101
|
Garrett ME, Galloway JG, Wolf C, Logue JK, Franko N, Chu HY, Matsen FA, Overbaugh JM. Comprehensive characterization of the antibody responses to SARS-CoV-2 Spike protein finds additional vaccine-induced epitopes beyond those for mild infection. eLife 2022; 11:73490. [PMID: 35072628 PMCID: PMC8887901 DOI: 10.7554/elife.73490] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/18/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Control of the COVID-19 pandemic will rely on SARS-CoV-2 vaccine-elicited antibodies to protect against emerging and future variants; an understanding of the unique features of the humoral responses to infection and vaccination, including different vaccine platforms, is needed to achieve this goal. Methods: The epitopes and pathways of escape for Spike-specific antibodies in individuals with diverse infection and vaccination history were profiled using Phage-DMS. Principal component analysis was performed to identify regions of antibody binding along the Spike protein that differentiate the samples from one another. Within these epitope regions, we determined potential sites of escape by comparing antibody binding of peptides containing wild-type residues versus peptides containing a mutant residue. Results: Individuals with mild infection had antibodies that bound to epitopes in the S2 subunit within the fusion peptide and heptad-repeat regions, whereas vaccinated individuals had antibodies that additionally bound to epitopes in the N- and C-terminal domains of the S1 subunit, a pattern that was also observed in individuals with severe disease due to infection. Epitope binding appeared to change over time after vaccination, but other covariates such as mRNA vaccine dose, mRNA vaccine type, and age did not affect antibody binding to these epitopes. Vaccination induced a relatively uniform escape profile across individuals for some epitopes, whereas there was much more variation in escape pathways in mildly infected individuals. In the case of antibodies targeting the fusion peptide region, which was a common response to both infection and vaccination, the escape profile after infection was not altered by subsequent vaccination. Conclusions: The finding that SARS-CoV-2 mRNA vaccination resulted in binding to additional epitopes beyond what was seen after infection suggests that protection could vary depending on the route of exposure to Spike antigen. The relatively conserved escape pathways to vaccine-induced antibodies relative to infection-induced antibodies suggests that if escape variants emerge they may be readily selected for across vaccinated individuals. Given that the majority of people will be first exposed to Spike via vaccination and not infection, this work has implications for predicting the selection of immune escape variants at a population level. Funding: This work was supported by NIH grants AI138709 (PI JMO) and AI146028 (PI FAM). JMO received support as the Endowed Chair for Graduate Education (FHCRC). The research of FAM was supported in part by a Faculty Scholar grant from the Howard Hughes Medical Institute and the Simons Foundation. Scientific Computing Infrastructure at Fred Hutch was funded by ORIP grant S10OD028685. When SARS-CoV-2 – the virus that causes COVID-19 – infects our bodies, our immune system reacts by producing small molecules called antibodies that stick to a part of the virus called the spike protein. Vaccines are thought to work by triggering the production of similar antibodies without causing disease. Some of the most effective antibodies against SARS-CoV-2 bind a specific area of the spike protein called the ‘receptor binding domain’ or RBD. When SARS-CoV-2 evolves it creates a challenge for our immune system: mutations, which are changes in the virus’s genetic code, can alter the shape of its spike protein, meaning that existing antibodies may no longer bind to it as effectively. This lowers the protection offered by past infection or vaccination, which makes it harder to tackle the pandemic. As it stands, it is not clear which mutations to the virus’s genetic code can affect antibody binding, especially to portions outside the RBD. To complicate things further, the antibodies people produce in response to mild infection, severe infection, and vaccination, while somewhat overlapping, exhibit some differences. Studying these differences could help minimize emergence of mutations that allow the virus to ‘escape’ the antibody response. A phage display library is a laboratory technique in which phages (viruses that infect bacteria) are used as a ‘repository’ for DNA fragments that code for a specific protein. The phages can then produce the protein (or fragments of it), and if the protein fragments bind to a target, it can be easily detected. Garrett, Galloway et al. exploited this technique to study how different portions of the SARS-CoV-2 spike protein were bound by antibodies. They made a phage library in which each phage encoded a portion of the spike protein with different mutations, and then exposed the different versions of the protein to antibodies from people who had experienced prior infection, vaccination, or both. The experiment showed that antibodies produced during severe infection or after vaccination bound to similar parts of the spike protein, while antibodies from people who had experienced mild infection targeted fewer areas. Garrett, Galloway et al. also found that mutations that affected the binding of antibodies produced after vaccination were more consistent than mutations that interfered with antibodies produced during infection. While these results show which mutations are most likely to help the virus escape existing antibodies, this does not mean that the virus will necessarily evolve in that direction. Indeed, some of the mutations may be impossible for the virus to acquire because they interfere with the virus’s ability to spread. Further studies could focus on revealing which of the mutations detected by Garrett, Galloway et al. are most likely to occur, to guide vaccine development in that direction. To help with this, Garrett, Galloway et al. have made the data accessible to other scientists and the public using a web tool.
Collapse
Affiliation(s)
- Meghan E Garrett
- Division of Human Biology, Fred Hutchinson Cancer Research Center
| | - Jared G Galloway
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center
| | - Caitlin Wolf
- Department of Medicine, University of Washington
| | | | | | - Helen Y Chu
- Department of Medicine, University of Washington
| | | | | |
Collapse
|
102
|
Kistler KE, Huddleston J, Bedford T. Rapid and parallel adaptive mutations in spike S1 drive clade success in SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2021.09.11.459844. [PMID: 34545361 PMCID: PMC8452090 DOI: 10.1101/2021.09.11.459844] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Given the importance of variant SARS-CoV-2 viruses with altered receptor-binding or antigenic phenotypes, we sought to quantify the degree to which adaptive evolution is driving accumulation of mutations in the SARS-CoV-2 genome. Here we assessed adaptive evolution across genes in the SARS-CoV-2 genome by correlating clade growth with mutation accumulation as well as by comparing rates of nonsynonymous to synonymous divergence, clustering of mutations across the SARS-CoV-2 phylogeny and degree of convergent evolution of individual mutations. We find that spike S1 is the focus of adaptive evolution, but also identify positively-selected mutations in other genes that are sculpting the evolutionary trajectory of SARS-CoV-2. Adaptive changes in S1 accumulated rapidly, resulting in a remarkably high ratio of nonsynonymous to synonymous divergence that is 2.5X greater than that observed in HA1 at the beginning of the 2009 H1N1 pandemic.
Collapse
Affiliation(s)
- Kathryn E. Kistler
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, United States
| | - John Huddleston
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Trevor Bedford
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, United States
- Howard Hughes Medical Institute, Seattle, WA, United States
| |
Collapse
|
103
|
Fischer RJ, Port JR, Holbrook MG, Yinda KC, Creusen M, Ter Stege J, de Samber M, Munster VJ. UV-C light completely blocks highly contagious Delta SARS-CoV-2 aerosol transmission in hamsters. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.01.10.475722. [PMID: 35043111 PMCID: PMC8764719 DOI: 10.1101/2022.01.10.475722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Behavioral and medical control measures are not effective in containing the spread of SARS-CoV-2. Here we report on the effectiveness of a preemptive environmental strategy using UV-C light to prevent airborne transmission of the virus in a hamster model and show that UV-C exposure completely prevents airborne transmission between individuals.
Collapse
Affiliation(s)
- Robert J Fischer
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Julia R Port
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Myndi G Holbrook
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Kwe Claude Yinda
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Martin Creusen
- Signify, High Tech Campus 48, 5656 AE, Eindhoven, The Netherlands
| | - Jeroen Ter Stege
- UVConsult BV, Hoofdstraat 249, 1611AG Bovenkarspel, The Netherlands
| | - Marc de Samber
- Signify, High Tech Campus 48, 5656 AE, Eindhoven, The Netherlands
| | - Vincent J Munster
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| |
Collapse
|
104
|
Kundu R, Narean JS, Wang L, Fenn J, Pillay T, Fernandez ND, Conibear E, Koycheva A, Davies M, Tolosa-Wright M, Hakki S, Varro R, McDermott E, Hammett S, Cutajar J, Thwaites RS, Parker E, Rosadas C, McClure M, Tedder R, Taylor GP, Dunning J, Lalvani A. Cross-reactive memory T cells associate with protection against SARS-CoV-2 infection in COVID-19 contacts. Nat Commun 2022; 13:80. [PMID: 35013199 PMCID: PMC8748880 DOI: 10.1038/s41467-021-27674-x] [Citation(s) in RCA: 218] [Impact Index Per Article: 72.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 12/01/2021] [Indexed: 11/23/2022] Open
Abstract
Cross-reactive immune responses to SARS-CoV-2 have been observed in pre-pandemic cohorts and proposed to contribute to host protection. Here we assess 52 COVID-19 household contacts to capture immune responses at the earliest timepoints after SARS-CoV-2 exposure. Using a dual cytokine FLISpot assay on peripheral blood mononuclear cells, we enumerate the frequency of T cells specific for spike, nucleocapsid, membrane, envelope and ORF1 SARS-CoV-2 epitopes that cross-react with human endemic coronaviruses. We observe higher frequencies of cross-reactive (p = 0.0139), and nucleocapsid-specific (p = 0.0355) IL-2-secreting memory T cells in contacts who remained PCR-negative despite exposure (n = 26), when compared with those who convert to PCR-positive (n = 26); no significant difference in the frequency of responses to spike is observed, hinting at a limited protective function of spike-cross-reactive T cells. Our results are thus consistent with pre-existing non-spike cross-reactive memory T cells protecting SARS-CoV-2-naïve contacts from infection, thereby supporting the inclusion of non-spike antigens in second-generation vaccines.
Collapse
Affiliation(s)
- Rhia Kundu
- NIHR HPRU in Respiratory Infections, Imperial College London, London, England.
- National Heart and Lung Institute, Imperial College London, London, England.
| | - Janakan Sam Narean
- NIHR HPRU in Respiratory Infections, Imperial College London, London, England
- National Heart and Lung Institute, Imperial College London, London, England
| | - Lulu Wang
- NIHR HPRU in Respiratory Infections, Imperial College London, London, England
- National Heart and Lung Institute, Imperial College London, London, England
| | - Joseph Fenn
- NIHR HPRU in Respiratory Infections, Imperial College London, London, England
- National Heart and Lung Institute, Imperial College London, London, England
| | - Timesh Pillay
- NIHR HPRU in Respiratory Infections, Imperial College London, London, England
- National Heart and Lung Institute, Imperial College London, London, England
| | - Nieves Derqui Fernandez
- NIHR HPRU in Respiratory Infections, Imperial College London, London, England
- National Heart and Lung Institute, Imperial College London, London, England
| | - Emily Conibear
- NIHR HPRU in Respiratory Infections, Imperial College London, London, England
- National Heart and Lung Institute, Imperial College London, London, England
| | - Aleksandra Koycheva
- NIHR HPRU in Respiratory Infections, Imperial College London, London, England
- National Heart and Lung Institute, Imperial College London, London, England
| | - Megan Davies
- NIHR HPRU in Respiratory Infections, Imperial College London, London, England
- National Heart and Lung Institute, Imperial College London, London, England
| | - Mica Tolosa-Wright
- NIHR HPRU in Respiratory Infections, Imperial College London, London, England
- National Heart and Lung Institute, Imperial College London, London, England
| | - Seran Hakki
- NIHR HPRU in Respiratory Infections, Imperial College London, London, England
- National Heart and Lung Institute, Imperial College London, London, England
| | - Robert Varro
- NIHR HPRU in Respiratory Infections, Imperial College London, London, England
- National Heart and Lung Institute, Imperial College London, London, England
| | - Eimear McDermott
- NIHR HPRU in Respiratory Infections, Imperial College London, London, England
- National Heart and Lung Institute, Imperial College London, London, England
| | - Sarah Hammett
- NIHR HPRU in Respiratory Infections, Imperial College London, London, England
- National Heart and Lung Institute, Imperial College London, London, England
| | - Jessica Cutajar
- NIHR HPRU in Respiratory Infections, Imperial College London, London, England
- National Heart and Lung Institute, Imperial College London, London, England
| | - Ryan S Thwaites
- National Heart and Lung Institute, Imperial College London, London, England
| | - Eleanor Parker
- Section of Virology, Department of Infectious Disease, Imperial College London, London, England
| | - Carolina Rosadas
- Section of Virology, Department of Infectious Disease, Imperial College London, London, England
| | - Myra McClure
- Section of Virology, Department of Infectious Disease, Imperial College London, London, England
| | - Richard Tedder
- Section of Virology, Department of Infectious Disease, Imperial College London, London, England
| | - Graham P Taylor
- Section of Virology, Department of Infectious Disease, Imperial College London, London, England
| | - Jake Dunning
- National Infection Service, Public Health England, London, England
- NIHR HPRU in Emerging and Zoonotic Infections, London, England
| | - Ajit Lalvani
- NIHR HPRU in Respiratory Infections, Imperial College London, London, England
- National Heart and Lung Institute, Imperial College London, London, England
| |
Collapse
|
105
|
Wen FT, Malani A, Cobey S. The Potential Beneficial Effects of Vaccination on Antigenically Evolving Pathogens. Am Nat 2022; 199:223-237. [DOI: 10.1086/717410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Frank T. Wen
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois 60637
| | - Anup Malani
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois 60637
- University of Chicago Law School, Chicago, Illinois 60637; and University of Chicago Pritzker School of Medicine, Chicago, Illinois 60637
| | - Sarah Cobey
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois 60637
| |
Collapse
|
106
|
Laroche A, Orsini Delgado ML, Chalopin B, Cuniasse P, Dubois S, Sierocki R, Gallais F, Debroas S, Bellanger L, Simon S, Maillère B, Nozach H. Deep mutational engineering of broadly-neutralizing nanobodies accommodating SARS-CoV-1 and 2 antigenic drift. MAbs 2022; 14:2076775. [PMID: 35593235 PMCID: PMC9132424 DOI: 10.1080/19420862.2022.2076775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Here, we report the molecular engineering of nanobodies that bind with picomolar affinity to both SARS-CoV-1 and SARS-CoV-2 receptor-binding domains (RBD) and are highly neutralizing. We applied deep mutational engineering to VHH72, a nanobody initially specific for SARS-CoV-1 RBD with little cross-reactivity to SARS-CoV-2 antigen. We first identified all the individual VHH substitutions that increase binding to SARS-CoV-2 RBD and then screened highly focused combinatorial libraries to isolate engineered nanobodies with improved properties. The corresponding VHH-Fc molecules show high affinities for SARS-CoV-2 antigens from various emerging variants and SARS-CoV-1, block the interaction between ACE2 and RBD, and neutralize the virus with high efficiency. Its rare specificity across sarbecovirus relies on its peculiar epitope outside the immunodominant regions. The engineered nanobodies share a common motif of three amino acids, which contribute to the broad specificity of recognition. Our results show that deep mutational engineering is a very powerful method, especially to rapidly adapt existing antibodies to new variants of pathogens.
