101
|
Aftabizadeh M, Tatarek-Nossol M, Andreetto E, El Bounkari O, Kipp M, Beyer C, Latz E, Bernhagen J, Kapurniotu A. Blocking Inflammasome Activation Caused by β-Amyloid Peptide (Aβ) and Islet Amyloid Polypeptide (IAPP) through an IAPP Mimic. ACS Chem Neurosci 2019; 10:3703-3717. [PMID: 31295403 DOI: 10.1021/acschemneuro.9b00260] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Inflammation in the brain and pancreas is linked to cell degeneration and pathogenesis of both Alzheimer's disease (AD) and type 2 diabetes (T2D). Inflammatory cascades in both tissues are triggered by the uptake of β-amyloid peptide (Aβ) or islet amyloid polypeptide (IAPP) aggregates by microglial cells (AD) or macrophages (T2D) and their insufficient lysosomal degradation. This results in lysosomal damage, caspase-1/NLRP3 inflammasome activation and release of interleukin-1β (IL-1β), a key proinflammatory cytokine in both diseases. Here we show that the inflammatory processes mediated by Aβ and IAPP aggregates in microglial cells and macrophages are blocked by IAPP-GI, a nonamyloidogenic IAPP mimic, which forms high-affinity soluble and nonfibrillar hetero-oligomers with both polypeptides. In contrast to fibrillar Aβ aggregates, nonfibrillar Aβ/IAPP-GI or Aβ/IAPP hetero-oligomers become rapidly internalized by microglial cells and targeted to lysosomes where Aβ is fully degraded. Internalization occurs via IAPP receptor-mediated endocytosis. Moreover, in contrast to IAPP aggregates, IAPP/IAPP-GI hetero-oligomers become rapidly internalized and degraded in the lysosomal compartments of macrophages. Our findings uncover a previously unknown function for the IAPP/Aβ cross-amyloid interaction and suggest that conversion of Aβ or IAPP into lysosome-targeted and easily degradable hetero-oligomers by heteroassociation with IAPP mimics could become a promising approach to specifically prevent amyloid-mediated inflammation in AD, T2D, or both diseases.
Collapse
Affiliation(s)
- Maryam Aftabizadeh
- Division of Peptide Biochemistry, Technische Universität München, Emil-Erlenmeyer-Forum 5, D-85354 Freising, Germany
- Cancer Immunotherapeutics and Tumor Immunology, City of Hope Medical Center Duarte, 1500 East Duarte Road, Duarte, California 91010, United States
| | | | - Erika Andreetto
- Division of Peptide Biochemistry, Technische Universität München, Emil-Erlenmeyer-Forum 5, D-85354 Freising, Germany
| | - Omar El Bounkari
- Chair of Vascular Biology, Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-University of Munich, 81377 Munich, Germany
| | - Markus Kipp
- Department of Anatomy II, Ludwig-Maximilians-University of Munich, 80336 Munich, Germany
| | | | - Eicke Latz
- Institute of Innate Immunity, University of Bonn, Biomedical Center, University of Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
- Division of Infectious Diseases & Immunology, University of Massachusetts Medical School, 364 Plantation St., Worcester, Massachusetts 01605, United States
| | - Jürgen Bernhagen
- Chair of Vascular Biology, Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-University of Munich, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Aphrodite Kapurniotu
- Division of Peptide Biochemistry, Technische Universität München, Emil-Erlenmeyer-Forum 5, D-85354 Freising, Germany
| |
Collapse
|
102
|
Donath MY, Meier DT, Böni-Schnetzler M. Inflammation in the Pathophysiology and Therapy of Cardiometabolic Disease. Endocr Rev 2019; 40:1080-1091. [PMID: 31127805 PMCID: PMC6624792 DOI: 10.1210/er.2019-00002] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/15/2019] [Indexed: 12/22/2022]
Abstract
The role of chronic inflammation in the pathogenesis of type 2 diabetes mellitus and associated complications is now well established. Therapeutic interventions counteracting metabolic inflammation improve insulin secretion and action and glucose control and may prevent long-term complications. Thus, a number of anti-inflammatory drugs approved for the treatment of other inflammatory conditions are evaluated in patients with metabolic syndrome. Most advanced are clinical studies with IL-1 antagonists showing improved β-cell function and glycemia and prevention of cardiovascular diseases and heart failure. However, alternative anti-inflammatory treatments, alone or in combinations, may turn out to be more effective, depending on genetic predispositions, duration, and manifestation of the disease. Thus, there is a great need for comprehensive and well-designed clinical studies to implement anti-inflammatory drugs in the treatment of patients with metabolic syndrome and its associated conditions.
Collapse
Affiliation(s)
- Marc Y Donath
- Clinic of Endocrinology, Diabetes and Metabolism and Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Daniel T Meier
- Clinic of Endocrinology, Diabetes and Metabolism and Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Marianne Böni-Schnetzler
- Clinic of Endocrinology, Diabetes and Metabolism and Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
103
|
Kaneko N, Kurata M, Yamamoto T, Morikawa S, Masumoto J. The role of interleukin-1 in general pathology. Inflamm Regen 2019; 39:12. [PMID: 31182982 PMCID: PMC6551897 DOI: 10.1186/s41232-019-0101-5] [Citation(s) in RCA: 385] [Impact Index Per Article: 64.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 05/07/2019] [Indexed: 12/19/2022] Open
Abstract
Interleukin-1, an inflammatory cytokine, is considered to have diverse physiological functions and pathological significances and play an important role in health and disease. In this decade, interleukin-1 family members have been expanding and evidence is accumulating that highlights the importance of interleukin-1 in linking innate immunity with a broad spectrum of diseases beyond inflammatory diseases. In this review, we look back on the definition of "inflammation" in traditional general pathology and discuss new insights into interleukin-1 in view of its history and the molecular bases of diseases, as well as current progress in therapeutics.
Collapse
Affiliation(s)
- Naoe Kaneko
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Shitsukawa 454, Toon, Ehime 791-0295 Japan
| | - Mie Kurata
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Shitsukawa 454, Toon, Ehime 791-0295 Japan
| | - Toshihiro Yamamoto
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Shitsukawa 454, Toon, Ehime 791-0295 Japan
| | - Shinnosuke Morikawa
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Shitsukawa 454, Toon, Ehime 791-0295 Japan
| | - Junya Masumoto
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Shitsukawa 454, Toon, Ehime 791-0295 Japan
| |
Collapse
|
104
|
Wang J, Hu H, Song J, Yan F, Qin J, Guo X, Cui C, He Q, Hou X, Liu F, Chen L. Aldosterone induced up-expression of ICAM-1 and ET-1 in pancreatic islet endothelium may associate with progression of T2D. Biochem Biophys Res Commun 2019; 512:750-757. [DOI: 10.1016/j.bbrc.2019.03.149] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 03/22/2019] [Indexed: 01/01/2023]
|
105
|
Böni-Schnetzler M, Meier DT. Islet inflammation in type 2 diabetes. Semin Immunopathol 2019; 41:501-513. [PMID: 30989320 PMCID: PMC6592966 DOI: 10.1007/s00281-019-00745-4] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/29/2019] [Indexed: 12/16/2022]
Abstract
Metabolic diseases including type 2 diabetes are associated with meta-inflammation. β-Cell failure is a major component of the pathogenesis of type 2 diabetes. It is now well established that increased numbers of innate immune cells, cytokines, and chemokines have detrimental effects on islets in these chronic conditions. Recently, evidence emerged which points to initially adaptive and restorative functions of inflammatory factors and immune cells in metabolism. In the following review, we provide an overview on the features of islet inflammation in diabetes and models of prediabetes. We separately emphasize what is known on islet inflammation in humans and focus on in vivo animal models and how they are used to elucidate mechanistic aspects of islet inflammation. Further, we discuss the recently emerging physiologic signaling role of cytokines during adaptation and normal function of islet cells.
Collapse
Affiliation(s)
- Marianne Böni-Schnetzler
- Endocrinology, Diabetes and Metabolism, University Hospital of Basel, 4031, Basel, Switzerland. .,Department of Biomedicine, University Hospital and University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland.
| | - Daniel T Meier
- Endocrinology, Diabetes and Metabolism, University Hospital of Basel, 4031, Basel, Switzerland.,Department of Biomedicine, University Hospital and University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland
| |
Collapse
|
106
|
Tsalamandris S, Antonopoulos AS, Oikonomou E, Papamikroulis GA, Vogiatzi G, Papaioannou S, Deftereos S, Tousoulis D. The Role of Inflammation in Diabetes: Current Concepts and Future Perspectives. Eur Cardiol 2019; 14:50-59. [PMID: 31131037 PMCID: PMC6523054 DOI: 10.15420/ecr.2018.33.1] [Citation(s) in RCA: 810] [Impact Index Per Article: 135.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/18/2019] [Indexed: 02/06/2023] Open
Abstract
Diabetes is a complex metabolic disorder affecting the glucose status of the human body. Chronic hyperglycaemia related to diabetes is associated with end organ failure. The clinical relationship between diabetes and atherosclerotic cardiovascular disease is well established. This makes therapeutic approaches that simultaneously target diabetes and atherosclerotic disease an attractive area for research. The majority of people with diabetes fall into two broad pathogenetic categories, type 1 or type 2 diabetes. The role of obesity, adipose tissue, gut microbiota and pancreatic beta cell function in diabetes are under intensive scrutiny with several clinical trials to have been completed while more are in development. The emerging role of inflammation in both type 1 and type 2 diabetes (T1D and T1D) pathophysiology and associated metabolic disorders, has generated increasing interest in targeting inflammation to improve prevention and control of the disease. After an extensive review of the possible mechanisms that drive the metabolic pattern in T1D and T2D and the inflammatory pathways that are involved, it becomes ever clearer that future research should focus on a model of combined suppression for various inflammatory response pathways.
Collapse
Affiliation(s)
- Sotirios Tsalamandris
- First Cardiology Clinic, Hippokration General Hospital, National and Kapodistrian University of Athens, School of Medicine Athens, Greece
| | - Alexios S Antonopoulos
- First Cardiology Clinic, Hippokration General Hospital, National and Kapodistrian University of Athens, School of Medicine Athens, Greece
| | - Evangelos Oikonomou
- First Cardiology Clinic, Hippokration General Hospital, National and Kapodistrian University of Athens, School of Medicine Athens, Greece
| | - George-Aggelos Papamikroulis
- First Cardiology Clinic, Hippokration General Hospital, National and Kapodistrian University of Athens, School of Medicine Athens, Greece
| | - Georgia Vogiatzi
- First Cardiology Clinic, Hippokration General Hospital, National and Kapodistrian University of Athens, School of Medicine Athens, Greece
| | - Spyridon Papaioannou
- First Cardiology Clinic, Hippokration General Hospital, National and Kapodistrian University of Athens, School of Medicine Athens, Greece
| | - Spyros Deftereos
- First Cardiology Clinic, Hippokration General Hospital, National and Kapodistrian University of Athens, School of Medicine Athens, Greece
| | - Dimitris Tousoulis
- First Cardiology Clinic, Hippokration General Hospital, National and Kapodistrian University of Athens, School of Medicine Athens, Greece
| |
Collapse
|
107
|
Bakker GJ, Vanbellinghen MC, Scheithauer TP, Verchere CB, Stroes ES, Timmers NKLM, Herrema H, Nieuwdorp M, Verberne HJ, van Raalte DH. Pancreatic 18F-FDG uptake is increased in type 2 diabetes patients compared to non-diabetic controls. PLoS One 2019; 14:e0213202. [PMID: 30889184 PMCID: PMC6424390 DOI: 10.1371/journal.pone.0213202] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 02/15/2019] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION Increasing evidence indicates that the development of type 2 diabetes is driven by chronic low grade beta-cell inflammation. However, it is unclear whether pancreatic inflammation can be noninvasively visualized in type 2 diabetes patients. We aimed to assess pancreatic 18F-FDG uptake in type 2 diabetes patients and controls using 18F-fluorodeoxylglucose positron emission tomography/computed tomography (18F-FDG PET/CT). MATERIAL AND METHODS In this retrospective cross-sectional study, we enrolled 20 type 2 diabetes patients and 65 controls who had undergone a diagnostic 18F-FDG PET/CT scan and obtained standardized uptake values (SUVs) of pancreas and muscle. Pancreatic SUV was adjusted for background uptake in muscle and for fasting blood glucose concentrations. RESULTS The maximum pancreatic SUVs adjusted for background muscle uptake (SUVmax.m) and fasting blood glucose concentration (SUVglucose) were significantly higher in diabetes patients compared to controls (median 2.86 [IQR 2.24-4.36] compared to 2.15 [IQR 1.51-2.83], p = 0.006 and median 2.76 [IQR 1.18-4.34] compared to 1.91 [IQR 1.27-2.55], p<0.001, respectively). In linear regression adjusting for age and body mass index, diabetes remained the main predictor of SUVmax.m and SUVglucose. CONCLUSION Pancreatic 18F-FDG uptake adjusted for background muscle uptake and fasting blood glucose concentration was significantly increased in type 2 diabetes patients.
