101
|
Betts Z, Deveci Ozkan A, Yuksel B, Alimudin J, Aydin D, Aksoy O, Yanar S. Investigation of the combined cytotoxicity induced by sodium butyrate and a flavonoid quercetin treatment on MCF-7 breast cancer cells. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:833-845. [PMID: 37668343 DOI: 10.1080/15287394.2023.2254807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Quercetin (QUE) belonging to the flavonoid class is a common phytochemical present in the daily diet of some individuals. Quercetin is an important source of free radical scavengers. This property makes this flavonoid a reliable antioxidant with the following properties: anti-inflammatory, anti-diabetic, antimicrobial and anti-carcinogenic. Sodium butyrate (NaBu) acts as a histone deacetylase inhibitor (HDACi) and is known to regulate apoptosis in cancer cells. Combining natural flavonoids such as QUE with different substances may synergistically enhance their anti-carcinogenic capacity. Thus, the aim of this study was to examine the combined treatment effects of QUE and NaBu in hormone-sensitive breast cancer cells in vitro. MCF-7 breast cancer cells were treated with QUE alone, NaBu alone, as well as QUE and NaBu combined to determine the following: cell proliferation, levels of protein annexin A5 (ANXA5) and reactive oxygen species (ROS), mRNA protein expression, as well as cell and nuclear morphology. Data demonstrated that either QUE or NaBu alone inhibited cell proliferation, and reduced levels protein ANXA5, ROS and mRNA protein expression, The combination of QUE and NaBu produced a significant synergistic inhibitory effect compared to treatment groups of QUE or NaBu alone. In conclusion, our findings showed that the combination treatment of QUE and NaBu may constitute a promising therapeutic approach to breast cancer treatment but this needs further molecular and in vivo investigations.
Collapse
Affiliation(s)
- Zeynep Betts
- Department of Biology, Faculty of Science and Art, Kocaeli University, Kocaeli, Turkiye
| | - Asuman Deveci Ozkan
- Department of Medical Biology, Faculty of Medicine, Sakarya University, Sakarya, Turkiye
| | - Burcu Yuksel
- Department of Medical Services and Techniques, Kocaeli Vocational School of Health Services, Kocaeli University, Kocaeli, Turkiye
| | - Janiah Alimudin
- Department of Biology, Institute of Health Science, Kocaeli University, Kocaeli, Turkiye
| | - Duygu Aydin
- Department of Biology, Institute of Health Science, Kocaeli University, Kocaeli, Turkiye
| | - Ozlem Aksoy
- Department of Biology, Faculty of Science and Art, Kocaeli University, Kocaeli, Turkiye
| | - Sevinc Yanar
- Department of Histology and Embryology, Faculty of Medicine, Sakarya University, Sakarya, Turkiye
| |
Collapse
|
102
|
Masek A, Olejnik O, Czechowski L, Kaźmierczyk F, Miszczak S, Węgier A, Krauze S. Epoxy Resin-Based Materials Containing Natural Additives of Plant Origin Dedicated to Rail Transport. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7080. [PMID: 38005010 PMCID: PMC10672540 DOI: 10.3390/ma16227080] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 11/26/2023]
Abstract
The presented study is focused on the modification of commercially available epoxy resin with flame retardants by means of using natural substances, including quercetin hydrate and potato starch. The main aim was to obtain environmentally friendly material dedicated to rail transport that is resistant to the aging process during exploitation but also more prone to biodegradation in environmental conditions after usage. Starch is a natural biopolymer that can be applied as a pro-ecological filler, which may contribute to degradation in environmental conditions, while quercetin hydrate is able to prevent a composite from premature degradation during exploitation. To determine the aging resistance of the prepared materials, the measurements of hardness, color, mechanical properties and surface free energy were performed before and after solar aging. To assess the mechanical properties of the composite material, one-directional tensile tests were performed for three directions (0, 90, 45 degrees referred to the plate edges). Moreover, the FT-IR spectra of pristine and aged materials were obtained to observe the changes in chemical structure. Furthermore, thermogravimetric analysis was conducted to achieve information about the impact of natural substances on the thermal resistance of the achieved composites.
Collapse
Affiliation(s)
- Anna Masek
- Institute of Polymer and Dye Technology, Lodz University of Technology, Stefanowskiego Str. 16, 90-537 Lodz, Poland; (O.O.); (A.W.)
| | - Olga Olejnik
- Institute of Polymer and Dye Technology, Lodz University of Technology, Stefanowskiego Str. 16, 90-537 Lodz, Poland; (O.O.); (A.W.)
| | - Leszek Czechowski
- Department of Strength of Materials, Lodz University of Technology, Stefanowskiego Str. 1/15, 90-537 Lodz, Poland; (L.C.); (F.K.)
| | - Filip Kaźmierczyk
- Department of Strength of Materials, Lodz University of Technology, Stefanowskiego Str. 1/15, 90-537 Lodz, Poland; (L.C.); (F.K.)
| | - Sebastian Miszczak
- Institute of Materials Science and Engineering, Faculty of Mechanical Engineering, Lodz University of Technology, Stefanowskiego Str. 1/15, 90-537 Lodz, Poland;
| | - Aleksandra Węgier
- Institute of Polymer and Dye Technology, Lodz University of Technology, Stefanowskiego Str. 16, 90-537 Lodz, Poland; (O.O.); (A.W.)
- S.Z.T.K. “TAPS”—Maciej Kowalski, ul. Borowa 4, 94-247 Lodz, Poland;
| | - Sławomir Krauze
- S.Z.T.K. “TAPS”—Maciej Kowalski, ul. Borowa 4, 94-247 Lodz, Poland;
| |
Collapse
|
103
|
Luan J, Zhu Y, Lin J, Zhang Y, Xu Q, Zhan L, Tian X, Zhao G, Peng X. Quercetin protects against Aspergillus fumigatus keratitis by reducing fungal load and inhibiting TLR-4 induced inflammatory response. Cytokine 2023; 171:156356. [PMID: 37677994 DOI: 10.1016/j.cyto.2023.156356] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 08/01/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023]
Abstract
PURPOSE To investigate the antifungal and anti-inflammatory effects of quercetin in Aspergillus fumigatus (A. fumigatus) keratitis. METHODS Draize eye test was performed in mice to evaluate the toxicity of quercetin, and the antifungal effects on A. fumigatus were assessed via scanning electron microscopy (SEM), propidium iodide uptake, and adherence assay. In fungal keratitis (FK) mouse models, immunostaining was performed for investigating toll-like receptor 4 (TLR-4) expression and macrophage infiltration. Real-time PCR, ELISA, and Western blot were used to evaluate the expression of pro-inflammatory factors IL-1β, TNF-α, and IL-6 in infected RAW264.7 cells. Cells were also treated with TLR-4 siRNA or agonist CRX-527 to investigate mechanisms underlying the anti-inflammatory activity of quercetin. RESULTS Quercetin at 32 μM was non-toxic to corneal epithelial and significantly inhibited A. fumigatus growth and adhesion, and also altered the structure and reduced the number of mycelia. Quercetin significantly reduced macrophage infiltration in the mouse cornea, and attenuated the expression of TLR-4 in the corneal epithelium and stroma of mice with keratitis caused by A. fumigatus. In RAW264.7 cells infected by A. fumigatus, quercetin downregulated TLR-4 along with pro-inflammatory factors IL-1β, TNF-α, and IL-6. RAW cells with TLR-4 knockdown had reduced expression of factors after A. fumigatus infection, which was decreased even further with quercetin treatment. In contrast, cells with CRX-527 had elevated inflammatory factors compared to control, which was significantly attenuated in the presence of quercetin. CONCLUSION Quercetin plays a protective role in mouse A. fumigatus keratitis by inhibiting fungal load, disrupting hyphae structure, macrophage infiltration, and suppressing inflammation response in macrophages via TLR-4 mediated signaling pathway.
Collapse
Affiliation(s)
- Junjie Luan
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Yunan Zhu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China; Department of Ophthalmology, Cangzhou Central Hospital, Cangzhou, China.
| | - Jing Lin
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Yingxue Zhang
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI 48201, United States.
| | - Qiang Xu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Lu Zhan
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Xue Tian
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Guiqiu Zhao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Xudong Peng
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China; Department of Ophthalmology, University of Washington, Seattle, WA, United States.
| |
Collapse
|
104
|
Zhou Y, Qian C, Tang Y, Song M, Zhang T, Dong G, Zheng W, Yang C, Zhong C, Wang A, Zhao Y, Lu Y. Advance in the pharmacological effects of quercetin in modulating oxidative stress and inflammation related disorders. Phytother Res 2023; 37:4999-5016. [PMID: 37491826 DOI: 10.1002/ptr.7966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/27/2023] [Accepted: 07/07/2023] [Indexed: 07/27/2023]
Abstract
Numerous pharmacological effects of quercetin have been illustrated, including antiinflammation, antioxidation, and anticancer properties. In recent years, the antioxidant activity of quercetin has been extensively reported, in particular, its impacts on glutathione, enzyme activity, signaling transduction pathways, and reactive oxygen species (ROS). Quercetin has also been demonstrated to exert a striking antiinflammatory effect mainly by inhibiting the production of cytokines, reducing the expression of cyclooxygenase and lipoxygenase, and preserving the integrity of mast cells. By regulating oxidative stress and inflammation, which are regarded as two critical processes involved in the defense and regular physiological operation of biological systems, quercetin has been validated to be effective in treating a variety of disorders. Symptoms of these reactions have been linked to degenerative processes and metabolic disorders, including metabolic syndrome, cardiovascular, neurodegeneration, cancer, and nonalcoholic fatty liver disease. Despite that evidence demonstrates that antioxidants are employed to prevent excessive oxidative and inflammatory processes, there are still concerns regarding the expense, accessibility, and side effects of agents. Notably, natural products, especially those derived from plants, are widely accessible, affordable, and generally safe. In this review, the antioxidant and antiinflammatory abilities of the active ingredient quercetin and its application in oxidative stress-related disorders have been outlined in detail.
Collapse
Affiliation(s)
- Yueke Zhou
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Cheng Qian
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu Tang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mengyao Song
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Teng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Guanglu Dong
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weiwei Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chunmei Yang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chongjin Zhong
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Aiyun Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang Zhao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
105
|
Bhoi A, Dwivedi SD, Singh D, Keshavkant S, Singh MR. Mechanistic prospective and pharmacological attributes of quercetin in attenuation of different types of arthritis. 3 Biotech 2023; 13:362. [PMID: 37840879 PMCID: PMC10570262 DOI: 10.1007/s13205-023-03787-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/08/2023] [Indexed: 10/17/2023] Open
Abstract
Arthritis is a frequent autoimmune disease with undefined etiology and pathogenesis. Scientific community constantly fascinating quercetin (QUR), as it is the best-known flavonoid among others for curative and preventive properties against a wide range of diseases. Due to its multifaceted activities, the implementation of QUR against various types of arthritis namely, rheumatoid arthritis (RA), osteoarthritis (OA), gouty arthritis (GA) and psoriotic arthritis (PsA) has greatly increased in recent years. Many research evidenced that QUR regulates a wide range of pathways for instance NF-κB, MAK, Wnt/β-catenine, Notch, etc., that are majorly associated with the inflammatory mechanisms. Besides, the bioavailability of QUR is a major constrain to its therapeutic potential, and drug delivery techniques have experienced significant development to overcome the problem of its limited application. Hence, this review compiled the cutting-edge experiments on versatile effects of QUR on inflammatory diseases like RA, OA, GA and PsA, sources and bioavailability, therapeutic challenges, pharmacokinetics, clinical studies as well as toxicological impacts. The use of QUR in a health context would offer a tearing and potential therapeutic method, supporting the advancement of public health, particularly, of arthritic patients worldwide.
Collapse
Affiliation(s)
- Anita Bhoi
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur, 492 010 India
| | - Shradha Devi Dwivedi
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, 492 010 India
| | - Deependra Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, 492 010 India
| | - S. Keshavkant
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur, 492 010 India
| | - Manju Rawat Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, 492 010 India
| |
Collapse
|
106
|
Yao ZY, Fan SY, Song ZF, Li ZC. Network pharmacology-based and molecular docking-based analysis of You-Gui-Yin for the treatment of osteonecrosis of the femoral head. Medicine (Baltimore) 2023; 102:e35581. [PMID: 37904445 PMCID: PMC10615424 DOI: 10.1097/md.0000000000035581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 09/19/2023] [Indexed: 11/01/2023] Open
Abstract
You-Gui-Yin (YGY) is a classic prescription for warming up kidney-Yang and filling in kidney essence in traditional Chinese medicine, and has been used to treat osteonecrosis of the femoral head (ONFH) effectively. However, the underlying mechanisms are still unknown. This study is aimed at exploring the possible mechanisms of action of the YGY in the treatment of ONFH based on network pharmacology and molecular docking. TCMSP was used to screen the active components and targets of YGY. The disease targets of ONFH were collected in several public databases. The protein-protein interaction (PPI) Network was constructed using the STRING platform. The Metascape database platform was used for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. The key active components and core target proteins of YGY in the treatment of ONFH were verified by the molecular docking. 120 active components were obtained from YGY, among which 73 components were hit by the 117 drug-disease intersection targets. Key effective components included quercetin, kaempferol, beta-sitosterol, glycitein, beta-carotene, and so on. Core target proteins included ALB, AKT1, TNF, IL6, TP53, and so on. According to GO and KEGG analyses, there were 1762 biological processes, 94 cellular component, 138 molecular function and 187 signaling pathways involved. we selected the top 20 biological processes (BP), cellular components (CC), molecular functions (MF) and signaling pathways to draw the heat maps, showing that Lipid and atherosclerosis signaling pathway, IL-17 signaling pathway, HIF-1 signaling pathway, relaxin signaling pathway and MAPK signaling pathway and other pathways may play a key role in the treatment of ONFH by YGY. The results of molecular docking showed that key effective components and corresponding core target proteins exhibited the good binding activity. YGY can treat ONFH through multicomponents, multitargets, and multipathways, which provides a reference for the subsequent research, development of targeted drugs and clinical application.