Collapse
Affiliation(s)
- Adrien Laroche
- CEA, INRAE, Medicines and Healthcare Technologies Department, SIMoS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Maria Lucia Orsini Delgado
- CEA, INRAE, Medicines and Healthcare Technologies Department, SPI, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Benjamin Chalopin
- CEA, INRAE, Medicines and Healthcare Technologies Department, SIMoS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Philippe Cuniasse
- CNRS, CEA, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette, France
| | - Steven Dubois
- CEA, INRAE, Medicines and Healthcare Technologies Department, SIMoS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Raphaël Sierocki
- CEA, INRAE, Medicines and Healthcare Technologies Department, SIMoS, Université Paris-Saclay, Gif-sur-Yvette, France.,Deeptope SAS, Massy, France
| | - Fabrice Gallais
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris Saclay, Bagnols-sur-Cèze, France
| | - Stéphanie Debroas
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris Saclay, Bagnols-sur-Cèze, France
| | - Laurent Bellanger
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris Saclay, Bagnols-sur-Cèze, France
| | - Stéphanie Simon
- CEA, INRAE, Medicines and Healthcare Technologies Department, SPI, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Bernard Maillère
- CEA, INRAE, Medicines and Healthcare Technologies Department, SIMoS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Hervé Nozach
- CEA, INRAE, Medicines and Healthcare Technologies Department, SIMoS, Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
107
|
Antigenic escape selects for the evolution of higher pathogen transmission and virulence. Nat Ecol Evol 2022; 6:51-62. [PMID: 34949816 PMCID: PMC9671278 DOI: 10.1038/s41559-021-01603-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 10/28/2021] [Indexed: 11/08/2022]
Abstract
Despite the propensity for complex and non-equilibrium dynamics in nature, eco-evolutionary analytical theory typically assumes that populations are at equilibria. In particular, pathogens often show antigenic escape from host immune defences, leading to repeated epidemics, fluctuating selection and diversification, but we do not understand how this impacts the evolution of virulence. We model the impact of antigenic drift and escape on the evolution of virulence in a generalized pathogen and apply a recently introduced oligomorphic methodology that captures the dynamics of the mean and variance of traits, to show analytically that these non-equilibrium dynamics select for the long-term persistence of more acute pathogens with higher virulence. Our analysis predicts both the timings and outcomes of antigenic shifts leading to repeated epidemics and predicts the increase in variation in both antigenicity and virulence before antigenic escape. There is considerable variation in the degree of antigenic escape that occurs across pathogens and our results may help to explain the difference in virulence between related pathogens including, potentially, human influenzas. Furthermore, it follows that these pathogens will have a lower R0, with clear implications for epidemic behaviour, endemic behaviour and control. More generally, our results show the importance of examining the evolutionary consequences of non-equilibrium dynamics.
Collapse
|
108
|
Park G, Hwang BH. SARS-CoV-2 Variants: Mutations and Effective Changes. BIOTECHNOL BIOPROC E 2021; 26:859-870. [PMID: 34975266 PMCID: PMC8713537 DOI: 10.1007/s12257-021-0327-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/14/2021] [Accepted: 11/14/2021] [Indexed: 11/26/2022]
Abstract
One of the primary threats to the goal of controlling and eventually defeating SARS-CoV-2 is that of mutation. Recognizing this, a great amount of effort and dedicated study is being given to the matter. Due to the novel coronavirus's general prevalence and rate of mutation, this is an extremely dynamic area with constant new developments. Therefore, understanding the virus's pathogenesis and how mutations affect it is crucial. This review attempts to aid in understanding the currently most important strains and what primary changes they entail in connection to more specific mutations, and how they each affect infectivity, antigen resistance, and other properties. In an attempt to maintain relevance to the time at which this paper will be published, priority has been given to variants classified by the WHO and the CDC as of Sep. 23, 2021, as "Variants of Concern". Of particular interest in B.1.1.7, B.1.351, B.1.617.2, P.1 are the mutations affecting the Spike protein and Receptor Binding Domain, as they directly affect infectivity and susceptibility to neutralization. Certain mutations (D614G, E484K, N501Y, K417N, L452R and P681R) have appeared across several different strains, often accompanied by others that may be complementary working together to confer increased infectivity, fitness, or resistance to neutralization. We anticipate that the understanding of such COVID-19 mutations will, in the near future, prove important for diagnosis, treatment development, and vaccine development.
Collapse
Affiliation(s)
- Gene Park
- Whitmore School, Morgantown, WV 26505 USA
| | - Byeong Hee Hwang
- Division of Bioengineering, Incheon National University, Incheon, 22012 Korea
- Department of Bio·nanobioengineering, Incheon National University, Incheon, 22012 Korea
| |
Collapse
|
109
|
Identification of a novel neutralizing epitope on the N-terminal domain of the HCoV-229E spike protein. J Virol 2021; 96:e0195521. [PMID: 34908442 DOI: 10.1128/jvi.01955-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The receptor binding domain (RBD) of the coronavirus spike protein (S) has been verified to be the main target for potent neutralizing antibodies (nAbs) in most coronaviruses, and the N-terminal domain (NTD) of some betacoronaviruses has also been indicated to induce nAbs. For alphacoronavirus HCoV-229E, its RBD has been shown to have neutralizing epitopes, and these epitopes could change over time. However, whether neutralizing epitopes exist on the NTD and whether these epitopes change like those of the RBD are still unknown. Here, we verified that neutralizing epitopes exist on the NTD of HCoV-229E. Furthermore, we characterized an NTD targeting nAb 5H10, which could neutralize both pseudotyped and authentic HCoV-229E VR740 in vitro. Epitope mapping indicated that 5H10 targeted motif E1 (147-167 aa) and identified F159 as critical for 5H10 binding. More importantly, our results revealed that motif E1 was highly conserved among clinical isolates except for F159. Further data proved that mutations at position 159 gradually appeared over time and could completely abolish the neutralizing ability of 5H10, supporting the notion that position 159 may be under selective pressure during the human epidemic. In addition, we also found that contemporary clinical serum has a stronger binding capacity for the NTD of contemporary strains than historic strains, proving that the epitope on the NTD could change over time. In summary, these findings define a novel neutralizing epitope on the NTD of HCoV-229E S and provide a theoretical basis for the design of vaccines against HCoV-229E or related coronaviruses. Importance Characterization of the neutralizing epitope of the spike (S) protein, the major invasion protein of coronaviruses, can help us better understand the evolutionary characteristics of these viruses and promote vaccine development. To date, the neutralizing epitope distribution of alphacoronaviruses is not well known. Here, we identified a neutralizing antibody that targeted the N-terminal domain (NTD) of the alphacoronavirus HCoV-229E S protein. Epitope mapping revealed a novel epitope that was not previously discovered in HCoV-229E. Further studies identified an important residue, F159. Mutations that gradually appeared over time at this site abolished the neutralizing ability of 5H10, indicating that selective pressure occurred at this position in the spread of HCoV-229E. Furthermore, we found that the epitopes within the NTD also changed over time. Taken together, our findings defined a novel neutralizing epitope and highlighted the role of the NTD in the future prevention and control of HCoV-229E or related coronaviruses.
Collapse
|
110
|
Abstract
Antigenic drift refers to the evolutionary accumulation of amino acid substitutions in viral proteins selected by host adaptive immune systems as the virus circulates in a population. Antigenic drift can substantially limit the duration of immunity conferred by infection and vaccination. Here, I explain the factors contributing to the rapid antigenic drift of the SARS-CoV-2 spike protein and receptor proteins of other viruses and discuss the implications for SARS-CoV-2 evolution and immunity.
Collapse
Affiliation(s)
- Jonathan W Yewdell
- Cellular Biology Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA.
| |
Collapse
|
111
|
Hanning KR, Minot M, Warrender AK, Kelton W, Reddy ST. Deep mutational scanning for therapeutic antibody engineering. Trends Pharmacol Sci 2021; 43:123-135. [PMID: 34895944 DOI: 10.1016/j.tips.2021.11.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/02/2021] [Accepted: 11/10/2021] [Indexed: 12/24/2022]
Abstract
The biophysical and functional properties of monoclonal antibody (mAb) drug candidates are often improved by protein engineering methods to increase the probability of clinical efficacy. One emerging method is deep mutational scanning (DMS) which combines the power of exhaustive protein mutagenesis and functional screening with deep sequencing and bioinformatics. The application of DMS has yielded significant improvements to the affinity, specificity, and stability of several preclinical antibodies alongside novel applications such as introducing multi-specific binding properties. DMS has also been applied directly on target antigens to precisely map antibody-binding epitopes and notably to profile the mutational escape potential of viral targets (e.g., SARS-CoV-2 variants). Finally, DMS combined with machine learning is enabling advances in the computational screening and engineering of therapeutic antibodies.
Collapse
Affiliation(s)
- Kyrin R Hanning
- Te Huataki Waiora School of Health, University of Waikato, Hamilton 3240, New Zealand
| | - Mason Minot
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, Basel 4058, Switzerland
| | - Annmaree K Warrender
- Te Huataki Waiora School of Health, University of Waikato, Hamilton 3240, New Zealand
| | - William Kelton
- Te Huataki Waiora School of Health, University of Waikato, Hamilton 3240, New Zealand.
| | - Sai T Reddy
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, Basel 4058, Switzerland.
| |
Collapse
|
112
|
Lee S, Jang S, Kang J, Park SB, Han YW, Nam H, Kim M, Lee J, Cho KJ, Kim J, Oh M, Ryu J, Seok JH, Kim Y, Lee JB, Park MS, Kim YS, Park H, Kim DS. MG1141A as a Highly Potent Monoclonal Neutralizing Antibody Against SARS-CoV-2 Variants. Front Immunol 2021; 12:778829. [PMID: 34868052 PMCID: PMC8637776 DOI: 10.3389/fimmu.2021.778829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/27/2021] [Indexed: 12/15/2022] Open
Abstract
Since the coronavirus disease outbreak in 2019, several antibody therapeutics have been developed to treat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. Antibody therapeutics are effective in neutralizing the virus and reducing hospitalization in patients with mild and moderate infections. These therapeutics target the spike protein of SARS-CoV-2; however, emerging mutations in this protein reduce their efficiency. In this study, we developed a universal SARS-CoV-2 neutralizing antibody. We generated a humanized monoclonal antibody, MG1141A, against the receptor-binding domain of the spike protein through traditional mouse immunization. We confirmed that MG1141A could effectively neutralize live viruses, with an EC50 of 92 pM, and that it exhibited effective Fc-mediated functions. Additionally, it retained its neutralizing activity against the alpha (UK), beta (South Africa), and gamma (Brazil) variants of SARS-CoV-2. Taken together, our study contributes to the development of a novel antibody therapeutic approach, which can effectively combat emerging SARS-CoV-2 mutations.