Collapse
Affiliation(s)
- Guido J. Bakker
- Department of Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- * E-mail:
| | - Manon C. Vanbellinghen
- Department of Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Torsten P. Scheithauer
- Department of Experimental Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Diabetes Center, Department of Internal Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - C. Bruce Verchere
- Department of Surgery and Department of Pathology and Laboratory Medicine, BC Children’s Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Erik S. Stroes
- Department of Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Nyanza K. L. M. Timmers
- Department of Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Hilde Herrema
- Department of Experimental Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Max Nieuwdorp
- Department of Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Department of Experimental Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Diabetes Center, Department of Internal Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- ICaR, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Hein J. Verberne
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Daniël H. van Raalte
- Diabetes Center, Department of Internal Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| |
Collapse
|
108
|
Ren W, Xia Y, Chen S, Wu G, Bazer FW, Zhou B, Tan B, Zhu G, Deng J, Yin Y. Glutamine Metabolism in Macrophages: A Novel Target for Obesity/Type 2 Diabetes. Adv Nutr 2019; 10:321-330. [PMID: 30753258 PMCID: PMC6416106 DOI: 10.1093/advances/nmy084] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/04/2018] [Accepted: 09/27/2018] [Indexed: 12/23/2022] Open
Abstract
Obesity is a nutritional disorder resulting from a chronic imbalance between energy intake and expenditure. This disease is characterized by inflammation in multiple cell types, including macrophages. M1 macrophage responses are correlated with the progression of obesity or diabetes; therefore, strategies that induce repolarization of macrophages from an M1 to an M2 phenotype may be promising for the prevention of obesity- or diabetes-associated pathology. Glutamine (the most abundant amino acid in the plasma of humans and many other mammals including rats) is effective in inducing polarization of M2 macrophages through the glutamine-UDP-N-acetylglucosamine pathway and α-ketoglutarate produced via glutaminolysis, whereas succinate synthesized via glutamine-dependent anerplerosis or the γ-aminobutyric acid shunt promotes polarization of M1 macrophages. Interestingly, patients with obesity or diabetes show altered glutamine metabolism, including decreases in glutamine and α-ketoglutarate concentrations in serum but increases in succinate concentrations. Thus, manipulation of macrophage polarization through glutamine metabolism may provide a potential target for prevention of obesity- or diabetes-associated pathology.
Collapse
Affiliation(s)
- Wenkai Ren
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
- Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yaoyao Xia
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Siyuan Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX
| | - Beiyan Zhou
- Department of Immunology, School of Medicine, University of Connecticut, Farmington, CT
| | - Bie Tan
- Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Guoqiang Zhu
- Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Jinping Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yulong Yin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
- Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Academics Working Station at The First Affiliated Hospital, Changsha Medical University, Changsha, China
| |
Collapse
|
109
|
Abstract
Physical inactivity is one of the leading health problems in the world. Strong epidemiological and clinical evidence demonstrates that exercise decreases the risk of more than 35 different disorders and that exercise should be prescribed as medicine for many chronic diseases. The physiology and molecular biology of exercise suggests that exercise activates multiple signaling pathways of major health importance. An anti-inflammatory environment is produced with each bout of exercise, and long-term anti-inflammatory effects are mediated via an effect on abdominal adiposity. There is, however, a need to close the gap between knowledge and practice and assure that basic research is translated, implemented, and anchored in society, leading to change of praxis and political statements. In order to make more people move, we need a true translational perspective on exercise as medicine, from molecular and physiological events to infrastructure and architecture, with direct implications for clinical practice and public health.
Collapse
Affiliation(s)
- Bente Klarlund Pedersen
- Centre of Inflammation and Metabolism/Centre for Physical Activity Research (CIM/CFAS), Rigshospitalet, University of Copenhagen, DK-2100 Copenhagen, Denmark
| |
Collapse
|
110
|
Ying W, Lee YS, Dong Y, Seidman JS, Yang M, Isaac R, Seo JB, Yang BH, Wollam J, Riopel M, McNelis J, Glass CK, Olefsky JM, Fu W. Expansion of Islet-Resident Macrophages Leads to Inflammation Affecting β Cell Proliferation and Function in Obesity. Cell Metab 2019; 29:457-474.e5. [PMID: 30595478 PMCID: PMC6701710 DOI: 10.1016/j.cmet.2018.12.003] [Citation(s) in RCA: 181] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 09/27/2018] [Accepted: 11/30/2018] [Indexed: 02/07/2023]
Abstract
The nature of obesity-associated islet inflammation and its impact on β cell abnormalities remains poorly defined. Here, we explore immune cell components of islet inflammation and define their roles in regulating β cell function and proliferation. Islet inflammation in obese mice is dominated by macrophages. We identify two islet-resident macrophage populations, characterized by their anatomical distributions, distinct phenotypes, and functional properties. Obesity induces the local expansion of resident intra-islet macrophages, independent of recruitment from circulating monocytes. Functionally, intra-islet macrophages impair β cell function in a cell-cell contact-dependent manner. Increased engulfment of β cell insulin secretory granules by intra-islet macrophages in obese mice may contribute to restricting insulin secretion. In contrast, both intra- and peri-islet macrophage populations from obese mice promote β cell proliferation in a PDGFR signaling-dependent manner. Together, these data define distinct roles and mechanisms for islet macrophages in the regulation of islet β cells.
Collapse
Affiliation(s)
- Wei Ying
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Yun Sok Lee
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Yi Dong
- Pediatric Diabetes Research Center, Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Jason S Seidman
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Meixiang Yang
- Pediatric Diabetes Research Center, Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; The First Affiliated Hospital, Biomedical Translational Research Institute, Jinan University, Guangzhou 510632, China
| | - Roi Isaac
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Jong Bae Seo
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Bi-Huei Yang
- Pediatric Diabetes Research Center, Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Joshua Wollam
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Matthew Riopel
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Joanne McNelis
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Christopher K Glass
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Jerrold M Olefsky
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | - Wenxian Fu
- Pediatric Diabetes Research Center, Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
111
|
Marro BS, Legrain S, Ware BC, Oldstone MB. Macrophage IFN-I signaling promotes autoreactive T cell infiltration into islets in type 1 diabetes model. JCI Insight 2019; 4:125067. [PMID: 30674713 DOI: 10.1172/jci.insight.125067] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 12/11/2018] [Indexed: 01/05/2023] Open
Abstract
Here, we report a pathogenic role for type I IFN (IFN-I) signaling in macrophages, and not β cells in the islets, for the development of type 1 diabetes (T1D). Following lymphocytic choriomeningitis (LCMV) infection in the Rip-LCMV-GP T1D model, macrophages accumulated near islets and in close contact to islet-infiltrating GP-specific (autoimmune) CD8+ T cells. Depletion of macrophages with clodronate liposomes or genetic ablation of Ifnar in macrophages aborted T1D, despite proliferation of GP-specific (autoimmune) CD8+ T cells. Histopathologically, disrupted IFNα/β receptor (IFNAR) signaling in macrophages resulted in restriction of CD8+ T cells entering into the islets with significant lymphoid accumulation around the islet. Collectively, these results provide evidence that macrophages via IFN-I signaling, while not entering the islets, are directly involved in interacting, directing, or restricting trafficking of autoreactive-specific T cells into the islets as an important component in causing T1D.
Collapse
|
112
|
Qiao Z, Han J, Feng H, Zheng H, Wu J, Gao C, Yang M, You C, Liu Z, Wu Z. Fermentation Products of Paenibacillus bovis sp. nov. BD3526 Alleviates the Symptoms of Type 2 Diabetes Mellitus in GK Rats. Front Microbiol 2019; 9:3292. [PMID: 30687277 PMCID: PMC6333654 DOI: 10.3389/fmicb.2018.03292] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/18/2018] [Indexed: 01/04/2023] Open
Abstract
Gut microbiota is closely related to type 2 diabetes mellitus (T2DM). The gut microbiota of patients with T2DM is significantly different from that of healthy subjects in terms of bacterial composition and diversity. Here, we used the fermentation products of Paenibacillus bovis sp. nov. BD3526 to study the disease progression of T2DM in Goto-kakisaki (GK) rats. We found that the symptoms in GK rats fed the fermentation products of BD3526 were significantly improved. The 16S rRNA sequencing showed that the fermentation products of BD3526 had strong effects on the gut microbiota by increasing the content of Akkermansia. In addition, the interaction of the genus in the gut of the BD3526 group also significantly changed. Additional cytokine detection revealed that the fermentation products of BD3526 can reduce the inflammatory factors in the intestinal mucus of GK rats and thereby inhibit the inflammatory response and ameliorate the symptoms of T2DM.
Collapse
Affiliation(s)
- Zhenyi Qiao
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| | - Jin Han
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Huafeng Feng
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| | - Huajun Zheng
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China
- Key Laboratory of Reproduction Regulation of NPFPC, Shanghai Institute of Planned Parenthood Research, IRD, Fudan University, Shanghai, China
| | - Jiang Wu
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| | - Caixia Gao
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| | - Meng Yang
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Chunping You
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| | - Zhenmin Liu
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| | - Zhengjun Wu
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| |
Collapse
|
113
|
He W, Rebello O, Savino R, Terracciano R, Schuster-Klein C, Guardiola B, Maedler K. TLR4 triggered complex inflammation in human pancreatic islets. Biochim Biophys Acta Mol Basis Dis 2018; 1865:86-97. [PMID: 30287405 DOI: 10.1016/j.bbadis.2018.09.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 09/06/2018] [Accepted: 09/20/2018] [Indexed: 02/08/2023]
Abstract
Type 2 Diabetes (T2D) is strongly associated with obesity and inflammation. Toll-like receptor-4 (TLR-4) is the major pro-inflammatory pathway with its ligands and downstream products increased systemically in T2D and in at-risk individuals. Detailed mechanisms of the complex proinflammatory response in pancreatic islets remain unknown. In isolated human islets LPS induced IL-1β, IL-6, IL-8 and TNF production in a TLR4-dependent manner and severely impaired β-cell survival and function. IL-6 antagonism improved β-cell function. IL-8, which was identified specifically in α-cells, initiated monocyte migration, a process fully blocked by IL-8 neutralization. The TLR4 response was potentiated in obese donors; with higher IL-1β, IL-6 and IL-8 expression than in non-obese donors. TLR4 activation leads to a complex multi-cellular inflammatory response in human islets, which involves β-cell failure, cytokine production and macrophage recruitment to islets. In obesity, the amplified TLR4 response may potentiate β-cell damage and accelerate diabetes progression.
Collapse
Affiliation(s)
- Wei He
- University of Bremen, Center for Biomolecular Interactions Bremen, Germany.
| | - Osmond Rebello
- University of Bremen, Center for Biomolecular Interactions Bremen, Germany
| | - Rocco Savino
- Department of Health Sciences, Magna Graecia University, Catanzaro, Italy
| | - Rosa Terracciano
- Department of Health Sciences, Magna Graecia University, Catanzaro, Italy
| | | | | | - Kathrin Maedler
- University of Bremen, Center for Biomolecular Interactions Bremen, Germany.
| |
Collapse
|
114
|
Costes S. Targeting protein misfolding to protect pancreatic beta-cells in type 2 diabetes. Curr Opin Pharmacol 2018; 43:104-110. [PMID: 30245473 DOI: 10.1016/j.coph.2018.08.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 07/30/2018] [Accepted: 08/17/2018] [Indexed: 02/06/2023]
Abstract
The islet in type 2 diabetes is characterized by beta-cell dysfunction and deficit, increased beta-cell apoptosis and amyloid deposits that derived from islet amyloid polypeptide (IAPP). In species such as humans that are vulnerable to developing type 2 diabetes, IAPP has the propensity to form toxic oligomers that contribute to beta-cell dysfunction and apoptosis, defining type 2 diabetes as a protein misfolding disorder. In this report, we review mechanisms known to contribute to protein misfolding and formation of toxic oligomers, and the deleterious consequences of these oligomers on beta-cell function and survival. Finally, we will consider approaches to prevent protein misfolding and formation of toxic oligomers as potential novel therapeutic targets for type 2 diabetes and other protein misfolding diseases.
Collapse
Affiliation(s)
- Safia Costes
- IGF, CNRS, INSERM, University of Montpellier, Montpellier, France.
| |
Collapse
|
115
|
Chen YC, Taylor AJ, Verchere CB. Islet prohormone processing in health and disease. Diabetes Obes Metab 2018; 20 Suppl 2:64-76. [PMID: 30230179 DOI: 10.1111/dom.13401] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 05/30/2018] [Accepted: 05/30/2018] [Indexed: 12/15/2022]
Abstract
Biosynthesis of peptide hormones by pancreatic islet endocrine cells is a tightly orchestrated process that is critical for metabolic homeostasis. Like neuroendocrine peptides, insulin and other islet hormones are first synthesized as larger precursor molecules that are processed to their mature secreted products through a series of proteolytic cleavages, mediated by the prohormone convertases Pc1/3 and Pc2, and carboxypeptidase E. Additional posttranslational modifications including C-terminal amidation of the β-cell peptide islet amyloid polypeptide (IAPP) by peptidyl-glycine α-amidating monooxygenase (Pam) may also occur. Genome-wide association studies (GWAS) have showed genetic linkage of these processing enzymes to obesity, β-cell dysfunction, and type 2 diabetes (T2D), pointing to their important roles in metabolism and blood glucose regulation. In both type 1 diabetes (T1D) and T2D, and in the face of metabolic or inflammatory stresses, islet prohormone processing may become impaired; indeed elevated proinsulin:insulin (PI:I) ratios are a hallmark of the β-cell dysfunction in T2D. Recent studies suggest that genetic or acquired defects in proIAPP processing may lead to the production and secretion of incompletely processed forms of proIAPP that could contribute to T2D pathogenesis, and additionally that impaired processing of both PI and proIAPP may be characteristic of β-cell dysfunction in T1D. In islet α-cells, the prohormone proglucagon is normally processed to bioactive glucagon by Pc2 but may express Pc1/3 under certain conditions leading to production of GLP-1(7-36NH2 ). A better understanding of how β-cell processing of PI and proIAPP, as well as α-cell processing of proglucagon, are impacted by genetic susceptibility and in the face of diabetogenic stresses, may lead to new therapeutic approaches for improving islet function in diabetes.