Collapse
Affiliation(s)
- Zhi-Yuan Yao
- Department of Orthopedics, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou Economic and Technological Development Zone, Hangzhou, Zhejiang, China
| | - Shu-Yao Fan
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou Economic and Technological Development Zone, Hangzhou, Zhejiang, China
| | - Zhou-Feng Song
- Department of Orthopedics, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou Economic and Technological Development Zone, Hangzhou, Zhejiang, China
| | - Zhan-Chun Li
- Department of Orthopedics, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou Economic and Technological Development Zone, Hangzhou, Zhejiang, China
| |
Collapse
|
107
|
Sirotkin AV. Quercetin action on health and female reproduction in mammals. Crit Rev Food Sci Nutr 2023; 64:12670-12684. [PMID: 37698182 DOI: 10.1080/10408398.2023.2256001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
This paper reviews the current information concerning availability, metabolism of quercetin, its effects on physiological processes and illnesses with focus on the effects, mechanisms of action and areas of possible application of quercetin in control of female reproductive processes, prevention and treatment of their disorders in mammals.The available information demonstrated the ability of quercetin and its analogues to inhibit proliferation and to promote apoptosis, to activate regenerative processes, to treat immune, inflammatory, cardiovascular, neurodegenerative, gastric and metabolic disorders and cancer, to suppress microorganisms, to protect bones and liver, to relieve pain, to improve physical and mental performance, and to prolong life span.The positive influences of quercetin on mammalian female reproductive processes are well documented. It can promote ovarian follicullo- and oogenesis, improve quality of oocytes and embryos, increase fecundity in various species. These effects can be mediated by changes in pituitary and ovarian hormones, growth factors and cytokines, in their receptors and post-receptory signaling pathways. Due to these effect, quercetin can be applicable as biostimulator of reproduction, for prevention, mitigation and treatment of several female reproductive disorders, as well as to increase resistance of female reproductive system to adverse effect of chemotherapy, temperature stress and environmental contaminants.
Collapse
|
108
|
Attar ES, Chaudhari VH, Deokar CG, Dyawanapelly S, Devarajan PV. Nano Drug Delivery Strategies for an Oral Bioenhanced Quercetin Formulation. Eur J Drug Metab Pharmacokinet 2023; 48:495-514. [PMID: 37523008 DOI: 10.1007/s13318-023-00843-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2023] [Indexed: 08/01/2023]
Abstract
Quercetin, a naturally occurring flavonoid, has been credited with a wide spectrum of therapeutic properties. However, the oral use of quercetin is limited due to its poor water solubility, low bioavailability, rapid metabolism, and rapid plasma clearance. Quercetin has been studied extensively when used with various nanodelivery systems for enhancing quercetin bioavailability. To enhance its oral bioavailability and efficacy, various quercetin-loaded nanosystems such as nanosuspensions, polymer nanoparticles, metal nanoparticles, emulsions, liposomes or phytosomes, micelles, solid lipid nanoparticles, and other lipid-based nanoparticles have been investigated in in-vitro cells, in-vivo animal models, and humans. Among the aforementioned nanosystems, quercetin phytosomes are attracting more interest and are available on the market. The present review covers insights into the possibilities of harnessing quercetin for several therapeutic applications and a special focus on anticancer applications and the clinical benefits of nanoquercetin formulations.
Collapse
Affiliation(s)
- Esha S Attar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N.P. Marg, Matunga, Mumbai, Maharashtra, 400019, India
| | - Vanashree H Chaudhari
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N.P. Marg, Matunga, Mumbai, Maharashtra, 400019, India
| | - Chaitanya G Deokar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N.P. Marg, Matunga, Mumbai, Maharashtra, 400019, India
| | - Sathish Dyawanapelly
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N.P. Marg, Matunga, Mumbai, Maharashtra, 400019, India
| | - Padma V Devarajan
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N.P. Marg, Matunga, Mumbai, Maharashtra, 400019, India.
| |
Collapse
|
109
|
Lim SH, Bae S, Lee HS, Han HK, Choi CI. Effect of Betanin, the Major Pigment of Red Beetroot ( Beta vulgaris L.), on the Activity of Recombinant Human Cytochrome P450 Enzymes. Pharmaceuticals (Basel) 2023; 16:1224. [PMID: 37765032 PMCID: PMC10537618 DOI: 10.3390/ph16091224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Most of the currently available drugs are derived from natural sources, but they are used only after extensive chemical modifications to improve their safety and efficacy. Natural products are used in health supplements and cosmetic preparations and have been used as auxiliary drugs or alternative medicines. When used in combination with conventional drugs, these herbal products are known to alter their pharmacokinetics and pharmacodynamics, reducing their therapeutic effects. Moreover, herb-drug interactions (HDIs) may have serious side effects, which is one of the major concerns in health practice. It is postulated that HDIs affect the pathways regulating cytochrome P450 enzymes (CYPs). Betanin, the chief pigment of red beetroot (Beta vulgaris L.), has various types of pharmacological activity, such as anti-inflammatory, antioxidant, and anticancer effects. However, the potential risk of HDIs for betanin has not yet been studied. Thus, we aimed to predict more specific HDIs by evaluating the effects of betanin on CYPs (CYP1A2, CYP2B6, CYP2C9, CYP2C19, CYP2D6, and CYP3A4), the major phase I metabolic enzymes, using fluorescence-/luminescence-based assays. Our results showed that betanin inhibited CYP3A4 activity in a dose-dependent manner (IC50 = 20.97 µΜ). Moreover, betanin acted as a competitive inhibitor of CYP3A4, as confirmed by evaluating Lineweaver-Burk plots (Ki value = 19.48 µΜ). However, no significant inhibitory effects were observed on other CYPs. Furthermore, betanin had no significant effect on CYP1A2, CYP2B6, or CYP2C9 induction in HepG2 cells. In conclusion, betanin acted as a competitive inhibitor of CYP3A4, and thus it should be used cautiously with other drugs that require metabolic enzymes as substrates. Additional in vivo studies and clinical trials are needed to further elucidate the HDIs of betanin.
Collapse
Affiliation(s)
- Sung Ho Lim
- Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea; (S.H.L.); (S.B.); (H.S.L.)
| | - Seoungpyo Bae
- Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea; (S.H.L.); (S.B.); (H.S.L.)
| | - Ho Seon Lee
- Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea; (S.H.L.); (S.B.); (H.S.L.)
| | - Hyo-Kyung Han
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea;
| | - Chang-Ik Choi
- Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea; (S.H.L.); (S.B.); (H.S.L.)
| |
Collapse
|
110
|
Jiang M, Wang K, Huang Y, Zhang X, Yang T, Zhan K, Zhao G. Quercetin Alleviates Lipopolysaccharide-Induced Cell Oxidative Stress and Inflammatory Responses via Regulation of the TLR4-NF-κB Signaling Pathway in Bovine Rumen Epithelial Cells. Toxins (Basel) 2023; 15:512. [PMID: 37624269 PMCID: PMC10467142 DOI: 10.3390/toxins15080512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023] Open
Abstract
Subacute rumen acidosis (SARA) will cause an increase in endotoxin, which will have a negative effect on the bovine rumen epithelial cells (BREC). Flavonoids are effective in treating inflammation caused by endotoxin. Quercetin is a vital flavonoid widely occurring in fruits and vegetables and has received significant interest as a prospective anti-inflammatory antioxidant. Nonetheless, quercetin's protective machinery against such damage to BREC induced by lipopolysaccharide (LPS) remains unclear. A combined quercetin and LPS-induced BREC inflammation model was utilized to elucidate the effect of quercetin protecting BREC from LPS-induced injury. After treating BREC with different doses of LPS (1, 5, and 10 μg/mL) for 6 h or 24 h, the mRNA expression of inflammatory factors was detected. Our experimental results show the establishment of the BREC inflammation model via mRNA high expression of pro-inflammatory cytokines in BREC following 6 h treatment with 1 µg/mL LPS. The promotive effect of 80 μg/mL quercetin on BREC growth via the cell counting kit-8 (CCK8) assay was observed. The expression of pro-inflammatory cytokines and chemokines, notably tumor necrosis factor α (TNF-α), Interleukin 1β (IL-1β), IL-6, CC-motif chemokine ligand 2 (CCL2), CCL20, CCL28, and CXC motif chemokine 9 (CXCL9), etc., was significantly reduced by quercetin supplementation. We also analyzed the mRNA detection of related pathways by qRT-PCR. Our validation studies demonstrated that quercetin markedly curbed the mRNA expression of the toll-like receptor 4 (TLR4) and myeloid differentiation primary response protein (MyD88) and the nuclear factor-κB (NF-κB) in LPS-treated BREC. In addition, western blot result outcomes confirmed, as expected, that LPS significantly activated phosphorylation of p44/42 extracellular regulated protein kinases (ERK1/2) and NF-κB. Unexpectedly, this effect was reversed by adding quercetin. To complement western blot results, we assessed p-ERK1/2 and p-p65 protein expression using immunofluorescence, which gave consistent results. Therefore, quercetin's capacity to bar the TLR4-mediated NF-κB and MAPK signaling pathways may be the cause of its anti-inflammatory effects on LPS-induced inflammatory reactions in BREC. According to these results, quercetin may be utilized as an anti-inflammatory medication to alleviate inflammation brought on by high-grain feed, and it also lays out a conceptual foundation regarding the development and utilization of quercetin in the later stage.
Collapse
Affiliation(s)
- Maocheng Jiang
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Kexin Wang
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yinghao Huang
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xuelei Zhang
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Tianyu Yang
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Kang Zhan
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Guoqi Zhao
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
111
|
Ullah S, Rahman W, Ullah F, Ullah A, Ahmad G, Ijaz M, Ullah H, Zheng Z, Gao T. AVPCD: a plant-derived medicine database of antiviral phytochemicals for cancer, Covid-19, malaria and HIV. Database (Oxford) 2023; 2023:baad056. [PMID: 37594855 PMCID: PMC10437090 DOI: 10.1093/database/baad056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/13/2023] [Accepted: 07/24/2023] [Indexed: 08/20/2023]
Abstract
Serious illnesses caused by viruses are becoming the world's most critical public health issues and lead millions of deaths each year in the world. Thousands of studies confirmed that the plant-derived medicines could play positive therapeutic effects on the patients with viral diseases. Since thousands of antiviral phytochemicals have been identified as lifesaving drugs in medical research, a comprehensive database is highly desirable to integrate the medicinal plants with their different medicinal properties. Therefore, we provided a friendly antiviral phytochemical database AVPCD covering 2537 antiviral phytochemicals from 383 medicinal compounds and 319 different families with annotation of their scientific, family and common names, along with the parts used, disease information, active compounds, links of relevant articles for COVID-19, cancer, HIV and malaria. Furthermore, each compound in AVPCD was annotated with its 2D and 3D structure, molecular formula, molecular weight, isomeric SMILES, InChI, InChI Key and IUPAC name and 21 other properties. Each compound was annotated with more than 20 properties. Specifically, a scoring method was designed to measure the confidence of each phytochemical for the viral diseases. In addition, we constructed a user-friendly platform with several powerful modules for searching and browsing the details of all phytochemicals. We believe this database will facilitate global researchers, drug developers and health practitioners in obtaining useful information against viral diseases.
Collapse
Affiliation(s)
- Shahid Ullah
- S Khan Lab Mardan, Khyber Pakhtunkhwa, Takhtbhai, KP 23200, Pakistan
| | - Wajeeha Rahman
- S Khan Lab Mardan, Khyber Pakhtunkhwa, Takhtbhai, KP 23200, Pakistan
| | - Farhan Ullah
- S Khan Lab Mardan, Khyber Pakhtunkhwa, Takhtbhai, KP 23200, Pakistan
| | - Anees Ullah
- S Khan Lab Mardan, Khyber Pakhtunkhwa, Takhtbhai, KP 23200, Pakistan
| | - Gulzar Ahmad
- S Khan Lab Mardan, Khyber Pakhtunkhwa, Takhtbhai, KP 23200, Pakistan
| | - Muhammad Ijaz
- S Khan Lab Mardan, Khyber Pakhtunkhwa, Takhtbhai, KP 23200, Pakistan
| | - Hameed Ullah
- S Khan Lab Mardan, Khyber Pakhtunkhwa, Takhtbhai, KP 23200, Pakistan
| | - Zilong Zheng
- Big Data Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, P. R. China
| | - Tianshun Gao
- Big Data Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, P. R. China
| |
Collapse
|
112
|
Pinc MM, Dalmagro M, da Cruz Alves Pereira E, Donadel G, Thomaz RT, da Silva C, Macruz PD, Jacomassi E, Gasparotto Junior A, Hoscheid J, Lourenço ELB, Alberton O. Extraction Methods, Chemical Characterization, and In Vitro Biological Activities of Plinia cauliflora (Mart.) Kausel Peels. Pharmaceuticals (Basel) 2023; 16:1173. [PMID: 37631088 PMCID: PMC10459866 DOI: 10.3390/ph16081173] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/04/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Plinia cauliflora (Mart.) Kausel, popularly known as jabuticaba, possesses bioactive compounds such as flavonoids, tannins, and phenolic acids, known for their antioxidant, antibacterial, wound healing, and cardioprotective effects. Therefore, this study aimed to standardize the P. cauliflora fruit peel extraction method, maximize phenolic constituents, and evaluate their antioxidative and antimicrobial effects. Various extraction methods, including vortex extraction with and without precipitation at 25, 40, and 80 °C, and infusion extraction with and without precipitation, were performed using a completely randomized design. Extraction without precipitation (E - P) showed the highest yield (57.9%). However, the precipitated extraction (E + P) method displayed a yield of 45.9%, higher levels of phenolic derivatives, and enhanced antioxidant capacity. Major compounds, such as D-psicose, D-glucose, and citric acid, were identified through gas chromatography-mass spectrometry (GC-MS) analysis. Ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) analysis identified citric acid, hexose, flavonoids, tannins, and quercetin as the major compounds in the extracts. Furthermore, the extracts exhibited inhibitory effects against Bacillus subtilis, Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli bacteria. In conclusion, the E + P method efficiently obtained extracts with high content of bioactive compounds showing antioxidant and antimicrobial capacities with potential application as a dietary supplement.
