, Autonomous University of Yucatan, Merida, Mexico.,Virology Laboratory, Center for Research "Dr. Hideyo Noguchi", Autonomous University of Yucatan, Merida, Mexico
| |
Collapse
|
104
|
Tunjungputri RN, Riswari SF, Pramudo SG, Kuntjoro L, Alisjahbana B, Nugraha HG, van der Ven A, Gasem MH, de Mast Q. Effect of oseltamivir phosphate versus placebo on platelet recovery and plasma leakage in adults with dengue and thrombocytopenia; a phase 2, multicenter, double-blind, randomized trial. PLoS Negl Trop Dis 2022; 16:e0010051. [PMID: 34995275 PMCID: PMC8789129 DOI: 10.1371/journal.pntd.0010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 01/25/2022] [Accepted: 12/03/2021] [Indexed: 11/19/2022] Open
Abstract
Background Thrombocytopenia, bleeding and plasma leakage are major complications of dengue. Activation of endogenous sialidases with desialylation of platelets and endothelial cells may underlie these complications. We aimed to assess the effects of the neuraminidase inhibitor oseltamivir on platelet recovery and plasma leakage in dengue. Methods We performed a phase 2, double-blind, multicenter, randomized trial in adult dengue patients with thrombocytopenia (<70,000/μl) and a duration of illness ≤ 6 days. Oseltamivir phosphate 75mg BID or placebo were given for a maximum of five days. Primary outcomes were the time to platelet recovery (≥ 100,000/μl) or discharge from hospital and the course of measures of plasma leakage. Results A total of 70 patients were enrolled; the primary outcome could be assessed in 64 patients (31 oseltamivir; 33 placebo). Time to platelet count ≥100,000/μl (n = 55) or discharge (n = 9) were similar in the oseltamivir and placebo group (3.0 days [95% confidence interval, 2.7 to 3.3] vs. 2.9 days [2.5 to 3.3], P = 0.055). The kinetics of platelet count and parameters of plasma leakage (gall bladder thickness, hematocrit, plasma albumin, syndecan-1) were also similar between the groups. Discussion In this trial, adjunctive therapy with oseltamivir phosphate had no effect on platelet recovery or plasma leakage parameters. Trial registration ISRCTN35227717. Moderate to severe thrombocytopenia is common in the febrile and/or critical phase of dengue virus infection. Platelets are important for preservation of vascular integrity, especially during inflammation, and low platelet counts may contribute to plasma leakage. Currently, no therapeutic intervention that targets the pathogenic pathway is available for DENV infection, including therapies to prevent or reduce thrombocytopenia or plasma leakage. Oseltamivir phosphate is widely used for prevention and treatment of influenza by inhibiting viral neuraminidase. However, oseltamivir may also inhibit human endogenous neuraminidase involved in sialic acid metabolism, and as such extend the lifespan of platelets. In the phase 2 TOTO trial (Treatment Of Thrombocytopenia with Oseltamivir in acute dengue virus infection: a randomized, placebo controlled, multicenter trial) we investigated the potential of oseltamivir phosphate to shorten the time to platelet recovery and reduce plasma leakage in patients with DENV infection. In this trial involving 70 adult thrombocytopenic patients, hospitalized with acute DENV infection, adjunctive therapy with oseltamivir phosphate did not shorten platelet recovery time compared with placebo. The trial also did not show an effect of adjunctive oseltamivir on plasma leakage parameters. The reasons that oseltamivir had no apparent effect on platelet counts, markers of plasma leakage and glycocalyx distortion in this study remain speculative, but may involve one or more of the following; first, dengue-associated thrombocytopenia and plasma leakage are both multifactorial in origin and targeting neuraminidase alone may be insufficient to impact these processes. Second, oseltamivir phosphate was designed to inhibit viral neuraminidase, and data of its inhibitory actions on human neuraminidases are inconclusive. The finding in this study also suggest that while laboratory works may lead to hypotheses for novel treatment, proof of concept studies are essential to test them in a clinical setting.
Collapse
Affiliation(s)
- Rahajeng N. Tunjungputri
- Department of Internal Medicine and the Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
- Center for Tropical and Infectious Disease (CENTRID), Faculty of Medicine Diponegoro University, Dr. Kariadi Hospital, Semarang, Indonesia
| | - Silvita Fitri Riswari
- Department of Internal Medicine and the Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
- Research Center for Care and Control of Infectious Disease (RC3ID), Universitas Padjadjaran, Bandung, Indonesia
- Parasitology Division, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, West Java, Indonesia, Indonesia
| | - Setyo G. Pramudo
- Center for Tropical and Infectious Disease (CENTRID), Faculty of Medicine Diponegoro University, Dr. Kariadi Hospital, Semarang, Indonesia
- Department of Internal Medicine, Diponegoro National University Hospital, Faculty of Medicine Diponegoro University, Semarang, Central Java, Indonesia
| | - Lydia Kuntjoro
- Department of Radiology, Diponegoro National University Hospital, Faculty of Medicine Diponegoro University, Semarang, Central Java, Indonesia
| | - Bachti Alisjahbana
- Research Center for Care and Control of Infectious Disease (RC3ID), Universitas Padjadjaran, Bandung, Indonesia
- Department of Internal Medicine, Hasan Sadikin General Hospital, Faculty of Medicine Universitas Padjadjaran, Bandung, West Java, Indonesia, Indonesia
| | - Harry Galuh Nugraha
- Department of Radiology, Hasan Sadikin General Hospital, Faculty of Medicine Universitas Padjadjaran, Bandung, West Java, Indonesia, Indonesia
| | - Andre van der Ven
- Department of Internal Medicine and the Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Muhammad Hussein Gasem
- Center for Tropical and Infectious Disease (CENTRID), Faculty of Medicine Diponegoro University, Dr. Kariadi Hospital, Semarang, Indonesia
- Department of Internal Medicine, Diponegoro National University Hospital, Faculty of Medicine Diponegoro University, Semarang, Central Java, Indonesia
| | - Quirijn de Mast
- Department of Internal Medicine and the Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
- * E-mail:
| |
Collapse
|
105
|
Review of -omics studies on mosquito-borne viruses of the Flavivirus genus. Virus Res 2022; 307:198610. [PMID: 34718046 DOI: 10.1016/j.virusres.2021.198610] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/18/2021] [Accepted: 10/11/2021] [Indexed: 02/06/2023]
Abstract
Arboviruses are transmitted by arthropods (arthropod-borne virus) which can be mosquitoes or other hematophagous arthropods, in which their life cycle occurs before transmission to other hosts. Arboviruses such as Dengue, Zika, Saint Louis Encephalitis, West Nile, Yellow Fever, Japanese Encephalitis, Rocio and Murray Valley Encephalitis viruses are some of the arboviruses transmitted biologically among vertebrate hosts by blood-taking vectors, mainly Aedes and Culex sp., and are associated with neurological, viscerotropic, and hemorrhagic reemerging diseases, posing as significant health and socioeconomic concern, as they become more and more adaptive to new environments, to arthropods vectors and human hosts. One of the main families that include mosquito-borne viruses is Flaviviridae, and here, we review the case of the Flavivirus genus, which comprises the viruses cited above, using a variety of research approaches published in literature, including genomics, transcriptomics, proteomics, metabolomics, etc., to better understand their structures as well as virus-host interactions, which are essential for development of future antiviral therapies.
Collapse
|
106
|
Gonzalez CER, Villamizar JDC, León YM, García DFG, Hurtado KTC. A perfect storm: acute portal vein thrombosis in a patient with severe dengue and hemorrhagic manifestations-a case report. EGYPTIAN LIVER JOURNAL 2022; 12:70. [PMID: 36589635 PMCID: PMC9792920 DOI: 10.1186/s43066-022-00233-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 12/13/2022] [Indexed: 12/28/2022] Open
Abstract
Background Dengue constitutes a public health problem in endemic regions. The clinical course can range from asymptomatic to severe expressions. Hemorrhagic manifestations are the most frequently reported complications; on the contrary, thrombotic complications are unusual. Clinical case We present the case of an adult patient who presented hemodynamic instability, severe thrombocytopenia, and positive serology for dengue, in whom acute portal vein thrombosis was documented. The possible pathophysiology of thrombocytopenia and thrombosis in dengue is discussed, as well as the dilemmas regarding the treatment of associated hemorrhagic and thrombotic manifestations. Conclusions The present case brings up the importance of considering the possibility of thrombotic events in patients with severe dengue. A high degree of suspicion, close assessment of hemostatic function, and quality supportive care are essential to improve outcomes. To our knowledge, this is the first report of dengue-associated portal vein thrombosis.
Collapse
Affiliation(s)
| | | | - Yuderleys Masías León
- grid.411595.d0000 0001 2105 7207Universidad Industrial de Santander, Bucaramanga, Colombia
| | | | | |
Collapse
|
107
|
Huerta V, Ramos Y. Isolation and Identification of Dengue Virus Interactome with Human Plasma Proteins by Affinity Purification-Mass Spectrometry. Methods Mol Biol 2022; 2409:133-153. [PMID: 34709640 DOI: 10.1007/978-1-0716-1879-0_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Viral proteins evolve to benefit the interaction with host proteins during the infection and replication processes. A comprehensive understanding of virus interactome with host proteins may thus lead to the identification of molecular targets for infection inhibition. We present a procedure for isolating and identifying the dengue virus interactome with human plasma proteins. It comprises the fractionation of human plasma by anion exchange chromatography, followed by affinity purification and mass spectrometry identification of the captured proteins. This procedure was applied to the characterization of the interactions of the four serotypes of dengue virus with human plasma proteins, mediated by the domain III of the envelope protein of the virus. The resulting interactome comprises 62 proteins, six of which were validated as new direct interactions of the virus with its human host.
Collapse
Affiliation(s)
- Vivian Huerta
- Division of System Biology, Center for Genetic Engineering and Biotechnology, Havana, Cuba.
| | - Yassel Ramos
- Division of System Biology, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| |
Collapse
|
108
|
Buijsers B, Garishah FM, Riswari SF, van Ast RM, Pramudo SG, Tunjungputri RN, Overheul GJ, van Rij RP, van der Ven A, Alisjahbana B, Gasem MH, de Mast Q, van der Vlag J. Increased Plasma Heparanase Activity and Endothelial Glycocalyx Degradation in Dengue Patients Is Associated With Plasma Leakage. Front Immunol 2021; 12:759570. [PMID: 34987504 PMCID: PMC8722520 DOI: 10.3389/fimmu.2021.759570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
Background Endothelial hyper-permeability with plasma leakage and thrombocytopenia are predominant features of severe dengue virus infection. It is well established that heparanase, the endothelial glycocalyx degrading enzyme, plays a major role in various diseases with vascular leakage. It is yet to be elucidated whether heparanase activity plays a major role in dengue-associated plasma leakage. Moreover, the major source of heparanase secretion and activation in dengue remains elusive. Since a relatively high amount of heparanase is stored in platelets, we postulate that heparanase released by activated platelets contributes to the increased plasma heparanase activity during dengue virus infection. Methods Heparanase activity (plasma and urine), and heparan sulfate and syndecan-1 (plasma levels) were measured in dengue patients with thrombocytopenia in acute phase (n=30), during course of disease (n=10) and in convalescent phase (n=25). Associations with clinical parameters and plasma leakage markers were explored. Platelets from healthy donors were stimulated with dengue non-structural protein-1, DENV2 virus and thrombin to evaluate heparanase release and activity ex vivo. Results Heparanase activity was elevated in acute dengue and normalized during convalescence. Similarly, glycocalyx components, such as heparan sulfate and syndecan-1, were increased in acute dengue and restored during convalescence. Increased heparanase activity correlated with the endothelial dysfunction markers heparan sulfate and syndecan-1, as well as clinical markers of plasma leakage such as ascites, hematocrit concentration and gall-bladder wall thickening. Notably, platelet number inversely correlated with heparanase activity. Ex vivo incubation of platelets with thrombin and live DENV2 virus, but not dengue virus-2-derived non-structural protein 1 induced heparanase release from platelets. Conclusion Taken together, our findings suggest that the increase of heparanase activity in dengue patients is associated with endothelial glycocalyx degradation and plasma leakage. Furthermore, thrombin or DENV2 activated platelets may be considered as a potential source of heparanase.