Collapse
Affiliation(s)
- Yi-Chun Chen
- Department of Surgery, BC Children's Hospital Research Institute and University of British Columbia, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, BC Children's Hospital Research Institute and University of British Columbia, Vancouver, British Columbia, Canada
| | - Austin J Taylor
- Department of Surgery, BC Children's Hospital Research Institute and University of British Columbia, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, BC Children's Hospital Research Institute and University of British Columbia, Vancouver, British Columbia, Canada
| | - C Bruce Verchere
- Department of Surgery, BC Children's Hospital Research Institute and University of British Columbia, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, BC Children's Hospital Research Institute and University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
116
|
Gonzalez LL, Garrie K, Turner MD. Type 2 diabetes - An autoinflammatory disease driven by metabolic stress. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3805-3823. [PMID: 30251697 DOI: 10.1016/j.bbadis.2018.08.034] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/27/2018] [Indexed: 02/06/2023]
Abstract
Type 2 diabetes has traditionally been viewed as a metabolic disorder characterised by chronic high glucose levels, insulin resistance, and declining insulin secretion from the pancreas. Modern lifestyle, with abundant nutrient supply and reduced physical activity, has resulted in dramatic increases in the rates of obesity-associated disease conditions, including diabetes. The associated excess of nutrients induces a state of systemic low-grade chronic inflammation that results from production and secretion of inflammatory mediators from the expanded pool of activated adipocytes. Here, we review the mechanisms by which obesity induces adipose tissue dysregulation, detailing the roles of adipose tissue secreted factors and their action upon other cells and tissues central to glucose homeostasis and type 2 diabetes. Furthermore, given the emerging importance of adipokines, cytokines and chemokines in disease progression, we suggest that type 2 diabetes should now be viewed as an autoinflammatory disease, albeit one that is driven by metabolic dysregulation.
Collapse
Affiliation(s)
- Laura L Gonzalez
- Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University, Clifton, Nottingham NG11 8NS, United Kingdom
| | - Karin Garrie
- Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University, Clifton, Nottingham NG11 8NS, United Kingdom
| | - Mark D Turner
- Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University, Clifton, Nottingham NG11 8NS, United Kingdom.
| |
Collapse
|
117
|
Lytrivi M, Igoillo-Esteve M, Cnop M. Inflammatory stress in islet β-cells: therapeutic implications for type 2 diabetes? Curr Opin Pharmacol 2018; 43:40-45. [PMID: 30142486 DOI: 10.1016/j.coph.2018.08.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 07/25/2018] [Accepted: 08/02/2018] [Indexed: 01/05/2023]
Abstract
Type 2 diabetes is a common complex disease. Relatively little is known about the underlying pathophysiology. Mild islet inflammation has been suggested to play a pathogenic role; here we review the available evidence. Mild islet inflammation is histologically detected in pancreas sections of type 2 diabetic patients. In experimental models, it can be triggered by excess nutrients, amyloid, lipopolysaccharide, and endoplasmic reticulum and oxidative stress. Transcriptome studies do not consistently identify pro-inflammatory gene expression signatures in type 2 diabetic islets, and genetic evidence calls into question the causality of inflammation. Several anti-inflammatory medications confer a modest glucose-lowering effect, supporting the role for inflammation in type 2 diabetes. Whether these anti-inflammatory therapies target inflammation in islets or in other metabolically relevant tissues remains unknown.
Collapse
Affiliation(s)
- Maria Lytrivi
- ULB Center for Diabetes Research, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium; Division of Endocrinology, Erasmus Hospital, Université Libre de Bruxelles, Brussels, Belgium.
| | - Mariana Igoillo-Esteve
- ULB Center for Diabetes Research, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Miriam Cnop
- ULB Center for Diabetes Research, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium; Division of Endocrinology, Erasmus Hospital, Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
118
|
Kell DB, Pretorius E. No effects without causes: the Iron Dysregulation and Dormant Microbes hypothesis for chronic, inflammatory diseases. Biol Rev Camb Philos Soc 2018; 93:1518-1557. [PMID: 29575574 PMCID: PMC6055827 DOI: 10.1111/brv.12407] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/12/2018] [Accepted: 02/15/2018] [Indexed: 12/11/2022]
Abstract
Since the successful conquest of many acute, communicable (infectious) diseases through the use of vaccines and antibiotics, the currently most prevalent diseases are chronic and progressive in nature, and are all accompanied by inflammation. These diseases include neurodegenerative (e.g. Alzheimer's, Parkinson's), vascular (e.g. atherosclerosis, pre-eclampsia, type 2 diabetes) and autoimmune (e.g. rheumatoid arthritis and multiple sclerosis) diseases that may appear to have little in common. In fact they all share significant features, in particular chronic inflammation and its attendant inflammatory cytokines. Such effects do not happen without underlying and initially 'external' causes, and it is of interest to seek these causes. Taking a systems approach, we argue that these causes include (i) stress-induced iron dysregulation, and (ii) its ability to awaken dormant, non-replicating microbes with which the host has become infected. Other external causes may be dietary. Such microbes are capable of shedding small, but functionally significant amounts of highly inflammagenic molecules such as lipopolysaccharide and lipoteichoic acid. Sequelae include significant coagulopathies, not least the recently discovered amyloidogenic clotting of blood, leading to cell death and the release of further inflammagens. The extensive evidence discussed here implies, as was found with ulcers, that almost all chronic, infectious diseases do in fact harbour a microbial component. What differs is simply the microbes and the anatomical location from and at which they exert damage. This analysis offers novel avenues for diagnosis and treatment.
Collapse
Affiliation(s)
- Douglas B. Kell
- School of ChemistryThe University of Manchester, 131 Princess StreetManchesterLancsM1 7DNU.K.
- The Manchester Institute of BiotechnologyThe University of Manchester, 131 Princess StreetManchesterLancsM1 7DNU.K.
- Department of Physiological SciencesStellenbosch University, Stellenbosch Private Bag X1Matieland7602South Africa
| | - Etheresia Pretorius
- Department of Physiological SciencesStellenbosch University, Stellenbosch Private Bag X1Matieland7602South Africa
| |
Collapse
|
119
|
Interleukin-1 Beta-A Friend or Foe in Malignancies? Int J Mol Sci 2018; 19:ijms19082155. [PMID: 30042333 PMCID: PMC6121377 DOI: 10.3390/ijms19082155] [Citation(s) in RCA: 301] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/14/2018] [Accepted: 07/19/2018] [Indexed: 12/19/2022] Open
Abstract
Interleukin-1 beta (IL-1β) is induced by inflammatory signals in a broad number of immune cell types. IL-1β (and IL-18) are the only cytokines which are processed by caspase-1 after inflammasome-mediated activation. This review aims to summarize current knowledge about parameters of regulation of IL-1β expression and its multi-facetted role in pathophysiological conditions. IL-1 signaling activates innate immune cells including antigen presenting cells, and drives polarization of CD4+ T cells towards T helper type (Th) 1 and Th17 cells. Therefore, IL-1β has been attributed a largely beneficial role in resolving acute inflammations, and by initiating adaptive anti-tumor responses. However, IL-1β generated in the course of chronic inflammation supports tumor development. Furthermore, IL-1β generated within the tumor microenvironment predominantly by tumor-infiltrating macrophages promotes tumor growth and metastasis via different mechanisms. These include the expression of IL-1 targets which promote neoangiogenesis and of soluble mediators in cancer-associated fibroblasts that evoke antiapoptotic signaling in tumor cells. Moreover, IL-1 promotes the propagation of myeloid-derived suppressor cells. Using genetic mouse models as well as agents for pharmacological inhibition of IL-1 signaling therapeutically applied for treatment of IL-1 associated autoimmune diseases indicate that IL-1β is a driver of tumor induction and development.
Collapse
|
120
|
Abedini A, Derk J, Schmidt AM. The receptor for advanced glycation endproducts is a mediator of toxicity by IAPP and other proteotoxic aggregates: Establishing and exploiting common ground for novel amyloidosis therapies. Protein Sci 2018; 27:1166-1180. [PMID: 29664151 PMCID: PMC6032365 DOI: 10.1002/pro.3425] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/09/2018] [Accepted: 04/10/2018] [Indexed: 12/23/2022]
Abstract
Proteotoxicity plays a key role in many devastating human disorders, including Alzheimer's, Huntington's and Parkinson's diseases; type 2 diabetes; systemic amyloidosis; and cardiac dysfunction, to name a few. The cellular mechanisms of proteotoxicity in these disorders have been the focus of considerable research, but their role in prevalent and morbid disorders, such as diabetes, is less appreciated. There is a large body of literature on the impact of glucotoxicity and lipotoxicity on insulin-producing pancreatic β-cells, and there is increasing recognition that proteotoxicty plays a key role. Pancreatic islet amyloidosis by the hormone IAPP, the production of advanced glycation endproducts (AGE), and insulin misprocessing into cytotoxic aggregates are all sources of β-cell proteotoxicity in diabetes. AGE, produced by the reaction of reducing sugars with proteins and lipids are ligands for the receptor for AGE (RAGE), as are the toxic pre-fibrillar aggregates of IAPP produced during amyloid formation. The mechanisms of amyloid formation by IAPP in vivo or in vitro are not well understood, and the cellular mechanisms of IAPP-induced β-cell death are not fully defined. Here, we review recent findings that illuminate the factors and mechanisms involved in β-cell proteotoxicity in diabetes. Together, these new insights have far-reaching implications for the establishment of unifying mechanisms by which pathological amyloidoses imbue their injurious effects in vivo.
Collapse
Affiliation(s)
- Andisheh Abedini
- Diabetes Research Program, Division of Endocrinology, Department of MedicineNew York University Medical Center, 550 First Avenue, Smilow 906New YorkNew York10016
| | - Julia Derk
- Diabetes Research Program, Division of Endocrinology, Department of MedicineNew York University Medical Center, 550 First Avenue, Smilow 906New YorkNew York10016
| | - Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology, Department of MedicineNew York University Medical Center, 550 First Avenue, Smilow 906New YorkNew York10016
| |
Collapse
|
121
|
Zinselmeyer BH, Vomund AN, Saunders BT, Johnson MW, Carrero JA, Unanue ER. The resident macrophages in murine pancreatic islets are constantly probing their local environment, capturing beta cell granules and blood particles. Diabetologia 2018; 61:1374-1383. [PMID: 29589072 PMCID: PMC5938291 DOI: 10.1007/s00125-018-4592-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 01/26/2018] [Indexed: 12/22/2022]
Abstract
AIMS/HYPOTHESIS We studied here the interactions between the resident macrophages of pancreatic islets with beta cells and the blood vasculature. We also examined the immunological consequences of such interactions. METHODS Islets were isolated from C57BL/6 mice expressing CX3C motif chemokine receptor 1-green fluorescent protein (CX3CR-GFP) and examined live by two-photon microscopy. Islets were also examined by electron microscopy to study the relationship of the intra-islet macrophages with the beta cells. In NOD.Rag1-/- mice and young (non-diabetic) male mice, the acquisition of beta cell granules was tested functionally by probing with CD4+ T cells directed against insulin epitopes. RESULTS Two-photon microscopy showed that the islet resident macrophages were in close contact with blood vessels and had extensive filopodial activity. Some filopodia had direct access to the vessel lumen and captured microparticles. Addition of glucose at high concentration reduced the degree of filopodia sampling of islets. This finding applied to in vivo injection of glucose or to in vitro cultures. Ultrastructural examination showed the close contacts of macrophages with beta cells. Such macrophages contained intact dense core granules. Functional studies in NOD mice indicated that the macrophages presented insulin peptides to insulin-reactive T cells. Presentation was increased after glucose challenge either ex vivo or after an in vivo pulse. In agreement with the morphological findings, presentation was not affected by insulin receptor blockade. CONCLUSIONS/INTERPRETATION Islet resident macrophages are highly active, sampling large areas of the islets and blood contents and capturing beta cell granules. After such interactions, macrophages present immunogenic insulin to specific autoreactive T cells.
Collapse
Affiliation(s)
- Bernd H Zinselmeyer
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, BJC Institute of Health, Campus Box 8118, 660 S. Euclid Avenue, St. Louis, MO, 63110, USA.
| | - Anthony N Vomund
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, BJC Institute of Health, Campus Box 8118, 660 S. Euclid Avenue, St. Louis, MO, 63110, USA
| | - Brian T Saunders
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, BJC Institute of Health, Campus Box 8118, 660 S. Euclid Avenue, St. Louis, MO, 63110, USA
| | - Michael W Johnson
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, BJC Institute of Health, Campus Box 8118, 660 S. Euclid Avenue, St. Louis, MO, 63110, USA
| | - Javier A Carrero
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, BJC Institute of Health, Campus Box 8118, 660 S. Euclid Avenue, St. Louis, MO, 63110, USA
| | - Emil R Unanue
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, BJC Institute of Health, Campus Box 8118, 660 S. Euclid Avenue, St. Louis, MO, 63110, USA.
| |
Collapse
|
122
|
Thielen L, Shalev A. Diabetes pathogenic mechanisms and potential new therapies based upon a novel target called TXNIP. Curr Opin Endocrinol Diabetes Obes 2018; 25:75-80. [PMID: 29356688 PMCID: PMC5831522 DOI: 10.1097/med.0000000000000391] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW Thioredoxin-interacting protein has emerged as a major factor regulating pancreatic β-cell dysfunction and death, key processes in the pathogenesis of type 1 and type 2 diabetes. Accumulating evidence based on basic, preclinical, and retrospective epidemiological research suggests that TXNIP represents a promising therapeutic target for diabetes. The present review is aimed at providing an update regarding these developments. RECENT FINDINGS TXNIP has been shown to be induced by glucose and increased in diabetes and to promote β-cell apoptosis, whereas TXNIP deletion protected against diabetes. More recently, TXNIP inhibition has also been found to promote insulin production and glucagon-like peptide 1 signaling via regulation of a microRNA. β-Cell TXNIP expression itself was found to be regulated by hypoglycemic agents, carbohydrate-response-element-binding protein, and cytosolic calcium or the calcium channel blocker, verapamil. Retrospective studies now further suggest that verapamil use might be associated with a lower incidence of type 2 diabetes in humans. SUMMARY TXNIP has emerged as a key factor in the regulation of functional β-cell mass and TXNIP inhibition has shown beneficial effects in a variety of studies. Thus, the inhibition of TXNIP may provide a novel approach to the treatment of diabetes.