Collapse
Affiliation(s)
- Mariana Moraes Pinc
- Laboratory of Preclinical Research of Natural Products, Paranaense University, Umuarama 87502-210, Paraná, Brazil; (M.M.P.); (M.D.); (E.d.C.A.P.); (G.D.); (R.T.T.); (E.J.); (J.H.); (E.L.B.L.)
| | - Mariana Dalmagro
- Laboratory of Preclinical Research of Natural Products, Paranaense University, Umuarama 87502-210, Paraná, Brazil; (M.M.P.); (M.D.); (E.d.C.A.P.); (G.D.); (R.T.T.); (E.J.); (J.H.); (E.L.B.L.)
| | - Elton da Cruz Alves Pereira
- Laboratory of Preclinical Research of Natural Products, Paranaense University, Umuarama 87502-210, Paraná, Brazil; (M.M.P.); (M.D.); (E.d.C.A.P.); (G.D.); (R.T.T.); (E.J.); (J.H.); (E.L.B.L.)
| | - Guilherme Donadel
- Laboratory of Preclinical Research of Natural Products, Paranaense University, Umuarama 87502-210, Paraná, Brazil; (M.M.P.); (M.D.); (E.d.C.A.P.); (G.D.); (R.T.T.); (E.J.); (J.H.); (E.L.B.L.)
| | - Renan Tedeski Thomaz
- Laboratory of Preclinical Research of Natural Products, Paranaense University, Umuarama 87502-210, Paraná, Brazil; (M.M.P.); (M.D.); (E.d.C.A.P.); (G.D.); (R.T.T.); (E.J.); (J.H.); (E.L.B.L.)
| | - Camila da Silva
- Department of Technology, State University of Maringá, Umuarama 87506-370, Paraná, Brazil;
| | - Paula Derksen Macruz
- Department of Chemical Engineering, State University of Maringá, Maringá 87020-900, Paraná, Brazil;
| | - Ezilda Jacomassi
- Laboratory of Preclinical Research of Natural Products, Paranaense University, Umuarama 87502-210, Paraná, Brazil; (M.M.P.); (M.D.); (E.d.C.A.P.); (G.D.); (R.T.T.); (E.J.); (J.H.); (E.L.B.L.)
| | - Arquimedes Gasparotto Junior
- Laboratory of Cardiovascular Pharmacology (LaFaC), Faculty of Health Sciences, Federal University of Grande Dourados, Dourados 79804-970, Mato Grosso do Sul, Brazil;
| | - Jaqueline Hoscheid
- Laboratory of Preclinical Research of Natural Products, Paranaense University, Umuarama 87502-210, Paraná, Brazil; (M.M.P.); (M.D.); (E.d.C.A.P.); (G.D.); (R.T.T.); (E.J.); (J.H.); (E.L.B.L.)
| | - Emerson Luiz Botelho Lourenço
- Laboratory of Preclinical Research of Natural Products, Paranaense University, Umuarama 87502-210, Paraná, Brazil; (M.M.P.); (M.D.); (E.d.C.A.P.); (G.D.); (R.T.T.); (E.J.); (J.H.); (E.L.B.L.)
| | - Odair Alberton
- Laboratory of Preclinical Research of Natural Products, Paranaense University, Umuarama 87502-210, Paraná, Brazil; (M.M.P.); (M.D.); (E.d.C.A.P.); (G.D.); (R.T.T.); (E.J.); (J.H.); (E.L.B.L.)
| |
Collapse
|
113
|
Salgado MTSF, Fernandes E Silva E, Nascimento MAD, Lopes AC, Paiva LSD, Votto APDS. Potential Therapeutic Targets of Quercetin in the Cutaneous Melanoma Model and Its Cellular Regulation Pathways: A Systematic Review. Nutr Cancer 2023; 75:1687-1709. [PMID: 37553896 DOI: 10.1080/01635581.2023.2241698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 08/10/2023]
Abstract
Melanoma is a skin cancer with a high mortality rate due to its invasive characteristics. Currently, immunotherapy and targeted therapy increase patient survival but are ineffective in the advanced stages of the tumor. Quercetin (Que) is a natural compound that has demonstrated chemopreventive effects against different types of tumors. This review provides evidence for the therapeutic potential of Que in melanoma and identifies its main targets. The Scopus, Web of Science, and PubMed databases were searched, and studies that used free or encapsulated Que in melanoma models were included, excluding associations, analogs, and extracts. As a result, 73 articles were retrieved and their data extracted. Que has multiple cellular targets in melanoma models, and the main regulated pathways are cell death, redox metabolism, metastasis, and melanization. Que was also able to regulate important targets of signaling pathways, such as PKC, RIG-I, STAT, and P53. In murine models, treatment with Que reduced tumor growth and weight, and decreased metastatic nodules and angiogenic vasculature. Several studies have incorporated Que into carriers, demonstrating improved efficacy and delivery to tumors. Thus, Que is a promising therapeutic agent for the treatment of melanoma; however, further studies are needed to evaluate its effectiveness in clinical trials.
Collapse
Affiliation(s)
- Mariana Teixeira Santos Figueiredo Salgado
- Laboratório de Cultura Celular, ICB, FURG, Rio Grande, RS, Brazil
- Programa de Pós-Graduação em Ciências Fisiológicas, ICB, FURG, Rio Grande, RS, Brazil
| | | | - Mariana Amaral do Nascimento
- Laboratório de Imunorregulação, Departamento de Imunobiologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | | | - Luciana Souza de Paiva
- Laboratório de Imunorregulação, Departamento de Imunobiologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
- Programa de Pós-Graduação em Patologia, Faculdade de Medicina, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Ana Paula de Souza Votto
- Laboratório de Cultura Celular, ICB, FURG, Rio Grande, RS, Brazil
- Programa de Pós-Graduação em Ciências Fisiológicas, ICB, FURG, Rio Grande, RS, Brazil
| |
Collapse
|
114
|
Fosso E, Leo M, Muccillo L, Mandrone VM, Di Meo MC, Molinario A, Varricchio E, Sabatino L. Quercetin's Dual Mode of Action to Counteract the Sp1-miR-27a Axis in Colorectal Cancer Cells. Antioxidants (Basel) 2023; 12:1547. [PMID: 37627542 PMCID: PMC10451631 DOI: 10.3390/antiox12081547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
Quercetin (Qc) inhibits cell proliferation and induces apoptosis in a variety of cancer cells. The molecular mechanism of action has not been fully elucidated; however, interplay with some miRNAs has been reported, specifically with miR-27a, an onco-miRNA overexpressed in several malignancies. Here, we show that Qc reduces cell viability and induces apoptosis in HCT116 and HT-29 colon cancer cells, by upregulating negative modulators of proliferation pathways such as Sprouty2, PTEN and SFRP1. These are targets of miR-27a whose high expression is reduced by Qc. Moreover, miR-23a, and miR-24-2, the two other components of the unique gene cluster, and the pri-miRNA transcript are reduced, evoking a transcriptional regulation of the entire cluster by Sp1. Mechanistically, we show that Qc is rapidly internalized and localizes in the nucleus, where it likely interacts with Sp1, inducing its proteasomal degradation. Sp1 is further repressed by ZBTB10, an Sp1 competitor for DNA binding that is an miR-27a target and whose levels increase following Qc. SP1 mRNA is also reduced, supporting the regulation of its own gene transcription. Finally, Sp1 knockdown elicits the impaired transcription of the entire cluster and the upregulation of the miR-27a targets, phenocopying the effects of Qc. Through this dual mode of action, Qc counteracts the protumoral Sp1-miR-27a axis, opening the way for novel therapies based on its association as neoadjuvant with known anticancer treatments.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Lina Sabatino
- Department of Sciences and Technologies, University of Sannio, Via Francesco de Sanctis, 82100 Benevento, Italy; (E.F.); (M.L.); (L.M.); (V.M.M.); (M.C.D.M.); (A.M.); (E.V.)
| |
Collapse
|
115
|
Woźniak P, Kleczka A, Jasik K, Kabała-Dzik A, Dzik R, Stojko J. The Effect of Natural Substances Contained in Bee Products on Prostate Cancer in In Vitro Studies. Molecules 2023; 28:5719. [PMID: 37570691 PMCID: PMC10420981 DOI: 10.3390/molecules28155719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Prostate cancer is a common cancer in men in older age groups. The WHO forecasts an increase in the incidence of prostate cancer in the coming years. Patients may not respond to treatment, and may not tolerate the side effects of chemotherapy. Compounds of natural origin have long been used in the prevention and treatment of cancer. Flavonoids obtained from natural products, e.g., propolis, are compounds with proven antibacterial and antiviral efficacy which modulate the immune response and may be useful as adjuvants in chemotherapy. The main aim of the present study was to evaluate the cytotoxic and pro-apoptotic properties of selected flavonoids on prostate cancer cells of the LNCaP line. The compounds used in this study were CAPE, curcumin (CUR), and quercetin (QUE). Mitochondrial and lysosome metabolism was assessed by the XTT-NR-SRB triple assay as well as by the fluorescent staining techniques. Staining for reactive oxygen species was performed as well. The experiment showed that each of the tested compounds has a cytotoxic effect on the LNCaP cell line. Different types of cell death were induced by the tested compounds. Apoptosis was induced by quercetin, while autophagy-specific changes were observed after using CAPE. Compounds obtained from other bee products have antiproliferative and cytotoxic activity against LNCaP prostate cancer cells.
Collapse
Affiliation(s)
- Przemysław Woźniak
- Department of Toxicology and Bioanalysis, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Ostrogórska 30, 41-200 Sosnowiec, Poland; (P.W.); (J.S.)
| | - Anna Kleczka
- Department of Pathology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Ostrogórska 30, 41-200 Sosnowiec, Poland; (A.K.); (K.J.)
| | - Krzysztof Jasik
- Department of Pathology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Ostrogórska 30, 41-200 Sosnowiec, Poland; (A.K.); (K.J.)
| | - Agata Kabała-Dzik
- Department of Pathology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Ostrogórska 30, 41-200 Sosnowiec, Poland; (A.K.); (K.J.)
| | - Radosław Dzik
- Faculty of Biomedical Engineering, Department of Biosensors and Processing of Biomedical Signals, Silesian University of Technology, Roosevelta 40, 41-800 Zabrze, Poland;
| | - Jerzy Stojko
- Department of Toxicology and Bioanalysis, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Ostrogórska 30, 41-200 Sosnowiec, Poland; (P.W.); (J.S.)
| |
Collapse
|
116
|
Ysrafil Y, Sapiun Z, Slamet NS, Mohamad F, Hartati H, Damiti SA, Alexandra FD, Rahman S, Masyeni S, Harapan H, Mamada SS, Bin Emran T, Nainu F. Anti-inflammatory activities of flavonoid derivates. ADMET AND DMPK 2023; 11:331-359. [PMID: 37829324 PMCID: PMC10567070 DOI: 10.5599/admet.1918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/29/2023] [Indexed: 09/01/2023] Open
Abstract
Background and purpose Flavonoids are a group of phytochemicals found abundantly in various plants. Scientific evidence has revealed that flavonoids display potential biological activities, including their ability to alleviate inflammation. This activity is closely related to their action in blocking the inflammatory cascade and inhibiting the production of pro-inflammatory factors. However, as flavonoids typically have poor bioavailability and pharmacokinetic profile, it is quite challenging to establish these compounds as a drug. Nevertheless, progressive advancements in drug delivery systems, particularly in nanotechnology, have shown promising approaches to overcome such challenges. Review approach This narrative review provides an overview of scientific knowledge about the mechanism of action of flavonoids in the mitigation of inflammatory reaction prior to delivering a comprehensive discussion about the opportunity of the nanotechnology-based delivery system in the preparation of the flavonoid-based drug. Key results Various studies conducted in silico, in vitro, in vivo, and clinical trials have deciphered that the anti-inflammatory activities of flavonoids are closely linked to their ability to modulate various biochemical mediators, enzymes, and signalling pathways involved in the inflammatory processes. This compound could be encapsulated in nanotechnology platforms to increase the solubility, bioavailability, and pharmacological activity of flavonoids as well as reduce the toxic effects of these compounds. Conclusion In Summary, we conclude that flavonoids and their derivates have given promising results in their development as new anti-inflammatory drug candidates, especially if they formulate in nanoparticles.
Collapse
Affiliation(s)
- Ysrafil Ysrafil
- Department of Pharmacotherapy, Faculty of Medicine, Universitas Palangka Raya, Palangka Raya 73111, Indonesia
| | - Zulfiayu Sapiun
- Department of Pharmacy, Politeknik Kesehatan Kementerian Kesehatan Gorontalo, Gorontalo 96135, Indonesia
| | - Nangsih Sulastri Slamet
- Department of Pharmacy, Politeknik Kesehatan Kementerian Kesehatan Gorontalo, Gorontalo 96135, Indonesia
| | - Fihrina Mohamad
- Department of Pharmacy, Politeknik Kesehatan Kementerian Kesehatan Gorontalo, Gorontalo 96135, Indonesia
| | - Hartati Hartati
- Department of Pharmacy, Politeknik Kesehatan Kementerian Kesehatan Gorontalo, Gorontalo 96135, Indonesia
| | - Sukmawati A Damiti
- Department of Midwivery, Politeknik Kesehatan Kementerian Kesehatan Palangka Raya 73111, Palangka Raya, Indonesia
| | - Francisca Diana Alexandra
- Department of Pharmacotherapy, Faculty of Medicine, Universitas Palangka Raya, Palangka Raya 73111, Indonesia
| | - Sudarman Rahman
- Faculty of mathematics and natural sciences, Universitas Palangka Raya, Palangka Raya 73111, Indonesia
| | - Sri Masyeni
- Department of Internal Medicine, Faculty of Medicine and Health Sciences, Universitas Warmadewa, Denpasar, Bali 80235, Indonesia
- Department of Internal Medicine, Sanjiwani Hospital, Denpasar, Bali 80235, Indonesia
| | - Harapan Harapan
- Medical Research Unit, School of Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
- Tropical Disease Centre, School of Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
- Department of Microbiology, School of Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| | - Sukamto S. Mamada
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Talha Bin Emran
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912, USA
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| |
Collapse
|
117
|
Aghababaei F, Hadidi M. Recent Advances in Potential Health Benefits of Quercetin. Pharmaceuticals (Basel) 2023; 16:1020. [PMID: 37513932 PMCID: PMC10384403 DOI: 10.3390/ph16071020] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/08/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Quercetin, a flavonoid found in fruits and vegetables, has been a part of human diets for centuries. Its numerous health benefits, including antioxidant, antimicrobial, anti-inflammatory, antiviral, and anticancer properties, have been extensively studied. Its strong antioxidant properties enable it to scavenge free radicals, reduce oxidative stress, and protect against cellular damage. Quercetin's anti-inflammatory properties involve inhibiting the production of inflammatory cytokines and enzymes, making it a potential therapeutic agent for various inflammatory conditions. It also exhibits anticancer effects by inhibiting cancer cell proliferation and inducing apoptosis. Finally, quercetin has cardiovascular benefits such as lowering blood pressure, reducing cholesterol levels, and improving endothelial function, making it a promising candidate for preventing and treating cardiovascular diseases. This review provides an overview of the chemical structure, biological activities, and bioavailability of quercetin, as well as the different delivery systems available for quercetin. Incorporating quercetin-rich foods into the diet or taking quercetin supplements may be beneficial for maintaining good health and preventing chronic diseases. As research progresses, the future perspectives of quercetin appear promising, with potential applications in nutraceuticals, pharmaceuticals, and functional foods to promote overall well-being and disease prevention. However, further studies are needed to elucidate its mechanisms of action, optimize its bioavailability, and assess its long-term safety for widespread utilization.