Collapse
Affiliation(s)
- Baranca Buijsers
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Fadel Muhammad Garishah
- Department of Internal Medicine and the Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Center for Tropical and Infectious Diseases (CENTRID), Faculty of Medicine, Diponegoro University, Dr. Kariadi Hospital, Semarang, Indonesia
| | - Silvita Fitri Riswari
- Department of Internal Medicine and the Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Research Center for Care and Control of Infectious Disease (RC3ID), Universitas Padjadjaran, Bandung, Indonesia
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Rosalie M. van Ast
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Setyo Gundi Pramudo
- Department of Internal Medicine, Diponegoro National University Hospital, Faculty of Medicine, Diponegoro University, Semarang, Indonesia
- Department of Internal Medicine, William Booth Hospital, Semarang, Indonesia
| | - Rahajeng N. Tunjungputri
- Department of Internal Medicine and the Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Center for Tropical and Infectious Diseases (CENTRID), Faculty of Medicine, Diponegoro University, Dr. Kariadi Hospital, Semarang, Indonesia
| | - Gijs J. Overheul
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Ronald P. van Rij
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - André van der Ven
- Department of Internal Medicine and the Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Bachti Alisjahbana
- Research Center for Care and Control of Infectious Disease (RC3ID), Universitas Padjadjaran, Bandung, Indonesia
- Department of Internal Medicine, Hasan Sadikin General Hospital, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Muhammad Hussein Gasem
- Center for Tropical and Infectious Diseases (CENTRID), Faculty of Medicine, Diponegoro University, Dr. Kariadi Hospital, Semarang, Indonesia
- Department of Internal Medicine, Diponegoro National University Hospital, Faculty of Medicine, Diponegoro University, Semarang, Indonesia
| | - Quirijn de Mast
- Department of Internal Medicine and the Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Johan van der Vlag
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
- *Correspondence: Johan van der Vlag,
| |
Collapse
|
109
|
Biering SB, de Sousa FTG, Tjang LV, Pahmeier F, Ruan R, Blanc SF, Patel TS, Worthington CM, Glasner DR, Castillo-Rojas B, Servellita V, Lo NT, Wong MP, Warnes CM, Sandoval DR, Clausen TM, Santos YA, Ortega V, Aguilar HC, Esko JD, Chui CY, Pak JE, Beatty PR, Harris E. SARS-CoV-2 Spike triggers barrier dysfunction and vascular leak via integrins and TGF-β signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.12.10.472112. [PMID: 34931188 PMCID: PMC8687463 DOI: 10.1101/2021.12.10.472112] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Severe COVID-19 is associated with epithelial and endothelial barrier dysfunction within the lung as well as in distal organs. While it is appreciated that an exaggerated inflammatory response is associated with barrier dysfunction, the triggers of this pathology are unclear. Here, we report that cell-intrinsic interactions between the Spike (S) glycoprotein of SARS-CoV-2 and epithelial/endothelial cells are sufficient to trigger barrier dysfunction in vitro and vascular leak in vivo , independently of viral replication and the ACE2 receptor. We identify an S-triggered transcriptional response associated with extracellular matrix reorganization and TGF-β signaling. Using genetic knockouts and specific inhibitors, we demonstrate that glycosaminoglycans, integrins, and the TGF-β signaling axis are required for S-mediated barrier dysfunction. Our findings suggest that S interactions with barrier cells are a contributing factor to COVID-19 disease severity and offer mechanistic insight into SARS-CoV-2 triggered vascular leak, providing a starting point for development of therapies targeting COVID-19 pathogenesis.
Collapse
Affiliation(s)
- Scott B. Biering
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | | | - Laurentia V. Tjang
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Felix Pahmeier
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Richard Ruan
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Sophie F. Blanc
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Trishna S. Patel
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | | | - Dustin R. Glasner
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA
- UCSF-Abbott Viral Diagnostics and Discovery Center, San Francisco, CA, USA
| | - Bryan Castillo-Rojas
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Venice Servellita
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA
- UCSF-Abbott Viral Diagnostics and Discovery Center, San Francisco, CA, USA
| | - Nicholas T.N. Lo
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Marcus P. Wong
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Colin M. Warnes
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Daniel R. Sandoval
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA, USA
| | - Thomas Mandel Clausen
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA, USA
| | - Yale A. Santos
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA
- UCSF-Abbott Viral Diagnostics and Discovery Center, San Francisco, CA, USA
| | - Victoria Ortega
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - Hector C. Aguilar
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - Jeffrey D. Esko
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA, USA
| | - Charles Y. Chui
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA
- UCSF-Abbott Viral Diagnostics and Discovery Center, San Francisco, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Department of Medicine, University of California, San Francisco, CA, USA
| | - John E. Pak
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - P. Robert Beatty
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
- Lead contact
| |
Collapse
|
110
|
Affiliation(s)
- Andrew Teo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Medicine, The Doherty Institute, University of Melbourne, Melbourne, Australia
- * E-mail: (AT); (TWY)
| | - Caroline Lin Lin Chua
- School of Biosciences, Faculty of Health and Medicine Sciences, Taylor’s University, Subang Jaya, Malaysia
| | - Po Ying Chia
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- National Centre for Infectious Diseases, Singapore, Singapore
- Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore
| | - Tsin Wen Yeo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- National Centre for Infectious Diseases, Singapore, Singapore
- Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore
- * E-mail: (AT); (TWY)
| |
Collapse
|
111
|
Ganguli S, Chavali PL. Intrauterine Viral Infections: Impact of Inflammation on Fetal Neurodevelopment. Front Neurosci 2021; 15:771557. [PMID: 34858132 PMCID: PMC8631423 DOI: 10.3389/fnins.2021.771557] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/18/2021] [Indexed: 12/22/2022] Open
Abstract
Intrauterine viral infections during pregnancy by pathogens such as Zika virus, Cytomegalovirus, Rubella and Herpes Simplex virus can lead to prenatal as well as postnatal neurodevelopmental disorders. Although maternal viral infections are common during pregnancy, viruses rarely penetrate the trophoblast. When they do cross, viruses can cause adverse congenital health conditions for the fetus. In this context, maternal inflammatory responses to these neurotropic pathogens play a significant role in negatively affecting neurodevelopment. For instance, intrauterine inflammation poses an increased risk of neurodevelopmental disorders such as microcephaly, schizophrenia, autism spectrum disorder, cerebral palsy and epilepsy. Severe inflammatory responses have been linked to stillbirths, preterm births, abortions and microcephaly. In this review, we discuss the mechanistic basis of how immune system shapes the landscape of the brain and how different neurotropic viral pathogens evoke inflammatory responses. Finally, we list the consequences of neuroinflammation on fetal brain development and discuss directions for future research and intervention strategies.
Collapse
Affiliation(s)
- Sourav Ganguli
- CSIR-Center for Cellular and Molecular Biology, Hyderabad, India.,Academy of Scientific and Innovative Research (AcCSIR), Ghaziabad, India
| | - Pavithra L Chavali
- CSIR-Center for Cellular and Molecular Biology, Hyderabad, India.,Academy of Scientific and Innovative Research (AcCSIR), Ghaziabad, India
| |
Collapse
|
112
|
Targeting tight junctions to fight against viral neuroinvasion. Trends Mol Med 2021; 28:12-24. [PMID: 34810086 DOI: 10.1016/j.molmed.2021.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 11/23/2022]
Abstract
The clinical impact of viral neuroinvasion on the central nervous system (CNS) ranges from barely detectable to deadly, including acute and chronic outcomes. Developing innovative therapeutic strategies is important to mitigate virus-induced neurological and psychiatric disorders. A key gatekeeper to the CNS is the neurovascular unit (NVU), a major obstacle to viral neuroinvasion and antiviral therapies. The NVU isolates the brain from the blood through firm sealing operated by the tight junctions (TJs) of endothelial cells. Here, we make the thought-provoking assumption that TJs can be targets to prevent or treat viral neuroinvasion and resulting disorders. This review aims at defining the conceptual diverse mode of actions of such approaches, evaluates their feasibility, and discusses future challenges in the field.
Collapse
|
113
|
Wessel AW, Doyle MP, Engdahl TB, Rodriguez J, Crowe JE, Diamond MS. Human Monoclonal Antibodies against NS1 Protein Protect against Lethal West Nile Virus Infection. mBio 2021; 12:e0244021. [PMID: 34634945 PMCID: PMC8510529 DOI: 10.1128/mbio.02440-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 08/31/2021] [Indexed: 11/20/2022] Open
Abstract
Envelope protein-targeted vaccines for flaviviruses are limited by concerns of antibody-dependent enhancement (ADE) of infections. Nonstructural protein 1 (NS1) provides an alternative vaccine target that avoids this risk since this protein is absent from the virion. Beyond its intracellular role in virus replication, extracellular forms of NS1 function in immune modulation and are recognized by host-derived antibodies. The rational design of NS1-based vaccines requires an extensive understanding of the antigenic sites on NS1, especially those targeted by protective antibodies. Here, we isolated human monoclonal antibodies (MAbs) from individuals previously naturally infected with WNV, mapped their epitopes using structure-guided mutagenesis, and evaluated their efficacy in vivo against lethal WNV challenge. The most protective epitopes clustered at three antigenic sites that are exposed on cell surface forms of NS1: (i) the wing flexible loop, (ii) the outer, electrostatic surface of the wing, and (iii) the spaghetti loop face of the β-ladder. One additional MAb mapped to the distal tip of the β-ladder and conferred a lower level of protection against WNV despite not binding to NS1 on the surface of infected cells. Our study defines the epitopes and modes of binding of protective anti-NS1 MAb antibodies following WNV infection, which may inform the development of NS1-based countermeasures against flaviviruses. IMPORTANCE Therapeutic antibodies against flaviviruses often promote neutralization by targeting the envelope protein of the virion. However, this approach is hindered by a possible concern for antibody-dependent enhancement of infection and paradoxical worsening of disease. As an alternative strategy, antibodies targeting flavivirus nonstructural protein 1 (NS1), which is absent from the virion, can protect against disease and do not cause enhanced infection. Here, we evaluate the structure-function relationships and protective activity of West Nile virus (WNV) NS1-specific monoclonal antibodies (MAbs) isolated from the memory B cells of a naturally infected human donor. We identify several anti-NS1 MAbs that protect mice against lethal WNV challenge and map their epitopes using charge reversal mutagenesis. Antibodies targeting specific regions in the NS1 structure could serve as the basis for countermeasures that control WNV infection in humans.
Collapse
Affiliation(s)
- Alex W. Wessel
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michael P. Doyle
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Taylor B. Engdahl
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jessica Rodriguez
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - James E. Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Michael S. Diamond
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
114
|
Mayfosh AJ, Nguyen TK, Hulett MD. The Heparanase Regulatory Network in Health and Disease. Int J Mol Sci 2021; 22:11096. [PMID: 34681753 PMCID: PMC8541136 DOI: 10.3390/ijms222011096] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 12/24/2022] Open
Abstract
The extracellular matrix (ECM) is a structural framework that has many important physiological functions which include maintaining tissue structure and integrity, serving as a barrier to invading pathogens, and acting as a reservoir for bioactive molecules. This cellular scaffold is made up of various types of macromolecules including heparan sulfate proteoglycans (HSPGs). HSPGs comprise a protein core linked to the complex glycosaminoglycan heparan sulfate (HS), the remodeling of which is important for many physiological processes such as wound healing as well as pathological processes including cancer metastasis. Turnover of HS is tightly regulated by a single enzyme capable of cleaving HS side chains: heparanase. Heparanase upregulation has been identified in many inflammatory diseases including atherosclerosis, fibrosis, and cancer, where it has been shown to play multiple roles in processes such as epithelial-mesenchymal transition, angiogenesis, and cancer metastasis. Heparanase expression and activity are tightly regulated. Understanding the regulation of heparanase and its downstream targets is attractive for the development of treatments for these diseases. This review provides a comprehensive overview of the regulators of heparanase as well as the enzyme's downstream gene and protein targets, and implications for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Alyce J. Mayfosh
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3083, Australia; (A.J.M.); (T.K.N.)
| | - Tien K. Nguyen
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3083, Australia; (A.J.M.); (T.K.N.)
| | - Mark D. Hulett
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3083, Australia; (A.J.M.); (T.K.N.)
| |
Collapse
|
115
|
Wang WH, Urbina AN, Lin CY, Yang ZS, Assavalapsakul W, Thitithanyanont A, Lu PL, Chen YH, Wang SF. Targets and strategies for vaccine development against dengue viruses. Biomed Pharmacother 2021; 144:112304. [PMID: 34634560 DOI: 10.1016/j.biopha.2021.112304] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 10/20/2022] Open
Abstract
Dengue virus (DENV) is a global health threat causing about half of the worldwide population to be at risk of infection, especially the people living in tropical and subtropical area. Although the dengue disease caused by dengue virus (DENV) is asymptomatic and self-limiting in most people with first infection, increased severe dengue symptoms may be observed in people with heterotypic secondary DENV infection. Since there is a lack of specific antiviral medication, the development of dengue vaccines is critical in the prevention and control this disease. Several targets and strategies in the development of dengue vaccine have been demonstrated. Currently, Dengvaxia, a live-attenuated chimeric yellow-fever/tetravalent dengue vaccine (CYD-TDV) developed by Sanofi Pasteur, has been licensed and approved for clinical use in some countries. However, this vaccine has demonstrated low efficacy in children and dengue-naïve individuals and also increases the risk of severe dengue in young vaccinated recipients. Accordingly, many novel strategies for the dengue vaccine are under investigation and development. Here, we conducted a systemic literature review according to PRISMA guidelines to give a concise overview of various aspects of the vaccine development process against DENVs, mainly targeting five potential strategies including live attenuated vaccine, inactivated virus vaccine, recombinant subunit vaccine, viral-vector vaccine, and DNA vaccine. This study offers the comprehensive view of updated information and current progression of immunogen selection as well as strategies of vaccine development against DENVs.
