101
|
Bersin TV, Mapes HM, Journey ML, Beckman BR, Lema SC. Insulin-like growth factor-1 (Igf1) signaling responses to food consumption after fasting in the Pacific rockfish Sebastes carnatus. Comp Biochem Physiol A Mol Integr Physiol 2023; 282:111444. [PMID: 37201654 DOI: 10.1016/j.cbpa.2023.111444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 05/20/2023]
Abstract
Fish adjust rates of somatic growth in the face of changing food consumption. As in other vertebrates, growth in fish is regulated by the growth hormone (Gh)/insulin-like growth factor-1 (Igf1) endocrine axis, and changes in food intake impact growth via alterations to Gh/Igf1 signaling. Understanding the time course by which the Gh/Igf1 axis responds to food consumption is crucial to predict how rapidly changes in food abundance might lead to altered growth dynamics. Here, we looked at the response times of plasma Igf1 and liver Igf1 signaling-associated gene expression to refeeding after food deprivation in juvenile gopher rockfish (Sebastes carnatus), one of several species of northern Pacific Ocean Sebastes rockfishes targeted by fisheries or utilized for aquaculture. Gopher rockfish were fasted for 30 d, after which a subset was fed to satiation for 2 h, while other rockfish continued to be fasted. Refed fish exhibited higher hepatosomatic index (HSI) values and increased Igf1 after food consumption. Gene transcripts for Gh receptor 1 (ghr1), but not ghr2, increased in the liver after eating. Transcripts encoding igf1 also increased in the liver of refed fish 2-4 d after feeding, only to return to levels similar as continually fasted rockfish by 9 d after feeding. Liver mRNA abundances for Igf binding protein (Igfbp) genes igfbp1a, igfbp1b, and igfbp3a declined within 2 d of feeding. These findings provide evidence that circulating Igf1 in rockfish reflects a fish's feeding experience within the previous few days, and suggest that feeding-induced increases in Igf1 are being mediated in part by altered liver sensitivity to Gh due to upregulated Gh receptor 1 expression.
Collapse
Affiliation(s)
- Theresa V Bersin
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Hayley M Mapes
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Meredith L Journey
- Lynker Technology, 202 Church St SE #536, Leesburg, VA 20175, USA; Under Contract to Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA 98112, USA
| | - Brian R Beckman
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA 98112, USA
| | - Sean C Lema
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA.
| |
Collapse
|
102
|
Bersin TV, Cordova KL, Saenger EK, Journey ML, Beckman BR, Lema SC. Nutritional status affects Igf1 regulation of skeletal muscle myogenesis, myostatin, and myofibrillar protein degradation pathways in gopher rockfish (Sebastes carnatus). Mol Cell Endocrinol 2023; 573:111951. [PMID: 37169322 DOI: 10.1016/j.mce.2023.111951] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/13/2023]
Abstract
Insulin-like growth factor-1 (Igf1) regulates skeletal muscle growth in fishes by increasing protein synthesis and promoting muscle hypertrophy. When fish experience periods of insufficient food intake, they undergo slower muscle growth or even muscle wasting, and those changes emerge in part from nutritional modulation of Igf1 signaling. Here, we examined how food deprivation (fasting) modulates Igf1 regulation of liver and skeletal muscle gene expression in gopher rockfish (Sebastes carnatus), a nearshore rockfish of importance for commercial and recreational fisheries in the northeastern Pacific Ocean, to understand how food limitation impacts Igf regulation of muscle growth pathways. Rockfish were either fed or fasted for 14 d, after which a subset of fish from each group was treated with recombinant Igf1 from sea bream (Sparus aurata). Fish that were fasted lost body mass and had lower body condition, reduced hepatosomatic index, and lower plasma Igf1 concentrations, as well as a decreased abundance of igf1 gene transcripts in the liver, increased hepatic mRNAs for Igf binding proteins igfbp1a, igfbp1b, and igfbp3a, and decreased mRNA abundances for igfbp2b and a putative Igf acid labile subunit (igfals) gene. In skeletal muscle, fasted fish showed a reduced abundance of intramuscular igf1 mRNAs but elevated gene transcripts encoding Igf1 receptors A (igf1ra) and B (igf1rb), which also showed downregulation by Igf1. Fasting increased skeletal muscle mRNAs for myogenin and myostatin1, as well as ubiquitin ligase F-box only protein 32 (fbxo32) and muscle RING-finger protein-1 (murf1) genes involved in muscle atrophy, while concurrently downregulating mRNAs for myoblast determination protein 2 (myod2), myostatin2, and myogenic factors 5 (myf5) and 6 (myf6 encoding Mrf4). Treatment with Igf1 downregulated muscle myostatin1 and fbxo32 under both feeding conditions, but showed feeding-dependent effects on murf1, myf5, and myf6/Mrf4 gene expression indicating that Igf1 effects on muscle growth and atrophy pathways is contingent on recent food consumption experience.
Collapse
Affiliation(s)
- Theresa V Bersin
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Kasey L Cordova
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - E Kate Saenger
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Meredith L Journey
- Lynker Technology, 202 Church St SE #536, Leesburg, VA, 20175, USA; Under Contract to Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, 98112, USA
| | - Brian R Beckman
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, 98112, USA
| | - Sean C Lema
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA, 93407, USA.
| |
Collapse
|
103
|
Zhang CJ, Meyer SR, O’Meara MJ, Huang S, Capeling MM, Ferrer-Torres D, Childs CJ, Spence JR, Fontana RJ, Sexton JZ. A human liver organoid screening platform for DILI risk prediction. J Hepatol 2023; 78:998-1006. [PMID: 36738840 PMCID: PMC11268729 DOI: 10.1016/j.jhep.2023.01.019] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Drug-induced liver injury (DILI), both intrinsic and idiosyncratic, causes frequent morbidity, mortality, clinical trial failures and post-approval withdrawal. This suggests an unmet need for improved in vitro models for DILI risk prediction that can account for diverse host genetics and other clinical factors. In this study, we evaluated the utility of human liver organoids (HLOs) for high-throughput DILI risk prediction and in an organ-on-chip system. METHODS HLOs were derived from three separate iPSC lines and benchmarked on two platforms for their ability to model in vitro liver function and identify hepatotoxic compounds using biochemical assays for albumin, ALT, AST, microscopy-based morphological profiling, and single-cell transcriptomics: i) HLOs dispersed in 384-well-formatted plates and exposed to a library of compounds; ii) HLOs adapted to a liver-on-chip system. RESULTS Dispersed HLOs derived from the three iPSC lines had similar DILI predictive capacity as intact HLOs in a high-throughput screening format, allowing for measurable IC50 values of compound cytotoxicity. Distinct morphological differences were observed in cells treated with drugs exerting differing mechanisms of toxicity. On-chip HLOs significantly increased albumin production, CYP450 expression, and ALT/AST release when treated with known hepatoxic drugs compared to dispersed HLOs and primary human hepatocytes. On-chip HLOs were able to predict the synergistic hepatotoxicity of tenofovir-inarigivir and displayed steatosis and mitochondrial perturbation, via phenotypic and transcriptomic analysis, on exposure to fialuridine and acetaminophen, respectively. CONCLUSIONS The high-throughput and liver-on-chip systems exhibit enhanced in vivo-like functions and demonstrate the potential utility of these platforms for DILI risk assessment. Tenofovir-inarigivr-associated hepatotoxicity was observed and correlates with the clinical manifestation of DILI observed in patients. IMPACT AND IMPLICATIONS Idiosyncratic (spontaneous, patient-specific) drug-induced liver injury (DILI) is difficult to study due to the lack of liver models that function as human liver tissue and are adaptable for large-scale drug screening. Human liver organoids grown from patient stem cells respond to known DILI-causing drugs in both a high-throughput and on a physiological "chip" culture system. These platforms show promise for researchers in their use as predictive models for novel drugs before entering clinical trials and as a potential in vitro diagnostic tool. Our findings support further development of patient-derived liver organoid lines and their use in the context of DILI research.
Collapse
Affiliation(s)
- Charles J. Zhang
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Sophia R. Meyer
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Matthew J. O’Meara
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Sha Huang
- Department of Internal Medicine, Gastroenterology and Hepatology, Michigan Medicine at the University of Michigan, Ann Arbor, MI, 48109, USA
| | - Meghan M. Capeling
- Department of Internal Medicine, Gastroenterology and Hepatology, Michigan Medicine at the University of Michigan, Ann Arbor, MI, 48109, USA
| | - Daysha Ferrer-Torres
- Department of Internal Medicine, Gastroenterology and Hepatology, Michigan Medicine at the University of Michigan, Ann Arbor, MI, 48109, USA
| | - Charlie J. Childs
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jason R. Spence
- Department of Internal Medicine, Gastroenterology and Hepatology, Michigan Medicine at the University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Robert J. Fontana
- Department of Internal Medicine, Gastroenterology and Hepatology, Michigan Medicine at the University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jonathan Z. Sexton
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Internal Medicine, Gastroenterology and Hepatology, Michigan Medicine at the University of Michigan, Ann Arbor, MI, 48109, USA
- U-M Center for Drug Repurposing, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
104
|
Tran TTH, Tran HS, Le BTN, Van Nguyen S, Vu HA, Kim OTP. Novel single nucleotide polymorphisms of insulin-like growth factor-binding protein 7 (IGFBP7) gene significantly associated with growth traits in striped catfish (Pangasianodon hypophthalmus Sauvage, 1878). Mol Genet Genomics 2023; 298:883-893. [PMID: 37097322 DOI: 10.1007/s00438-023-02016-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 04/05/2023] [Indexed: 04/26/2023]
Abstract
Breeding program to improve economically important growth traits in striped catfish (Pangasianodon hypophthalmus) requires effective molecular markers. This study was conducted to identify single nucleotide polymorphisms (SNPs) of Insulin-like Growth Factor-Binding Protein 7 (IGFBP7) gene which plays multiple roles in regulating growth, energy metabolism and development. The association between SNPs in IGFBP7 gene and growth traits in striped catfish was analyzed in order to uncover the SNPs that have potential to be valuable markers for improving growth traits. Firstly, fragments of IGFBP7 gene from ten fast-growing fish and ten slow-growing fish were sequenced in order to discover SNPs. After filtering the detected SNPs, an intronic SNP (2060A > G) and two non-synonymous SNPs (344 T > C and 4559C > A) causing Leu78Pro and Leu189Met in protein, respectively, were subjected to further validated by individual genotyping in 70 fast-growing fish and 70 slow-growing fish using single base extension method. Our results showed that two SNPs (2060A > G and 4559 C > A (p. Leu189Met)) were significantly associated with the growth in P. hypophthalmus (p < 0.001), thus being candidate SNP markers for the growth traits of this fish. Moreover, linkage disequilibrium and association analysis with growth traits of haplotypes generated from the 3 filtered SNPs (344 T > C, 2060 A > G and 4559 C > A) were examined. These revealed that the non-coding SNP locus (2060A > G) had higher genetic diversity at which the G allele was predominant over the A allele in the fast-growing fish. Furthermore, the results of qPCR showed that expression of IGFBP7 gene with genotype GG (at locus 2060) in fast-growing group was significantly higher than that with genotype AA in slow-growing group (p < 0.05). Our study provides insights into the genetic variants of IGFBP7 gene and useful data source for development molecular marker for growth traits in breeding of the striped catfish.
Collapse
Affiliation(s)
- Trang Thi Huyen Tran
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str, Cau Giay, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str, Cau Giay, Hanoi, Vietnam
| | - Hoang Son Tran
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str, Cau Giay, Hanoi, Vietnam
| | - Binh Thi Nguyen Le
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str, Cau Giay, Hanoi, Vietnam
| | - Sang Van Nguyen
- Research Institute of Aquaculture, No.2, 116 Nguyen Dinh Chieu Str, District 1, Ho Chi Minh City, Vietnam
| | - Hai-Anh Vu
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str, Cau Giay, Hanoi, Vietnam
| | - Oanh Thi Phuong Kim
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str, Cau Giay, Hanoi, Vietnam.
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str, Cau Giay, Hanoi, Vietnam.
| |
Collapse
|
105
|
Su Y, Cao Y, Liu C, Xu Q, Li N, Lan M, Li L, Wang K, Zhang Z, Meng Q. Inactivating IL34 promotes regenerating muscle stem cell expansion and attenuates Duchenne muscular dystrophy in mouse models. Theranostics 2023; 13:2588-2604. [PMID: 37215564 PMCID: PMC10196826 DOI: 10.7150/thno.83817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 04/14/2023] [Indexed: 05/24/2023] Open
Abstract
Background: The balance between the differentiation and self-renewal of satellite cells (SCs) is essential for skeletal muscle homeostasis and regeneration. Our knowledge of this regulatory process is incomplete. Methods: Using global and conditional knockout mice as in vivo models and isolated satellite cells as in vitro system, we investigated the regulatory mechanisms of IL34 in the process of skeletal muscle regeneration in vivo and in vitro. Results: Myocytes and regenerating fibers are major source of IL34. Deletion of interleukin 34 (IL34) sustains expansion by sacrificing the differentiation of SCs and leads to significant muscle regeneration defects. We further found that inactivating IL34 in SCs leads to hyperactivation of NFKB1 signaling; NFKB1 translocates to the nucleus and binds to the promoter region of Igfbp5 to synergistically disturb protein kinase B (Akt) activity. Notably, augmented Igfbp5 function in SCs led to deficient differentiation and Akt activity. Furthermore, disrupting Akt activity both in vivo and in vitro mimicked the phenotype of IL34 knockout. Finally, deleting IL34 or interfering Akt in mdx mice ameliorates dystrophic muscles. Conclusion: We comprehensively characterized regenerating myofibers-expressed IL34 plays a pivotal role in controlling myonuclear domain. The results also indicate that impairing IL34 function by promoting SC maintenance can lead to improved muscular performance in mdx mice in which the stem cell pool is compromised.
Collapse
Affiliation(s)
- Yang Su
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing 100193, China
- Department of Cell Biology, Third Military Medical University (Army Medical University), Gaotanyan Road No. 30, Shapingba District, Chongqing 400038, China
- State Key Lab of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing 100193, China
| | - Yuxin Cao
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing 100193, China
| | - Chang Liu
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing 100193, China
| | - Qing Xu
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing 100193, China
| | - Na Li
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing 100193, China
| | - Miaomiao Lan
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing 100193, China
| | - Lei Li
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing 100193, China
| | - Kun Wang
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing 100193, China
| | - Zeyu Zhang
- State Key Lab of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing 100193, China
| | - Qingyong Meng
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing 100193, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing 100193, China
| |
Collapse
|
106
|
Chung JY, Ma Y, Zhang D, Bickerton HH, Stokes E, Patel SB, Tse HM, Feduska J, Welner RS, Banerjee RR. Pancreatic islet cell type-specific transcriptomic changes during pregnancy and postpartum. iScience 2023; 26:106439. [PMID: 37020962 PMCID: PMC10068570 DOI: 10.1016/j.isci.2023.106439] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/11/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Pancreatic β-cell mass expands during pregnancy and regresses in the postpartum period in conjunction with dynamic metabolic demands on maternal glucose homeostasis. To understand transcriptional changes driving these adaptations in β-cells and other islet cell types, we performed single-cell RNA sequencing on islets from virgin, late gestation, and early postpartum mice. We identified transcriptional signatures unique to gestation and the postpartum in β-cells, including induction of the AP-1 transcription factor subunits and other genes involved in the immediate-early response (IEGs). In addition, we found pregnancy and postpartum-induced changes differed within each endocrine cell type, and in endothelial cells and antigen-presenting cells within islets. Together, our data reveal insights into cell type-specific transcriptional changes responsible for adaptations by islet cells to pregnancy and their resolution postpartum.
