101
|
Zrelovs N, Ustinova M, Silamikelis I, Birzniece L, Megnis K, Rovite V, Freimane L, Silamikele L, Ansone L, Pjalkovskis J, Fridmanis D, Vilne B, Priedite M, Caica A, Gavars M, Perminov D, Storozenko J, Savicka O, Dimina E, Dumpis U, Klovins J. First Report on the Latvian SARS-CoV-2 Isolate Genetic Diversity. Front Med (Lausanne) 2021; 8:626000. [PMID: 33889583 PMCID: PMC8055824 DOI: 10.3389/fmed.2021.626000] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/16/2021] [Indexed: 12/19/2022] Open
Abstract
Remaining a major healthcare concern with nearly 29 million confirmed cases worldwide at the time of writing, novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has caused more than 920 thousand deaths since its outbreak in China, December 2019. First case of a person testing positive for SARS-CoV-2 infection within the territory of the Republic of Latvia was registered on 2nd of March 2020, 9 days prior to the pandemic declaration by WHO. Since then, more than 277,000 tests were carried out confirming a total of 1,464 cases of coronavirus disease 2019 (COVID-19) in the country as of 12th of September 2020. Rapidly reacting to the spread of the infection, an ongoing sequencing campaign was started mid-March in collaboration with the local testing laboratories, with an ultimate goal in sequencing as much local viral isolates as possible, resulting in first full-length SARS-CoV-2 isolate genome sequences from the Baltics region being made publicly available in early April. With 133 viral isolates representing ~9.1% of the total COVID-19 cases during the "first coronavirus wave" in the country (early March, 2020-mid-September, 2020) being completely sequenced as of today, here, we provide a first report on the genetic diversity of Latvian SARS-CoV-2 isolates.
Collapse
Affiliation(s)
- Nikita Zrelovs
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Monta Ustinova
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | | | - Liga Birzniece
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Kaspars Megnis
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Vita Rovite
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Lauma Freimane
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | | | - Laura Ansone
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | | | | | | | | | | | | | - Dmitry Perminov
- E. Gulbja Laboratorija, Ltd, Riga, Latvia
- Faculty of Biology, University of Latvia, Riga, Latvia
| | - Jelena Storozenko
- Riga Stradins University, Riga, Latvia
- Laboratory Service, Latvian Centre of Infectious Diseases Laboratory, National Microbiology Reference Laboratory, Molecular Biology and Virology Department, Riga East University Hospital, Riga, Latvia
| | - Oksana Savicka
- Riga Stradins University, Riga, Latvia
- Laboratory Service, Latvian Centre of Infectious Diseases Laboratory, National Microbiology Reference Laboratory, Molecular Biology and Virology Department, Riga East University Hospital, Riga, Latvia
| | - Elina Dimina
- Infectious Diseases Surveillance and Immunization Division, Infectious Diseases Risk Analysis and Prevention Department, The Centre for Disease Prevention and Control (CDPC) of Latvia, Riga, Latvia
| | - Uga Dumpis
- Faculty of Medicine, University of Latvia, Riga, Latvia
- Pauls Stradins Clinical University Hospital, Riga, Latvia
| | - Janis Klovins
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| |
Collapse
|
102
|
Zhai J, Wu Y, Chen J, Zou J, Shan F, Li W, Chen W, Zhou N. Identification of Amblyomma javanense and detection of tick-borne Ehrlichia spp. in confiscated Malayan Pangolins. Int J Parasitol Parasites Wildl 2021; 14:107-116. [PMID: 33598400 PMCID: PMC7868807 DOI: 10.1016/j.ijppaw.2021.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/12/2021] [Accepted: 01/21/2021] [Indexed: 11/29/2022]
Abstract
Due to habitat destruction and illegal hunting and trade, the number of pangolins has been sharply reduced. To protect pangolins from extinction, relevant departments are combined and active action have been taken. A total of 21 confiscated Malayan pangolins were rescued in 2019, but died continuously for unknown reasons. This study aimed to investigate the reasons for the death of these pangolin and rescue them. 19 of the 21 confiscated pangolins had ticks on their body integument. A total of 303 ticks were collected and identified as Amblyomma javanense (A. javanense) according to their morphology and the sequences of 16S rRNA and internal transcribed spacer 2 (ITS2). There were multi-organ damages in the dead pangolins, especially congestion and hemorrhage in lung, heart and kidney and inflammation of which were observed using HE staining. Pathogens' nucleic acid detection showed ticks were only positive for Ehrlichia spp, with 56.7% positive rate of collected ticks (127/224), which was further confirmed in tissues from dead pangolins. Our findings confirm that ehrlichiosis caused by Ehrlichia spp. from A. javanense might accelerate the confiscated pangolin's death. More attention should be payed to tick-elimination work and the diagnoses and treatment of tick-borne diseases in the follow-up rescue operation.
Collapse
Affiliation(s)
- Junqiong Zhai
- Guangzhou Zoo, Guangzhou, 510070, China
- Wildlife Microbiology Laboratory, Guangzhou Wildlife Research Center, Guangzhou, 510070, China
| | - Yajiang Wu
- Guangzhou Zoo, Guangzhou, 510070, China
- Wildlife Microbiology Laboratory, Guangzhou Wildlife Research Center, Guangzhou, 510070, China
| | - Jinping Chen
- Guangdong Institute of Applied Biological Resources, Guangzhou, 510260, China
| | - Jiejian Zou
- Guangdong Provincial Wildlife Rescue Center, Guangzhou, 510520, China
| | - Fen Shan
- Guangzhou Zoo, Guangzhou, 510070, China
- Wildlife Microbiology Laboratory, Guangzhou Wildlife Research Center, Guangzhou, 510070, China
| | - Wanping Li
- Guangzhou Zoo, Guangzhou, 510070, China
- Wildlife Microbiology Laboratory, Guangzhou Wildlife Research Center, Guangzhou, 510070, China
| | - Wu Chen
- Guangzhou Zoo, Guangzhou, 510070, China
- Wildlife Microbiology Laboratory, Guangzhou Wildlife Research Center, Guangzhou, 510070, China
| | - Niu Zhou
- Guangzhou Zoo, Guangzhou, 510070, China
- Wildlife Microbiology Laboratory, Guangzhou Wildlife Research Center, Guangzhou, 510070, China
| |
Collapse
|
103
|
Identification of novel compounds against three targets of SARS CoV-2 coronavirus by combined virtual screening and supervised machine learning. Comput Biol Med 2021; 133:104359. [PMID: 33845270 PMCID: PMC8008812 DOI: 10.1016/j.compbiomed.2021.104359] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 12/20/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is a major threat worldwide due to its fast spreading. As yet, there are no established drugs available. Speeding up drug discovery is urgently required. We applied a workflow of combined in silico methods (virtual drug screening, molecular docking and supervised machine learning algorithms) to identify novel drug candidates against COVID-19. We constructed chemical libraries consisting of FDA-approved drugs for drug repositioning and of natural compound datasets from literature mining and the ZINC database to select compounds interacting with SARS-CoV-2 target proteins (spike protein, nucleocapsid protein, and 2′-o-ribose methyltransferase). Supported by the supercomputer MOGON, candidate compounds were predicted as presumable SARS-CoV-2 inhibitors. Interestingly, several approved drugs against hepatitis C virus (HCV), another enveloped (−) ssRNA virus (paritaprevir, simeprevir and velpatasvir) as well as drugs against transmissible diseases, against cancer, or other diseases were identified as candidates against SARS-CoV-2. This result is supported by reports that anti-HCV compounds are also active against Middle East Respiratory Virus Syndrome (MERS) coronavirus. The candidate compounds identified by us may help to speed up the drug development against SARS-CoV-2.