Collapse
Affiliation(s)
- Wen-Hung Wang
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical, University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Aspiro Nayim Urbina
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chih-Yen Lin
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Zih-Syuan Yang
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Wanchai Assavalapsakul
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Arunee Thitithanyanont
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Po-Liang Lu
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical, University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yen-Hsu Chen
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical, University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Sheng-Fan Wang
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| |
Collapse
|
116
|
Altered Moesin and Actin Cytoskeleton Protein Rearrangements Affect Transendothelial Permeability in Human Endothelial Cells upon Dengue Virus Infection and TNF-α Treatment. Viruses 2021; 13:v13102042. [PMID: 34696472 PMCID: PMC8537470 DOI: 10.3390/v13102042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022] Open
Abstract
It has been hypothesized that the host, viral factors, and secreted cytokines (especially TNF-α) play roles in the pathogenesis of secondary dengue infections. Mass spectrometry-based proteomic screening of cytoskeleton fractions isolated from human endothelial (EA.hy926) cells upon dengue virus (DENV) infection and TNF-α treatment identified 450 differentially altered proteins. Among them, decreased levels of moesin, actin stress fiber rearrangements, and dot-like formations of vinculin were observed with western blot analyses and/or immunofluorescence staining (IFA). In vitro vascular permeability assays using EA.hy926 cells, seeded on collagen-coated transwell inserts, showed low levels of transendothelial electrical resistance in treated cells. The synergistic effects of DENV infection and TNF-α treatment caused cellular permeability changes in EA.hy926 cells, which coincided with decreasing moesin levels and the production of abnormal organizations of actin stress fibers and vinculin. Functional studies demonstrated moesin overexpression restored transendothelial permeability in DENV/TNF-α-treated EA.hy926 cells. The present study improves the understanding of the disruption mechanisms of cytoskeleton proteins in enhancing vascular permeability during DENV infection and TNF-α treatment. The study also suggests that these disruption mechanisms are major factors contributing to vascular leakage in severe dengue patients.
Collapse
|
117
|
Wessel AW, Dowd KA, Biering SB, Zhang P, Edeling MA, Nelson CA, Funk KE, DeMaso CR, Klein RS, Smith JL, Cao TM, Kuhn RJ, Fremont DH, Harris E, Pierson TC, Diamond MS. Levels of Circulating NS1 Impact West Nile Virus Spread to the Brain. J Virol 2021; 95:e0084421. [PMID: 34346770 PMCID: PMC8475509 DOI: 10.1128/jvi.00844-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 07/28/2021] [Indexed: 12/15/2022] Open
Abstract
Dengue virus (DENV) and West Nile virus (WNV) are arthropod-transmitted flaviviruses that cause systemic vascular leakage and encephalitis syndromes, respectively, in humans. However, the viral factors contributing to these specific clinical disorders are not completely understood. Flavivirus nonstructural protein 1 (NS1) is required for replication, expressed on the cell surface, and secreted as a soluble glycoprotein, reaching high levels in the blood of infected individuals. Extracellular DENV NS1 and WNV NS1 interact with host proteins and cells, have immune evasion functions, and promote endothelial dysfunction in a tissue-specific manner. To characterize how differences in DENV NS1 and WNV NS1 might function in pathogenesis, we generated WNV NS1 variants with substitutions corresponding to residues found in DENV NS1. We discovered that the substitution NS1-P101K led to reduced WNV infectivity in the brain and attenuated lethality in infected mice, although the virus replicated efficiently in cell culture and peripheral organs and bound at wild-type levels to brain endothelial cells and complement components. The P101K substitution resulted in reduced NS1 antigenemia in mice, and this was associated with reduced WNV spread to the brain. Because exogenous administration of NS1 protein rescued WNV brain infectivity in mice, we conclude that circulating WNV NS1 facilitates viral dissemination into the central nervous system and impacts disease outcomes. IMPORTANCE Flavivirus NS1 serves as an essential scaffolding molecule during virus replication but also is expressed on the cell surface and is secreted as a soluble glycoprotein that circulates in the blood of infected individuals. Although extracellular forms of NS1 are implicated in immune modulation and in promoting endothelial dysfunction at blood-tissue barriers, it has been challenging to study specific effects of NS1 on pathogenesis without disrupting its key role in virus replication. Here, we assessed WNV NS1 variants that do not affect virus replication and evaluated their effects on pathogenesis in mice. Our characterization of WNV NS1-P101K suggests that the levels of NS1 in the circulation facilitate WNV dissemination to the brain and affect disease outcomes. Our findings facilitate understanding of the role of NS1 during flavivirus infection and support antiviral strategies for targeting circulating forms of NS1.
Collapse
Affiliation(s)
- Alex W. Wessel
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kimberly A. Dowd
- Viral Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Scott B. Biering
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Ping Zhang
- Department of Immunology, Key Laboratory of Tropical Diseases Control, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Melissa A. Edeling
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Christopher A. Nelson
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kristen E. Funk
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Christina R. DeMaso
- Viral Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Robyn S. Klein
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri, USA
- Center for Neuroimmunology and Neuroinfectious Diseases, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Janet L. Smith
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Thu Minh Cao
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, Indiana, USA
| | - Richard J. Kuhn
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, Indiana, USA
| | - Daved H. Fremont
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Theodore C. Pierson
- Viral Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Michael S. Diamond
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
118
|
Schenck H, Netti E, Teernstra O, De Ridder I, Dings J, Niemelä M, Temel Y, Hoogland G, Haeren R. The Role of the Glycocalyx in the Pathophysiology of Subarachnoid Hemorrhage-Induced Delayed Cerebral Ischemia. Front Cell Dev Biol 2021; 9:731641. [PMID: 34540844 PMCID: PMC8446455 DOI: 10.3389/fcell.2021.731641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 08/06/2021] [Indexed: 12/02/2022] Open
Abstract
The glycocalyx is an important constituent of blood vessels located between the bloodstream and the endothelium. It plays a pivotal role in intercellular interactions in neuroinflammation, reduction of vascular oxidative stress, and provides a barrier regulating vascular permeability. In the brain, the glycocalyx is closely related to functions of the blood-brain barrier and neurovascular unit, both responsible for adequate neurovascular responses to potential threats to cerebral homeostasis. An aneurysmal subarachnoid hemorrhage (aSAH) occurs following rupture of an intracranial aneurysm and leads to immediate brain damage (early brain injury). In some cases, this can result in secondary brain damage, also known as delayed cerebral ischemia (DCI). DCI is a life-threatening condition that affects up to 30% of all aSAH patients. As such, it is associated with substantial societal and healthcare-related costs. Causes of DCI are multifactorial and thought to involve neuroinflammation, oxidative stress, neuroinflammation, thrombosis, and neurovascular uncoupling. To date, prediction of DCI is limited, and preventive and effective treatment strategies of DCI are scarce. There is increasing evidence that the glycocalyx is disrupted following an aSAH, and that glycocalyx disruption could precipitate or aggravate DCI. This review explores the potential role of the glycocalyx in the pathophysiological mechanisms contributing to DCI following aSAH. Understanding the role of the glycocalyx in DCI could advance the development of improved methods to predict DCI or identify patients at risk for DCI. This knowledge may also alter the methods and timing of preventive and treatment strategies of DCI. To this end, we review the potential and limitations of methods currently used to evaluate the glycocalyx, and strategies to restore or prevent glycocalyx shedding.
Collapse
Affiliation(s)
- Hanna Schenck
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, Netherlands
| | - Eliisa Netti
- Department of Neurosurgery, Helsinki University Hospital, Helsinki, Finland
| | - Onno Teernstra
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, Netherlands
| | - Inger De Ridder
- Department of Neurology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, Netherlands
| | - Jim Dings
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, Netherlands
| | - Mika Niemelä
- Department of Neurosurgery, Helsinki University Hospital, Helsinki, Finland
| | - Yasin Temel
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, Netherlands
| | - Govert Hoogland
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, Netherlands
| | - Roel Haeren
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, Netherlands.,Department of Neurosurgery, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
119
|
Su Y, Lin T, Liu C, Cheng C, Han X, Jiang X. microRNAs, the Link Between Dengue Virus and the Host Genome. Front Microbiol 2021; 12:714409. [PMID: 34456895 PMCID: PMC8385664 DOI: 10.3389/fmicb.2021.714409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/16/2021] [Indexed: 12/22/2022] Open
Abstract
Dengue virus (DENV) is a small envelope virus of Flaviviridae that is mainly transmitted by Aedes aegypti and Aedes albopictus. It can cause dengue fever with mild clinical symptoms or even life-threatening dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). At present, there are no specific drugs or mature vaccine products to treat DENV. microRNAs (miRNAs) are a class of important non-coding small molecular RNAs that regulate gene expression at the post-transcriptional level. It is involved in and regulates a series of important life processes, such as growth and development, cell differentiation, cell apoptosis, anti-virus, and anti-tumor. miRNAs also play important roles in interactions between host and viral genome transcriptomes. Host miRNAs can directly target the genome of the virus or regulate host factors to promote or inhibit virus replication. Understanding the expression and function of miRNAs during infection with DENV and the related signal molecules of the miRNA-mediated regulatory network will provide new insights for the development of miRNA-based therapies.
Collapse
Affiliation(s)
- Yinghua Su
- College of Biological Science and Engineering, Fuzhou University, Fujian, China
| | - Ting Lin
- College of Biological Science and Engineering, Fuzhou University, Fujian, China
| | - Chun Liu
- College of Biological Science and Engineering, Fuzhou University, Fujian, China
| | - Cui Cheng
- College of Biological Science and Engineering, Fuzhou University, Fujian, China
| | - Xiao Han
- College of Biological Science and Engineering, Fuzhou University, Fujian, China
| | - Xiwen Jiang
- DAAN Gene Co., Ltd. of Sun Yat-sen University, Guangdong, China
| |
Collapse
|
120
|
Brazilian Dengue Virus Type 2-Associated Renal Involvement in a Murine Model: Outcomes after Infection by Two Lineages of the Asian/American Genotype. Pathogens 2021; 10:pathogens10091084. [PMID: 34578117 PMCID: PMC8467194 DOI: 10.3390/pathogens10091084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/25/2021] [Accepted: 07/29/2021] [Indexed: 12/11/2022] Open
Abstract
Dengue virus type 2 (DENV-2) is, traditionally, the most studied serotype due to its association with explosive outbreaks and severe cases. In Brazil, almost 20 years after the first introduction in the 1990s, a new lineage (Lineage II) of the DENV-2 Asian/American genotype emerged and caused an epidemic with severe cases and hospitalizations. Severe dengue includes multiple organ failure, and renal involvement can be potentially related to increased mortality. In order to better understand the role of DENV infection in renal injury, here we aimed to investigate the outcomes of infection with two distinct lineages of DENV-2 Asian/American genotype in the kidney of a murine model. BALB/c mice were infected with Lineages I and II and tissues were submitted to histopathology, immunohistochemistry, histomorphometry and ultrastructural analysis. Blood urea nitrogen (BUN) was detected in blood sample accessed by cardiac puncture. A tendency in kidney weight increase was observed in mice infected with both lineages, but urea levels, on average, were increased only in mice infected with Lineage II. The DENV antigen was detected in the tissue of mice infected with Lineage II and morphological changes were similar to those observed in human dengue cases. Furthermore, the parameters such as organ weight, urea levels and morphometric analysis, showed significant differences between the two lineages in the infected BALB/c, which was demonstrated to be a suitable experimental model for dengue pathophysiology studies in kidneys.
Collapse
|
121
|
Lebeau G, Lagrave A, Ogire E, Grondin L, Seriacaroupin S, Moutoussamy C, Mavingui P, Hoarau JJ, Roche M, Krejbich-Trotot P, Desprès P, Viranaicken W. Viral Toxin NS1 Implication in Dengue Pathogenesis Making It a Pivotal Target in Development of Efficient Vaccine. Vaccines (Basel) 2021; 9:vaccines9090946. [PMID: 34579183 PMCID: PMC8471935 DOI: 10.3390/vaccines9090946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/29/2021] [Accepted: 08/04/2021] [Indexed: 11/20/2022] Open
Abstract
The mosquito-borne viral disease dengue is a global public health problem causing a wide spectrum of clinical manifestations ranging from mild dengue fever to severe dengue with plasma leakage and bleeding which are often fatal. To date, there are no specific medications to treat dengue and prevent the risk of hemorrhage. Dengue is caused by one of four genetically related but antigenically distinct serotypes DENV-1–DENV-4. The growing burden of the four DENV serotypes has intensified both basic and applied research to better understand dengue physiopathology. Research has shown that the secreted soluble hexameric form of DENV nonstructural protein-1 (sNS1) plays a significant role in the pathogenesis of severe dengue. Here, we provide an overview of the current knowledge about the role of sNS1 in the immunopathogenesis of dengue disease. We discuss the potential use of sNS1 in future vaccine development and its potential to improve dengue vaccine efficiency, particularly against severe dengue illness.