Collapse
Affiliation(s)
- Jin-Yong Chung
- Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Yongjie Ma
- Department of Pharmacology, the University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Dingguo Zhang
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, The University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Hayden H. Bickerton
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, The University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Eric Stokes
- Department of Pharmacology, University of Colorado Denver/Anschutz, Aurora, CO 80045, USA
| | - Sweta B. Patel
- Division of Hematology and Oncology, Department of Medicine, The University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Hubert M. Tse
- Department of Microbiology, the University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Joseph Feduska
- Department of Microbiology, the University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Rob S. Welner
- Division of Hematology and Oncology, Department of Medicine, The University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Ronadip R. Banerjee
- Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| |
Collapse
|
107
|
Wang X, Li J, Zhang W, Wang F, Wu Y, Guo Y, Wang D, Yu X, Li A, Li F, Xie Y. IGFBP-3 promotes cachexia-associated lipid loss by suppressing insulin-like growth factor/insulin signaling. Chin Med J (Engl) 2023; 136:974-985. [PMID: 37014770 PMCID: PMC10278738 DOI: 10.1097/cm9.0000000000002628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Progressive lipid loss of adipose tissue is a major feature of cancer-associated cachexia. In addition to systemic immune/inflammatory effects in response to tumor progression, tumor-secreted cachectic ligands also play essential roles in tumor-induced lipid loss. However, the mechanisms of tumor-adipose tissue interaction in lipid homeostasis are not fully understood. METHODS The yki -gut tumors were induced in fruit flies. Lipid metabolic assays were performed to investigate the lipolysis level of different types of insulin-like growth factor binding protein-3 (IGFBP-3) treated cells. Immunoblotting was used to display phenotypes of tumor cells and adipocytes. Quantitative polymerase chain reaction (qPCR) analysis was carried out to examine the gene expression levels such as Acc1 , Acly , and Fasn et al . RESULTS In this study, it was revealed that tumor-derived IGFBP-3 was an important ligand directly causing lipid loss in matured adipocytes. IGFBP-3, which is highly expressed in cachectic tumor cells, antagonized insulin/IGF-like signaling (IIS) and impaired the balance between lipolysis and lipogenesis in 3T3-L1 adipocytes. Conditioned medium from cachectic tumor cells, such as Capan-1 and C26 cells, contained excessive IGFBP-3 that potently induced lipolysis in adipocytes. Notably, neutralization of IGFBP-3 by neutralizing antibody in the conditioned medium of cachectic tumor cells significantly alleviated the lipolytic effect and restored lipid storage in adipocytes. Furthermore, cachectic tumor cells were resistant to IGFBP-3 inhibition of IIS, ensuring their escape from IGFBP-3-associated growth suppression. Finally, cachectic tumor-derived ImpL2, the IGFBP-3 homolog, also impaired lipid homeostasis of host cells in an established cancer-cachexia model in Drosophila . Most importantly, IGFBP-3 was highly expressed in cancer tissues in pancreatic and colorectal cancer patients, especially higher in the sera of cachectic cancer patients than non-cachexia cancer patients. CONCLUSION Our study demonstrates that tumor-derived IGFBP-3 plays a critical role in cachexia-associated lipid loss and could be a biomarker for diagnosis of cachexia in cancer patients.
Collapse
Affiliation(s)
- Xiaohui Wang
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Jia Li
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Wei Zhang
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Feng Wang
- Department of Gastrointestinal Surgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Yunzi Wu
- Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yulin Guo
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Dong Wang
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xinfeng Yu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Ang Li
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Fei Li
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yibin Xie
- Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
108
|
Stacchini C, Botrè F, de la Torre X, Mazzarino M. Capillary blood as a complementary matrix for doping control purposes. Application to the definition of the individual longitudinal profile of IGF-1. J Pharm Biomed Anal 2023; 227:115274. [PMID: 36774791 DOI: 10.1016/j.jpba.2023.115274] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/22/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023]
Abstract
We present a novel procedure to monitor the fluctuations of the levels of IGF-1 in capillary blood in the framework of doping control analysis. Being an endogenous hormone, direct methods are not applicable, so the most effective way to detect the intake of the exogenous hormone would be based on the longitudinal monitoring of the athlete. We have therefore followed the individual variability, in four subjects (two males and two females), of the levels of IGF-1 in capillary blood samples collected three times per day for five days, then once a week for at least two months. Analyses were performed by liquid chromatography coupled to tandem mass spectrometry following a bottom-up approach. The whole protocol, from the sample collection to the instrumental analysis, was validated according to the World Anti-Doping Agency's guidelines and ISO17025. The analytical protocol showed to be fit for purpose in terms of sensitivity (LOD 25 ng/mL and LOI 35 ng/mL), selectivity (no interferences were detected at the retention time of IGF-1 and the internal standard), and repeatability (CV<10%). The linearity was confirmed in the range of 50-1000 ng/mL (correlation coefficient R2 >0.995, with a % relative bias of the experimental concentration of the different calibrators used for the estimation of the linearity lower than 20% for the lowest level and than 15% for the other levels). Stability studies were also performed, also to establish the optimal conditions for transport and storage: samples were stable at 4 °C for up to 72 h and at -20 °C and -80 °C for up to three months. Our preliminary results indicate that, in all subjects, the levels of IGF-1 did not present significant circadian fluctuations and remained stable during the entire period of the study (2-3 months, depending on the subject). The stability over time of IGF-1 levels in capillary blood indicates the possibility of detecting the intake of the non-endogenous hormone based on a longitudinal approach, as it is modeled in the framework of the endocrinological module of the athlete biological passport.
Collapse
Affiliation(s)
- Carlotta Stacchini
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Largo Giulio Onesti 1, 00197 Rome, Italy; Dipartimento Chimica e Tecnologia del Farmaco "Sapienza" Università di Roma, Piazzale Aldo Moro 5, 00161 Rome, Italy
| | - Francesco Botrè
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Largo Giulio Onesti 1, 00197 Rome, Italy; REDs - Research and Expertise on Doping in Sport, ISSUL - Institute of Sport Sciences, University of Lausanne, Synathlon - Quartier Centre, 1015 Lausanne, Switzerland.
| | - Xavier de la Torre
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Largo Giulio Onesti 1, 00197 Rome, Italy
| | - Monica Mazzarino
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Largo Giulio Onesti 1, 00197 Rome, Italy
| |
Collapse
|
109
|
Ng NS, Newbery M, Touffu A, Maksour S, Chung J, Carroll L, Zaw T, Wu Y, Ooi L. Edaravone and mitochondrial transfer as potential therapeutics for vanishing white matter disease astrocyte dysfunction. CNS Neurosci Ther 2023. [PMID: 36971196 PMCID: PMC10401142 DOI: 10.1111/cns.14190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/23/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023] Open
Abstract
INTRODUCTION Previous research has suggested that vanishing white matter disease (VWMD) astrocytes fail to fully differentiate and respond differently to cellular stresses compared to healthy astrocytes. However, few studies have investigated potential VWMD therapeutics in monoculture patient-derived cell-based models. METHODS To investigate the impact of alterations in astrocyte expression and function in VWMD, astrocytes were differentiated from patient and control induced pluripotent stem cells and analyzed by proteomics, pathway analysis, and functional assays, in the absence and presence of stressors or potential therapeutics. RESULTS Vanishing white matter disease astrocytes demonstrated significantly reduced expression of astrocyte markers and markers of inflammatory activation or cellular stress relative to control astrocytes. These alterations were identified both in the presence and absence of polyinosinic:polycytidylic acid stimuli, which is used to simulate viral infections. Pathway analysis highlighted differential signaling in multiple pathways in VWMD astrocytes, including eukaryotic initiation factor 2 (EIF2) signaling, oxidative stress, oxidative phosphorylation (OXPHOS), mitochondrial function, the unfolded protein response (UPR), phagosome regulation, autophagy, ER stress, tricarboxylic acid cycle (TCA) cycle, glycolysis, tRNA signaling, and senescence pathways. Since oxidative stress and mitochondrial function were two of the key pathways affected, we investigated whether two independent therapeutic strategies could ameliorate astrocyte dysfunction: edaravone treatment and mitochondrial transfer. Edaravone treatment reduced differential VWMD protein expression of the UPR, phagosome regulation, ubiquitination, autophagy, ER stress, senescence, and TCA cycle pathways. Meanwhile, mitochondrial transfer decreased VWMD differential expression of the UPR, glycolysis, calcium transport, phagosome formation, and ER stress pathways, while further modulating EIF2 signaling, tRNA signaling, TCA cycle, and OXPHOS pathways. Mitochondrial transfer also increased the gene and protein expression of the astrocyte marker, glial fibrillary acidic protein (GFAP) in VWMD astrocytes. CONCLUSION This study provides further insight into the etiology of VWMD astrocytic failure and suggests edaravone and mitochondrial transfer as potential candidate VWMD therapeutics that can ameliorate disease pathways in astrocytes related to oxidative stress, mitochondrial dysfunction, and proteostasis.
Collapse
|
110
|
Chin C, Ravichandran R, Sanborn K, Fleming T, Wheatcroft SB, Kearney MT, Tokman S, Walia R, Smith MA, Flint DJ, Mohanakumar T, Bremner RM, Sureshbabu A. Loss of IGFBP2 mediates alveolar type 2 cell senescence and promotes lung fibrosis. Cell Rep Med 2023; 4:100945. [PMID: 36787736 PMCID: PMC10040381 DOI: 10.1016/j.xcrm.2023.100945] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/01/2022] [Accepted: 01/23/2023] [Indexed: 02/15/2023]
Abstract
Accumulation of senescent cells contributes to age-related diseases including idiopathic pulmonary fibrosis (IPF). Insulin-like growth factor binding proteins (IGFBPs) regulate many biological processes; however, the functional contributions of IGFBP2 in lung fibrosis remain largely unclear. Here, we report that intranasal delivery of recombinant IGFBP2 protects aged mice from weight loss and demonstrated antifibrotic effects after bleomycin lung injury. Notably, aged human-Igfbp2 transgenic mice reveal reduced senescence and senescent-associated secretory phenotype factors in alveolar epithelial type 2 (AEC2) cells and they ameliorated bleomycin-induced lung fibrosis. Finally, we demonstrate that IGFBP2 expression is significantly suppressed in AEC2 cells isolated from fibrotic lung regions of patients with IPF and/or pulmonary hypertension compared with patients with hypersensitivity pneumonitis and/or chronic obstructive pulmonary disease. Altogether, our study provides insights into how IGFBP2 regulates AEC2-cell-specific senescence and that restoring IGFBP2 levels in fibrotic lungs can prove effective for patients with IPF.
Collapse
Affiliation(s)
- Chiahsuan Chin
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, 124 W. Thomas Road, Ste. 100, Phoenix, AZ 85013, USA; Creighton University School of Medicine - Phoenix Regional Campus, Phoenix, AZ, USA
| | - Ranjithkumar Ravichandran
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, 124 W. Thomas Road, Ste. 100, Phoenix, AZ 85013, USA; Creighton University School of Medicine - Phoenix Regional Campus, Phoenix, AZ, USA
| | - Kristina Sanborn
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, 124 W. Thomas Road, Ste. 100, Phoenix, AZ 85013, USA; Creighton University School of Medicine - Phoenix Regional Campus, Phoenix, AZ, USA
| | - Timothy Fleming
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, 124 W. Thomas Road, Ste. 100, Phoenix, AZ 85013, USA; Creighton University School of Medicine - Phoenix Regional Campus, Phoenix, AZ, USA
| | - Stephen B Wheatcroft
- Leeds Institute of Cardiovascular & Metabolic Medicine, University of Leeds, Leeds, UK
| | - Mark T Kearney
- Leeds Institute of Cardiovascular & Metabolic Medicine, University of Leeds, Leeds, UK
| | - Sofya Tokman
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, 124 W. Thomas Road, Ste. 100, Phoenix, AZ 85013, USA; Creighton University School of Medicine - Phoenix Regional Campus, Phoenix, AZ, USA
| | - Rajat Walia
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, 124 W. Thomas Road, Ste. 100, Phoenix, AZ 85013, USA; Creighton University School of Medicine - Phoenix Regional Campus, Phoenix, AZ, USA
| | - Michael A Smith
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, 124 W. Thomas Road, Ste. 100, Phoenix, AZ 85013, USA; Creighton University School of Medicine - Phoenix Regional Campus, Phoenix, AZ, USA
| | - David J Flint
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Thalachallour Mohanakumar
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, 124 W. Thomas Road, Ste. 100, Phoenix, AZ 85013, USA; Creighton University School of Medicine - Phoenix Regional Campus, Phoenix, AZ, USA
| | - Ross M Bremner
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, 124 W. Thomas Road, Ste. 100, Phoenix, AZ 85013, USA; Creighton University School of Medicine - Phoenix Regional Campus, Phoenix, AZ, USA
| | - Angara Sureshbabu
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, 124 W. Thomas Road, Ste. 100, Phoenix, AZ 85013, USA; Creighton University School of Medicine - Phoenix Regional Campus, Phoenix, AZ, USA.
| |
Collapse
|
111
|
Lohia S, Latosinska A, Zoidakis J, Makridakis M, Mischak H, Glorieux G, Vlahou A, Jankowski V. Glycosylation Analysis of Urinary Peptidome Highlights IGF2 Glycopeptides in Association with CKD. Int J Mol Sci 2023; 24:ijms24065402. [PMID: 36982475 PMCID: PMC10048973 DOI: 10.3390/ijms24065402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/26/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Chronic kidney disease (CKD) is prevalent in 10% of world’s adult population. The role of protein glycosylation in causal mechanisms of CKD progression is largely unknown. The aim of this study was to identify urinary O-linked glycopeptides in association to CKD for better characterization of CKD molecular manifestations. Urine samples from eight CKD and two healthy subjects were analyzed by CE-MS/MS and glycopeptides were identified by a specific software followed by manual inspection of the spectra. Distribution of the identified glycopeptides and their correlation with Age, eGFR and Albuminuria were evaluated in 3810 existing datasets. In total, 17 O-linked glycopeptides from 7 different proteins were identified, derived primarily from Insulin-like growth factor-II (IGF2). Glycosylation occurred at the surface exposed IGF2 Threonine 96 position. Three glycopeptides (DVStPPTVLPDNFPRYPVGKF, DVStPPTVLPDNFPRYPVG and DVStPPTVLPDNFPRYP) exhibited positive correlation with Age. The IGF2 glycopeptide (tPPTVLPDNFPRYP) showed a strong negative association with eGFR. These results suggest that with aging and deteriorating kidney function, alterations in IGF2 proteoforms take place, which may reflect changes in mature IGF2 protein. Further experiments corroborated this hypothesis as IGF2 increased plasma levels were observed in CKD patients. Protease predictions, considering also available transcriptomics data, suggest activation of cathepsin S with CKD, meriting further investigation.
Collapse
Affiliation(s)
- Sonnal Lohia
- Center of Systems Biology, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
- Institute for Molecular Cardiovascular Research, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | | | - Jerome Zoidakis
- Center of Systems Biology, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Manousos Makridakis
- Center of Systems Biology, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | | | - Griet Glorieux
- Department of Internal Medicine and Pediatrics, Nephrology Division, Ghent University Hospital, 9000 Gent, Belgium
| | - Antonia Vlahou
- Center of Systems Biology, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Vera Jankowski
- Institute for Molecular Cardiovascular Research, RWTH Aachen University Hospital, 52074 Aachen, Germany
- Correspondence: ; Tel.: +49-(0241)-80-80580
| |
Collapse
|
112
|
Rehman S, Hadj-Moussa H, Hawkins L, Storey KB. Role of FOXO transcription factors in the tolerance of whole-body freezing in the wood frog, Rana sylvatica. Cryobiology 2023; 110:44-48. [PMID: 36539050 DOI: 10.1016/j.cryobiol.2022.12.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
The wood frog (Rana Sylvatica) can endure the sub-zero temperatures of winter by freezing up to 65% of total body water as extracellular ice and retreating into a prolonged hypometabolic state. Freeze survival requires the coordination of various adaptations, including a global suppression of metabolic functions and select activation of pro-survival genes. Transcription factors playing roles in metabolism, stress tolerance, and cell proliferation may assist in making survival in a frozen state possible. In this study, the role of Forkhead box 'other' (FOXO) transcription factors in freeze tolerance, and related changes to the insulin pathway, are investigated. Immunoblotting was used to assess total and phosphorylated amounts of FOXO proteins in wood frogs subjected to freezing for 24 h and thawed recovery for 8 h. Levels of active FOXO3 increased in brain, kidney, and liver during freezing and thawing, suggesting a need to maintain or enhance antioxidant defenses under these stresses. Results implicate FOXO involvement in the metabolic regulation of natural freeze tolerance.