Collapse
Affiliation(s)
- Fatemeh Aghababaei
- Centre d'Innovació, Recerca i Transferència en Tecnologia dels Aliments (CIRTTA), TECNIO-UAB, XIA, Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, UAB-Campus, 08193 Bellaterra, Spain
| | - Milad Hadidi
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| |
Collapse
|
118
|
Shoaib A, Javed S, Wahab S, Azmi L, Tabish M, Sultan MH, Abdelsalam K, Alqahtani SS, Ahmad MF. Cellular, Molecular, Pharmacological, and Nano-Formulation Aspects of Thymoquinone-A Potent Natural Antiviral Agent. Molecules 2023; 28:5435. [PMID: 37513307 PMCID: PMC10383476 DOI: 10.3390/molecules28145435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
The goal of an antiviral agent research is to find an antiviral drug that reduces viral growth without harming healthy cells. Transformations of the virus, new viral strain developments, the resistance of viral pathogens, and side effects are the current challenges in terms of discovering antiviral drugs. The time has come and it is now essential to discover a natural antiviral agent that has the potential to destroy viruses without causing resistance or other unintended side effects. The pharmacological potency of thymoquinone (TQ) against different communicable and non-communicable diseases has been proven by various studies, and TQ is considered to be a safe antiviral substitute. Adjunctive immunomodulatory effects in addition to the antiviral potency of TQ makes it a major compound against viral infection through modulating the production of nitric oxide and reactive oxygen species, decreasing the cytokine storm, and inhibiting endothelial dysfunction. Nevertheless, TQ's low oral bioavailability, short half-life, poor water solubility, and conventional formulation are barriers to achieving its optimal pharmacologic benefits. Nano-formulation proposes numerous ways to overcome these obstacles through a small particle size, a big surface area, and a variety of surface modifications. Nano-based pharmaceutical innovations to combat viral infections using TQ are a promising approach to treating surmounting viral infections.
Collapse
Affiliation(s)
- Ambreen Shoaib
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
- Pharmacy Practice Research Unit (PPRU), College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Shamama Javed
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Lubna Azmi
- Department of Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, University of Lucknow, Lucknow 226007, India
| | - Mohammad Tabish
- Department of Pharmacology, College of Medicine, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Muhammad H Sultan
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Karim Abdelsalam
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
- Pharmacy Practice Research Unit (PPRU), College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Saad S Alqahtani
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Md Faruque Ahmad
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
119
|
Stasiłowicz-Krzemień A, Sip S, Szulc P, Cielecka-Piontek J. Determining Antioxidant Activity of Cannabis Leaves Extracts from Different Varieties-Unveiling Nature's Treasure Trove. Antioxidants (Basel) 2023; 12:1390. [PMID: 37507928 PMCID: PMC10376652 DOI: 10.3390/antiox12071390] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Cannabis leaves contain a diverse range of antioxidants, including cannabinoids, flavonoids, and phenolic compounds, which offer significant health benefits. Utilising cannabis leaves as a source of antioxidants presents a cost-effective approach because they are typically discarded during the cultivation of cannabis plants for their seeds or fibres. Therefore, this presented study aimed to assess the antioxidant activity of the leaves of selected hemp cultivars, such as Białobrzeska, Tygra, and Henola, based on the results obtained with the 2,2'-Azino-bis(3-ethylbenzthiazoline-6-sulfonic acid, ferric reducing antioxidant power, cupric reducing antioxidant capacity, and 2,2-Diphenyl-1-picrylhydrazyl assays. The cannabinoid profile was analysed for the antioxidant activity to the contents of cannabidiol (CBD), cannabigerol (CBG), Δ9-tetrahydrocannabinol (Δ9-THC), and cannabichromene (CBC), determined based on chromatographic assays. The following variables were tested: the impact of various extractants (methanol, ethanol, and isopropanol), and their mixtures (50:50, v/v, as well as extraction methods (maceration and ultra-sound-assisted extraction) significant in obtaining hemp extracts characterised by different cannabinoid profiles. The results revealed that the selection of extractant and extraction conditions significantly influenced the active compounds' extraction efficiency and antioxidant activity. Among the tested conditions, ultrasound-assisted extraction using methanol yielded the highest cannabinoid profile: CBD = 184.51 ± 5.61; CBG = 6.10 ± 0.21; Δ9-THC = 0.51 ± 0.01; and CBC = 0.71 ± 0.01 μg/g antioxidant potential in Białobrzeska leaf extracts.
Collapse
Affiliation(s)
- Anna Stasiłowicz-Krzemień
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Szymon Sip
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Piotr Szulc
- Department of Agronomy, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznan, Poland
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
- Department of Pharmacology and Phytochemistry, Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznan, Poland
| |
Collapse
|
120
|
Herdiana Y, Husni P, Nurhasanah S, Shamsuddin S, Wathoni N. Chitosan-Based Nano Systems for Natural Antioxidants in Breast Cancer Therapy. Polymers (Basel) 2023; 15:2953. [PMID: 37447598 DOI: 10.3390/polym15132953] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Breast cancer is a major cause of death globally, accounting for around 13% of all deaths. Chemotherapy, the common treatment for cancer, can have side effects that lead to the production of reactive oxygen species (ROS) and an increase in oxidative stress in the body. Antioxidants are important for maintaining the health of cells and helping the immune system function properly. They play a crucial role in balancing the body's internal environment. Using natural antioxidants is an alternative to mitigate the harmful effects of oxidative stress. However, around 80% of natural antioxidants have limited effectiveness when taken orally because they do not dissolve well in water or other solvents. This poor solubility affects their ability to be absorbed by the body and limits their bioavailability. One strategy that has been considered is to increase their water solubility to increase their oral bioavailability. Chitosan-based nanoparticle (CSNP) systems have been extensively explored due to their reliability and simpler synthesis routes. This review focuses on the various methods of chitosan-based nanoformulation for developing effective oral dosage forms for natural antioxidants based on the pharmacokinetics and pharmacodynamics properties. Chitosan (CS) could be a model, because of its wide use in polymeric NPs research, thus providing a better understanding of the role of vehicles that carry natural antioxidants in maintaining the stability and enhancing the performance of cancer drugs.
Collapse
Affiliation(s)
- Yedi Herdiana
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Patihul Husni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Siti Nurhasanah
- Faculty of Agricultural Industrial Technology, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Shaharum Shamsuddin
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia
- Nanobiotech Research Initiative, Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang 11800, Malaysia
- USM-RIKEN Interdisciplinary Collaboration on Advanced Sciences (URICAS), Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| |
Collapse
|
121
|
Tassinari V, Smeriglio A, Stillittano V, Trombetta D, Zilli R, Tassinari R, Maranghi F, Frank G, Marcoccia D, Di Renzo L. Endometriosis Treatment: Role of Natural Polyphenols as Anti-Inflammatory Agents. Nutrients 2023; 15:2967. [PMID: 37447296 DOI: 10.3390/nu15132967] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Endometriosis is an estrogen-dependent common chronic inflammatory disease defined by the presence of extrauterine endometrial tissue that promotes pelvic pain and fertility impairment. Its etiology is complex and multifactorial, and several not completely understood theories have been proposed to describe its pathogenesis. Indeed, this disease affects women's quality of life and their reproductive system. Conventional therapies for endometriosis treatment primarily focus on surgical resection, lowering systemic levels of estrogen, and treatment with non-steroidal anti-inflammatory drugs to counteract the inflammatory response. However, although these strategies have shown to be effective, they also show considerable side effects. Therefore, there is a growing interest in the use of herbal medicine for the treatment of endometriosis; however, to date, only very limited literature is present on this topic. Polyphenols display important anti-endometriotic properties; in particular, they are potent phytoestrogens that in parallel modulates estrogen activity and exerts anti-inflammatory activity. The aim of this review is to provide an overview on anti-inflammatory activity of polyphenols in the treatment of endometriosis.
Collapse
Affiliation(s)
- Valentina Tassinari
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Virgilio Stillittano
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova 1411, 00178 Rome, Italy
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Romano Zilli
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova 1411, 00178 Rome, Italy
| | - Roberta Tassinari
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Francesca Maranghi
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Giulia Frank
- Ph.D. School of Applied Medical-Surgical Sciences, University of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Daniele Marcoccia
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova 1411, 00178 Rome, Italy
- School of Specialization in Food Science, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Laura Di Renzo
- School of Specialization in Food Science, University of Rome Tor Vergata, 00133 Rome, Italy
- Section of Clinical Nutrition and Nutrigenomic, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| |
Collapse
|
122
|
Mobasheri K, Zaefizadeh M, Ghobeh M, Eidi A. Synthesis of Novel Magnetic Quercetin-Neuropeptide Nanocomposite as a Smart Nano-Drug Shuttle System: Investigation of Its Effect on Behavior, Histopathological Characteristics, and Expression of MAPT and APP Genes in Alzheimer's Disease Rats. J Alzheimers Dis 2023:JAD221095. [PMID: 37393494 DOI: 10.3233/jad-221095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common type of dementia. The drugs introduced for this disease have many side effects and limitations in use, so the production of a suitable herbal medicine to cure AD patients is essential. OBJECTIVE The aim of this research is to make a magnetic neuropeptide nano shuttle as a targeted carrier for the transfer of quercetin to the brains of AD model rats. METHODS In this work, a magnetic quercetin-neuropeptide nanocomposite (MQNPN) was fabricated and administered to the rat's brain by the shuttle drug of the Margatoxin scorpion venom neuropeptide, and will be a prospect for targeted drug delivery in AD. The MQNPN has been characterized by FTIR, spectroscopy, FE-SEM, XRD, and VSM. Investigations into the efficacy of MQNPN, MTT, and real Time PCR for MAPT and APP genes expression were performed. After 7 days treatment with Fe3O4 (Ctr) and MQNPN treatment in AD rat, superoxide dismutase activity and quercetin in blood serum and brain was detected. Hematoxylin-Eosin staining was applied for histopathological analysis. RESULTS Analysis of data showed that MQNPN increased the activity of superoxide dismutase. The histopathology results of the hippocampal region of AD rats also confirmed their improvement after treatment with MQNPN. MQNPN treatment caused a significant decrease in the relative expression of MAPT and APP genes. CONCLUSION MQNPN is a suitable carrier for the transfer of quercetin to the rat hippocampus, and has a significant effect in reducing AD symptoms in terms of histopathology, behavioral testing, and changing the expression of AD-related genes.
Collapse
Affiliation(s)
- Kamelia Mobasheri
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Zaefizadeh
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Department of Biology, Ardabil Branch, Islamic Azad University, Ardabil, Iran
| | - Maryam Ghobeh
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Akram Eidi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
123
|
Dos Santos JS, Suzan AJ, Bonafé GA, Fernandes AMADP, Longato GB, Antônio MA, Carvalho PDO, Ortega MM. Kaempferol and Biomodified Kaempferol from Sophora japonica Extract as Potential Sources of Anti-Cancer Polyphenolics against High Grade Glioma Cell Lines. Int J Mol Sci 2023; 24:10716. [PMID: 37445894 DOI: 10.3390/ijms241310716] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/15/2023] [Accepted: 05/20/2023] [Indexed: 07/15/2023] Open
Abstract
The enzymatic hydrolysis of the extract of Sophora japonica by two glycosyl hydrolases (hesperidinase and galactosidase) was performed in order to obtain kaempferol (KPF)-enriched extract with an enhanced anticancer activity. The current study examined the effectiveness of both Sophora japonica extracts (before (KPF-BBR) and after (KPF-ABR) bioconversion reactions) in reducing cell viability and inducing apoptosis in human high-degree gliomas in vitro. Cytotoxicity was determined using an MTT assay. The effects of both compounds on the proliferation of glioma cell lines were measured using trypan blue exclusion, flow cytometry for cell cycle, wound healing (WH), and neurosphere formation assays. Cellular apoptosis was detected by DNA fragmentation and phosphatidylserine exposure. qPCR and luciferase assays evaluated NF-kB pathway inhibition. The survival rate of NG-97 and U-251 cells significantly decreased in a time- and dose-dependent manner after the addition of KPF-BBR or KPF-ABR. Thus, a 50% reduction was observed in NG-97 cells at 800 µM (KPF-BBR) and 600 µM (KPF-ABR) after 72 h. Both compounds presented an IC50 of 1800 µM for U251 after 72 h. The above IC50 values were used in all of the following analyses. Neither of the KPF presented significant inhibitory effects on the non-tumoral cells (HDFa). However, after 24 h, both extracts (KPF-BBR and KPF-ABR) significantly inhibited the migration and proliferation of NG-97 and U-251 cells. In addition, MMP-9 was downregulated in glioma cells stimulated by 12-O-tetradecanoylphorbol-13-acetate (TPA) plus KPF-BBR and TPA+KPF-ABR compared with the TPA-treated cells. Both KPF-BBR and KPF-ABR significantly inhibited the proliferation of glioma stem cells (neurospheres) after 24 h. DNA fragmentation assays demonstrated that the apoptotic ratio of KPF-ABR-treated cell lines was significantly higher than in the control groups, especially NG-97, which is not TMZ resistant. In fact, the flow cytometric analysis indicated that KPF-BBR and KPF-ABR induced significant apoptosis in both glioma cells. In addition, both KPF induced S and G2/M cell cycle arrest in the U251 cells. The qPCR and luciferase assays showed that both KPFs downregulated TRAF6, IRAK2, IL-1β, and TNF-α, indicating an inhibitory effect on the NF-kB pathway. Our findings suggest that both KPF-BBR and KPF-ABR can confer anti-tumoral effects on human cell glioma cells by inhibiting proliferation and inducing apoptosis, which is related to the NF-κB-mediated pathway. The KPF-enriched extract (KPF-ABR) showed an increased inhibitory effect on the cell migration and invasion, characterizing it as the best antitumor candidate.