Collapse
|
122
|
Pan P, Li G, Shen M, Yu Z, Ge W, Lao Z, Fan Y, Chen K, Ding Z, Wang W, Wan P, Shereen MA, Luo Z, Chen X, Zhang Q, Lin L, Wu J. DENV NS1 and MMP-9 cooperate to induce vascular leakage by altering endothelial cell adhesion and tight junction. PLoS Pathog 2021; 17:e1008603. [PMID: 34310658 PMCID: PMC8341711 DOI: 10.1371/journal.ppat.1008603] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 08/05/2021] [Accepted: 07/06/2021] [Indexed: 11/18/2022] Open
Abstract
Dengue virus (DENV) is a mosquito-borne pathogen that causes a spectrum of diseases including life-threatening dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). Vascular leakage is a common clinical crisis in DHF/DSS patients and highly associated with increased endothelial permeability. The presence of vascular leakage causes hypotension, circulatory failure, and disseminated intravascular coagulation as the disease progresses of DHF/DSS patients, which can lead to the death of patients. However, the mechanisms by which DENV infection caused the vascular leakage are not fully understood. This study reveals a distinct mechanism by which DENV induces endothelial permeability and vascular leakage in human endothelial cells and mice tissues. We initially show that DENV2 promotes the matrix metalloproteinase-9 (MMP-9) expression and secretion in DHF patients’ sera, peripheral blood mononuclear cells (PBMCs), and macrophages. This study further reveals that DENV non-structural protein 1 (NS1) induces MMP-9 expression through activating the nuclear factor κB (NF-κB) signaling pathway. Additionally, NS1 facilitates the MMP-9 enzymatic activity, which alters the adhesion and tight junction and vascular leakage in human endothelial cells and mouse tissues. Moreover, NS1 recruits MMP-9 to interact with β-catenin and Zona occludens protein-1/2 (ZO-1 and ZO-2) and to degrade the important adhesion and tight junction proteins, thereby inducing endothelial hyperpermeability and vascular leakage in human endothelial cells and mouse tissues. Thus, we reveal that DENV NS1 and MMP-9 cooperatively induce vascular leakage by impairing endothelial cell adhesion and tight junction, and suggest that MMP-9 may serve as a potential target for the treatment of hypovolemia in DSS/DHF patients. DENV is the most common mosquito-transmitted viral pathogen in humans. In general, DENV-infected patients are asymptomatic or have flu-like symptoms with fever and rash. However, in severe cases of DENV infection, the diseases may progress to dengue hemorrhagic fever (DHF) or dengue shock syndrome (DSS), the leading causes of morbidity and mortality in school-age children in tropical and subtropical regions. DENV-induced vascular leakage is characterized by enhanced vascular permeability without morphological damage to the capillary endothelium. This study reveals a possible mechanism by which DENV NS1 and MMP-9 cooperatively induce vascular leakage. NS1 also recruits MMP-9 to degrade β-catenin, ZO-1, and ZO-2 that leads to intervene endothelial hyperpermeability in human endothelial cells and mouse vascular. Moreover, the authors further reveal that DENV activates NF-κB signaling pathway to induce MMP-9 expression in patients, mice, PBMC, and macrophages though NS1 protein. This study would provide new in signs into the pathogenesis of DENV infection, and suggest that MMP-9 may act as a drug target for the prevention and treatment of DENV-associated diseases.
Collapse
Affiliation(s)
- Pan Pan
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Geng Li
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- Center for Animal Experiment, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Miaomiao Shen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhenyang Yu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Weiwei Ge
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zizhao Lao
- Center for Animal Experiment, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yaohua Fan
- Center for Animal Experiment, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Keli Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhihao Ding
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Wenbiao Wang
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Pin Wan
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Muhammad Adnan Shereen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhen Luo
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Foshan Institute of Medical Microbiology, Foshan, China
| | - Xulin Chen
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Foshan Institute of Medical Microbiology, Foshan, China
| | - Qiwei Zhang
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Foshan Institute of Medical Microbiology, Foshan, China
| | - Luping Lin
- Center for Animal Experiment, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangzhou Eighth People’s Hospital, Guangzhou, China
- * E-mail: (LL); (JW)
| | - Jianguo Wu
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- The First Affiliated Hospital of Jinan University, Guangzhou, China
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- Foshan Institute of Medical Microbiology, Foshan, China
- * E-mail: (LL); (JW)
| |
Collapse
|
123
|
Rawat S, Vrati S, Banerjee A. Neutrophils at the crossroads of acute viral infections and severity. Mol Aspects Med 2021; 81:100996. [PMID: 34284874 PMCID: PMC8286244 DOI: 10.1016/j.mam.2021.100996] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/22/2022]
Abstract
Neutrophils are versatile immune effector cells essential for mounting a first-line defense against invading pathogens. However, uncontrolled activation can lead to severe life-threatening complications. Neutrophils exist as a heterogeneous population, and their interaction with pathogens and other immune cells may shape the outcome of the host immune response. Diverse classes of viruses, including the recently identified novel SARS-CoV-2, have shown to alter the various aspects of neutrophil biology, offering possibilities for selective intervention. Here, we review heterogeneity within the neutrophil population, highlighting the functional consequences of circulating phenotypes and their critical involvement in exaggerating protective and pathological immune responses against the viruses. We discuss the recent findings of neutrophil extracellular traps (NETs) in COVID-19 pathology and cover other viruses, where neutrophil biology and NETs are crucial for developing disease severity. In the end, we have also pointed out the areas where neutrophil-mediated responses can be finely tuned to outline opportunities for therapeutic manipulation in controlling inflammation against viral infection.
Collapse
Affiliation(s)
- Surender Rawat
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Sudhanshu Vrati
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Arup Banerjee
- Regional Centre for Biotechnology, Faridabad, Haryana, India.
| |
Collapse
|
124
|
Villalba N, Baby S, Yuan SY. The Endothelial Glycocalyx as a Double-Edged Sword in Microvascular Homeostasis and Pathogenesis. Front Cell Dev Biol 2021; 9:711003. [PMID: 34336864 PMCID: PMC8316827 DOI: 10.3389/fcell.2021.711003] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/22/2021] [Indexed: 12/27/2022] Open
Abstract
Expressed on the endothelial cell (EC) surface of blood vessels, the glycocalyx (GCX), a mixture of carbohydrates attached to proteins, regulates the access of cells and molecules in the blood to the endothelium. Besides protecting endothelial barrier integrity, the dynamic microstructure of the GCX confers remarkable functions including mechanotransduction and control of vascular tone. Recently, a novel perspective has emerged supporting the pleiotropic roles of the endothelial GCX (eGCX) in cardiovascular health and disease. Because eGCX degradation occurs in certain pathological states, the circulating levels of eGCX degradation products have been recognized to have diagnostic or prognostic values. Beyond their biomarker roles, certain eGCX fragments serve as pathogenic factors in disease progression. Pharmacological interventions that attenuate eGCX degradation or restore its integrity have been sought. This review provides our current understanding of eGCX structure and function across the microvasculature in different organs. We also discuss disease or injury states, such as infection, sepsis and trauma, where eGCX dysfunction contributes to severe inflammatory vasculopathy.
Collapse
Affiliation(s)
- Nuria Villalba
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Sheon Baby
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Sarah Y Yuan
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.,Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| |
Collapse
|
125
|
Abstract
Introduction: Dengue virus is a global health threat, with approximately 390 million dengue infections annually. Efficient vaccines for dengue prevention are currently lacking. This review aims to summarize the current progress in dengue vaccine development.Area covered: This article discusses recent dengue vaccine developments based on the published literature and ClinicalTrials.gov website up to December 2020.Expert opinion: The first live-attenuated chimeric yellow-fever/tetravalent dengue vaccine (CYD-TDV), Dengvaxia, has been licensed in several countries. However, the low efficacy of this vaccine was observed in children and dengue-naïve individuals. It also increased the risk of severe dengue in people who had not been exposed to dengue. The heterologous prime-boost regimen of sequential immunization with DENVax and Dengvaxia covers four serotypes of immunogenicity, eliminating the effect of ADE. Moreover, a heterologous prime-boost regimen that combines inactivated vaccines with alum and live attenuated vaccines might increase the immunogenic response. The lack of an ideal animal model is an obstacle to the development of dengue vaccines, and the macaque model may be considered for similar immunologic responses in humans.
Collapse
Affiliation(s)
- Chung-Hao Huang
- Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Infection Control Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Te Tsai
- Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,School of Medicine, Graduate Institute of Medicine, Sepsis Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Seng-Fan Wang
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wen-Hung Wang
- Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yen-Hsu Chen
- Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan.,College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
126
|
Warner NL, Frietze KM. Development of Bacteriophage Virus-Like Particle Vaccines Displaying Conserved Epitopes of Dengue Virus Non-Structural Protein 1. Vaccines (Basel) 2021; 9:726. [PMID: 34358143 PMCID: PMC8310087 DOI: 10.3390/vaccines9070726] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 12/27/2022] Open
Abstract
Dengue virus (DENV) is a major global health problem, with over half of the world's population at risk of infection. Despite over 60 years of efforts, no licensed vaccine suitable for population-based immunization against DENV is available. Here, we describe efforts to engineer epitope-based vaccines against DENV non-structural protein 1 (NS1). NS1 is present in DENV-infected cells as well as secreted into the blood of infected individuals. NS1 causes disruption of endothelial cell barriers, resulting in plasma leakage and hemorrhage. Immunizing against NS1 could elicit antibodies that block NS1 function and also target NS1-infected cells for antibody-dependent cell cytotoxicity. We identified highly conserved regions of NS1 from all four DENV serotypes. We generated synthetic peptides to these regions and chemically conjugated them to bacteriophage Qβ virus-like particles (VLPs). Mice were immunized two times with the candidate vaccines and sera were tested for the presence of antibodies that bound to the cognate peptide, recombinant NS1 from all four DENV serotypes, and DENV-2-infected cells. We found that two of the candidate vaccines elicited antibodies that bound to recombinant NS1, and one candidate vaccine elicited antibodies that bound to DENV-infected cells. These results show that an epitope-specific vaccine against conserved regions of NS1 could be a promising approach for DENV vaccines or therapeutics to bind circulating NS1 protein.
Collapse
Affiliation(s)
- Nikole L. Warner
- Department of Molecular Genetics and Microbiology, School of Medicine, University of New Mexico Health Sciences, Albuquerque, NM 87131, USA;
| | - Kathryn M. Frietze
- Department of Molecular Genetics and Microbiology, School of Medicine, University of New Mexico Health Sciences, Albuquerque, NM 87131, USA;
- Clinical and Translational Science Center, University of New Mexico Health Sciences, Albuquerque, NM 87131, USA
| |
Collapse
|
127
|
Suputtamongkol Y, Avirutnan P, Mairiang D, Angkasekwinai N, Niwattayakul K, Yamasmith E, Saleh-Arong FAH, Songjaeng A, Prommool T, Tangthawornchaikul N, Puttikhunt C, Hunnangkul S, Komoltri C, Thammapalo S, Malasit P. Ivermectin Accelerates Circulating Nonstructural Protein 1 (NS1) Clearance in Adult Dengue Patients: A Combined Phase 2/3 Randomized Double-blinded Placebo Controlled Trial. Clin Infect Dis 2021; 72:e586-e593. [PMID: 33462580 DOI: 10.1093/cid/ciaa1332] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Dengue is the most significant mosquito-borne viral disease; there are no specific therapeutics. The antiparasitic drug ivermectin efficiently inhibits the replication of all 4 dengue virus serotypes in vitro. METHODS We conducted 2 consecutive randomized, double-blind, placebo-controlled trials in adult dengue patients to evaluate safety and virological and clinical efficacies of ivermectin. After a phase 2 trial with 2 or 3 days of 1 daily dose of 400 µg/kg ivermectin, we continued with a phase 3, placebo-controlled trial with 3 days of 400 µg/kg ivermectin. RESULTS The phase 2 trial showed a trend in reduction of plasma nonstructural protein 1 (NS1) clearance time in the 3-day ivermectin group compared with placebo. Combining phase 2 and 3 trials, 203 patients were included in the intention to treat analysis (100 and 103 patients receiving ivermectin and placebo, respectively). Dengue hemorrhagic fever occurred in 24 (24.0%) of ivermectin-treated patients and 32 (31.1%) patients receiving placebo (P = .260). The median (95% confidence interval [CI]) clearance time of NS1 antigenemia was shorter in the ivermectin group (71.5 [95% CI 59.9-84.0] hours vs 95.8 [95% CI 83.9-120.0] hours, P = .014). At discharge, 72.0% and 47.6% of patients in the ivermectin and placebo groups, respectively had undetectable plasma NS1 (P = .001). There were no differences in the viremia clearance time and incidence of adverse events between the 2 groups. CONCLUSIONS A 3-day 1 daily dose of 400 µg/kg oral ivermectin was safe and accelerated NS1 antigenemia clearance in dengue patients. However, clinical efficacy of ivermectin was not observed at this dosage regimen.