Collapse
Affiliation(s)
- Sua Lee
- Department of Protein Engineering, Mogam Institute for Biomedical Research, Yongin, South Korea
| | - Shina Jang
- Department of Protein Engineering, Mogam Institute for Biomedical Research, Yongin, South Korea
| | - Jihoon Kang
- Department of Protein Engineering, Mogam Institute for Biomedical Research, Yongin, South Korea
| | - Soo Bin Park
- Department of Protein Engineering, Mogam Institute for Biomedical Research, Yongin, South Korea
| | - Young Woo Han
- Department of Infectious Disease Research, Mogam Institute for Biomedical Research, Yongin, South Korea
| | - Hyemi Nam
- Department of Target ID & Assay Development, Mogam Institute for Biomedical Research, Yongin, South Korea
| | - Munkyung Kim
- Department of Target ID & Assay Development, Mogam Institute for Biomedical Research, Yongin, South Korea
| | - Jeewon Lee
- Department of Target ID & Assay Development, Mogam Institute for Biomedical Research, Yongin, South Korea
| | - Ki Joon Cho
- Department of Protein Engineering, Mogam Institute for Biomedical Research, Yongin, South Korea
| | - Jeonghun Kim
- Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine, Seoul, South Korea
| | - Miyoung Oh
- Department of Protein Engineering, Mogam Institute for Biomedical Research, Yongin, South Korea
| | - Jihye Ryu
- Department of Translational Research, Mogam Institute for Biomedical Research, Yongin, South Korea
| | - Jong Hyeon Seok
- Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine, Seoul, South Korea
| | - Yunhwa Kim
- Department of Microbiology, College of Medicine, Yeungnam University, Daegu, South Korea
| | - Jee-Boong Lee
- Department of Target ID & Assay Development, Mogam Institute for Biomedical Research, Yongin, South Korea
| | - Man-Seong Park
- Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine, Seoul, South Korea
| | - Yong-Sung Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Hosun Park
- Department of Microbiology, College of Medicine, Yeungnam University, Daegu, South Korea
| | - Dong-Sik Kim
- Department of Protein Engineering, Mogam Institute for Biomedical Research, Yongin, South Korea.,Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| |
Collapse
|
113
|
Waterlow NR, van Leeuwen E, Davies NG, Flasche S, Eggo RM. How immunity from and interaction with seasonal coronaviruses can shape SARS-CoV-2 epidemiology. Proc Natl Acad Sci U S A 2021; 118:e2108395118. [PMID: 34873059 PMCID: PMC8670441 DOI: 10.1073/pnas.2108395118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2021] [Indexed: 12/11/2022] Open
Abstract
We hypothesized that cross-protection from seasonal epidemics of human coronaviruses (HCoVs) could have affected severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission, including generating reduced susceptibility in children. To determine what the prepandemic distribution of immunity to HCoVs was, we fitted a mathematical model to 6 y of seasonal coronavirus surveillance data from England and Wales. We estimated a duration of immunity to seasonal HCoVs of 7.8 y (95% CI 6.3 to 8.1) and show that, while cross-protection between HCoV and SARS-CoV-2 may contribute to the age distribution, it is insufficient to explain the age pattern of SARS-CoV-2 infections in the first wave of the pandemic in England and Wales. Projections from our model illustrate how different strengths of cross-protection between circulating coronaviruses could determine the frequency and magnitude of SARS-CoV-2 epidemics over the coming decade, as well as the potential impact of cross-protection on future seasonal coronavirus transmission.
Collapse
Affiliation(s)
- Naomi R Waterlow
- Centre for Mathematical Modeling of Infectious Disease, London School of Hygiene and Tropical Medicine, London WC14 7HT, United Kingdom;
| | - Edwin van Leeuwen
- Centre for Mathematical Modeling of Infectious Disease, London School of Hygiene and Tropical Medicine, London WC14 7HT, United Kingdom
- Statistics, Modelling and Economics Department, UK Health Security Agency, London NW9 5EQ, United Kingdom
| | - Nicholas G Davies
- Centre for Mathematical Modeling of Infectious Disease, London School of Hygiene and Tropical Medicine, London WC14 7HT, United Kingdom
| | - Stefan Flasche
- Centre for Mathematical Modeling of Infectious Disease, London School of Hygiene and Tropical Medicine, London WC14 7HT, United Kingdom
| | - Rosalind M Eggo
- Centre for Mathematical Modeling of Infectious Disease, London School of Hygiene and Tropical Medicine, London WC14 7HT, United Kingdom
| |
Collapse
|
114
|
Greaney AJ, Starr TN, Bloom JD. An antibody-escape calculator for mutations to the SARS-CoV-2 receptor-binding domain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.12.04.471236. [PMID: 34909770 PMCID: PMC8669837 DOI: 10.1101/2021.12.04.471236] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A key goal of SARS-CoV-2 surveillance is to rapidly identify viral variants with mutations that reduce neutralization by polyclonal antibodies elicited by vaccination or infection. Unfortunately, direct experimental characterization of new viral variants lags their sequence-based identification. Here we help address this challenge by aggregating deep mutational scanning data into an "escape calculator" that estimates the antigenic effects of arbitrary combinations of mutations to the virus's spike receptor-binding domain (RBD). The calculator can be used to intuitively visualize how mutations impact polyclonal antibody recognition, and score the expected antigenic effect of combinations of mutations. These scores correlate with neutralization assays performed on SARS-CoV-2 variants, and emphasize the ominous antigenic properties of the recently described Omicron variant. An interactive version of the calculator is at https://jbloomlab.github.io/SARS2_RBD_Ab_escape_maps/escape-calc/ , and we provide a Python module for batch processing.
Collapse
Affiliation(s)
- Allison J. Greaney
- Basic Sciences and Computational Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA, USA
| | - Tyler N. Starr
- Basic Sciences and Computational Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| | - Jesse D. Bloom
- Basic Sciences and Computational Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| |
Collapse
|
115
|
|
116
|
Alizon S, Sofonea MT. SARS-CoV-2 virulence evolution: Avirulence theory, immunity and trade-offs. J Evol Biol 2021; 34:1867-1877. [PMID: 34196431 PMCID: PMC8447366 DOI: 10.1111/jeb.13896] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/15/2021] [Accepted: 06/21/2021] [Indexed: 12/21/2022]
Abstract
The COVID-19 pandemic has led to a resurgence of the debate on whether host-parasite interactions should evolve towards avirulence. In this review, we first show that SARS-CoV-2 virulence is evolving, before explaining why some expect the mortality caused by the epidemic to converge towards that of human seasonal alphacoronaviruses. Leaning on existing theory, we then include viral evolution into the picture and discuss hypotheses explaining why the virulence has increased since the beginning of the pandemic. Finally, we mention some potential scenarios for the future.
Collapse
Affiliation(s)
- Samuel Alizon
- MIVEGECCNRS, IRD, Univ. MontpellierMontpellierFrance
| | | |
Collapse
|
117
|
Halley JM, Vokou D, Pappas G, Sainis I. SARS-CoV-2 mutational cascades and the risk of hyper-exponential growth. Microb Pathog 2021; 161:105237. [PMID: 34653544 PMCID: PMC8507571 DOI: 10.1016/j.micpath.2021.105237] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 11/30/2022]
Abstract
The emergence of novel SARS-CoV-2 variants of concern (VOC), in late 2020, with selective transmission advantage and partial immunity escape potential, has been driving further evolution in the pandemic. The timing of mutational evolution and its limits are thus of paramount importance in preparedness planning. Here, we present a model predicting the pattern of epidemic growth including the emergence of variants through mutation. It is based on the SEIR (Susceptible, Exposed, Infected, Removed) model, but its equations are modified according to the transmission parameters of novel variants. Since more transmissible strains will drive a further increase in the number of cases, they will also lead to further novel mutations. As one cannot predict whether there is a viral mutational evolutionary limit, we model a cascade that could lead to hyper-exponential growth (HEG) involving the emergence of even more transmissible mutants that could overwhelm any systematic response. Our results are consistent with the timing, since the beginning of the pandemic, of the concurrent and independent emergence of the VOCs. The current dominance of the Delta variant and the need for additional public health measures indicates some of the risks of a possible HEG. We examine conditions that favor the expected appearance of similar variants, thus enabling better preparedness and more targeted research.
Collapse
Affiliation(s)
- John M Halley
- Laboratory of Ecology, Department of Biological Applications and Technology, Faculty of Health Sciences, University of Ioannina, 45110, Ioannina, Greece.
| | - Despoina Vokou
- Department of Ecology, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Georgios Pappas
- Institute of Continuing Medical Education of Ioannina, Ioannina, Greece
| | - Ioannis Sainis
- Medical School, Faculty of Health Sciences, University of Ioannina, 45110, Ioannina, Greece
| |
Collapse
|
118
|
Tao K, Tzou PL, Nouhin J, Gupta RK, de Oliveira T, Kosakovsky Pond SL, Fera D, Shafer RW. The biological and clinical significance of emerging SARS-CoV-2 variants. Nat Rev Genet 2021; 22:757-773. [PMID: 34535792 PMCID: PMC8447121 DOI: 10.1038/s41576-021-00408-x] [Citation(s) in RCA: 687] [Impact Index Per Article: 171.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2021] [Indexed: 12/13/2022]
Abstract
The past several months have witnessed the emergence of SARS-CoV-2 variants with novel spike protein mutations that are influencing the epidemiological and clinical aspects of the COVID-19 pandemic. These variants can increase rates of virus transmission and/or increase the risk of reinfection and reduce the protection afforded by neutralizing monoclonal antibodies and vaccination. These variants can therefore enable SARS-CoV-2 to continue its spread in the face of rising population immunity while maintaining or increasing its replication fitness. The identification of four rapidly expanding virus lineages since December 2020, designated variants of concern, has ushered in a new stage of the pandemic. The four variants of concern, the Alpha variant (originally identified in the UK), the Beta variant (originally identified in South Africa), the Gamma variant (originally identified in Brazil) and the Delta variant (originally identified in India), share several mutations with one another as well as with an increasing number of other recently identified SARS-CoV-2 variants. Collectively, these SARS-CoV-2 variants complicate the COVID-19 research agenda and necessitate additional avenues of laboratory, epidemiological and clinical research.
Collapse
Affiliation(s)
- Kaiming Tao
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Philip L Tzou
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Janin Nouhin
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Ravindra K Gupta
- Cambridge Institute for Therapeutic Immunology and Infectious Diseases, University of Cambridge, Cambridge, UK
| | - Tulio de Oliveira
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), University of KwaZulu-Natal, Durban, South Africa
| | | | - Daniela Fera
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, PA, USA
| | - Robert W Shafer
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, CA, USA.
- Department of Pathology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
119
|
Le SARS-CoV-2 : un coronavirus comme les autres ? PERFECTIONNEMENT EN PÉDIATRIE 2021. [PMCID: PMC8672704 DOI: 10.1016/j.perped.2021.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
120
|
Getz WM, Salter R, Luisa Vissat L, Koopman JS, Simon CP. A runtime alterable epidemic model with genetic drift, waning immunity and vaccinations. J R Soc Interface 2021; 18:20210648. [PMID: 34814729 PMCID: PMC8611333 DOI: 10.1098/rsif.2021.0648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We present methods for building a Java Runtime-Alterable-Model Platform (RAMP) of complex dynamical systems. We illustrate our methods by building a multivariant SEIR (epidemic) RAMP. Underlying our RAMP is an individual-based model that includes adaptive contact rates, pathogen genetic drift, waning and cross-immunity. Besides allowing parameter values, process descriptions and scriptable runtime drivers to be easily modified during simulations, our RAMP can used within R-Studio and other computational platforms. Process descriptions that can be runtime altered within our SEIR RAMP include pathogen variant-dependent host shedding, environmental persistence, host transmission and within-host pathogen mutation and replication. They also include adaptive social distancing and adaptive application of vaccination rates and variant-valency of vaccines. We present simulation results using parameter values and process descriptions relevant to the current COVID-19 pandemic. Our results suggest that if waning immunity outpaces vaccination rates, then vaccination rollouts may fail to contain the most transmissible variants, particularly if vaccine valencies are not adapted to deal with escape mutations. Our SEIR RAMP is designed for easy use by others. More generally, our RAMP concept facilitates construction of highly flexible complex systems models of all types, which can then be easily shared as stand-alone application programs.
Collapse
Affiliation(s)
- Wayne M Getz
- Department ESPM, UC Berkeley, Berkeley, CA 94720-3114, USA.,School of Mathematical Sciences, University of KwaZulu-Natal, Durban, South Africa.,Numerus, 850 Iron Point Rd., Folsom, CA 95630, USA
| | - Richard Salter
- Numerus, 850 Iron Point Rd., Folsom, CA 95630, USA.,Computer Science Department, Oberlin College, Oberlin, OH 44074, USA
| | | | - James S Koopman
- School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA.,Center for the Study of Complex Systems, University of Michigan, Ann Arbor, MI 48109, USA
| | - Carl P Simon
- Center for the Study of Complex Systems, University of Michigan, Ann Arbor, MI 48109, USA.,Gerald R. Ford School of Public Policy, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
121
|
Rees EM, Waterlow NR, Lowe R, Kucharski AJ. Estimating the duration of seropositivity of human seasonal coronaviruses using seroprevalence studies. Wellcome Open Res 2021; 6:138. [PMID: 34708157 PMCID: PMC8517721 DOI: 10.12688/wellcomeopenres.16701.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2021] [Indexed: 11/20/2022] Open
Abstract
Background: The duration of immunity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still uncertain, but it is of key clinical and epidemiological importance. Seasonal human coronaviruses (HCoV) have been circulating for longer and, therefore, may offer insights into the long-term dynamics of reinfection for such viruses. Methods: Combining historical seroprevalence data from five studies covering the four circulating HCoVs with an age-structured reverse catalytic model, we estimated the likely duration of seropositivity following seroconversion. Results: We estimated that antibody persistence lasted between 0.9 (95% Credible interval: 0.6 - 1.6) and 3.8 (95% CrI: 2.0 - 7.4) years. Furthermore, we found the force of infection in older children and adults (those over 8.5 [95% CrI: 7.5 - 9.9] years) to be higher compared with young children in the majority of studies. Conclusions: These estimates of endemic HCoV dynamics could provide an indication of the future long-term infection and reinfection patterns of SARS-CoV-2.