Collapse
Affiliation(s)
- Jéssica Silva Dos Santos
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, Post Graduate Program in Health Science, São Francisco University, Bragança Paulista 12916-900, São Paulo, Brazil
| | - Amanda Janaína Suzan
- Laboratory of Multidisciplinary Research, Post Graduate Program in Health Science, São Francisco University, Bragança Paulista 12916-900, São Paulo, Brazil
| | - Gabriel Alves Bonafé
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, Post Graduate Program in Health Science, São Francisco University, Bragança Paulista 12916-900, São Paulo, Brazil
| | - Anna Maria Alves de Piloto Fernandes
- Laboratory of Multidisciplinary Research, Post Graduate Program in Health Science, São Francisco University, Bragança Paulista 12916-900, São Paulo, Brazil
| | - Giovanna Barbarini Longato
- Laboratory of Molecular Pharmacology and Bioactive Compounds, Post Graduate Program in Health Science, São Francisco University, Bragança Paulista 12916-900, São Paulo, Brazil
| | - Márcia Aparecida Antônio
- Integrated Unit of Pharmacology and Gastroenterology (UNIFAG), São Francisco University, Bragança Paulista 12916-900, São Paulo, Brazil
| | - Patrícia de Oliveira Carvalho
- Laboratory of Multidisciplinary Research, Post Graduate Program in Health Science, São Francisco University, Bragança Paulista 12916-900, São Paulo, Brazil
| | - Manoela Marques Ortega
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, Post Graduate Program in Health Science, São Francisco University, Bragança Paulista 12916-900, São Paulo, Brazil
| |
Collapse
|
124
|
Millán-Laleona A, Bielsa FJ, Aranda-Cañada E, Gómez-Rincón C, Errea P, López V. Antioxidant, Antidiabetic, and Anti-Obesity Properties of Apple Pulp Extracts ( Malus domestica Bork): A Comparative Study of 15 Local and Commercial Cultivars from Spain. BIOLOGY 2023; 12:891. [PMID: 37508324 PMCID: PMC10376420 DOI: 10.3390/biology12070891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/14/2023] [Accepted: 06/17/2023] [Indexed: 07/30/2023]
Abstract
Apples (Malus domestica Borkh.) have a great agricultural and economic impact worldwide; they also present an interesting nutritional value, and their consumption has been associated with beneficial health effects. In this study, 15 apple varieties (three commercial, 12 autochthonous genotypes) were collected from mountainous areas in Spain and were evaluated for their phenolic content, antioxidant, anti-obesity and antidiabetic activities. Quercetin was tested as the reference substance in bioassays due to its role as one of the most common flavonoids in apples and other vegetables. Total Phenolic Content (TPC) of apple pulp extracts was quantified using the Folin-Ciocalteu method. The antioxidant activity was determined by using 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging and xanthine/xanthine oxidase (X/XO) scavenging assays. Antidiabetic and anti-obesity potential were evaluated by inhibition of alpha-glucosidase (α-GLU), advance glycation end products (AGEs) formation and pancreatic lipase. The results showed in general higher phenol content in autochthonous varieties than in commercial apple pulp extracts. Phenolic-rich extracts showed better antioxidant profiles and significantly inhibited AGEs production and the α-glucosidase enzyme in a dose-dependent manner. None of them showed pancreatic lipase inhibitory effects but in general, the genotype known as "Amarilla de Octubre" was the best in terms of TPC and bioactive properties.
Collapse
Affiliation(s)
- Adrián Millán-Laleona
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, 50830 Zaragoza, Spain
| | - Francisco Javier Bielsa
- Unidad de Hortofruticultura, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), 50059 Zaragoza, Spain
| | - Eduardo Aranda-Cañada
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, 50830 Zaragoza, Spain
| | - Carlota Gómez-Rincón
- Instituto Agroalimentario de Aragón-IA2, CITA-Universidad de Zaragoza, 50013 Zaragoza, Spain
| | - Pilar Errea
- Unidad de Hortofruticultura, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), 50059 Zaragoza, Spain
- Instituto Agroalimentario de Aragón-IA2, CITA-Universidad de Zaragoza, 50013 Zaragoza, Spain
| | - Víctor López
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, 50830 Zaragoza, Spain
- Instituto Agroalimentario de Aragón-IA2, CITA-Universidad de Zaragoza, 50013 Zaragoza, Spain
| |
Collapse
|
125
|
Zheng H, Wang G, Liu M, Cheng H. Traditional Chinese medicine inhibits PD-1/PD-L1 axis to sensitize cancer immunotherapy: a literature review. Front Oncol 2023; 13:1168226. [PMID: 37397393 PMCID: PMC10312112 DOI: 10.3389/fonc.2023.1168226] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/01/2023] [Indexed: 07/04/2023] Open
Abstract
The Programmed death-1 (PD-1) and its programmed death-ligand 1 (PD-L1) comprise the PD-1/PD-L1 axis and maintain tumor immune evasion. Cancer immunotherapy based on anti-PD-1/PD-L1 antibodies is the most promising anti-tumor treatment available but is currently facing the thorny problem of unsatisfactory outcomes. Traditional Chinese Medicine (TCM), with its rich heritage of Chinese medicine monomers, herbal formulas, and physical therapies like acupuncture, moxibustion, and catgut implantation, is a multi-component and multi-target system of medicine known for enhancing immunity and preventing the spread of disease. TCM is often used as an adjuvant therapy for cancer in clinical practices, and recent studies have demonstrated the synergistic effects of combining TCM with cancer immunotherapy. In this review, we examined the PD-1/PD-L1 axis and its role in tumor immune escape while exploring how TCM therapies can modulate the PD-1/PD-L1 axis to improve the efficacy of cancer immunotherapy. Our findings suggest that TCM therapy can enhance cancer immunotherapy by reducing the expression of PD-1 and PD-L1, regulating T-cell function, improving the tumor immune microenvironment, and regulating intestinal flora. We hope this review may serve as a valuable resource for future studies on the sensitization of immune checkpoint inhibitors (ICIs) therapy.
Collapse
Affiliation(s)
- Huilan Zheng
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Gang Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, China
| | - Ming Liu
- Department of Medical Oncology/Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hongbin Cheng
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
126
|
Chu Z, Han S, Luo Y, Zhou Y, Zhu L, Luo F. Targeting gut-brain axis by dietary flavonoids ameliorate aging-related cognition decline: Evidences and mechanisms. Crit Rev Food Sci Nutr 2023; 64:10281-10302. [PMID: 37300491 DOI: 10.1080/10408398.2023.2222404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Aging-related cognitive impairment, mainly Alzheimer's disease (AD), has been widely studied. However, effective prevention and treatment methods are still lacking. In recent years, researchers have observed beneficial effects of plant-based supplements, such as flavonoids, on cognitive protection. This provides a new clue for the prevention of cognitive dysfunction. Studies have shown that dietary flavonoids have neuroprotective effects, but the mechanism is not clear. In this review, we systematically reviewed the research progress on the effects of dietary flavonoids on gut microbes and their metabolites, and concluded that flavonoids could improve cognitive function through the gut-brain axis. Flavonoids can be absorbed through the intestine, cross the blood-brain barrier, and enter the brain tissue. Flavonoids can inhibit the expression and secretion of inflammatory factors in brain tissue, reduce the damage caused by oxidative stress, clear neural damage proteins and inhibit neuronal apoptosis, thereby ameliorating age-related cognitive disorders. Future work will continue to explore the gut-brain axis and target genes regulated by flavonoids. In addition, clinical research and its mechanisms need to be further explored to provide solutions or advise for patients with cognitive impairment.
Collapse
Affiliation(s)
- Zhongxing Chu
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Shuai Han
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Yi Luo
- Department of Clinic Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yaping Zhou
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Lingfeng Zhu
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Feijun Luo
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan, China
| |
Collapse
|
127
|
Tomou EM, Papakyriakopoulou P, Saitani EM, Valsami G, Pippa N, Skaltsa H. Recent Advances in Nanoformulations for Quercetin Delivery. Pharmaceutics 2023; 15:1656. [PMID: 37376104 DOI: 10.3390/pharmaceutics15061656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Quercetin (QUE) is a flavonol that has recently received great attention from the research community due to its important pharmacological properties. However, QUE's low solubility and extended first-pass metabolism limit its oral administration. This review aims to present the potential of various nanoformulations in the development of QUE dosage forms for bioavailability enhancement. Advanced drug delivery nanosystems can be used for more efficient encapsulation, targeting, and controlled release of QUE. An overview of the primary nanosystem categories, formulation processes, and characterization techniques are described. In particular, lipid-based nanocarriers, such as liposomes, nanostructured-lipid carries, and solid-lipid nanoparticles, are widely used to improve QUE's oral absorption and targeting, increase its antioxidant activity, and ensure sustained release. Moreover, polymer-based nanocarriers exhibit unique properties for the improvement of the Absorption, Distribution, Metabolism, Excretion, and Toxicology (ADME(T)) profile. Namely, micelles and hydrogels composed of natural or synthetic polymers have been applied in QUE formulations. Furthermore, cyclodextrin, niosomes, and nanoemulsions are proposed as formulation alternatives for administration via different routes. This comprehensive review provides insight into the role of advanced drug delivery nanosystems for the formulation and delivery of QUE.
Collapse
Affiliation(s)
- Ekaterina-Michaela Tomou
- Section of Pharmacognosy & Chemistry of Natural Products, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Paraskevi Papakyriakopoulou
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Elmina-Marina Saitani
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Georgia Valsami
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Natassa Pippa
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Helen Skaltsa
- Section of Pharmacognosy & Chemistry of Natural Products, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece
| |
Collapse
|
128
|
Ye L, Fan S, Zhao P, Wu C, Liu M, Hu S, Wang P, Wang H, Bi H. Potential herb‒drug interactions between anti-COVID-19 drugs and traditional Chinese medicine. Acta Pharm Sin B 2023; 13:S2211-3835(23)00203-4. [PMID: 37360014 PMCID: PMC10239737 DOI: 10.1016/j.apsb.2023.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/21/2023] [Accepted: 04/20/2023] [Indexed: 06/28/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread worldwide. Effective treatments against COVID-19 remain urgently in need although vaccination significantly reduces the incidence, hospitalization, and mortality. At present, antiviral drugs including Nirmatrelvir/Ritonavir (PaxlovidTM), Remdesivir, and Molnupiravir have been authorized to treat COVID-19 and become more globally available. On the other hand, traditional Chinese medicine (TCM) has been used for the treatment of epidemic diseases for a long history. Currently, various TCM formulae against COVID-19 such as Qingfei Paidu decoction, Xuanfei Baidu granule, Huashi Baidu granule, Jinhua Qinggan granule, Lianhua Qingwen capsule, and Xuebijing injection have been widely used in clinical practice in China, which may cause potential herb-drug interactions (HDIs) in patients under treatment with antiviral drugs and affect the efficacy and safety of medicines. However, information on potential HDIs between the above anti-COVID-19 drugs and TCM formulae is lacking, and thus this work seeks to summarize and highlight potential HDIs between antiviral drugs and TCM formulae against COVID-19, and especially pharmacokinetic HDIs mediated by metabolizing enzymes and/or transporters. These well-characterized HDIs could provide useful information on clinical concomitant medicine use to maximize clinical outcomes and minimize adverse and toxic effects.
Collapse
Affiliation(s)
- Ling Ye
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shicheng Fan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Pengfei Zhao
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Chenghua Wu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Menghua Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shuang Hu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Peng Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hongyu Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Huichang Bi
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
129
|
Fang HY, Zhao XN, Zhang M, Ma YY, Huang JL, Zhou P. Beneficial effects of flavonoids on cardiovascular diseases by influencing NLRP3 inflammasome. Inflammopharmacology 2023:10.1007/s10787-023-01249-2. [PMID: 37261627 DOI: 10.1007/s10787-023-01249-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/06/2023] [Indexed: 06/02/2023]
Abstract
Cardiovascular diseases (CVDs) are a leading cause of global mortality and have a high incidence rate worldwide. The function of inflammasomes in CVDs has received a lot of attention recently, and the nucleotide-binding domain and leucine-rich repeat protein 3 (NLRP3) inflammasome may be a new target for the prevention and treatment of CVDs. Flavonoids, which are found in food and plant extracts, inhibited inflammation in CVDs by regulating the NLRP3 inflammasome. CB-Dock was used to investigate whether 34 flavonoids from natural products acted on NLRP3 inflammasome. In brief, the PDB format of NLRP3 was selected as a protein file, and 34 flavonoids in SDF format were selected as the ligand file, and then input to CB-Dock for molecular docking. The docking results showed that epigallocatechin-3-gallate (EGCG), amentoflavone, baicalin, scutellarin, vitexin, silibinin, and puerarin had good binding affinities to NLRP3, which could be used as NLRP3 inhibitors, and aid in the discovery of lead compounds for the design and development of CVDs.
Collapse
Affiliation(s)
- Hai-Yan Fang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China
| | - Xiao-Ni Zhao
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China
| | - Meng Zhang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China
| | - Yao-Yao Ma
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China
| | - Jin-Ling Huang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China.
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, People's Republic of China.
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, People's Republic of China.
| | - Peng Zhou
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China.
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, People's Republic of China.
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, People's Republic of China.
| |
Collapse
|
130
|
Nabil-Adam A, E. Elnosary M, L. Ashour M, M. Abd El-Moneam N, A. Shreadah M. Flavonoids Biosynthesis in Plants as a Defense Mechanism: Role and Function Concerning Pharmacodynamics and Pharmacokinetic Properties. FLAVONOID METABOLISM - RECENT ADVANCES AND APPLICATIONS IN CROP BREEDING 2023. [DOI: 10.5772/intechopen.108637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Flavonoids are a major class of secondary metabolites that comprises more than 6000 compounds that have been identified. They are biosynthesized via the phenylpropanoid metabolic pathway that involves groups of enzymes such as isomerases, hydroxylases, and reductases that greatly affect the determination of the flavonoid skeleton. For example, transferase enzymes responsible for the modification of sugar result in changes in the physiological activity of the flavonoids and changes in their physical properties, such as solubility, reactivity, and interaction with cellular target molecules, which affect their pharmacodynamics and pharmacokinetic properties. In addition, flavonoids have diverse biological activities such as antioxidants, anticancer, and antiviral in managing Alzheimer’s disease. However, most marine flavonoids are still incompletely discovered because marine flavonoid biosynthesis is produced and possesses unique substitutions that are not commonly found in terrestrial bioactive compounds. The current chapter will illustrate the importance of flavonoids’ role in metabolism and the main difference between marine and terrestrial flavonoids.
Collapse
|
131
|
Barazorda-Ccahuana HL, Goyzueta-Mamani LD, Candia Puma MA, Simões de Freitas C, de Sousa Vieria Tavares G, Pagliara Lage D, Ferraz Coelho EA, Chávez-Fumagalli MA. Computer-aided drug design approaches applied to screen natural product's structural analogs targeting arginase in Leishmania spp. F1000Res 2023; 12:93. [PMID: 37424744 PMCID: PMC10323282 DOI: 10.12688/f1000research.129943.2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/12/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction: Leishmaniasis is a disease with high mortality rates and approximately 1.5 million new cases each year. Despite the new approaches and advances to fight the disease, there are no effective therapies. Methods: Hence, this study aims to screen for natural products' structural analogs as new drug candidates against leishmaniasis. We applied Computer-aided drug design (CADD) approaches, such as virtual screening, molecular docking, molecular dynamics simulation, molecular mechanics-generalized Born surface area (MM-GBSA) binding free estimation, and free energy perturbation (FEP) aiming to select structural analogs from natural products that have shown anti-leishmanial and anti-arginase activities and that could bind selectively against the Leishmania arginase enzyme. Results: The compounds 2H-1-benzopyran, 3,4-dihydro-2-(2-methylphenyl)-(9CI), echioidinin, and malvidin showed good results against arginase targets from three parasite species and negative results for potential toxicities. The echioidinin and malvidin ligands generated interactions in the active center at pH 2.0 conditions by MM-GBSA and FEP methods. Conclusions: This work suggests the potential anti-leishmanial activity of the compounds and thus can be further in vitro and in vivo experimentally validated.