Collapse
Affiliation(s)
- Saif Rehman
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, ON, Canada
| | - Hanane Hadj-Moussa
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, ON, Canada
| | - Liam Hawkins
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, ON, Canada
| | - Kenneth B Storey
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, ON, Canada.
| |
Collapse
|
113
|
Mandal AK, Leask MP, Sumpter NA, Choi HK, Merriman TR, Mount DB. Genetic and Physiological Effects of Insulin-Like Growth Factor-1 (IGF-1) on Human Urate Homeostasis. J Am Soc Nephrol 2023; 34:451-466. [PMID: 36735516 PMCID: PMC10103387 DOI: 10.1681/asn.0000000000000054] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 10/25/2022] [Indexed: 01/22/2023] Open
Abstract
SIGNIFICANCE STATEMENT Hyperinsulinemia induces hyperuricemia by activating net renal urate reabsorption in the renal proximal tubule. The basolateral reabsorptive urate transporter GLUT9a appears to be the dominant target for insulin. By contrast, IGF-1 infusion reduces serum urate (SU), through mechanisms unknown. Genetic variants of IGF1R associated with reduced SU have increased IGF-1R expression and interact with genes encoding the GLUT9 and ABCG2 urate transporters, in a sex-specific fashion, which controls the SU level. Activation of IGF-1/IGF-1R signaling in Xenopus oocytes modestly activates GLUT9a and inhibits insulin's stimulatory effect on the transporter, which also activates multiple secretory urate transporters-ABCG2, ABCC4, OAT1, and OAT3. The results collectively suggest that IGF-1 reduces SU by activating secretory urate transporters and inhibiting insulin's action on GLUT9a. BACKGROUND Metabolic syndrome and hyperinsulinemia are associated with hyperuricemia. Insulin infusion in healthy volunteers elevates serum urate (SU) by activating net urate reabsorption in the renal proximal tubule, whereas IGF-1 infusion reduces SU by mechanisms unknown. Variation within the IGF1R gene also affects SU levels. METHODS Colocalization analyses of a SU genome-wide association studies signal at IGF1R and expression quantitative trait loci signals in cis using COLOC2, RT-PCR, Western blotting, and urate transport assays in transfected HEK 293T cells and in Xenopus laevis oocytes. RESULTS Genetic association at IGF1R with SU is stronger in women and is mediated by control of IGF1R expression. Inheritance of the urate-lowering homozygous genotype at the SLC2A9 locus is associated with a differential effect of IGF1R genotype between men and women. IGF-1, through IGF-1R, stimulated urate uptake in human renal proximal tubule epithelial cells and transfected HEK 293T cells, through activation of IRS1, PI3/Akt, MEK/ERK, and p38 MAPK; urate uptake was inhibited in the presence of uricosuric drugs, specific inhibitors of protein tyrosine kinase, PI3 kinase (PI3K), ERK, and p38 MAPK. In X. laevis oocytes expressing ten individual urate transporters, IGF-1 through endogenous IGF-1R stimulated urate transport mediated by GLUT9, OAT1, OAT3, ABCG2, and ABCC4 and inhibited insulin's stimulatory action on GLUT9a and OAT3. IGF-1 significantly activated Akt and ERK. Specific inhibitors of PI3K, ERK, and PKC significantly affected IGF-1 stimulation of urate transport in oocytes. CONCLUSIONS The combined results of infusion, genetics, and transport experiments suggest that IGF-1 reduces SU by activating urate secretory transporters and inhibiting insulin's action.
Collapse
Affiliation(s)
- Asim K. Mandal
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Megan P. Leask
- Biochemistry Department, University of Otago, Dunedin, South Island, New Zealand
- Division of Rheumatology and Clinical Immunology, University of Alabama, Birmingham, Alabama
| | - Nicholas A. Sumpter
- Division of Rheumatology and Clinical Immunology, University of Alabama, Birmingham, Alabama
| | - Hyon K. Choi
- Division of Rheumatology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Tony R. Merriman
- Biochemistry Department, University of Otago, Dunedin, South Island, New Zealand
- Division of Rheumatology and Clinical Immunology, University of Alabama, Birmingham, Alabama
| | - David B. Mount
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Renal Division, VA Boston Healthcare System, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
114
|
Hazra R, Hubert H, Little-Ihrig L, Ghosh S, Ofori-Acquah S, Hu X, Novelli EM. Insulin-like Growth Factor-1 Prevents Hypoxia/Reoxygenation-Induced White Matter Injury in Sickle Cell Mice. Biomedicines 2023; 11:692. [PMID: 36979670 PMCID: PMC10045140 DOI: 10.3390/biomedicines11030692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 02/26/2023] Open
Abstract
Occlusion of cerebral blood vessels causes acute cerebral hypoxia-an important trigger of ischemic white matter injury and stroke in sickle cell disease (SCD). While chronic hypoxia triggers compensatory neuroprotection via insulin-like growth factor-1 (IGF-1) and hypoxia inducible factor-1α (HIF-1α), severe bouts of acute hypoxia and subsequent restoration of blood flow (hypoxia/reoxygenation, H/R) overwhelm compensatory mechanisms and cause neuroaxonal damage-identified as white matter lesions-in the brain. The neuroprotective role of IGF-1 in the pathogenesis of white matter injury in SCD has not been investigated; however, it is known that systemic IGF-1 is reduced in individuals with SCD. We hypothesized that IGF-1 supplementation may prevent H/R-induced white matter injury in SCD. Transgenic sickle mice homozygous for human hemoglobin S and exposed to H/R developed white matter injury identified by elevated expression of non-phosphorylated neurofilament H (SMI32) with a concomitant decrease in myelin basic protein (MBP) resulting in an increased SMI32/MBP ratio. H/R-challenge also lowered plasma and brain IGF-1 expression. Human recombinant IGF-1 prophylaxis significantly induced HIF-1α and averted H/R-induced white matter injury in the sickle mice compared to vehicle-treated mice. The expression of the IGF-1 binding proteins IGFBP-1 and IGFBP-3 was elevated in the IGF-1-treated brain tissue indicating their potential role in mediating neuroprotective HIF-1α signaling. This study provides proof-of-concept for IGF-1-mediated neuroprotection in SCD.
Collapse
Affiliation(s)
- Rimi Hazra
- Pittsburgh Heart Lung and Blood Vascular Medicine Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Holland Hubert
- Pittsburgh Heart Lung and Blood Vascular Medicine Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Lynda Little-Ihrig
- Pittsburgh Heart Lung and Blood Vascular Medicine Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Samit Ghosh
- Pittsburgh Heart Lung and Blood Vascular Medicine Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Solomon Ofori-Acquah
- Pittsburgh Heart Lung and Blood Vascular Medicine Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Xiaoming Hu
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15240, USA
| | - Enrico M Novelli
- Pittsburgh Heart Lung and Blood Vascular Medicine Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
115
|
Direct bioanalysis or indirect calculation of target engagement and free drug exposure: do we apply double standards? Bioanalysis 2023; 15:5-16. [PMID: 36762451 DOI: 10.4155/bio-2022-0246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Analysis of "free" drug/target concentrations is important to set up appropriate pharmacokinetic-pharmacodynamic models, to evaluate active-drug exposure and target engagement. Such "free-analyte" determination could be done by direct bioanalysis using an appropriate "free-analyte" assay. Development of "free" assays is often considered challenging from a technological and regulatory perspective. The application of a "total-total" approach, where the "free-analyte" concentration is determined mathematically, is considered a more convenient option. In this perspective, we examine and discuss the challenges of this "total-total" approach, from the affinity data, the importance of applying an appropriate "total" assay, the impact of additional binding partners and the variability of the total drug/target assays and their impact on the quality and variability of the final "free-analyte" dataset.
Collapse
|
116
|
Macvanin M, Gluvic Z, Radovanovic J, Essack M, Gao X, Isenovic ER. New insights on the cardiovascular effects of IGF-1. Front Endocrinol (Lausanne) 2023; 14:1142644. [PMID: 36843588 PMCID: PMC9947133 DOI: 10.3389/fendo.2023.1142644] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 01/26/2023] [Indexed: 02/11/2023] Open
Abstract
INTRODUCTION Cardiovascular (CV) disorders are steadily increasing, making them the world's most prevalent health issue. New research highlights the importance of insulin-like growth factor 1 (IGF-1) for maintaining CV health. METHODS We searched PubMed and MEDLINE for English and non-English articles with English abstracts published between 1957 (when the first report on IGF-1 identification was published) and 2022. The top search terms were: IGF-1, cardiovascular disease, IGF-1 receptors, IGF-1 and microRNAs, therapeutic interventions with IGF-1, IGF-1 and diabetes, IGF-1 and cardiovascular disease. The search retrieved original peer-reviewed articles, which were further analyzed, focusing on the role of IGF-1 in pathophysiological conditions. We specifically focused on including the most recent findings published in the past five years. RESULTS IGF-1, an anabolic growth factor, regulates cell division, proliferation, and survival. In addition to its well-known growth-promoting and metabolic effects, there is mounting evidence that IGF-1 plays a specialized role in the complex activities that underpin CV function. IGF-1 promotes cardiac development and improves cardiac output, stroke volume, contractility, and ejection fraction. Furthermore, IGF-1 mediates many growth hormones (GH) actions. IGF-1 stimulates contractility and tissue remodeling in humans to improve heart function after myocardial infarction. IGF-1 also improves the lipid profile, lowers insulin levels, increases insulin sensitivity, and promotes glucose metabolism. These findings point to the intriguing medicinal potential of IGF-1. Human studies associate low serum levels of free or total IGF-1 with an increased risk of CV and cerebrovascular illness. Extensive human trials are being conducted to investigate the therapeutic efficacy and outcomes of IGF-1-related therapy. DISCUSSION We anticipate the development of novel IGF-1-related therapy with minimal side effects. This review discusses recent findings on the role of IGF-1 in the cardiovascular (CVD) system, including both normal and pathological conditions. We also discuss progress in therapeutic interventions aimed at targeting the IGF axis and provide insights into the epigenetic regulation of IGF-1 mediated by microRNAs.
Collapse
Affiliation(s)
- Mirjana Macvanin
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Zoran Gluvic
- Clinic for Internal Medicine, Department of Endocrinology and Diabetes, Zemun Clinical Hospital, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Jelena Radovanovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Magbubah Essack
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Xin Gao
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Esma R. Isenovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
117
|
Watts EL, Perez-Cornago A, Fensom GK, Smith-Byrne K, Noor U, Andrews CD, Gunter MJ, Holmes MV, Martin RM, Tsilidis KK, Albanes D, Barricarte A, Bueno-de-Mesquita HB, Cohn BA, Deschasaux-Tanguy M, Dimou NL, Ferrucci L, Flicker L, Freedman ND, Giles GG, Giovannucci EL, Haiman CA, Hankey GJ, Holly JMP, Huang J, Huang WY, Hurwitz LM, Kaaks R, Kubo T, Le Marchand L, MacInnis RJ, Männistö S, Metter EJ, Mikami K, Mucci LA, Olsen AW, Ozasa K, Palli D, Penney KL, Platz EA, Pollak MN, Roobol MJ, Schaefer CA, Schenk JM, Stattin P, Tamakoshi A, Thysell E, Tsai CJ, Touvier M, Van Den Eeden SK, Weiderpass E, Weinstein SJ, Wilkens LR, Yeap BB. Circulating insulin-like growth factors and risks of overall, aggressive and early-onset prostate cancer: a collaborative analysis of 20 prospective studies and Mendelian randomization analysis. Int J Epidemiol 2023; 52:71-86. [PMID: 35726641 PMCID: PMC9908067 DOI: 10.1093/ije/dyac124] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Previous studies had limited power to assess the associations of circulating insulin-like growth factors (IGFs) and IGF-binding proteins (IGFBPs) with clinically relevant prostate cancer as a primary endpoint, and the association of genetically predicted IGF-I with aggressive prostate cancer is not known. We aimed to investigate the associations of IGF-I, IGF-II, IGFBP-1, IGFBP-2 and IGFBP-3 concentrations with overall, aggressive and early-onset prostate cancer. METHODS Prospective analysis of biomarkers using the Endogenous Hormones, Nutritional Biomarkers and Prostate Cancer Collaborative Group dataset (up to 20 studies, 17 009 prostate cancer cases, including 2332 aggressive cases). Odds ratios (OR) and 95% confidence intervals (CI) for prostate cancer were estimated using conditional logistic regression. For IGF-I, two-sample Mendelian randomization (MR) analysis was undertaken using instruments identified using UK Biobank (158 444 men) and outcome data from PRACTICAL (up to 85 554 cases, including 15 167 aggressive cases). Additionally, we used colocalization to rule out confounding by linkage disequilibrium. RESULTS In observational analyses, IGF-I was positively associated with risks of overall (OR per 1 SD = 1.09: 95% CI 1.07, 1.11), aggressive (1.09: 1.03, 1.16) and possibly early-onset disease (1.11: 1.00, 1.24); associations were similar in MR analyses (OR per 1 SD = 1.07: 1.00, 1.15; 1.10: 1.01, 1.20; and 1.13; 0.98, 1.30, respectively). Colocalization also indicated a shared signal for IGF-I and prostate cancer (PP4: 99%). Men with higher IGF-II (1.06: 1.02, 1.11) and IGFBP-3 (1.08: 1.04, 1.11) had higher risks of overall prostate cancer, whereas higher IGFBP-1 was associated with a lower risk (0.95: 0.91, 0.99); these associations were attenuated following adjustment for IGF-I. CONCLUSIONS These findings support the role of IGF-I in the development of prostate cancer, including for aggressive disease.
Collapse
Affiliation(s)
- Eleanor L Watts
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Aurora Perez-Cornago
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Georgina K Fensom
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Karl Smith-Byrne
- Genomic Epidemiology Branch, International Agency for Research on Cancer, Lyon, France
| | - Urwah Noor
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Colm D Andrews
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Marc J Gunter
- Section of Nutrition and Metabolism, International Agency for Research on Cancer, Lyon, France
| | - Michael V Holmes
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit, University of Oxford, Oxford, UK
| | - Richard M Martin
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Bristol, UK
- National Institute for Health Research (NIHR) Bristol Biomedical Research Centre, University Hospitals Bristol NHS Foundation Trust and Weston NHS Foundation Trust and University of Bristol, Bristol, UK
| | - Konstantinos K Tsilidis
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Aurelio Barricarte
- Group of Epidemiology of Cancer and Other Chronic Diseases, Navarra Public Health Institute, Pamplona, Spain
- Group of Epidemiology of Cancer and Other Chronic Diseases, Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- CIBER Epidemiology and Public Health CIBERESP, Madrid, Spain
| | - H Bas Bueno-de-Mesquita
- Centre for Nutrition, Prevention and Health Services, National Institute for Public Health and the Environment (RIVM), Utrecht, The Netherlands
| | - Barbara A Cohn
- Child Health and Development Studies, Public Health Institute, Berkeley, CA, USA
| | - Melanie Deschasaux-Tanguy
- Sorbonne Paris Nord University, Nutritional Epidemiology Research Team, Epidemiology and Statistics Research Center, University of Paris, Bobigny, France
| | - Niki L Dimou
- Section of Nutrition and Metabolism, International Agency for Research on Cancer, Lyon, France
| | | | - Leon Flicker
- WA Centre for Health & Ageing, Medical School, University of Western Australia, Perth, WA, Australia
- Western Australian Centre for Health and Ageing, University of Western Australia, Perth, WA, Australia
| | - Neal D Freedman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Graham G Giles
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, VIC, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Melbourne, VIC, Australia
| | - Edward L Giovannucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Christopher A Haiman
- Department of Preventive Medicine, Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California/Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Graham J Hankey
- WA Centre for Health & Ageing, Medical School, University of Western Australia, Perth, WA, Australia
| | - Jeffrey M P Holly
- IGFs & Metabolic Endocrinology Group, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Jiaqi Huang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Wen-Yi Huang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lauren M Hurwitz
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tatsuhiko Kubo
- Department of Public Health and Health Policy, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | | | - Robert J MacInnis
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, VIC, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Melbourne, VIC, Australia
| | - Satu Männistö
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - E Jeffrey Metter
- Department of Neurology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Kazuya Mikami
- Departmemt of Urology, Japanese Red Cross Kyoto Daiichi Hospital, Kyoto, Japan
| | - Lorelei A Mucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Anja W Olsen
- Department of Public Health, Aarhus University, Aarhus, Denmark
- Danish Cancer Society, Research Center, Copenhagen, Denmark
| | - Kotaro Ozasa
- Departmemt of Epidemiology, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Domenico Palli
- Cancer Risk Factors and Life-Style Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network, Florence, Italy
| | - Kathryn L Penney
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Elizabeth A Platz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Michael N Pollak
- Departments of Medicine and Oncology, McGill University, Montreal, QC, Canada
| | - Monique J Roobol
- Department of Urology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Jeannette M Schenk
- Cancer Prevention Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Pär Stattin
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Akiko Tamakoshi
- Department of Public Health, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Elin Thysell
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
| | - Chiaojung Jillian Tsai
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mathilde Touvier
- Sorbonne Paris Nord University, Nutritional Epidemiology Research Team, Epidemiology and Statistics Research Center, University of Paris, Bobigny, France
| | - Stephen K Van Den Eeden
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
- Department of Urology, University of CaliforniaSan Francisco, San Francisco, CA, USA
| | - Elisabete Weiderpass
- Director’s Office, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Stephanie J Weinstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Bu B Yeap
- WA Centre for Health & Ageing, Medical School, University of Western Australia, Perth, WA, Australia
- Department of Endocrinology and Diabetes, Fiona Stanley Hospital, Perth, WA, Australia
| |
Collapse
|
118
|
The Role of Growth Hormone and Insulin Growth Factor 1 in the Development of Non-Alcoholic Steato-Hepatitis: A Systematic Review. Cells 2023; 12:cells12040517. [PMID: 36831184 PMCID: PMC9954460 DOI: 10.3390/cells12040517] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
Diabetic and obese patients have a high prevalence of non-alcoholic fatty liver disease (NAFLD). This condition groups a spectrum of conditions varying from simple steatosis to non-alcoholic steatohepatitis (NASH), with or without fibrosis. Multiple factors are involved in the development of NAFLD. However, details about its pathogenesis and factors that promote the progression to NASH are still missing. Growth hormone (GH) and insulin-like growth factor 1 (IGF-1) regulate metabolic, immune, and hepatic stellate cell functions. Increasing evidence suggests they may have roles in the progression from NAFLD to NASH. Following the PRISMA reporting guidelines, we conducted a systematic review to evaluate all clinical and experimental studies published in the literature correlating GH and IGF-1 to inflammation and fibrosis in NAFLD and NASH. Our results showed that GH and IGF-1 have a fundamental role in the pathogenesis of NASH, acting in slightly different ways to produce a synergic effect. Indeed, GH may mediate its protective effect in the pathogenesis of NASH by regulating lipogenesis pathways, while IGF-1 has the same effect by regulating cholesterol transport. Therefore, they could be used as therapeutic strategies in preventing NAFLD progression to NASH.