Collapse
Affiliation(s)
- Yupin Suputtamongkol
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Panisadee Avirutnan
- Division of Dengue Hemorrhagic Fever Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Siriraj Center of Research Excellence in Dengue & Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Bangkok, Thailand
| | - Dumrong Mairiang
- Division of Dengue Hemorrhagic Fever Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Siriraj Center of Research Excellence in Dengue & Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Bangkok, Thailand
| | - Nasikarn Angkasekwinai
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - Eakkawit Yamasmith
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - Adisak Songjaeng
- Division of Dengue Hemorrhagic Fever Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Siriraj Center of Research Excellence in Dengue & Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Tanapan Prommool
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Bangkok, Thailand
| | - Nattaya Tangthawornchaikul
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Bangkok, Thailand
| | - Chunya Puttikhunt
- Division of Dengue Hemorrhagic Fever Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Siriraj Center of Research Excellence in Dengue & Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Bangkok, Thailand
| | - Saowalak Hunnangkul
- Research Group and Research Network Division, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chulaluk Komoltri
- Research Group and Research Network Division, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Suwich Thammapalo
- Department of Disease Control, Ministry of Public Health, Nonthaburi, Thailand
| | - Prida Malasit
- Division of Dengue Hemorrhagic Fever Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Siriraj Center of Research Excellence in Dengue & Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Bangkok, Thailand
| |
Collapse
|
128
|
Dengue and the Lectin Pathway of the Complement System. Viruses 2021; 13:v13071219. [PMID: 34202570 PMCID: PMC8310334 DOI: 10.3390/v13071219] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/17/2021] [Accepted: 06/19/2021] [Indexed: 12/15/2022] Open
Abstract
Dengue is a mosquito-borne viral disease causing significant health and economic burdens globally. The dengue virus (DENV) comprises four serotypes (DENV1-4). Usually, the primary infection is asymptomatic or causes mild dengue fever (DF), while secondary infections with a different serotype increase the risk of severe dengue disease (dengue hemorrhagic fever, DHF). Complement system activation induces inflammation and tissue injury, contributing to disease pathogenesis. However, in asymptomatic or primary infections, protective immunity largely results from the complement system’s lectin pathway (LP), which is activated through foreign glycan recognition. Differences in N-glycans displayed on the DENV envelope membrane influence the lectin pattern recognition receptor (PRR) binding efficiency. The important PRR, mannan binding lectin (MBL), mediates DENV neutralization through (1) a complement activation-independent mechanism via direct MBL glycan recognition, thereby inhibiting DENV attachment to host target cells, or (2) a complement activation-dependent mechanism following the attachment of complement opsonins C3b and C4b to virion surfaces. The serum concentrations of lectin PRRs and their polymorphisms influence these LP activities. Conversely, to escape the LP attack and enhance the infectivity, DENV utilizes the secreted form of nonstructural protein 1 (sNS1) to counteract the MBL effects, thereby increasing viral survival and dissemination.
Collapse
|
129
|
Heparan Sulfate Proteoglycans in Viral Infection and Treatment: A Special Focus on SARS-CoV-2. Int J Mol Sci 2021; 22:ijms22126574. [PMID: 34207476 PMCID: PMC8235362 DOI: 10.3390/ijms22126574] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 01/27/2023] Open
Abstract
Heparan sulfate proteoglycans (HSPGs) encompass a group of glycoproteins composed of unbranched negatively charged heparan sulfate (HS) chains covalently attached to a core protein. The complex HSPG biosynthetic machinery generates an extraordinary structural variety of HS chains that enable them to bind a plethora of ligands, including growth factors, morphogens, cytokines, chemokines, enzymes, matrix proteins, and bacterial and viral pathogens. These interactions translate into key regulatory activity of HSPGs on a wide range of cellular processes such as receptor activation and signaling, cytoskeleton assembly, extracellular matrix remodeling, endocytosis, cell-cell crosstalk, and others. Due to their ubiquitous expression within tissues and their large functional repertoire, HSPGs are involved in many physiopathological processes; thus, they have emerged as valuable targets for the therapy of many human diseases. Among their functions, HSPGs assist many viruses in invading host cells at various steps of their life cycle. Viruses utilize HSPGs for the attachment to the host cell, internalization, intracellular trafficking, egress, and spread. Recently, HSPG involvement in the pathogenesis of SARS-CoV-2 infection has been established. Here, we summarize the current knowledge on the molecular mechanisms underlying HSPG/SARS-CoV-2 interaction and downstream effects, and we provide an overview of the HSPG-based therapeutic strategies that could be used to combat such a fearsome virus.
Collapse
|
130
|
Dengue Virus Induces the Expression and Release of Endocan from Endothelial Cells by an NS1-TLR4-Dependent Mechanism. Microorganisms 2021; 9:microorganisms9061305. [PMID: 34203931 PMCID: PMC8232724 DOI: 10.3390/microorganisms9061305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/03/2021] [Accepted: 06/08/2021] [Indexed: 12/16/2022] Open
Abstract
A common hallmark of dengue infections is the dysfunction of the vascular endothelium induced by different biological mechanisms. In this paper, we studied the role of recombinant NS1 proteins representing the four dengue serotypes, and their role in promoting the expression and release of endocan, which is a highly specific biomarker of endothelial cell activation. We evaluated mRNA expression and the levels of endocan protein in vitro following the stimulation of HUVEC and HMEC-1 cell lines with recombinant NS1 proteins. NS1 proteins increase endocan mRNA expression 48 h post-activation in both endothelial cell lines. Endocan mRNA expression levels were higher in HUVEC and HMEC-1 cells stimulated with NS1 proteins than in non-stimulated cells (p < 0.05). A two-fold to three-fold increase in endocan protein release was observed after the stimulation of HUVECs or HMEC-1 cells with NS1 proteins compared with that in non-stimulated cells (p < 0.05). The blockade of Toll-like receptor 4 (TLR-4) signaling on HMEC-1 cells with an antagonistic antibody prevented NS1-dependent endocan production. Dengue-infected patients showed elevated serum endocan levels (≥30 ng/mL) during early dengue infection. High endocan serum levels were associated with laboratory abnormalities, such as lymphopenia and thrombocytopenia, and are associated with the presence of NS1 in the serum.
Collapse
|
131
|
Naseri M, Ziora ZM, Simon GP, Batchelor W. ASSURED‐compliant point‐of‐care diagnostics for the detection of human viral infections. Rev Med Virol 2021. [DOI: 10.1002/rmv.2263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mahdi Naseri
- Department of Chemical Engineering Bioresource Processing Research Institute of Australia (BioPRIA) Monash University Clayton VIC Australia
| | - Zyta M Ziora
- Institute for Molecular Bioscience The University of Queensland St Lucia QLD Australia
| | - George P Simon
- Department of Materials Science and Engineering Monash University Clayton VIC Australia
| | - Warren Batchelor
- Department of Chemical Engineering Bioresource Processing Research Institute of Australia (BioPRIA) Monash University Clayton VIC Australia
| |
Collapse
|
132
|
Sanchez Vargas LA, Adam A, Masterson M, Smith M, Lyski ZL, Dowd KA, Pierson TC, Messer WB, Currier JR, Mathew A. Non-structural protein 1-specific antibodies directed against Zika virus in humans mediate antibody-dependent cellular cytotoxicity. Immunology 2021; 164:386-397. [PMID: 34056709 PMCID: PMC8442231 DOI: 10.1111/imm.13380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/18/2021] [Accepted: 05/23/2021] [Indexed: 12/14/2022] Open
Abstract
There is growing interest in understanding antibody (Ab) function beyond neutralization. The non-structural protein 1 (NS1) of Zika virus (ZIKV) is an attractive candidate for an effective vaccine as Abs against NS1, unlike the envelope or premembrane, do not carry the risk of mediating antibody-dependent enhancement. Our aim was to evaluate whether ZIKV NS1 Abs elicited following natural infection in humans can mediate antibody-dependent cellular cytotoxicity (ADCC). We evaluated the isotype specificity of ZIKV-specific Abs in immune sera and supernatants from stimulated immune PBMC and found that Abs against ZIKV NS1 and virus-like particles were predominantly of the IgG1 isotype. Using a recently developed FluoroSpot assay, we found robust frequencies of NS1-specific Ab-secreting cells in PBMC of individuals who were naturally infected with ZIKV. We developed assays to measure both natural killer cell activation by flow cytometry and target cell lysis of ZIKV NS1-expressing cells using an image cytometry assay in the presence of ZIKV NS1 Abs. Our data indicate efficient opsonization of ZIKV NS1-expressing CEM-NKR cell lines using ZIKV-immune but not ZIKV-naïve sera, a prerequisite of ADCC. Furthermore, sera from immune donors were able to induce both NK cell degranulation and lysis of ZIKV NS1 CEM-NKR cells in vitro. Our data suggest that ADCC is a possible mechanism for ZIKV NS1 Abs to eliminate virally infected target cells.
Collapse
Affiliation(s)
- Luis A Sanchez Vargas
- Department of Cell and Molecular Biology, Institute for Immunology and Informatics, University of Rhode Island, Providence, RI, USA
| | - Awadalkareem Adam
- Department of Cell and Molecular Biology, Institute for Immunology and Informatics, University of Rhode Island, Providence, RI, USA
| | - Mary Masterson
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Madison Smith
- Department of Cell and Molecular Biology, Institute for Immunology and Informatics, University of Rhode Island, Providence, RI, USA
| | - Zoe L Lyski
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, USA
| | | | | | - William B Messer
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, USA.,Division of Infectious Diseases, Department of Medicine, Oregon Health & Science University, Portland, OR, USA.,OHSU-PSU School of Public Health, Program in Epidemiology, Oregon Health & Science University, Portland, OR, USA
| | - Jeffrey R Currier
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Anuja Mathew
- Department of Cell and Molecular Biology, Institute for Immunology and Informatics, University of Rhode Island, Providence, RI, USA
| |
Collapse
|
133
|
Inflammatory signaling in dengue-infected platelets requires translation and secretion of nonstructural protein 1. Blood Adv 2021; 4:2018-2031. [PMID: 32396616 DOI: 10.1182/bloodadvances.2019001169] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 04/06/2020] [Indexed: 12/13/2022] Open
Abstract
Emerging evidence identifies major contributions of platelets to inflammatory amplification in dengue, but the mechanisms of infection-driven platelet activation are not completely understood. Dengue virus nonstructural protein-1 (DENV NS1) is a viral protein secreted by infected cells with recognized roles in dengue pathogenesis, but it remains unknown whether NS1 contributes to the inflammatory phenotype of infected platelets. This study shows that recombinant DENV NS1 activated platelets toward an inflammatory phenotype that partially reproduced DENV infection. NS1 stimulation induced translocation of α-granules and release of stored factors, but not of newly synthesized interleukin-1β (IL-1β). Even though both NS1 and DENV were able to induce pro-IL-1β synthesis, only DENV infection triggered caspase-1 activation and IL-1β release by platelets. A more complete thromboinflammatory phenotype was achieved by synergistic activation of NS1 with classic platelet agonists, enhancing α-granule translocation and inducing thromboxane A2 synthesis (thrombin and platelet-activating factor), or activating caspase-1 for IL-1β processing and secretion (adenosine triphosphate). Also, platelet activation by NS1 partially depended on toll-like receptor-4 (TLR-4), but not TLR-2/6. Finally, the platelets sustained viral genome translation and replication, but did not support the release of viral progeny to the extracellular milieu, characterizing an abortive viral infection. Although DENV infection was not productive, translation of the DENV genome led to NS1 expression and release by platelets, contributing to the activation of infected platelets through an autocrine loop. These data reveal distinct, new mechanisms for platelet activation in dengue, involving DENV genome translation and NS1-induced platelet activation via platelet TLR4.
Collapse
|
134
|
Jácome FC, Caldas GC, Rasinhas ADC, de Almeida ALT, de Souza DDC, Paulino AC, Leonardo R, Barth OM, Dos Santos FB, Barreto-Vieira DF. Comparative analysis of liver involvement caused by two DENV-2 lineages using an immunocompetent murine model. Sci Rep 2021; 11:9723. [PMID: 33958631 PMCID: PMC8102549 DOI: 10.1038/s41598-021-88502-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 04/12/2021] [Indexed: 11/30/2022] Open
Abstract
Dengue (DEN) is the most prevalent arbovirus among humans, and four billion people live at risk of infection. The clinical manifestations of DEN are variable, and the disease may present subclinically or asymptomatically. A quarter of patients develop classical dengue (CD) or severe dengue (SD), which is potentially lethal and involves vascular permeability changes, severe hemorrhage and organ damage. The involvement of the liver is a fairly common feature in DEN, and alterations range from asymptomatic elevation of transaminases to acute liver failure. Since its introduction in Brazil in 1990, two strains of Dengue virus (DENV) serotype 2 (DENV-2) have been detected: Lineage I, which is responsible for an outbreak in 1991, and Lineage II, which caused an epidemic greater than the previous one and had a different epidemiological profile. To date, studies on different strains of the same serotype/genotype and their association with disease severity are scarce. In addition, one of the greatest challenges regarding the study of DEN pathogenesis and the development of drug and vaccine therapies is the absence of an animal model that reproduces the disease as it occurs in humans. The main goals of this study were to assess BALB/c mouse susceptibility experimentally infected by two distinct DENV-2 strains and characterize possible differences in the clinical signs and alterations induced in the liver resulting from those infections. Mice infected by the two DENV-2 lineages gained less weight than uninfected mice; however, their livers were slightly heavier. Increased AST and AST levels were observed in infected mice, and the number of platelets increased in the first 72 h of infection and subsequently decreased. Mice infected with both lineages presented leukocytosis but at different times of infection. The histopathological changes induced by both lineages were similar and comparable to the changes observed in DEN fatal cases. The viral genome was detected in two liver samples. The results demonstrate the susceptibility of BALB/c mice to both DENV-2 lineages and suggest that the changes induced by those strains are similar, although for some parameters, they are manifested at different times of infection.