Collapse
Affiliation(s)
- Lance Thielen
- Division of Endocrinology, Diabetes, and Metabolism, Comprehensive Diabetes Center and Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | |
Collapse
|
123
|
Zhang Y, Warnock GL, Ao Z, Park YJ, Safikhan N, Ghahary A, Marzban L. Amyloid formation reduces protein kinase B phosphorylation in primary islet β-cells which is improved by blocking IL-1β signaling. PLoS One 2018; 13:e0193184. [PMID: 29474443 PMCID: PMC5825069 DOI: 10.1371/journal.pone.0193184] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 02/02/2018] [Indexed: 12/31/2022] Open
Abstract
Amyloid formation in the pancreatic islets due to aggregation of human islet amyloid polypeptide (hIAPP) contributes to reduced β-cell mass and function in type 2 diabetes (T2D) and islet transplantation. Protein kinase B (PKB) signaling plays a key role in the regulation of β-cell survival, function and proliferation. In this study, we used human and hIAPP-expressing transgenic mouse islets in culture as two ex vivo models of human islet amyloid formation to: 1. Investigate the effects of amyloid formation on PKB phosphorylation in primary islet β-cells; 2. Test if inhibition of amyloid formation and/or interleukin-1β (IL-1β) signaling in islets can restore the changes in β-cell phospho-PKB levels mediated by amyloid formation. Human and hIAPP-expressing mouse islets were cultured in elevated glucose with an amyloid inhibitor (Congo red) or embedded within collagen matrix to prevent amyloid formation. To block the IL-1β signaling, human islets were treated with an IL-1 receptor antagonist (anakinra) or a glucagon-like peptide-1 agonist (exenatide). β-cell phospho-PKB levels, proliferation, apoptosis, islet IL-1β levels and amyloid formation were assessed. Amyloid formation in both cultured human and hIAPP-expressing mouse islets reduced β-cell phospho-PKB levels and increased islet IL-1β levels, both of which were restored by prevention of amyloid formation either by the amyloid inhibitor or embedding islets in collagen matrix, resulting in improved β-cell survival. Furthermore, inhibition of IL-1β signaling by treatment with anakinra or exenatide increased β-cell phospho-PKB levels, enhanced proliferation and reduced apoptosis in amyloid forming human islets during 7-day culture. These data suggest that amyloid formation leads to reduced PKB phosphorylation in β-cells which is associated with elevated islet IL-1β levels. Inhibitors of amyloid or amyloid-induced IL-1β production may provide a new approach to restore phospho-PKB levels thereby enhance β-cell survival and proliferation in conditions associated with islet amyloid formation such as T2D and clinical islet transplantation.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Garth L. Warnock
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Ziliang Ao
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Yoo Jin Park
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Nooshin Safikhan
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Aziz Ghahary
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Lucy Marzban
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- * E-mail:
| |
Collapse
|
124
|
Denroche HC, Verchere CB. IAPP and type 1 diabetes: implications for immunity, metabolism and islet transplants. J Mol Endocrinol 2018; 60:R57-R75. [PMID: 29378867 DOI: 10.1530/jme-17-0138] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 12/06/2017] [Indexed: 01/12/2023]
Abstract
Islet amyloid polypeptide (IAPP), the main component of islet amyloid in type 2 diabetes and islet transplants, is now recognized as a contributor to beta cell dysfunction. Increasingly, evidence warrants its investigation in type 1 diabetes owing to both its immunomodulatory and metabolic actions. Autoreactive T cells to IAPP-derived epitopes have been described in humans, suggesting that IAPP is an islet autoantigen in type 1 diabetes. In addition, although aggregates of IAPP have not been implicated in type 1 diabetes, they are potent pro-inflammatory stimuli to innate immune cells, and thus, could influence autoimmunity. IAPP aggregates also occur rapidly in transplanted islets and likely contribute to islet transplant failure in type 1 diabetes through sterile inflammation. In addition, since type 1 diabetes is a disease of both insulin and IAPP deficiency, clinical trials have examined the potential benefits of IAPP replacement in type 1 diabetes with the injectable IAPP analogue, pramlintide. Pramlintide limits postprandial hyperglycemia by delaying gastric emptying and suppressing hyperglucagonemia, underlining the possible role of IAPP in postprandial glucose metabolism. Here, we review IAPP in the context of type 1 diabetes: from its potential involvement in type 1 diabetes pathogenesis, through its role in glucose metabolism and use of IAPP analogues as therapeutics, to its potential role in clinical islet transplant failure and considerations in this regard for future beta cell replacement strategies.
Collapse
Affiliation(s)
- Heather C Denroche
- Department of Surgery, BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - C Bruce Verchere
- Department of Surgery, BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
125
|
Abedini A, Cao P, Plesner A, Zhang J, He M, Derk J, Patil SA, Rosario R, Lonier J, Song F, Koh H, Li H, Raleigh DP, Schmidt AM. RAGE binds preamyloid IAPP intermediates and mediates pancreatic β cell proteotoxicity. J Clin Invest 2018; 128:682-698. [PMID: 29337308 PMCID: PMC5785261 DOI: 10.1172/jci85210] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 11/17/2017] [Indexed: 01/04/2023] Open
Abstract
Islet amyloidosis is characterized by the aberrant accumulation of islet amyloid polypeptide (IAPP) in pancreatic islets, resulting in β cell toxicity, which exacerbates type 2 diabetes and islet transplant failure. It is not fully clear how IAPP induces cellular stress or how IAPP-induced toxicity can be prevented or treated. We recently defined the properties of toxic IAPP species. Here, we have identified a receptor-mediated mechanism of islet amyloidosis-induced proteotoxicity. In human diabetic pancreas and in cellular and mouse models of islet amyloidosis, increased expression of the receptor for advanced glycation endproducts (RAGE) correlated with human IAPP-induced (h-IAPP-induced) β cell and islet inflammation, toxicity, and apoptosis. RAGE selectively bound toxic intermediates, but not nontoxic forms of h-IAPP, including amyloid fibrils. The isolated extracellular ligand-binding domains of soluble RAGE (sRAGE) blocked both h-IAPP toxicity and amyloid formation. Inhibition of the interaction between h-IAPP and RAGE by sRAGE, RAGE-blocking antibodies, or genetic RAGE deletion protected pancreatic islets, β cells, and smooth muscle cells from h-IAPP-induced inflammation and metabolic dysfunction. sRAGE-treated h-IAPP Tg mice were protected from amyloid deposition, loss of β cell area, β cell inflammation, stress, apoptosis, and glucose intolerance. These findings establish RAGE as a mediator of IAPP-induced toxicity and suggest that targeting the IAPP/RAGE axis is a potential strategy to mitigate this source of β cell dysfunction in metabolic disease.
Collapse
Affiliation(s)
- Andisheh Abedini
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, NYU School of Medicine, New York, New York, USA
| | - Ping Cao
- Department of Chemistry, Stony Brook University, Stony Brook, New York, USA
| | | | - Jinghua Zhang
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, NYU School of Medicine, New York, New York, USA
| | - Meilun He
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, NYU School of Medicine, New York, New York, USA
| | - Julia Derk
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, NYU School of Medicine, New York, New York, USA
| | - Sachi A. Patil
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, NYU School of Medicine, New York, New York, USA
| | - Rosa Rosario
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, NYU School of Medicine, New York, New York, USA
| | - Jacqueline Lonier
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, NYU School of Medicine, New York, New York, USA
| | - Fei Song
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, NYU School of Medicine, New York, New York, USA
| | - Hyunwook Koh
- Division of Biostatistics, Department of Population Health, NYU School of Medicine, New York, New York, USA
| | - Huilin Li
- Division of Biostatistics, Department of Population Health, NYU School of Medicine, New York, New York, USA
| | - Daniel P. Raleigh
- Department of Chemistry, Stony Brook University, Stony Brook, New York, USA
| | - Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, NYU School of Medicine, New York, New York, USA
| |
Collapse
|
126
|
Affiliation(s)
- Heather C Denroche
- Department of Surgery, BC Children's Hospital Research Institute, University of British Columbia, 950 W 28 Ave, Vancouver, V5Z 4H4, Canada
| | - Dominika Nackiewicz
- Department of Surgery, BC Children's Hospital Research Institute, University of British Columbia, 950 W 28 Ave, Vancouver, V5Z 4H4, Canada
| | - C Bruce Verchere
- Department of Surgery, BC Children's Hospital Research Institute, University of British Columbia, 950 W 28 Ave, Vancouver, V5Z 4H4, Canada.
- Department of Pathology and Laboratory Medicine, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
127
|
Zheng L, Zhang W, Li A, Liu Y, Yi B, Nakhoul F, Zhang H. PTPN2 Downregulation Is Associated with Albuminuria and Vitamin D Receptor Deficiency in Type 2 Diabetes Mellitus. J Diabetes Res 2018; 2018:3984797. [PMID: 30246029 PMCID: PMC6136551 DOI: 10.1155/2018/3984797] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 04/06/2018] [Accepted: 07/29/2018] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVE Inflammation plays a major role in albuminuria in type 2 diabetes mellitus (T2DM). Our previous studies have shown that the expression of vitamin D receptor (VDR) is downregulated in T2DM which is closely associated with the severity of albuminuria. In this study, we investigated the expression of anti-inflammatory cytokine protein tyrosine phosphatase nonreceptor type 2 (PTPN2) in T2DM and explored its relationship to albuminuria and VDR. METHODS 101 T2DM patients were divided into three groups based on urinary albumin-to-creatinine ratio (uACR): normal albuminuria (uACR < 30 mg/g, n = 29), microalbuminuria (30 mg/g ≤ uACR < 300 mg/g, n = 34), and macroalbuminuria (uACR ≥ 300 mg/g, n = 38). Thirty healthy individuals were included as controls. Serum was analyzed for PTPN2 and IL-6 expression, and peripheral blood mononuclear cells (PBMCs) were analyzed for PTPN2 and VDR expression. THP-1 cells were incubated with high glucose and further treated with or without paricalcitol, a vitamin D analog. The levels of PTPN2, VDR, IL-6, TNFα, and MCP-1 were analyzed. In addition, anti-inflammatory activities of PTPN2 were further explored in THP-1 cells stimulated with high glucose after PTPN2 silencing or overexpression. RESULTS PTPN2 expression was downregulated in T2DM with the lowest level observed in macroalbuminuria patients. PTPN2 level positively correlated with VDR but negatively correlated with uACR and IL-6. When stimulated with high glucose, there was an increase in inflammatory factors and a decrease in PTPN2 expression. Treatment with paricalcitol reversed these effects. However, paricalcitol failed to exert anti-inflammatory effects in the setting of PTPN2 knockdown. Thus, low levels of PTPN2 aggravated glucose-stimulated inflammation, while high levels of PTPN2 reduced it. CONCLUSION PTPN2, an anti-inflammatory factor regulated by VDR, was reduced in T2DM CKD stages 1-2. Taken together, our results suggest that therapeutic strategies that enhance PTPN2 may be beneficial for controlling inflammation in T2DM.