Collapse
|
119
|
Ock J, Suh JK, Hong SS, Kang JH, Yin GN, Ryu JK. IGFBP5 antisense and short hairpin RNA (shRNA) constructs improve erectile function by inducing cavernosum angiogenesis in diabetic mice. Andrology 2023; 11:358-371. [PMID: 35866351 PMCID: PMC10087557 DOI: 10.1111/andr.13234] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/17/2022] [Accepted: 05/26/2022] [Indexed: 01/18/2023]
Abstract
BACKGROUND The incidence of diabetic erectile dysfunction (ED) is rapidly increasing, and due to the severe angiopathy caused by diabetes, current drugs are ineffective at treating ED. Insulin-like growth factor-binding protein 5 (IGFBP5) promotes cell death and induces apoptosis in various cell types. OBJECTIVES To evaluate the effectiveness of IGFBP5 knockdown in improving erectile function in diabetic mice. MATERIALS AND METHODS Diabetes was induced by injecting streptozotocin (STZ) intraperitoneally into male 8-week-old C57BL/6 mice. Eight weeks after diabetes induction, mice were divided into four groups: a nondiabetic control group and three STZ-induced diabetic mice groups, which were administered intracavernous injections of phosphate buffered saline, scrambled control shRNA, or shRNA targeting mouse IGFBP5 (shIGFBP5) lentivirus particles. Two weeks later, we measured erectile function by electrically stimulating the bilateral cavernous nerve. To mimic diabetic angiopathy, primary cavernous endothelial cells (MCECs) from healthy mice were cultured and treated with glucose. RESULTS IGFBP5 expression in MCECs or cavernous tissues were significantly increased under diabetic conditions, and knockdown of IGFBP5 induced MCECs angiogenic activity under high-glucose conditions. STZ-induced diabetic mice had reduced erectile function, but shIGFBP5 treatment resulted in significant improvements (to 90% of the nondiabetic control group level). Furthermore, in diabetic mice, numbers of cavernous endothelial cells, pericytes, and neuronal cells were increased by shIGFBP5 treatment, which also increased eNOS Ser1177 phosphorylation, decreased permeability and apoptosis of cavernous endothelial cells. In addition, IGFBP5 was found to mediate the AKT, ERK, p38 signaling pathways. DISCUSSION AND CONCLUSION Knockdown of IGFBP5 improved erectile function in diabetic mice by promoting cell proliferation and reducing apoptosis and permeability. Local inhibition of IGFBP5 expression may provide a new treatment strategy for diabetic ED and other ischemic vascular or neurological diseases.
Collapse
Affiliation(s)
- Jiyeon Ock
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon, Republic of Korea
| | - Jun-Kyu Suh
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon, Republic of Korea
| | - Soon-Sun Hong
- Department of Biomedical Sciences, College of Medicine, and Program in Biomedical Science and Engineering, Inha University, Incheon, Republic of Korea
| | - Ju-Hee Kang
- Department of Pharmacology and Medicinal Toxicology Research Center, Inha University College of Medicine, Incheon, Republic of Korea
| | - Guo Nan Yin
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon, Republic of Korea
| | - Ji-Kan Ryu
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon, Republic of Korea
| |
Collapse
|
120
|
Phosphorylation of IGFBP-3 by Casein Kinase 2 Blocks Its Interaction with Hyaluronan, Enabling HA-CD44 Signaling Leading to Increased NSCLC Cell Survival and Cisplatin Resistance. Cells 2023; 12:cells12030405. [PMID: 36766747 PMCID: PMC9913475 DOI: 10.3390/cells12030405] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/15/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023] Open
Abstract
Cisplatin is a platinum agent used in the treatment of non-small cell lung cancer (NSCLC). Much remains unknown regarding the basic operative mechanisms underlying cisplatin resistance in NSCLC. In this study, we found that phosphorylation of IGFBP-3 by CK2 (P-IGFBP-3) decreased its binding to hyaluronan (HA) but not to IGF-1 and rendered the protein less effective at reducing cell viability or increasing apoptosis than the non-phosphorylated protein with or without cisplatin in the human NSCLC cell lines, A549 and H1299. Our data suggest that blocking CD44 signaling augmented the effects of cisplatin and that IGFBP-3 was more effective at inhibiting HA-CD44 signaling than P-IGFBP-3. Blocking CK2 activity and HA-CD44 signaling increased cisplatin sensitivity and more effectively blocked the PI3K and AKT activities and the phospho/total NFκB ratio and led to increased p53 activation in A549 cells. Increased cell sensitivity to cisplatin was observed upon co-treatment with inhibitors targeted against PI3K, AKT, and NFκB while blocking p53 activity decreased A549 cell sensitivity to cisplatin. Our findings shed light on a novel mechanism employed by CK2 in phosphorylating IGFBP-3 and increasing cisplatin resistance in NSCLC. Blocking phosphorylation of IGFBP-3 by CK2 may be an effective strategy to increase NSCLC sensitivity to cisplatin.
Collapse
|
121
|
Bickel MA, Csik B, Gulej R, Ungvari A, Nyul-Toth A, Conley SM. Cell non-autonomous regulation of cerebrovascular aging processes by the somatotropic axis. Front Endocrinol (Lausanne) 2023; 14:1087053. [PMID: 36755922 PMCID: PMC9900125 DOI: 10.3389/fendo.2023.1087053] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/04/2023] [Indexed: 01/24/2023] Open
Abstract
Age-related cerebrovascular pathologies, ranging from cerebromicrovascular functional and structural alterations to large vessel atherosclerosis, promote the genesis of vascular cognitive impairment and dementia (VCID) and exacerbate Alzheimer's disease. Recent advances in geroscience, including results from studies on heterochronic parabiosis models, reinforce the hypothesis that cell non-autonomous mechanisms play a key role in regulating cerebrovascular aging processes. Growth hormone (GH) and insulin-like growth factor 1 (IGF-1) exert multifaceted vasoprotective effects and production of both hormones is significantly reduced in aging. This brief overview focuses on the role of age-related GH/IGF-1 deficiency in the development of cerebrovascular pathologies and VCID. It explores the mechanistic links among alterations in the somatotropic axis, specific macrovascular and microvascular pathologies (including capillary rarefaction, microhemorrhages, impaired endothelial regulation of cerebral blood flow, disruption of the blood brain barrier, decreased neurovascular coupling, and atherogenesis) and cognitive impairment. Improved understanding of cell non-autonomous mechanisms of vascular aging is crucial to identify targets for intervention to promote cerebrovascular and brain health in older adults.
Collapse
Affiliation(s)
- Marisa A. Bickel
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Boglarka Csik
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Rafal Gulej
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Anna Ungvari
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- International Training Program in Geroscience, Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Adam Nyul-Toth
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- International Training Program in Geroscience, Department of Public Health, Semmelweis University, Budapest, Hungary
- Institute of Biophysics, Biological Research Centre, Eötvös Lorand Research Network (ELKH), Szeged, Hungary
| | - Shannon M. Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
122
|
Proteins Found in the Triple-Negative Breast Cancer Secretome and Their Therapeutic Potential. Int J Mol Sci 2023; 24:ijms24032100. [PMID: 36768435 PMCID: PMC9916912 DOI: 10.3390/ijms24032100] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
The cancer secretome comprises factors secreted by tumors, including cytokines, growth factors, proteins from the extracellular matrix (ECM), proteases and protease inhibitors, membrane and extracellular vesicle proteins, peptide hormones, and metabolic proteins. Secreted proteins provide an avenue for communication with other tumor cells and stromal cells, and these in turn promote tumor growth and progression. Breast cancer is the most commonly diagnosed cancer in women in the US and worldwide. Triple-negative breast cancer (TNBC) is characterized by its aggressiveness and its lack of expression of the estrogen receptor (ER), progesterone receptor (PR), and HER2, making it unable to be treated with therapies targeting these protein markers, and leaving patients to rely on standard chemotherapy. In order to develop more effective therapies against TNBC, researchers are searching for targetable molecules specific to TNBC. Proteins in the TNBC secretome are involved in wide-ranging cancer-promoting processes, including tumor growth, angiogenesis, inflammation, the EMT, drug resistance, invasion, and development of the premetastatic niche. In this review, we catalog the currently known proteins in the secretome of TNBC tumors and correlate these secreted molecules with potential therapeutic opportunities to facilitate translational research.
Collapse
|
123
|
Vaezi MA, Eghtedari AR, Safizadeh B, Babaheidarian P, Salimi V, Adjaminezhad-Fard F, Yarahmadi S, Mirzaei A, Rahbar M, Tavakoli-Yaraki M. Evaluating the local expression pattern of IGF-1R in tumor tissues and the circulating levels of IGF-1, IGFBP-1, and IGFBP-3 in the blood of patients with different primary bone tumors. Front Oncol 2023; 12:1096438. [PMID: 36713521 PMCID: PMC9880312 DOI: 10.3389/fonc.2022.1096438] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 12/13/2022] [Indexed: 01/14/2023] Open
Abstract
Introduction The present study tried to provide insights into the expression pattern and diagnostic significance of the IGF-1 axis main mediators in three main primary bone tumor types with different degrees of severity. Methods The real-time qRT-PCR (to analyze IGF-1R gene expression), the immunohistochemistry (to measure IGF-1R protein), and the ELISA assay (to assess the circulating level of IGF-1, IGFBP-1, and IGFBP-3) were applied to confirm this hypothesis. A total number of 180 bone tissues (90 tumors and 90 noncancerous adjacent tissues) and 120 blood samples drained from 90 patients with bone tumors and 30 healthy controls were enrolled in the study. The association of insulin-like growth factor (IGF)-1 axis expression pattern with the patient's clinical pathological characteristics and tumor aggressive features, the diagnostic and predictive values were assessed for all tumor groups. Results A significantly elevated level of IGF-1R gene and protein was detected in bone tumors compared to the noncancerous bone tissues that were prominent in osteosarcoma and Ewing sarcoma compared to the GCT group. The positive association of the IGF-1R gene and protein level with tumor grade, metastasis, and recurrence was detected in the osteosarcoma and Ewing sarcoma groups. The circulating level of IGF-1, IGFPB-1, and IGFBP-3 were increased in osteosarcoma and Ewing sarcoma and GCT groups that were correlated significantly to the tumor severity. The ability of the IGF-1 axis to discriminate between bone tumors also malignant and benign tumors was considerable. Discussion In summary, our data suggested that IGF-1R, IGF-1, IGFBP-1, and IGFBP-3 levels are associated with bone tumor malignancy, metastasis, and recurrence that might serve as biomarkers for osteosarcoma and Ewing sarcoma recurrence.
Collapse
Affiliation(s)
- Mohammad Amin Vaezi
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Reza Eghtedari
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Banafsheh Safizadeh
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Pegah Babaheidarian
- Department of Pathology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Vahid Salimi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Adjaminezhad-Fard
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sahar Yarahmadi
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Mirzaei
- Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mahtab Rahbar
- Department of Pathology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Tavakoli-Yaraki
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran,*Correspondence: Masoumeh Tavakoli-Yaraki, ;
| |
Collapse
|
124
|
Nuñez P, Arguelles J, Perillan C. Effects of short-term exposure to low doses of bisphenol A on cellular senescence in the adult rat kidney. Histochem Cell Biol 2023; 159:453-460. [PMID: 36622388 DOI: 10.1007/s00418-022-02178-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2022] [Indexed: 01/10/2023]
Abstract
Bisphenol A (BPA) is one of the primary chemicals produced by volume worldwide. Extensive literature has raised many concerns about its possible involvement in the pathogenesis of kidney diseases, but its contribution has not been extensively studied. During cellular senescence, the interference of lipofuscin with cellular functions promotes further senescence, causing cellular malfunction. Insulin-like growth factor-1 (IGF-1) plays an important protective role in the setting of kidney injury. The goal of the present work was to evaluate the effects of short-term treatment with low doses of BPA on cellular senescence in adult rat kidneys. Male Wistar rats were injected with vehicle (CONTROL group) or 50 or 500 μg/kg/day of BPA for 1 week (BPA50 and BPA500 groups, respectively). The kidneys were fixed in 4% buffered formaldehyde and embedded in paraffin. Immunohistochemical analyses were performed, and an immunoreactive score (IRS) was calculated. Lipofuscin autofluorescence was used for the study of cellular senescence. The renal cortex showed diffuse autofluorescent lipofuscin signal in the proximal convoluted tubules (PCTs) of males in the BPA50-treated (weak intensity) and BPA500-treated (strong intensity) groups, but not in CONTROL males. Labeling of cortical PCTs with anti-IGF-1 antibodies showed an IRS of 0 in the CONTROL group, but IRSs of 4 and 6 in the BPA50- and BPA500-treated groups, respectively. The present results suggest that low, "safe" doses of BPA induce renal injury, as measured by histological signs of renal changes, increased cellular senescence, and activation of cellular repair systems in PCTs.
Collapse
Affiliation(s)
- Paula Nuñez
- Departamento de Biología Funcional, Área de Fisiología, Facultad de Medicina y Ciencias de la Salud, Universidad de Oviedo, Julián Claveria s/n, CP:33006, Oviedo, Asturias, Spain.
| | - Juan Arguelles
- Departamento de Biología Funcional, Área de Fisiología, Facultad de Medicina y Ciencias de la Salud, Universidad de Oviedo, Julián Claveria s/n, CP:33006, Oviedo, Asturias, Spain
| | - Carmen Perillan
- Departamento de Biología Funcional, Área de Fisiología, Facultad de Medicina y Ciencias de la Salud, Universidad de Oviedo, Julián Claveria s/n, CP:33006, Oviedo, Asturias, Spain
| |
Collapse
|
125
|
Krentz AJ. Classic endocrine disorders: implications for cardiovascular disease. CARDIOVASCULAR ENDOCRINOLOGY AND METABOLISM 2023:233-270. [DOI: 10.1016/b978-0-323-99991-5.00014-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
126
|
Araya P, Kinning KT, Coughlan C, Smith KP, Granrath RE, Enriquez-Estrada BA, Worek K, Sullivan KD, Rachubinski AL, Wolter-Warmerdam K, Hickey F, Galbraith MD, Potter H, Espinosa JM. IGF1 deficiency integrates stunted growth and neurodegeneration in Down syndrome. Cell Rep 2022; 41:111883. [PMID: 36577365 PMCID: PMC9876612 DOI: 10.1016/j.celrep.2022.111883] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 10/30/2022] [Accepted: 12/02/2022] [Indexed: 12/29/2022] Open
Abstract
Down syndrome (DS), the genetic condition caused by trisomy 21 (T21), is characterized by stunted growth, cognitive impairment, and increased risk of diverse neurological conditions. Although signs of lifelong neurodegeneration are well documented in DS, the mechanisms underlying this phenotype await elucidation. Here we report a multi-omics analysis of neurodegeneration and neuroinflammation biomarkers, plasma proteomics, and immune profiling in a diverse cohort of more than 400 research participants. We identified depletion of insulin growth factor 1 (IGF1), a master regulator of growth and brain development, as the top biosignature associated with neurodegeneration in DS. Individuals with T21 display chronic IGF1 deficiency downstream of growth hormone production, associated with a specific inflammatory profile involving elevated tumor necrosis factor alpha (TNF-α). Shorter children with DS show stronger IGF1 deficiency, elevated biomarkers of neurodegeneration, and increased prevalence of autism and other conditions. These results point to disruption of IGF1 signaling as a potential contributor to stunted growth and neurodegeneration in DS.