Collapse
Affiliation(s)
- Haruna Luz Barazorda-Ccahuana
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Catolica de Santa Maria de Arequipa, Arequipa, Peru
| | - Luis Daniel Goyzueta-Mamani
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Catolica de Santa Maria de Arequipa, Arequipa, Peru
- Sustainable Innovative Biomaterials Department, Le Qara Research Center, Arequipa, Peru
| | - Mayron Antonio Candia Puma
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Catolica de Santa Maria de Arequipa, Arequipa, Peru
- Universidad Católica de Santa María, Facultad de Ciencias Farmacéuticas, Bioquímicas y Biotecnológicas, Arequipa, Peru
| | - Camila Simões de Freitas
- Universidade Federal de Minas Gerais, Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Belo Horizonte, Minas Gerais, Brazil
| | - Grasiele de Sousa Vieria Tavares
- Universidade Federal de Minas Gerais, Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Belo Horizonte, Minas Gerais, Brazil
| | - Daniela Pagliara Lage
- Universidade Federal de Minas Gerais, Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Belo Horizonte, Minas Gerais, Brazil
| | - Eduardo Antonio Ferraz Coelho
- Universidade Federal de Minas Gerais, Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Belo Horizonte, Minas Gerais, Brazil
- Universidade Federal de Minas Gerais, Departamento de Patologia Clínica, COLTEC, Belo Horizonte, Minas Gerais, Brazil
| | - Miguel Angel Chávez-Fumagalli
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Catolica de Santa Maria de Arequipa, Arequipa, Peru
| |
Collapse
|
132
|
Rassu G, Sorrenti M, Catenacci L, Pavan B, Ferraro L, Gavini E, Bonferoni MC, Giunchedi P, Dalpiaz A. Conjugation, Prodrug, and Co-Administration Strategies in Support of Nanotechnologies to Improve the Therapeutic Efficacy of Phytochemicals in the Central Nervous System. Pharmaceutics 2023; 15:1578. [PMID: 37376027 DOI: 10.3390/pharmaceutics15061578] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Phytochemicals, produced as secondary plant metabolites, have shown interesting potential therapeutic activities against neurodegenerative diseases and cancer. Unfortunately, poor bioavailability and rapid metabolic processes compromise their therapeutic use, and several strategies are currently proposed for overcoming these issues. The present review summarises strategies for enhancing the central nervous system's phytochemical efficacy. Particular attention has been paid to the use of phytochemicals in combination with other drugs (co-administrations) or administration of phytochemicals as prodrugs or conjugates, particularly when these approaches are supported by nanotechnologies exploiting conjugation strategies with appropriate targeting molecules. These aspects are described for polyphenols and essential oil components, which can improve their loading as prodrugs in nanocarriers, or be part of nanocarriers designed for targeted co-delivery to achieve synergistic anti-glioma or anti-neurodegenerative effects. The use of in vitro models, able to simulate the blood-brain barrier, neurodegeneration or glioma, and useful for optimizing innovative formulations before their in vivo administration via intravenous, oral, or nasal routes, is also summarised. Among the described compounds, quercetin, curcumin, resveratrol, ferulic acid, geraniol, and cinnamaldehyde can be efficaciously formulated to attain brain-targeting characteristics, and may therefore be therapeutically useful against glioma or neurodegenerative diseases.
Collapse
Affiliation(s)
- Giovanna Rassu
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23a, I-07100 Sassari, Italy
| | - Milena Sorrenti
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, I-27100 Pavia, Italy
| | - Laura Catenacci
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, I-27100 Pavia, Italy
| | - Barbara Pavan
- Department of Neuroscience and Rehabilitation-Section of Physiology, University of Ferrara, Via Borsari 46, I-44121 Ferrara, Italy
| | - Luca Ferraro
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Borsari 46, I-44121 Ferrara, Italy
| | - Elisabetta Gavini
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23a, I-07100 Sassari, Italy
| | | | - Paolo Giunchedi
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23a, I-07100 Sassari, Italy
| | - Alessandro Dalpiaz
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Fossato di Mortara 19, I-44121 Ferrara, Italy
| |
Collapse
|
133
|
Banerjee R, Das Gupta B, Kar A, Bhardwaj PK, Sharma N, Haldar PK, Bandyopadhyay R, Mukherjee PK. Quality evaluation of different black rice varieties of northeastern region of India. PHYTOCHEMICAL ANALYSIS : PCA 2023. [PMID: 37192739 DOI: 10.1002/pca.3230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/09/2023] [Accepted: 04/12/2023] [Indexed: 05/18/2023]
Abstract
INTRODUCTION Black rice (Oryza sativa L.), which is rich in polyphenols and flavonoids, is indigenous to Northeast India, specifically Manipur, and traditionally consumed for its protective effects on human health. Due to its economic value, it is crucial to evaluate the quality of different black rice varieties to authenticate their therapeutic and nutritional properties. OBJECTIVE We aimed to evaluate the quality of pre- and post-marketed black rice samples by a validated high-performance thin layer chromatography method and determine variations of total phenolics and total flavonoids with antioxidant potential. MATERIAL AND METHODS The ferulic acid, gallic acid, quercetin, and caffeic acid contents of three black rice varieties-Poireiton, Amubi, and Sempak-along with two marketed samples of Amubi from Manipur, India, were quantified based on standards. Antioxidant potential was measured by the 2,2-diphenyl-1-picryl-hydrazyl hydrate free radical scavenging assay. RESULTS The highest and lowest relative biomarker contents were found in hydroalcoholic extracts of Amubi [caffeic acid (1.43% w/w), ferulic acid (1.15% w/w), quercetin (0.6% w/w), and gallic acid (0.39% w/w)] and the marketed sample Var. Amubi from Kakching District, respectively. Pearson's correlation coefficient of antioxidant potential with phenolic and flavonoid content showed a moderate to strong correlation for all samples. CONCLUSION This validated, rapid, accurate standardization method for black rice varieties will be beneficial for the quality evaluation of black rice and its derived products. It will also be helpful to authenticate the nutritional benefits for the consumers.
Collapse
Affiliation(s)
- Rupesh Banerjee
- Institute of Bioresources and Sustainable Development, Department of Biotechnology, Govt. of India, Imphal, India
| | - Barun Das Gupta
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Amit Kar
- Institute of Bioresources and Sustainable Development, Department of Biotechnology, Govt. of India, Imphal, India
| | - Pardeep Kumar Bhardwaj
- Institute of Bioresources and Sustainable Development, Department of Biotechnology, Govt. of India, Imphal, India
| | - Nanaocha Sharma
- Institute of Bioresources and Sustainable Development, Department of Biotechnology, Govt. of India, Imphal, India
| | - Pallab Kanti Haldar
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Rajib Bandyopadhyay
- Department of Instrumentation and Electronics Engineering, Jadavpur University, Kolkata, India
| | - Pulok Kumar Mukherjee
- Institute of Bioresources and Sustainable Development, Department of Biotechnology, Govt. of India, Imphal, India
| |
Collapse
|
134
|
Mahmud AR, Ema TI, Siddiquee MFR, Shahriar A, Ahmed H, Mosfeq-Ul-Hasan M, Rahman N, Islam R, Uddin MR, Mizan MFR. Natural flavonols: actions, mechanisms, and potential therapeutic utility for various diseases. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2023; 12:47. [PMID: 37216013 PMCID: PMC10183303 DOI: 10.1186/s43088-023-00387-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/07/2023] [Indexed: 05/24/2023] Open
Abstract
Background Flavonols are phytoconstituents of biological and medicinal importance. In addition to functioning as antioxidants, flavonols may play a role in antagonizing diabetes, cancer, cardiovascular disease, and viral and bacterial diseases. Quercetin, myricetin, kaempferol, and fisetin are the major dietary flavonols. Quercetin is a potent scavenger of free radicals, providing protection from free radical damage and oxidation-associated diseases. Main body of the abstract An extensive literature review of specific databases (e.g., Pubmed, google scholar, science direct) were conducted using the keywords "flavonol," "quercetin," "antidiabetic," "antiviral," "anticancer," and "myricetin." Some studies concluded that quercetin is a promising antioxidant agent while kaempferol could be effective against human gastric cancer. In addition, kaempferol prevents apoptosis of pancreatic beta-cells via boosting the function and survival rate of the beta-cells, leading to increased insulin secretion. Flavonols also show potential as alternatives to conventional antibiotics, restricting viral infection by antagonizing the envelope proteins to block viral entry. Short conclusion There is substantial scientific evidence that high consumption of flavonols is associated with reduced risk of cancer and coronary diseases, free radical damage alleviation, tumor growth prevention, and insulin secretion improvement, among other diverse health benefits. Nevertheless, more studies are required to determine the appropriate dietary concentration, dose, and type of flavonol for a particular condition to prevent any adverse side effects.
Collapse
Affiliation(s)
- Aar Rafi Mahmud
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902 Bangladesh
| | - Tanzila Ismail Ema
- Department of Biochemistry and Microbiology, North South University, Dhaka, 1229 Bangladesh
| | | | - Asif Shahriar
- Department of Microbiology, Stamford University Bangladesh, 51 Siddeswari Road, Dhaka, 1217 Bangladesh
| | - Hossain Ahmed
- Department of Biotechnology and Genetic Engineering, University of Development Alternative (UODA), Dhaka, 1208 Bangladesh
| | - Md. Mosfeq-Ul-Hasan
- Hajee Mohammad Danesh Science and Technology University, Dinajpur, 5200 Bangladesh
| | - Nova Rahman
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka, 1342 Bangladesh
| | - Rahatul Islam
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | | | | |
Collapse
|
135
|
Roat P, Hada S, Chechani B, Yadav DK, Kumar S, Kumari N. Madhuca indica: A Review on the Phytochemical and Pharmacological Aspects. Pharm Chem J 2023; 57:284-295. [PMID: 37313437 PMCID: PMC10170450 DOI: 10.1007/s11094-023-02878-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Indexed: 06/15/2023]
Abstract
Madhuca indica J.F. Gmel. (family: Sapotaceae), commonly known as Mahua in Indian dialects, occupies the importance as one of the fuel-efficient, energy-saving plant species. Extensive studies showed that the presence of phytochemicals e.g., carbohydrates, fatty acids, flavonoids, saponins, steroids, triterpenoids and glycosidic compounds in the extract of this species. Pharmacologically, it has been used against various disorders in indigenous system of medicine, inckuding antioxidant, anti-inflammatory, anticancer, hepatoprotective, anti-diabetic and wound healing activities. This review highlights various pharmacological activities, phytochemistry and importance of M. indica plant for medicine.
Collapse
Affiliation(s)
- Priyanka Roat
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur, 313001 India
| | - Sonal Hada
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur, 313001 India
| | - Bhawna Chechani
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur, 313001 India
| | - Dinesh Kumar Yadav
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur, 313001 India
| | - Sanjay Kumar
- Department of Chemistry, University of Petroleum and Energy Studies, Dehradun, 248007 India
| | - Neetu Kumari
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur, 313001 India
| |
Collapse
|
136
|
Gonzales AL, Huang SKH, Sevilla UTA, Hsieh CY, Tsai PW. In Silico Analysis of Anti-Inflammatory and Antioxidant Properties of Bioactive Compounds from Crescentia cujete L. Molecules 2023; 28:molecules28083547. [PMID: 37110781 PMCID: PMC10145697 DOI: 10.3390/molecules28083547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/10/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Crescentia cujete is widely known as a medical plant with broad indigenous ethnomedicinal uses, including anti-inflammatory, and antioxidant. Despite being used for remedies and ethnomedicinal purposes, the benefits obtained from C. cujete still need to be fully utilized. The underwhelming studies on its pharmacological potential, bioactive compounds, and mechanism of action keep the pharmacological and new drug discovery progress of this plant slow. This study focuses on the incorporation of in silico analyses such as ADME prediction and molecular docking simulations on the bioactive compounds identified in the plant to assess their potential for antioxidant and anti-inflammatory applications. A comparison of the ADME properties and molecular docking scores showed that naringenin, pinocembrin, and eriodictyol had the most potential to act as inhibitors of the target proteins involved in inflammation and oxidation pathways against the positive controls.
Collapse
Affiliation(s)
- Alecsanndra L Gonzales
- School of Chemical, Biological, Materials Engineering and Sciences, Mapúa University, Manila 1002, Philippines
| | - Steven Kuan-Hua Huang
- Department of Medical Science Industries, College of Health Sciences, Chang Jung Christian University, Tainan 711, Taiwan
- Division of Urology, Department of Surgery, Chi Mei Medical Center, Tainan 711, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ureah Thea A Sevilla
- School of Chemical, Biological, Materials Engineering and Sciences, Mapúa University, Manila 1002, Philippines
| | - Cheng-Yang Hsieh
- Ph.D. Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
- Laboratory of Oncology Pharmacy Practice and Science, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai-shi 980-8577, Japan
| | - Po-Wei Tsai
- Department of Medical Science Industries, College of Health Sciences, Chang Jung Christian University, Tainan 711, Taiwan
| |
Collapse
|
137
|
Hu X, Liu W, He M, Qiu Q, Zhou B, Liu R, Wu F, Huang Z. Comparison of the molecular mechanisms of Fuzi Lizhong Pill and Huangqin decoction in the treatment of the cold and heat syndromes of ulcerative colitis based on network pharmacology. Comput Biol Med 2023; 159:106870. [PMID: 37084637 DOI: 10.1016/j.compbiomed.2023.106870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 02/21/2023] [Accepted: 03/30/2023] [Indexed: 04/23/2023]
Abstract
OBJECTIVE The aim of this study was to illuminate the similarities and differences of two prescriptions as "cold" and "heat" drugs for treating ulcerative colitis (UC) with the simultaneous occurrence of heat and cold syndrome via network pharmacology. METHODS (1) Active compounds of Fuzi-Lizhong Pill (FLP) and Huangqin Decoction (HQT) were retrieved from the TCMSP database, and their common active compounds were compared using the Venn diagram. (2) Potential proteins targeted to three sets of compounds either (i) shared by FLP and HQT, (ii) unique to FLP or (iii) unique to HQT were screened from the STP, STITCH and TCMSP databases, and three corresponding core compound sets were identified in Herb-Compound-Target (H-C-T) networks. (3) Targets related to UC were identified from the DisGeNET and GeneCards databases and compared with the FLP-HQT common targets to identify potential targets of FLP-HQT compounds related to UC. (4) Three potential target sets were imported into the STRING database for protein‒protein interaction (PPI) analysis, and three core target sets were defined. (5) The binding capabilities and interacting modes between core compounds and key targets were verified by molecular docking via Discovery Studio 2019 and molecular dynamics (MD) simulations via Amber 2018. (6) The target sets were enriched for KEGG pathways using the DAVID database. RESULTS (1) FLP and HQT included 95 and 113 active compounds, respectively, with 46 common compounds, 49 FLP-specific compounds and 67 HQT-specific compounds. (2) 174 targets of FLP-HQT common compounds, 168 targets of FLP-specific compounds, and 369 targets of HQT-specific compounds were predicted from the STP, STITCH and TCMSP databases; six core compounds specific to FLP and HQT were screened in the FLP-specific and HQT-specific H-C-T networks, respectively. (3) 103 targets overlapped from the 174 predicted targets and the 4749 UC-related targets; two core compounds for FLP-HQT were identified from the FLP-HQT H-C-T network. (4) 103 FLP-HQT-UC common targets, 168 of FLP-specific targets and 369 of HQT-specific targets had shared core targets (AKT1, MAPK3, TNF, JUN and CASP3) based on the PPI network analysis. (5) Molecular docking demonstrated that naringenin, formononetin, luteolin, glycitein, quercetin, kaempferol and baicalein of FLP and HQT play a critical role in treating UC; meanwhile, MD simulations revealed the stability of protein‒ligand interactions. (6) The enriched pathways indicated that most targets were related to anti-inflammatory, immunomodulatory and other pathways. Compared with the pathways identified using traditional methods, FLP-specific pathways included the PPAR signaling pathway and the bile secretion pathway, and HQT-specific pathways included the vascular smooth muscle contraction pathway and the natural killer cell-mediated cytotoxicity pathway etc. CONCLUSION: In this study, we clarified the common mechanisms of FLP and HQT in treating UC and their specific mechanisms in treating cold and heat syndrome in UC through compound, target and pathway distinction and a literature comparison based on network pharmacology; these results provide a new perspective on the detailed mechanism of "multidrugs and single-disease" thought in traditional Chinese medicine.