Collapse
MESH Headings
- Adult
- Aged
- Albuminuria/blood
- Albuminuria/diagnosis
- Albuminuria/etiology
- Albuminuria/urine
- Biomarkers/blood
- Biomarkers/urine
- Case-Control Studies
- Chemokine CCL2/metabolism
- Creatinine/urine
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/diagnosis
- Diabetes Mellitus, Type 2/urine
- Diabetic Nephropathies/blood
- Diabetic Nephropathies/diagnosis
- Diabetic Nephropathies/etiology
- Diabetic Nephropathies/urine
- Down-Regulation
- Female
- Humans
- Inflammation/blood
- Inflammation/diagnosis
- Inflammation/etiology
- Inflammation/urine
- Interleukin-6/blood
- Male
- Middle Aged
- Monocytes/metabolism
- Protein Tyrosine Phosphatase, Non-Receptor Type 2/blood
- Protein Tyrosine Phosphatase, Non-Receptor Type 2/genetics
- Receptors, Calcitriol/blood
- Receptors, Calcitriol/deficiency
- Renal Insufficiency, Chronic/blood
- Renal Insufficiency, Chronic/diagnosis
- Renal Insufficiency, Chronic/etiology
- Renal Insufficiency, Chronic/urine
- THP-1 Cells
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Li Zheng
- Department of Nephrology, The Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, Hunan, China
| | - Wei Zhang
- Department of Nephrology, The Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, Hunan, China
| | - Aimei Li
- Department of Nephrology, The Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, Hunan, China
| | - Yan Liu
- Department of Nephrology, The Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, Hunan, China
| | - Bin Yi
- Department of Nephrology, The Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, Hunan, China
| | - Farid Nakhoul
- Diabetic Nephropathy Lab, Baruch Padeh Poriya Medical Center Affiliated to the Faculty of Medicine in Galilee, 15208 Lower Galilee, Israel
| | - Hao Zhang
- Department of Nephrology, The Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, Hunan, China
| |
Collapse
|
128
|
Abebe T, Mahadevan J, Bogachus L, Hahn S, Black M, Oseid E, Urano F, Cirulli V, Robertson RP. Nrf2/antioxidant pathway mediates β cell self-repair after damage by high-fat diet-induced oxidative stress. JCI Insight 2017; 2:92854. [PMID: 29263299 DOI: 10.1172/jci.insight.92854] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 11/15/2017] [Indexed: 12/18/2022] Open
Abstract
Many theories have been advanced to better understand why β cell function and structure relentlessly deteriorate during the course of type 2 diabetes (T2D). These theories include inflammation, apoptosis, replication, neogenesis, autophagy, differentiation, dedifferentiation, and decreased levels of insulin gene regulatory proteins. However, none of these have considered the possibility that endogenous self-repair of existing β cells may be an important factor. To examine this hypothesis, we conducted studies with female Zucker diabetic fatty rats fed a high-fat diet (HFD) for 1, 2, 4, 7, 9, 18, or 28 days, followed by a return to regular chow for 2-3 weeks. Repair was defined as reversal of elevated blood glucose and of inappropriately low blood insulin levels caused by a HFD, as well as reversal of structural damage visualized by imaging studies. We observed evidence of functional β cell damage after a 9-day exposure to a HFD and then repair after 2-3 weeks of being returned to normal chow (blood glucose [BG] = 348 ± 30 vs. 126 ± 3; mg/dl; days 9 vs. 23 day, P < 0.01). After 18- and 28-day exposure to a HFD, damage was more severe and repair was less evident. Insulin levels progressively diminished with 9-day exposure to a HFD; after returning to a regular diet, insulin levels rebounded toward, but did not reach, normal values. Increase in β cell mass was 4-fold after 9 days and 3-fold after 18 days, and there was no increase after 28 days of a HFD. Increases in β cell mass during a HFD were not different when comparing values before and after a return to regular diet within the 9-, 18-, or 28-day studies. No changes were observed in apoptosis or β cell replication. Formation of intracellular markers of oxidative stress, intranuclear translocation of Nrf2, and formation of intracellular antioxidant proteins indicated the participation of HFD/oxidative stress induction of the Nrf2/antioxidant pathway. Flow cytometry-based assessment of β cell volume, morphology, and insulin-specific immunoreactivity, as well as ultrastructural analysis by transmission electron microscopy, revealed that short-term exposure to a HFD produced significant changes in β cell morphology and function that are reversible after returning to regular chow. These results suggest that a possible mechanism mediating the ability of β cells to self-repair after a short-term exposure to a HFD is the activation of the Nrf2/antioxidant pathway.
Collapse
Affiliation(s)
- Tsehay Abebe
- Pacific Northwest Diabetes Research Institute, Seattle, Washington, USA
| | - Jana Mahadevan
- Pacific Northwest Diabetes Research Institute, Seattle, Washington, USA.,Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, and.,Department of Pharmacology, University of Washington, Seattle, Washington, USA.,Department of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Lindsey Bogachus
- Pacific Northwest Diabetes Research Institute, Seattle, Washington, USA.,Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, and.,Department of Pharmacology, University of Washington, Seattle, Washington, USA.,Division of Endocrinology and Metabolism, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Stephanie Hahn
- Pacific Northwest Diabetes Research Institute, Seattle, Washington, USA
| | - Michele Black
- Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Elizabeth Oseid
- Pacific Northwest Diabetes Research Institute, Seattle, Washington, USA
| | - Fumihiko Urano
- Department of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Vincenzo Cirulli
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, and.,Department of Pharmacology, University of Washington, Seattle, Washington, USA
| | - R Paul Robertson
- Pacific Northwest Diabetes Research Institute, Seattle, Washington, USA.,Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, and.,Department of Pharmacology, University of Washington, Seattle, Washington, USA.,Division of Endocrinology and Metabolism, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
129
|
Zhang Y, Yu XL, Zhu J, Liu SY, Liu XM, Dong QX, Chai JQ, Liu RT. Intravenous immunoglobulin improves glucose control and β-cell function in human IAPP transgenic mice by attenuating islet inflammation and reducing IAPP oligomers. Int Immunopharmacol 2017; 54:145-152. [PMID: 29145032 DOI: 10.1016/j.intimp.2017.11.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/08/2017] [Accepted: 11/08/2017] [Indexed: 02/06/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disorder characterized by β-cell loss, insulin resistance, islet inflammation and amyloid deposits derived from islet amyloid polypeptide (IAPP). Reducing toxic IAPP oligomers and inhibiting islet inflammation may provide therapeutic benefit in treating T2DM. Intravenous immunoglobulin (IVIg) is an efficient anti-inflammatory and immunomodulatory agent for the treatment of several autoimmune or inflammatory neurological diseases. However, whether IVIg has therapeutic potential on T2DM remains unclear. In present study, we showed that IVIg treatment significantly improved glucose control and insulin sensitivity, and prevented β-cell apoptosis by lowering toxic IAPP oligomer levels, attenuating islet inflammation and activating autophagy in human IAPP transgenic mouse model. These results suggest that IVIg is a promising therapeutic potential for T2DM treatment.
Collapse
Affiliation(s)
- Yue Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Shandong Agricultural University, Taian, 271018, China
| | - Xiao-Lin Yu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Jie Zhu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Shu-Ying Liu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiang-Meng Liu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Quan-Xiu Dong
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Jia-Qian Chai
- Shandong Agricultural University, Taian, 271018, China.
| | - Rui-Tian Liu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
130
|
Obasse I, Taylor M, Fullwood NJ, Allsop D. Development of proteolytically stable N-methylated peptide inhibitors of aggregation of the amylin peptide implicated in type 2 diabetes. Interface Focus 2017; 7:20160127. [PMID: 29147551 DOI: 10.1098/rsfs.2016.0127] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Islet amyloid polypeptide, also known as amylin, is the main component of the amyloid deposits present in approximately 90% of people with type 2 diabetes mellitus (T2DM). In this disease, amylin aggregates into multimeric β-pleated sheet structures which cause damage to pancreatic islet β-cells. Inhibitors of early-stage amylin aggregation could therefore provide a disease-modifying treatment for T2DM. In this study, overlapping peptides were designed to target the 'binding' region (RLANFLVHSS, residues 11-20) of human amylin, and their effects on amyloid fibril formation were determined by thioflavin-T assay. The first generation peptides showed less than 50% inhibition of aggregation, but a second generation peptide (H2N-RGANFLVHGR-CONH2) showed strong inhibitory effects on amylin aggregation, and this was confirmed by negative stain electron microscopy. Cytotoxicity studies revealed that this peptide protected human pancreatic 1.4E7 (ECACC 10070102) insulin-secreting cells from the toxic effects of human amylin. Unlike the retro-inverso version of this peptide, which stimulated aggregation, two N-methylated peptides (H2N-RGAmNFmLVmHGR-CONH2 and H2N-RGANmFLmVHmR-CONH2) gave very clear dose-dependent inhibition of fibril formation. These two peptides were also stable against a range of different proteolytic enzymes, and in human plasma. These N-methylated peptides could provide a novel treatment for slowing progression of T2DM.
Collapse
Affiliation(s)
- Idira Obasse
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, University of Lancaster, Lancaster LA1 4YQ, UK
| | - Mark Taylor
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, University of Lancaster, Lancaster LA1 4YQ, UK
| | - Nigel J Fullwood
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, University of Lancaster, Lancaster LA1 4YQ, UK
| | - David Allsop
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, University of Lancaster, Lancaster LA1 4YQ, UK
| |
Collapse
|
131
|
Montane J, de Pablo S, Castaño C, Rodríguez-Comas J, Cadavez L, Obach M, Visa M, Alcarraz-Vizán G, Sanchez-Martinez M, Nonell-Canals A, Parrizas M, Servitja JM, Novials A. Amyloid-induced β-cell dysfunction and islet inflammation are ameliorated by 4-phenylbutyrate (PBA) treatment. FASEB J 2017; 31:5296-5306. [PMID: 28821639 DOI: 10.1096/fj.201700236r] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 07/25/2017] [Indexed: 12/28/2022]
Abstract
Human islet amyloid polypeptide (hIAPP) aggregation is associated with β-cell dysfunction and death in type 2 diabetes (T2D). we aimed to determine whether in vivo treatment with chemical chaperone 4-phenylbutyrate (PBA) ameliorates hIAPP-induced β-cell dysfunction and islet amyloid formation. Oral administration of PBA in hIAPP transgenic (hIAPP Tg) mice expressing hIAPP in pancreatic β cells counteracted impaired glucose homeostasis and restored glucose-stimulated insulin secretion. Moreover, PBA treatment almost completely prevented the transcriptomic alterations observed in hIAPP Tg islets, including the induction of genes related to inflammation. PBA also increased β-cell viability and improved insulin secretion in hIAPP Tg islets cultured under glucolipotoxic conditions. Strikingly, PBA not only prevented but even reversed islet amyloid deposition, pointing to a direct effect of PBA on hIAPP. This was supported by in silico calculations uncovering potential binding sites of PBA to monomeric, dimeric, and pentameric fibrillar structures, and by in vitro assays showing inhibition of hIAPP fibril formation by PBA. Collectively, these results uncover a novel beneficial effect of PBA on glucose homeostasis by restoring β-cell function and preventing amyloid formation in mice expressing hIAPP in β cells, highlighting the therapeutic potential of PBA for the treatment of T2D.-Montane, J., de Pablo, S., Castaño, C., Rodríguez-Comas, J., Cadavez, L., Obach, M., Visa, M., Alcarraz-Vizán, G., Sanchez-Martinez, M., Nonell-Canals, A., Parrizas, M., Servitja, J.-M., Novials, A. Amyloid-induced β-cell dysfunction and islet inflammation are ameliorated by 4-phenylbutyrate (PBA) treatment.
Collapse
Affiliation(s)
- Joel Montane
- Diabetes and Obesity Research Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain; .,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Sara de Pablo
- Diabetes and Obesity Research Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Carlos Castaño
- Diabetes and Obesity Research Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Júlia Rodríguez-Comas
- Diabetes and Obesity Research Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Lisa Cadavez
- Diabetes and Obesity Research Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Mercè Obach
- Diabetes and Obesity Research Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Montse Visa
- Diabetes and Obesity Research Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Gema Alcarraz-Vizán
- Diabetes and Obesity Research Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | | | | | - Marcelina Parrizas
- Diabetes and Obesity Research Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Joan-Marc Servitja
- Diabetes and Obesity Research Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Anna Novials
- Diabetes and Obesity Research Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain; .,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| |
Collapse
|
132
|
Ma K, Xiao A, Park SH, Glenn L, Jackson L, Barot T, Weaver JR, Taylor-Fishwick DA, Luci DK, Maloney DJ, Mirmira RG, Imai Y, Nadler JL. 12-Lipoxygenase Inhibitor Improves Functions of Cytokine-Treated Human Islets and Type 2 Diabetic Islets. J Clin Endocrinol Metab 2017; 102:2789-2797. [PMID: 28609824 PMCID: PMC5546865 DOI: 10.1210/jc.2017-00267] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 05/03/2017] [Indexed: 12/21/2022]
Abstract
CONTEXT The 12-lipoxygenase (12-LO) pathway produces proinflammatory metabolites, and its activation is implicated in islet inflammation associated with type 1 and type 2 diabetes (T2D). OBJECTIVES We aimed to test the efficacy of ML355, a highly selective, small molecule inhibitor of 12-LO, for the preservation of islet function. DESIGN Human islets from nondiabetic donors were incubated with a mixture of tumor necrosis factor α , interluekin-1β, and interferon-γ to model islet inflammation. Cytokine-treated islets and human islets from T2D donors were incubated in the presence and absence of ML355. SETTING In vitro study. PARTICIPANTS Human islets from organ donors aged >20 years of both sexes and any race were used. T2D status was defined from either medical history or most recent hemoglobin A1c value >6.5%. INTERVENTION Glucose stimulation. MAIN OUTCOME MEASURES Static and dynamic insulin secretion and oxygen consumption rate (OCR). RESULTS ML355 prevented the reduction of insulin secretion and OCR in cytokine-treated human islets and improved both parameters in human islets from T2D donors. CONCLUSIONS ML355 was efficacious in improving human islet function after cytokine treatment and in T2D islets in vitro. The study suggests that the blockade of the 12-LO pathway may serve as a target for both form of diabetes and provides the basis for further study of this small molecule inhibitor in vivo.
Collapse
Affiliation(s)
- Kaiwen Ma
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - An Xiao
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - So Hyun Park
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - Lindsey Glenn
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - Laura Jackson
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - Tatvam Barot
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - Jessica R. Weaver
- Department of Microbiology & Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - David A. Taylor-Fishwick
- Department of Microbiology & Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - Diane K. Luci
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850
| | - David J. Maloney
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850
| | - Raghavendra G. Mirmira
- Department of Pediatrics, IU Center for Diabetes and Metabolic Disease, Indiana University School of Medicine, Indianapolis, Indiana 46202
- Departments of Biochemistry and Molecular Biology, Medicine, and Cellular and Integrative Physiology, IU Center for Diabetes and Metabolic Disease, Indiana University School of Medicine, Indianapolis, Indiana 46202
- Indiana Biosciences Research Institute, Indianapolis, Indiana 46202
| | - Yumi Imai
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, Virginia 23507
- Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, The University of Iowa Carver College of Medicine, Iowa City, Iowa 52242
| | - Jerry L. Nadler
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, Virginia 23507
| |
Collapse
|
133
|
Alcarraz-Vizán G, Castaño C, Visa M, Montane J, Servitja JM, Novials A. BACE2 suppression promotes β-cell survival and function in a model of type 2 diabetes induced by human islet amyloid polypeptide overexpression. Cell Mol Life Sci 2017; 74:2827-2838. [PMID: 28337562 PMCID: PMC11107557 DOI: 10.1007/s00018-017-2505-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 03/08/2017] [Accepted: 03/09/2017] [Indexed: 02/07/2023]
Abstract
BACE2 (β-site APP-cleaving enzyme 2) is a protease expressed in the brain, but also in the pancreas, where it seems to play a physiological role. Amyloidogenic diseases, including Alzheimer's disease and type 2 diabetes (T2D), share the accumulation of abnormally folded and insoluble proteins that interfere with cell function. In T2D, islet amyloid polypeptide (IAPP) deposits have been shown to be a pathogenic key feature of the disease. The aim of the present study was to investigate the effect of BACE2 modulation on β-cell alterations in a mouse model of T2D induced by IAPP overexpression. Heterozygous mice carrying the human transcript of IAPP (hIAPP-Tg) were used as a model to study the deleterious effects of IAPP upon β-cell function. These animals showed glucose intolerance and impaired insulin secretion. When crossed with BACE2-deficient mice, the animals presented a significant improvement in glucose tolerance accompanied with an enhanced insulin secretion, as compared to hIAPP-Tg mice. BACE2 deficiency also partially reverted gene expression changes observed in islets from hIAPP-Tg mice, including a set of genes related to inflammation. Moreover, homozygous hIAPP mice presented a severe hyperglycemia and a high lethality rate from 8 weeks onwards due to a massive destruction of β-cell mass. This process was significantly reduced when crossed with the BACE2-KO model, improving the survival rate of the animals. Altogether, the absence of BACE2 ameliorates glucose tolerance defects induced by IAPP overexpression in the β-cell and promotes β-cell survival. Thus, targeting BACE2 may represent a promising therapeutic strategy to improve β-cell function in T2D.