Collapse
Affiliation(s)
- Paula Araya
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kohl T Kinning
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Christina Coughlan
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Alzheimer's and Cognition Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Keith P Smith
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ross E Granrath
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Belinda A Enriquez-Estrada
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kayleigh Worek
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kelly D Sullivan
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Section of Developmental Biology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Angela L Rachubinski
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Section of Developmental Pediatrics, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kristine Wolter-Warmerdam
- Sie Center for Down Syndrome, Department of Pediatrics, Children's Hospital Colorado, Aurora, CO 80045, USA
| | - Francis Hickey
- Sie Center for Down Syndrome, Department of Pediatrics, Children's Hospital Colorado, Aurora, CO 80045, USA
| | - Matthew D Galbraith
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Huntington Potter
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Alzheimer's and Cognition Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Joaquin M Espinosa
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
127
|
Qin G, Park ES, Chen X, Han S, Xiang D, Ren F, Liu G, Chen H, Yuan GC, Li Z. Distinct niche structures and intrinsic programs of fallopian tube and ovarian surface epithelial cells. iScience 2022; 26:105861. [PMID: 36624845 PMCID: PMC9823228 DOI: 10.1016/j.isci.2022.105861] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 12/24/2022] Open
Abstract
Epithelial ovarian cancer (EOC) can originate from either fallopian tube epithelial (FTE) or ovarian surface epithelial (OSE) cells, but with different latencies and disease outcomes. To address the basis of these differences, we performed single cell RNA-sequencing of mouse cells isolated from the distal half of fallopian tube (FT) and surface layer of ovary. We find at the molecular level, FTE secretory stem/progenitor cells and OSE cells resemble mammary luminal progenitors and basal cells, respectively. An FT stromal subpopulation, enriched with Pdgfra + and Esr1 + cells, expresses multiple secreted factor (e.g., IGF1) and Hedgehog pathway genes and may serve as a niche for FTE cells. In contrast, Lgr5 + OSE cells express similar genes largely by themselves, raising a possibility that they serve as their own niche. The differences in intrinsic expression programs and niche organizations of FTE and OSE cells may contribute to their different courses toward the development of EOCs.
Collapse
Affiliation(s)
- Guyu Qin
- Division of Genetics, Brigham and Women’s Hospital, Boston, MA 02115, USA,Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Eun-Sil Park
- Division of Genetics, Brigham and Women’s Hospital, Boston, MA 02115, USA,Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Xueqing Chen
- Division of Genetics, Brigham and Women’s Hospital, Boston, MA 02115, USA,Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Sen Han
- Division of Genetics, Brigham and Women’s Hospital, Boston, MA 02115, USA,Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Dongxi Xiang
- Division of Genetics, Brigham and Women’s Hospital, Boston, MA 02115, USA,Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Fang Ren
- Division of Genetics, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Gang Liu
- Division of Genetics, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Huidong Chen
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Harvard School of Public Health, Boston, MA 02215, USA
| | - Guo-Cheng Yuan
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Harvard School of Public Health, Boston, MA 02215, USA
| | - Zhe Li
- Division of Genetics, Brigham and Women’s Hospital, Boston, MA 02115, USA,Department of Medicine, Harvard Medical School, Boston, MA 02115, USA,Corresponding author
| |
Collapse
|
128
|
Wang Y, Huang P, Wang BG, Murdock T, Cope L, Hsu FC, Wang TL, Shih IM. Spatial Transcriptomic Analysis of Ovarian Cancer Precursors Reveals Reactivation of IGFBP2 during Pathogenesis. Cancer Res 2022; 82:4528-4541. [PMID: 36206311 PMCID: PMC9808976 DOI: 10.1158/0008-5472.can-22-1620] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/15/2022] [Accepted: 10/03/2022] [Indexed: 01/24/2023]
Abstract
Elucidating the earliest pathogenic steps in cancer development is fundamental to improving its early detection and prevention. Ovarian high-grade serous carcinoma (HGSC), a highly aggressive cancer, mostly originates from the fallopian tube epithelium through a precursor stage, serous tubal intraepithelial carcinoma (STIC). In this study, we performed spatial transcriptomic analysis to compare STICs, carcinoma, and their matched normal fallopian tube epithelium. Several differentially expressed genes in STICs and carcinomas were involved in cancer metabolism and detected in a larger independent transcriptomic dataset of ovarian HGSCs. Among these, insulin-like growth factor binding protein-2 (IGFBP2) was found to undergo DNA hypomethylation and to be increased at the protein level in STICs. Pyrosequencing revealed an association of IGFBP2 expression with the methylation state of its proximal enhancer, and 5-azacytidine treatment increased IGFBP2 expression. In postmenopausal fallopian tubes, where most STICs are detected, IGFBP2 immunoreactivity was detected in all 38 proliferatively active STICs but was undetectable in morphologically normal tubal epithelia, including those with TP53 mutations. In premenopausal fallopian tubes, IGFBP2 expression was limited to the secretory epithelium at the proliferative phase, and estradiol treatment increased IGFBP2 expression levels. IGFBP2 knockdown suppressed the growth of IGFBP2-expressing tubal epithelial cells via inactivation of the AKT pathway. Taken together, demethylation of the proximal enhancer of IGFBP2 drives tumor development by maintaining the increased IGFBP2 required for proliferation in an otherwise estrogen-deprived, proliferation-quiescent, and postmenopausal tubal microenvironment. SIGNIFICANCE Molecular studies of the earliest precursor lesions of ovarian cancer reveal a role of IGFBP2 in propelling tumor initiation, providing new insights into ovarian cancer development.
Collapse
Affiliation(s)
- Yeh Wang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Peng Huang
- Biostatistics Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Brant G. Wang
- Department of Pathology, Inova Fairfax Hospital, Falls Church, Virginia
| | - Tricia Murdock
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Leslie Cope
- Biostatistics Division, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Fang-Chi Hsu
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| | - Tian-Li Wang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland,Department of Gynecology and Obstetrics and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ie-Ming Shih
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland,Department of Gynecology and Obstetrics and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
129
|
Larsson SC, Spyrou N, Mantzoros CS. Body fatness associations with cancer: evidence from recent epidemiological studies and future directions. Metabolism 2022; 137:155326. [PMID: 36191637 DOI: 10.1016/j.metabol.2022.155326] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 12/12/2022]
Abstract
This narrative review highlights current evidence linking greater body fatness to risk of various cancers, with focus on evidence from recent large cohort studies and pooled analyses of cohort studies as well as Mendelian randomization studies (which utilized genetic variants associated with body mass index to debrief the causal effect of higher body fatness on cancer risk). This review also provides insights into the biological mechanisms underpinning the associations. Data from both observational and Mendelian randomization studies support the associations of higher body mass index with increased risk of many cancers with the strongest evidence for digestive system cancers, including esophageal, stomach, colorectal, liver, gallbladder, and pancreatic cancer, as well as kidney, endometrial, and ovarian (weak association) cancer. Evidence from observational studies suggests that greater body fatness has contrasting effects on breast cancer risk depending on menopausal status and on prostate cancer risk depending on disease stage. Experimental and Mendelian randomization studies indicate that adiponectin, insulin, and sex hormone pathways play an important role in mediating the link between body fatness and cancer risk. The possible role of specific factors and pathways, such as other adipocytokines and hormones and the gut microbiome in mediating the associations between greater body fatness and cancer risk is yet uncertain and needs investigation in future studies. With rising prevalence of overweight and obesity worldwide, the proportion of cancer caused by excess body fatness is expected to increase. There is thus an urgent need to identify efficient ways at the individual and societal level to improve diet and physical activity patterns to reduce the burden of obesity and accompanying comorbidities, including cancer.
Collapse
Affiliation(s)
- Susanna C Larsson
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Unit of Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.
| | - Nikolaos Spyrou
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA, USA; Section of Endocrinology, VA Boston Healthcare System, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
130
|
Alonso-Gómez A, Madera D, Alonso-Gómez ÁL, Valenciano AI, Delgado MJ. Daily Rhythms in the IGF-1 System in the Liver of Goldfish and Their Synchronization to Light/Dark Cycle and Feeding Time. Animals (Basel) 2022; 12:ani12233371. [PMID: 36496892 PMCID: PMC9739714 DOI: 10.3390/ani12233371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
The relevance of the insulin-like growth factor-1 (IGF-1) system in several physiological processes is well-known in vertebrates, although little information about their temporal organization is available. This work aims to investigate the possible rhythmicity of the different components of the IGF-1 system (igf-1, the igf1ra and igf1rb receptors and the paralogs of its binding proteins IGFBP1 and IGFBP2) in the liver of goldfish. In addition, we also study the influence of two environmental cues, the light/dark cycle and feeding time, as zeitgebers. The hepatic igf-1 expression showed a significant daily rhythm with the acrophase prior to feeding time, which seems to be strongly dependent on both zeitgebers. Only igfbp1a-b and igfbp1b-b paralogs exhibited a robust daily rhythm of expression in the liver that persists in fish held under constant darkness or randomly fed. The hepatic expression of the two receptor subtypes did not show daily rhythms in any of the experimental conditions. Altogether these results point to the igf-1, igfbp1a-b, and igfbp1b-b as clock-controlled genes, supporting their role as putative rhythmic outputs of the hepatic oscillator, and highlight the relevance of mealtime as an external cue for the 24-h rhythmic expression of the IGF-1 system in fish.
Collapse
|
131
|
Abu El-Makarem MA, Kamel MF, Mohamed AA, Ali HA, Mohamed MR, Mohamed AEDM, El-Said AM, Ameen MG, Hassnine AA, Hassan HA. Down-regulation of hepatic expression of GHR/STAT5/IGF-1 signaling pathway fosters development and aggressiveness of HCV-related hepatocellular carcinoma: Crosstalk with Snail-1 and type 2 transforming growth factor-beta receptor. PLoS One 2022; 17:e0277266. [PMID: 36374927 PMCID: PMC9662744 DOI: 10.1371/journal.pone.0277266] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 10/24/2022] [Indexed: 11/16/2022] Open
Abstract
Background and aims So far, few clinical trials are available concerning the role of growth hormone receptor (GHR)/signal transducer and activator of transcription 5 (STAT5)/insulin like growth factor-1 (IGF-1) axis in hepatocarcinogenesis. The aim of this study was to evaluate the hepatic expression of GHR/STAT5/IGF-1 signaling pathway in hepatocellular carcinoma (HCC) patients and to correlate the results with the clinico-pathological features and disease outcome. The interaction between this signaling pathway and some inducers of epithelial-mesenchymal transition (EMT), namely Snail-1 and type 2 transforming growth factor-beta receptor (TGFBR2) was studied too. Material and methods A total of 40 patients with HCV-associated HCC were included in this study. They were compared to 40 patients with HCV-related cirrhosis without HCC, and 20 healthy controls. The hepatic expression of GHR, STAT5, IGF-1, Snail-1 and TGFBR2 proteins were assessed by immunohistochemistry. Results Compared with cirrhotic patients without HCC and healthy controls, cirrhotic patients with HCC had significantly lower hepatic expression of GHR, STAT5, and IGF-1proteins. They also displayed significantly lower hepatic expression of TGFBR2, but higher expression of Snail-1 versus the non-HCC cirrhotic patients and controls. Serum levels of alpha-fetoprotein (AFP) showed significant negative correlations with hepatic expression of GHR (r = -0.31; p = 0.029) and STAT5 (r = -0.29; p = 0.04). Hepatic expression of Snail-1 also showed negative correlations with GHR, STAT5, and IGF-1 expression (r = -0.55, p = 0.02; r = -0.472, p = 0.035, and r = -0.51, p = 0.009, respectively), whereas, hepatic expression of TGFBR2 was correlated positively with the expression of all these proteins (r = 0.47, p = 0.034; 0.49, p = 0.023, and r = 0.57, p<0.001, respectively). Moreover, we reported that decreased expression of GHR was significantly associated with serum AFP level>100 ng/ml (p = 0.048), increased tumor size (p = 0.02), vascular invasion (p = 0.002), and advanced pathological stage (p = 0.01). Similar significant associations were found between down-regulation of STAT5 expression and AFP level > 100 ng/ml (p = 0.006), vascular invasion (p = 0.009), and advanced tumor stage (p = 0.007). Also, attenuated expression of IGF-1 showed a significant association with vascular invasion (p < 0.001). Intriguingly, we detected that lower expression of GHR, STAT5 and IGF-1 were considered independent predictors for worse outcome in HCC. Conclusion Decreased expression of GHR/STAT5/IGF-1 signaling pathway may have a role in development, aggressiveness, and worse outcome of HCV-associated HCC irrespective of the liver functional status. Snail-1 and TGFBR2 as inducers of EMT may be key players. However, large prospective multicenter studies are needed to validate these results.
Collapse
Affiliation(s)
- Mona A. Abu El-Makarem
- Department of Internal Medicine, School of Medicine, Minia University, Minia, Egypt
- * E-mail:
| | - Mariana F. Kamel
- Department of Pathology, School of Medicine, Minia University, Minia, Egypt
- Department of Pathology, Minia Oncology Center, Minia, Egypt
| | - Ahmed A. Mohamed
- Department of Internal Medicine, School of Medicine, Minia University, Minia, Egypt
| | - Hisham A. Ali
- Department of Internal Medicine, School of Medicine, Minia University, Minia, Egypt
| | - Mahmoud R. Mohamed
- Department of Internal Medicine, School of Medicine, Minia University, Minia, Egypt
| | | | - Ahmed M. El-Said
- Department of Internal Medicine, School of Medicine, Minia University, Minia, Egypt
| | - Mahmoud G. Ameen
- Department of Pathology, South Egypt Cancer Institute, Assuit University, Assuit, Egypt
| | - Alshymaa A. Hassnine
- Department of Tropical Medicine and Gastroenterology, School of Medicine, Minia University, Minia, Egypt
| | - Hatem A. Hassan
- Department of Internal Medicine, School of Medicine, Minia University, Minia, Egypt
| |
Collapse
|
132
|
IGF2BP2 promotes cancer progression by degrading the RNA transcript encoding a v-ATPase subunit. Proc Natl Acad Sci U S A 2022; 119:e2200477119. [PMID: 36322753 PMCID: PMC9659396 DOI: 10.1073/pnas.2200477119] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
IGF2BP2 binds to a number of RNA transcripts and has been suggested to function as a tumor promoter, although little is known regarding the mechanisms that regulate its roles in RNA metabolism. Here we demonstrate that IGF2BP2 binds to the 3' untranslated region of the transcript encoding ATP6V1A, a catalytic subunit of the vacuolar ATPase (v-ATPase), and serves as a substrate for the NAD+-dependent deacetylase SIRT1, which regulates how IGF2BP2 affects the stability of the ATP6V1A transcript. When sufficient levels of SIRT1 are expressed, it catalyzes the deacetylation of IGF2BP2, which can bind to the ATP6V1A transcript but does not mediate its degradation. However, when SIRT1 expression is low, the acetylated form of IGF2BP2 accumulates, and upon binding to the ATP6V1A transcript recruits the XRN2 nuclease, which catalyzes transcript degradation. Thus, the stability of the ATP6V1A transcript is significantly compromised in breast cancer cells when SIRT1 expression is low or knocked-down. This leads to a reduction in the expression of functional v-ATPase complexes in cancer cells and to an impairment in their lysosomal activity, resulting in the production of a cellular secretome consisting of increased numbers of exosomes enriched in ubiquitinated protein cargo and soluble hydrolases, including cathepsins, that together combine to promote tumor cell survival and invasiveness. These findings describe a previously unrecognized role for IGF2BP2 in mediating the degradation of a messenger RNA transcript essential for lysosomal function and highlight how its sirtuin-regulated acetylation state can have significant biological and disease consequences.