Collapse
Affiliation(s)
- Fernanda Cunha Jácome
- Laboratory of Viral Morphology and Morphogenesis, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil 4365, Rio de Janeiro, RJ, 21040-900, Brazil.
| | - Gabriela Cardoso Caldas
- Laboratory of Viral Morphology and Morphogenesis, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil 4365, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Arthur da Costa Rasinhas
- Laboratory of Viral Morphology and Morphogenesis, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil 4365, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Ana Luisa Teixeira de Almeida
- Laboratory of Viral Morphology and Morphogenesis, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil 4365, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Daniel Dias Coutinho de Souza
- Laboratory of Viral Morphology and Morphogenesis, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil 4365, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Amanda Carlos Paulino
- Laboratory of Viral Morphology and Morphogenesis, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil 4365, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Raphael Leonardo
- Laboratory of Viral Morphology and Morphogenesis, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil 4365, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Ortrud Monika Barth
- Laboratory of Viral Morphology and Morphogenesis, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil 4365, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Flavia Barreto Dos Santos
- Laboratory of Viral Immunology, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil, 4365, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Débora Ferreira Barreto-Vieira
- Laboratory of Viral Morphology and Morphogenesis, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil 4365, Rio de Janeiro, RJ, 21040-900, Brazil
| |
Collapse
|
135
|
Haymet AB, Bartnikowski N, Wood ES, Vallely MP, McBride A, Yacoub S, Biering SB, Harris E, Suen JY, Fraser JF. Studying the Endothelial Glycocalyx in vitro: What Is Missing? Front Cardiovasc Med 2021; 8:647086. [PMID: 33937360 PMCID: PMC8079726 DOI: 10.3389/fcvm.2021.647086] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/19/2021] [Indexed: 12/16/2022] Open
Abstract
All human cells are coated by a surface layer of proteoglycans, glycosaminoglycans (GAGs) and plasma proteins, called the glycocalyx. The glycocalyx transmits shear stress to the cytoskeleton of endothelial cells, maintains a selective permeability barrier, and modulates adhesion of blood leukocytes and platelets. Major components of the glycocalyx, including syndecans, heparan sulfate, and hyaluronan, are shed from the endothelial surface layer during conditions including ischaemia and hypoxia, sepsis, atherosclerosis, diabetes, renal disease, and some viral infections. Studying mechanisms of glycocalyx damage in vivo can be challenging due to the complexity of immuno-inflammatory responses which are inextricably involved. Previously, both static as well as perfused in vitro models have studied the glycocalyx, and have reported either imaging data, assessment of barrier function, or interactions of blood components with the endothelial monolayer. To date, no model has simultaneously incorporated all these features at once, however such a model would arguably enhance the study of vasculopathic processes. This review compiles a series of current in vitro models described in the literature that have targeted the glycocalyx layer, their limitations, and potential opportunities for further developments in this field.
Collapse
Affiliation(s)
- Andrew B Haymet
- Critical Care Research Group, The Prince Charles Hospital, Chermside, QLD, Australia.,Faculty of Medicine, University of Queensland, St Lucia, QLD, Australia
| | - Nicole Bartnikowski
- Critical Care Research Group, The Prince Charles Hospital, Chermside, QLD, Australia.,Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD, Australia
| | - Emily S Wood
- Critical Care Research Group, The Prince Charles Hospital, Chermside, QLD, Australia.,Faculty of Medicine, University of Queensland, St Lucia, QLD, Australia
| | - Michael P Vallely
- Division of Cardiac Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Angela McBride
- Department of Global Health and Infection, Brighton and Sussex Medical School, Brighton, United Kingdom.,Oxford University Clinical Research Unit, Wellcome Trust Africa Asia Programme, Ho Chi Minh City, Vietnam
| | - Sophie Yacoub
- Oxford University Clinical Research Unit, Wellcome Trust Africa Asia Programme, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Scott B Biering
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, United States
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, United States
| | - Jacky Y Suen
- Critical Care Research Group, The Prince Charles Hospital, Chermside, QLD, Australia.,Faculty of Medicine, University of Queensland, St Lucia, QLD, Australia
| | - John F Fraser
- Critical Care Research Group, The Prince Charles Hospital, Chermside, QLD, Australia.,Faculty of Medicine, University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
136
|
Agelidis A, Turturice BA, Suryawanshi RK, Yadavalli T, Jaishankar D, Ames J, Hopkins J, Koujah L, Patil CD, Hadigal SR, Kyzar EJ, Campeau A, Wozniak JM, Gonzalez DJ, Vlodavsky I, Li JP, Perkins DL, Finn PW, Shukla D. Disruption of innate defense responses by endoglycosidase HPSE promotes cell survival. JCI Insight 2021; 6:144255. [PMID: 33621216 PMCID: PMC8119219 DOI: 10.1172/jci.insight.144255] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/18/2021] [Indexed: 01/03/2023] Open
Abstract
The drive to withstand environmental stresses and defend against invasion is a universal trait extant in all forms of life. While numerous canonical signaling cascades have been characterized in detail, it remains unclear how these pathways interface to generate coordinated responses to diverse stimuli. To dissect these connections, we followed heparanase (HPSE), a protein best known for its endoglycosidic activity at the extracellular matrix but recently recognized to drive various forms of late-stage disease through unknown mechanisms. Using herpes simplex virus-1 (HSV-1) infection as a model cellular perturbation, we demonstrate that HPSE acts beyond its established enzymatic role to restrict multiple forms of cell-intrinsic defense and facilitate host cell reprogramming by the invading pathogen. We reveal that cells devoid of HPSE are innately resistant to infection and counteract viral takeover through multiple amplified defense mechanisms. With a unique grasp of the fundamental processes of transcriptional regulation and cell death, HPSE represents a potent cellular intersection with broad therapeutic potential.
Collapse
Affiliation(s)
- Alex Agelidis
- Department of Microbiology and Immunology
- Department of Ophthalmology and Visual Sciences, and
| | - Benjamin A. Turturice
- Department of Microbiology and Immunology
- Division of Pulmonary, Critical Care, Sleep, and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | | | | | - Dinesh Jaishankar
- Department of Ophthalmology and Visual Sciences, and
- Department of Dermatology, Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA
| | - Joshua Ames
- Department of Microbiology and Immunology
- Department of Ophthalmology and Visual Sciences, and
| | - James Hopkins
- Department of Microbiology and Immunology
- Department of Ophthalmology and Visual Sciences, and
| | - Lulia Koujah
- Department of Microbiology and Immunology
- Department of Ophthalmology and Visual Sciences, and
| | | | | | - Evan J. Kyzar
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Anaamika Campeau
- Department of Pharmacology and
- Skaggs School of Pharmacy, UCSD, San Diego, La Jolla, California, USA
| | - Jacob M. Wozniak
- Department of Pharmacology and
- Skaggs School of Pharmacy, UCSD, San Diego, La Jolla, California, USA
| | - David J. Gonzalez
- Department of Pharmacology and
- Skaggs School of Pharmacy, UCSD, San Diego, La Jolla, California, USA
| | - Israel Vlodavsky
- Technion Integrated Cancer Center (TICC), Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Jin-ping Li
- Department of Medical Biochemistry and Microbiology, University of Uppsala, Uppsala, Sweden
| | - David L. Perkins
- Division of Nephrology, Department of Medicine, and
- Department of Surgery, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Patricia W. Finn
- Department of Microbiology and Immunology
- Division of Pulmonary, Critical Care, Sleep, and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Deepak Shukla
- Department of Microbiology and Immunology
- Department of Ophthalmology and Visual Sciences, and
| |
Collapse
|
137
|
Koganti R, Memon A, Shukla D. Emerging Roles of Heparan Sulfate Proteoglycans in Viral Pathogenesis. Semin Thromb Hemost 2021; 47:283-294. [PMID: 33851373 DOI: 10.1055/s-0041-1725068] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Heparan sulfate is a glycosaminoglycan present in nearly all mammalian tissues. Heparan sulfate moieties are attached to the cell surface via heparan sulfate proteoglycans (HSPGs) which are composed of a protein core bound to multiple heparan sulfate chains. HSPGs contribute to the structural integrity of the extracellular matrix and participate in cell signaling by releasing bound cytokines and chemokines once cleaved by an enzyme, heparanase. HSPGs are often exploited by viruses during infection, particularly during attachment and egress. Loss or inhibition of HSPGs initially during infection can yield significant decreases in viral entry and infectivity. In this review, we provide an overview of HSPGs in the lifecycle of multiple viruses, including herpesviruses, human immunodeficiency virus, dengue virus, human papillomavirus, and coronaviruses.
Collapse
Affiliation(s)
- Raghuram Koganti
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois
| | - Abdullah Memon
- College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois.,Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
138
|
Gerlza T, Trojacher C, Kitic N, Adage T, Kungl AJ. Development of Molecules Antagonizing Heparan Sulfate Proteoglycans. Semin Thromb Hemost 2021; 47:316-332. [PMID: 33794555 DOI: 10.1055/s-0041-1725067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Heparan sulfate proteoglycans (HSPGs) occur in almost every tissue of the human body and consist of a protein core, with covalently attached glycosaminoglycan polysaccharide chains. These glycosaminoglycans are characterized by their polyanionic nature, due to sulfate and carboxyl groups, which are distributed along the chain. These chains can be modified by different enzymes at varying positions, which leads to huge diversity of possible structures with the complexity further increased by varying chain lengths. According to their location, HSPGs are divided into different families, the membrane bound, the secreted extracellular matrix, and the secretory vesicle family. As members of the extracellular matrix, they take part in cell-cell communication processes on many levels and with different degrees of involvement. Of particular therapeutic interest is their role in cancer and inflammation as well as in infectious diseases. In this review, we give an overview of the current status of medical approaches to antagonize HSPG function in pathology.
Collapse
Affiliation(s)
- Tanja Gerlza
- Karl-Franzens University Graz, Institute of Pharmaceutical Sciences, Graz, Austria
| | - Christina Trojacher
- Karl-Franzens University Graz, Institute of Pharmaceutical Sciences, Graz, Austria
| | - Nikola Kitic
- Karl-Franzens University Graz, Institute of Pharmaceutical Sciences, Graz, Austria
| | | | - Andreas J Kungl
- Karl-Franzens University Graz, Institute of Pharmaceutical Sciences, Graz, Austria.,Antagonis Biotherapeutics GmbH, Graz, Austria
| |
Collapse
|
139
|
Choudhury SKM, Ma X, Abdullah SW, Zheng H. Activation and Inhibition of the NLRP3 Inflammasome by RNA Viruses. J Inflamm Res 2021; 14:1145-1163. [PMID: 33814921 PMCID: PMC8009543 DOI: 10.2147/jir.s295706] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/27/2021] [Indexed: 12/17/2022] Open
Abstract
Inflammation refers to the response of the immune system to viral, bacterial, and fungal infections, or other foreign particles in the body, which can involve the production of a wide array of soluble inflammatory mediators. It is important for the development of many RNA virus-infected diseases. The primary factors through which the infection becomes inflammation involve inflammasome. Inflammasomes are proteins complex that the activation is responsive to specific pathogens, host cell damage, and other environmental stimuli. Inflammasomes bring about the maturation of various pro-inflammatory cytokines such as IL-18 and IL-1β in order to mediate the innate immune defense mechanisms. Many RNA viruses and their components, such as encephalomyocarditis virus (EMCV) 2B viroporin, the viral RNA of hepatitis C virus, the influenza virus M2 viroporin, the respiratory syncytial virus (RSV) small hydrophobic (SH) viroporin, and the human rhinovirus (HRV) 2B viroporin can activate the Nod-like receptor (NLR) family pyrin domain-containing 3 (NLRP3) inflammasome to influence the inflammatory response. On the other hand, several viruses use virus-encoded proteins to suppress inflammation activation, such as the influenza virus NS1 protein and the measles virus (MV) V protein. In this review, we summarize how RNA virus infection leads to the activation or inhibition of the NLRP3 inflammasome.