Collapse
Affiliation(s)
- Gema Alcarraz-Vizán
- Diabetes and Obesity Research Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), C/Rosselló 149-153, 5th floor, 08036, Barcelona, Spain
| | - Carlos Castaño
- Diabetes and Obesity Research Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), C/Rosselló 149-153, 5th floor, 08036, Barcelona, Spain
| | - Montse Visa
- Diabetes and Obesity Research Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), C/Rosselló 149-153, 5th floor, 08036, Barcelona, Spain
| | - Joel Montane
- Diabetes and Obesity Research Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), C/Rosselló 149-153, 5th floor, 08036, Barcelona, Spain
| | - Joan-Marc Servitja
- Diabetes and Obesity Research Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), C/Rosselló 149-153, 5th floor, 08036, Barcelona, Spain.
| | - Anna Novials
- Diabetes and Obesity Research Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), C/Rosselló 149-153, 5th floor, 08036, Barcelona, Spain.
| |
Collapse
|
134
|
Pedersen BK. Anti-inflammatory effects of exercise: role in diabetes and cardiovascular disease. Eur J Clin Invest 2017; 47:600-611. [PMID: 28722106 DOI: 10.1111/eci.12781] [Citation(s) in RCA: 399] [Impact Index Per Article: 49.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 06/26/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Persistent inflammation is involved in the pathogenesis of chronic diseases such as type 2 diabetes mellitus (T2DM) and cardiovascular disease (CVD). AIMS The aim of this review was to provide the reader with an update of the mechanisms whereby exercise-induced cytokines may impact cardiometabolic diseases. RESULTS Evidence exists that interleukin (IL)-1β is involved in pancreatic β-cell damage, whereas TNF-α is a key molecule in peripheral insulin resistance. In addition, TNF-α appears to be involved in the pathogenesis of atherosclerosis and heart failure. A marked increase in IL-6 and IL-10 is provoked by exercise and exerts direct anti-inflammatory effects by an inhibition of TNF-α and by stimulating IL-1ra, thereby limiting IL-1β signalling. Moreover, muscle-derived IL-6 appears to have direct anti-inflammatory effects and serves as a mechanism to improve glucose tolerance. In addition, indirect anti-inflammatory effects of long-term exercise are mediated via improvements in body composition. CONCLUSION Physical activity represents a natural, strong anti-inflammatory strategy with minor side effects and should be integrated in the management of patients with cardiometabolic diseases.
Collapse
Affiliation(s)
- Bente Klarlund Pedersen
- Centre of Inflammation and Metabolism/Centre for Physical Activity Research (CIM/CFAS), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
135
|
Nordmann TM, Dror E, Schulze F, Traub S, Berishvili E, Barbieux C, Böni-Schnetzler M, Donath MY. The Role of Inflammation in β-cell Dedifferentiation. Sci Rep 2017; 7:6285. [PMID: 28740254 PMCID: PMC5524956 DOI: 10.1038/s41598-017-06731-w] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 06/15/2017] [Indexed: 11/10/2022] Open
Abstract
Chronic inflammation impairs insulin secretion and sensitivity. β-cell dedifferentiation has recently been proposed as a mechanism underlying β-cell failure in T2D. Yet the effect of inflammation on β-cell identity in T2D has not been studied. Therefore, we investigated whether pro-inflammatory cytokines induce β-cell dedifferentiation and whether anti-inflammatory treatments improve insulin secretion via β-cell redifferentiation. We observed that IL-1β, IL-6 and TNFα promote β-cell dedifferentiation in cultured human and mouse islets, with IL-1β being the most potent one of them. In particular, β-cell identity maintaining transcription factor Foxo1 was downregulated upon IL-1β exposure. In vivo, anti-IL-1β, anti-TNFα or NF-kB inhibiting sodium salicylate treatment improved insulin secretion of isolated islets. However, only TNFα antagonism partially prevented the loss of β-cell identity gene expression. Finally, the combination of IL-1β and TNFα antagonism improved insulin secretion of ex vivo isolated islets in a synergistic manner. Thus, while inflammation triggered β-cell dedifferentiation and dysfunction in vitro, this mechanism seems to be only partly responsible for the observed in vivo improvements in insulin secretion.
Collapse
Affiliation(s)
- Thierry M Nordmann
- Clinic of Endocrinology, Diabetes and Metabolism University Hospital Basel and Department Biomedicine, University of Basel, 4031, Basel, Switzerland.
| | - Erez Dror
- Clinic of Endocrinology, Diabetes and Metabolism University Hospital Basel and Department Biomedicine, University of Basel, 4031, Basel, Switzerland
| | - Friederike Schulze
- Clinic of Endocrinology, Diabetes and Metabolism University Hospital Basel and Department Biomedicine, University of Basel, 4031, Basel, Switzerland
| | - Shuyang Traub
- Clinic of Endocrinology, Diabetes and Metabolism University Hospital Basel and Department Biomedicine, University of Basel, 4031, Basel, Switzerland
| | - Ekaterine Berishvili
- Department of Surgery Cell Isolation and Transplantation Center, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Charlotte Barbieux
- Department of Surgery Cell Isolation and Transplantation Center, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Marianne Böni-Schnetzler
- Clinic of Endocrinology, Diabetes and Metabolism University Hospital Basel and Department Biomedicine, University of Basel, 4031, Basel, Switzerland
| | - Marc Y Donath
- Clinic of Endocrinology, Diabetes and Metabolism University Hospital Basel and Department Biomedicine, University of Basel, 4031, Basel, Switzerland
| |
Collapse
|
136
|
Hui Q, Asadi A, Park YJ, Kieffer TJ, Ao Z, Warnock GL, Marzban L. Amyloid formation disrupts the balance between interleukin-1β and interleukin-1 receptor antagonist in human islets. Mol Metab 2017; 6:833-844. [PMID: 28752047 PMCID: PMC5518725 DOI: 10.1016/j.molmet.2017.05.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/24/2017] [Accepted: 05/26/2017] [Indexed: 12/28/2022] Open
Abstract
Objectives β-cell dysfunction and apoptosis associated with islet inflammation play a key role in the pathogenesis of type 2 diabetes (T2D). Growing evidence suggests that islet amyloid, formed by aggregation of human islet amyloid polypeptide (hIAPP), contributes to islet inflammation and β-cell death in T2D. We recently showed the role of interleukin-1β (IL-1β)/Fas/caspase-8 apoptotic pathway in amyloid-induced β-cell death. In this study, we used human islets in culture as an ex vivo model of amyloid formation to: (1) investigate the effects of amyloid on islet levels of the natural IL-1 receptor antagonist (IL-1Ra); (2) examine if modulating the IL-1β/IL-1Ra balance can prevent amyloid-induced β-cell Fas upregulation and apoptosis. Methods Isolated human islets (n = 10 donors) were cultured in elevated glucose (to form amyloid) with or without a neutralizing human IL-1β antibody for up to 7 days. Parallel studies were performed with human islets in which amyloid formation was prevented by adeno-siRNA-mediated suppression of hIAPP expression (as control). β-cell levels of IL-1Ra, Fas, apoptosis as well as islet function, insulin- and amyloid-positive areas, and IL-1Ra release were assessed. Results Progressive amyloid formation in human islets during culture was associated with alterations in IL-1Ra. Islet IL-1Ra levels were higher at early stages but were markedly reduced at later stages of amyloid formation. Furthermore, IL-1Ra release from human islets was reduced during 7-day culture in a time-dependent manner. These changes in IL-1Ra production and release from human islets during amyloid formation adversely correlated with islet IL-1β levels, β-cell Fas expression and apoptosis. Treatment with IL-1β neutralizing antibody markedly reduced amyloid-induced β-cell Fas expression and apoptosis, thereby improving islet β-cell survival and function during culture. Conclusions These data suggest that amyloid formation impairs the balance between IL-1β and IL-1Ra in islets by increasing IL-1β production and reducing IL-1Ra levels thereby promoting β-cell dysfunction and death. Restoring the IL-1β/IL-1Ra ratio may provide an effective strategy to protect islet β-cells from amyloid toxicity in T2D. Endogenous amyloid formation alters IL-1Ra levels in human islet β-cells. Amyloid impairs islet IL-1β/IL-1Ra balance by promoting IL-1β and reducing IL-1Ra. Restoring IL-1β/IL-1Ra ratio by blocking IL-1β protects human islets against amyloid.
Collapse
Key Words
- Amylin
- BSA, bovine serum albumin
- ER, endoplasmic reticulum
- FBS, fetal bovine serum
- IL-1R1, IL-1 receptor type I
- IL-1Ra, IL-1 receptor antagonist
- IL-1β, interleukin-1β
- Interleukin-1 receptor antagonist
- Interleukin-1β
- Islet amyloid
- Islet amyloid polypeptide
- Islet inflammation
- KRB, Krebs–Ringer bicarbonate
- PFA, paraformaldehyde
- T2D, type 2 diabetes
- Type 2 diabetes
- hIAPP, human islet amyloid polypeptide
- nIL1β, neutralizing IL-1β
- rIAPP, rat islet amyloid polypeptide
- β-cell apoptosis
Collapse
Affiliation(s)
- Queenie Hui
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Ali Asadi
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Yoo Jin Park
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Timothy J Kieffer
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada; Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Ziliang Ao
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Garth L Warnock
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Lucy Marzban
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
137
|
Park YJ, Warnock GL, Ao Z, Safikhan N, Meloche M, Asadi A, Kieffer TJ, Marzban L. Dual role of interleukin-1β in islet amyloid formation and its β-cell toxicity: Implications for type 2 diabetes and islet transplantation. Diabetes Obes Metab 2017; 19:682-694. [PMID: 28058779 DOI: 10.1111/dom.12873] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/21/2016] [Accepted: 01/03/2017] [Indexed: 01/18/2023]
Abstract
AIMS Islet amyloid, formed by aggregation of human islet amyloid polypeptide (hIAPP), contributes to β-cell failure in type 2 diabetes, cultured and transplanted islets. We previously showed that biosynthetic hIAPP aggregates induce β-cell Fas upregulation and activation of the Fas apoptotic pathway. We used cultured human and hIAPP-expressing mouse islets to investigate: (1) the role of interleukin-1β (IL-1β) in amyloid-induced Fas upregulation; and (2) the effects of IL-1β-induced β-cell dysfunction on pro-islet amyloid polypeptide (proIAPP) processing and amyloid formation. RESEARCH DESIGN AND METHODS Human and h IAPP -expressing mouse islets were cultured to form amyloid without or with the IL-1 receptor antagonist (IL-1Ra) anakinra, in the presence or absence of recombinant IL-1β. Human islets in which amyloid formation was prevented (amyloid inhibitor or Ad-prohIAPP-siRNA) were cultured similarly. β-cell function, apoptosis, Fas expression, caspase-8 activation, islet IL-1β, β-cell area, β-/α-cell ratio, amyloid formation, and (pro)IAPP forms were assessed. RESULTS hIAPP aggregates were found to increase IL-1β levels in cultured human islets that correlated with β-cell Fas upregulation, caspase-8 activation and apoptosis, all of which were reduced by IL-1Ra treatment or prevention of amyloid formation. Moreover, IL-1Ra improved culture-induced β-cell dysfunction and restored impaired proIAPP processing, leading to lower amyloid formation. IL-1β treatment potentiated impaired proIAPP processing and increased amyloid formation in cultured human and h IAPP -expressing mouse islets, which were prevented by IL-1Ra. CONCLUSIONS IL-1β plays a dual role by: (1) mediating amyloid-induced Fas upregulation and β-cell apoptosis; (2) inducing impaired proIAPP processing thereby potentiating amyloid formation. Blocking IL-1β may provide a new strategy to preserve β cells in conditions associated with islet amyloid formation.