Collapse
|
133
|
Kim SM, Lee JY, Chang GT, Hwangbo SM, Lee SH. The 12 weeks, randomized, double-blinded, placebo-controlled human study to evaluate the effectiveness and safety of KGC deer antlers on the growth of children. Medicine (Baltimore) 2022; 101:e28397. [PMID: 36316843 PMCID: PMC9622584 DOI: 10.1097/md.0000000000031567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Cervi parvum cornu is a dried section of the young horns of Cervus nippon Temminck, Cervus elaphus Linnaeus, or Cervus canadensis Erxleben. It is a representative yang-tonifying medicine that warms the viscera and bowels, activates the overall physiological function, and has effects such as tonifying kidney yang, replenishing essence and blood, and strengthening muscles and bones. OBJECTIVE This clinical study is aimed to evaluate the effectiveness of deer antler extract on child growth. METHODS This clinical trial is designed to be conducted on 100 children aged 3 to 12 years for 12 weeks (Trial registration code: KCT0007386). We will evaluate changes in height, height percentile, standard deviation score of height, weight, body mass index, waist circumference, hip circumference, bone age, predicted adult height estimated by bone age, human growth hormone level, insulin-like growth factor-1 (IGF-1) level, IGF-binding protein-3 (IGFBP-3) level, IGF-1/IGFBP-3 ratio, and estradiol level. Additionally, we also will evaluate the adverse events during the study.
Collapse
Affiliation(s)
- Sang Min Kim
- Department of Korean Pediatrics, College of Korean Medicine Kyung Hee University, Kyung Hee University Medical Center, Dongdaemun-gu. Seoul, Republic of Korea
| | - Jin Yong Lee
- Korea Institute of Korean Medicine, Yuseong-gu, Daejeon, Republic of Korea
| | - Gyu Tae Chang
- Department of Korean Pediatrics, College of Korean Medicine Kyung Hee University, Kyung Hee University Hospital at Gangdong, Gangdong-gu, Seoul, Republic of Korea
| | - Su Min Hwangbo
- Department of Clinical Korean Medicine, College of Korean Medicine, Kyung Hee University, Dongdaemun-gu, Seoul, Republic of Korea
| | - Sun Haeng Lee
- Department of Korean Pediatrics, College of Korean Medicine Kyung Hee University, Kyung Hee University Medical Center, Dongdaemun-gu, Seoul, Republic of Korea
- *Correspondence: Sun Haeng Lee, Department of Korean Pediatrics, College of Korean Medicine Kyung Hee University, Kyung Hee University Medical Center, Dongdaemun-gu, Seoul, Republic of Korea (e-mail: )
| |
Collapse
|
134
|
Nagaraj K, Sarfstein R, Laron Z, Werner H. Long-Term IGF1 Stimulation Leads to Cellular Senescence via Functional Interaction with the Thioredoxin-Interacting Protein, TXNIP. Cells 2022; 11:cells11203260. [PMID: 36291127 PMCID: PMC9601129 DOI: 10.3390/cells11203260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 12/05/2022] Open
Abstract
The growth hormone (GH)–insulin-like growth factor-1 (IGF1) signaling pathway plays a major role in orchestrating cellular interactions, metabolism, growth and aging. Studies from worms to mice showed that downregulated activity of the GH/IGF1 pathway could be beneficial for the extension of lifespan. Laron syndrome (LS) is an inherited autosomal recessive disorder caused by molecular defects of the GH receptor (GHR) gene, leading to congenital IGF1 deficiency. Life-long exposure to minute endogenous IGF1 levels in LS is associated with low stature as well as other endocrine and metabolic deficits. Epidemiological surveys reported that patients with LS have a reduced risk of developing cancer. Studies conducted on LS-derived lymphoblastoid cells led to the identification of a novel link between IGF1 and thioredoxin-interacting protein (TXNIP), a multifunctional mitochondrial protein. TXNIP is highly expressed in LS patients and plays a critical role in cellular redox regulation by thioredoxin. Given that IGF1 affects the levels of TXNIP under various stress conditions, including high glucose and oxidative stress, we hypothesized that the IGF1–TXNIP axis plays an essential role in helping maintain a physiological balance in cellular homeostasis. In this study, we show that TXNIP is vital for the cell fate choice when cells are challenged by various stress signals. Furthermore, prolonged IGF1 treatment leads to the establishment of a premature senescence phenotype characterized by a unique senescence network signature. Combined IGF1/TXNIP-induced premature senescence can be associated with a typical secretory inflammatory phenotype that is mediated by STAT3/IL-1A signaling. Finally, these mechanistic insights might help with the understanding of basic aspects of IGF1-related pathologies in the clinical setting.
Collapse
Affiliation(s)
- Karthik Nagaraj
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Rive Sarfstein
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Zvi Laron
- Endocrinology and Diabetes Research Unit, Schneider Children’s Medical Center, Petah Tikva 49292, Israel
| | - Haim Werner
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
- Correspondence: ; Tel.: +972-3-6408542; Fax: +972-3-6405055
| |
Collapse
|
135
|
Zhang Y, Tian K, Chen G. Replenishment of vitamin A for 7 days partially restored hepatic gene expressions altered by its deficiency in rats. Front Nutr 2022; 9:999323. [PMID: 36276822 PMCID: PMC9583942 DOI: 10.3389/fnut.2022.999323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/16/2022] [Indexed: 11/18/2022] Open
Abstract
We investigated the effects of vitamin A (VA) status on metabolism of Zucker rats with different genders and genotypes, and of short-term refeeding of a VA sufficient (VAS) diet on VA deficient (VAD) animals. First, male and female Zucker lean (ZL) and fatty (ZF) rats at weaning were fed a VAD or VAS diet for 8 weeks. Second, male VAD ZL rats were fed a VAS diet for 3 (VAD-VAS3d) or 7 (VAD-VAS7d) days. The body weight (BW), blood parameters, and hepatic expressions of genes for metabolism were determined. VA deficiency reduced BW gain in ZL and ZF rats of either gender. VAD ZL rats had lower plasma glucose, insulin, and leptin levels than VAS ZL rats. VAD-VAS3d and VAD-VAS7d rats had higher plasma glucose, insulin, and leptin levels than that in the VAD rats. The hepatic mRNA levels of Gck, Cyp26a1, Srebp-1c, Igf1, Rarb, Rxra, Rxrg, Pparg, and Ppard were lowered by VA deficiency. Refeeding of the VAS diet for 3 days restored the Gck and Cyp26a1 expressions, and for 7 days restored the Gck, Cyp26a1, Igf1, and Rxrb expressions significantly. The 7-day VA replenishment partially restored the hepatic gene expressions and metabolic changes in VAD ZL rats.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Gastroenterology, Affiliated Puren Hospital of Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Kui Tian
- Department of Radiology, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Guoxun Chen
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, TN, United States
| |
Collapse
|
136
|
Tondo-Steele K, McLean K. The “Sweet Spot” of Targeting Tumor Metabolism in Ovarian Cancers. Cancers (Basel) 2022; 14:cancers14194696. [PMID: 36230617 PMCID: PMC9562887 DOI: 10.3390/cancers14194696] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
The objective of this review is to explore the metabolomic environment of epithelial ovarian cancer that contributes to chemoresistance and to use this knowledge to identify possible targets for therapeutic intervention. The Warburg effect describes increased glucose uptake and lactate production in cancer cells. In ovarian cancer, we require a better understanding of how cancer cells reprogram their glycogen metabolism to overcome their nutrient deficient environment and become chemoresistant. Glucose metabolism in ovarian cancer cells has been proposed to be influenced by altered fatty acid metabolism, oxidative phosphorylation, and acidification of the tumor microenvironment. We investigate several markers of altered metabolism in ovarian cancer including hypoxia-induced factor 1, VEGF, leptin, insulin-like growth factors, and glucose transporters. We also discuss the signaling pathways involved with these biomarkers including PI3K/AKT/mTOR, JAK/STAT and OXPHOS. This review outlines potential metabolic targets to overcome chemoresistance in ovarian cancer. Continued research of the metabolic changes in ovarian cancer is needed to identify and target these alterations to improve treatment approaches.
Collapse
|
137
|
Judge RA, Sridar J, Tunyasuvunakool K, Jain R, Wang JCK, Ouch C, Xu J, Mafi A, Nile AH, Remarcik C, Smith CL, Ghosh C, Xu C, Stoll V, Jumper J, Singh AH, Eaton D, Hao Q. Structure of the PAPP-A BP5 complex reveals mechanism of substrate recognition. Nat Commun 2022; 13:5500. [PMID: 36127359 PMCID: PMC9489782 DOI: 10.1038/s41467-022-33175-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 09/03/2022] [Indexed: 11/09/2022] Open
Abstract
Insulin-like growth factor (IGF) signaling is highly conserved and tightly regulated by proteases including Pregnancy-Associated Plasma Protein A (PAPP-A). PAPP-A and its paralog PAPP-A2 are metalloproteases that mediate IGF bioavailability through cleavage of IGF binding proteins (IGFBPs). Here, we present single-particle cryo-EM structures of the catalytically inactive mutant PAPP-A (E483A) in complex with a peptide from its substrate IGFBP5 (PAPP-ABP5) and also in its substrate-free form, by leveraging the power of AlphaFold to generate a high quality predicted model as a starting template. We show that PAPP-A is a flexible trans-dimer that binds IGFBP5 via a 25-amino acid anchor peptide which extends into the metalloprotease active site. This unique IGFBP5 anchor peptide that mediates the specific PAPP-A-IGFBP5 interaction is not found in other PAPP-A substrates. Additionally, we illustrate the critical role of the PAPP-A central domain as it mediates both IGFBP5 recognition and trans-dimerization. We further demonstrate that PAPP-A trans-dimer formation and distal inter-domain interactions are both required for efficient proteolysis of IGFBP4, but dispensable for IGFBP5 cleavage. Together the structural and biochemical studies reveal the mechanism of PAPP-A substrate binding and selectivity.
Collapse
Affiliation(s)
| | - Janani Sridar
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | | | - Rinku Jain
- AbbVie, 1 North Waukegan Road, North Chicago, IL, USA
| | - John C K Wang
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | - Christna Ouch
- Department of Biochemistry & Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jun Xu
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | | | - Aaron H Nile
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | | | | | - Crystal Ghosh
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | - Chen Xu
- Department of Biochemistry & Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Vincent Stoll
- AbbVie, 1 North Waukegan Road, North Chicago, IL, USA
| | | | - Amoolya H Singh
- Calico Life Sciences LLC, South San Francisco, CA, USA
- GRAIL, Menlo Park, CA, USA
| | - Dan Eaton
- Calico Life Sciences LLC, South San Francisco, CA, USA.
| | - Qi Hao
- Calico Life Sciences LLC, South San Francisco, CA, USA.
| |
Collapse
|
138
|
Mahapatra S, Sharma MVR, Brownson B, Gallicano VE, Gallicano GI. Cardiac inducing colonies halt fibroblast activation and induce cardiac/endothelial cells to move and expand via paracrine signaling. Mol Biol Cell 2022; 33:ar96. [PMID: 35653297 DOI: 10.1091/mbc.e22-02-0032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Myocardial fibrosis (MF), a common event that develops after myocardial infarction, initially is a reparative process but eventually leads to heart failure and sudden cardiac arrest. In MF, the infarct area is replaced by a collagenous-based scar induced by "excessive" collagen deposition from activated cardiac fibroblasts. The scar prevents ventricular wall thinning; however, over time it expands to noninfarcted myocardium. Therapies to prevent fibrosis include reperfusion, anti-fibrotic agents, and ACE inhibitors. Paracrine factor (PF)/stem cell research has recently gained significance as a therapy. We consistently find that cardiac inducing colonies (CiCs) (derived from human germline pluripotent stem cells) secrete PFs at physiologically relevant concentrations that suppress cardiac fibroblast activation and excessive extracellular matrix protein secretion. These factors also affect human cardiomyocytes and endothelial cells by inducing migration/proliferation of both populations into a myocardial wound model. Finally, CiC factors modulate matrix turnover and proinflammation. Taking the results together, we show that CiCs could help tip the balance from fibrosis toward repair.
Collapse
Affiliation(s)
- Samiksha Mahapatra
- Department of Biochemistry and Molecular Biology, Georgetown University Medical Center, Washington, DC 20057-145
| | | | - Breanna Brownson
- Department of Biochemistry and Molecular Biology, Georgetown University Medical Center, Washington, DC 20057-145.,Rye High School, Rye, NY 10580
| | - Vaughn E Gallicano
- Department of Biochemistry and Molecular Biology, Georgetown University Medical Center, Washington, DC 20057-145.,Thomas Edison High School, Alexandria, VA 22310
| | - G Ian Gallicano
- Department of Biochemistry and Molecular Biology, Georgetown University Medical Center, Washington, DC 20057-145
| |
Collapse
|
139
|
CT-IGFBP-4 as a Predictive Novel Biomarker of Ischemic Cardiovascular Events and Mortality: A Systematic Review. J Interv Cardiol 2022; 2022:1816504. [PMID: 36051380 PMCID: PMC9420648 DOI: 10.1155/2022/1816504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 11/17/2022] Open
Abstract
Methods The electronic databases PubMed, medRxiv, ScienceDirect, and Google Scholar were searched for relevant literature from inception to the 10th of December, 2021. Thus, retrieved literature was screened by title and abstract, followed by full-text screening based on the eligibility criteria. The risk of bias was accessed using the quality in prognostic studies (QUIPSs) tool. The data on cardiovascular outcomes about CT-IGFBP-4 levels were studied and the results were synthesized. Results Five studies with a total of 1,417 participants were included in our study. The studies reported a low risk of bias. The mean age of the participants was 66.14 and more than 65% were males. Elevated CT-IGFBP-4 levels were associated with poor cardiovascular outcomes and increased mortality in severely ill patients. In contrast, there were no significant findings in the case of stable patients. Sandwich ELISA using lithium-heparin plasma provided a better detection limit of 0.15 ng/ml, low cross-reactivity (<2%), and generated linear results between 12 and 500 ng/ml. Conclusion CT-IGFBP-4 is an efficient biomarker for the prediction of MACE and mortality in patients with severe ischemic cardiovascular events.
Collapse
|
140
|
Yesbek Kaymaz A, Kostel Bal S, Bora G, Talim B, Ozon A, Alikasifoglu A, Topaloglu H, Erdem Yurter H. Alterations in insulin-like growth factor system in spinal muscular atrophy. Muscle Nerve 2022; 66:631-638. [PMID: 36050898 DOI: 10.1002/mus.27715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 08/19/2022] [Accepted: 08/26/2022] [Indexed: 11/10/2022]
Abstract
INTRODUCTION/AIMS Spinal muscular atrophy (SMA) is an inherited neuromuscular disease caused by survival motor neuron (SMN) protein deficiency. Insulin-like growth factor-I (IGF-I) is a myotrophic and neurotrophic factor that has been reported to be dysregulated in in vivo SMA model systems. However, detailed analyses of the IGF-I system in SMA patients are missing. In this study, we analyzed the components of the IGF-I system in serum and archived skeletal muscle biopsies of SMA patients. METHODS Serum IGF-I, IGF binding protein (IGFBP)-3, and IGFBP-5 levels were analyzed in 11 SMA patients and 13 healthy children by immunoradiometric and enzyme-linked immunosorbent assays. The expression of IGF-I, IGF-I receptor, and IGFBP-5 proteins was investigated by immunofluorescence analysis in the archived skeletal muscle biopsies of 9 SMA patients, 6 patients with non-SMA-related neuromuscular disease and atrophic fibers in muscle biopsy, and 4 controls. RESULTS A significant decrease in IGF-I levels (mean ± SD: -1.39 ± 1.46 vs. 0.017 ± 0.83, p = 0.02) and increase in IGFBP-5 levels (mean ± SD: 2358.5 ± 1617.4 ng/mL vs. 1003.4 ± 274.3 ng/mL, p=0.03) were detected in serum samples of SMA patients compared to healthy controls. Increased expression of IGF-I, IGF-I receptor, and IGFBP-5 was detected in skeletal muscle biopsies of SMA patients and non-SMA neuromuscular diseases, indicating atrophy-specific alterations in the pathway. DISCUSSION Our findings suggested that the components of the IGF-I system are altered in SMA patients at both the systemic and tissue-specific levels.