Collapse
|
104
|
Frutos R, Gavotte L, Devaux CA. Understanding the origin of COVID-19 requires to change the paradigm on zoonotic emergence from the spillover to the circulation model. INFECTION GENETICS AND EVOLUTION 2021; 95:104812. [PMID: 33744401 PMCID: PMC7969828 DOI: 10.1016/j.meegid.2021.104812] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 12/20/2022]
Abstract
While the COVID-19 pandemic continues to spread with currently more than 117 million cumulated cases and 2.6 million deaths worldwide as per March 2021, its origin is still debated. Although several hypotheses have been proposed, there is still no clear explanation about how its causative agent, SARS-CoV-2, emerged in human populations. Today, scientifically-valid facts that deserve to be debated still coexist with unverified statements blurring thus the knowledge on the origin of COVID-19. Our retrospective analysis of scientific data supports the hypothesis that SARS-CoV-2 is indeed a naturally occurring virus. However, the spillover model considered today as the main explanation to zoonotic emergence does not match the virus dynamics and somehow misguided the way researches were conducted. We conclude this review by proposing a change of paradigm and model and introduce the circulation model for explaining the various aspects of the dynamic of SARS-CoV-2 emergence in humans.
Collapse
|
105
|
Frutos R, Serra-Cobo J, Pinault L, Lopez Roig M, Devaux CA. Emergence of Bat-Related Betacoronaviruses: Hazard and Risks. Front Microbiol 2021; 12:591535. [PMID: 33790874 PMCID: PMC8005542 DOI: 10.3389/fmicb.2021.591535] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 02/15/2021] [Indexed: 01/08/2023] Open
Abstract
The current Coronavirus Disease 2019 (COVID-19) pandemic, with more than 111 million reported cases and 2,500,000 deaths worldwide (mortality rate currently estimated at 2.2%), is a stark reminder that coronaviruses (CoV)-induced diseases remain a major threat to humanity. COVID-19 is only the latest case of betacoronavirus (β-CoV) epidemics/pandemics. In the last 20 years, two deadly CoV epidemics, Severe Acute Respiratory Syndrome (SARS; fatality rate 9.6%) and Middle East Respiratory Syndrome (MERS; fatality rate 34.7%), plus the emergence of HCoV-HKU1 which causes the winter common cold (fatality rate 0.5%), were already a source of public health concern. Betacoronaviruses can also be a threat for livestock, as evidenced by the Swine Acute Diarrhea Syndrome (SADS) epizootic in pigs. These repeated outbreaks of β-CoV-induced diseases raise the question of the dynamic of propagation of this group of viruses in wildlife and human ecosystems. SARS-CoV, SARS-CoV-2, and HCoV-HKU1 emerged in Asia, strongly suggesting the existence of a regional hot spot for emergence. However, there might be other regional hot spots, as seen with MERS-CoV, which emerged in the Arabian Peninsula. β-CoVs responsible for human respiratory infections are closely related to bat-borne viruses. Bats are present worldwide and their level of infection with CoVs is very high on all continents. However, there is as yet no evidence of direct bat-to-human coronavirus infection. Transmission of β-CoV to humans is considered to occur accidentally through contact with susceptible intermediate animal species. This zoonotic emergence is a complex process involving not only bats, wildlife and natural ecosystems, but also many anthropogenic and societal aspects. Here, we try to understand why only few hot spots of β-CoV emergence have been identified despite worldwide bats and bat-borne β-CoV distribution. In this work, we analyze and compare the natural and anthropogenic environments associated with the emergence of β-CoV and outline conserved features likely to create favorable conditions for a new epidemic. We suggest monitoring South and East Africa as well as South America as these regions bring together many of the conditions that could make them future hot spots.
Collapse
Affiliation(s)
- Roger Frutos
- Centre de coopération Internationale en Recherche Agronomique pour le Développement, UMR 17, Intertryp, Montpellier, France.,Institut d'Électronique et des Systèmes, UMR 5214, Université de Montpellier-CNRS, Montpellier, France
| | - Jordi Serra-Cobo
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Biodiversity Research Institute, Barcelona, Spain
| | - Lucile Pinault
- Aix Marseille University, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | - Marc Lopez Roig
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Biodiversity Research Institute, Barcelona, Spain
| | - Christian A Devaux
- Aix Marseille University, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France.,Centre National de la Recherche Scientifique, Marseille, France
| |
Collapse
|
106
|
Tyshkovskiy A, Panchin AY. There is no evidence of SARS-CoV-2 laboratory origin: Response to Segreto and Deigin (DOI: 10.1002/bies.202000240). Bioessays 2021; 43:e2000325. [PMID: 33751609 PMCID: PMC8250263 DOI: 10.1002/bies.202000325] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/20/2021] [Accepted: 02/23/2021] [Indexed: 01/10/2023]
Abstract
The origin of severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) is the subject of many hypotheses. One of them, proposed by Segreto and Deigin, assumes artificial chimeric construction of SARS‐CoV‐2 from a backbone of RaTG13‐like CoV and receptor binding domain (RBD) of a pangolin MP789‐like CoV, followed by serial cell or animal passage. Here we show that this hypothesis relies on incorrect or weak assumptions, and does not agree with the results of comparative genomics analysis. The genetic divergence between SARS‐CoV‐2 and both its proposed ancestors is too high to have accumulated in a lab, given the timeframe of several years. Furthermore, comparative analysis of S‐protein gene sequences suggests that the RBD of SARS‐CoV‐2 probably represents an ancestral non‐recombinant variant. These and other arguments significantly weaken the hypothesis of a laboratory origin for SARS‐CoV‐2, while the hypothesis of a natural origin is consistent with all available genetic and experimental data.
Collapse
Affiliation(s)
- Alexander Tyshkovskiy
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia.,Division of Genetics, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Alexander Y Panchin
- Sector of molecular evolution, Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
107
|
Li X, Xia WY, Jiang F, Liu DY, Lei SQ, Xia ZY, Wu QP. Review of the risk factors for SARS-CoV-2 transmission. World J Clin Cases 2021; 9:1499-1512. [PMID: 33728294 PMCID: PMC7942044 DOI: 10.12998/wjcc.v9.i7.1499] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/22/2020] [Accepted: 01/22/2021] [Indexed: 02/06/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, which has lasted for nearly a year, has made people deeply aware of the strong transmissibility and pathogenicity of SARS-CoV-2 since its outbreak in December 2019. By December 2020, SARS-CoV-2 had infected over 65 million people globally, resulting in more than 1 million deaths. At present, the exact animal origin of SARS-CoV-2 remains unclear and antiviral vaccines are now undergoing clinical trials. Although the social order of human life is gradually returning to normal, new confirmed cases continue to appear worldwide, and the majority of cases are sporadic due to environmental factors and lax self-protective consciousness. This article provides the latest understanding of the epidemiology and risk factors of nosocomial and community transmission of SARS-CoV-2, as well as strategies to diminish the risk of transmission. We believe that our review will help the public correctly understand and cope with SARS-CoV-2.
Collapse
Affiliation(s)
- Xia Li
- Department of Anaesthesiology, Institute of Anaesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Wei-Yi Xia
- Poznan University of Medical Science, Poznan 60-781, Poland
| | - Fang Jiang
- Department of Anesthesiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Dan-Yong Liu
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, Guangdong Province, China
| | - Shao-Qing Lei
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Zheng-Yuan Xia
- Department of Anesthesiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Qing-Ping Wu
- Department of Anaesthesiology, Institute of Anaesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| |
Collapse
|
108
|
Li L, Wang X, Hua Y, Liu P, Zhou J, Chen J, An F, Hou F, Huang W, Chen J. Epidemiological Study of Betacoronaviruses in Captive Malayan Pangolins. Front Microbiol 2021; 12:657439. [PMID: 33763052 PMCID: PMC7982866 DOI: 10.3389/fmicb.2021.657439] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 02/09/2021] [Indexed: 01/17/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) outbreak has significantly affected international public health safety. It has been reported that the pathogen severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes COVID-19, could originate from bats and utilize the Malayan pangolin (Manis javanica) as an intermediate host. To gain further insights into the coronaviruses carried by pangolins, we investigated the occurrence of Betacoronavirus (β-CoV) infections in captive Malayan pangolins in the Guangdong province of China. We detected three β-CoV-positive M. javanica individuals with a positive rate of 6.98% and also detected β-CoV in two dead pangolins sampled in August 2019. The CoV carried by pangolins is a new β-CoV, which is genetically related to SARS-CoV-2. Furthermore, the expression of angiotensin-converting enzyme 2 (ACE2) was detected in eight organs of pangolins, with the highest ACE2 mRNA levels in the kidney, suggesting that these organs could be at a risk of β-CoV infection. These results enable us to better understand the status of β-CoV carried by Malayan pangolins, while providing a theoretical basis for better pangolin protection and viral control.