Collapse
Affiliation(s)
- Yoo Jin Park
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Garth L Warnock
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ziliang Ao
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nooshin Safikhan
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mark Meloche
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ali Asadi
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Timothy J Kieffer
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lucy Marzban
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
138
|
Siglec-7 restores β-cell function and survival and reduces inflammation in pancreatic islets from patients with diabetes. Sci Rep 2017; 7:45319. [PMID: 28378743 PMCID: PMC5381285 DOI: 10.1038/srep45319] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/22/2017] [Indexed: 01/16/2023] Open
Abstract
Chronic inflammation plays a key role in both type 1 and type 2 diabetes. Cytokine and chemokine production within the islets in a diabetic milieu results in β-cell failure and diabetes progression. Identification of targets, which both prevent macrophage activation and infiltration into islets and restore β-cell functionality is essential for effective diabetes therapy. We report that certain Sialic-acid-binding immunoglobulin-like-lectins (siglecs) are expressed in human pancreatic islets in a cell-type specific manner. Siglec-7 was expressed on β-cells and down-regulated in type 1 and type 2 diabetes and in infiltrating activated immune cells. Over-expression of Siglec-7 in diabetic islets reduced cytokines, prevented β-cell dysfunction and apoptosis and reduced recruiting of migrating monocytes. Our data suggest that restoration of human Siglec-7 expression may be a novel therapeutic strategy targeted to both inhibition of immune activation and preservation of β-cell function and survival.
Collapse
|
139
|
Zhang Y, Song W. Islet amyloid polypeptide: Another key molecule in Alzheimer's pathogenesis? Prog Neurobiol 2017; 153:100-120. [PMID: 28274676 DOI: 10.1016/j.pneurobio.2017.03.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 02/17/2017] [Accepted: 03/02/2017] [Indexed: 12/14/2022]
Abstract
Recent epidemiological evidence reveals that patients suffering from type 2 diabetes mellitus (T2DM) often experience a significant decline in cognitive function, and approximately 70% of those cases eventually develop Alzheimer's disease (AD). Although several pathological processes are shared by AD and T2DM, the exact molecular mechanisms connecting these two diseases are poorly understood. Aggregation of human islet amyloid polypeptide (hIAPP), the pathological hallmark of T2DM, has also been detected in brain tissue and is associated with cognitive decline and AD development. In addition, hIAPP and amyloid β protein (Aβ) share many biophysical and physiological properties as well as exert similar cytotoxic mechanisms. Therefore, it is important to examine the possible role of hIAPP in the pathogenesis of AD. In this article, we introduce the basics on this amyloidogenic protein. More importantly, we discuss the potential mechanisms of hIAPP-induced AD development, which will be beneficial for proposing novel and feasible strategies to optimize AD prevention and/or treatment in diabetics.
Collapse
Affiliation(s)
- Yun Zhang
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Weihong Song
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
140
|
Courtade JA, Wang EY, Yen P, Dai DL, Soukhatcheva G, Orban PC, Verchere CB. Loss of prohormone convertase 2 promotes beta cell dysfunction in a rodent transplant model expressing human pro-islet amyloid polypeptide. Diabetologia 2017; 60:453-463. [PMID: 27999871 DOI: 10.1007/s00125-016-4174-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 10/03/2016] [Indexed: 01/09/2023]
Abstract
AIMS/HYPOTHESIS A contributor to beta cell failure in type 2 diabetes and islet transplants is amyloid formation by aggregation of the beta cell peptide, islet amyloid polypeptide (IAPP). Similar to the proinsulin processing pathway that generates insulin, IAPP is derived from a prohormone precursor, proIAPP, which requires cleavage by prohormone convertase (PC) 1/3 and PC2 in rodent pancreatic beta cells. We hypothesised that loss of PC2 would promote beta cell death and dysfunction in a rodent model of human beta cell proIAPP overexpression. METHODS We generated an islet transplant model wherein immune-deficient mouse models of diabetes received islets expressing amyloidogenic human proIAPP and lacking PC2, leading to restoration of normoglycaemia accompanied by increased secretion of human proIAPP. Blood glucose levels were analysed for up to 16 weeks in transplant recipients and grafts were assessed for islet amyloid and beta cell number and death. RESULTS Hyperglycaemia (blood glucose >16.9 mmol/l) returned in 94% of recipients of islets expressing human proIAPP and lacking PC2, whereas recipients of islets that express human proIAPP and normal PC2 levels remained normoglycaemic for at least 16 weeks. Islet graft failure was accompanied by a ∼20% reduction in insulin-positive cells, yet the degree of amyloid deposition and beta cell apoptosis was similar to those of controls expressing human proIAPP with functional PC2 levels. CONCLUSIONS/INTERPRETATION PC2 deficiency in transplanted mouse islets expressing human proIAPP promotes beta cell loss and graft failure. Our data suggest that impaired NH2-terminal processing and increased secretion of human proIAPP promote beta cell failure.
Collapse
Affiliation(s)
- Jaques A Courtade
- Research Institute, BC Children's Hospital, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Evan Y Wang
- Research Institute, BC Children's Hospital, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Paul Yen
- Research Institute, BC Children's Hospital, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Derek L Dai
- Research Institute, BC Children's Hospital, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Galina Soukhatcheva
- Research Institute, BC Children's Hospital, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Paul C Orban
- Research Institute, BC Children's Hospital, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - C Bruce Verchere
- Research Institute, BC Children's Hospital, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada.
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
141
|
Gong J, Hu M, Huang Z, Fang K, Wang D, Chen Q, Li J, Yang D, Zou X, Xu L, Wang K, Dong H, Lu F. Berberine Attenuates Intestinal Mucosal Barrier Dysfunction in Type 2 Diabetic Rats. Front Pharmacol 2017; 8:42. [PMID: 28217099 PMCID: PMC5290458 DOI: 10.3389/fphar.2017.00042] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 01/19/2017] [Indexed: 01/19/2023] Open
Abstract
Background: Intestinal mucosal barrier dysfunction plays an important role in the development of diabetes mellitus (DM). Berberine (BBR), a kind of isoquinoline alkaloid, is widely known to be effective for both DM and diarrhea. Here, we explored whether the anti-diabetic effect of BBR was related to the intestine mucosal barrier. Methods and Results: The rat model of T2DM was established by high glucose and fat diet feeding and intravenous injection of streptozocin. Then, those diabetic rats were treated with BBR at different concentrations for 9 weeks. The results showed, in addition to hyperglycemia and hyperlipidemia, diabetic rats were also characterized by proinflammatory intestinal changes, altered gut-derived hormones, and 2.77-fold increase in intestinal permeability. However, the treatment with BBR significantly reversed the above changes in diabetic rats, presenting as the improvement of the high glucose and triglyceride levels, the relief of the inflammatory changes of intestinal immune system, and the attenuation of the intestinal barrier damage. BBR treatment at a high concentration also decreased the intestinal permeability by 27.5% in diabetic rats. Furthermore, BBR regulated the expressions of the molecules involved in TLR4/MyD88/NF-κB signaling pathways in intestinal tissue of diabetic rats. Conclusion: The hypoglycemic effects of BBR might be related to the improvement in gut-derived hormones and the attenuation of intestinal mucosal mechanic and immune barrier damages.
Collapse
Affiliation(s)
- Jing Gong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Meilin Hu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Zhaoyi Huang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Ke Fang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Dingkun Wang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Qingjie Chen
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Jingbin Li
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Desen Yang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, China; Department of Pharmacy, Hubei University of Traditional Chinese MedicineWuhan, China
| | - Xin Zou
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Lijun Xu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Kaifu Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Hui Dong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Fuer Lu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| |
Collapse
|
142
|
Patel MN, Carroll RG, Galván-Peña S, Mills EL, Olden R, Triantafilou M, Wolf AI, Bryant CE, Triantafilou K, Masters SL. Inflammasome Priming in Sterile Inflammatory Disease. Trends Mol Med 2017; 23:165-180. [PMID: 28109721 DOI: 10.1016/j.molmed.2016.12.007] [Citation(s) in RCA: 198] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 12/15/2016] [Accepted: 12/16/2016] [Indexed: 02/08/2023]
Abstract
The inflammasome is a cytoplasmic protein complex that processes interleukins (IL)-1β and IL-18, and drives a form of cell death known as pyroptosis. Oligomerization of this complex is actually the second step of activation, and a priming step must occur first. This involves transcriptional upregulation of pro-IL-1β, inflammasome sensor NLRP3, or the non-canonical inflammasome sensor caspase-11. An additional aspect of priming is the post-translational modification of particular inflammasome constituents. Priming is typically accomplished in vitro using a microbial Toll-like receptor (TLR) ligand. However, it is now clear that inflammasomes are activated during the progression of sterile inflammatory diseases such as atherosclerosis, metabolic disease, and neuroinflammatory disorders. Therefore, it is time to consider the endogenous factors and mechanisms that may prime the inflammasome in these conditions.
Collapse
Affiliation(s)
- Meghana N Patel
- Immunology Catalyst, GlaxoSmithKline, Gunnels Wood Road, Stevenage SG1 2NY, UK
| | - Richard G Carroll
- Immunology Catalyst, GlaxoSmithKline, Gunnels Wood Road, Stevenage SG1 2NY, UK; School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Silvia Galván-Peña
- Immunology Catalyst, GlaxoSmithKline, Gunnels Wood Road, Stevenage SG1 2NY, UK; School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Evanna L Mills
- Immunology Catalyst, GlaxoSmithKline, Gunnels Wood Road, Stevenage SG1 2NY, UK; School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Robin Olden
- Immunology Catalyst, GlaxoSmithKline, Gunnels Wood Road, Stevenage SG1 2NY, UK; Institute of Infection and Immunity, School of Medicine, University Hospital of Wales, Cardiff University, Cardiff, UK
| | - Martha Triantafilou
- Immunology Catalyst, GlaxoSmithKline, Gunnels Wood Road, Stevenage SG1 2NY, UK; Institute of Infection and Immunity, School of Medicine, University Hospital of Wales, Cardiff University, Cardiff, UK
| | - Amaya I Wolf
- Host Defense Discovery Performance Unit, Infectious Diseases Therapeutic Area, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - Clare E Bryant
- Immunology Catalyst, GlaxoSmithKline, Gunnels Wood Road, Stevenage SG1 2NY, UK; Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB23 8AQ, UK
| | - Kathy Triantafilou
- Immunology Catalyst, GlaxoSmithKline, Gunnels Wood Road, Stevenage SG1 2NY, UK; Institute of Infection and Immunity, School of Medicine, University Hospital of Wales, Cardiff University, Cardiff, UK
| | - Seth L Masters
- Immunology Catalyst, GlaxoSmithKline, Gunnels Wood Road, Stevenage SG1 2NY, UK; Department of Medical Biology, University of Melbourne, Parkville 3010, Australia; Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia.
| |
Collapse
|
143
|
Abstract
The finding of islet inflammation in type 2 diabetes (T2D) and its involvement in β cell dysfunction has further highlighted the significance of inflammation in metabolic diseases. The number of intra-islet macrophages is increased in T2D, and these cells are the main source of proinflammatory cytokines within islets. Multiple human studies of T2D have shown that targeting islet inflammation has the potential to be an effective therapeutic strategy. In this Review we provide an overview of the cellular and molecular mechanisms by which islet inflammation develops and causes β cell dysfunction. We also emphasize the regulation and roles of macrophage polarity shift within islets in the context of T2D pathology and β cell health, which may have broad translational implications for therapeutics aimed at improving islet function.
Collapse
|
144
|
Carrero JA, Ferris ST, Unanue ER. Macrophages and dendritic cells in islets of Langerhans in diabetic autoimmunity: a lesson on cell interactions in a mini-organ. Curr Opin Immunol 2016; 43:54-59. [PMID: 27710840 PMCID: PMC5125905 DOI: 10.1016/j.coi.2016.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 07/26/2016] [Accepted: 09/21/2016] [Indexed: 12/15/2022]
Abstract
Islets of Langerhans of all species harbor a small number of resident macrophages. These macrophages are found since birth, do not exchange with blood monocytes, and are maintained by a low level of replication. Under steady state conditions, the islet macrophages are in an activated state. Islet macrophages have an important homeostatic role in islet physiology. At the start of the autoimmune process in the NOD mouse, a small number of CD103+ dendritic cells (DC) are found at about the same time that CD4+ T cells also appear in islets. In the absence of the CD103+ DC in the Batf3 deficient mice, autoimmunity never develops. We discuss the interactions among the two phagocytes and beta cells that result in autoimmune diabetes in NOD mice.
Collapse
Affiliation(s)
- Javier A Carrero
- Department of Pathology and Immunology, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8118, St. Louis, MO 63110, United States
| | - Stephen T Ferris
- Department of Pathology and Immunology, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8118, St. Louis, MO 63110, United States
| | - Emil R Unanue
- Department of Pathology and Immunology, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8118, St. Louis, MO 63110, United States.
| |
Collapse
|
145
|
Metabolic reprogramming & inflammation: Fuelling the host response to pathogens. Semin Immunol 2016; 28:450-468. [PMID: 27780657 DOI: 10.1016/j.smim.2016.10.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/14/2016] [Accepted: 10/17/2016] [Indexed: 12/24/2022]
Abstract
Successful immune responses to pathogens rely on efficient host innate processes to contain and limit bacterial growth, induce inflammatory response and promote antigen presentation for the development of adaptive immunity. This energy intensive process is regulated through multiple mechanisms including receptor-mediated signaling, control of phago-lysomal fusion events and promotion of bactericidal activities. Inherent macrophage activities therefore are dynamic and are modulated by signals and changes in the environment during infection. So too does the way these cells obtain their energy to adapt to altered homeostasis. It has emerged recently that the pathways employed by immune cells to derive energy from available or preferred nutrients underline the dynamic changes associated with immune activation. In particular, key breakpoints have been identified in the metabolism of glucose and lipids which direct not just how cells derive energy in the form of ATP, but also cellular phenotype and activation status. Much of this comes about through altered flux and accumulation of intermediate metabolites. How these changes in metabolism directly impact on the key processes required for anti-microbial immunity however, is less obvious. Here, we examine the 2 key nutrient utilization pathways employed by innate cells to fuel central energy metabolism and examine how these are altered in response to activation during infection, emphasising how certain metabolic switches or 'reprogramming' impacts anti-microbial processes. By examining carbohydrate and lipid pathways and how the flux of key intermediates intersects with innate immune signaling and the induction of bactericidal activities, we hope to illustrate the importance of these metabolic switches for protective immunity and provide a potential mechanism for how altered metabolic conditions in humans such as diabetes and hyperlipidemia alter the host response to infection.