Collapse
Affiliation(s)
- Ayse Yesbek Kaymaz
- Department of Medical Biology, Hacettepe University, Faculty of Medicine, Ankara, Turkey
| | - Sevgi Kostel Bal
- Department of Pediatrics, Neurology Unit, Hacettepe University, Faculty of Medicine, Ankara, Turkey
| | - Gamze Bora
- Department of Medical Biology, Hacettepe University, Faculty of Medicine, Ankara, Turkey
| | - Beril Talim
- Department of Pediatrics, Pediatric Pathology Unit, Hacettepe University, Faculty of Medicine, Ankara, Turkey
| | - Alev Ozon
- Department of Pediatrics, Division of Pediatric Endocrinology, Hacettepe University, Faculty of Medicine, Ankara, Turkey
| | - Ayfer Alikasifoglu
- Department of Pediatrics, Division of Pediatric Endocrinology, Hacettepe University, Faculty of Medicine, Ankara, Turkey
| | - Haluk Topaloglu
- Department of Pediatrics, Neurology Unit, Hacettepe University, Faculty of Medicine, Ankara, Turkey
| | - Hayat Erdem Yurter
- Department of Medical Biology, Hacettepe University, Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
141
|
Jaipuria G, Shet D, Malik S, Swain M, Atreya HS, Galea CA, Slomiany MG, Rosenzweig SA, Forbes BE, Norton RS, Mondal S. IGF-dependent dynamic modulation of a protease cleavage site in the intrinsically disordered linker domain of human IGFBP2. Proteins 2022; 90:1732-1743. [PMID: 35443068 PMCID: PMC9357107 DOI: 10.1002/prot.26350] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/02/2022] [Accepted: 03/22/2022] [Indexed: 12/29/2022]
Abstract
Functional regulation via conformational dynamics is well known in structured proteins but less well characterized in intrinsically disordered proteins and their complexes. Using NMR spectroscopy, we have identified a dynamic regulatory mechanism in the human insulin-like growth factor (IGF) system involving the central, intrinsically disordered linker domain of human IGF-binding protein-2 (hIGFBP2). The bioavailability of IGFs is regulated by the proteolysis of IGF-binding proteins. In the case of hIGFBP2, the linker domain (L-hIGFBP2) retains its intrinsic disorder upon binding IGF-1, but its dynamics are significantly altered, both in the IGF binding region and distantly located protease cleavage sites. The increase in flexibility of the linker domain upon IGF-1 binding may explain the IGF-dependent modulation of proteolysis of IGFBP2 in this domain. As IGF homeostasis is important for cell growth and function, and its dysregulation is a key contributor to several cancers, our findings open up new avenues for the design of IGFBP analogs inhibiting IGF-dependent tumors.
Collapse
Affiliation(s)
- Garima Jaipuria
- NMR Research Centre, Indian Institute of Science, Bangalore-560012, India
| | - Divya Shet
- NMR Research Centre, Indian Institute of Science, Bangalore-560012, India,Nanobiophysics lab, Raman Research Institute, Sadashivnagar, Bangalore-80, India
| | - Shahid Malik
- NMR Research Centre, Indian Institute of Science, Bangalore-560012, India
| | - Monalisa Swain
- NMR Research Centre, Indian Institute of Science, Bangalore-560012, India,Frederick National Laboratory for Cancer Research, Maryland-21701, USA
| | | | - Charles A. Galea
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Parkville 3052, Australia
| | - Mark G. Slomiany
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston SC 29425, USA
| | - Steven A. Rosenzweig
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston SC 29425, USA
| | - Briony E. Forbes
- Flinders Health and Medical Research Institute, Flinders University, SA 5042, Australia
| | - Raymond S. Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Parkville 3052, Australia,ARC Centre for Fragment-Based Design, Monash University, Parkville 3052, Australia
| | - Somnath Mondal
- NMR Research Centre, Indian Institute of Science, Bangalore-560012, India,Univ. Bordeaux, Institut Européen de Chimie et Biologie and INSERM U1212, ARNA Laboratory, 2 rue Robert Escarpit, 33607 Pessac Cedex, Bordeaux, France
| |
Collapse
|
142
|
Stremming J, White A, Donthi A, Batt DG, Hetrick B, Chang EI, Wesolowski SR, Seefeldt MB, McCurdy CE, Rozance PJ, Brown LD. Sheep recombinant IGF-1 promotes organ-specific growth in fetal sheep. Front Physiol 2022; 13:954948. [PMID: 36091374 PMCID: PMC9452821 DOI: 10.3389/fphys.2022.954948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/28/2022] [Indexed: 01/14/2023] Open
Abstract
IGF-1 is a critical fetal growth-promoting hormone. Experimental infusion of an IGF-1 analog, human recombinant LR3 IGF-1, into late gestation fetal sheep increased fetal organ growth and skeletal muscle myoblast proliferation. However, LR3 IGF-1 has a low affinity for IGF binding proteins (IGFBP), thus reducing physiologic regulation of IGF-1 bioavailability. The peptide sequences for LR3 IGF-1 and sheep IGF-1 also differ. To overcome these limitations with LR3 IGF-1, we developed an ovine (sheep) specific recombinant IGF-1 (oIGF-1) and tested its effect on growth in fetal sheep. First, we measured in vitro myoblast proliferation in response to oIGF-1. Second, we examined anabolic signaling pathways from serial skeletal muscle biopsies in fetal sheep that received oIGF-1 or saline infusion for 2 hours. Finally, we measured the effect of fetal oIGF-1 infusion versus saline infusion (SAL) for 1 week on fetal body and organ growth, in vivo myoblast proliferation, skeletal muscle fractional protein synthetic rate, IGFBP expression in skeletal muscle and liver, and IGF-1 signaling pathways in skeletal muscle. Using this approach, we showed that oIGF-1 stimulated myoblast proliferation in vitro. When infused for 1 week, oIGF-1 increased organ growth of the heart, kidney, spleen, and adrenal glands and stimulated skeletal myoblast proliferation compared to SAL without increasing muscle fractional synthetic rate or hindlimb muscle mass. Hepatic and muscular gene expression of IGFBPs one to three was similar between oIGF-1 and SAL. We conclude that oIGF-1 promotes tissue and organ-specific growth in the normal sheep fetus.
Collapse
Affiliation(s)
- J Stremming
- Department of Pediatrics, Perinatal Research Facility, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - A White
- Department of Pediatrics, Perinatal Research Facility, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - A Donthi
- Gates Biomanufacturing Facility, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - DG Batt
- Gates Biomanufacturing Facility, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - B Hetrick
- Department of Human Physiology, University of Oregon, Eugene, OR, United States
| | - EI Chang
- Department of Pediatrics, Perinatal Research Facility, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - SR Wesolowski
- Department of Pediatrics, Perinatal Research Facility, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - MB Seefeldt
- Gates Biomanufacturing Facility, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - CE McCurdy
- Department of Human Physiology, University of Oregon, Eugene, OR, United States
| | - PJ Rozance
- Department of Pediatrics, Perinatal Research Facility, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - LD Brown
- Department of Pediatrics, Perinatal Research Facility, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
143
|
Hollstein T, Basolo A, Unlu Y, Ando T, Walter M, Krakoff J, Piaggi P. Effects of Short-term Fasting on Ghrelin/GH/IGF-1 Axis in Healthy Humans: The Role of Ghrelin in the Thrifty Phenotype. J Clin Endocrinol Metab 2022; 107:e3769-e3780. [PMID: 35678263 PMCID: PMC9387714 DOI: 10.1210/clinem/dgac353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Indexed: 11/19/2022]
Abstract
CONTEXT A greater decrease in 24-hour energy expenditure (24hEE) during short-term fasting is indicative of a thrifty phenotype. OBJECTIVE As ghrelin and the growth hormone (GH)/insulin-like growth factor 1 (IGF-1) axis are implicated in the regulation of energy intake and metabolism, we investigated whether ghrelin, GH, and IGF-1 concentrations mediate the fasting-induced decrease in 24hEE that characterizes thriftiness. METHODS In 47 healthy individuals, 24hEE was measured in a whole-room indirect calorimeter both during 24-hour eucaloric and fasting conditions. Plasma total ghrelin, GH, and IGF-1 concentrations were measured by enzyme-linked immunosorbent assay after an overnight fast the morning before and after each 24-hour session. RESULTS During 24-hour fasting, on average 24hEE decreased by 8.0% (P < .001), GH increased by ~5-fold (P < .001), whereas ghrelin (mean +23 pg/mL) and IGF-1 were unchanged (both P ≥ .19) despite a large interindividual variability in ghrelin change (SD 150 pg/mL). Greater fasting-induced increase in ghrelin was associated with a greater decrease in 24hEE during 24-hour fasting (r = -0.42, P = .003), such that individuals who increased ghrelin by 200 pg/mL showed an average decrease in 24hEE by 55 kcal/day. CONCLUSION Short-term fasting induced selective changes in the ghrelin/GH/IGF-1 axis, specifically a ghrelin-independent GH hypersecretion that did not translate into increased IGF-1 concentrations. Greater increase in ghrelin after 24-hour fasting was associated with greater decrease in 24hEE, indicating ghrelin as a novel biomarker of increased energy efficiency of the thrifty phenotype.
Collapse
Affiliation(s)
- Tim Hollstein
- Phoenix Epidemiology and Clinical Research Branch, Phoenix, AZ 85016, USA
- Institute of Diabetes and Clinical Metabolic Research, 24195 Kiel, Germany
| | - Alessio Basolo
- Phoenix Epidemiology and Clinical Research Branch, Phoenix, AZ 85016, USA
| | - Yigit Unlu
- Phoenix Epidemiology and Clinical Research Branch, Phoenix, AZ 85016, USA
| | - Takafumi Ando
- Phoenix Epidemiology and Clinical Research Branch, Phoenix, AZ 85016, USA
| | - Mary Walter
- Clinical Core Lab, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Jonathan Krakoff
- Phoenix Epidemiology and Clinical Research Branch, Phoenix, AZ 85016, USA
| | - Paolo Piaggi
- Correspondence: Paolo Piaggi, PhD, FTOS, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 4212 N 16th Street, Phoenix, AZ 85016, USA. or
| |
Collapse
|
144
|
Cox CL, Logan ML, Nicholson DJ, Chung AK, Rosso AA, McMillan WO, Cox RM. Species-Specific Expression of Growth-Regulatory Genes in 2 Anoles with Divergent Patterns of Sexual Size Dimorphism. Integr Org Biol 2022; 4:obac025. [PMID: 35958165 PMCID: PMC9362763 DOI: 10.1093/iob/obac025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/20/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Synopsis
Sexual size dimorphism is widespread in nature and often develops through sexual divergence in growth trajectories. In vertebrates, the growth hormone/insulin-like growth factor (GH/IGF) network is an important regulator of growth, and components of this network are often regulated in sex-specific fashion during the development of sexual size dimorphism. However, expression of the GH/IGF network is not well characterized outside of mammalian model systems, and the extent to which species differences in sexual size dimorphism are related to differences in GH/IGF network expression is unclear. To begin bridging this gap, we compared GH/IGF network expression in liver and muscle from 2 lizard congeners, one with extreme male-biased sexual size dimorphism (brown anole, Anolis sagrei), and one that is sexually monomorphic in size (slender anole, A. apletophallus). Specifically, we tested whether GH/IGF network expression in adult slender anoles resembles the highly sex-biased expression observed in adult brown anoles or the relatively unbiased expression observed in juvenile brown anoles. We found that adults of the 2 species differed significantly in the strength of sex-biased expression for several key upstream genes in the GH/IGF network, including insulin-like growth factors 1 and 2. However, species differences in sex-biased expression were minor when comparing adult slender anoles to juvenile brown anoles. Moreover, the multivariate expression of the entire GH/IGF network (as represented by the first two principal components describing network expression) was sex-biased for the liver and muscle of adult brown anoles, but not for either tissue in juvenile brown anoles or adult slender anoles. Our work suggests that species differences in sex-biased expression of genes in the GH/IGF network (particularly in the liver) may contribute to the evolution of species differences in sexual size dimorphism.
Collapse
Affiliation(s)
- Christian L Cox
- Florida International University , 11200 SW 8th St, Miami, FL 33199 , USA
- Smithsonian Tropical Research Institute , Amador Causeway, Panama City , Panama
- Georgia Southern University , 1332 Southern Dr, Statesboro, GA 30458 , USA
| | - Michael L Logan
- Smithsonian Tropical Research Institute , Amador Causeway, Panama City , Panama
- University of Nevada Reno , 1664 N Virginia St, Reno, NV 89557 , USA
| | - Daniel J Nicholson
- Smithsonian Tropical Research Institute , Amador Causeway, Panama City , Panama
- Queen Mary University , Mile End Rd, Bethnal Green, London E1 4NS , UK
- University of Texas-Arlington , 701 S Nedderman Dr. Arlington, TX 76019 , USA
| | - Albert K Chung
- Smithsonian Tropical Research Institute , Amador Causeway, Panama City , Panama
- Georgia Southern University , 1332 Southern Dr, Statesboro, GA 30458 , USA
- University of Texas-Arlington , 701 S Nedderman Dr. Arlington, TX 76019 , USA
- Princeton University , Princeton, NJ 08544 , USA
| | - Adam A Rosso
- Georgia Southern University , 1332 Southern Dr, Statesboro, GA 30458 , USA
| | - W Owen McMillan
- Smithsonian Tropical Research Institute , Amador Causeway, Panama City , Panama
| | - Robert M Cox
- University of Virginia , Charlottesville, VA 22904 , USA
| |
Collapse
|
145
|
Marinkovic M, Dai Q, Gonzalez AO, Tran ON, Block TJ, Harris SE, Salmon AB, Yeh CK, Dean DD, Chen XD. Matrix-bound Cyr61/CCN1 is required to retain the properties of the bone marrow mesenchymal stem cell niche but is depleted with aging. Matrix Biol 2022; 111:108-132. [PMID: 35752272 PMCID: PMC10069241 DOI: 10.1016/j.matbio.2022.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 05/30/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022]
Abstract
Previously, we showed that extracellular matrices (ECMs), produced ex vivo by various types of stromal cells, direct bone marrow mesenchymal stem cells (BM-MSCs) in a tissue-specific manner and recapitulate physiologic changes characteristic of the aging microenvironment. In particular, BM-MSCs obtained from elderly donors and cultured on ECM produced by young BM stromal cells showed improved quantity, quality and osteogenic differentiation. In the present study, we searched for matrix components that are required for a functional BM-MSC niche by comparing ECMs produced by BM stromal cells from "young" (≤25 y/o) versus "elderly" (≥60 y/o) donors. With increasing donor age, ECM fibrillar organization and mechanical integrity deteriorated, along with the ability to promote BM-MSC proliferation and responsiveness to growth factors. Proteomic analyses revealed that the matricellular protein, Cyr61/CCN1, was present in young, but undetectable in elderly, BM-ECM. To assess the role of Cyr61 in the BM-MSC niche, we used genetic methods to down-regulate the incorporation of Cyr61 during production of young ECM and up-regulate its incorporation in elderly ECM. The results showed that Cyr61-depleted young ECM lost the ability to promote BM-MSC proliferation and growth factor responsiveness. However, up-regulating the incorporation of Cyr61 during synthesis of elderly ECM restored its ability to support BM-MSC responsiveness to osteogenic factors such as BMP-2 and IGF-1. We next examined aging bone and compared bone mineral density and Cyr61 content of L4-L5 vertebral bodies in "young" (9-11 m/o) and "elderly" (21-33 m/o) mice. Our analyses showed that low bone mineral density was associated with decreased amounts of Cyr61 in osseous tissue of elderly versus young mice. Our results strongly demonstrate a novel role for ECM-bound Cyr61 in the BM-MSC niche, where it is responsible for retention of BM-MSC proliferation and growth factor responsiveness, while depletion of Cyr61 from the BM niche contributes to an aging-related dysregulation of BM-MSCs. Our results also suggest new potential therapeutic targets for treating age-related bone loss by restoring specific ECM components to the stem cell niche.