Collapse
Affiliation(s)
- Xiyun Hu
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523710, China; Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Dongguan, 523808, China
| | - Weidong Liu
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523710, China; Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Dongguan, 523808, China
| | - Meiqi He
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523710, China; Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Dongguan, 523808, China
| | - Qimiao Qiu
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Dongguan, 523808, China
| | - Bingjie Zhou
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Dongguan, 523808, China
| | - Ruining Liu
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Dongguan, 523808, China
| | - Fengxu Wu
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, 442000, China.
| | - Zunnan Huang
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523710, China; Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Dongguan, 523808, China; Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, 524023, China.
| |
Collapse
|
138
|
Xu P, Chen Q, Chen X, Qi H, Yang Y, Li W, Yang X, Gunawan A, Chen S, Zhang H, Shen HM, Huang D, Kennedy B, Xu L, Wu Z. Morusin and mulberrin extend the lifespans of yeast and C. elegans via suppressing nutrient-sensing pathways. GeroScience 2023; 45:949-964. [PMID: 36462128 PMCID: PMC9886792 DOI: 10.1007/s11357-022-00693-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022] Open
Abstract
Compounds with lifespan extension activity are rare, although increasing research efforts have been invested in this field to find ways to extend healthy lifespan. By applying a yeast-based high-throughput assay to identify the chronological lifespan extension activity of mulberry extracts rapidly, we demonstrated that a group of prenylated flavones, particularly morusin and mulberrin, could extend the chronological lifespan of budding yeast via a nutrient-dependent regime by at least partially targeting SCH9. Their antiaging activity could be extended to C. elegans by promoting its longevity, dependent on the full functions of genes akt-1 or akt-2. Moreover, additional benefits were observed from morusin- and mulberrin-treated worms, including increased reproduction without the influence of worm health (pumping rate, pumping decline, and reproduction span). In the human HeLa cell model, morusin and mulberrin inhibited the phosphorylation of p70S6K1, promoted autophagy, and slowed cell senescence. The molecular docking study showed that mulberrin and morusin bind to the same pocket of p70S6K1. Collectively, our findings open up a potential class of prenylated flavones performing their antiaging activity via nutrient-sensing pathways.
Collapse
Affiliation(s)
- Pingkang Xu
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore, 117542, Singapore
- National University of Singapore (Suzhou) Research Institute, 377 Linquan St, Suzhou, Jiangsu, China
| | - Qimin Chen
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore, 117542, Singapore
| | - Xiaoman Chen
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore, 117542, Singapore
- National University of Singapore (Suzhou) Research Institute, 377 Linquan St, Suzhou, Jiangsu, China
| | - Hao Qi
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yuyan Yang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Weiqi Li
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore, 117542, Singapore
- National University of Singapore (Suzhou) Research Institute, 377 Linquan St, Suzhou, Jiangsu, China
| | - Xin Yang
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore, 117542, Singapore
| | - Amelia Gunawan
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore, 117542, Singapore
| | - Shuoyu Chen
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore, 117542, Singapore
| | - Huimin Zhang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Han-Ming Shen
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Dejian Huang
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore, 117542, Singapore.
- National University of Singapore (Suzhou) Research Institute, 377 Linquan St, Suzhou, Jiangsu, China.
| | - Brian Kennedy
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Li Xu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400716, China.
| | - Ziyun Wu
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
139
|
Ma Q, Gao J, Fan Q, Yang T, Zhao Z, Zhang S, Hu R, Cui L, Liang B, Xie X, Liu J, Long J. Thinned young apple polyphenols may prevent neuronal apoptosis by up-regulating 5-hydroxymethylcytosine in the cerebral cortex of high-fat diet-induced diabetic mice. Food Funct 2023; 14:3279-3289. [PMID: 36929718 DOI: 10.1039/d2fo03281c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
Apple polyphenols exert neuroprotective effects by improving the mitochondrial tricarboxylic acid (TCA) cycle function, but the details of their mechanisms are still not fully understood. TCA cycle metabolites regulate the level of 5-hydroxymethylcytosine (5hmC) by affecting the ten-eleven translocation (TET) enzyme activity. Therefore, we hypothesized that thinned young apple polyphenols (TYAPs) inhibit neuronal apoptosis by up-regulating the level of 5hmC in the cerebral cortex of high-fat diet-induced diabetic mice. C57BL/6J mice were randomly divided into 5 groups (n = 10 each group): the control (CON) group, the high-fat diet (HFD, negative control) group, the lovastatin (LOV, positive drug control) group, the resveratrol (RES, positive polyphenol control) group and the TYAP group during an eight-week intervention. The presented results verified that in the HFD group, the level of 5hmC and the expression of TET2 in the cerebral cortex were significantly lower, and the ratio of (succinic acid + fumaric acid)/α-ketoglutarate and the neuronal apoptosis rate were significantly higher than those in the CON group. However, TYAP intervention effectively restored the level of 5hmC through up-regulating the expression and activity of TET2, so as to improve diabetes symptoms and prevent diabetes-induced neuronal apoptosis.
Collapse
Affiliation(s)
- Qingqing Ma
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong, University, Xi'an, China. .,Central Laboratory, Guizhou Aerospace Hospital, Zunyi, China
| | - Jing Gao
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong, University, Xi'an, China.
| | - Qiang Fan
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong, University, Xi'an, China.
| | - Tao Yang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong, University, Xi'an, China.
| | - Zhuang Zhao
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong, University, Xi'an, China.
| | - Shuangxi Zhang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong, University, Xi'an, China.
| | - Ranrui Hu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong, University, Xi'an, China.
| | - Li Cui
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong, University, Xi'an, China.
| | - Bing Liang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong, University, Xi'an, China. .,The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Xiuying Xie
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong, University, Xi'an, China. .,The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong, University, Xi'an, China. .,School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Jiangang Long
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong, University, Xi'an, China.
| |
Collapse
|
140
|
Phenolic profile and pigment stability of Hylocereus species grown in North-East India. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2022.105078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
141
|
Haskey N, Gold SL, Faith JJ, Raman M. To Fiber or Not to Fiber: The Swinging Pendulum of Fiber Supplementation in Patients with Inflammatory Bowel Disease. Nutrients 2023; 15:nu15051080. [PMID: 36904081 PMCID: PMC10005525 DOI: 10.3390/nu15051080] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Evidence-based dietary guidance around dietary fiber in inflammatory bowel disease (IBD) has been limited owing to insufficient reproducibility in intervention trials. However, the pendulum has swung because of our increased understanding of the importance of fibers in maintaining a health-associated microbiome. Preliminary evidence suggests that dietary fiber can alter the gut microbiome, improve IBD symptoms, balance inflammation, and enhance health-related quality of life. Therefore, it is now more vital than ever to examine how fiber could be used as a therapeutic strategy to manage and prevent disease relapse. At present, there is limited knowledge about which fibers are optimal and in what form and quantity they should be consumed to benefit patients with IBD. Additionally, individual microbiomes play a strong role in determining the outcomes and necessitate a more personalized nutritional approach to implementing dietary changes, as dietary fiber may not be as benign as once thought in a dysbiotic microbiome. This review describes dietary fibers and their mechanism of action within the microbiome, details novel fiber sources, including resistant starches and polyphenols, and concludes with potential future directions in fiber research, including the move toward precision nutrition.
Collapse
Affiliation(s)
- Natasha Haskey
- Department of Biology, The Irving K. Barber Faculty of Science, University of British Columbia—Okanagan, 3187 University Way, Kelowna, BC V1V 1V7, Canada
- Division of Gastroenterology, Cumming School of Medicine, University of Calgary, 6D33 TRW Building, 3280 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Stephanie L. Gold
- Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Jeremiah J. Faith
- Precision Immunology Institute and Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Maitreyi Raman
- Division of Gastroenterology, Cumming School of Medicine, University of Calgary, 6D33 TRW Building, 3280 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
- Correspondence:
| |
Collapse
|
142
|
Shen J, Liu Y, Wang X, Bai J, Lin L, Luo F, Zhong H. A Comprehensive Review of Health-Benefiting Components in Rapeseed Oil. Nutrients 2023; 15:999. [PMID: 36839357 PMCID: PMC9962526 DOI: 10.3390/nu15040999] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/04/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
Rapeseed oil is the third most consumed culinary oil in the world. It is well-known for its high content of unsaturated fatty acids, especially polyunsaturated fatty acids, which make it of great nutritional value. There is increasing evidence that a diet rich in unsaturated fatty acids offers health benefits. Although the consumption of rapeseed oil cuts across many areas around the world, the nutritional elements of rapeseed oil and the exact efficacy of the nutrients remain unclear. In this review, we systematically summarized the latest studies on functional rapeseed components to ascertain which component of canola oil contributes to its function. Apart from unsaturated fatty acids, there are nine functional components in rapeseed oil that contribute to its anti-microbial, anti-inflammatory, anti-obesity, anti-diabetic, anti-cancer, neuroprotective, and cardioprotective, among others. These nine functional components are vitamin E, flavonoids, squalene, carotenoids, glucoraphanin, indole-3-Carbinol, sterols, phospholipids, and ferulic acid, which themselves or their derivatives have health-benefiting properties. This review sheds light on the health-benefiting effects of rapeseed oil in the hope of further development of functional foods from rapeseed.
Collapse
Affiliation(s)
- Junjun Shen
- National Engineering Laboratory for Deep Processing of Rice and Byproducts, Central South University of Forestry and Technology, Changsha 410004, China
- Faculty of Bioscience and Biotechnology, Central South University of Forestry and Technology, Changsha 410004, China
- The Research and Development Department, Hunan Jinjian Cereals Industry, Changde 415001, China
| | - Yejia Liu
- The Research and Development Department, Hunan Jinjian Cereals Industry, Changde 415001, China
- Faculty of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415006, China
| | - Xiaoling Wang
- Faculty of Bioscience and Biotechnology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jie Bai
- National Engineering Laboratory for Deep Processing of Rice and Byproducts, Central South University of Forestry and Technology, Changsha 410004, China
| | - Lizhong Lin
- National Engineering Laboratory for Deep Processing of Rice and Byproducts, Central South University of Forestry and Technology, Changsha 410004, China
- The Research and Development Department, Hunan Jinjian Cereals Industry, Changde 415001, China
| | - Feijun Luo
- National Engineering Laboratory for Deep Processing of Rice and Byproducts, Central South University of Forestry and Technology, Changsha 410004, China
| | - Haiyan Zhong
- National Engineering Laboratory for Deep Processing of Rice and Byproducts, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
143
|
Shukla P, Sahu NK, Kumar R, Dhalla DK, Rakshit S, Bhadauria M, Agrawal ND, Shrivastava S, Shukla S, Nirala SK. Quercetin ameliorates acute acrylamide induced spleen injury. Biotech Histochem 2023; 98:221-229. [PMID: 36755386 DOI: 10.1080/10520295.2023.2172610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Abstract
Acrylamide is used for industrial and laboratory purposes; it also is produced during cooking of carbohydrate-rich food at high temperature. We investigated the therapeutic potential of quercetin for treatment of acute acrylamide induced injury to the spleen. We used female albino rats treated with acrylamide for 10 days followed by oral administration of quercetin in three doses for 5 days. We observed significantly reduced total body weight, spleen weight, red blood cells, total proteins, superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glucose-6-phophate dehydrogenase, reduced glutathione, concentration of serum IgG and IgM after acrylamide induced toxicity compared to controls. We also found that white blood cells, triglycerides, cholesterol and lipid oxidation were increased significantly after acrylamide induced toxicity in rats compared to controls. Histoarchitecture of spleen was affected adversely by acrylamide toxicity. Administration of quercetin ameliorated adverse effects of acrylamide in a dose-dependent manner. Quercetin appears to ameliorate acrylamide induced injury to the spleen by increasing endogenous antioxidants and improving histoarchitecture and immune function.
Collapse
Affiliation(s)
- Piyush Shukla
- Laboratory of Natural Products, Department of Rural Technology and Social Development, Guru Ghasidas University, Koni-Bilaspur, India
| | - Naresh Kumar Sahu
- Laboratory of Natural Products, Department of Rural Technology and Social Development, Guru Ghasidas University, Koni-Bilaspur, India
| | - Raj Kumar
- Laboratory of Natural Products, Department of Rural Technology and Social Development, Guru Ghasidas University, Koni-Bilaspur, India
| | - Deep Kaur Dhalla
- Laboratory of Natural Products, Department of Rural Technology and Social Development, Guru Ghasidas University, Koni-Bilaspur, India
| | - Samrat Rakshit
- Toxicology and Pharmacology Laboratory, Department of Zoology, Guru Ghasidas University, Koni-Bilaspur, India
| | - Monika Bhadauria
- Toxicology and Pharmacology Laboratory, Department of Zoology, Guru Ghasidas University, Koni-Bilaspur, India
| | | | | | - Sangeeta Shukla
- School of Studies in Zoology, Jiwaji University, Gwalior, India
| | - Satendra Kumar Nirala
- Laboratory of Natural Products, Department of Rural Technology and Social Development, Guru Ghasidas University, Koni-Bilaspur, India
| |
Collapse
|
144
|
Shen LA, Peng X, Bao Y, Liu C, Zhang H, Li J, Zhu D, Zhang Q. Design, synthesis and biological evaluation of quercetin derivatives as novel β-catenin/B-cell lymphoma 9 protein-protein interaction inhibitors. Eur J Med Chem 2023; 247:115075. [PMID: 36599228 DOI: 10.1016/j.ejmech.2022.115075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/08/2022] [Accepted: 12/29/2022] [Indexed: 01/02/2023]
Abstract
The β-catenin/B-cell lymphoma 9 (BCL9) protein-protein interaction (PPI) is a potential target for the suppression of hyperactive Wnt/β-catenin signaling that is vigorously involved in cancer initiation and development. Herein, we first described quercetin and its derivatives had potential inhibitory effects on β-catenin/BCL9 PPI. The most potent compound, quercetin-3'-O-(4-methylpiperazine-1-yl) propyl (C1), directly binded with β-catenin and disrupted the β-catenin/BCL9 interaction in both the protein level and the cellular context. C1 also effectively inhibited colorectal cancer in vitro and showed better selectivity in inhibiting hyperactive Wnt/β-catenin signaling cells like CT26 and HCT116. And we further confirmed that C1 could inhibit CT26 tumor growth in vivo and regulate the tumor immune microenvironment. This study provides a good chemical probe to explore β-catenin-related biology and a drug-like quercetin derivative as novel β-catenin/BCL9 PPI inhibitors for further drug development.