Collapse
|
146
|
Ankarcrona M, Winblad B, Monteiro C, Fearns C, Powers ET, Johansson J, Westermark GT, Presto J, Ericzon BG, Kelly JW. Current and future treatment of amyloid diseases. J Intern Med 2016; 280:177-202. [PMID: 27165517 PMCID: PMC4956553 DOI: 10.1111/joim.12506] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
There are more than 30 human proteins whose aggregation appears to cause degenerative maladies referred to as amyloid diseases or amyloidoses. These disorders are named after the characteristic cross-β-sheet amyloid fibrils that accumulate systemically or are localized to specific organs. In most cases, current treatment is limited to symptomatic approaches and thus disease-modifying therapies are needed. Alzheimer's disease is a neurodegenerative disorder with extracellular amyloid β-peptide (Aβ) fibrils and intracellular tau neurofibrillary tangles as pathological hallmarks. Numerous clinical trials have been conducted with passive and active immunotherapy, and small molecules to inhibit Aβ formation and aggregation or to enhance Aβ clearance; so far such clinical trials have been unsuccessful. Novel strategies are therefore required and here we will discuss the possibility of utilizing the chaperone BRICHOS to prevent Aβ aggregation and toxicity. Type 2 diabetes mellitus is symptomatically treated with insulin. However, the underlying pathology is linked to the aggregation and progressive accumulation of islet amyloid polypeptide as fibrils and oligomers, which are cytotoxic. Several compounds have been shown to inhibit islet amyloid aggregation and cytotoxicity in vitro. Future animal studies and clinical trials have to be conducted to determine their efficacy in vivo. The transthyretin (TTR) amyloidoses are a group of systemic degenerative diseases compromising multiple organ systems, caused by TTR aggregation. Liver transplantation decreases the generation of misfolded TTR and improves the quality of life for a subgroup of this patient population. Compounds that stabilize the natively folded, nonamyloidogenic, tetrameric conformation of TTR have been developed and the drug tafamidis is available as a promising treatment.
Collapse
Affiliation(s)
- M Ankarcrona
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Huddinge, Sweden
| | - B Winblad
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Huddinge, Sweden
| | - C Monteiro
- Department of Chemistry, The Skaggs Institute for Chemical Biology, La Jolla, CA, USA.,Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - C Fearns
- Department of Chemistry, The Skaggs Institute for Chemical Biology, La Jolla, CA, USA.,Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - E T Powers
- Department of Chemistry, The Skaggs Institute for Chemical Biology, La Jolla, CA, USA
| | - J Johansson
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Huddinge, Sweden
| | - G T Westermark
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - J Presto
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Huddinge, Sweden
| | - B-G Ericzon
- Division of Transplantation Surgery, Karolinska University Hospital, Stockholm, Sweden
| | - J W Kelly
- Department of Chemistry, The Skaggs Institute for Chemical Biology, La Jolla, CA, USA.,Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
147
|
Dauriz M, Trombetta M, Boselli L, Santi L, Brangani C, Pichiri I, Bonora E, Bonadonna RC. Interleukin-6 as a potential positive modulator of human beta-cell function: an exploratory analysis-the Verona Newly Diagnosed Type 2 Diabetes Study (VNDS) 6. Acta Diabetol 2016; 53:393-402. [PMID: 26538364 DOI: 10.1007/s00592-015-0807-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 08/28/2015] [Indexed: 12/15/2022]
Abstract
AIMS Recent studies in mouse models of T2D showed that interleukin-6 (IL-6), released from skeletal muscle, is associated with increased glucose-dependent insulin secretion. Few data currently exist exploring the relationship between IL-6 and beta-cell function in humans. We investigated whether IL-6 is positively associated with beta-cell function in newly diagnosed T2D. We extended the same analyses to IL-10, because it regulated similarly to IL-6 in skeletal muscle, and TNF-α and C-reactive protein (CRP), as general biomarkers of inflammation. METHODS In 330 VNDS participants, we assessed (1) basal plasma concentrations of IL-6, IL-10, TNF-α, and CRP; (2) beta-cell function, estimated by OGTT minimal modeling and expressed as derivative (DC) and proportional control (PC); (3) insulin sensitivity, by euglycemic insulin clamp. RESULTS IL-6 was positively associated with PC in both univariate analysis (p = 0.04) and after adjustment for age, sex, BMI, HbA1c, and M-clamp (p = 0.01). HbA1c was the major independent contributor to the overall variance of PC (16 %), followed by BMI and IL-6 (~2 % each). Similar results were obtained for IL-10 (p = 0.048, univariate; p = 0.04, fully adjusted). TNF-α and CRP were not significantly associated with any component of beta-cell function. CONCLUSIONS Our data are the first evidence in human subjects that an endocrine loop involving IL-6 may act as positive modulator of glucose-dependent insulin secretion. Further functional studies are needed to corroborate IL-6 system as a potential druggable target in diabetes. CLINICAL TRIAL REGISTRATION NUMBER NCT01526720 ( http://www.clinicaltrial.gov ).
Collapse
Affiliation(s)
- Marco Dauriz
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Hospital Trust of Verona - Ospedale Civile Maggiore, Piazzale Stefani, 1, 37126, Verona, Italy
| | - Maddalena Trombetta
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Hospital Trust of Verona - Ospedale Civile Maggiore, Piazzale Stefani, 1, 37126, Verona, Italy
| | - Linda Boselli
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Hospital Trust of Verona - Ospedale Civile Maggiore, Piazzale Stefani, 1, 37126, Verona, Italy
| | - Lorenza Santi
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Hospital Trust of Verona - Ospedale Civile Maggiore, Piazzale Stefani, 1, 37126, Verona, Italy
| | - Corinna Brangani
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Hospital Trust of Verona - Ospedale Civile Maggiore, Piazzale Stefani, 1, 37126, Verona, Italy
| | - Isabella Pichiri
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Hospital Trust of Verona - Ospedale Civile Maggiore, Piazzale Stefani, 1, 37126, Verona, Italy
| | - Enzo Bonora
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Hospital Trust of Verona - Ospedale Civile Maggiore, Piazzale Stefani, 1, 37126, Verona, Italy
| | - Riccardo C Bonadonna
- Division of Endocrinology, Department of Clinical and Experimental Medicine, University of Parma School of Medicine and Azienda Ospedaliera Universitaria - Ospedale Maggiore, Via Gramsci 14, 43126, Parma, Italy.
| |
Collapse
|
148
|
Imai Y, Dobrian AD, Morris MA, Taylor-Fishwick DA, Nadler JL. Lipids and immunoinflammatory pathways of beta cell destruction. Diabetologia 2016; 59:673-8. [PMID: 26868492 PMCID: PMC4779407 DOI: 10.1007/s00125-016-3890-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 12/30/2015] [Indexed: 12/18/2022]
Abstract
Islet inflammation contributes to beta cell demise in both type 1 and type 2 diabetes. 12-Lipoxygenase (12-LO, gene expressed as ALOX12 in humans and 12-Lo in rodents in this manuscript) produces proinflammatory metabolites such as 12(S)-hydroxyeicosatetraenoic acids through dioxygenation of polyunsaturated fatty acids. 12-LO was first implicated in diabetes when the increase in 12-Lo expression and 12(S)-hydroxyeicosatetraenoic acid was noted in rodent models of diabetes. Subsequently, germline 12-Lo (-/-) was shown to prevent the development of hyperglycemia in mouse models of type 1 diabetes and in high-fat fed mice. More recently, beta cell-specific 12-Lo (-/-) was shown to protect mice against hyperglycaemia after streptozotocin and a high-fat diet. In humans, 12-LO expression is increased in pancreatic islets of autoantibody-positive, type 1 diabetic and type 2 diabetic organ donors. Interestingly, the high expression of ALOX12 is associated with the alteration in first-phase glucose-stimulated insulin secretion in human type 2 diabetic islets. To further clarify the role of islet 12-LO in diabetes and to validate 12-LO as a therapeutic target of diabetes, we have studied selective pharmacological inhibitors for 12-LO. The compounds we have identified show promise: they protect beta cell lines and human islets from apoptosis and preserve insulin secretion when challenged by proinflammatory cytokine mixture. Currently studies are underway to test the compounds in mouse models of diabetes. This review summarises a presentation given at the 'Islet inflammation in type 2 diabetes' symposium at the 2015 annual meeting of the EASD. It is accompanied two other mini-reviews on topics from this symposium (by Simone Baltrusch, DOI: 10.1007/s00125-016-3891-x and Marc Donath, DOI: 10.1007/s00125-016-3873-z ) and a commentary by the Session Chair, Piero Marchetti (DOI: 10.1007/s00125-016-3875-x ).
Collapse
Affiliation(s)
- Yumi Imai
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, VA, 23507, USA.
| | - Anca D Dobrian
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Margaret A Morris
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, VA, 23507, USA
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, USA
| | - David A Taylor-Fishwick
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Jerry L Nadler
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, VA, 23507, USA.
| |
Collapse
|
149
|
Yagihashi S, Inaba W, Mizukami H. Dynamic pathology of islet endocrine cells in type 2 diabetes: β-Cell growth, death, regeneration and their clinical implications. J Diabetes Investig 2016; 7:155-65. [PMID: 27042265 PMCID: PMC4773678 DOI: 10.1111/jdi.12424] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 08/28/2015] [Accepted: 08/30/2015] [Indexed: 12/12/2022] Open
Abstract
Diabetes is defined as a disease of hyperglycemic metabolic disorder caused by impaired insulin action or low insulin secretion, resulting in the occurrence of vascular complications. Based on this definition, diabetes therapy has long been oriented to correct hyperglycemia against the specific complications of diabetes. This definition has posed some difficulties, however, in understanding of the pathophysiology of this complicated disease and as such in the establishment of an effective treatment. With continuing efforts to explore the structural basis for diabetes onset and methodological development of immunohistochemistry, progressive decline of β-cells is now established as a salient feature of type 2 diabetes. Accordingly, diabetes therapy has now turned out to protect β-cells concurrently with the correction of hyperglycemia. Together with this effort, exploration of the means to regenerate β-cells or to supply new β-cells by, for example, induced pluripotential stem cells, are vigorously made with the search for the mechanism of β-cell decline in diabetes. In the present review, we describe the advances in the islet pathology in type 2 diabetes with special reference to the dynamic alterations of islet endocrine cells in the milieu of maturation, obesity, aging and ethnic differences. The effect of amyloid deposition is also discussed. We hope it will help with understanding the pathophysiology of diabetes, and suggest the future direction of diabetes treatment.
Collapse
Affiliation(s)
- Soroku Yagihashi
- Department of Pathology and Molecular MedicineHirosaki University Graduate School of MedicineHirosakiJapan
| | - Wataru Inaba
- Department of Pathology and Molecular MedicineHirosaki University Graduate School of MedicineHirosakiJapan
| | - Hiroki Mizukami
- Department of Pathology and Molecular MedicineHirosaki University Graduate School of MedicineHirosakiJapan
| |
Collapse
|
150
|
Westwell-Roper C, Denroche HC, Ehses JA, Verchere CB. Differential Activation of Innate Immune Pathways by Distinct Islet Amyloid Polypeptide (IAPP) Aggregates. J Biol Chem 2016; 291:8908-17. [PMID: 26786104 DOI: 10.1074/jbc.m115.712455] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Indexed: 11/06/2022] Open
Abstract
Aggregation of islet amyloid polypeptide (IAPP) contributes to beta cell dysfunction in type 2 diabetes and islet transplantation. Like other amyloidogenic peptides, human IAPP induces macrophage IL-1β secretion by stimulating both the synthesis and processing of proIL-1β, a pro-inflammatory cytokine that (when chronically elevated) impairs beta cell insulin secretion. We sought to determine the specific mechanism of IAPP-induced proIL-1β synthesis. Soluble IAPP species produced early during IAPP aggregation provided a Toll-like-receptor-2- (TLR2-) dependent stimulus for NF-κB activation in HEK 293 cells and bone marrow-derived macrophages (BMDMs). Non-amyloidogenic rodent IAPP and thioflavin-T-positive fibrillar amyloid produced by human IAPP aggregation failed to activate TLR2. Blockade of TLR6 but not TLR1 prevented hIAPP-induced TLR2 activation, consistent with stimulation of a TLR2/6 heterodimer. TLR2 and its downstream adaptor protein MyD88 were required for IAPP-induced cytokine production by BMDMs, a process that is partially dependent on autoinduction by IL-1. BMDMs treated with soluble but not fibrillar IAPP provided a TLR2-dependent priming stimulus for ATP-induced IL-1β secretion, whereas late IAPP aggregates induced NLRP3-dependent IL-1β secretion by LPS-primed macrophages. Moreover, inhibition of TLR2 and depletion of islet macrophages prevented up-regulation of Il1b and Tnf expression in human IAPP-expressing transgenic mouse islets. These data suggest participation by both soluble and fibrillar aggregates in IAPP-induced islet inflammation. IAPP-induced activation of TLR2 and secretion of IL-1 may be important therapeutic targets to prevent amyloid-associated beta cell dysfunction.
Collapse
Affiliation(s)
| | - Heather C Denroche
- Surgery, Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Jan A Ehses
- Surgery, Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - C Bruce Verchere
- From the Departments of Pathology & Laboratory Medicine and Surgery, Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| |
Collapse
|