Collapse
Affiliation(s)
- Eleanor M. Rees
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK
- Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Naomi R. Waterlow
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | | | - Rachel Lowe
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK
- Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Adam J. Kucharski
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
122
|
Focosi D, Maggi F. Neutralising antibody escape of SARS-CoV-2 spike protein: Risk assessment for antibody-based Covid-19 therapeutics and vaccines. Rev Med Virol 2021; 31:e2231. [PMID: 33724631 PMCID: PMC8250244 DOI: 10.1002/rmv.2231] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/29/2021] [Accepted: 02/15/2021] [Indexed: 12/15/2022]
Abstract
The Spike protein is the target of both antibody-based therapeutics (convalescent plasma, polyclonal serum, monoclonal antibodies) and vaccines. Mutations in Spike could affect efficacy of those treatments. Hence, monitoring of mutations is necessary to forecast and readapt the inventory of therapeutics. Different phylogenetic nomenclatures have been used for the currently circulating SARS-CoV-2 clades. The Spike protein has different hotspots of mutation and deletion, the most dangerous for immune escape being the ones within the receptor binding domain (RBD), such as K417N/T, N439K, L452R, Y453F, S477N, E484K, and N501Y. Convergent evolution has led to different combinations of mutations among different clades. In this review we focus on the main variants of concern, that is, the so-called UK (B.1.1.7), South African (B.1.351) and Brazilian (P.1) strains.
Collapse
MESH Headings
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/metabolism
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Neutralizing/chemistry
- Antibodies, Neutralizing/metabolism
- Antibodies, Neutralizing/therapeutic use
- Antibodies, Viral/chemistry
- Antibodies, Viral/metabolism
- Antibodies, Viral/therapeutic use
- Brazil/epidemiology
- COVID-19/epidemiology
- COVID-19/immunology
- COVID-19/therapy
- COVID-19/virology
- COVID-19 Vaccines/administration & dosage
- Gene Expression
- Humans
- Immune Evasion
- Immunization, Passive/methods
- Mutation
- Phylogeny
- Protein Binding
- Risk Assessment
- SARS-CoV-2/classification
- SARS-CoV-2/drug effects
- SARS-CoV-2/genetics
- SARS-CoV-2/immunology
- South Africa/epidemiology
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/immunology
- United Kingdom/epidemiology
- COVID-19 Serotherapy
Collapse
Affiliation(s)
- Daniele Focosi
- North‐Western Tuscany Blood BankPisa University HospitalPisaItaly
| | - Fabrizio Maggi
- Department of Medicine and SurgeryUniversity of InsubriaVareseItaly
| |
Collapse
|
123
|
Greaney AJ, Starr TN, Eguia RT, Loes AN, Khan K, Karim F, Cele S, Bowen JE, Logue JK, Corti D, Veesler D, Chu HY, Sigal A, Bloom JD. A SARS-CoV-2 variant elicits an antibody response with a shifted immunodominance hierarchy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.10.12.464114. [PMID: 34671768 PMCID: PMC8528074 DOI: 10.1101/2021.10.12.464114] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Many SARS-CoV-2 variants have mutations at key sites targeted by antibodies. However, it is unknown if antibodies elicited by infection with these variants target the same or different regions of the viral spike as antibodies elicited by earlier viral isolates. Here we compare the specificities of polyclonal antibodies produced by humans infected with early 2020 isolates versus the B.1.351 variant of concern (also known as Beta or 20H/501Y.V2), which contains mutations in multiple key spike epitopes. The serum neutralizing activity of antibodies elicited by infection with both early 2020 viruses and B.1.351 is heavily focused on the spike receptor-binding domain (RBD). However, within the RBD, B.1.351-elicited antibodies are more focused on the "class 3" epitope spanning sites 443 to 452, and neutralization by these antibodies is notably less affected by mutations at residue 484. Our results show that SARS-CoV-2 variants can elicit polyclonal antibodies with different immunodominance hierarchies.
Collapse
Affiliation(s)
- Allison J. Greaney
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center; Seattle, WA 98109, USA
- Department of Genome Sciences & Medical Scientist Training Program, University of Washington; Seattle, WA 98195, USA
| | - Tyler N. Starr
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center; Seattle, WA 98109, USA
- Howard Hughes Medical Institute; Chevy Chase, MD 20815, USA
| | - Rachel T. Eguia
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center; Seattle, WA 98109, USA
| | - Andrea N. Loes
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center; Seattle, WA 98109, USA
- Howard Hughes Medical Institute; Chevy Chase, MD 20815, USA
| | - Khadija Khan
- Africa Health Research Institute, Durban 4001, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu–Natal, Durban 4001, South Africa
| | - Farina Karim
- Africa Health Research Institute, Durban 4001, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu–Natal, Durban 4001, South Africa
| | - Sandile Cele
- Africa Health Research Institute, Durban 4001, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu–Natal, Durban 4001, South Africa
| | - John E. Bowen
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Jennifer K. Logue
- Division of Allergy and Infectious Diseases, University of Washington; Seattle, WA 98195, USA
| | - Davide Corti
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - David Veesler
- Howard Hughes Medical Institute; Chevy Chase, MD 20815, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Helen Y. Chu
- Division of Allergy and Infectious Diseases, University of Washington; Seattle, WA 98195, USA
| | - Alex Sigal
- Africa Health Research Institute, Durban 4001, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu–Natal, Durban 4001, South Africa
| | - Jesse D. Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center; Seattle, WA 98109, USA
- Howard Hughes Medical Institute; Chevy Chase, MD 20815, USA
| |
Collapse
|
124
|
Miller NL, Clark T, Raman R, Sasisekharan R. An Antigenic Space Framework for Understanding Antibody Escape of SARS-CoV-2 Variants. Viruses 2021; 13:2009. [PMID: 34696440 PMCID: PMC8537311 DOI: 10.3390/v13102009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 12/12/2022] Open
Abstract
The evolution of mutations in SARS-CoV-2 at antigenic sites that impact neutralizing antibody responses in humans poses a risk to immunity developed through vaccination and natural infection. The highly successful RNA-based vaccines have enabled rapid vaccine updates that incorporate mutations from current variants of concern (VOCs). It is therefore important to anticipate future antigenic mutations as the virus navigates the heterogeneous global landscape of host immunity. Toward this goal, we survey epitope-paratope interfaces of anti-SARS-CoV-2 antibodies to map an antigenic space that captures the role of each spike protein residue within the polyclonal antibody response directed against the ACE2-receptor binding domain (RBD) or the N-terminal domain (NTD). In particular, the antigenic space map builds on recently published epitope definitions by annotating epitope overlap and orthogonality at the residue level. We employ the antigenic space map as a framework to understand how mutations on nine major variants contribute to each variant's evasion of neutralizing antibodies. Further, we identify constellations of mutations that span the orthogonal epitope regions of the RBD and NTD on the variants with the greatest antibody escape. Finally, we apply the antigenic space map to predict which regions of antigenic space-should they mutate-may be most likely to complementarily augment antibody evasion for the most evasive and transmissible VOCs.
Collapse
Affiliation(s)
- Nathaniel L. Miller
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA;
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (T.C.); (R.R.)
| | - Thomas Clark
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (T.C.); (R.R.)
| | - Rahul Raman
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (T.C.); (R.R.)
| | - Ram Sasisekharan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (T.C.); (R.R.)
| |
Collapse
|
125
|
Garrett ME, Galloway JG, Wolf C, Logue JK, Franko N, Chu HY, Matsen FA, Overbaugh J. Comprehensive characterization of the antibody responses to SARS-CoV-2 Spike protein after infection and/or vaccination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 34642694 PMCID: PMC8509098 DOI: 10.1101/2021.10.05.463210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Background: Control of the COVID-19 pandemic will rely on SARS-CoV-2 vaccine-elicited antibodies to protect against emerging and future variants; an understanding of the unique features of the humoral responses to infection and vaccination, including different vaccine platforms, is needed to achieve this goal. Methods: The epitopes and pathways of escape for Spike-specific antibodies in individuals with diverse infection and vaccination history were profiled using Phage-DMS. Principal component analysis was performed to identify regions of antibody binding along the Spike protein that differentiate the samples from one another. Within these epitope regions we determined potential escape mutations by comparing antibody binding of peptides containing wildtype residues versus peptides containing a mutant residue. Results: Individuals with mild infection had antibodies that bound to epitopes in the S2 subunit within the fusion peptide and heptad-repeat regions, whereas vaccinated individuals had antibodies that additionally bound to epitopes in the N- and C-terminal domains of the S1 subunit, a pattern that was also observed in individuals with severe disease due to infection. Epitope binding appeared to change over time after vaccination, but other covariates such as mRNA vaccine dose, mRNA vaccine type, and age did not affect antibody binding to these epitopes. Vaccination induced a relatively uniform escape profile across individuals for some epitopes, whereas there was much more variation in escape pathways in in mildly infected individuals. In the case of antibodies targeting the fusion peptide region, which was a common response to both infection and vaccination, the escape profile after infection was not altered by subsequent vaccination. Conclusions: The finding that SARS-CoV-2 mRNA vaccination resulted in binding to additional epitopes beyond what was seen after infection suggests protection could vary depending on the route of exposure to Spike antigen. The relatively conserved escape pathways to vaccine-induced antibodies relative to infection-induced antibodies suggests that if escape variants emerge, they may be readily selected for across vaccinated individuals. Given that the majority of people will be first exposed to Spike via vaccination and not infection, this work has implications for predicting the selection of immune escape variants at a population level.
Collapse
|
126
|
Souza WM, Amorim MR, Sesti-Costa R, Coimbra LD, Brunetti NS, Toledo-Teixeira DA, de Souza GF, Muraro SP, Parise PL, Barbosa PP, Bispo-dos-Santos K, Mofatto LS, Simeoni CL, Claro IM, Duarte ASS, Coletti TM, Zangirolami AB, Costa-Lima C, Gomes ABSP, Buscaratti LI, Sales FC, Costa VA, Franco LAM, Candido DS, Pybus OG, de Jesus JG, Silva CAM, Ramundo MS, Ferreira GM, Pinho MC, Souza LM, Rocha EC, Andrade PS, Crispim MAE, Maktura GC, Manuli ER, Santos MNN, Camilo CC, Angerami RN, Moretti ML, Spilki FR, Arns CW, Addas-Carvalho M, Benites BD, Vinolo MAR, Mori MAS, Gaburo N, Dye C, Marques-Souza H, Marques RE, Farias AS, Diamond MS, Faria NR, Sabino EC, Granja F, Proença-Módena JL. Neutralisation of SARS-CoV-2 lineage P.1 by antibodies elicited through natural SARS-CoV-2 infection or vaccination with an inactivated SARS-CoV-2 vaccine: an immunological study. THE LANCET. MICROBE 2021; 2:e527-e535. [PMID: 34258603 PMCID: PMC8266272 DOI: 10.1016/s2666-5247(21)00129-4] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Mutations accrued by SARS-CoV-2 lineage P.1-first detected in Brazil in early January, 2021-include amino acid changes in the receptor-binding domain of the viral spike protein that also are reported in other variants of concern, including B.1.1.7 and B.1.351. We aimed to investigate whether isolates of wild-type P.1 lineage SARS-CoV-2 can escape from neutralising antibodies generated by a polyclonal immune response. METHODS We did an immunological study to assess the neutralising effects of antibodies on lineage P.1 and lineage B isolates of SARS-CoV-2, using plasma samples from patients previously infected with or vaccinated against SARS-CoV-2. Two specimens (P.1/28 and P.1/30) containing SARS-CoV-2 lineage P.1 (as confirmed by viral genome sequencing) were obtained from nasopharyngeal and bronchoalveolar lavage samples collected from patients in Manaus, Brazil, and compared against an isolate of SARS-CoV-2 lineage B (SARS.CoV2/SP02.2020) recovered from a patient in Brazil in February, 2020. Isolates were incubated with plasma samples from 21 blood donors who had previously had COVID-19 and from a total of 53 recipients of the chemically inactivated SARS-CoV-2 vaccine CoronaVac: 18 individuals after receipt of a single dose and an additional 20 individuals (38 in total) after receipt of two doses (collected 17-38 days after the most recent dose); and 15 individuals who received two doses during the phase 3 trial of the vaccine (collected 134-230 days after the second dose). Antibody neutralisation of P.1/28, P.1/30, and B isolates by plasma samples were compared in terms of median virus neutralisation titre (VNT50, defined as the reciprocal value of the sample dilution that showed 50% protection against cytopathic effects). FINDINGS In terms of VNT50, plasma from individuals previously infected with SARS-CoV-2 had an 8·6 times lower neutralising capacity against the P.1 isolates (median VNT50 30 [IQR <20-45] for P.1/28 and 30 [<20-40] for P.1/30) than against the lineage B isolate (260 [160-400]), with a binominal model showing significant reductions in lineage P.1 isolates compared with the lineage B isolate (p≤0·0001). Efficient neutralisation of P.1 isolates was not seen with plasma samples collected from individuals vaccinated with a first dose of CoronaVac 20-23 days earlier (VNT50s below the limit of detection [<20] for most plasma samples), a second dose 17-38 days earlier (median VNT50 24 [IQR <20-25] for P.1/28 and 28 [<20-25] for P.1/30), or a second dose 134-260 days earlier (all VNT50s below limit of detection). Median VNT50s against the lineage B isolate were 20 (IQR 20-30) after a first dose of CoronaVac 20-23 days earlier, 75 (<20-263) after a second dose 17-38 days earlier, and 20 (<20-30) after a second dose 134-260 days earlier. In plasma collected 17-38 days after a second dose of CoronaVac, neutralising capacity against both P.1 isolates was significantly decreased (p=0·0051 for P.1/28 and p=0·0336 for P.1/30) compared with that against the lineage B isolate. All data were corroborated by results obtained through plaque reduction neutralisation tests. INTERPRETATION SARS-CoV-2 lineage P.1 might escape neutralisation by antibodies generated in response to polyclonal stimulation against previously circulating variants of SARS-CoV-2. Continuous genomic surveillance of SARS-CoV-2 combined with antibody neutralisation assays could help to guide national immunisation programmes. FUNDING São Paulo Research Foundation, Brazilian Ministry of Science, Technology and Innovation and Funding Authority for Studies, Medical Research Council, National Council for Scientific and Technological Development, National Institutes of Health. TRANSLATION For the Portuguese translation of the abstract see Supplementary Materials section.