Collapse
Affiliation(s)
- S K Mohiuddin Choudhury
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, People's Republic of China
| | - XuSheng Ma
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, People's Republic of China
| | - Sahibzada Waheed Abdullah
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, People's Republic of China
| | - HaiXue Zheng
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, People's Republic of China
| |
Collapse
|
140
|
Lee PX, Ting DHR, Boey CPH, Tan ETX, Chia JZH, Idris F, Oo Y, Ong LC, Chua YL, Hapuarachchi C, Ng LC, Alonso S. Relative contribution of nonstructural protein 1 in dengue pathogenesis. J Exp Med 2021; 217:151891. [PMID: 32584412 PMCID: PMC7478733 DOI: 10.1084/jem.20191548] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 04/10/2020] [Accepted: 05/13/2020] [Indexed: 12/16/2022] Open
Abstract
Dengue is a major public health concern in the tropical and subtropical world, with no effective treatment. The controversial live attenuated virus vaccine Dengvaxia has boosted the pursuit of subunit vaccine approaches, and nonstructural protein 1 (NS1) has recently emerged as a promising candidate. However, we found that NS1 immunization or passive transfer of NS1 antibodies failed to confer protection in symptomatic dengue mouse models using two non–mouse-adapted DENV2 strains that are highly virulent. Exogenous administration of purified NS1 also failed to worsen in vivo vascular leakage in sublethally infected mice. Neither method of NS1 immune neutralization changed the disease outcome of a chimeric strain expressing a vascular leak-potent NS1. Instead, virus chimerization involving the prME structural region indicated that these proteins play a critical role in driving in vivo fitness and virulence of the virus, through induction of key proinflammatory cytokines. This work highlights that the pathogenic role of NS1 is DENV strain dependent, which warrants reevaluation of NS1 as a universal dengue vaccine candidate.
Collapse
Affiliation(s)
- Pei Xuan Lee
- Infectious Disease Programme and Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore
| | - Donald Heng Rong Ting
- Infectious Disease Programme and Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore
| | - Clement Peng Hee Boey
- Infectious Disease Programme and Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore
| | - Eunice Tze Xin Tan
- Infectious Disease Programme and Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore
| | - Janice Zuo Hui Chia
- Infectious Disease Programme and Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore
| | - Fakhriedzwan Idris
- Infectious Disease Programme and Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore
| | - Yukei Oo
- Infectious Disease Programme and Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore
| | - Li Ching Ong
- Infectious Disease Programme and Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore
| | - Yen Leong Chua
- Infectious Disease Programme and Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - Lee Ching Ng
- Environmental Health Institute at National Environment Agency, Singapore
| | - Sylvie Alonso
- Infectious Disease Programme and Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore
| |
Collapse
|
141
|
Agelidis A, Suryawanshi RK, Patil CD, Campeau A, Gonzalez DJ, Shukla D. Dissociation of DNA damage sensing by endoglycosidase HPSE. iScience 2021; 24:102242. [PMID: 33748723 PMCID: PMC7957091 DOI: 10.1016/j.isci.2021.102242] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/09/2021] [Accepted: 02/24/2021] [Indexed: 12/25/2022] Open
Abstract
Balance between cell proliferation and elimination is critical in handling threats both exogenous and of internal dysfunction. Recent work has implicated a conserved but poorly understood endoglycosidase heparanase (HPSE) in the restriction of innate defense responses, yet biochemical mediators of these key functions remained unclear. Here, an unbiased immunopurification proteomics strategy is employed to identify and rank uncharacterized interactions between HPSE and mediators of canonical signaling pathways linking cell cycle and stress responses. We demonstrate with models of genotoxic stress including herpes simplex virus infection and chemotherapeutic treatment that HPSE dampens innate responses to double-stranded DNA breakage by interfering with signal transduction between initial sensors and downstream mediators. Given the long-standing recognition of HPSE in driving late-stage inflammatory disease exemplified by tissue destruction and cancer metastasis, modulation of this protein with control over the DNA damage response imparts a unique strategy in the development of unconventional multivalent therapy. HPSE binds key proteins at interface of DNA damage signaling and IFN responses Nuclear translocation of DNA damage transducer ATM is enhanced in absence of HPSE Cells lacking HPSE display enhanced sensitivity to DNA damage-induced death HPSE interfaces with regulators of DNA damage response to influence cell fate
Collapse
Affiliation(s)
- Alex Agelidis
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Rahul K. Suryawanshi
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Chandrashekhar D. Patil
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Anaamika Campeau
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
- Skaggs School of Pharmacy, University of California, San Diego, La Jolla, CA 92093, USA
| | - David J. Gonzalez
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
- Skaggs School of Pharmacy, University of California, San Diego, La Jolla, CA 92093, USA
| | - Deepak Shukla
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
- Corresponding author
| |
Collapse
|
142
|
Price S, Targoński R, Sadowski J, Targoński R. To Curb the Progression of Fatal COVID-19 Course-Dream or Reality. Curr Hypertens Rep 2021; 23:12. [PMID: 33638064 PMCID: PMC7910199 DOI: 10.1007/s11906-021-01130-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2021] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW To analyze the impact of sodium retention states on the course of COVID-19 and propose possible interventions to curb disease progression. RECENT FINDINGS Numerous data confirm a positive association of non-communicable diseases, aging, and other sodium-retaining states, including iatrogenic ones, with more severe sometimes fatal clinical course of COVID-19. Reasons for this effect could include increased angiotensin signaling via the AT1R receptor. The endothelial glycocalyx also plays an important role in infection, leading to a vicious cycle of inflammation and tissue sodium retention when damaged. RAS inhibitors may help restore glycocalyx function and prevent severe organ damage. Anticoagulants, especially heparin, may also have therapeutic applications due to antithrombotic, anti-inflammatory, glycocalyx-repairing, and antialdosteronic properties. The ambiguous influence of some diuretics on sodium balance was also discussed. Abnormal sodium storage and increased angiotensin-converting enzyme activity are related to the severity of COVID-19. Inducing sodium removal and reducing intake might improve outcomes.
Collapse
Affiliation(s)
- Szymon Price
- Miejski Szpital Zespolony w Olsztynie, Klinika Kardiologii i Chorób Wewnętrznych, Clinic of Cardiology and Internal Medicine, Metropolitan Hospital of Nicolaus Copernicus, University of Warmia and Mazury, Niepodległości 44, 10-045 Olsztyn, Poland
| | - Radosław Targoński
- Department of Cardiac & Vascular Surgery, University Hospital of Gdańsk, M. Skłodowskiej-Curie 3a street, 80-210 Gdańsk, Poland
| | - Janusz Sadowski
- Miejski Szpital Zespolony w Olsztynie, Klinika Kardiologii i Chorób Wewnętrznych, Clinic of Cardiology and Internal Medicine, Metropolitan Hospital of Nicolaus Copernicus, University of Warmia and Mazury, Niepodległości 44, 10-045 Olsztyn, Poland
| | - Ryszard Targoński
- Department of Cardiac & Vascular Surgery, University Hospital of Gdańsk, M. Skłodowskiej-Curie 3a street, 80-210 Gdańsk, Poland
| |
Collapse
|
143
|
Gan ES, Tan HC, Le DHT, Huynh TT, Wills B, Seidah NG, Ooi EE, Yacoub S. Dengue virus induces PCSK9 expression to alter antiviral responses and disease outcomes. J Clin Invest 2021; 130:5223-5234. [PMID: 32644974 PMCID: PMC7524462 DOI: 10.1172/jci137536] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 07/01/2020] [Indexed: 12/17/2022] Open
Abstract
Dengue virus (DENV) infection requires cholesterol as a proviral factor, although statin treatment did not show antiviral efficacy in patients with dengue. Here, we show that DENV infection manipulated cholesterol metabolism in cells residing in low-oxygen microenvironments (hypoxia) such as in the liver, spleen, and lymph nodes. DENV infection induced expression of proprotein convertase subtilisin/kexin type 9 (PCSK9), which reduces low-density lipoprotein receptor (LDLR) recycling and hence cholesterol uptake. We found that, whereas LDLR uptake would have distributed cholesterol throughout the various cell compartments, de novo cholesterol synthesis enriched this lipid in the endoplasmic reticulum (ER). With cholesterol enrichment in the ER, ER-resident STING and type I IFN (IFN) activation was repressed during DENV infection. Our in vitro findings were further supported by the detection of elevated plasma PCSK9 levels in patients with dengue with high viremia and increased severity of plasma leakage. Our findings therefore suggest that PCSK9 plays a hitherto unrecognized role in dengue pathogenesis and that PCSK9 inhibitors could be a suitable host-directed treatment for patients with dengue.
Collapse
Affiliation(s)
| | - Hwee Cheng Tan
- Duke-National University of Singapore Medical School, Singapore
| | - Duyen Huynh Thi Le
- Oxford University Clinical Research Unit (OUCRU), Ho Chi Minh City, Vietnam
| | - Trieu Trung Huynh
- Oxford University Clinical Research Unit (OUCRU), Ho Chi Minh City, Vietnam
| | - Bridget Wills
- Oxford University Clinical Research Unit (OUCRU), Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Nabil G Seidah
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute, Université de Montréal, Montréal, Québec, Canada
| | - Eng Eong Ooi
- Duke-National University of Singapore Medical School, Singapore.,Saw Swee Hock School of Public Health, National University of Singapore, Singapore.,SingHealth Duke-National University of Singapore Global Health Institute, Singapore.,Antimicrobial Resistance Interdisciplinary Research Group, Singapore MIT Alliance in Research and Technology, Singapore
| | - Sophie Yacoub
- Oxford University Clinical Research Unit (OUCRU), Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom.,Antimicrobial Resistance Interdisciplinary Research Group, Singapore MIT Alliance in Research and Technology, Singapore
| |
Collapse
|
144
|
Fosse JH, Haraldsen G, Falk K, Edelmann R. Endothelial Cells in Emerging Viral Infections. Front Cardiovasc Med 2021; 8:619690. [PMID: 33718448 PMCID: PMC7943456 DOI: 10.3389/fcvm.2021.619690] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/01/2021] [Indexed: 12/11/2022] Open
Abstract
There are several reasons to consider the role of endothelial cells in COVID-19 and other emerging viral infections. First, severe cases of COVID-19 show a common breakdown of central vascular functions. Second, SARS-CoV-2 replicates in endothelial cells. Third, prior deterioration of vascular function exacerbates disease, as the most common comorbidities of COVID-19 (obesity, hypertension, and diabetes) are all associated with endothelial dysfunction. Importantly, SARS-CoV-2's ability to infect endothelium is shared by many emerging viruses, including henipaviruses, hantavirus, and highly pathogenic avian influenza virus, all specifically targeting endothelial cells. The ability to infect endothelium appears to support generalised dissemination of infection and facilitate the access to certain tissues. The disturbed vascular function observed in severe COVID-19 is also a prominent feature of many other life-threatening viral diseases, underscoring the need to understand how viruses modulate endothelial function. We here review the role of vascular endothelial cells in emerging viral infections, starting with a summary of endothelial cells as key mediators and regulators of vascular and immune responses in health and infection. Next, we discuss endotheliotropism as a possible virulence factor and detail features that regulate viruses' ability to attach to and enter endothelial cells. We move on to review how endothelial cells detect invading viruses and respond to infection, with particular focus on pathways that may influence vascular function and the host immune system. Finally, we discuss how endothelial cell function can be dysregulated in viral disease, either by viral components or as bystander victims of overshooting or detrimental inflammatory and immune responses. Many aspects of how viruses interact with the endothelium remain poorly understood. Considering the diversity of such mechanisms among different emerging viruses allows us to highlight common features that may be of general validity and point out important challenges.
Collapse
Affiliation(s)
| | - Guttorm Haraldsen
- Department of Pathology, Oslo University Hospital, Oslo, Norway.,Department of Pathology, University of Oslo, Oslo, Norway
| | - Knut Falk
- Norwegian Veterinary Institute, Oslo, Norway.,AquaMed Consulting AS, Oslo, Norway
| | - Reidunn Edelmann
- Department of Clinical Medicine, Centre for Cancer Biomarkers CCBIO, University of Bergen, Bergen, Norway
| |
Collapse
|
145
|
Wang Z, Arnold K, Dhurandhare VM, Xu Y, Liu J. Investigation of the biological functions of heparan sulfate using a chemoenzymatic synthetic approach. RSC Chem Biol 2021; 2:702-712. [PMID: 34179782 PMCID: PMC8190904 DOI: 10.1039/d0cb00199f] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/19/2021] [Indexed: 01/31/2023] Open
Abstract
Heparan sulfate (HS) is a highly sulfated polysaccharide playing essential physiological and pathophysiological roles in the animal kingdom. Heparin, a highly sulfated form of HS, is a widely used anticoagulant drug. Isolated from biological sources, both heparin and HS are polysaccharide mixtures with different sugar chain lengths and sulfation patterns. Structural heterogeneity of HS complicates the investigation of HS-related biological activities. The availability of structurally defined HS oligosaccharides is critical in understanding the contribution of saccharide structures to the functions. The chemoenzymatic synthetic approach is emerging as a cost-effective method to synthesize HS oligosaccharides. Structurally defined oligosaccharides are now widely available for biologists. This review summarizes our efforts in using this new synthetic method to develop new anticoagulant therapeutics and discover the role of HS to protect liver damage under pathological conditions. The synthetic method also allows us to prepare reference saccharide standards to improve structural analysis of HS.