Collapse
Affiliation(s)
- Li-An Shen
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Xinyan Peng
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, 201203, China
| | - Ya Bao
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, 201203, China
| | - Chenglong Liu
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Hao Zhang
- School of Pharmacy, Fudan University, Shanghai, 201203, China; Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, 201203, China
| | - Jianqi Li
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, 201203, China
| | - Di Zhu
- School of Pharmacy, Fudan University, Shanghai, 201203, China; Department of Pharmacology, School of Basic Medical Science, Fudan University, Shanghai, 201100, China.
| | - Qingwei Zhang
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, 201203, China.
| |
Collapse
|
145
|
Soliman HM. Preparation of a Regioselective Quercetin-3-palmitate and Its Using for Boosting Cooking Oil Stability. J Oleo Sci 2023; 72:139-151. [PMID: 36631100 DOI: 10.5650/jos.ess22162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Due to over worldwide use of frying oil, and due to its oxidation and deterioration after the usage for short time, huge oil amounts are wasted. So, most attempts are aimed to increase oil stability. Quercetin is a common name for the lipophobic strong natural phenolic antioxidant 2-(3,4-Dihydroxyphenyl)-5,7-dihydroxy-4H-1-benzopyran-4-one. Thus, its solubility had been improved by converting it to a lipophilic compound via its appending to a fatty acid residue. So, regioselectively 2-(3,4-Dihydroxyphenyl)-5,7-dihydroxy-3-[Hexadecanyl]oxychromen-4-one commonly named as (Quercetin-3-palmitate) was synthesized. The formed compound was confirmed based on its elemental analysis and spectral data (IR, 1H NMR and MS). The partition coefficient of Quercetin-3-palmitate in octanol/water (k) was determined and compared to that of palmitic acid and quercetin individually to prove its solubility enhancement. Its radical scavenging activity was then tested. The effect of this new antioxidant compound on the oil stability was studied through the frying process. All physical and chemical parameters of this oil were considered before and after the frying process compared to another reference antioxidant (TBHQ) and control sample. The safety of this compound was determined by acute oral toxicity using albino mice. The liver and kidney functions of these mice were also examined. The results showed non-significant change. A sensory evaluation of the fried potato chips has been done. The results showed that the properties of the potato chips were improved by adding Quercetin-3-palmitate to the oil. Thus, good protection against frying oils oxidation was achieved via the addition of Quercetin-3-palmitate. The Quercetin-3-palmitate effectiveness is mainly attributed to its stability at high temperatures. Moreover, Quercetin-3-palmitate was found to be a safe compound according to an acute lethal toxicity test. Consequently, it can be used as a food additive.
Collapse
|
146
|
Capparis spinosa inhibits Leishmania major growth through nitric oxide production in vitro and arginase inhibition in silico. Exp Parasitol 2023; 245:108452. [PMID: 36581148 DOI: 10.1016/j.exppara.2022.108452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/06/2022] [Accepted: 12/21/2022] [Indexed: 12/27/2022]
Abstract
Cutaneous leishmaniasis is an infectious disease, considered as a major public health problem in different regions of the world. The current treatments are limited due to their toxicity and treatment failures, which have increased the search for new substances of natural origin to control this infection. Capparis spinosa is an important medicinal plant, rich in biochemical compounds with a broad range of activities including antimicrobial effects. Nevertheless, more investigations are still needed to determine its effect on Leishmania parasites. This study aimed to evaluate the effect of C. spinosa' extracts on Leishmania major promastigotes and amastigotes growth as well as on L-arginine metabolic pathways, especially the production of leishmanicidal molecules such as nitric oxide. Our results showed that C. spinosa' methanolic and aqueous extracts contained polyphenols and flavonoids at different concentrations. The methanolic extract of C. spinosa, compared to the aqueous extract, showed significantly higher amounts of total polyphenols (21.23 ± 1.08) mg GAE/g of dw (P < 0.05), as well as a higher antioxidant activity evaluated respectively by Reducing Power and DPPH (EC50: 0.31 ± 0.02 and 7.69 ± 1.28) mg/ml. Both extracts significantly inhibited L. major promastigotes and intra-macrophagic amastigotes growth in vitro in a dose-dependent manner (P < 0.001) and induced NO production not only in Leishmania-infected macrophages but also in uninfected macrophages, without showing any cytotoxicity in vitro. Furthermore, in silico docking studies showed that C. spinosa compounds identified by RP-HPLC exhibited inhibitory activity against the arginase enzyme. The leishmanicidal effect of C. spinosa may be due to its phenolic content and its mechanism of action may be mediated by an increase in NO production and by the inhibition of arginase enzyme in silico. These findings support the hypothesis that C. spinosa might be a valuable source of new biomolecules for leishmaniasis treatment.
Collapse
|
147
|
Hannan A, Akhtar B, Sharif A, Anjum F, Pasha I, Khan A, Akhtar MF, Saleem A. Quercetin-loaded chitosan nanoparticles ameliorate adjuvant-induced arthritis in rats by regulating anti-oxidant enzymes and downregulating pro- and inflammatory cytokines. Inflammopharmacology 2023; 31:287-300. [PMID: 36542211 DOI: 10.1007/s10787-022-01118-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022]
Abstract
Rheumatoid arthritis (RA) is an inflammatory condition and associated with the symmetrical synovitis of the joints and cause joint pain. The use of anti-rheumatic drugs is associated with many adverse effects. Quercetin, an important polyphenolic flavonoid, possess anti-inflammatory and anti-rheumatic effects. Quercetin use is limited due to poor absorption and bioavailability. Nanomedicines are used for the targeted drug delivery, hence it reduces the adverse effects of the drug. Based upon these factors, quercetin-loaded chitosan nanoparticles (Q-NPs) were prepared by solvent evaporation method, characterized and their better anti-rheumatic effect with mechanistic insights was validated in Freund's complete adjuvant (FCA)-induced arthritic rats along with safety studies. The animals were divided into five groups, each containing 5 animals. Group I was normal control, group II was arthritic control, while groups III, IV and V were administered with quercetin (15 mg/Kg) and Q-NPs (10 and 20 mg/Kg), respectively. The reduction in ankle diameter, serum oxidative stress markers as well as pro- and inflammatory cytokines, e.g., tumor necrosis factor (TNFα), interleukin (IL-6) were determined. The prepared Q-NPs showed hydrodynamic size of 83.9 nm, polydispersity index of 0.687, entrapment efficiency 90.5% as well as no interaction between quercetin and chitosan in Fourier transform infrared spectroscopy (FTIR). A significant reduction (p < 0.001) in ankle diameter was observed after administration of high-dose Q-NPs (4.32 ± 0.14 cm to 5.13 ± 0.62 cm). There was also reduction (p < 0.001) in levels of TNFα and IL-6 following high-dose Q-NPs (72.56 ± 2.30 and 308.19 ± 11.5 pg). The effect on biochemical tests, hematological parameters and oxidative stress parameters was also found to be significant. Histopathological changes of kidney, liver and ankle also confirmed the anti-rheumatic effect of high-dose Q-NPs. The study concludes that administration of Q-NPs (20 mg/Kg) may be used for the treatment of FCA-induced RA in rats.
Collapse
Affiliation(s)
- Abdul Hannan
- Institute of Physiology and Pharmacology, University of Agriculture, Faisalabad, Pakistan
| | - Bushra Akhtar
- Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan.
| | - Ali Sharif
- Institute of Pharmacy, Faculty of Pharmaceutical and Allied Health Sciences, Lahore College for Women University, Lahore, Pakistan
| | - Fozia Anjum
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| | - Imran Pasha
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Ahrar Khan
- Shandong Vocational Animal Science and Veterinary College, Weifang, China
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University Lahore Campus, Lahore, Pakistan
| | - Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| |
Collapse
|
148
|
Ahmadi Oskooei F, Mehrzad J, Asoodeh A, Motavalizadehkakhky A. Olive oil-based quercetin nanoemulsion (QuNE)'s interactions with human serum proteins (HSA and HTF) and its anticancer activity. J Biomol Struct Dyn 2023; 41:778-791. [PMID: 34919017 DOI: 10.1080/07391102.2021.2012514] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/25/2021] [Indexed: 01/11/2023]
Abstract
The current study produced Quercetin nanoemulsions (QuNEs) for the purpose of improving Quercetin solubility in an aqueous polar condition and to analyze QuNE-protein formation (QuNE-human serum albumin (HSA) and QuNE-holo-transferrin (HTF)).QuNE was produced by utilizing an ultrasound-based emulsification method and was characterized by DLS, TEM, and SEM. Its interaction with HSA and HTF proteins was studied by analyzing the results of FRET and RLS spectroscopy, Stern-Volmer plotting, the Van't Hoff equation, CD spectroscopy, and molecular docking methods. Finally, QuNE's cytotoxic impact, cell death type induction, and antioxidant properties were evaluated by applying an MTT assay on a human hepatocyte cancer cell (HepG2), measuring Cas-3 gene expression, and conducting a DPPH antioxidant test, respectively. Compared to the non-entrapped Quercetin, Quercetin-entrapped nano-emulsions formed stable complexes with HSA and HTF by improving hydrophilic-hydrophobic interactions. The binding constant (BC), ΔH0, and ΔS0 indices for both the QuNE-HSA and QuNE-HTF complexes were measured at (4.92 × 105 and 11.99 × 104 M-1), (170.96 and -131.19 KJ.mol-1), and (-464.86 and 342.83J.mol-1K-1), respectively.QuNE lowered the HepG2 viability by up-regulating Cas-3 gene expression and thus inducing apoptosis. Moreover, a notable antioxidant impact on the QuNE was detected. Due to its ability in delivering Quercetin to HSA and HTF proteins and stabilizing their protein complexes, QuNE can be used as a suitable primary transporting agent whose formation of stable bio-accessible QuNE-HSA and -HTF protein complexes creates a safe and natural secondary delivery system, which has potential to be used as an efficient anticancer compound.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Farnaz Ahmadi Oskooei
- Department of Biochemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Jamshid Mehrzad
- Department of Biochemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Ahmad Asoodeh
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Alireza Motavalizadehkakhky
- Department of Chemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
- Advanced Research Center for Chemistry, Biochemistry & Nanomaterial, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| |
Collapse
|
149
|
Zhou P, Ma YY, Zhao XN, Hua F. Phytochemicals as potential target on thioredoxin-interacting protein (TXNIP) for the treatment of cardiovascular diseases. Inflammopharmacology 2023; 31:207-220. [PMID: 36609715 DOI: 10.1007/s10787-022-01130-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/27/2022] [Indexed: 01/09/2023]
Abstract
Cardiovascular diseases (CVDs) are currently the major cause of death and morbidity on a global scale. Thioredoxin-interacting protein (TXNIP) is a marker related to metabolism, oxidation, and inflammation induced in CVDs. The overexpression of TXNIP is closely related to the occurrence and development of CVDs. Hence, TXNIP inhibition is critical for reducing the overactivation of its downstream signaling pathway and, as a result, myocardial cell damage. Due to the chemical variety of dietary phytochemicals, they have garnered increased interest for CVDs prevention and therapy. Phytochemicals are a source of medicinal compounds for a variety of conditions, which aids in the development of effective and safe TXNIP-targeting medications. The objective of this article is to find and virtual screen novel safe, effective, and economically viable TXNIP inhibitors from flavonoids, phenols, and alkaloids derived from foods and plants. The results of the docking study revealed that silibinin, rutin, luteolin, baicalin, procyanidin B2, hesperetin, icariin, and tilianin in flavonoids, polydatin, resveratrol, and salidroside in phenols, and neferine in alkaloids had the highest Vina scores, indicating that these compounds are the active chemicals on TXNIP. In particular, silibinin can be utilized as a lead chemical in the process of structural alteration. These dietary phytochemicals may aid in the discovery of lead compounds for the development of innovative TXNIP agents for the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Peng Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, People's Republic of China
| | - Yao-Yao Ma
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, People's Republic of China
| | - Xiao-Ni Zhao
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, People's Republic of China
| | - Fang Hua
- School of Pharmacy, Anhui Xinhua University, Hefei, Anhui, People's Republic of China.
| |
Collapse
|
150
|
Bellavite P. Neuroprotective Potentials of Flavonoids: Experimental Studies and Mechanisms of Action. Antioxidants (Basel) 2023; 12:antiox12020280. [PMID: 36829840 PMCID: PMC9951959 DOI: 10.3390/antiox12020280] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Neurological and neurodegenerative diseases, particularly those related to aging, are on the rise, but drug therapies are rarely curative. Functional disorders and the organic degeneration of nervous tissue often have complex causes, in which phenomena of oxidative stress, inflammation and cytotoxicity are intertwined. For these reasons, the search for natural substances that can slow down or counteract these pathologies has increased rapidly over the last two decades. In this paper, studies on the neuroprotective effects of flavonoids (especially the two most widely used, hesperidin and quercetin) on animal models of depression, neurotoxicity, Alzheimer's disease (AD) and Parkinson's disease are reviewed. The literature on these topics amounts to a few hundred publications on in vitro and in vivo models (notably in rodents) and provides us with a very detailed picture of the action mechanisms and targets of these substances. These include the decrease in enzymes that produce reactive oxygen and ferroptosis, the inhibition of mono-amine oxidases, the stimulation of the Nrf2/ARE system, the induction of brain-derived neurotrophic factor production and, in the case of AD, the prevention of amyloid-beta aggregation. The inhibition of neuroinflammatory processes has been documented as a decrease in cytokine formation (mainly TNF-alpha and IL-1beta) by microglia and astrocytes, by modulating a number of regulatory proteins such as Nf-kB and NLRP3/inflammasome. Although clinical trials on humans are still scarce, preclinical studies allow us to consider hesperidin, quercetin, and other flavonoids as very interesting and safe dietary molecules to be further investigated as complementary treatments in order to prevent neurodegenerative diseases or to moderate their deleterious effects.
Collapse
|