Collapse
Affiliation(s)
- Linmiao Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xiaohu Wang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yan Hua
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, China
| | - Ping Liu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jiabin Zhou
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jing Chen
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Fuyu An
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, China
| | - Fanghui Hou
- Guangdong Provincial Wildlife Rescue Center, Guangzhou, China
| | - Wenzhong Huang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jinping Chen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
109
|
Segreto R, Deigin Y. The genetic structure of SARS-CoV-2 does not rule out a laboratory origin: SARS-COV-2 chimeric structure and furin cleavage site might be the result of genetic manipulation. Bioessays 2021; 43:e2000240. [PMID: 33200842 PMCID: PMC7744920 DOI: 10.1002/bies.202000240] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/16/2020] [Accepted: 10/22/2020] [Indexed: 12/20/2022]
Abstract
Severe acute respiratory syndrome-coronavirus (SARS-CoV)-2's origin is still controversial. Genomic analyses show SARS-CoV-2 likely to be chimeric, most of its sequence closest to bat CoV RaTG13, whereas its receptor binding domain (RBD) is almost identical to that of a pangolin CoV. Chimeric viruses can arise via natural recombination or human intervention. The furin cleavage site in the spike protein of SARS-CoV-2 confers to the virus the ability to cross species and tissue barriers, but was previously unseen in other SARS-like CoVs. Might genetic manipulations have been performed in order to evaluate pangolins as possible intermediate hosts for bat-derived CoVs that were originally unable to bind to human receptors? Both cleavage site and specific RBD could result from site-directed mutagenesis, a procedure that does not leave a trace. Considering the devastating impact of SARS-CoV-2 and importance of preventing future pandemics, researchers have a responsibility to carry out a thorough analysis of all possible SARS-CoV-2 origins.
Collapse
Affiliation(s)
- Rossana Segreto
- Department of MicrobiologyUniversity of InnsbruckInnsbruckAustria
| | - Yuri Deigin
- Youthereum Genetics Inc.TorontoOntarioCanada
| |
Collapse
|
110
|
Irving AT, Welburn SC. SARS-CoV-2 and Zoonotic Preparedness: Unknown Knowns? INFECTIOUS MICROBES & DISEASES 2021; 3:30-31. [PMID: 38630062 PMCID: PMC8011343 DOI: 10.1097/im9.0000000000000051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 11/26/2022]
Affiliation(s)
- Aaron Trent Irving
- Zhejiang University-University of Edinburgh (ZJU-UoE) Institute, Zhejiang University School of Medicine, Zhejiang University International Campus, Haining, Zhejiang, China
- Edinburgh Medical School, Biomedical Sciences, College of Medicine & Veterinary Medicine, The University of Edinburgh, Edinburgh, United Kingdom
- The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Susan Christina Welburn
- Zhejiang University-University of Edinburgh (ZJU-UoE) Institute, Zhejiang University School of Medicine, Zhejiang University International Campus, Haining, Zhejiang, China
- Edinburgh Medical School, Biomedical Sciences, College of Medicine & Veterinary Medicine, The University of Edinburgh, Edinburgh, United Kingdom
- The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
111
|
Al-Qaaneh AM, Alshammari T, Aldahhan R, Aldossary H, Alkhalifah ZA, Borgio JF. Genome composition and genetic characterization of SARS-CoV-2. Saudi J Biol Sci 2021; 28:1978-1989. [PMID: 33519278 PMCID: PMC7834485 DOI: 10.1016/j.sjbs.2020.12.053] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 12/23/2022] Open
Abstract
SARS-CoV-2 is a type of Betacoronaviruses responsible for COVID-19 pandemic disease, with more than 1.745 million fatalities globally as of December-2020. Genetically, it is considered the second largest genome of all RNA viruses with a 5' cap and 3' poly-A tail. Phylogenetic analyses of coronaviruses reveal that SARS-CoV-2 is genetically closely related to the Bat-SARS Like-Corona virus (Bat-SL-Cov) with 96% whole-genome identity. SARS-CoV-2 genome consists of 15 ORFs coded into 29 proteins. At the 5' terminal of the genome, we have ORF1ab and ORF1a, which encode the 1ab and 1a polypeptides that are proteolytically cleaved into 16 different nonstructural proteins (NSPs). The 3' terminal of the genome represents four structural (spike, envelope, matrix, and nucleocapsid) and nine accessory (3a, 3b, 6, 7a, 7b, 8b, 9a, 9b, and orf10) proteins. As the number of COVID-19 patients increases dramatically worldwide, there is an urgent need to find a quick and sensitive diagnostic tool for controlling the outbreak of SARS-CoV-2 in the community. Today, molecular testing methods utilizing viral genetic material (e.g., PCR) represent the crucial diagnostic tool for the SARS-CoV-2 virus despite its low sensitivity in the early stage of viral infection. This review summarizes the genome composition and genetic characterization of the SARS-CoV-2.
Collapse
Affiliation(s)
- Ayman M. Al-Qaaneh
- Department of Genetic Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
- Drug Information Center, Pharmacy Services Department, Johns Hopkins Aramco Healthcare (JHAH), Dhahran 31311, Saudi Arabia
| | - Thamer Alshammari
- Department of Genetic Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Razan Aldahhan
- Department of Genetic Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Hanan Aldossary
- Department of Genetic Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
- Department of Epidemic Diseases Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Zahra Abduljaleel Alkhalifah
- Department of Genetic Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - J. Francis Borgio
- Department of Genetic Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
- Department of Epidemic Diseases Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| |
Collapse
|
112
|
Sahu AK, Sreepadmanabh M, Rai M, Chande A. SARS-CoV-2: phylogenetic origins, pathogenesis, modes of transmission, and the potential role of nanotechnology. Virusdisease 2021; 32:1-12. [PMID: 33644261 PMCID: PMC7897733 DOI: 10.1007/s13337-021-00653-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
The COVID-19 pandemic has elicited a rapid response from the scientific community with significant advances in understanding the causative pathogen (SARS-CoV-2). Mechanisms of viral transmission and pathogenesis, as well as structural and genomic details, have been reported, which are essential in guiding containment, treatment, and vaccine development efforts. Here, we present a concise review of the recent research in these domains and an exhaustive analysis of the genomic origins of SARS-CoV-2. Particular emphasis has been placed on the pathology and disease progression of COVID-19 as documented by recent clinical studies, in addition to the characteristic immune responses involved therein. Furthermore, we explore the potential of nanomaterials and nanotechnology to develop diagnostic tools, drug delivery systems, and personal protective equipment design within the ongoing pandemic context. We present this as a ready resource for researchers to gain succinct, up-to-date insights on SARS-CoV-2.