Collapse
Affiliation(s)
- William M Souza
- Virology Research Centre, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Mariene R Amorim
- Laboratory of Emerging Viruses, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Renata Sesti-Costa
- Brazilian Biosciences National Laboratory, Brazilian Centre for Research in Energy and Materials, Campinas, Brazil
- Hematology and Hemotherapy Center, University of Campinas, Campinas, Brazil
| | - Lais D Coimbra
- Brazilian Biosciences National Laboratory, Brazilian Centre for Research in Energy and Materials, Campinas, Brazil
| | - Natalia S Brunetti
- Autoimmune Research Laboratory, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Daniel A Toledo-Teixeira
- Laboratory of Emerging Viruses, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Gabriela F de Souza
- Laboratory of Emerging Viruses, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Stefanie P Muraro
- Laboratory of Emerging Viruses, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Pierina L Parise
- Laboratory of Emerging Viruses, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Priscilla P Barbosa
- Laboratory of Emerging Viruses, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Karina Bispo-dos-Santos
- Laboratory of Emerging Viruses, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Luciana S Mofatto
- Laboratory of Emerging Viruses, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Camila L Simeoni
- Laboratory of Emerging Viruses, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Ingra M Claro
- Tropical Medicine Institute, Medical School, University of São Paulo, São Paulo, Brazil
- Department of Infectious and Parasitic Disease, Medical School, University of São Paulo, São Paulo, Brazil
| | - Adriana S S Duarte
- Hematology and Hemotherapy Center, University of Campinas, Campinas, Brazil
| | - Thais M Coletti
- Tropical Medicine Institute, Medical School, University of São Paulo, São Paulo, Brazil
| | | | | | - Arilson B S P Gomes
- Laboratory of Immunoinflammation, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Lucas I Buscaratti
- Brazilian Laboratory on Silencing Technologies, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Flavia C Sales
- Tropical Medicine Institute, Medical School, University of São Paulo, São Paulo, Brazil
- Department of Infectious and Parasitic Disease, Medical School, University of São Paulo, São Paulo, Brazil
| | - Vitor A Costa
- Hematology and Transfusion Medicine Center, University of Campinas, Campinas, Brazil
| | - Lucas A M Franco
- Tropical Medicine Institute, Medical School, University of São Paulo, São Paulo, Brazil
| | | | | | - Jaqueline G de Jesus
- Tropical Medicine Institute, Medical School, University of São Paulo, São Paulo, Brazil
| | - Camila A M Silva
- Tropical Medicine Institute, Medical School, University of São Paulo, São Paulo, Brazil
| | - Mariana S Ramundo
- Tropical Medicine Institute, Medical School, University of São Paulo, São Paulo, Brazil
| | - Giulia M Ferreira
- Hematology and Transfusion Medicine Center, University of Campinas, Campinas, Brazil
- Tropical Medicine Institute, Medical School, University of São Paulo, São Paulo, Brazil
- Laboratory of Virology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | - Mariana C Pinho
- Tropical Medicine Institute, Medical School, University of São Paulo, São Paulo, Brazil
| | - Leandro M Souza
- Tropical Medicine Institute, Medical School, University of São Paulo, São Paulo, Brazil
| | - Esmenia C Rocha
- Tropical Medicine Institute, Medical School, University of São Paulo, São Paulo, Brazil
| | - Pamela S Andrade
- Tropical Medicine Institute, Medical School, University of São Paulo, São Paulo, Brazil
- School of Public Health, University of São Paulo, São Paulo, Brazil
| | - Myuki A E Crispim
- Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas, Manaus, Brazil
| | - Grazielle C Maktura
- Brazilian Laboratory on Silencing Technologies, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Erika R Manuli
- Tropical Medicine Institute, Medical School, University of São Paulo, São Paulo, Brazil
- Department of Infectious and Parasitic Disease, Medical School, University of São Paulo, São Paulo, Brazil
| | - Magnun N N Santos
- Department of Clinical Pathology, School of Medical Sciences, University of Campinas, Campinas, Brazil
| | | | - Rodrigo N Angerami
- Department of Internal Medicine, School of Medical Sciences, University of Campinas, Campinas, Brazil
- Campinas Department of Public Health Surveillance, Campinas, Brazil
| | - Maria L Moretti
- Department of Internal Medicine, School of Medical Sciences, University of Campinas, Campinas, Brazil
| | | | - Clarice W Arns
- Animal Virology Laboratory, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | | | - Bruno D Benites
- Hematology and Transfusion Medicine Center, University of Campinas, Campinas, Brazil
| | - Marco A R Vinolo
- Laboratory of Immunoinflammation, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Marcelo A S Mori
- Experimental Medicine Research Cluster, University of Campinas, Campinas, Brazil
- Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
- Laboratory of Aging Biology, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | | | | | - Henrique Marques-Souza
- Brazilian Laboratory on Silencing Technologies, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Rafael E Marques
- Brazilian Biosciences National Laboratory, Brazilian Centre for Research in Energy and Materials, Campinas, Brazil
| | - Alessandro S Farias
- Autoimmune Research Laboratory, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
- Experimental Medicine Research Cluster, University of Campinas, Campinas, Brazil
- Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Michael S Diamond
- Departments of Medicine, Molecular Microbiology, Pathology, and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Nuno R Faria
- Tropical Medicine Institute, Medical School, University of São Paulo, São Paulo, Brazil
- Department of Zoology, University of Oxford, UK
- Medical Research Council Centre for Global Infectious Disease Analysis, Abdul Latif Jameel Institute for Disease and Emergency Analytics, Imperial College London, London, UK
| | - Ester C Sabino
- Tropical Medicine Institute, Medical School, University of São Paulo, São Paulo, Brazil
- Department of Infectious and Parasitic Disease, Medical School, University of São Paulo, São Paulo, Brazil
| | - Fabiana Granja
- Laboratory of Emerging Viruses, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
- Biodiversity Research Centre, Federal University of Roraima, Boa Vista, Brazil
| | - Jose Luiz Proença-Módena
- Laboratory of Emerging Viruses, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
- Experimental Medicine Research Cluster, University of Campinas, Campinas, Brazil
| |
Collapse
|
127
|
van Dorp L, Houldcroft CJ, Richard D, Balloux F. COVID-19, the first pandemic in the post-genomic era. Curr Opin Virol 2021; 50:40-48. [PMID: 34352474 PMCID: PMC8275481 DOI: 10.1016/j.coviro.2021.07.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/06/2021] [Accepted: 07/06/2021] [Indexed: 12/28/2022]
Abstract
The scale of the international efforts to sequence SARS-CoV-2 genomes is unprecedented. Early availability of genomes allowed rapid characterisation of the virus, thus kickstarting many highly successful vaccine development programmes. Worldwide genomic resources have provided a good understanding of the pandemic, supported close monitoring of the emergence of viral genomic diversity and pinpointed those sites to prioritise for functional characterisation. Continued genomic surveillance of global viral populations will be crucial to inform the timing of vaccine updates so as to pre-empt the spread of immune escape lineages. While genome sequencing has provided us with an exceptionally powerful tool to monitor the evolution of SARS-CoV-2, there is room for further improvements in particular in the form of less heterogeneous global surveillance and tools to rapidly identify concerning viral lineages.
Collapse
Affiliation(s)
- Lucy van Dorp
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK.
| | | | - Damien Richard
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK; Division of Infection and Immunity, University College London, London, WC1E 6BT, UK
| | - François Balloux
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| |
Collapse
|
128
|
Desforges M, Gurdasani D, Hamdy A, Leonardi AJ. Uncertainty around the Long-Term Implications of COVID-19. Pathogens 2021; 10:1267. [PMID: 34684216 PMCID: PMC8536991 DOI: 10.3390/pathogens10101267] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 01/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected more than 231 million people globally, with more than 4.7 million deaths recorded by the World Health Organization as of 26 September 2021. In response to the pandemic, some countries (New Zealand, Vietnam, Taiwan, South Korea and others) have pursued suppression strategies, so-called Zero COVID policies, to drive and maintain infection rates as close to zero as possible and respond aggressively to new cases. In comparison, European countries and North America have adopted mitigation strategies (of varying intensity and effectiveness) that aim primarily to prevent health systems from being overwhelmed. With recent advances in our understanding of SARS-CoV-2 and its biology, and the increasing recognition there is more to COVID-19 beyond the acute infection, we offer a perspective on some of the long-term risks of mutational escape, viral persistence, reinfection, immune dysregulation and neurological and multi-system complications (Long COVID).
Collapse
Affiliation(s)
- Marc Desforges
- Centre Hospitalier Universitaire Ste-Justine and Faculté de Médecine, Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | | | - Adam Hamdy
- Panres Pandemic Research, Newport TF10 8PG, UK;
| | - Anthony J. Leonardi
- Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA;
| |
Collapse
|
129
|
Günl F, Mecate-Zambrano A, Rehländer S, Hinse S, Ludwig S, Brunotte L. Shooting at a Moving Target-Effectiveness and Emerging Challenges for SARS-CoV-2 Vaccine Development. Vaccines (Basel) 2021; 9:1052. [PMID: 34696160 PMCID: PMC8540924 DOI: 10.3390/vaccines9101052] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 02/06/2023] Open
Abstract
Since late 2019 the newly emerged pandemic SARS-CoV-2, the causative agent of COVID-19, has hit the world with recurring waves of infections necessitating the global implementation of non-pharmaceutical interventions, including strict social distancing rules, the wearing of masks and the isolation of infected individuals in order to restrict virus transmissions and prevent the breakdown of our healthcare systems. These measures are not only challenging on an economic level but also have a strong impact on social lifestyles. Using traditional and novel technologies, highly efficient vaccines against SARS-CoV-2 were developed and underwent rapid clinical evaluation and approval to accelerate the immunization of the world population, aiming to end the pandemic and return to normality. However, the emergence of virus variants with improved transmission, enhanced fitness and partial immune escape from the first generation of vaccines poses new challenges, which are currently being addressed by scientists and pharmaceutical companies all over the world. In this ongoing pandemic, the evaluation of SARS-CoV-2 vaccines underlies diverse unpredictable dynamics, posed by the first broad application of the mRNA vaccine technology and their compliance, the occurrence of unexpected side effects and the rapid emergence of variations in the viral antigen. However, despite these hurdles, we conclude that the available SARS-CoV-2 vaccines are very safe and efficiently protect from severe COVID-19 and are thereby the most powerful tools to prevent further harm to our healthcare systems, economics and individual lives. This review summarizes the unprecedented pathways of vaccine development and approval during the ongoing SARS-CoV-2 pandemic. We focus on the real-world effectiveness and unexpected positive and negative side effects of the available vaccines and summarize the timeline of the applied adaptations to the recommended vaccination strategies in the light of emerging virus variants. Finally, we highlight upcoming strategies to improve the next generations of SARS-CoV-2 vaccines.
Collapse
Affiliation(s)
- Franziska Günl
- Institute of Virology (IVM), University of Münster, 48149 Münster, Germany; (F.G.); (A.M.-Z.); (S.R.); (S.H.); (S.L.)
| | - Angeles Mecate-Zambrano
- Institute of Virology (IVM), University of Münster, 48149 Münster, Germany; (F.G.); (A.M.-Z.); (S.R.); (S.H.); (S.L.)
- Interdisciplinary Centre for Clinical Research (IZKF), Medical Faculty, University of Münster, 48149 Münster, Germany
| | - Selina Rehländer
- Institute of Virology (IVM), University of Münster, 48149 Münster, Germany; (F.G.); (A.M.-Z.); (S.R.); (S.H.); (S.L.)
| | - Saskia Hinse
- Institute of Virology (IVM), University of Münster, 48149 Münster, Germany; (F.G.); (A.M.-Z.); (S.R.); (S.H.); (S.L.)
| | - Stephan Ludwig
- Institute of Virology (IVM), University of Münster, 48149 Münster, Germany; (F.G.); (A.M.-Z.); (S.R.); (S.H.); (S.L.)
- Interdisciplinary Centre for Clinical Research (IZKF), Medical Faculty, University of Münster, 48149 Münster, Germany
| | - Linda Brunotte
- Institute of Virology (IVM), University of Münster, 48149 Münster, Germany; (F.G.); (A.M.-Z.); (S.R.); (S.H.); (S.L.)