Collapse
Affiliation(s)
- Milos Marinkovic
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, United States; Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, United States; Research Service, South Texas Veterans Health Care System, Audie Murphy VA Medical Center, San Antonio, TX 78229(,) United States
| | - Qiuxia Dai
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, United States
| | - Aaron O Gonzalez
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, United States; Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, United States
| | - Olivia N Tran
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, United States; Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, United States
| | - Travis J Block
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, United States; Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, United States
| | - Stephen E Harris
- Department of Periodontics, University of Texas Health Science Center at San Antonio, TX 78229, United States
| | - Adam B Salmon
- Department of Molecular Medicine, Barshop Institute for Longevity and Aging Studies at The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, United States; Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, Audie Murphy VA Medical Center, San Antonio, TX 78229, United States
| | - Chih-Ko Yeh
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, United States; Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, Audie Murphy VA Medical Center, San Antonio, TX 78229, United States
| | - David D Dean
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, United States; Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, United States
| | - Xiao-Dong Chen
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, United States; Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, United States; Research Service, South Texas Veterans Health Care System, Audie Murphy VA Medical Center, San Antonio, TX 78229(,) United States.
| |
Collapse
|
146
|
Nagasaki K, Gavrilova O, Hajishengallis G, Somerman MJ. Does the RGD region of certain proteins affect metabolic activity? FRONTIERS IN DENTAL MEDICINE 2022. [DOI: 10.3389/fdmed.2022.974862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A better understanding of the role of mineralized tissues and their associated factors in governing whole-body metabolism should be of value toward informing clinical strategies to treat mineralized tissue and metabolic disorders, such as diabetes and obesity. This perspective provides evidence suggesting a role for the arginine-glycine-aspartic acid (RGD) region, a sequence identified in several proteins secreted by bone cells, as well as other cells, in modulating systemic metabolic activity. We focus on (a) two of the SIBLING (small integrin-binding ligand, N-linked glycoprotein) family genes/proteins, bone sialoprotein (BSP) and osteopontin (OPN), (b) insulin-like growth factor-binding protein-1 & 2 (IGFBP-1, IGFBP-2) and (c) developmental endothelial locus 1 (DEL1) and milk fat globule–EGF factor-8 (MFG-E8). In addition, for our readers to appreciate the mounting evidence that a multitude of bone secreted factors affect the activity of other tissues, we provide a brief overview of other proteins, to include fibroblast growth factor 23 (FGF23), phosphatase orphan 1 (PHOSPHO1), osteocalcin (OCN/BGLAP), tissue non-specific alkaline phosphatase (TNAP) and acidic serine aspartic-rich MEPE-associated motif (ASARM), along with known/suggested functions of these factors in influencing energy metabolism.
Collapse
|
147
|
Vedadghavami A, Hakim B, He T, Bajpayee AG. Cationic peptide carriers enable long-term delivery of insulin-like growth factor-1 to suppress osteoarthritis-induced matrix degradation. Arthritis Res Ther 2022; 24:172. [PMID: 35858920 PMCID: PMC9297664 DOI: 10.1186/s13075-022-02855-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/27/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Insulin-like growth factor-1 (IGF-1) has the potential to be used for osteoarthritis (OA) treatment but has not been evaluated in clinics yet owing to toxicity concerns. It suffers from short intra-joint residence time and a lack of cartilage targeting following its intra-articular administration. Here, we synthesize an electrically charged cationic formulation of IGF-1 by using a short-length arginine-rich, hydrophilic cationic peptide carrier (CPC) with a net charge of +14, designed for rapid and high uptake and retention in both healthy and arthritic cartilage. METHODS IGF-1 was conjugated to CPC by using a site-specific sulfhydryl reaction via a bifunctional linker. Intra-cartilage depth of penetration and retention of CPC-IGF-1 was compared with the unmodified IGF-1. The therapeutic effectiveness of a single dose of CPC-IGF-1 was compared with free IGF-1 in an IL-1α-challenged cartilage explant culture post-traumatic OA model. RESULTS CPC-IGF-1 rapidly penetrated through the full thickness of cartilage creating a drug depot owing to electrostatic interactions with negatively charged aggrecan-glycosaminoglycans (GAGs). CPC-IGF-1 remained bound within the tissue while unmodified IGF-1 cleared out. Treatment with a single dose of CPC-IGF-1 effectively suppressed IL-1α-induced GAG loss and nitrite release and rescued cell metabolism and viability throughout the 16-day culture period, while free IGF at the equivalent dose was not effective. CONCLUSIONS CPC-mediated depot delivery of IGF-1 protected cartilage by suppressing cytokine-induced catabolism with only a single dose. CPC is a versatile cationic motif that can be used for intra-cartilage delivery of other similar-sized drugs.
Collapse
Affiliation(s)
| | - Bill Hakim
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Tengfei He
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Ambika G Bajpayee
- Department of Bioengineering, Northeastern University, Boston, MA, USA.
- Departments of Mechanical Engineering, Northeastern University, Boston, MA, USA.
| |
Collapse
|
148
|
Sahoo DK, Borcherding DC, Chandra L, Jergens AE, Atherly T, Bourgois-Mochel A, Ellinwood NM, Snella E, Severin AJ, Martin M, Allenspach K, Mochel JP. Differential Transcriptomic Profiles Following Stimulation with Lipopolysaccharide in Intestinal Organoids from Dogs with Inflammatory Bowel Disease and Intestinal Mast Cell Tumor. Cancers (Basel) 2022; 14:3525. [PMID: 35884586 PMCID: PMC9322748 DOI: 10.3390/cancers14143525] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/14/2022] [Accepted: 07/16/2022] [Indexed: 12/14/2022] Open
Abstract
Lipopolysaccharide (LPS) is associated with chronic intestinal inflammation and promotes intestinal cancer progression in the gut. While the interplay between LPS and intestinal immune cells has been well-characterized, little is known about LPS and the intestinal epithelium interactions. In this study, we explored the differential effects of LPS on proliferation and the transcriptome in 3D enteroids/colonoids obtained from dogs with naturally occurring gastrointestinal (GI) diseases including inflammatory bowel disease (IBD) and intestinal mast cell tumor. The study objective was to analyze the LPS-induced modulation of signaling pathways involving the intestinal epithelia and contributing to colorectal cancer development in the context of an inflammatory (IBD) or a tumor microenvironment. While LPS incubation resulted in a pro-cancer gene expression pattern and stimulated proliferation of IBD enteroids and colonoids, downregulation of several cancer-associated genes such as Gpatch4, SLC7A1, ATP13A2, and TEX45 was also observed in tumor enteroids. Genes participating in porphyrin metabolism (CP), nucleocytoplasmic transport (EEF1A1), arachidonic acid, and glutathione metabolism (GPX1) exhibited a similar pattern of altered expression between IBD enteroids and IBD colonoids following LPS stimulation. In contrast, genes involved in anion transport, transcription and translation, apoptotic processes, and regulation of adaptive immune responses showed the opposite expression patterns between IBD enteroids and colonoids following LPS treatment. In brief, the crosstalk between LPS/TLR4 signal transduction pathway and several metabolic pathways such as primary bile acid biosynthesis and secretion, peroxisome, renin-angiotensin system, glutathione metabolism, and arachidonic acid pathways may be important in driving chronic intestinal inflammation and intestinal carcinogenesis.
Collapse
Affiliation(s)
- Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (D.C.B.); (L.C.); (A.E.J.); (T.A.); (A.B.-M.); (K.A.)
- SMART Pharmacology, Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Dana C. Borcherding
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (D.C.B.); (L.C.); (A.E.J.); (T.A.); (A.B.-M.); (K.A.)
| | - Lawrance Chandra
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (D.C.B.); (L.C.); (A.E.J.); (T.A.); (A.B.-M.); (K.A.)
| | - Albert E. Jergens
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (D.C.B.); (L.C.); (A.E.J.); (T.A.); (A.B.-M.); (K.A.)
| | - Todd Atherly
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (D.C.B.); (L.C.); (A.E.J.); (T.A.); (A.B.-M.); (K.A.)
| | - Agnes Bourgois-Mochel
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (D.C.B.); (L.C.); (A.E.J.); (T.A.); (A.B.-M.); (K.A.)
| | - N. Matthew Ellinwood
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA; (N.M.E.); (E.S.)
| | - Elizabeth Snella
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA; (N.M.E.); (E.S.)
| | - Andrew J. Severin
- Office of Biotechnology’s Genome Informatics Facility, Iowa State University, Ames, IA 50011, USA;
| | | | - Karin Allenspach
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (D.C.B.); (L.C.); (A.E.J.); (T.A.); (A.B.-M.); (K.A.)
| | - Jonathan P. Mochel
- SMART Pharmacology, Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
149
|
Sterczala AJ, Pierce JR, Barnes BR, Urso ML, Matheny RW, Scofield DE, Flanagan SD, Maresh CM, Zambraski EJ, Kraemer WJ, Nindl BC. Insulin-like growth factor-I biocompartmentalization across blood, interstitial fluid and muscle, before and after 3 months of chronic resistance exercise. J Appl Physiol (1985) 2022; 133:170-182. [PMID: 35678743 DOI: 10.1152/japplphysiol.00592.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This investigation examined the influence of 12-week ballistic resistance training programs on the IGF-I system in circulation, interstitial fluid, and skeletal muscle, at rest and in response to acute exercise. Seventeen college-aged subjects (11 women/6 men; 21.7 ± 3.7 yr) completed an acute ballistic exercise bout before and after the training program. Blood samples were collected pre-, mid-, and postexercise and analyzed for serum total IGF-I, free IGF-I, and IGF binding proteins (IGFBPs) 1-4. Dialysate and interstitial free IGF-I were analyzed in vastus lateralis (VL) interstitial fluid collected pre- and postexercise via microdialysis. Pre- and postexercise VL muscle biopsies were analyzed for IGF-I protein expression, IGF-I receptor phosphorylation (p-IGF-IR), and AKT phosphorylation (p-AKT). Following training, basal serum IGF-I, free IGF-I, IGFBP-2, and IGFBP-3 decreased whereas IGFBP-1 and IGFBP-4 increased. Training reduced basal dialysate and interstitial free IGF-I but had no effect on basal skeletal muscle IGF-I, p-IGF-IR, or p-AKT. Acute exercise elicited transient changes in IGF-I system concentrations and downstream anabolic signaling both pre- and posttraining; training did not affect this acute exercise response. Posttraining, acute exercise-induced changes in dialysate/interstitial free IGF-I were strongly correlated with the changes in intramuscular IGF-I expression, p-IGF-IR, and p-AKT. The divergent influence of resistance training on circulating/interstitial and skeletal muscle IGF-I demonstrates the importance of concurrent, multiple biocompartment analysis when examining the IGF-I system. As training elicited muscle hypertrophy, these findings indicate that IGF-I's anabolic effects on skeletal muscle are mediated by local, rather than systemic mechanisms.NEW & NOTEWORTHY In the first investigation to assess resistance training's effects on the IGF-I system in serum, interstitial fluid, and skeletal muscle, training decreased basal circulating and interstitial IGF-I but did not alter basal intramuscular IGF-I protein activity. Posttraining, acute exercise-induced interstitial IGF-I increases were strongly correlated with intramuscular IGF-I expression and signaling. These findings highlight the importance of multibiocompartment measurement when analyzing IGF-I and suggest that IGF-I's role in hypertrophic adaptations is locally mediated.
Collapse
Affiliation(s)
- Adam J Sterczala
- Neuromuscular Research Laboratory/Human Performance Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Joseph R Pierce
- US Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Brian R Barnes
- US Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Maria L Urso
- US Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Ronald W Matheny
- US Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Dennis E Scofield
- US Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Shawn D Flanagan
- Neuromuscular Research Laboratory/Human Performance Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Carl M Maresh
- Department of Kinesiology, University of Connecticut, Storrs, Connecticut
| | - Edward J Zambraski
- US Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - William J Kraemer
- Department of Kinesiology, University of Connecticut, Storrs, Connecticut.,Department of Human Sciences, The Ohio State University, Columbus, Ohio
| | - Bradley C Nindl
- Neuromuscular Research Laboratory/Human Performance Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania.,US Army Research Institute of Environmental Medicine, Natick, Massachusetts
| |
Collapse
|
150
|
Salas A, Beltrán-Flores S, Évora C, Reyes R, Montes de Oca F, Delgado A, Almeida TA. Stem Cell Growth and Differentiation in Organ Culture: New Insights for Uterine Fibroid Treatment. Biomedicines 2022; 10:biomedicines10071542. [PMID: 35884847 PMCID: PMC9313456 DOI: 10.3390/biomedicines10071542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 11/18/2022] Open
Abstract
Organ culture allows for the understanding of normal and tumor cell biology, and tissues generally remain viable for 5–7 days. Strikingly, we determined that myometrial and MED12 mutant leiomyoma cells repopulated cell-depleted tissue slices after 20 days of culture. Using immunofluorescence and quantitative PCR of stem cell and undifferentiated cell markers, we observed clusters of CD49b+ cells in tumor slices. CD49b+ cells, however, were sparsely detected in the myometrial slices. Almost all LM cells strongly expressed Ki67, while only a few myometrial cells were stained for this proliferation marker. The CD73 marker was expressed only in tumor cells, whereas the mesenchymal stem cell receptor KIT was detected only in normal cells. HMGA2 and CD24 showed broader expression patterns and higher signal intensity in leiomyoma than in myometrial cells. In this study, we propose that activating CD49b+ stem cells in myometrium leads to asymmetrical division, giving rise to transit-amplifying KIT+ cells that differentiate to smooth muscle cells. On the contrary, activated leiomyoma CD49b+ cells symmetrically divide to form clusters of stem cells that divide and differentiate to smooth muscle cells without losing proliferation ability. In conclusion, normal and mutant stem cells can proliferate and differentiate in long-term organ culture, constituting a helpful platform for novel therapeutic discovery.
Collapse
Affiliation(s)
- Ana Salas
- Department of Biochemistry, Microbiology, Cell Biology and Genetics, Biology Section, Science Faculty, University of La Laguna, Ave. Astrofísico Fco. Sánchez s/n. San Cristóbal de La Laguna, 38200 Santa Cruz de Tenerife, Spain; (A.S.); (S.B.-F.); (R.R.)
- Institute of Tropical Diseases and Healthcare of the Canary Island, Ave. Astrofísico Fco. Sánchez s/n. San Cristóbal de La Laguna, 38200 Santa Cruz de Tenerife, Spain
| | - Silvia Beltrán-Flores
- Department of Biochemistry, Microbiology, Cell Biology and Genetics, Biology Section, Science Faculty, University of La Laguna, Ave. Astrofísico Fco. Sánchez s/n. San Cristóbal de La Laguna, 38200 Santa Cruz de Tenerife, Spain; (A.S.); (S.B.-F.); (R.R.)
| | - Carmen Évora
- Department of Chemical Engineering and Pharmaceutical Technology, Faculty of Pharmacy, University of La Laguna, Ave. Astrofísico Fco. Sánchez s/n. San Cristóbal de La Laguna, 38200 Santa Cruz de Tenerife, Spain; (C.É.); (A.D.)
- Institute of Biomedical Technologies (ITB), Medicine Section, Faculty of Health Science, University of La Laguna, St. Santa María Soledad, s/n. San Cristóbal de La Laguna, 38200 Santa Cruz de Tenerife, Spain
| | - Ricardo Reyes
- Department of Biochemistry, Microbiology, Cell Biology and Genetics, Biology Section, Science Faculty, University of La Laguna, Ave. Astrofísico Fco. Sánchez s/n. San Cristóbal de La Laguna, 38200 Santa Cruz de Tenerife, Spain; (A.S.); (S.B.-F.); (R.R.)
- Institute of Tropical Diseases and Healthcare of the Canary Island, Ave. Astrofísico Fco. Sánchez s/n. San Cristóbal de La Laguna, 38200 Santa Cruz de Tenerife, Spain
| | | | - Araceli Delgado
- Department of Chemical Engineering and Pharmaceutical Technology, Faculty of Pharmacy, University of La Laguna, Ave. Astrofísico Fco. Sánchez s/n. San Cristóbal de La Laguna, 38200 Santa Cruz de Tenerife, Spain; (C.É.); (A.D.)
- Institute of Biomedical Technologies (ITB), Medicine Section, Faculty of Health Science, University of La Laguna, St. Santa María Soledad, s/n. San Cristóbal de La Laguna, 38200 Santa Cruz de Tenerife, Spain
| | - Teresa A. Almeida
- Department of Biochemistry, Microbiology, Cell Biology and Genetics, Biology Section, Science Faculty, University of La Laguna, Ave. Astrofísico Fco. Sánchez s/n. San Cristóbal de La Laguna, 38200 Santa Cruz de Tenerife, Spain; (A.S.); (S.B.-F.); (R.R.)
- Institute of Tropical Diseases and Healthcare of the Canary Island, Ave. Astrofísico Fco. Sánchez s/n. San Cristóbal de La Laguna, 38200 Santa Cruz de Tenerife, Spain
- Correspondence: ; Tel.: +34-922-316-502 (ext. 6117)
| |
Collapse
|