Collapse
Affiliation(s)
- Zhangjie Wang
- Division of Medicinal Chemistry and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina Chapel Hill North Carolina USA
| | - Katelyn Arnold
- Division of Medicinal Chemistry and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina Chapel Hill North Carolina USA
| | - Vijay Manohar Dhurandhare
- Division of Medicinal Chemistry and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina Chapel Hill North Carolina USA
| | - Yongmei Xu
- Division of Medicinal Chemistry and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina Chapel Hill North Carolina USA
| | - Jian Liu
- Division of Medicinal Chemistry and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina Chapel Hill North Carolina USA
| |
Collapse
|
146
|
Instability of the NS1 Glycoprotein from La Reunion 2018 Dengue 2 Virus (Cosmopolitan-1 Genotype) in Huh7 Cells Is Due to Lysine Residues on Positions 272 and 324. Int J Mol Sci 2021; 22:ijms22041951. [PMID: 33669407 PMCID: PMC7920422 DOI: 10.3390/ijms22041951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/08/2021] [Accepted: 02/15/2021] [Indexed: 11/16/2022] Open
Abstract
La Reunion island in the South West Indian Ocean is now endemic for dengue following the introduction of dengue virus serotype 2 (DENV-2) cosmopolitan-I genotype in 2017. DENV-2 infection causes a wide spectrum of clinical manifestations ranging from flu-like disease to severe dengue. The nonstructural glycoprotein 1 (NS1) has been identified as playing a key role in dengue disease severity. The intracellular NS1 exists as a homodimer, whereas a fraction is driven towards the plasma membrane or released as a soluble hexameric protein. Here, we characterized the NS1 glycoproteins from clinical isolates DES-14 and RUN-18 that were collected during the DENV-2 epidemics in Tanzania in 2014 and La Reunion island in 2018, respectively. In relation to hepatotropism of the DENV, expression of recombinant DES-14 NS1 and RUN-18 NS1 glycoproteins was compared in human hepatoma Huh7 cells. We observed that RUN-18 NS1 was poorly stable in Huh7 cells compared to DES-14 NS1. The instability of RUN-18 NS1 leading to a low level of NS1 secretion mostly relates to lysine residues on positions 272 and 324. Our data raise the issue of the consequences of a defect in NS1 stability in human hepatocytes in relation to the major role of NS1 in the pathogenesis of the DENV-2 infection.
Collapse
|
147
|
Zhang D, Qi B, Li D, Feng J, Huang X, Ma X, Huang L, Wang X, Liu X. Phillyrin Relieves Lipopolysaccharide-Induced AKI by Protecting Against Glycocalyx Damage and Inhibiting Inflammatory Responses. Inflammation 2021; 43:540-551. [PMID: 31832909 PMCID: PMC7095384 DOI: 10.1007/s10753-019-01136-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Damage to the integrity of heparin sulfate (HS) in the endothelial glycocalyx is an important factor of glomerular filtration barrier dysfunction, which is the basic pathological feature of acute kidney injury (AKI). AKI is a common clinical critical illness with few drugs options offering effective treatment. Phillyrin (Phil), the main pharmacological component of Forsythia suspensa, possesses a wide range of pharmacological activities. However, the effects of Phil on lipopolysaccharide (LPS)-induced AKI have yet to be reported. The aim of the present study is to analyze the effects of Phil on HS damage and inflammatory signaling pathways in LPS-induced AKI. Results revealed that Phil reduces pathological changes and improves renal function in LPS-induced AKI. Further analysis indicated that Phil effectively protects against glycocalyx HS degradation in LPS-stimulated EA.hy926 cells in vitro and LPS-induced AKI mice in vivo. The protective effect of Phil on HS damage may be associated with the isolate's ability to suppress the production of reactive oxygen species, and decrease expression levels of cathepsin L and heparanase in vitro and in vivo. In addition, ELISA and Western blot results revealed that Phil inhibits the activation of the NF-κB and MAPK signaling pathways and decreases the levels of inflammatory cytokines (IL-1β, IL-6, and TNF-α) in LPS-induced ARDS mice. In general, protection against endothelial glycocalyx HS damage and inhibition of inflammatory responses by Phil may be used as treatment targets for LPS-induced AKI.
Collapse
Affiliation(s)
- Dong Zhang
- Department of Respirator Medicine and Intensive Care Unit, Affiliated Hospital of Binzhou Medical University, Binzhou, China
| | - Boyang Qi
- Department of Respirator Medicine and Intensive Care Unit, Affiliated Hospital of Binzhou Medical University, Binzhou, China
| | - Dongxiao Li
- Department of Respirator Medicine and Intensive Care Unit, Affiliated Hospital of Binzhou Medical University, Binzhou, China
| | - Jiali Feng
- Department of Respirator Medicine and Intensive Care Unit, Affiliated Hospital of Binzhou Medical University, Binzhou, China
| | - Xiao Huang
- Department of Respirator Medicine and Intensive Care Unit, Affiliated Hospital of Binzhou Medical University, Binzhou, China
| | - Xiaohong Ma
- Department of Respirator Medicine and Intensive Care Unit, Affiliated Hospital of Binzhou Medical University, Binzhou, China
| | - Lina Huang
- Department of Cell Biology, Binzhou Medical University, Yantai, China
| | - Xiaozhi Wang
- Department of Respirator Medicine and Intensive Care Unit, Affiliated Hospital of Binzhou Medical University, Binzhou, China.
| | - Xiangyong Liu
- Department of Cell Biology, Binzhou Medical University, Yantai, China.
| |
Collapse
|
148
|
Silva T, Jeewandara C, Gomes L, Gangani C, Mahapatuna SD, Pathmanathan T, Wijewickrama A, Ogg GS, Malavige GN. Urinary leukotrienes and histamine in patients with varying severity of acute dengue. PLoS One 2021; 16:e0245926. [PMID: 33544746 PMCID: PMC7864425 DOI: 10.1371/journal.pone.0245926] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/08/2021] [Indexed: 11/23/2022] Open
Abstract
Background Vascular leak is a hallmark of severe dengue, and high leukotriene levels have been observed in dengue mouse models, suggesting a role in disease pathogenesis. We sought to explore their role in acute dengue, by assessing levels of urinary LTE4 and urinary histamine in patients with varying severity of acute dengue. Methods Urinary LTE4, histamine and creatinine were measured by a quantitative ELISA, in healthy individuals (n = 19), patients with dengue fever (DF = 72) and dengue haemorrhagic fever DHF (n = 48). The kinetics of LTE4 and histamine and diurnal variations were assessed in a subset of patients. Results Urinary LTE4 levels were significantly higher (p = 0.004) in patients who proceed to develop DHF when compared to patients with DF during early illness (≤ 4 days) and during the critical phase (p = 0.02), which continued to rise in patients who developed DHF during the course of illness. However, LTE4 is unlikely to be a good biomarker as ROCs gave an AUC value of 0.67 (95% CI 0.57 and 0.76), which was nevertheless significant (p = 0.002). Urinary LTE4 levels did not associate with the degree of viraemia, infecting virus serotype and was not different in those with primary vs secondary dengue. Urinary histamine levels were significantly high in patients with acute dengue although no difference was observed between patients with DF and DHF and again did not associate with the viraemia. Interestingly, LTE4, histamine and the viral loads showed a marked diurnal variation in both patients with DF and DHF. Conclusions Our data suggest that LTE4 could play a role in disease pathogenesis and since there are safe and effective cysteinyl leukotriene receptor blockers, it would be important to assess their efficacy in reducing dengue disease severity.
Collapse
Affiliation(s)
- Tehani Silva
- Centre for Dengue Research, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
- General Sir John Kotelawala Defence University, Rathmalana, Sri Lanka
| | - Chandima Jeewandara
- Centre for Dengue Research, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Laksiri Gomes
- Centre for Dengue Research, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Chathurika Gangani
- Centre for Dengue Research, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | | | | | | | - Graham S. Ogg
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Gathsaurie Neelika Malavige
- Centre for Dengue Research, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
149
|
Christy MP, Uekusa Y, Gerwick L, Gerwick WH. Natural Products with Potential to Treat RNA Virus Pathogens Including SARS-CoV-2. JOURNAL OF NATURAL PRODUCTS 2021; 84:161-182. [PMID: 33352046 PMCID: PMC7771248 DOI: 10.1021/acs.jnatprod.0c00968] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Indexed: 05/03/2023]
Abstract
Three families of RNA viruses, the Coronaviridae, Flaviviridae, and Filoviridae, collectively have great potential to cause epidemic disease in human populations. The current SARS-CoV-2 (Coronaviridae) responsible for the COVID-19 pandemic underscores the lack of effective medications currently available to treat these classes of viral pathogens. Similarly, the Flaviviridae, which includes such viruses as Dengue, West Nile, and Zika, and the Filoviridae, with the Ebola-type viruses, as examples, all lack effective therapeutics. In this review, we present fundamental information concerning the biology of these three virus families, including their genomic makeup, mode of infection of human cells, and key proteins that may offer targeted therapies. Further, we present the natural products and their derivatives that have documented activities to these viral and host proteins, offering hope for future mechanism-based antiviral therapeutics. By arranging these potential protein targets and their natural product inhibitors by target type across these three families of virus, new insights are developed, and crossover treatment strategies are suggested. Hence, natural products, as is the case for other therapeutic areas, continue to be a promising source of structurally diverse new anti-RNA virus therapeutics.
Collapse
Affiliation(s)
- Mitchell P. Christy
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
| | - Yoshinori Uekusa
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Lena Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
| | - William H. Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
150
|
Biering SB, Akey DL, Wong MP, Brown WC, Lo NTN, Puerta-Guardo H, Tramontini Gomes de Sousa F, Wang C, Konwerski JR, Espinosa DA, Bockhaus NJ, Glasner DR, Li J, Blanc SF, Juan EY, Elledge SJ, Mina MJ, Beatty PR, Smith JL, Harris E. Structural basis for antibody inhibition of flavivirus NS1-triggered endothelial dysfunction. Science 2021; 371:194-200. [PMID: 33414220 PMCID: PMC8000976 DOI: 10.1126/science.abc0476] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 11/23/2020] [Indexed: 01/01/2023]
Abstract
Medically important flaviviruses cause diverse disease pathologies and collectively are responsible for a major global disease burden. A contributing factor to pathogenesis is secreted flavivirus nonstructural protein 1 (NS1). Despite demonstrated protection by NS1-specific antibodies against lethal flavivirus challenge, the structural and mechanistic basis remains unknown. Here, we present three crystal structures of full-length dengue virus NS1 complexed with a flavivirus-cross-reactive, NS1-specific monoclonal antibody, 2B7, at resolutions between 2.89 and 3.96 angstroms. These structures reveal a protective mechanism by which two domains of NS1 are antagonized simultaneously. The NS1 wing domain mediates cell binding, whereas the β-ladder triggers downstream events, both of which are required for dengue, Zika, and West Nile virus NS1-mediated endothelial dysfunction. These observations provide a mechanistic explanation for 2B7 protection against NS1-induced pathology and demonstrate the potential of one antibody to treat infections by multiple flaviviruses.
Collapse
Affiliation(s)
- Scott B Biering
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720-3370, USA
| | - David L Akey
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Marcus P Wong
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720-3370, USA
- Infectious Diseases and Immunity Graduate Group, School of Public Health, University of California, Berkeley, Berkeley, CA 94720-3370, USA
| | - W Clay Brown
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nicholas T N Lo
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720-3370, USA
- Infectious Diseases and Immunity Graduate Group, School of Public Health, University of California, Berkeley, Berkeley, CA 94720-3370, USA
| | - Henry Puerta-Guardo
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720-3370, USA
| | | | - Chunling Wang
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720-3370, USA
| | - Jamie R Konwerski
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Diego A Espinosa
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720-3370, USA
| | - Nicholas J Bockhaus
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Dustin R Glasner
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720-3370, USA
| | - Jeffrey Li
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720-3370, USA
| | - Sophie F Blanc
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720-3370, USA
| | - Evan Y Juan
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720-3370, USA
| | - Stephen J Elledge
- Division of Genetics, Brigham and Women's Hospital, Howard Hughes Medical Institute, Department of Genetics, and Program in Virology, Harvard Medical School, Boston, MA 02115, USA
| | - Michael J Mina
- Center for Communicable Disease Dynamics, Department of Epidemiology, and Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | - P Robert Beatty
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720-3370, USA
| | - Janet L Smith
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA.
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720-3370, USA.
| |
Collapse
|