Collapse
Affiliation(s)
- Amit Kumar Sahu
- Molecular Virology Laboratory, Indian Institute of Science Education and Research (IISER) Bhopal, Indore By-Pass Road, Bhopal, 462066 India
| | - M. Sreepadmanabh
- Molecular Virology Laboratory, Indian Institute of Science Education and Research (IISER) Bhopal, Indore By-Pass Road, Bhopal, 462066 India
| | - Mahendra Rai
- Department of Biotechnology, SGB Amravati University, Amravati, Maharashtra 444602 India
| | - Ajit Chande
- Molecular Virology Laboratory, Indian Institute of Science Education and Research (IISER) Bhopal, Indore By-Pass Road, Bhopal, 462066 India
| |
Collapse
|
113
|
Mascolo S, Carleo MA, Contieri M, Izzo S, Perna A, De Luca A, Esposito V. SARS-CoV-2 and inflammatory responses: From mechanisms to the potential therapeutic use of intravenous immunoglobulin. J Med Virol 2021; 93:2654-2661. [PMID: 33150961 DOI: 10.1002/jmv.26651] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/12/2020] [Accepted: 10/27/2020] [Indexed: 01/05/2023]
Abstract
A novel coronavirus (SARS-CoV-2) is responsible for a severe acute respiratory syndrome called coronavirus disease 2019 (COVID-19). It is originated in Wuhan, China, in December 2019. Due to its extreme transmissibility with droplets and human contacts, in a few months, it has become a pandemic. Nowadays, no effective therapy is available, and the scientific community is moving to find a therapeutic choice to fight this silent enemy. Studies are ongoing on several therapeutic options, including antiviral agents, immunomodulant drugs, and immunotherapy. Due to viral features, including the ability to start an inflammatory response that seems to be the fulcrum of COVID-19 pathogenic action, immunotherapy could represent a promising alternative waiting for the vaccine. High-dose intravenous immunoglobulin (IVIg), already used in other infectious diseases, could represent an effective help. The aim of this narrative review is to reassemble the clinical experiences on the use of IVIg in COVID-19 and the rationale of its use.
Collapse
Affiliation(s)
- Silvia Mascolo
- UOC Immunodeficiencies and Gender-Related Infectious Diseases, AO dei Colli, Cotugno Hospital, Naples, Italy
| | - Maria A Carleo
- UOC Immunodeficiencies and Gender-Related Infectious Diseases, AO dei Colli, Cotugno Hospital, Naples, Italy
| | - Marcella Contieri
- Department of Mental and Physical Health and Preventive Medicine, Section of Human Anatomy, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Sara Izzo
- Multidisciplinary Department of Medical, Surgical and Dental Specialties, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Angelica Perna
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Antonio De Luca
- Department of Mental and Physical Health and Preventive Medicine, Section of Human Anatomy, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Vincenzo Esposito
- UOC Immunodeficiencies and Gender-Related Infectious Diseases, AO dei Colli, Cotugno Hospital, Naples, Italy
| |
Collapse
|
114
|
Yu Z, Schwarz C, Zhu L, Chen L, Shen Y, Yu P. Hitchhiking Behavior in Bacteriophages Facilitates Phage Infection and Enhances Carrier Bacteria Colonization. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:2462-2472. [PMID: 33381966 DOI: 10.1021/acs.est.0c06969] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Interactions between bacteriophages (phages) and biofilms remain poorly understood despite the broad implications for microbial ecology, water quality, and microbiome engineering. Here, we demonstrate that lytic coliphage PHH01 can hitchhike on carrier bacteria Bacillus cereus to facilitate its infection of host bacteria, Escherichia coli, in biofilms. Specifically, PHH01 could adsorb onto the flagella of B. cereus, and thus phage motility was increased, resulting in 4.36-fold more effective infection of E. coli in biofilm relative to free PHH01 alone. Moreover, phage infection mitigated interspecies competition and enhanced B. cereus colonization; the fraction of B. cereus in the final biofilm increased from 9% without phages to 43% with phages. The mutualistic relationship between the coliphage and carrier bacteria was substantiated by migration tests on an E. coli lawn: the conjugation of PHH01 and B. cereus enhanced B. cereus colonization by 6.54-fold compared to B. cereus alone (6.15 vs 0.94 cm2 in 24 h) and PHH01 migration by 5.15-fold compared to PHH01 alone (10.3 vs 2.0 mm in 24 h). Metagenomic and electron microscopic analysis revealed that the phages of diverse taxonomies and different morphologies could be adsorbed by the flagella of B. cereus, suggesting hitchhiking on flagellated bacteria might be a widespread strategy in aquatic phage populations. Overall, our study highlights that hitchhiking behavior in phages can facilitate phage infection of biofilm bacteria, promote carrier bacteria colonization, and thus significantly influence biofilm composition, which holds promise for mediating biofilm functions and moderating associated risks.
Collapse
Affiliation(s)
- Zhuodong Yu
- School of Environment and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Cory Schwarz
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas 77005, United States
| | - Liang Zhu
- School of Environment and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Linlin Chen
- School of Environment and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yun Shen
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Pingfeng Yu
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
115
|
Devaux CA, Pinault L, Osman IO, Raoult D. Can ACE2 Receptor Polymorphism Predict Species Susceptibility to SARS-CoV-2? Front Public Health 2021; 8:608765. [PMID: 33643982 PMCID: PMC7902720 DOI: 10.3389/fpubh.2020.608765] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/23/2020] [Indexed: 12/16/2022] Open
Abstract
A novel severe acute respiratory syndrome coronavirus, SARS-CoV-2, emerged in China in December 2019 and spread worldwide, causing more than 1.3 million deaths in 11 months. Similar to the human SARS-CoV, SARS-CoV-2 shares strong sequence homologies with a sarbecovirus circulating in Rhinolophus affinis bats. Because bats are expected to be able to transmit their coronaviruses to intermediate animal hosts that in turn are a source of viruses able to cross species barriers and infect humans (so-called spillover model), the identification of an intermediate animal reservoir was the subject of intense researches. It was claimed that a reptile (Ophiophagus hannah) was the intermediate host. This hypothesis was quickly ruled out and replaced by the pangolin (Manis javanica) hypothesis. Yet, pangolin was also recently exonerated from SARS-CoV-2 transmission to humans, leaving other animal species as presumed guilty. Guided by the spillover model, several laboratories investigated in silico the species polymorphism of the angiotensin I converting enzyme 2 (ACE2) to find the best fits with the SARS-CoV-2 spike receptor-binding site. Following the same strategy, we used multi-sequence alignment, 3-D structure analysis, and electrostatic potential surface generation of ACE2 variants to predict their binding capacity to SARS-CoV-2. We report evidence that such simple in silico investigation is a powerful tool to quickly screen which species are potentially susceptible to SARS-CoV-2. However, possible receptor binding does not necessarily lead to successful replication in host. Therefore, we also discuss here the limitations of these in silico approaches in our quest on the origins of COVID-19 pandemic.
Collapse
Affiliation(s)
- Christian A. Devaux
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU–Méditerranée Infection, Marseille, France
- CNRS, Marseille, France
| | - Lucile Pinault
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU–Méditerranée Infection, Marseille, France
| | - Ikram Omar Osman
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU–Méditerranée Infection, Marseille, France
| | - Didier Raoult
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU–Méditerranée Infection, Marseille, France
- Fondation IHU–Méditerranée Infection, Marseille, France
| |
Collapse
|
116
|
Wacharapluesadee S, Tan CW, Maneeorn P, Duengkae P, Zhu F, Joyjinda Y, Kaewpom T, Chia WN, Ampoot W, Lim BL, Worachotsueptrakun K, Chen VCW, Sirichan N, Ruchisrisarod C, Rodpan A, Noradechanon K, Phaichana T, Jantarat N, Thongnumchaima B, Tu C, Crameri G, Stokes MM, Hemachudha T, Wang LF. Evidence for SARS-CoV-2 related coronaviruses circulating in bats and pangolins in Southeast Asia. Nat Commun 2021; 12:972. [PMID: 33563978 PMCID: PMC7873279 DOI: 10.1038/s41467-021-21240-1] [Citation(s) in RCA: 247] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 01/18/2021] [Indexed: 12/29/2022] Open
Abstract
Among the many questions unanswered for the COVID-19 pandemic are the origin of SARS-CoV-2 and the potential role of intermediate animal host(s) in the early animal-to-human transmission. The discovery of RaTG13 bat coronavirus in China suggested a high probability of a bat origin. Here we report molecular and serological evidence of SARS-CoV-2 related coronaviruses (SC2r-CoVs) actively circulating in bats in Southeast Asia. Whole genome sequences were obtained from five independent bats (Rhinolophus acuminatus) in a Thai cave yielding a single isolate (named RacCS203) which is most related to the RmYN02 isolate found in Rhinolophus malayanus in Yunnan, China. SARS-CoV-2 neutralizing antibodies were also detected in bats of the same colony and in a pangolin at a wildlife checkpoint in Southern Thailand. Antisera raised against the receptor binding domain (RBD) of RmYN02 was able to cross-neutralize SARS-CoV-2 despite the fact that the RBD of RacCS203 or RmYN02 failed to bind ACE2. Although the origin of the virus remains unresolved, our study extended the geographic distribution of genetically diverse SC2r-CoVs from Japan and China to Thailand over a 4800-km range. Cross-border surveillance is urgently needed to find the immediate progenitor virus of SARS-CoV-2. A bat origin for SARS-CoV-2 has been proposed. Here, by sampling wild Rhinolophus acuminatus bats from Thailand, the authors identified a SARS-CoV-2-related coronavirus (SC2r-CoV), designated as RacCS203, with 91.5% genome similarity to SARS-CoV-2, and show that sera obtained from bats and Malayan pangolin neutralize SARS-CoV-2.
Collapse
Affiliation(s)
- Supaporn Wacharapluesadee
- Thai Red Cross Emerging Infectious Diseases Health Science Centre, WHO Collaborating Centre for Research and Training on Viral Zoonoses, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Chee Wah Tan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Patarapol Maneeorn
- Department of National Parks, Wildlife and Plant Conservation, Ministry of Natural Resources and Environment, Bangkok, Thailand
| | - Prateep Duengkae
- Forest Biology Department, Faculty of Forestry, Kasetsart University, Bangkok, Thailand
| | - Feng Zhu
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Yutthana Joyjinda
- Thai Red Cross Emerging Infectious Diseases Health Science Centre, WHO Collaborating Centre for Research and Training on Viral Zoonoses, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Thongchai Kaewpom
- Thai Red Cross Emerging Infectious Diseases Health Science Centre, WHO Collaborating Centre for Research and Training on Viral Zoonoses, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Wan Ni Chia
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Weenassarin Ampoot
- Thai Red Cross Emerging Infectious Diseases Health Science Centre, WHO Collaborating Centre for Research and Training on Viral Zoonoses, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Beng Lee Lim
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Kanthita Worachotsueptrakun
- Thai Red Cross Emerging Infectious Diseases Health Science Centre, WHO Collaborating Centre for Research and Training on Viral Zoonoses, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Vivian Chih-Wei Chen
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Nutthinee Sirichan
- Forest Biology Department, Faculty of Forestry, Kasetsart University, Bangkok, Thailand
| | - Chanida Ruchisrisarod
- Thai Red Cross Emerging Infectious Diseases Health Science Centre, WHO Collaborating Centre for Research and Training on Viral Zoonoses, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Apaporn Rodpan
- Thai Red Cross Emerging Infectious Diseases Health Science Centre, WHO Collaborating Centre for Research and Training on Viral Zoonoses, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Kirana Noradechanon
- Department of National Parks, Wildlife and Plant Conservation, Ministry of Natural Resources and Environment, Bangkok, Thailand
| | - Thanawadee Phaichana
- Department of National Parks, Wildlife and Plant Conservation, Ministry of Natural Resources and Environment, Bangkok, Thailand
| | - Niran Jantarat
- Department of National Parks, Wildlife and Plant Conservation, Ministry of Natural Resources and Environment, Bangkok, Thailand
| | - Boonchu Thongnumchaima
- Department of National Parks, Wildlife and Plant Conservation, Ministry of Natural Resources and Environment, Bangkok, Thailand
| | - Changchun Tu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
| | - Gary Crameri
- CSIRO Australian Animal Health Laboratory, Geelong, Australia
| | - Martha M Stokes
- Biological Threat Reduction Program, Defense Threat Reduction Agency, Virginia, USA
| | - Thiravat Hemachudha
- Thai Red Cross Emerging Infectious Diseases Health Science Centre, WHO Collaborating Centre for Research and Training on Viral Zoonoses, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore. .,SingHealth Duke-NUS Global Health Institute, Singapore, Singapore.
| |
Collapse
|
117
|
Hedman HD, Krawczyk E, Helmy YA, Zhang L, Varga C. Host Diversity and Potential Transmission Pathways of SARS-CoV-2 at the Human-Animal Interface. Pathogens 2021; 10:180. [PMID: 33567598 PMCID: PMC7915269 DOI: 10.3390/pathogens10020180] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/29/2021] [Accepted: 02/05/2021] [Indexed: 02/07/2023] Open
Abstract
Emerging infectious diseases present great risks to public health. The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causing coronavirus disease 2019 (COVID-19), has become an urgent public health issue of global concern. It is speculated that the virus first emerged through a zoonotic spillover. Basic research studies have suggested that bats are likely the ancestral reservoir host. Nonetheless, the evolutionary history and host susceptibility of SARS-CoV-2 remains unclear as a multitude of animals has been proposed as potential intermediate or dead-end hosts. SARS-CoV-2 has been isolated from domestic animals, both companion and livestock, as well as in captive wildlife that were in close contact with human COVID-19 cases. Currently, domestic mink is the only known animal that is susceptible to a natural infection, develop severe illness, and can also transmit SARS-CoV-2 to other minks and humans. To improve foundational knowledge of SARS-CoV-2, we are conducting a synthesis review of its host diversity and transmission pathways. To mitigate this COVID-19 pandemic, we strongly advocate for a systems-oriented scientific approach that comprehensively evaluates the transmission of SARS-CoV-2 at the human and animal interface.
Collapse
Affiliation(s)
- Hayden D. Hedman
- Summit County Local Public Health Agency, Summit County, Frisco, CO 80443, USA;
| | - Eric Krawczyk
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL 60612, USA;
| | - Yosra A. Helmy
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, USA;
| | - Lixin Zhang
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824, USA;
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Csaba Varga
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| |
Collapse
|
118
|
Vasilarou M, Alachiotis N, Garefalaki J, Beloukas A, Pavlidis P. Population Genomics Insights into the First Wave of COVID-19. Life (Basel) 2021; 11:129. [PMID: 33562321 PMCID: PMC7914631 DOI: 10.3390/life11020129] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/30/2021] [Accepted: 02/04/2021] [Indexed: 01/09/2023] Open
Abstract
Full-genome-sequence computational analyses of the SARS-coronavirus (CoV)-2 genomes allow us to understand the evolutionary events and adaptability mechanisms. We used population genetics analyses on human SARS-CoV-2 genomes available on 2 April 2020 to infer the mutation rate and plausible recombination events between the Betacoronavirus genomes in nonhuman hosts that may have contributed to the evolution of SARS-CoV-2. Furthermore, we localized the targets of recent and strong, positive selection during the first pandemic wave. The genomic regions that appear to be under positive selection are largely co-localized with regions in which recombination from nonhuman hosts took place. Our results suggest that the pangolin coronavirus genome may have contributed to the SARS-CoV-2 genome by recombination with the bat coronavirus genome. However, we find evidence for additional recombination events that involve coronavirus genomes from other hosts, i.e., hedgehogs and sparrows. We further infer that recombination may have recently occurred within human hosts. Finally, we estimate the parameters of a demographic scenario involving an exponential growth of the size of the SARS-CoV-2 populations that have infected European, Asian, and Northern American cohorts, and we demonstrate that a rapid exponential growth in population size from the first wave can support the observed polymorphism patterns in SARS-CoV-2 genomes.
Collapse
Affiliation(s)
- Maria Vasilarou
- Foundation for Research and Technology Hellas (FORTH) and Department of Biology, Institute of Molecular Biology and Biotechnology (IMBB), University of Crete, 70013 Crete, Greece;
| | | | - Joanna Garefalaki
- Institute of Computer Science (ICS), Foundation for Research and Technology Hellas (FORTH), 70013 Heraklion, Greece;
| | - Apostolos Beloukas
- Department of Biomedical Sciences, University of West Attica, 12243 Athens, Greece
- Institute of Infection and Global Health, University of Liverpool, Liverpool L69 7BE, UK
| | - Pavlos Pavlidis
- Institute of Computer Science (ICS), Foundation for Research and Technology Hellas (FORTH), 70013 Heraklion, Greece;
| |
Collapse
|
119
|
Wells HL, Letko M, Lasso G, Ssebide B, Nziza J, Byarugaba DK, Navarrete-Macias I, Liang E, Cranfield M, Han BA, Tingley MW, Diuk-Wasser M, Goldstein T, Johnson CK, Mazet JAK, Chandran K, Munster VJ, Gilardi K, Anthony SJ. The evolutionary history of ACE2 usage within the coronavirus subgenus Sarbecovirus. Virus Evol 2021; 7:veab007. [PMID: 33754082 PMCID: PMC7928622 DOI: 10.1093/ve/veab007] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1) and SARS-CoV-2 are not phylogenetically closely related; however, both use the angiotensin-converting enzyme 2 (ACE2) receptor in humans for cell entry. This is not a universal sarbecovirus trait; for example, many known sarbecoviruses related to SARS-CoV-1 have two deletions in the receptor binding domain of the spike protein that render them incapable of using human ACE2. Here, we report three sequences of a novel sarbecovirus from Rwanda and Uganda that are phylogenetically intermediate to SARS-CoV-1 and SARS-CoV-2 and demonstrate via in vitro studies that they are also unable to utilize human ACE2. Furthermore, we show that the observed pattern of ACE2 usage among sarbecoviruses is best explained by recombination not of SARS-CoV-2, but of SARS-CoV-1 and its relatives. We show that the lineage that includes SARS-CoV-2 is most likely the ancestral ACE2-using lineage, and that recombination with at least one virus from this group conferred ACE2 usage to the lineage including SARS-CoV-1 at some time in the past. We argue that alternative scenarios such as convergent evolution are much less parsimonious; we show that biogeography and patterns of host tropism support the plausibility of a recombination scenario, and we propose a competitive release hypothesis to explain how this recombination event could have occurred and why it is evolutionarily advantageous. The findings provide important insights into the natural history of ACE2 usage for both SARS-CoV-1 and SARS-CoV-2 and a greater understanding of the evolutionary mechanisms that shape zoonotic potential of coronaviruses. This study also underscores the need for increased surveillance for sarbecoviruses in southwestern China, where most ACE2-using viruses have been found to date, as well as other regions such as Africa, where these viruses have only recently been discovered.
Collapse
Affiliation(s)
- H L Wells
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, 1200 Amsterdam Ave, New York, NY 10027, USA
| | - M Letko
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 S. 4th St, Hamilton, MT 59840, USA.,Paul G. Allen School for Global Animal Health, Washington State University, 1155 College Ave, Pullman, WA 99164, USA
| | - G Lasso
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10462, USA
| | - B Ssebide
- Gorilla Doctors, c/o MGVP, Inc., 1089 Veterinary Medicine Drive, Davis, CA 95616, USA
| | - J Nziza
- Gorilla Doctors, c/o MGVP, Inc., 1089 Veterinary Medicine Drive, Davis, CA 95616, USA
| | - D K Byarugaba
- Makerere University Walter Reed Project, Plot 42, Nakasero Road, Kampala, Uganda.,Makerere University, College of Veterinary Medicine, Living Stone Road, Kampala, Uganda
| | - I Navarrete-Macias
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, 722 W 168th St, New York, NY 10032, USA
| | - E Liang
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, 722 W 168th St, New York, NY 10032, USA
| | - M Cranfield
- One Health Institute and Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California Davis, 1089 Veterinary Medicine Drive, Davis, CA 95616, USA.,Department of Microbiology and Immunology, University of North Carolina School of Medicine, 125 Mason Farm Road, Chapel Hill, NC 27599, USA
| | - B A Han
- Cary Institute of Ecosystem Studies, 2801 Sharon Turnpike, Millbrook, NY 12545, USA
| | - M W Tingley
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, 612 Charles E. Young Drive South, Los Angeles, CA 90095, USA
| | - M Diuk-Wasser
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, 1200 Amsterdam Ave, New York, NY 10027, USA
| | - T Goldstein
- One Health Institute and Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California Davis, 1089 Veterinary Medicine Drive, Davis, CA 95616, USA
| | - C K Johnson
- One Health Institute and Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California Davis, 1089 Veterinary Medicine Drive, Davis, CA 95616, USA
| | - J A K Mazet
- One Health Institute and Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California Davis, 1089 Veterinary Medicine Drive, Davis, CA 95616, USA
| | - K Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10462, USA
| | - V J Munster
- Paul G. Allen School for Global Animal Health, Washington State University, 1155 College Ave, Pullman, WA 99164, USA
| | - K Gilardi
- Makerere University Walter Reed Project, Plot 42, Nakasero Road, Kampala, Uganda.,One Health Institute and Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California Davis, 1089 Veterinary Medicine Drive, Davis, CA 95616, USA
| | - S J Anthony
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
120
|
Na EJ, Lee SY, Kim HJ, Oem JK. Comparative genetic analyses of Korean bat coronaviruses with SARS-CoV and the newly emerged SARS-CoV-2. J Vet Sci 2021; 22:e12. [PMID: 33522164 PMCID: PMC7850784 DOI: 10.4142/jvs.2021.22.e12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/08/2020] [Accepted: 12/15/2020] [Indexed: 12/31/2022] Open
Abstract
Background Bats have been considered natural reservoirs for several pathogenic human coronaviruses (CoVs) in the last two decades. Recently, a bat CoV was detected in the Republic of Korea; its entire genome was sequenced and reported to be genetically similar to that of the severe acute respiratory syndrome CoV (SARS-CoV). Objectives The objective of this study was to compare the genetic sequences of SARS-CoV, SARS-CoV-2, and the two Korean bat CoV strains 16BO133 and B15-21, to estimate the likelihood of an interaction between the Korean bat CoVs and the human angiotensin-converting enzyme 2 (ACE2) receptor. Methods The phylogenetic analysis was conducted with the maximum-likelihood (ML) method using MEGA 7 software. The Korean bat CoVs receptor binding domain (RBD) of the spike protein was analyzed by comparative homology modeling using the SWISS-MODEL server. The binding energies of the complexes were calculated using PRODIGY and MM/GBGA. Results Phylogenetic analyses of the entire RNA-dependent RNA polymerase, spike regions, and the complete genome revealed that the Korean CoVs, along with SARS-CoV and SARS-CoV-2, belong to the subgenus Sarbecovirus, within BetaCoVs. However, the two Korean CoVs were distinct from SARS-CoV-2. Specifically, the spike gene of the Korean CoVs, which is involved in host infection, differed from that of SARS-CoV-2, showing only 66.8%–67.0% nucleotide homology and presented deletions within the RBD, particularly within regions critical for cross-species transmission and that mediate interaction with ACE2. Binding free energy calculation revealed that the binding affinity of Korean bat CoV RBD to hACE2 was drastically lower than that of SARS-CoV and SARS-CoV-2. Conclusions These results suggest that Korean bat CoVs are unlikely to bind to the human ACE2 receptor.
Collapse
Affiliation(s)
- Eun Jee Na
- Laboratory of Veterinary Infectious Disease, College of Veterinary of Medicine, Jeonbuk National University, Iksan 54596, Korea
| | - Sook Young Lee
- Laboratory of Veterinary Infectious Disease, College of Veterinary of Medicine, Jeonbuk National University, Iksan 54596, Korea
| | - Hak Jun Kim
- Department of Chemistry, Pukyong National University, Busan 48513, Korea
| | - Jae Ku Oem
- Laboratory of Veterinary Infectious Disease, College of Veterinary of Medicine, Jeonbuk National University, Iksan 54596, Korea.
| |
Collapse
|
121
|
Adil MT, Rahman R, Whitelaw D, Jain V, Al-Taan O, Rashid F, Munasinghe A, Jambulingam P. SARS-CoV-2 and the pandemic of COVID-19. Postgrad Med J 2021; 97:110-116. [PMID: 32788312 PMCID: PMC10016996 DOI: 10.1136/postgradmedj-2020-138386] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Indexed: 01/08/2023]
Abstract
SARS-CoV-2 is a virus that is the cause of a serious life-threatening disease known as COVID-19. It was first noted to have occurred in Wuhan, China in November 2019 and the WHO reported the first case on December 31, 2019. The outbreak was declared a global pandemic on March 11, 2020 and by May 30, 2020, a total of 5 899 866 positive cases were registered including 364 891 deaths. SARS-CoV-2 primarily targets the lung and enters the body through ACE2 receptors. Typical symptoms of COVID-19 include fever, cough, shortness of breath and fatigue, yet some atypical symptoms like loss of smell and taste have also been described. 20% require hospital admission due to severe disease, a third of whom need intensive support. Treatment is primarily supportive, however, prognosis is dismal in those who need invasive ventilation. Trials are ongoing to discover effective vaccines and drugs to combat the disease. Preventive strategies aim at reducing the transmission of disease by contact tracing, washing of hands, use of face masks and government-led lockdown of unnecessary activities to reduce the risk of transmission.
Collapse
Affiliation(s)
- Md Tanveer Adil
- Department of Upper GI and Bariatric Surgery,, Luton and Dunstable University Hospital, Luton LU4 0DZ, UK
| | - Rumana Rahman
- Department of Gynaecology & Obstetrics, Calderdale Royal Hospital, Halifax HX3 0PW, UK
| | - Douglas Whitelaw
- Department of Upper GI and Bariatric Surgery,, Luton and Dunstable University Hospital, Luton LU4 0DZ, UK
| | - Vigyan Jain
- Department of Upper GI and Bariatric Surgery,, Luton and Dunstable University Hospital, Luton LU4 0DZ, UK
| | - Omer Al-Taan
- Department of Upper GI and Bariatric Surgery,, Luton and Dunstable University Hospital, Luton LU4 0DZ, UK
| | - Farhan Rashid
- Department of Upper GI and Bariatric Surgery,, Luton and Dunstable University Hospital, Luton LU4 0DZ, UK
| | - Aruna Munasinghe
- Department of Upper GI and Bariatric Surgery,, Luton and Dunstable University Hospital, Luton LU4 0DZ, UK
| | - Periyathambi Jambulingam
- Department of Upper GI and Bariatric Surgery,, Luton and Dunstable University Hospital, Luton LU4 0DZ, UK
| |
Collapse
|
122
|
Ghaffari M, Ansari H, Beladimoghadam N, Aghamiri SH, Haghighi M, Nabavi M, Mansouri B, Mehrpour M, Assarzadegan F, Hesami O, Sedaghat M, Farahbakhsh M, Lima BS. Neurological features and outcome in COVID-19: dementia can predict severe disease. J Neurovirol 2021; 27:86-93. [PMID: 33417193 PMCID: PMC7792552 DOI: 10.1007/s13365-020-00918-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/21/2020] [Accepted: 10/01/2020] [Indexed: 12/24/2022]
Abstract
The COVID-19 pandemic has infected more than 22 million people worldwide. Although much has been learned about COVID-19, we do not know much about its neurological features and their outcome. This observational study was conducted on the patients of Imam Hossein Hospital, and 361 adult patients (214 males) with confirmed diagnosis of COVID-19 from March 5, 2020 to April 3, 2020, were enrolled. Data was gathered on age, sex, comorbidities, initial symptoms, symptoms during the disease course, neurological symptoms, and outcome. The mean age of the patients was 61.90 ± 16.76 years. The most common initial symptoms were cough, fever, and dyspnea. In 21 patients (5.8%), the initial symptom was neurological. History of dementia was associated with severe COVID-19 disease (odds ratio = 1.28). During the course of the disease, 186 patients (51.52%) had at least one neurological symptom, the most common being headache (109 [30.2%]), followed by anosmia/ageusia (69, [19.1%]), and dizziness (54, [15%]). Also, 31 patients had neurological complications (8.58%). Anosmia, ageusia, dizziness, and headache were associated with favorable outcome (P < 0.001), while altered mental status and hemiparesis were associated with poor outcome. The mortality rate of patients who had neurological complications was more than twice than that of patients without neurological complication (P = 0.008). Almost half of the patients experienced at least one neurological symptom, which may be the initial presentation of COVID-19. Dementia appears to be associated with severe COVID-19. Mortality was higher in patients with neurological complications, and these patients needed more intensive care.
Collapse
Affiliation(s)
- Mehran Ghaffari
- Department of Neurology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Ansari
- Headache and Facial Pain Clinic, Kaizen Brain Center, San Diego, USA
- Department of Neurology, University of California, San Diego, USA
| | - Nahid Beladimoghadam
- Department of Neurology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mehrdad Haghighi
- Department of Infectious Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahmoud Nabavi
- Department of Infectious Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behnam Mansouri
- Department of Neurology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Mehrpour
- Department of Neurology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farhad Assarzadegan
- Department of Neurology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Omid Hesami
- Department of Neurology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Meghdad Sedaghat
- Department of Internal Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Farahbakhsh
- Department of Infectious Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behnam Safarpour Lima
- Department of Neurology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Imam Hossein Medical and Educational Center , Madani Street, Tehran, Iran.
| |
Collapse
|
123
|
Bonam SR, Kotla NG, Bohara RA, Rochev Y, Webster TJ, Bayry J. Potential immuno-nanomedicine strategies to fight COVID-19 like pulmonary infections. NANO TODAY 2021; 36:101051. [PMID: 33519949 PMCID: PMC7834523 DOI: 10.1016/j.nantod.2020.101051] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 10/15/2020] [Accepted: 11/30/2020] [Indexed: 05/08/2023]
Abstract
COVID-19, coronavirus disease 2019, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a pandemic. At the time of writing this (October 14, 2020), more than 38.4 million people have become affected, and 1.0 million people have died across the world. The death rate is undoubtedly correlated with the cytokine storm and other pathological pulmonary characteristics, as a result of which the lungs cannot provide sufficient oxygen to the body's vital organs. While diversified drugs have been tested as a first line therapy, the complexity of fatal cases has not been reduced so far, and the world is looking for a treatment to combat the virus. However, to date, and despite such promise, we have received very limited information about the potential of nanomedicine to fight against COVID-19 or as an adjunct therapy in the treatment regimen. Over the past two decades, various therapeutic strategies, including direct-acting antiviral drugs, immunomodulators, a few non-specific drugs (simple to complex), have been explored to treat Acute Respiratory Distress Syndrome (ARDS), Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome (MERS), influenza, and sometimes the common flu, thus, correlating and developing specific drugs centric to COVID-19 is possible. This review article focuses on the pulmonary pathology caused by SARS-CoV-2 and other viral pathogens, highlighting possible nanomedicine therapeutic strategies that should be further tested immediately.
Collapse
Affiliation(s)
- Srinivasa Reddy Bonam
- Institut National de la Santé et de la Recherche Médicale; Centre de Recherche des Cordeliers, Equipe-Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Université de Paris, Paris F-75006, France
| | - Niranjan G Kotla
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Ireland
| | - Raghvendra A Bohara
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Ireland
- Centre for Interdisciplinary Research, D. Y. Patil Education Society (Institution Deemed to be University), Kolhapur (MS), India
| | - Yury Rochev
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Ireland
- Sechenov First Moscow State Medical University, Institute for Regenerative Medicine, Moscow 119992, Russia
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| | - Jagadeesh Bayry
- Institut National de la Santé et de la Recherche Médicale; Centre de Recherche des Cordeliers, Equipe-Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Université de Paris, Paris F-75006, France
- Indian Institute of Technology Palakkad, Kozhippara, Palakkad 678557, India
| |
Collapse
|
124
|
Wells H, Letko M, Lasso G, Ssebide B, Nziza J, Byarugaba D, Navarrete-Macias I, Liang E, Cranfield M, Han B, Tingley M, Diuk-Wasser M, Goldstein T, Johnson C, Mazet J, Chandran K, Munster V, Gilardi K, Anthony S. The evolutionary history of ACE2 usage within the coronavirus subgenus Sarbecovirus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2020.07.07.190546. [PMID: 32676605 PMCID: PMC7359528 DOI: 10.1101/2020.07.07.190546] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
SARS-CoV-1 and SARS-CoV-2 are not phylogenetically closely related; however, both use the ACE2 receptor in humans for cell entry. This is not a universal sarbecovirus trait; for example, many known sarbecoviruses related to SARS-CoV-1 have two deletions in the receptor binding domain of the spike protein that render them incapable of using human ACE2. Here, we report three sequences of a novel sarbecovirus from Rwanda and Uganda which are phylogenetically intermediate to SARS-CoV-1 and SARS-CoV-2 and demonstrate via in vitro studies that they are also unable to utilize human ACE2. Furthermore, we show that the observed pattern of ACE2 usage among sarbecoviruses is best explained by recombination not of SARS-CoV-2, but of SARS-CoV-1 and its relatives. We show that the lineage that includes SARS-CoV-2 is most likely the ancestral ACE2-using lineage, and that recombination with at least one virus from this group conferred ACE2 usage to the lineage including SARS-CoV-1 at some time in the past. We argue that alternative scenarios such as convergent evolution are much less parsimonious; we show that biogeography and patterns of host tropism support the plausibility of a recombination scenario; and we propose a competitive release hypothesis to explain how this recombination event could have occurred and why it is evolutionarily advantageous. The findings provide important insights into the natural history of ACE2 usage for both SARS-CoV-1 and SARS-CoV-2, and a greater understanding of the evolutionary mechanisms that shape zoonotic potential of coronaviruses. This study also underscores the need for increased surveillance for sarbecoviruses in southwestern China, where most ACE2-using viruses have been found to date, as well as other regions such as Africa, where these viruses have only recently been discovered.
Collapse
Affiliation(s)
- H.L Wells
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY, USA
| | - M Letko
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, USA
| | - G Lasso
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - B Ssebide
- Gorilla Doctors, c/o MGVP, Inc., Davis, California, USA
| | - J Nziza
- Gorilla Doctors, c/o MGVP, Inc., Davis, California, USA
| | - D.K Byarugaba
- Makerere University Walter Reed Project, Kampala, Uganda
- Makerere University, College of Veterinary Medicine, Kampala, Uganda
| | - I Navarrete-Macias
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - E Liang
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - M Cranfield
- One Health Institute and Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California Davis, California, USA
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - B.A Han
- Cary Institute of Ecosystem Studies, Millbrook, New York, USA
| | - M.W Tingley
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - M Diuk-Wasser
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - T Goldstein
- One Health Institute and Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California Davis, California, USA
| | - C.K Johnson
- One Health Institute and Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California Davis, California, USA
| | - J Mazet
- One Health Institute and Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California Davis, California, USA
| | - K Chandran
- Gorilla Doctors, c/o MGVP, Inc., Davis, California, USA
| | - V.J Munster
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, USA
| | - K Gilardi
- Makerere University Walter Reed Project, Kampala, Uganda
- One Health Institute and Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California Davis, California, USA
| | - S.J Anthony
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY, USA
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California Davis, California, USA
| |
Collapse
|
125
|
Makarenkov V, Mazoure B, Rabusseau G, Legendre P. Horizontal gene transfer and recombination analysis of SARS-CoV-2 genes helps discover its close relatives and shed light on its origin. BMC Ecol Evol 2021; 21:5. [PMID: 33514319 PMCID: PMC7817968 DOI: 10.1186/s12862-020-01732-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/08/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The SARS-CoV-2 pandemic is one of the greatest global medical and social challenges that have emerged in recent history. Human coronavirus strains discovered during previous SARS outbreaks have been hypothesized to pass from bats to humans using intermediate hosts, e.g. civets for SARS-CoV and camels for MERS-CoV. The discovery of an intermediate host of SARS-CoV-2 and the identification of specific mechanism of its emergence in humans are topics of primary evolutionary importance. In this study we investigate the evolutionary patterns of 11 main genes of SARS-CoV-2. Previous studies suggested that the genome of SARS-CoV-2 is highly similar to the horseshoe bat coronavirus RaTG13 for most of the genes and to some Malayan pangolin coronavirus (CoV) strains for the receptor binding (RB) domain of the spike protein. RESULTS We provide a detailed list of statistically significant horizontal gene transfer and recombination events (both intergenic and intragenic) inferred for each of 11 main genes of the SARS-CoV-2 genome. Our analysis reveals that two continuous regions of genes S and N of SARS-CoV-2 may result from intragenic recombination between RaTG13 and Guangdong (GD) Pangolin CoVs. Statistically significant gene transfer-recombination events between RaTG13 and GD Pangolin CoV have been identified in region [1215-1425] of gene S and region [534-727] of gene N. Moreover, some statistically significant recombination events between the ancestors of SARS-CoV-2, RaTG13, GD Pangolin CoV and bat CoV ZC45-ZXC21 coronaviruses have been identified in genes ORF1ab, S, ORF3a, ORF7a, ORF8 and N. Furthermore, topology-based clustering of gene trees inferred for 25 CoV organisms revealed a three-way evolution of coronavirus genes, with gene phylogenies of ORF1ab, S and N forming the first cluster, gene phylogenies of ORF3a, E, M, ORF6, ORF7a, ORF7b and ORF8 forming the second cluster, and phylogeny of gene ORF10 forming the third cluster. CONCLUSIONS The results of our horizontal gene transfer and recombination analysis suggest that SARS-CoV-2 could not only be a chimera virus resulting from recombination of the bat RaTG13 and Guangdong pangolin coronaviruses but also a close relative of the bat CoV ZC45 and ZXC21 strains. They also indicate that a GD pangolin may be an intermediate host of this dangerous virus.
Collapse
Affiliation(s)
- Vladimir Makarenkov
- Département d'informatique, Université du Québec à Montréal, Montreal, QC, Canada.
| | - Bogdan Mazoure
- Montreal Institute for Learning Algorithms (Mila), Montreal, QC, Canada
| | - Guillaume Rabusseau
- Montreal Institute for Learning Algorithms (Mila), Montreal, QC, Canada
- Département d'informatique et de Recherche Opérationnelle, Université de Montréal and Canada CIFAR AI Chair, Montreal, QC, Canada
| | - Pierre Legendre
- Département de Sciences Biologiques, Université de Montréal, C. P. 6128, Succursale Centre-Ville, Montreal, QC, H3C 3J7, Canada
| |
Collapse
|
126
|
Thompson CW, Phelps KL, Allard MW, Cook JA, Dunnum JL, Ferguson AW, Gelang M, Khan FAA, Paul DL, Reeder DM, Simmons NB, Vanhove MPM, Webala PW, Weksler M, Kilpatrick CW. Preserve a Voucher Specimen! The Critical Need for Integrating Natural History Collections in Infectious Disease Studies. mBio 2021; 12:e02698-20. [PMID: 33436435 PMCID: PMC7844540 DOI: 10.1128/mbio.02698-20] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Despite being nearly 10 months into the COVID-19 (coronavirus disease 2019) pandemic, the definitive animal host for SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), the causal agent of COVID-19, remains unknown. Unfortunately, similar problems exist for other betacoronaviruses, and no vouchered specimens exist to corroborate host species identification for most of these pathogens. This most basic information is critical to the full understanding and mitigation of emerging zoonotic diseases. To overcome this hurdle, we recommend that host-pathogen researchers adopt vouchering practices and collaborate with natural history collections to permanently archive microbiological samples and host specimens. