101
|
Furuta A, Jankowski RJ, Pruchnic R, Yoshimura N, Chancellor MB. The potential of muscle-derived stem cells for stress urinary incontinence. Expert Opin Biol Ther 2007; 7:1483-6. [PMID: 17916041 DOI: 10.1517/14712598.7.10.1483] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The suburethral sling procedures, such as transvaginal tape (TVT), have recently gained popularity for the treatment of stress urinary incontinence (SUI). This TVT procedure can reinforce the weakness of pelvic floor muscles but urethral sphincter deficiency remains. Adult stem cell injection therapy for SUI has recently been at the forefront of the repair of deficient urethral function. Muscle-derived stem cells and adipose-derived stem cells are regarded as candidates for the treatment of SUI because these stem cells can be easily obtained in large quantities under local anesthesia, they have the potential to undergo long-term proliferation, self-renewal and multipotent differentiation, and can serve as a vehicle of releasing neurotrophins, such as nerve growth factor, to repair the deficient urethra.
Collapse
|
102
|
The place of choline acetyltransferase activity measurement in the "cholinergic hypothesis" of neurodegenerative diseases. Neurochem Res 2007; 33:318-27. [PMID: 17940885 DOI: 10.1007/s11064-007-9497-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Accepted: 08/29/2007] [Indexed: 01/06/2023]
Abstract
The so-called "cholinergic hypothesis" assumes that degenerative dysfunction of the cholinergic system originating in the basal forebrain and innervating several cortical regions and the hippocampus, is related to memory impairment and neurodegeneration found in several forms of dementia and in brain aging. Biochemical methods measuring the activity of the key enzyme for acetylcholine synthesis, choline acetyltransferase, have been used for many years as a reliable marker of the integrity or the damage of the cholinergic pathways. Stereologic counting of the basal forebrain cholinergic cell bodies, has been additionally used to assess neurodegenerative changes of the forebrain cholinergic system. While initially believed to mark relatively early stages of disease, cholinergic dysfunction is at present considered to occur in advanced dementia of Alzheimer's type, while its involvement in mild and prodromal stages of the disease has been questioned. The issue is relevant to better understand the neuropathological basis of the diseases, but it is also of primary importance for therapy. During the last few years, indeed, cholinergic replacement therapies, mainly based on the use of acetylcholinesterase inhibitors to increase synaptic availability of acetylcholine, have been exploited on the assumption that they could ameliorate the progression of the dementia from its initial stages. In the present paper, we review data from human studies, as well as from animal models of Alzheimer's and Down's diseases, focusing on different ways to evaluate cholinergic dysfunction, also in relation to the time point at which these dysfunctions can be demonstrated, and on some discrepancy arising from the use of different methodological approaches. The reviewed literature, as well as some recent data from our laboratories on a mouse model of Down's syndrome, stress the importance of performing biochemical evaluation of choline acetyltransferase activity to assess cholinergic dysfunction both in humans and in animal models.
Collapse
|
103
|
Machová E, Málková B, Lisá V, Nováková J, Dolezal V. The increase of choline acetyltransferase activity by docosahexaenoic acid in NG108-15 cells grown in serum-free medium is independent of its effect on cell growth. Neurochem Res 2007; 31:1239-46. [PMID: 17004129 DOI: 10.1007/s11064-006-9156-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We investigated the influence of the polyunsaturated docosahexaenoic acid (22:6n-3; DHA) on the constitutive expression of choline acetyltransferase (ChAT) in native and induced expression in differentiated cholinergic cells NG108-15 grown in serum-free medium. Elimination of serum-derived trophic support resulted in growth arrest and a strong decrease of ChAT activity. In either conditions, DHA largely rescued general indicators of cell growth and function, and partially prevented the decrease of ChAT activity. However, the maximal effect on general cell state in native and differentiated cells, and ChAT activity in native cells, was reached at or below 10 mumol/l of DHA. In contrast, maximal induction of ChAT activity in differentiated cells required about six times higher concentrations of DHA. These data thus demonstrate stimulatory effect of DHA on ChAT activity that is independent of its general cell protective properties.
Collapse
Affiliation(s)
- Eva Machová
- Institute of Physiology CAS, Vídenská 1083, 14220, Prague 4, Czech Republic
| | | | | | | | | |
Collapse
|
104
|
Tacconelli A, Farina AR, Cappabianca L, Cea G, Panella S, Chioda A, Gallo R, Cinque B, Sferra R, Vetuschi A, Campese AF, Screpanti I, Gulino A, Mackay AR. TrkAIII expression in the thymus. J Neuroimmunol 2007; 183:151-61. [PMID: 17241672 DOI: 10.1016/j.jneuroim.2006.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Revised: 12/01/2006] [Accepted: 12/01/2006] [Indexed: 10/23/2022]
Abstract
The alternative TrkAIII splice variant is expressed by murine and human thymus. Alternative TrkAIII splicing predominates in postembryonic day E13 (E17 and E18), postnatal murine (3 week and 3 month) and human thymuses, with TrkAIII mRNA expressed by selected thymocyte subsets and thymic epithelial cells (TECs) and a 100 kDa immunoprecipitable TrkAIII-like protein detected in purified thymocyte and whole thymus extracts. FACS and immunohistochemical analysis indicate a non-cell surface localisation for the TrkAIII-like protein in cortical CD4+/CD8+ double positive and, to a lesser extent, single positive thymocyte subsets at the cortex/medulla boundary and in Hassle's corpuscles, reticular epithelial and dendritic cells of the thymic medulla. TrkA(I/II) expression, on the other hand, predominates in sub-capsular regions of the thymus. TrkAIII-like immunoreactivity at the cortex/medulla boundary associates with regions of thymocyte proliferation and not apoptosis. A potential role for thymic hypoxia in thymocyte alternative TrkAIII splicing is supported by reversal to TrkAI splicing by normoxic but not hypoxic culture and induction of Jurkat T cell alternative TrkAIII splicing by the hypoxia mimic CoCl2. In contrast, TEC expression of TrkAIII predominates in both normoxic and hypoxic culture conditions. The data support a potential role for TrkAIII in thymic development and function, of particular relevance to intermediate stage CD4+/CD8+ thymocyte subsets and TECs, which potentially reflects a reversible thymocyte and more permanent TEC adaptation to thymic environment. Since intracellular TrkAIII neither binds nor responds to NGF and can impede regular NGF/TrkA signalling (Tacconelli et al., Cancer Cell, 2004), its expression would be expected to provide an alternative and/or impediment to regular NGF/TrkA signalling within the developing and developed thymus of potential functional importance.
Collapse
Affiliation(s)
- Antonella Tacconelli
- Department of Experimental Medicine, University of L'Aquila, Coppito 2, Via Vetoio, 67100 L'Aquila, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Machová E, Jakubík J, Michal P, Oksman M, Iivonen H, Tanila H, Dolezal V. Impairment of muscarinic transmission in transgenic APPswe/PS1dE9 mice. Neurobiol Aging 2006; 29:368-78. [PMID: 17140703 DOI: 10.1016/j.neurobiolaging.2006.10.029] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Revised: 09/20/2006] [Accepted: 10/30/2006] [Indexed: 02/07/2023]
Abstract
We assessed the integrity of cholinergic neurotransmission in parietal cortex of young adult (7 months) and aged (17 months) transgenic APPswe/PS1dE9 female mice compared to littermate controls. Choline acetyltransferase and acetylcholinesterase activity declined age-dependently in both genotypes, whereas both age- and genotype-dependent decline was found in butyrylcholinesterase activity, vesicular acetylcholine transporter density, muscarinic receptors and carbachol stimulated binding of GTP gamma S in membranes as a functional indicator of muscarinic receptor coupling to G-proteins. Notably, vesicular acetylcholine transporter levels and muscarinic receptor-G-protein coupling were impaired in transgenic mice already at the age of 7 months compared to wild type littermates. Thus, brain amyloid accumulation in this mouse model is accompanied by a serious deterioration of muscarinic transmission already before the mice manifest significant cognitive deficits.
Collapse
Affiliation(s)
- E Machová
- Department of Neurochemistry, Institute of Physiology CAS, Vídenská 1083, 14220 Prague 4, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
106
|
Sola E, Capsoni S, Rosato-Siri M, Cattaneo A, Cherubini E. Failure of nicotine-dependent enhancement of synaptic efficacy at Schaffer-collateral CA1 synapses of AD11 anti-nerve growth factor transgenic mice. Eur J Neurosci 2006; 24:1252-64. [PMID: 16987213 DOI: 10.1111/j.1460-9568.2006.04996.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Alzheimer's disease is a neurodegenerative disorder characterized by neuronal loss associated with a progressive impairment of cognitive functions. Early consequences of Alzheimer's disease include deficit of cholinergic signalling in particular regions controlling memory processes, such as the cortex and hippocampus, and accumulation of beta-amyloid (Abeta) peptide in neuritic plaques. The cholinergic system depends for its integrity and function on nerve growth factor. Chronic nerve growth factor deprivation in transgenic mice (AD11) engineered to produce recombinant neutralizing anti-nerve growth factor antibodies leads to progressive age-dependent Alzheimer's-like neurodegenerative pathology similar to that found in patients with Alzheimer's disease, associated with a selective loss of cholinergic neurones in the basal forebrain. Here we show that in the hippocampus of 6-month-old AD11 mice, Abeta aggregates started appearing in the CA1 region. The accumulation of Abeta was associated with a loss of cholinergic function at CA3-CA1 synapses. Whereas in wild-type mice nicotine induced a persistent increase of synaptic efficacy via alpha7 nicotine acetylcholine receptors, in AD11 mice this alkaloid failed to modify synaptic strength. Moreover, nicotine failed to transiently enhance the frequency of spontaneous miniature glutamatergic currents (miniature excitatory postsynaptic currents) recorded from CA1 but not from CA3 pyramidal neurones of AD11 mice. However, in CA3 principal cells of AD11 mice, the potentiating effect of nicotine on miniature excitatory postsynaptic currents was prevented when Abeta peptide 1-42 was added to the extracellular solution. These data suggest that in AD11 mice, Abeta interferes with nicotine acetylcholine receptors at the level of presynaptic glutamatergic terminals, inhibiting their function possibly through calcium signalling via presynaptic alpha7 nicotine acetylcholine receptors.
Collapse
Affiliation(s)
- Elisabetta Sola
- Neuroscience Programme, International School for Advanced Studies, Via Beirut 2-4, 34014 Trieste, Italy
| | | | | | | | | |
Collapse
|
107
|
Alberghina L, Colangelo AM. The modular systems biology approach to investigate the control of apoptosis in Alzheimer's disease neurodegeneration. BMC Neurosci 2006; 7 Suppl 1:S2. [PMID: 17118156 PMCID: PMC1775042 DOI: 10.1186/1471-2202-7-s1-s2] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Apoptosis is a programmed cell death that plays a critical role during the development of the nervous system and in many chronic neurodegenerative diseases, including Alzheimer's disease (AD). This pathology, characterized by a progressive degeneration of cholinergic function resulting in a remarkable cognitive decline, is the most common form of dementia with high social and economic impact. Current therapies of AD are only symptomatic, therefore the need to elucidate the mechanisms underlying the onset and progression of the disease is surely needed in order to develop effective pharmacological therapies. Because of its pivotal role in neuronal cell death, apoptosis has been considered one of the most appealing therapeutic targets, however, due to the complexity of the molecular mechanisms involving the various triggering events and the many signaling cascades leading to cell death, a comprehensive understanding of this process is still lacking. Modular systems biology is a very effective strategy in organizing information about complex biological processes and deriving modular and mathematical models that greatly simplify the identification of key steps of a given process. This review aims at describing the main steps underlying the strategy of modular systems biology and briefly summarizes how this approach has been successfully applied for cell cycle studies. Moreover, after giving an overview of the many molecular mechanisms underlying apoptosis in AD, we present both a modular and a molecular model of neuronal apoptosis that suggest new insights on neuroprotection for this disease.
Collapse
Affiliation(s)
- Lilia Alberghina
- Department of Biotechnology and Biosciences, Laboratory of Neuroscience R. Levi-Montalcini, University of Milano-Bicocca, 20126 Milan, Italy.
| | | |
Collapse
|
108
|
Rosato-Siri M, Cattaneo A, Cherubini E. Nicotine-induced enhancement of synaptic plasticity at CA3-CA1 synapses requires GABAergic interneurons in adult anti-NGF mice. J Physiol 2006; 576:361-77. [PMID: 16873411 PMCID: PMC1890362 DOI: 10.1113/jphysiol.2006.114587] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/01/2006] [Accepted: 07/20/2006] [Indexed: 11/08/2022] Open
Abstract
The hippocampus, a key structure for learning and memory processes, receives an important cholinergic innervation and is densely packed with a variety of nicotinic acetylcholine receptors (nAChRs) localized on principal cells and interneurons. Activation of these receptors by nicotine or endogenously released acetylcholine enhances activity-dependent synaptic plasticity processes. Deficits in the cholinergic system produce impairment of cognitive functions that are particularly relevant during senescence and in age-related neurodegenerative pathologies. In particular, Alzheimer's disease (AD) is characterized by a selective loss of cholinergic neurons in the basal forebrain and nAChRs in particular regions controlling memory processes such as the cortex and the hippocampus. Field excitatory postsynaptic potentials were recorded in order to examine whether nicotine was able to regulate induction of long-term potentiation at CA3-CA1 synapses in hippocampal slices from adult anti-NGF transgenic mice (AD 11), a comprehensive animal model of AD, in which cholinergic deficits due to nerve growth factor depletion are accompanied by progressive Alzheimer-like neurodegeneration. Both AD 11 and wild-type (WT) mice exhibited short- and long-lasting synaptic plasticity processes that were boosted by nicotine. The effects of nicotine on WT and AD 11 mice were mediated by both alpha7- and beta2-containing nAChRs. In the presence of GABA(A) receptor antagonists, nicotine failed to boost synaptic plasticity in AD 11 but not in WT mice, indicating that in anti-NGF transgenic mice GABAergic interneurons are able to compensate for the deficit in cholinergic modulation of glutamatergic transmission. This compensation may occur at different levels and may involve the reorganization of the GABAergic circuit. However, patch-clamp whole-cell recordings from principal cells failed to reveal any change in spontaneous release of GABA following pressure application of nicotine to nearby GABAergic interneurons. Together, these experiments indicate that in AD 11 mice a rearrangement of the GABAergic circuit can 'rescue' nicotine-induced potentiation of synaptic plasticity. This may be relevant for developing proper therapeutic tools useful for the treatment of AD.
Collapse
Affiliation(s)
- Marcelo Rosato-Siri
- Neuroscience Programme, International School for Advanced Studies, Via Beirut 2-4, 34014 Trieste, Italy.
| | | | | |
Collapse
|
109
|
Abstract
Recent work has shown that zinc is involved in the developmental regulation of neurotrophins and N-methyl-D-aspartate (NMDA) receptors, controlling use of glutamate as a neurotransmitter in the central nervous system (CNS). This is particularly important in the hippocampus, a region of the brain involved in learning and memory, and is an intriguing link to the role of zinc in neuropsychological development.
Collapse
Affiliation(s)
- Cathy W Levenson
- Program in Neuroscience and Department of Nutrition, Food and Exercise Sciences, 237 Biomedical Research Facility, Florida State University, Tallahassee, FL 32306-4340, USA.
| |
Collapse
|
110
|
Capsoni S, Cattaneo A. On the molecular basis linking Nerve Growth Factor (NGF) to Alzheimer's disease. Cell Mol Neurobiol 2006; 26:619-33. [PMID: 16944323 PMCID: PMC11520721 DOI: 10.1007/s10571-006-9112-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2005] [Accepted: 09/26/2005] [Indexed: 01/27/2023]
Abstract
1. Alzheimer's disease (AD) is pathologically defined by the deposition of amyloid peptide and neurofibrillary tangles and is characterized by a progressive loss of cognition and memory function, due to marked cortical cholinergic depletion. 2. Cholinergic cortical innervation is provided by basal forebrain cholinergic neurons. The neurotrophin Nerve Growth Factor (NGF) promotes survival and differentiation of basal forebrain cholinergic neurons. 3. This assertion has been at the basis of the hypothesis developed in the last 20 years, whereby NGF deprivation would be one of the factor involved in the etiology of sporadic forms of AD. 4. In this review, we shall summarize data that lead to the production and characterization of a mouse model for AD (AD11 anti-NGF mice), based on the expression of transgenic antibodies neutralizing NGF. The AD-like phenotype of AD11 mice will be discussed on the basis of recent studies that have posed NGF and its precursor pro-NGF back to the stage of AD-like neurodegeneration, showing the involvement of the precursor pro-NGF in one of the cascades leading to AD neurodegeneration.
Collapse
Affiliation(s)
- Simona Capsoni
- Lay Line Genomics S.p.A., Via di Castel Romano 100, 00128, Rome, Italy.
| | | |
Collapse
|
111
|
Ginsberg SD, Che S, Wuu J, Counts SE, Mufson EJ. Down regulation of trk but not p75NTR gene expression in single cholinergic basal forebrain neurons mark the progression of Alzheimer's disease. J Neurochem 2006; 97:475-87. [PMID: 16539663 DOI: 10.1111/j.1471-4159.2006.03764.x] [Citation(s) in RCA: 205] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dysfunction of cholinergic basal forebrain (CBF) neurons of the nucleus basalis (NB) is a cardinal feature of Alzheimer's disease (AD) and correlates with cognitive decline. Survival of CBF neurons depends upon binding of nerve growth factor (NGF) with high-affinity (trkA) and low-affinity (p75(NTR)) neurotrophin receptors produced within CBF neurons. Since trkA and p75(NTR) protein levels are reduced within CBF neurons of people with mild cognitive impairment (MCI) and mild AD, trkA and/or p75(NTR) gene expression deficits may drive NB degeneration. Using single cell expression profiling methods coupled with custom-designed cDNA arrays and validation with real-time quantitative PCR (qPCR) and in situ hybridization, individual cholinergic NB neurons displayed a significant down regulation of trkA, trkB, and trkC expression during the progression of AD. An intermediate reduction was observed in MCI, with the greatest decrement in mild to moderate AD as compared to controls. Importantly, trk down regulation is associated with cognitive decline measured by the Global Cognitive Score (GCS) and the Mini-Mental State Examination (MMSE). In contrast, there is a lack of regulation of p75(NTR) expression. Thus, trk defects may be a molecular marker for the transition from no cognitive impairment (NCI) to MCI, and from MCI to frank AD.
Collapse
Affiliation(s)
- Stephen D Ginsberg
- Center for Dementia Research, Nathan Kline Institute, New York University School of Medicine, Orangeburg, USA.
| | | | | | | | | |
Collapse
|
112
|
Lavasani M, Lu A, Peng H, Cummins J, Huard J. Nerve growth factor improves the muscle regeneration capacity of muscle stem cells in dystrophic muscle. Hum Gene Ther 2006; 17:180-92. [PMID: 16454652 DOI: 10.1089/hum.2006.17.180] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Researchers have attempted to use gene- and cell-based therapies to restore dystrophin and alleviate the muscle weakness that results from Duchenne muscular dystrophy (DMD). Our research group has isolated populations of muscle-derived stem cells (MDSCs) from the postnatal skeletal muscle of mice. In comparison with satellite cells, MDSCs display an improved transplantation capacity in dystrophic mdx muscle that we attribute to their ability to undergo long-term proliferation, self-renewal, and multipotent differentiation, including differentiation toward endothelial and neuronal lineages. Here we tested whether the use of nerve growth factor (NGF) improves the transplantation efficiency of MDSCs. We used two methods of in vitro NGF stimulation: retroviral transduction of MDSCs with a CL-NGF vector and direct stimulation of MDSCs with NGF protein. Neither method of NGF treatment changed the marker profile or proliferation behavior of the MDSCs, but direct stimulation with NGF protein significantly reduced the in vitro differentiation ability of the cells. NGF stimulation also significantly enhanced the engraftment efficiency of MDSCs transplanted within the dystrophic muscle of mdx mice, resulting in the regeneration of numerous dystrophin-positive muscle fibers. These findings highlight the importance of NGF as a modulatory molecule, the study of which will broaden our understanding of its biologic role in the regeneration and repair of skeletal muscle by musclederived cells.
Collapse
Affiliation(s)
- Mitra Lavasani
- Department of Bioengineering, University of Pittsburgh, and Growth and Development Laboratory, Children's Hospital of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | | | | |
Collapse
|
113
|
Lavasani M, Lu A, Peng H, Cummins J, Huard J. Nerve Growth Factor Improves the Muscle Regeneration Capacity of Muscle Stem Cells in Dystrophic Muscle. Hum Gene Ther 2006. [DOI: 10.1089/hum.2006.17.ft-175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
114
|
Chevrel G, Hohlfeld R, Sendtner M. The role of neurotrophins in muscle under physiological and pathological conditions. Muscle Nerve 2006; 33:462-76. [PMID: 16228973 DOI: 10.1002/mus.20444] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This review summarizes the various effects of neurotrophins in skeletal muscle and how these proteins act as potential regulators of development, maintenance, function, and regeneration of skeletal muscle fibers. Increasing evidence suggests that this family of neurotrophic factors not only modulates survival and function of innervating motoneurons and proprioceptive neurons but also development and differentiation of myoblasts and muscle fibers. Neurotrophins and neurotrophin receptors play a role in the coordination of muscle innervation and functional differentiation of neuromuscular junctions. However, neurotrophin receptors are also expressed in differentiating muscle cells, in particular at early developmental stages in myoblasts before they fuse. In adults with pathological conditions such as human degenerative and inflammatory muscle disorders, variations of neurotrophin expression are found, but the role of neurotrophins under such conditions is still not clear. The goal of this review is to provide a basis for a better understanding and future studies on the role of these factors under such pathological conditions and for treatment of human muscle diseases.
Collapse
Affiliation(s)
- Guillaume Chevrel
- Department of Neuroimmunology, Max-Planck Institute of Neurobiology, Martinsried, Germany
| | | | | |
Collapse
|
115
|
Niewiadomska G, Baksalerska-Pazera M, Riedel G. Cytoskeletal Transport in the Aging Brain: Focus on the Cholinergic System. Rev Neurosci 2006; 17:581-618. [PMID: 17283606 DOI: 10.1515/revneuro.2006.17.6.581] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
There is now compelling evidence for the aging-related breakdown of cytoskeletal support in neurons. Similarly affected are the principal components of the intracellular microtubule system, the transport units involved in active shuttle of organelles and molecules in an antero- and retrograde manner, and the proteins stabilizing the cytoskeleton and providing trophic support. Here, we review the basic organization of the cytoskeleton, and describe its elements and their interactions. We then critically assess the role of these cytoskeletal proteins in physiological aging and aging-related malfunction. Our focus is on the microtubule-associated protein tau, for which comprehensive investigations suggest a critical role in neurodegenerative diseases, for instance tauopathies. These diseases frequently lead to cognitive decline and are often paralleled by reductions in cholinergic neurotransmission. We propose this reduction to be due to destabilization of the cytoskeleton and protein transport mechanisms in these neurons. Therefore, maintenance of the neuronal cytoskeleton during aging may prevent or delay neurodegeneration as well as cognitive decline during physiological aging.
Collapse
Affiliation(s)
- Grazyna Niewiadomska
- Nencki Institute for Experimental Biology, Department of Neurophysiology, 3 Pasteur Street, 02-093 Warsaw, Poland.
| | | | | |
Collapse
|
116
|
Van Dam D, De Deyn PP. Cognitive evaluation of disease-modifying efficacy of galantamine and memantine in the APP23 model. Eur Neuropsychopharmacol 2006; 16:59-69. [PMID: 16095884 DOI: 10.1016/j.euroneuro.2005.06.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2005] [Accepted: 06/05/2005] [Indexed: 10/25/2022]
Abstract
With increasing knowledge of molecular, biochemical and cellular events causing synaptic dysfunction and neurodegeneration in Alzheimer-diseased brain, preventive treatment strategies are emerging. Neuroprotective capacities have been attributed to galantamine and memantine. The age-dependent cognitive decline in the APP23 model was employed to evaluate disease-modifying efficacy of chronic treatment with both compounds. At age 6 weeks, heterozygous APP23 mice were subcutaneously implanted with osmotic pumps delivering saline, galantamine (1.3 or 2.6 mg/kg/day) or memantine (7.2 or 14.4 mg/kg/day). After 2 months of treatment, a 3-week wash-out period was allowed to prevent bias from sustained symptomatic effects. Subsequently, cognitive evaluation in the Morris water maze commenced. Galantamine low dose significantly improved spatial accuracy during probe trial. Memantine improved acquisition performance (path length) and spatial accuracy during probe trial in a dose-dependent manner. This is the first study reporting disease-modifying efficacy of galantamine and memantine in transgenic mice modeling Alzheimer's disease.
Collapse
Affiliation(s)
- Debby Van Dam
- Laboratory of Neurochemistry and Behaviour, Institute Born-Bunge, University of Antwerp, Department of Biomedical Sciences, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | | |
Collapse
|
117
|
Levy YS, Gilgun-Sherki Y, Melamed E, Offen D. Therapeutic potential of neurotrophic factors in neurodegenerative diseases. BioDrugs 2005; 19:97-127. [PMID: 15807629 DOI: 10.2165/00063030-200519020-00003] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
There is a vast amount of evidence indicating that neurotrophic factors play a major role in the development, maintenance, and survival of neurons and neuron-supporting cells such as glia and oligodendrocytes. In addition, it is well known that alterations in levels of neurotrophic factors or their receptors can lead to neuronal death and contribute to the pathogenesis of neurodegenerative diseases such as Parkinson disease, Alzheimer disease, Huntington disease, amyotrophic lateral sclerosis, and also aging. Although various treatments alleviate the symptoms of neurodegenerative diseases, none of them prevent or halt the neurodegenerative process. The high potency of neurotrophic factors, as shown by many experimental studies, makes them a rational candidate co-therapeutic agent in neurodegenerative disease. However, in practice, their clinical use is limited because of difficulties in protein delivery and pharmacokinetics in the central nervous system. To overcome these disadvantages and to facilitate the development of drugs with improved pharmacotherapeutic profiles, research is underway on neurotrophic factors and their receptors, and the molecular mechanisms by which they work, together with the development of new technologies for their delivery into the brain.
Collapse
Affiliation(s)
- Yossef S Levy
- Laboratory of Neuroscineces, Felsenstein Medical Research Center, Israel
| | | | | | | |
Collapse
|
118
|
McKinney M, Jacksonville MC. Brain cholinergic vulnerability: Relevance to behavior and disease. Biochem Pharmacol 2005; 70:1115-24. [PMID: 15975560 DOI: 10.1016/j.bcp.2005.05.019] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2005] [Revised: 05/13/2005] [Accepted: 05/16/2005] [Indexed: 11/22/2022]
Abstract
The major populations of cholinergic neurons in the brain include two "projection" systems, located in the pontine reticular formation and in the basal forebrain. These two complexes comprise, in part, the anatomical substrates for the "ascending reticular activating system" (ARAS). The pontine cholinergic system relays its rostral influences mainly through thalamic intralaminar nuclei, but it also connects to the basal forebrain and provides a minor innervation of cortex. The basal forebrain cholinergic complex (BFCC) projects directly to cortex and hippocampus, and has a minor connection with the thalamus. Recent data reveal that a parallel system of basal forebrain GABAergic projection neurons innervates cortex/hippocampus in a way that seems to complement the BFCC. Generally, the picture developed from more than 50 years of research is consistent with a "global" influence of these two ascending cholinergic projections on cortical and hippocampal regions. Seemingly, the BFCC acts in tandem or in parallel with the pontine cholinergic projection to activate the electro-encephalogram, increase cerebral blood flow, regulate sleep-wake cycling, and modulate cognitive function. There are quite a number and variety of human brain conditions, notably including Alzheimer's disease, in which degeneration of basal forebrain cholinergic neurons has been documented. Whether the corticopetal GABA system is affected by disease has not been established. Studies of degeneration of the pontine projection are limited, but the available data suggest that it is relatively preserved in Alzheimer's disease. Hypotheses of BFCC degeneration include growth factor deprivation, intracellular calcium dysfunction, amyloid excess, inflammation, and mitochondrial abnormalities/oxidative stress. But, despite considerable research conducted over several decades, the exact mechanisms underlying brain cholinergic vulnerability in human disease remain unclear.
Collapse
Affiliation(s)
- Michael McKinney
- Mayo Clinic, Department of Pharmacology, Jacksonville, FL 32224-3899, USA. mckinney@
| | | |
Collapse
|
119
|
Gearhart DA, Middlemore ML, Terry AV. ELISA methods to measure cholinergic markers and nerve growth factor receptors in cortex, hippocampus, prefrontal cortex, and basal forebrain from rat brain. J Neurosci Methods 2005; 150:159-73. [PMID: 16085318 DOI: 10.1016/j.jneumeth.2005.06.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2005] [Revised: 06/11/2005] [Accepted: 06/17/2005] [Indexed: 10/25/2022]
Abstract
The central cholinergic system has a fundamental role in normal cognitive function, and in diseases that exhibit cognitive dysfunction. The purpose of this study was to design ELISA methods to measure proteins that have essential functions in the central cholinergic system. We were particularly interested in quantifying proteins that respond directly or indirectly to nerve growth factor (NGF). ELISAs offer advantages over Western blot analyses and other methods, such as increased sensitivity, decreased assay variability, increased efficiency, and decreased cost. We developed indirect ELISA methods for: choline acetyltransferase (ChAT); the vesicular acetylcholine transporter (VAChT); the high affinity choline transporter (HACT/CHT); TrkA, the high affinity NGF receptor; the p75 neurotrophin receptor (p75(NTR)). A sandwich ELISA was developed to measure tyrosine-phosphorylated TrkA in brain lysates. We used these ELISAs to compare levels of the above proteins in important memory-related brain regions--basal forebrain, hippocampus, cortex, and prefrontal cortex--from old and young rats. We identified age-related differences in the levels of the aforementioned proteins (e.g., VAChT and HACT/CHT in hippocampus). Thus, these ELISA methods should be particularly useful for comparing the effects of age, disease, drugs, and toxicants on brain levels of key cholinergic and growth factor-related proteins.
Collapse
Affiliation(s)
- Debra A Gearhart
- Department of Clinical and Administrative Pharmacy, Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30912-2450, USA.
| | | | | |
Collapse
|
120
|
Mirnics ZK, Yan C, Portugal C, Kim TW, Saragovi HU, Sisodia SS, Mirnics K, Schor NF. P75 neurotrophin receptor regulates expression of neural cell adhesion molecule 1. Neurobiol Dis 2005; 20:969-85. [PMID: 16006137 DOI: 10.1016/j.nbd.2005.06.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2005] [Revised: 05/19/2005] [Accepted: 06/06/2005] [Indexed: 01/24/2023] Open
Abstract
Our recent transcriptome profiling studies suggest that presenilin 1 (PS1) regulates expression of neural cell adhesion molecule (Ncam1) through p75 neurotrophin receptor. To better understand regulation of Ncam1 transcript and protein levels by p75, we performed a series of in vitro and in vivo experiments. The combined results suggest that p75 receptor is required for both resting and NGF-induced Ncam1 expression. Activation of TrkA receptors alone does not upregulate Ncam1. The normal Ncam1 expression depends on the relative ratio of TrkA and p75 receptors, and p75 extracellular domain is necessary for baseline Ncam1 expression. NGF-induced Ncam1 expression is dependent on the presence of an intact palmitoylation site within p75 receptor. Finally, we show that the expression of Ncam1 is altered in brains of two transgenic mouse lines that express familial Alzheimer's disease (FAD)-linked PS1 variants, suggesting that expression of dominantly inherited mutant PS1 genes interferes with the normal Ncam1 expression via the p75 signaling pathway.
Collapse
MESH Headings
- Alzheimer Disease/genetics
- Alzheimer Disease/metabolism
- Alzheimer Disease/physiopathology
- Animals
- Animals, Newborn
- Binding Sites/physiology
- Brain/growth & development
- Brain/metabolism
- Brain/physiopathology
- CD56 Antigen/genetics
- CD56 Antigen/metabolism
- Disease Models, Animal
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/physiology
- Humans
- Membrane Proteins/metabolism
- Mice
- Mice, Knockout
- Mice, Transgenic
- Mutation/genetics
- Nerve Growth Factor/metabolism
- Nerve Growth Factor/pharmacology
- Neurons/drug effects
- Neurons/metabolism
- PC12 Cells
- Palmitic Acid/metabolism
- Presenilin-1
- Protein Structure, Tertiary/physiology
- Rats
- Receptor, Nerve Growth Factor/chemistry
- Receptor, Nerve Growth Factor/genetics
- Receptor, Nerve Growth Factor/metabolism
- Receptor, trkA/genetics
- Receptor, trkA/metabolism
- Up-Regulation/physiology
Collapse
Affiliation(s)
- Zeljka Korade Mirnics
- Pediatric Center for Neuroscience, Children's Hospital of Pittsburgh, Department of Pediatrics, University of Pittsburgh, 3705 Fifth Avenue, Pittsburgh, PA 15213, USA.
| | | | | | | | | | | | | | | |
Collapse
|
121
|
Lommatzsch M, Quarcoo D, Schulte-Herbrüggen O, Weber H, Virchow JC, Renz H, Braun A. Neurotrophins in murine viscera: a dynamic pattern from birth to adulthood. Int J Dev Neurosci 2005; 23:495-500. [PMID: 15978771 DOI: 10.1016/j.ijdevneu.2005.05.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2004] [Revised: 05/18/2005] [Accepted: 05/20/2005] [Indexed: 01/19/2023] Open
Abstract
There is growing evidence that target-derived neurotrophins regulate the function of visceral neurons after birth. However, the postnatal profile of neurotrophin supply from internal organs is poorly described. In this study, we compared neurotrophin concentrations in lysates of murine peripheral target tissues (lung, heart, liver, colon, spleen, thymus, kidney and urinary bladder) at different time points after birth. In most organs, there was a decrease of neurotrophin concentrations in the first weeks after birth. In contrast, there were characteristic increases of specific neurotrophins during adolescence or adulthood. These increases were found for nerve growth factor (NGF) in the heart, thymus, kidney and liver, for brain-derived neurotrophic factor (BDNF) in the lung, and for neurotrophin-3 (NT-3) in the colon. In conclusion, we show that neurotrophins display a very differential and dynamic profile in internal organs after birth.
Collapse
Affiliation(s)
- Marek Lommatzsch
- Department of Pneumology, University of Rostock, 18057 Rostock, Germany.
| | | | | | | | | | | | | |
Collapse
|
122
|
Counts SE, Mufson EJ. The role of nerve growth factor receptors in cholinergic basal forebrain degeneration in prodromal Alzheimer disease. J Neuropathol Exp Neurol 2005; 64:263-72. [PMID: 15835262 DOI: 10.1093/jnen/64.4.263] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Dysfunction of nerve growth factor (NGF) and its high (TrkA) and low (p75NTR) affinity receptors has been suggested to underlie the selective degeneration of the nucleus basalis (NB) cholinergic cortical projection neurons in end stage Alzheimer disease (AD). Whether the NGF system is dysfunctional during the prodromal stages of AD has only recently been evaluated. Surprisingly, the number of choline acetyltransferase-containing neurons remains stable despite a significant reduction in NGF receptor-positive cells in people with mild cognitive impairment (MCI), suggesting a phenotypic NGF receptor downregulation but not a frank loss of NB neurons during prodromal AD. Moreover, there is a loss of cortical TrkA in the face of stable p75NTR and increased proNGF levels, the precursor molecule of mature NGF, in early AD. Depending upon the cellular context these changes may result in increased pro-apoptotic signaling, cell survival, or a defect in retrograde transport mechanisms. Alterations in NGF and its receptors within the cholinotrophic NB system in early AD suggest that NGF-mediated cell signaling is required for the longterm survival of these neurons. Therapeutic neurotrophic intervention might delay or prevent NB neuron degeneration and preserve cholinergic cortical function during prodromal AD.
Collapse
Affiliation(s)
- Scott E Counts
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois 60612, USA
| | | |
Collapse
|
123
|
Badawi RA, Birns J, Watson T, Kalra L. Growth factors and their relationship to neoplastic and paraneoplastic disease. Eur J Intern Med 2005; 16:83-94. [PMID: 15833673 DOI: 10.1016/j.ejim.2004.10.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2004] [Revised: 09/30/2004] [Accepted: 10/05/2004] [Indexed: 12/15/2022]
Abstract
Growth factors are extracellular signaling molecules that act in an autocrine and paracrine fashion to regulate growth, proliferation, differentiation, and survival of cells. Dysregulation of the growth factor networks is intimately related to the molecular pathogenesis of neoplastic and paraneoplastic disease. Increasing knowledge of the molecular mechanisms underlying growth factors and their actions on cell cycling, cell division, and cell death is shedding light on new therapeutic avenues for molecular targeting of tumors. Epidermal growth factor and vascular endothelial growth factor both offer examples of how growth factor biology and its relationship to cancer can be harnessed to create effective clinical therapeutic tools such as monoclonal antibodies. This approach heralds a future in which rational molecular oncological therapy may increasingly become the norm.
Collapse
Affiliation(s)
- R A Badawi
- Department of Medicine, King's College Hospital, Denmark Hill, London SE5 9RS, United Kingdom
| | | | | | | |
Collapse
|
124
|
Beck RD, King MA, Ha GK, Cushman JD, Huang Z, Petitto JM. IL-2 deficiency results in altered septal and hippocampal cytoarchitecture: relation to development and neurotrophins. J Neuroimmunol 2005; 160:146-53. [PMID: 15710467 DOI: 10.1016/j.jneuroim.2004.11.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2004] [Revised: 11/12/2004] [Accepted: 11/12/2004] [Indexed: 11/29/2022]
Abstract
We have found previously that brain IL-2 receptors are enriched in the hippocampal formation, and that loss of this cytokine results in cytoarchitectural alterations in the hippocampus and septum and related behavioral changes in IL-2 knockout (IL-2 KO) mice. These alterations included decreased cholinergic somata in the medial septum/vertical limb of the diagonal band of Broca (MS/vDB) and decreased distance across the infrapyramidal (IP) granule cell layer (GCL) of the dentate gyrus (DG). To extend our previous findings, several experiments were conducted comparing IL-2 KO mice and wild-type littermates to determine (1) whether the GABAergic projection neurons of IL-2 KO mice in this region were also affected; (2) if the reduction in septal cholinergic projection neurons found in adult IL-2 KO mice is present at weaning (and prior to the development of peripheral autoimmune disease); and (3) if loss of IL-2 may result in changes in the neurotrophins, brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF), involved in maintenance of hippocampal neurons. No differences in GABAergic neurons in the MS/vDB were found in adult mice, and the reduction in cholinergic neurons seen in adult IL-2 KO mice was not found in animals at postnatal day 21. The number of neurons in the IP-GCL was also significantly reduced. Compared to wild-type mice, IL-2 KO mice had significantly reduced concentration of BDNF protein and increased concentrations of NGF. These data suggest that the septohippocampal neuronal loss in IL-2 KO mice is selective for the cholinergic neurons and appears to be due to a failure in neuronal maintenance/survival that may be, in part, associated with changes in neurotrophins.
Collapse
Affiliation(s)
- Ray D Beck
- McKnight Brain Institute, L4-118, University of Florida College of Medicine, P.O. Box 100256, Gainesville, FL 32610-0256, USA
| | | | | | | | | | | |
Collapse
|
125
|
De Rosa R, Garcia AA, Braschi C, Capsoni S, Maffei L, Berardi N, Cattaneo A. Intranasal administration of nerve growth factor (NGF) rescues recognition memory deficits in AD11 anti-NGF transgenic mice. Proc Natl Acad Sci U S A 2005; 102:3811-6. [PMID: 15728733 PMCID: PMC553297 DOI: 10.1073/pnas.0500195102] [Citation(s) in RCA: 227] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Nerve growth factor (NGF) delivery to the brain of patients appears to be an emerging potential therapeutic approach to neurodegenerative disease, such as Alzheimer's disease (AD). The intranasal route of administration could provide an alternative to intracere-broventricular infusion and gene therapy. We previously showed that intranasal administration of NGF determined an amelioration of cholinergic deficit and a decrease in the number of phosphotau-positive neurons and of beta-amyloid accumulation in AD11 mice, which express transgenic antibodies neutralizing NGF action and exhibit a progressive Alzheimer-like neurodegeneration. In this study, we report that the Alzheimer-like neurodegeneration in AD11 mice is linked to progressive behavioral deficits in visual recognition memory and spatial memory starting from 4 months of age. To establish whether intranasal administration of NGF, started after the appearance of the first memory deficits, could revert the cognitive deficits in AD11 mice, we assessed the performance of NGF-treated or control AD11 mice in the object recognition test and in a test of memory for place and context. Deficits exhibited by untreated AD11 mice could be rescued by the intranasal administration of NGF. Thus, this route of administration provides a promising way to deliver NGF to the brain in a therapeutic perspective.
Collapse
Affiliation(s)
- Roberta De Rosa
- Lay Line Genomics S.p.A., Via di Castel Romano 100, 00128 Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
126
|
Pearse RN, Swendeman SL, Li Y, Rafii D, Hempstead BL. A neurotrophin axis in myeloma: TrkB and BDNF promote tumor-cell survival. Blood 2005; 105:4429-36. [PMID: 15657181 DOI: 10.1182/blood-2004-08-3096] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Multiple myeloma (MM) is a B-cell neoplasm that is characterized by the clonal expansion of malignant plasma cells and is frequently associated with chromosomal translocations placing an oncogene under the control of the immunoglobulin heavy chain enhancer. Despite these pathogenic translocations, MM cells remain dependent on external cues for survival. We present evidence that brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family of growth factors, and its high-affinity receptor, tropomyosin receptor kinase B (TrkB), contribute to these survival cues. MM cells express TrkB, and respond to BDNF by activating mitogen-activated protein kinase (MAPK) and phosphatidylinositol-3 kinase-a PI3K target (PI3K/Akt) signaling cascades. Addition of BDNF protects human MM cell lines (HMCLs) from apoptosis induced by dexamethasone or bortezomib and prolongs the survival of primary MM cells cultured alone or with human bone marrow (BM) stroma. As BDNF and TrkB are expressed by osteoblasts, stromal cells, and endothelial cells within the BM microenvironment, a BDNF-TrkB axis may be critical to the interactions of MM with bone and stroma that contribute to MM tumor progression. Finally, BDNF is expressed by malignant plasma cells isolated from a subset of patients with MM, as well as by most HMCLs, suggesting a potential role for this neurotrophin axis in autocrine as well as paracrine support of MM.
Collapse
Affiliation(s)
- Roger N Pearse
- Division of Hematology, Cornell University Medical College, Rm C-606, 1300 York Ave, New York, NY 10021, USA.
| | | | | | | | | |
Collapse
|
127
|
Sherren N, Pappas BA. Selective acetylcholine and dopamine lesions in neonatal rats produce distinct patterns of cortical dendritic atrophy in adulthood. Neuroscience 2005; 136:445-56. [PMID: 16226382 DOI: 10.1016/j.neuroscience.2005.08.053] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2005] [Revised: 06/23/2005] [Accepted: 08/22/2005] [Indexed: 10/25/2022]
Abstract
Acetylcholine and dopamine afferents reach their cortical targets during periods of synaptogenesis, and are in position to influence the cytoarchitectural development of cortical neurons. To determine the effect of removing these afferents on dendritic development, we lesioned rat pups at 7 days of age with the selective immunotoxins 192 IgG-saporin, or 6-hydroxydopamine, or both. One group of rats was killed in adulthood for neurochemistry and another was prepared for morphology using Golgi-Cox staining. Changes in morphology were compared in layer V pyramidal cells from medial prefrontal cortex, which sustained the greatest dopamine depletion, and in layer II/III pyramidal cells from retrosplenial cortex, which sustained the greatest choline acetyltransferase depletion. In rats with acetylcholine lesions, layer V medial prefrontal cells had smaller apical tufts and fewer basilar dendritic branches. Both apical and basilar spine density was substantially reduced. Layer II/III retrosplenial cells also had smaller apical tufts and substantially smaller basilar dendritic trees. Apical and basilar spine density did not change. In rats with dopamine lesions, layer V medial prefrontal cells had fewer oblique apical dendrites and atrophied basilar trees. Layer II/III retrosplenial cells had fewer apical dendritic branches. In neither area were spine densities significantly different from control. Neurons from rats with combined lesions were always smaller and less complex than those from singly lesioned rats. However, these cells were simple, additive composites of the morphology produced by single lesions. These data demonstrate that ascending acetylcholine and dopamine afferents play a vital role in the development of cortical cytoarchitecture.
Collapse
Affiliation(s)
- N Sherren
- Institute of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6.
| | | |
Collapse
|
128
|
Covaceuszach S, Cattaneo A, Lamba D. Neutralization of NGF-TrkA receptor interaction by the novel antagonistic anti-TrkA monoclonal antibody MNAC13: A structural insight. Proteins 2004; 58:717-27. [DOI: 10.1002/prot.20366] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
129
|
Coppola V, Barrick CA, Southon EA, Celeste A, Wang K, Chen B, Haddad EB, Yin J, Nussenzweig A, Subramaniam A, Tessarollo L. Ablation of TrkA function in the immune system causes B cell abnormalities. Development 2004; 131:5185-95. [PMID: 15459109 DOI: 10.1242/dev.01383] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The nerve growth factor (NGF) receptor TrkA is widely expressed in non-neural tissues suggesting pleiotropic functions outside the nervous system. Based on pharmacological and immuno-depletion experiments, it has been hypothesized that NGF plays an important role in the normal development and function of the immune system. However, attempts to unravel these functions by conventional gene targeting in mice have been hampered by the early postnatal lethality caused by null mutations. We have developed a novel 'reverse conditional' gene targeting strategy by which TrkA function is restored specifically in the nervous system. Mice lacking TrkA in non-neuronal tissues are viable and appear grossly normal. All major immune system cell populations are present in normal numbers and distributions. However, mutant mice have elevated serum levels of certain immunoglobulin classes and accumulate B1 cells with aging. These data, confirmed in a classical reconstitution model using embryonic fetal liver from TrkA-null mice, demonstrate that endogenous NGF modulates B cell development through TrkA in vivo. Furthermore, they demonstrate that many of the dramatic effects previously reported by pharmacological or immuno-depletion approaches do not reflect physiological developmental roles of TrkA in the immune system.
Collapse
Affiliation(s)
- Vincenzo Coppola
- Neural Development Group, Mouse Cancer Genetics Program, NCI, NIH, Frederick, MD 21702-1201, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Capsoni S, Giannotta S, Stebel M, Garcia AA, De Rosa R, Villetti G, Imbimbo BP, Pietra C, Cattaneo A. Ganstigmine and donepezil improve neurodegeneration in AD11 antinerve growth factor transgenic mice. Am J Alzheimers Dis Other Demen 2004; 19:153-60. [PMID: 15214201 PMCID: PMC10833932 DOI: 10.1177/153331750401900303] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ganstigmine (CHF2819) is an acetylcholinesterase inhibitor that increases acetylcholine in rat hippocampus and ameliorates scopolamine-induced amnesia. In this article, we examined whether and how ganstigmine might prevent or rescue the neurodegenerative phenotype in AD11 antinerve growth factor (anti-NGF) mice, a transgenic model for Alzheimer's disease. The effects of ganstigmine were compared with those obtained after administration of donepezil. Results demonstrate that intraperitoneal and oral administration of ganstigmine and donepezil can reverse the cholinergic and behavioral deficit in AD11 mice but not the amyloid and phosphotau accumulation, uncovering different mechanisms leading to neurodegeneration in AD11 mice.
Collapse
|
131
|
Phillips HS, Nishimura M, Armanini MP, Chen K, Albers KM, Davis BM. Rescue of NGF-deficient mice II: basal forebrain cholinergic projections require NGF for target innervation but not guidance. ACTA ACUST UNITED AC 2004; 124:1-11. [PMID: 15093680 DOI: 10.1016/j.molbrainres.2003.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2003] [Indexed: 11/28/2022]
Abstract
Basal forebrain cholinergic (BFC) neurons are an important substrate of cognitive function and are hypothesized to require the presence of nerve growth factor (NGF) for survival and target innervation. NGF-deficient mice develop BFC neurons that extend projections into telencephalic targets, but the mice perish before innervation is fully established. Rescue of NGF-deficient mice by transgenic expression of NGF under the keratin promoter yields viable mice with disrupted CNS expression of NGF. In the current study, rescued NGF-deficient mice contain normal numbers of septal cholinergic neurons yet reveal severe compromise of cholinergic innervation of both cortex and hippocampus. Surprisingly, intracerebroventricular infusion of NGF into juvenile mice can induce an essentially normal pattern of cholinergic innervation of the hippocampus. These results indicate that NGF is required for induction of proper innervation by BFC neurons, but that the cellular pattern of expression of this factor is not critical for specifying the distribution of axon terminals.
Collapse
Affiliation(s)
- Heidi S Phillips
- Genentech Incorporated, 1 DNA Way, South San Francisco, CA 94080, USA.
| | | | | | | | | | | |
Collapse
|
132
|
Vega JA, García-Suárez O, Germanà A. Vertebrate thymus and the neurotrophin system. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 237:155-204. [PMID: 15380668 DOI: 10.1016/s0074-7696(04)37004-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
An immunomodulary role has been proposed for growth factors included in the family of neurotrophins. This is supported by the presence of both neurotrophins and neurotrophin receptors in the immune organs and some immunocompetent cells, the in vitro and in vivo effects of the neurotrophins on the immune cells, and the structural changes of lymphoid organs in mice deficient in neurotrophins and their receptors. The current data strongly indicate that neurotrophins regulate the biology of thymic stromal cells and T cells, including survival, and are involved in the thymic organogenesis. This review compiles the available data about the occurrence and distribution of neurotrophins and their signaling receptors (Trk proteins and p75(NTR)) in the vertebrate thymus and the possible contribution of these molecules to the thymic microenvironment and, therefore, to the T cells differentiation.
Collapse
Affiliation(s)
- José A Vega
- Departamento de Morfología y Biología Celular Universidad de Oviedo, 33006 Oviedo, Spain
| | | | | |
Collapse
|
133
|
Jockers-Scherübl MC, Matthies U, Danker-Hopfe H, Lang UE, Mahlberg R, Hellweg R. Chronic cannabis abuse raises nerve growth factor serum concentrations in drug-naive schizophrenic patients. J Psychopharmacol 2003; 17:439-45. [PMID: 14870957 DOI: 10.1177/0269881103174007] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Long-term cannabis abuse may increase the risk of schizophrenia. Nerve growth factor (NGF) is a pleiotropic neurotrophic protein that is implicated in development, protection and regeneration of NFG-sensitive neurones. We tested the hypothesis that damage to neuronal cells in schizophrenia is precipitated by the consumption of cannabis and other neurotoxic substances, resulting in raised NGF serum concentrations and a younger age for disease onset. The NGF serum levels of 109 consecutive drug-naive schizophrenic patients were measured and compared with those of healthy controls. The results were correlated with the long-term intake of cannabis and other illegal drugs. Mean (+/- SD) NGF serum levels of 61 control persons (33.1 +/- 31.0 pg/ml) and 76 schizophrenics who did not consume illegal drugs (26.3 +/- 19.5 pg/ml) did not differ significantly. Schizophrenic patients with regular cannabis intake (> 0.5 g on average per day for at least 2 years) had significantly raised NGF serum levels of 412.9 +/- 288.4 pg/ml (n = 21) compared to controls and schizophrenic patients not consuming cannabis (p < 0.001). In schizophrenic patients who abused not only cannabis, but also additional substances, NGF concentrations were as high as 2336.2 +/- 1711.4 pg/ml (n = 12). On average, heavy cannabis consumers suffered their first episode of schizophrenia 3.5 years (n = 21) earlier than schizophrenic patients who abstained from cannabis. These results indicate that cannabis is a possible risk factor for the development of schizophrenia. This might be reflected in the raised NGF-serum concentrations when both schizophrenia and long-term cannabis abuse prevail.
Collapse
Affiliation(s)
- Maria C Jockers-Scherübl
- Department of Psychiatry and Psychotherapy, Charite-University Medicine Berlin, Campus Benjamin Franklin, Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
134
|
Jendreyko N, Popkov M, Beerli RR, Chung J, McGavern DB, Rader C, Barbas CF. Intradiabodies, bispecific, tetravalent antibodies for the simultaneous functional knockout of two cell surface receptors. J Biol Chem 2003; 278:47812-9. [PMID: 12947084 DOI: 10.1074/jbc.m307002200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The specific and high affinity binding properties of intracellular antibodies (intrabodies), combined with their ability to be stably expressed in defined organelles, provides powerful tools with a wide range of applications in the field of functional genomics and gene therapy. Intrabodies have been used to specifically target intracellular proteins, manipulate biological processes, and contribute to the understanding of their functions as well as for the generation of phenotypic knockouts in vivo by surface depletion of extracellular or transmembrane proteins. In order to study the biological consequences of knocking down two receptor-tyrosine kinases, we developed a novel intrabody-based strategy. Here we describe the design, engineering, and characterization of a bispecific, tetravalent endoplasmic reticulum (ER)-targeted intradiabody for simultaneous surface depletion of two endothelial transmembrane receptors, Tie-2 and vascular endothelial growth factor receptor 2 (VEGF-R2). Comparison of the ER-targeted intradiabody with the corresponding conventional ER-targeted single-chain antibody fragment (scFv) intrabodies demonstrated that the intradiabody is significantly more efficient with respect to efficiency and duration of surface depletion of Tie-2 and VEGF-R2. In vitro endothelial cell tube formation assays suggest that the bispecific intradiabody exhibits strong antiangiogenic activity, whereas the effect of the monospecific scFv intrabodies was weaker. These findings suggest that simultaneous interference with the VEGF and the Tie-2 receptor pathways results in at least additive antiangiogenic effects, which may have implications for future drug developments. In conclusion, we have identified a highly effective ER-targeted intrabody format for the simultaneous functional knockout of two cell surface receptors.
Collapse
Affiliation(s)
- Nina Jendreyko
- Department of Molecular Biology and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
135
|
García-Suárez O, Pérez-Pérez M, Germanà A, Esteban I, Germanà G. Involvement of growth factors in thymic involution. Microsc Res Tech 2003; 62:514-23. [PMID: 14635145 DOI: 10.1002/jemt.10413] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The thymus undergoes an age-dependent degenerative process which is mainly characterized by a progressive loss of lymphoid tissue. Thymic involution is particularly important in relation to immunosenescence and its various associated diseases; this fact has prompted many studies aimed at understanding the causes and mechanisms of thymic degeneration which may, ultimately, lead to the possibility of manipulating it. In this sense, one of the aspects which has deserved most attention is the thymic microenvironment, and more precisely, the many growth factors to which the cells present in the organ are exposed. Thus, the levels of several of such factors have been reported to undergo age-dependent changes in the thymus, which may point at an influence on the regression of the organ. In this article we consider which growth factors and growth factor receptors occur in the vertebrate thymus. Then, focusing on those whose influences are better documented, i.e., neurotrophins, cytokines and IGFs, we discuss their potential role in the organ and the possibility of their being involved in thymic involution.
Collapse
|
136
|
Peirce JL, Chesler EJ, Williams RW, Lu L. Genetic architecture of the mouse hippocampus: identification of gene loci with selective regional effects. GENES, BRAIN, AND BEHAVIOR 2003; 2:238-52. [PMID: 12953790 DOI: 10.1034/j.1601-183x.2003.00030.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We recently mapped two quantitative trait loci that have widespread effects on hippocampal architecture in mouse: Hipp1a and Hipp5a. We also noted remarkable strain differences in the relative sizes of different hippocampal regions. Estimated heritable variation for these differences was 42% in hippocampus proper, 40% in dentate gyrus, 31% in granule cell layer and 18% in pyramidal cell layer. Region size varied at least 50% from largest to smallest measurement. Here we have utilized these differences to identify loci with effects on the dentate gyrus, granule cell layer, hippocampus proper and pyramidal cell layer. Our sample consists of C57BL/6J and DBA/2J and 32 BXD recombinant inbred strains. Volumetric data were corrected for shrinkage and for differences in brain weight. We identified significant loci on chromosomes (Chr) 6, 13 and 15, and a significant interaction locus on proximal Chr 11. A suggestive distal Chr 1 locus overlaps with Hipp1a. HipV13a (Chr 13, 42-78Mb) has an additive effect of 0.56 mm3 (12.1%) on dentate gyrus volume, while GrV6a (Chr 6, 29-65 Mb) has additive effects of 0.14 mm3 (16.0%) on the volume of the granule cell layer. HipV13a also interacts with DGVi11a, a locus on proximal Chr 11 that operates exclusively through its epistatic effect on HipV13a and has no independent main effect HipV15a (Chr 15, 0-51 Mb) has an additive effect of 1.76 mm3 (9.0%) on the volume of the hippocampus proper. We used WebOTL, a recently described web-based tool, to examine genetic correlation of gene expression with hippocampal volume. We identified a number of genes that map within the OTL intervals and have highly correlated expression patterns. Using WebQTL's extensive database of published BXD phenotypes, we also detected a strong and potentially biologically meaningful correlation between hippocampal volume and the acoustic startle response.
Collapse
Affiliation(s)
- J L Peirce
- Center for Neuroscience, Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Monroe Avenue, Memphis, Tennessee 38163, USA
| | | | | | | |
Collapse
|
137
|
Garaci E, Aquaro S, Lapenta C, Amendola A, Spada M, Covaceuszach S, Perno CF, Belardelli F. Anti-nerve growth factor Ab abrogates macrophage-mediated HIV-1 infection and depletion of CD4+ T lymphocytes in hu-SCID mice. Proc Natl Acad Sci U S A 2003; 100:8927-32. [PMID: 12853577 PMCID: PMC166415 DOI: 10.1073/pnas.1332627100] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Infection by HIV-1 causes persistent, long-term high virus production in macrophages. Major evidence, both in humans and in primate models, shows the crucial role of macrophages in sustaining virus production and in mediating a cytopathic effect on bystander CD4+ T lymphocytes and neuronal cells. In the present study, we used severe combined immunodeficient (SCID) mice engrafted with human peripheral blood lymphocytes (hu-PBL-SCID mice) to investigate the in vivo effect of HIV-1-infected macrophages on virus spread and CD4+ T lymphocyte depletion, and the ability of a mAb against nerve growth factor (NGF, a neurokine essential for the survival of HIV-1-infected macrophages) to suppress the pathogenetic events mediated by infected macrophages. Injection of mice with as few as 500 HIV-exposed macrophages causes (i) complete depletion of several millions of autologous CD4+ T lymphocytes, (ii) sustained HIV viremia, and (iii) spreading of HIV-1 DNA in mouse lymphoid organs. In contrast, in vivo treatment with an anti-NGF Ab completely abrogates all effects mediated by HIV-infected macrophages. Taken together, the results demonstrate the remarkable power of macrophages in sustaining in vivo HIV-1 infection, and that such a phenomenon can be specifically abrogated by an anti-NGF Ab. This may open new perspectives of experimental approaches aimed at selectively eliminating persistently infected macrophages from the bodies of HIV-infected patients.
Collapse
Affiliation(s)
- Enrico Garaci
- Department of Experimental Medicine and Biochemical Sciences, University of Rome Tor Vergata, 00133 Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
138
|
Abstract
There is growing evidence that reduced neurotrophic support is a significant factor in the pathogenesis of neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS). In this review we discuss the structure and functions of neurotrophins such as nerve growth factor, and the role of these proteins and their tyrosine kinase (Trk) receptors in the aetiology and therapy of such diseases. Neurotrophins regulate development and the maintenance of the vertebrate nervous system. In the mature nervous system they affect neuronal survival and also influence synaptic function and plasticity. The neurotrophins are able to bind to two different receptors: all bind to a common receptor p75NTR, and each also binds to one of a family of Trk receptors. By dimerization of the Trk receptors, and subsequent transphosphorylation of the intracellular kinase domain, signalling pathways are activated. We discuss here the structure and function of the neurotrophins and how they have been, or may be, used therapeutically in AD, PD, Huntington's diseases, ALS and peripheral neuropathy. Neurotrophins are central to many aspects of nervous system function. However they have not truly fulfilled their therapeutic potential in clinical trials because of the difficulties of protein delivery and pharmacokinetics in the nervous system. With the recent elucidation of the structure of the neurotrophins bound to their receptors it will now be possible, using a combination of in silico technology and novel screening techniques, to develop small molecule mimetics with much improved pharmacotherapeutic profiles.
Collapse
Affiliation(s)
- D Dawbarn
- University of Bristol, Bristol Royal Infirmary, Bristol, UK.
| | | |
Collapse
|
139
|
Toti P, Villanova M, Vatti R, Schuerfeld K, Stumpo M, Barbagli L, Malandrini A, Costantini M. Nerve growth factor expression in human dystrophic muscles. Muscle Nerve 2003; 27:370-3. [PMID: 12635125 DOI: 10.1002/mus.10332] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Nerve growth factor (NGF) is a neurotrophin that is expressed during muscle development and is also capable of favoring muscle regeneration in experimental studies. The presence of NGF in muscular dystrophies, such as Duchenne and Becker muscular dystrophies, has never been fully explored. By means of immunohistochemistry, we show that regenerating muscle fibers from such patients consistently express NGF, as do myofibroblasts and mast cells. By contrast, rest fibers from dystrophic patients, as well as muscle fibers from healthy, control patients and even regenerative muscle fibers in polymyositis do not show NGF immunoreactivity. The paracrine effect of NGF on muscle regeneration, as well as its chemoattractant capacities for mast cells, may contribute to explaining why regenerating fibers most frequently occur in clusters and why mast cells are more numerous in dystrophic muscles. Moreover, being a mediator of wound healing and tissue fibrosis, NGF may contribute to long-term muscle regeneration impairment by tissue fibrosis in the muscular dystrophies.
Collapse
Affiliation(s)
- Paolo Toti
- Department of Human Pathology and Oncology, University of Siena, Via delle Scotte, 53100 Siena, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
140
|
Pérez-Pérez M, García-Suárez O, Esteban I, Germanà A, Fariñas I, Naves FJ, Vega JA. p75NTR in the spleen: age-dependent changes, effect of NGF and 4-methylcatechol treatment, and structural changes in p75NTR-deficient mice. THE ANATOMICAL RECORD. PART A, DISCOVERIES IN MOLECULAR, CELLULAR, AND EVOLUTIONARY BIOLOGY 2003; 270:117-28. [PMID: 12524687 DOI: 10.1002/ar.a.10010] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In addition to their well-known actions within the nervous system, neurotrophins and their receptors are involved in immune system functioning, as demonstrated by their wide distribution in lymphoid tissues and their in vitro actions on immunocompetent cells. Nevertheless, the in vivo roles of neurotrophin-receptor systems in lymphoid tissues, as well as the scope of their influence throughout development and adulthood, are yet to be clarified. In the present study, we used combined morphological and immunohistochemical techniques to investigate the presence and cellular localization of p75NTR, the pan-neurotrophin receptor protein, in rat spleen from newborns to aging individuals, and the structural and innervation changes in the spleens of p75NTR-deficient mice. In rats, p75NTR was expressed by splenic nerve fibers and dendritic cells in an age-regulated fashion, with maximal expression detected at 2 weeks. Consistently, the spleens of newborn mice lacking this receptor protein showed no signs of ingrowing sympathetic fibers, along with an absence of defined white pulp areas. The present findings suggest a prolonged role of p75NTR in the physiology of the spleen; at least during the embryonic development period, the receptor may be critical for correct innervation and compartmentalization processes to occur.
Collapse
Affiliation(s)
- M Pérez-Pérez
- Departamento de Morfología y Biología Celular, Facultad de Medicina, Universidad de Oviedo, Oviedo, Spain
| | | | | | | | | | | | | |
Collapse
|
141
|
Beck RD, King MA, Huang Z, Petitto JM. Alterations in septohippocampal cholinergic neurons resulting from interleukin-2 gene knockout. Brain Res 2002; 955:16-23. [PMID: 12419517 DOI: 10.1016/s0006-8993(02)03295-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Interleukin-2 (IL-2) has potent effects on acetylcholine (ACh) release from septohippocampal cholinergic neurons and trophic effects on fetal septal and hippocampal neuronal cultures. Previous work from our lab showed that the absence of endogenous IL-2 leads to impaired hippocampal neurodevelopment and related behaviors. We sought to extend this work by testing the hypotheses that the loss of IL-2 would result in reductions in cholinergic septohippocampal neuron cell number and the density of cholinergic axons found in the hippocampus of IL-2 knockout mice. Stereological cell counting and imaging techniques were used to compare C57BL/6-IL-2(-/-) knockout and C57BL/6-IL-2(+/+) wild-type mice for differences in choline acetyltransferase (ChAT)-positive somata in the medial septum and vertical limb of the diagonal band of Broca (MS/vDB) and acetylcholine esterase (AChE)-labeled cholinergic axons in hippocampal projection fields. IL-2 knockout mice had significantly lower numbers (26%) of MS/vDB ChAT-positive cell bodies than wild-type mice; however, there were no differences in striatal ChAT-positive neurons. Although AChE-positive axon density in CA1, CA3b, the internal, and external blades of the dentate gyrus did not differ between the knockout and wild-type mice, the distance across the granular cell layer of the external blade of the dentate gyrus was reduced significantly in IL-2 knockout mice. Further research is needed to determine whether these outcomes in IL-2 knockout mice may be due to the absence of central and/or peripheral IL-2 during brain development or neurodegeneration secondary to autoimmunity.
Collapse
Affiliation(s)
- Ray D Beck
- McKnight Brain Institute College of Medicine, University of Florida, PO Box 100256, L4-118, Gainseville, FL 32610-0256, USA
| | | | | | | |
Collapse
|
142
|
Auld DS, Kornecook TJ, Bastianetto S, Quirion R. Alzheimer's disease and the basal forebrain cholinergic system: relations to beta-amyloid peptides, cognition, and treatment strategies. Prog Neurobiol 2002; 68:209-45. [PMID: 12450488 DOI: 10.1016/s0301-0082(02)00079-5] [Citation(s) in RCA: 493] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD) is the most common form of degenerative dementia and is characterized by progressive impairment in cognitive function during mid- to late-adult life. Brains from AD patients show several distinct neuropathological features, including extracellular beta-amyloid-containing plaques, intracellular neurofibrillary tangles composed of abnormally phosphorylated tau, and degeneration of cholinergic neurons of the basal forebrain. In this review, we will present evidence implicating involvement of the basal forebrain cholinergic system in AD pathogenesis and its accompanying cognitive deficits. We will initially discuss recent results indicating a link between cholinergic mechanisms and the pathogenic events that characterize AD, notably amyloid-beta peptides. Following this, animal models of dementia will be discussed in light of the relationship between basal forebrain cholinergic hypofunction and cognitive impairments in AD. Finally, past, present, and future treatment strategies aimed at alleviating the cognitive symptomatology of AD by improving basal forebrain cholinergic function will be addressed.
Collapse
Affiliation(s)
- Daniel S Auld
- Douglas Hospital Research Centre, 6875 Blvd Lasalle, Verdun, Que, Canada H4H 1R3
| | | | | | | |
Collapse
|
143
|
Capsoni S, Giannotta S, Cattaneo A. Nerve growth factor and galantamine ameliorate early signs of neurodegeneration in anti-nerve growth factor mice. Proc Natl Acad Sci U S A 2002; 99:12432-7. [PMID: 12205295 PMCID: PMC129462 DOI: 10.1073/pnas.192442999] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2002] [Accepted: 07/25/2002] [Indexed: 01/31/2023] Open
Abstract
Phenotypic knockout of nerve growth factor (NGF) activity in transgenic anti-NGF mice (AD11 mice) results in a progressive neurodegenerative phenotype resembling Alzheimer's disease. In this article, we examine whether and how the progressive neurodegenerative phenotype of AD11 mice could be prevented or ameliorated by pharmacological treatments with NGF or the cholinergic agonist galantamine, at a relatively early phase of Alzheimer's disease-like neurodegeneration. We demonstrate that the neurodegeneration induced by the expression of anti-NGF antibodies in AD11 mice can be largely reversed by NGF delivery through an olfactory route.
Collapse
Affiliation(s)
- Simona Capsoni
- Neuroscience Program, International School for Advanced Studies (SISSA), Via Beirut 2-4, 34014 Trieste, Italy
| | | | | |
Collapse
|
144
|
Capsoni S, Giannotta S, Cattaneo A. Beta-amyloid plaques in a model for sporadic Alzheimer's disease based on transgenic anti-nerve growth factor antibodies. Mol Cell Neurosci 2002; 21:15-28. [PMID: 12359148 DOI: 10.1006/mcne.2002.1163] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cerebral deposition of beta-amyloid (Abeta) is an invariant event of Alzheimer's disease (AD). We recently described that the brain of aged transgenic mice expressing anti-nerve growth factor (NGF) antibodies (AD11 mice) show a dramatic neurodegenerative phenotype, reminiscent of AD, which includes neuronal loss, cholinergic deficit, and tau hyperphosphorylation, associated with neurofibrillary pathology. We now report that brains of aged transgenic mice contain large amounts of beta-amyloid plaques and describe their morphology by a variety of approaches. In conclusion, the chronic deprivation of NGF leads to the formation and deposition of Abeta in AD11 mice, suggesting a direct link between NGF signaling and abnormal processing of amyloid precursor protein.
Collapse
Affiliation(s)
- Simona Capsoni
- Neuroscience Program, International School for Advanced Studies (SISSA), Trieste, Italy
| | | | | |
Collapse
|
145
|
Garcia-Suarez O, Blanco-Gelaz MA, Lopez ML, Germana A, Cabo R, Díaz-Esnal B, Silos-Santiago I, Ciriaco E, Vega JA. Massive lymphocyte apoptosis in the thymus of functionally deficient TrkB mice. J Neuroimmunol 2002; 129:25-34. [PMID: 12161017 DOI: 10.1016/s0165-5728(02)00166-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The occurrence of TrkB in the murine thymus (15-day and 3-month old) was investigated by Northern blot, Western blot and immunohistochemistry. Furthermore, the thymus of 15-day-old mice carrying a non-functional mutation on trkB was analyzed. Both trkB mRNA and 145 kDa TrkB protein were detected. In addition, isolated lymphocytes and stromal cells also expressed this protein. The thymus of homozygous functionally TrkB-deficient animals showed structural and ultrastructural changes consistent with massive death of cortical lymphocytes, confirmed with TUNEL. Present results suggest a role for TrkB in maintaining the survival or preventing massive death of lymphocytes in the mammalian thymus.
Collapse
Affiliation(s)
- O Garcia-Suarez
- Dipartimento di Morfologia, Biochimica, Fisiologia e Produzioni Animali, Università di Messina, Messina, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Tropea D, Capsoni S, Covaceuszach S, Domenici L, Cattaneo A. Rat visual cortical neurones express TrkA NGF receptor. Neuroreport 2002; 13:1369-73. [PMID: 12151805 DOI: 10.1097/00001756-200207190-00031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In this study we report the expression of TrkA receptor within the rat visual cortex during postnatal development and in adulthood, using a specific monoclonal antibody which recognizes the extracellular domain of TrkA receptor. TrkA was not detected by immunohistochemistry at postnatal day 13 (P13), i.e. before eye opening. At P22 TrkA was mostly localised in cortical fibre-like processes. At P39 and P90, TrkA-positive neuronal cell bodies in supragranular and infragranular layers were found. Using double immunohistochemistry, labelled cells were identified as intrinsic cholinergic neurones, and as interneurones expressing calbindin and neuropeptide Y. We conclude that TrkA is expressed in visual cortical neurones during postnatal development and in adulthood and that its pattern of expression is developmentally regulated.
Collapse
Affiliation(s)
- Daniela Tropea
- Cognitive Neuroscience Sector, Neuroscience Program, International School for Advanced Studies (SISSA), Via Beirut 2-4, 34014 Trieste, Italy
| | | | | | | | | |
Collapse
|
147
|
Pesavento E, Capsoni S, Domenici L, Cattaneo A. Acute cholinergic rescue of synaptic plasticity in the neurodegenerating cortex of anti-nerve-growth-factor mice. Eur J Neurosci 2002; 15:1030-6. [PMID: 11918663 DOI: 10.1046/j.1460-9568.2002.01937.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Deficits in cholinergic systems innervating cerebral cortex are associated with cognitive impairment during senescence and in age-related neurodegenerative pathologies. However, little is known about the role of cholinergic pathways in modulating cortical plasticity. Basal forebrain cholinergic neurons are a major target for nerve-growth factor (NGF). In order to investigate the relationship between cholinergic innervation and cortical synaptic plasticity, we exploited a transgenic mouse model in which the activity of NGF in the adult nervous system is neutralized by the expression of blocking antibodies to NGF itself (anti-NGF mice) [Ruberti, F. et al. (2000). J. Neurosci. 20, 2589-2601]. In 6-month-old anti-NGF mice, we show that the reduction in cholinergic innervation of the cortex is associated with different forms of synaptic plasticity impairment. A local, acute increase in the availability of acetylcholine rescues these synaptic plasticity deficits, thus indicating that a cholinergic system mediates the impairment of cortical plasticity at this early stage of the neurodegenerative process triggered by NGF neutralization. Our results represent an important step in unveiling the pivotal role of cholinergic transmission in modulating adult cortical plasticity.
Collapse
Affiliation(s)
- Emanuele Pesavento
- Neuroscience Program, SISSA (International School of Advanced Studies), Via Beirut 2-4, 34014 Trieste, Italy
| | | | | | | |
Collapse
|
148
|
Mufson EJ, Ma SY, Dills J, Cochran EJ, Leurgans S, Wuu J, Bennett DA, Jaffar S, Gilmor ML, Levey AI, Kordower JH. Loss of basal forebrain P75(NTR) immunoreactivity in subjects with mild cognitive impairment and Alzheimer's disease. J Comp Neurol 2002; 443:136-53. [PMID: 11793352 DOI: 10.1002/cne.10122] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The long-held belief that degeneration of the cholinergic basal forebrain was central to Alzheimer's disease (AD) pathogenesis and occurred early in the disease process has been questioned recently. In this regard, changes in some cholinergic basal forebrain (CBF) markers (e.g. the high affinity trkA receptor) but not others (e.g., cortical choline acetyltransferase [ChAT] activity, the number of ChAT and vesicular acetylcholine transporter-immunoreactive neurons) suggest specific phenotypic changes, but not frank neuronal degeneration, early in the disease process. The present study examined the expression of the low affinity p75 neurotrophin receptor (p75(NTR)), an excellent marker of CBF neurons, in postmortem tissue derived from clinically well-characterized individuals who have been classified as having no cognitive impairment (NCI), mild cognitive impairment (MCI), and mild AD. Relative to NCI individuals, a significant and similar reduction in the number of nucleus basalis p75(NTR)-immunoreactive neurons was seen in individuals with MCI (38%) and mild AD (43%). The number of p75(NTR)-immunoreactive nucleus basalis neurons was significantly correlated with performance on the Mini-Mental State Exam, a Global Cognitive Test score, as well as some individual tests of working memory and attention. These data, together with previous reports, support the concept that phenotypic changes, but not frank neuronal degeneration, occur early in cognitive decline. Although there was no difference in p75(NTR) CBF cell reduction between MCI and AD, it remains to be determined whether these findings lend support to the hypothesis that MCI is a prodromal stage of AD.
Collapse
Affiliation(s)
- Elliott J Mufson
- Department of Neurological Sciences, Rush Presbyterian-St. Luke's Medical Center, Chicago, Illinois 60612, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Rajpal A, Turi TG. Intracellular stability of anti-caspase-3 intrabodies determines efficacy in retargeting the antigen. J Biol Chem 2001; 276:33139-46. [PMID: 11425853 DOI: 10.1074/jbc.m101332200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Although intracellular antibodies (intrabodies) are being explored as putative therapeutic and research reagents, little is known about the principles that dictate the efficacy of these molecules. In our efforts to address this issue, we generated a panel of five intrabodies, directed against catalytically inactive murine caspase-3, by screening single-chain antibody (Fv) phage display libraries. Here we determined criteria that single-chain Fv fragments must fulfill to act as efficient intrabodies. The affinities of these intrabodies, as measured by surface plasmon resonance, varied approximately 5-fold (50-250 nm). Despite their substantial sequence similarity, only two of the five intrabodies were able to significantly accumulate intracellularly. These disparities in intracellular expression levels were reflected by differences in the stability of the purified protein species when analyzed by urea denaturation studies. We observed varied efficiencies in retargeting the antigen murine caspase-3, from the cytosol to the nucleus, mediated by intrabodies tagged with an SV40 nuclear localization signal. Our results demonstrate that the intrinsic stability of the intrabody, rather than its affinity for the antigen, dictates its intracellular efficacy.
Collapse
Affiliation(s)
- A Rajpal
- Pfizer Central Research, Groton, Connecticut 06340, USA
| | | |
Collapse
|
150
|
Chu Y, Cochran EJ, Bennett DA, Mufson EJ, Kordower JH. Down-regulation of trkA mRNA within nucleus basalis neurons in individuals with mild cognitive impairment and Alzheimer's disease. J Comp Neurol 2001; 437:296-307. [PMID: 11494257 DOI: 10.1002/cne.1284] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Recent studies indicate that trkA expression is reduced in end-stage Alzheimer's disease (AD). However, understanding the neuropathologic correlates of early cognitive decline, as well as the changes that underlie the transition from nondemented mild cognitive impairment (MCI) to AD, are more critical neurobiological challenges. In these regards, the present study examined the expression of trkA mRNA in individuals diagnosed with MCI and AD from a cohort of people enrolled in a Religious Orders Study. Individuals with MCI and AD displayed significant reductions in trkA mRNA relative to aged-matched controls, indicating that alterations in trkA gene expression occur early in the disease process. The magnitude of change was similar in MCI and AD cases, suggesting that further loss of trkA mRNA is not necessarily associated with the transition of individuals from nondemented MCI to AD. The loss of trkA mRNA was not associated with education, apolipoprotein E allele status, gender, Braak score, global cognitive score or Mini-Mental Status Examination. In contrast, the loss of trkA mRNA in MCI and AD was significantly correlated with function on a variety of episodic memory tests.
Collapse
Affiliation(s)
- Y Chu
- Department of Neurological Sciences and Rush Alzheimer's Disease Center, Rush Presbyterian-St. Luke's Medical Center, Chicago, Illinois 60612, USA
| | | | | | | | | |
Collapse
|