- Interdisciplinary Centre for Clinical Research (IZKF), Medical Faculty, University of Münster, 48149 Münster, Germany
| |
Collapse
|
130
|
Forni D, Cagliani R, Arrigoni F, Benvenuti M, Mozzi A, Pozzoli U, Clerici M, De Gioia L, Sironi M. Adaptation of the endemic coronaviruses HCoV-OC43 and HCoV-229E to the human host. Virus Evol 2021; 7:veab061. [PMID: 34527284 PMCID: PMC8344746 DOI: 10.1093/ve/veab061] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 12/29/2022] Open
Abstract
Four coronaviruses (HCoV-OC43, HCoV-HKU1, HCoV-NL63, and HCoV-229E) are endemic in human populations. All these viruses are seasonal and generate short-term immunity. Like the highly pathogenic coronaviruses, the endemic coronaviruses have zoonotic origins. Thus, understanding the evolutionary dynamics of these human viruses might provide insight into the future trajectories of SARS-CoV-2 evolution. Because the zoonotic sources of HCoV-OC43 and HCoV-229E are known, we applied a population genetics-phylogenetic approach to investigate which selective events accompanied the divergence of these viruses from the animal ones. Results indicated that positive selection drove the evolution of some accessory proteins, as well as of the membrane proteins. However, the spike proteins of both viruses and the hemagglutinin-esterase (HE) of HCoV-OC43 represented the major selection targets. Specifically, for both viruses, most positively selected sites map to the receptor-binding domains (RBDs) and are polymorphic. Molecular dating for the HCoV-229E spike protein indicated that RBD Classes I, II, III, and IV emerged 3-9 years apart. However, since the appearance of Class V (with much higher binding affinity), around 25 years ago, limited genetic diversity accumulated in the RBD. These different time intervals are not fully consistent with the hypothesis that HCoV-229E spike evolution was driven by antigenic drift. An alternative, not mutually exclusive possibility is that strains with higher affinity for the cellular receptor have out-competed strains with lower affinity. The evolution of the HCoV-OC43 spike protein was also suggested to undergo antigenic drift. However, we also found abundant signals of positive selection in HE. Whereas such signals might result from antigenic drift, as well, previous data showing co-evolution of the spike protein with HE suggest that optimization for human cell infection also drove the evolution of this virus. These data provide insight into the possible trajectories of SARS-CoV-2 evolution, especially in case the virus should become endemic.
Collapse
Affiliation(s)
- Diego Forni
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, via don Luigi Monza, 23843 Bosisio Parini, Italy
| | - Rachele Cagliani
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, via don Luigi Monza, 23843 Bosisio Parini, Italy
| | - Federica Arrigoni
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Piazza della Scienza, Milan 20126, Italy
| | - Martino Benvenuti
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Piazza della Scienza, Milan 20126, Italy
| | - Alessandra Mozzi
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, via don Luigi Monza, 23843 Bosisio Parini, Italy
| | - Uberto Pozzoli
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, via don Luigi Monza, 23843 Bosisio Parini, Italy
| | - Mario Clerici
- Department of Physiopathology and Transplantation, University of Milan, via Francesco Sforza, Milan 20122, Italy
| | - Luca De Gioia
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Piazza della Scienza, Milan 20126, Italy
| | - Manuela Sironi
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, via don Luigi Monza, 23843 Bosisio Parini, Italy
| |
Collapse
|
131
|
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections trigger viral RNA sensors such as TLR7 and RIG-I, thereby leading to production of type I interferon (IFN) and other inflammatory mediators. Expression of viral proteins in the context of this inflammation leads to stereotypical antigen-specific antibody and T cell responses that clear the virus. Immunity is then maintained through long-lived antibody-secreting plasma cells and by memory B and T cells that can initiate anamnestic responses. Each of these steps is consistent with prior knowledge of acute RNA virus infections. Yet there are certain concepts, while not entirely new, that have been resurrected by the biology of severe SARS-CoV-2 infections and deserve further attention. These include production of anti-IFN autoantibodies, early inflammatory processes that slow adaptive humoral immunity, immunodominance of antibody responses, and original antigenic sin. Moreover, multiple different vaccine platforms allow for comparisons of pathways that promote robust and durable adaptive immunity.
Collapse
Affiliation(s)
- Dominik Schenten
- Department of Immunobiology, University of Arizona College of Medicine, Tucson, AZ, United States.
| | - Deepta Bhattacharya
- Department of Immunobiology, University of Arizona College of Medicine, Tucson, AZ, United States.
| |
Collapse
|
132
|
Goldhill DH, Barclay WS. 2020 Hindsight: Should evolutionary virologists have expected the unexpected during a pandemic? Evolution 2021; 75:2311-2316. [PMID: 34342897 PMCID: PMC8444725 DOI: 10.1111/evo.14317] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/21/2021] [Accepted: 07/12/2021] [Indexed: 12/11/2022]
|
133
|
Starr TN, Czudnochowski N, Liu Z, Zatta F, Park YJ, Addetia A, Pinto D, Beltramello M, Hernandez P, Greaney AJ, Marzi R, Glass WG, Zhang I, Dingens AS, Bowen JE, Tortorici MA, Walls AC, Wojcechowskyj JA, De Marco A, Rosen LE, Zhou J, Montiel-Ruiz M, Kaiser H, Dillen JR, Tucker H, Bassi J, Silacci-Fregni C, Housley MP, di Iulio J, Lombardo G, Agostini M, Sprugasci N, Culap K, Jaconi S, Meury M, Dellota E, Abdelnabi R, Foo SYC, Cameroni E, Stumpf S, Croll TI, Nix JC, Havenar-Daughton C, Piccoli L, Benigni F, Neyts J, Telenti A, Lempp FA, Pizzuto MS, Chodera JD, Hebner CM, Virgin HW, Whelan SPJ, Veesler D, Corti D, Bloom JD, Snell G. SARS-CoV-2 RBD antibodies that maximize breadth and resistance to escape. Nature 2021; 597:97-102. [PMID: 34261126 PMCID: PMC9282883 DOI: 10.1038/s41586-021-03807-6] [Citation(s) in RCA: 371] [Impact Index Per Article: 92.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/06/2021] [Indexed: 02/07/2023]
Abstract
An ideal therapeutic anti-SARS-CoV-2 antibody would resist viral escape1-3, have activity against diverse sarbecoviruses4-7, and be highly protective through viral neutralization8-11 and effector functions12,13. Understanding how these properties relate to each other and vary across epitopes would aid the development of therapeutic antibodies and guide vaccine design. Here we comprehensively characterize escape, breadth and potency across a panel of SARS-CoV-2 antibodies targeting the receptor-binding domain (RBD). Despite a trade-off between in vitro neutralization potency and breadth of sarbecovirus binding, we identify neutralizing antibodies with exceptional sarbecovirus breadth and a corresponding resistance to SARS-CoV-2 escape. One of these antibodies, S2H97, binds with high affinity across all sarbecovirus clades to a cryptic epitope and prophylactically protects hamsters from viral challenge. Antibodies that target the angiotensin-converting enzyme 2 (ACE2) receptor-binding motif (RBM) typically have poor breadth and are readily escaped by mutations despite high neutralization potency. Nevertheless, we also characterize a potent RBM antibody (S2E128) with breadth across sarbecoviruses related to SARS-CoV-2 and a high barrier to viral escape. These data highlight principles underlying variation in escape, breadth and potency among antibodies that target the RBD, and identify epitopes and features to prioritize for therapeutic development against the current and potential future pandemics.
Collapse
MESH Headings
- Adult
- Aged
- Animals
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/immunology
- Antibodies, Viral/chemistry
- Antibodies, Viral/immunology
- Antibody Affinity
- Broadly Neutralizing Antibodies/chemistry
- Broadly Neutralizing Antibodies/immunology
- COVID-19/immunology
- COVID-19/virology
- COVID-19 Vaccines/chemistry
- COVID-19 Vaccines/immunology
- Cell Line
- Cricetinae
- Cross Reactions/immunology
- Epitopes, B-Lymphocyte/chemistry
- Epitopes, B-Lymphocyte/genetics
- Epitopes, B-Lymphocyte/immunology
- Female
- Humans
- Immune Evasion/genetics
- Immune Evasion/immunology
- Male
- Mesocricetus
- Middle Aged
- Models, Molecular
- SARS-CoV-2/chemistry
- SARS-CoV-2/classification
- SARS-CoV-2/genetics
- SARS-CoV-2/immunology
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/immunology
- Vaccinology
- COVID-19 Drug Treatment
Collapse
Affiliation(s)
- Tyler N Starr
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Zhuoming Liu
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Fabrizia Zatta
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Young-Jun Park
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Amin Addetia
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Dora Pinto
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Martina Beltramello
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | | | - Allison J Greaney
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Roberta Marzi
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - William G Glass
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ivy Zhang
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tri-Institutional PhD Program in Computational Biology and Medicine, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Adam S Dingens
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - John E Bowen
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | | | - Alexandra C Walls
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | | | - Anna De Marco
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | | | - Jiayi Zhou
- Vir Biotechnology, San Francisco, CA, USA
| | | | | | | | | | - Jessica Bassi
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | | | | | | | - Gloria Lombardo
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | | | - Nicole Sprugasci
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Katja Culap
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Stefano Jaconi
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | | | | | - Rana Abdelnabi
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Leuven, Belgium
| | - Shi-Yan Caroline Foo
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Leuven, Belgium
| | - Elisabetta Cameroni
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Spencer Stumpf
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Tristan I Croll
- Cambridge Institute for Medical Research, Department of Haematology, University of Cambridge, Cambridge, UK
| | - Jay C Nix
- Molecular Biology Consortium, Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - Luca Piccoli
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Fabio Benigni
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Johan Neyts
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Leuven, Belgium
| | | | | | - Matteo S Pizzuto
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - John D Chodera
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Herbert W Virgin
- Vir Biotechnology, San Francisco, CA, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Sean P J Whelan
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Davide Corti
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland.
| | - Jesse D Bloom
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- Howard Hughes Medical Institute, Seattle, WA, USA.
| | | |
Collapse
|
134
|
Rice BL, Douek DC, McDermott AB, Grenfell BT, Metcalf CJE. Why are there so few (or so many) circulating coronaviruses? Trends Immunol 2021; 42:751-763. [PMID: 34366247 PMCID: PMC8272969 DOI: 10.1016/j.it.2021.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 12/11/2022]
Abstract
Despite vast diversity in non-human hosts and conspicuous recent spillover events, only a small number of coronaviruses have been observed to persist in human populations. This puzzling mismatch suggests substantial barriers to establishment. We detail hypotheses that might contribute to explain the low numbers of endemic coronaviruses, despite their considerable evolutionary and emergence potential. We assess possible explanations ranging from issues of ascertainment, historically lower opportunities for spillover, aspects of human demographic changes, and features of pathogen biology and pre-existing adaptive immunity to related viruses. We describe how successful emergent viral species must triangulate transmission, virulence, and host immunity to maintain circulation. Characterizing the factors that might shape the limits of viral persistence can delineate promising research directions to better understand the combinations of pathogens and contexts that are most likely to lead to spillover.
Collapse
Affiliation(s)
- Benjamin L Rice
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA.
| | - Daniel C Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Adrian B McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Bryan T Grenfell
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA; Princeton School of Public and International Affairs, Princeton University, Princeton, NJ, USA
| | - C Jessica E Metcalf
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA; Princeton School of Public and International Affairs, Princeton University, Princeton, NJ, USA
| |
Collapse
|
135
|
Pollett S, Conte MA, Sanborn M, Jarman RG, Lidl GM, Modjarrad K, Maljkovic Berry I. A comparative recombination analysis of human coronaviruses and implications for the SARS-CoV-2 pandemic. Sci Rep 2021; 11:17365. [PMID: 34462471 PMCID: PMC8405798 DOI: 10.1038/s41598-021-96626-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/09/2021] [Indexed: 11/11/2022] Open
Abstract
The SARS-CoV-2 pandemic prompts evaluation of recombination in human coronavirus (hCoV) evolution. We undertook recombination analyses of 158,118 public seasonal hCoV, SARS-CoV-1, SARS-CoV-2 and MERS-CoV genome sequences using the RDP4 software. We found moderate evidence for 8 SARS-CoV-2 recombination events, two of which involved the spike gene, and low evidence for one SARS-CoV-1 recombination event. Within MERS-CoV, 229E, OC43, NL63 and HKU1 datasets, we noted 7, 1, 9, 14, and 1 high-confidence recombination events, respectively. There was propensity for recombination breakpoints in the non-ORF1 region of the genome containing structural genes, and recombination severely skewed the temporal structure of these data, especially for NL63 and OC43. Bayesian time-scaled analyses on recombinant-free data indicated the sampled diversity of seasonal CoVs emerged in the last 70 years, with 229E displaying continuous lineage replacements. These findings emphasize the importance of genomic based surveillance to detect recombination in SARS-CoV-2, particularly if recombination may lead to immune evasion.
Collapse
Affiliation(s)
- Simon Pollett
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Matthew A Conte
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Mark Sanborn
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Richard G Jarman
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Grace M Lidl
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Kayvon Modjarrad
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Irina Maljkovic Berry
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA.
| |
Collapse
|
136
|
The challenge of structural heterogeneity in the native mass spectrometry studies of the SARS-CoV-2 spike protein interactions with its host cell-surface receptor. Anal Bioanal Chem 2021; 413:7205-7214. [PMID: 34389878 PMCID: PMC8362873 DOI: 10.1007/s00216-021-03601-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/28/2021] [Accepted: 08/04/2021] [Indexed: 11/13/2022]
Abstract
Native mass spectrometry (MS) enjoyed tremendous success in the past two decades in a wide range of studies aiming at understanding the molecular mechanisms of physiological processes underlying a variety of pathologies and accelerating the drug discovery process. However, the success record of native MS has been surprisingly modest with respect to the most recent challenge facing the biomedical community—the novel coronavirus infection (COVID-19). The major reason for the paucity of successful studies that use native MS to target various aspects of SARS-CoV-2 interaction with its host is the extreme degree of heterogeneity of the viral protein playing a key role in the host cell invasion. Indeed, the SARS-CoV-2 spike protein (S-protein) is extensively glycosylated, presenting a formidable challenge for native MS as a means of characterizing its interactions with both the host cell–surface receptor ACE2 and the drug candidates capable of disrupting this interaction. In this work, we evaluate the utility of native MS complemented with the experimental methods using gas-phase chemistry (limited charge reduction) to obtain meaningful information on the association of the S1 domain of the S-protein with the ACE2 ectodomain, and the influence of a small synthetic heparinoid on this interaction. Native MS reveals the presence of several different S1 oligomers in solution and allows the stoichiometry of the most prominent S1/ACE2 complexes to be determined. This enables meaningful interpretation of the changes in native MS that are observed upon addition of a small synthetic heparinoid (the pentasaccharide fondaparinux) to the S1/ACE2 solution, confirming that the small polyanion destabilizes the protein/receptor binding.
Collapse
|
137
|
Rattanapisit K, Bulaon CJI, Khorattanakulchai N, Shanmugaraj B, Wangkanont K, Phoolcharoen W. Plant-produced SARS-CoV-2 receptor binding domain (RBD) variants showed differential binding efficiency with anti-spike specific monoclonal antibodies. PLoS One 2021; 16:e0253574. [PMID: 34379620 PMCID: PMC8357147 DOI: 10.1371/journal.pone.0253574] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 06/09/2021] [Indexed: 11/18/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is responsible for the ongoing coronavirus disease (COVID-19) pandemic which is characterized by respiratory illness and severe pneumonia, and currently accounts for > 2.5 million deaths worldwide. Recently, diverse mutations in the spike protein of SARS-CoV-2 were reported in United Kingdom (Alpha) and South Africa (Beta) strains which raise concerns over the potential increase in binding affinity towards the host cell receptor and diminished host neutralization capabilities. In order to study the effect of mutation in the binding efficiency of SARS-CoV-2 receptor binding domain (RBD) with anti-SARS-CoV/CoV-2 monoclonal antibodies (mAbs), we have produced SARS-CoV-2 RBD and two variants SARS-CoV-2 RBD (Alpha RBD and Beta RBD) in Nicotiana benthamiana by transient expression. Plant-produced SARS-CoV-2 RBD-Fc, Alpha RBD-Fc and Beta RBD-Fc exhibited specific binding to human angiotensin converting enzyme 2 (ACE2) receptor determined by ELISA. Intriguingly, the binding of plant-produced SARS-CoV-2 RBD proteins to plant-produced mAbs CR3022, B38, and H4 was found to be different depending on the variant mutation. In contrary to the plant-produced SARS-CoV-2 RBD-Fc and Alpha RBD-Fc, Beta RBD-Fc variant showed weak binding affinity towards the mAbs. The result suggested that the Beta RBD variant might have acquired partial resistance to neutralizing antibodies compared to other variants. However, further studies with sera from convalescent or vaccinated individuals are required to confirm this finding.
Collapse
Affiliation(s)
| | - Christine Joy I. Bulaon
- Research Unit for Plant-produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Narach Khorattanakulchai
- Research Unit for Plant-produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | | | - Kittikhun Wangkanont
- Center of Excellence for Molecular Biology and Genomics of Shrimp (GCE 6302823006-1), Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Molecular Crop Research Unit (GRU 6407023008-1), Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Waranyoo Phoolcharoen
- Research Unit for Plant-produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
138
|
Telenti A, Arvin A, Corey L, Corti D, Diamond MS, García-Sastre A, Garry RF, Holmes EC, Pang PS, Virgin HW. After the pandemic: perspectives on the future trajectory of COVID-19. Nature 2021; 596:495-504. [PMID: 34237771 DOI: 10.1038/s41586-021-03792-w] [Citation(s) in RCA: 237] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023]
Abstract
There is a realistic expectation that the global effort in vaccination will bring the pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) under control. Nonetheless, uncertainties remain about the type of long-term association that the virus will establish with the human population and, in particular, whether coronavirus disease 2019 (COVID-19) will become an endemic disease. Although the trajectory is difficult to predict, the conditions, concepts and variables that influence this transition can be anticipated. Persistence of SARS-CoV-2 as an endemic virus, perhaps with seasonal epidemic peaks, may be fuelled by pockets of susceptible individuals and waning immunity after infection or vaccination, changes in the virus through antigenic drift that diminish protection and re-entries from zoonotic reservoirs. Here we review relevant observations from previous epidemics and discuss the potential evolution of SARS-CoV-2 as it adapts during persistent transmission in the presence of a level of population immunity. Lack of effective surveillance or adequate response could enable the emergence of new epidemic or pandemic patterns from an endemic infection of SARS-CoV-2. There are key pieces of data that are urgently needed in order to make good decisions; we outline these and propose a way forward.
Collapse
Affiliation(s)
- Amalio Telenti
- Vir Biotechnology, San Francisco, CA, USA. .,Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, USA.
| | - Ann Arvin
- Vir Biotechnology, San Francisco, CA, USA.
| | - Lawrence Corey
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| | - Davide Corti
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland.
| | - Michael S Diamond
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA. .,Department of Medicine, Washington University School of Medicine, St Louis, MO, USA. .,Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA.
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Robert F Garry
- Department of Microbiology and Immunology, Tulane University, New Orleans, LA, USA.
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia.
| | | | - Herbert W Virgin
- Vir Biotechnology, San Francisco, CA, USA. .,Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA. .,Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
139
|
Bourassa L, Perchetti GA, Phung Q, Lin MJ, Mills MG, Roychoudhury P, Harmon KG, Reed JC, Greninger AL. A SARS-CoV-2 Nucleocapsid Variant that Affects Antigen Test Performance. J Clin Virol 2021; 141:104900. [PMID: 34171548 DOI: 10.1101/2021.05.05.21256527] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/09/2021] [Indexed: 05/27/2023]
Abstract
More than one year into a global pandemic, SARS-CoV-2 is now defined by a variety of rapidly evolving variant lineages. Several FDA authorized molecular diagnostic tests have been impacted by viral variation, while no reports of viral variation affecting antigen test performance have occurred to date. While determining the analytical sensitivity of the Quidel Sofia SARS Antigen FIA test (Sofia 2), we uncovered a high viral load specimen that repeatedly tested negative by this antigen test. Whole genome sequencing of the specimen uncovered two mutations, T205I and D399N, present in the nucleocapsid protein of the isolate. All six SARS-CoV-2 positive clinical specimens available in our laboratory with a D399N nucleocapsid mutation and CT < 31 were not detected by the Sofia 2 but detected by the Abbott BinaxNOW COVID-19 Ag Card, while clinical specimens with the T205I mutation were detected by both assays. Testing of recombinant SARS-CoV-2 nucleocapsid with these variants demonstrated an approximate 1000-fold loss in sensitivity for the Quidel Sofia SARS Antigen FIA test associated with the D399N mutation, while the BinaxNOW and Quidel Quickvue SARS Antigen tests were unaffected by the mutation. The D399N nucleocapsid mutation has been relatively uncommon to date, appearing in only 0.02% of genomes worldwide at time of writing. Our results demonstrate how routine pathogen genomics can be integrated into the clinical microbiology laboratory to investigate diagnostic edge cases, as well as the importance of profiling antigenic diversity outside of the spike protein for SARS-CoV-2 diagnostics.
Collapse
Affiliation(s)
- Lori Bourassa
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Garrett A Perchetti
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Quynh Phung
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Michelle J Lin
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Margaret G Mills
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Pavitra Roychoudhury
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA; Viral and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Kimberly G Harmon
- Department of Family Medicine, for Stanley Herring Department of Physical Medicine and Rehabilitation, University of Washington, Seattle, Washington, USA
| | - Jonathan C Reed
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Alexander L Greninger
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA; Viral and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| |
Collapse
|
140
|
Otto SP, Day T, Arino J, Colijn C, Dushoff J, Li M, Mechai S, Van Domselaar G, Wu J, Earn DJD, Ogden NH. The origins and potential future of SARS-CoV-2 variants of concern in the evolving COVID-19 pandemic. Curr Biol 2021; 31:R918-R929. [PMID: 34314723 PMCID: PMC8220957 DOI: 10.1016/j.cub.2021.06.049] [Citation(s) in RCA: 224] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
One year into the global COVID-19 pandemic, the focus of attention has shifted to the emergence and spread of SARS-CoV-2 variants of concern (VOCs). After nearly a year of the pandemic with little evolutionary change affecting human health, several variants have now been shown to have substantial detrimental effects on transmission and severity of the virus. Public health officials, medical practitioners, scientists, and the broader community have since been scrambling to understand what these variants mean for diagnosis, treatment, and the control of the pandemic through nonpharmaceutical interventions and vaccines. Here we explore the evolutionary processes that are involved in the emergence of new variants, what we can expect in terms of the future emergence of VOCs, and what we can do to minimise their impact.
Collapse
Affiliation(s)
- Sarah P Otto
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| | - Troy Day
- Department of Mathematics and Statistics, Department of Biology, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Julien Arino
- Department of Mathematics and Data Science Nexus, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Caroline Colijn
- Department of Mathematics, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Jonathan Dushoff
- Department of Biology and M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Michael Li
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Guelph, ON N1G 3W4, Canada
| | - Samir Mechai
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, St. Hyacinthe, QC J2S 2M2, Canada
| | - Gary Van Domselaar
- National Microbiology Laboratory - Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Jianhong Wu
- Laboratory for Industrial and Applied Mathematics, York University, Toronto, ON M3J 1P3, Canada
| | - David J D Earn
- Department of Mathematics and Statistics and M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Nicholas H Ogden
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, St. Hyacinthe, QC J2S 2M2, Canada
| |
Collapse
|
141
|
Tsai KC, Lee YC, Tseng TS. Comprehensive Deep Mutational Scanning Reveals the Immune-Escaping Hotspots of SARS-CoV-2 Receptor-Binding Domain Targeting Neutralizing Antibodies. Front Microbiol 2021; 12:698365. [PMID: 34335530 PMCID: PMC8319916 DOI: 10.3389/fmicb.2021.698365] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/09/2021] [Indexed: 12/13/2022] Open
Abstract
The rapid spread of SARS-CoV-2 has caused the COVID-19 pandemic, resulting in the collapse of medical care systems and economic depression worldwide. To combat COVID-19, neutralizing antibodies have been investigated and developed. However, the evolutions (mutations) of the receptor-binding domain (RBD) of SARS-CoV-2 enable escape from neutralization by these antibodies, further impairing recognition by the human immune system. Thus, it is critical to investigate and predict the putative mutations of RBD that escape neutralizing immune responses. Here, we employed computational analyses to comprehensively investigate the mutational effects of RBD on binding to neutralizing antibodies and angiotensin-converting enzyme 2 (ACE2) and demonstrated that the RBD residues K417, L452, L455, F456, E484, G485, F486, F490, Q493, and S494 were consistent with clinically emerging variants or experimental observations of attenuated neutralizations. We also revealed common hotspots, Y449, L455, and Y489, that exerted comparable destabilizing effects on binding to both ACE2 and neutralizing antibodies. Our results provide valuable information on the putative effects of RBD variants on interactions with neutralizing antibodies. These findings provide insights into possible evolutionary hotspots that can escape recognition by these antibodies. In addition, our study results will benefit the development and design of vaccines and antibodies to combat the newly emerging variants of SARS-CoV-2.
Collapse
Affiliation(s)
- Keng-Chang Tsai
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yu-Ching Lee
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- TMU Biomedical Commercialization Center, Taipei Medical University, Taipei, Taiwan
| | - Tien-Sheng Tseng
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
142
|
Abstract
The rapid and remarkably successful development, manufacture, and deployment of several effective severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines is now tempered by three key challenges. First, reducing virus transmission will require prevention of asymptomatic and mild infections in addition to severe symptomatic infections. Second, the emergence of variants of concern with mutations in the S protein's receptor binding domain increases the likelihood that vaccines will have to be updated because some of these mutations render variants less optimally targeted by current vaccines. This will require coordinated global SARS-CoV-2 surveillance to link genotypes to phenotypes, potentially using the WHO's global influenza surveillance program as a guide. Third, concerns about the longevity of vaccine-induced immunity highlight the potential need for re-vaccination, depending on the extent to which the virus has been controlled and whether re-vaccination can target those at greatest risk of severe illness. Fortunately, as I discuss in this review, these challenges can be addressed.
Collapse
Affiliation(s)
- Kanta Subbarao
- WHO Collaborating Centre for Reference and Research on Influenza; Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.
| |
Collapse
|
143
|
Hauser BM, Sangesland M, Denis KJS, Windsor IW, Feldman J, Lam EC, Kannegieter T, Balazs AB, Lingwood D, Schmidt AG. Rationally designed immunogens enable immune focusing to the SARS-CoV-2 receptor binding motif. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.03.15.435440. [PMID: 33758851 PMCID: PMC7987010 DOI: 10.1101/2021.03.15.435440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Eliciting antibodies to surface-exposed viral glycoproteins can lead to protective responses that ultimately control and prevent future infections. Targeting functionally conserved epitopes may help reduce the likelihood of viral escape and aid in preventing the spread of related viruses with pandemic potential. One such functionally conserved viral epitope is the site to which a receptor must bind to facilitate viral entry. Here, we leveraged rational immunogen design strategies to focus humoral responses to the receptor binding motif (RBM) on the SARS-CoV-2 spike. Using glycan engineering and epitope scaffolding, we find an improved targeting of the serum response to the RBM in context of SARS-CoV-2 spike imprinting. Furthermore, we observed a robust SARS-CoV-2-neutralizing serum response with increased potency against related sarbecoviruses, SARS-CoV, WIV1-CoV, RaTG13-CoV, and SHC014-CoV. Thus, RBM focusing is a promising strategy to elicit breadth across emerging sarbecoviruses and represents an adaptable design approach for targeting conserved epitopes on other viral glycoproteins. ONE SENTENCE SUMMARY SARS-CoV-2 immune focusing with engineered immunogens.
Collapse
|
144
|
Greaney AJ, Loes AN, Gentles LE, Crawford KHD, Starr TN, Malone KD, Chu HY, Bloom JD. Antibodies elicited by mRNA-1273 vaccination bind more broadly to the receptor binding domain than do those from SARS-CoV-2 infection. Sci Transl Med 2021; 13:eabi9915. [PMID: 34103407 PMCID: PMC8369496 DOI: 10.1126/scitranslmed.abi9915] [Citation(s) in RCA: 184] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/02/2021] [Indexed: 12/18/2022]
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with mutations in key antibody epitopes has raised concerns that antigenic evolution could erode adaptive immunity elicited by prior infection or vaccination. The susceptibility of immunity to viral evolution is shaped in part by the breadth of epitopes targeted by antibodies elicited by vaccination or natural infection. To investigate how human antibody responses to vaccines are influenced by viral mutations, we used deep mutational scanning to compare the specificity of polyclonal antibodies elicited by either two doses of the mRNA-1273 COVID-19 vaccine or natural infection with SARS-CoV-2. The neutralizing activity of vaccine-elicited antibodies was more targeted to the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein compared to antibodies elicited by natural infection. However, within the RBD, binding of vaccine-elicited antibodies was more broadly distributed across epitopes compared to infection-elicited antibodies. This greater binding breadth means that single RBD mutations have less impact on neutralization by vaccine sera compared to convalescent sera. Therefore, antibody immunity acquired by natural infection or different modes of vaccination may have a differing susceptibility to erosion by SARS-CoV-2 evolution.
Collapse
Affiliation(s)
- Allison J Greaney
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Genome Sciences & Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Andrea N Loes
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Lauren E Gentles
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | - Katharine H D Crawford
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Genome Sciences & Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Tyler N Starr
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Keara D Malone
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Helen Y Chu
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98195, USA
| | - Jesse D Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
145
|
Anand U, Jakhmola S, Indari O, Jha HC, Chen ZS, Tripathi V, Pérez de la Lastra JM. Potential Therapeutic Targets and Vaccine Development for SARS-CoV-2/COVID-19 Pandemic Management: A Review on the Recent Update. Front Immunol 2021; 12:658519. [PMID: 34276652 PMCID: PMC8278575 DOI: 10.3389/fimmu.2021.658519] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 06/07/2021] [Indexed: 01/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is a highly pathogenic novel virus that has caused a massive pandemic called coronavirus disease 2019 (COVID-19) worldwide. Wuhan, a city in China became the epicenter of the outbreak of COVID-19 in December 2019. The disease was declared a pandemic globally by the World Health Organization (WHO) on 11 March 2020. SARS-CoV-2 is a beta CoV of the Coronaviridae family which usually causes respiratory symptoms that resemble common cold. Multiple countries have experienced multiple waves of the disease and scientific experts are consistently working to find answers to several unresolved questions, with the aim to find the most suitable ways to contain the virus. Furthermore, potential therapeutic strategies and vaccine development for COVID-19 management are also considered. Currently, substantial efforts have been made to develop successful and safe treatments and SARS-CoV-2 vaccines. Some vaccines, such as inactivated vaccines, nucleic acid-based, and vector-based vaccines, have entered phase 3 clinical trials. Additionally, diverse small molecule drugs, peptides and antibodies are being developed to treat COVID-19. We present here an overview of the virus interaction with the host and environment and anti-CoV therapeutic strategies; including vaccines and other methodologies, designed for prophylaxis and treatment of SARS-CoV-2 infection with the hope that this integrative analysis could help develop novel therapeutic approaches against COVID-19.
Collapse
Affiliation(s)
- Uttpal Anand
- Department of Life Sciences, National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Shweta Jakhmola
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Omkar Indari
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Hem Chandra Jha
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
| | - Vijay Tripathi
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India
| | - José M. Pérez de la Lastra
- Instituto de Productos Naturales y Agrobiología (IPNA), Consejo Superior de Investigaciones científicas (CSIS), Santa Cruz de Tenerife, Spain
| |
Collapse
|
146
|
Yang Y, Ivanov DG, Kaltashov IA. The challenge of structural heterogeneity in the native mass spectrometry studies of the SARS-CoV-2 spike protein interactions with its host cell-surface receptor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 34189525 DOI: 10.1101/2021.06.20.449191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Native mass spectrometry (MS) enjoyed tremendous success in the past two decades in a wide range of studies aiming at understanding the molecular mechanisms of physiological processes underlying a variety of pathologies and accelerating the drug discovery process. However, the success record of native MS has been surprisingly modest with respect to the most recent challenge facing the biomedical community â€" the novel coronavirus infection (COVID-19). The major reason for the paucity of successful studies that use native MS to target various aspects of SARS-CoV-2 interaction with its host is the extreme degree of structural heterogeneity of the viral protein playing a key role in the host cell invasion. Indeed, the SARS-CoV-2 spike protein (S-protein) is extensively glycosylated, presenting a formidable challenge for native mass spectrometry (MS) as a means of characterizing its interactions with both the host cell-surface receptor ACE2 and the drug candidates capable of disrupting this interaction. In this work we evaluate the utility of native MS complemented with the experimental methods using gas-phase chemistry (limited charge reduction) to obtain meaningful information on the association of the S1 domain of the S-protein with the ACE2 ectodomain, and the influence of a small synthetic heparinoid on this interaction. Native MS reveals the presence of several different S1 oligomers in solution and allows the stoichiometry of the most prominent S1/ACE2 complexes to be determined. This enables meaningful interpretation of the changes in native MS that are observed upon addition of a small synthetic heparinoid (the pentasaccharide fondaparinux) to the S1/ACE2 solution, confirming that the small polyanion destabilizes the protein/receptor binding.
Collapse
|
147
|
Bourassa L, Perchetti GA, Phung Q, Lin MJ, Mills MG, Roychoudhury P, Harmon KG, Reed JC, Greninger AL. A SARS-CoV-2 Nucleocapsid Variant that Affects Antigen Test Performance. J Clin Virol 2021; 141:104900. [PMID: 34171548 PMCID: PMC8219478 DOI: 10.1016/j.jcv.2021.104900] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/09/2021] [Indexed: 02/06/2023]
Abstract
More than one year into a global pandemic, SARS-CoV-2 is now defined by a variety of rapidly evolving variant lineages. Several FDA authorized molecular diagnostic tests have been impacted by viral variation, while no reports of viral variation affecting antigen test performance have occurred to date. While determining the analytical sensitivity of the Quidel Sofia SARS Antigen FIA test (Sofia 2), we uncovered a high viral load specimen that repeatedly tested negative by this antigen test. Whole genome sequencing of the specimen uncovered two mutations, T205I and D399N, present in the nucleocapsid protein of the isolate. All six SARS-CoV-2 positive clinical specimens available in our laboratory with a D399N nucleocapsid mutation and CT < 31 were not detected by the Sofia 2 but detected by the Abbott BinaxNOW COVID-19 Ag Card, while clinical specimens with the T205I mutation were detected by both assays. Testing of recombinant SARS-CoV-2 nucleocapsid with these variants demonstrated an approximate 1000-fold loss in sensitivity for the Quidel Sofia SARS Antigen FIA test associated with the D399N mutation, while the BinaxNOW and Quidel Quickvue SARS Antigen tests were unaffected by the mutation. The D399N nucleocapsid mutation has been relatively uncommon to date, appearing in only 0.02% of genomes worldwide at time of writing. Our results demonstrate how routine pathogen genomics can be integrated into the clinical microbiology laboratory to investigate diagnostic edge cases, as well as the importance of profiling antigenic diversity outside of the spike protein for SARS-CoV-2 diagnostics.
Collapse
Affiliation(s)
- Lori Bourassa
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Garrett A Perchetti
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Quynh Phung
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Michelle J Lin
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Margaret G Mills
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Pavitra Roychoudhury
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA; Viral and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Kimberly G Harmon
- Department of Family Medicine, for Stanley Herring Department of Physical Medicine and Rehabilitation, University of Washington, Seattle, Washington, USA
| | - Jonathan C Reed
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Alexander L Greninger
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA; Viral and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| |
Collapse
|
148
|
Miller NL, Clark T, Raman R, Sasisekharan R. Mapping Potential Antigenic Drift Sites (PADS) on SARS-CoV-2 Spike in Continuous Epitope-Paratope Space. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.06.07.446560. [PMID: 34127976 PMCID: PMC8202428 DOI: 10.1101/2021.06.07.446560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
SARS-CoV-2 mutations with antigenic effects pose a risk to immunity developed through vaccination and natural infection. While vaccine updates for current variants of concern (VOCs) are underway, it is likewise important to prepare for further antigenic mutations as the virus navigates the heterogeneous global landscape of host immunity. Toward this end, a wealth of data and tools exist that can augment existing genetic surveillance of VOC evolution. In this study, we integrate published datasets describing genetic, structural, and functional constraints on mutation along with computational analyses of antibody-spike co-crystal structures to identify a set of potential antigenic drift sites (PADS) within the receptor binding domain (RBD) and N-terminal domain (NTD) of SARS-CoV-2 spike protein. Further, we project the PADS set into a continuous epitope-paratope space to facilitate interpretation of the degree to which newly observed mutations might be antigenically synergistic with existing VOC mutations, and this representation suggests that functionally convergent and synergistic antigenic mutations are accruing across VOC NTDs. The PADS set and synergy visualization serve as a reference as new mutations are detected on VOCs, enable proactive investigation of potentially synergistic mutations, and offer guidance to antibody and vaccine design efforts.
Collapse
Affiliation(s)
- Nathaniel L. Miller
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Thomas Clark
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Rahul Raman
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Ram Sasisekharan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
149
|
Rees EM, Waterlow NR, Lowe R, Kucharski AJ. Estimating the duration of seropositivity of human seasonal coronaviruses using seroprevalence studies. Wellcome Open Res 2021; 6:138. [PMID: 34708157 PMCID: PMC8517721 DOI: 10.12688/wellcomeopenres.16701.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2021] [Indexed: 11/20/2022] Open
Abstract
Background: The duration of immunity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still uncertain, but it is of key clinical and epidemiological importance. Seasonal human coronaviruses (HCoV) have been circulating for longer and, therefore, may offer insights into the long-term dynamics of reinfection for such viruses. Methods: Combining historical seroprevalence data from five studies covering the four circulating HCoVs with an age-structured reverse catalytic model, we estimated the likely duration of seropositivity following seroconversion. Results: We estimated that antibody persistence lasted between 0.9 (95% Credible interval: 0.6 - 1.6) and 3.8 (95% CrI: 2.0 - 7.4) years. Furthermore, we found the force of infection in older children and adults (those over 8.5 [95% CrI: 7.5 - 9.9] years) to be higher compared with young children in the majority of studies. Conclusions: These estimates of endemic HCoV dynamics could provide an indication of the future long-term infection and reinfection patterns of SARS-CoV-2.
Collapse
Affiliation(s)
- Eleanor M. Rees
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK
- Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Naomi R. Waterlow
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | | | - Rachel Lowe
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK
- Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Adam J. Kucharski
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
150
|
Heffron AS, McIlwain SJ, Amjadi MF, Baker DA, Khullar S, Armbrust T, Halfmann PJ, Kawaoka Y, Sethi AK, Palmenberg AC, Shelef MA, O’Connor DH, Ong IM. The landscape of antibody binding in SARS-CoV-2 infection. PLoS Biol 2021; 19:e3001265. [PMID: 34143766 PMCID: PMC8245122 DOI: 10.1371/journal.pbio.3001265] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 06/30/2021] [Accepted: 05/06/2021] [Indexed: 02/08/2023] Open
Abstract
The search for potential antibody-based diagnostics, vaccines, and therapeutics for pandemic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has focused almost exclusively on the spike (S) and nucleocapsid (N) proteins. Coronavirus membrane (M), ORF3a, and ORF8 proteins are humoral immunogens in other coronaviruses (CoVs) but remain largely uninvestigated for SARS-CoV-2. Here, we use ultradense peptide microarray mapping to show that SARS-CoV-2 infection induces robust antibody responses to epitopes throughout the SARS-CoV-2 proteome, particularly in M, in which 1 epitope achieved excellent diagnostic accuracy. We map 79 B cell epitopes throughout the SARS-CoV-2 proteome and demonstrate that antibodies that develop in response to SARS-CoV-2 infection bind homologous peptide sequences in the 6 other known human CoVs. We also confirm reactivity against 4 of our top-ranking epitopes by enzyme-linked immunosorbent assay (ELISA). Illness severity correlated with increased reactivity to 9 SARS-CoV-2 epitopes in S, M, N, and ORF3a in our population. Our results demonstrate previously unknown, highly reactive B cell epitopes throughout the full proteome of SARS-CoV-2 and other CoV proteins.
Collapse
Affiliation(s)
- Anna S. Heffron
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Sean J. McIlwain
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- University of Wisconsin Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Maya F. Amjadi
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - David A. Baker
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Saniya Khullar
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Tammy Armbrust
- Department of Pathobiological Sciences, School of Veterinary Medicine, Influenza Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Peter J. Halfmann
- Department of Pathobiological Sciences, School of Veterinary Medicine, Influenza Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Yoshihiro Kawaoka
- Department of Pathobiological Sciences, School of Veterinary Medicine, Influenza Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ajay K. Sethi
- Department of Population Health Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ann C. Palmenberg
- Department of Biochemistry, Institute for Molecular Virology, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Miriam A. Shelef
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, United States of America
| | - David H. O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Irene M. Ong
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- University of Wisconsin Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|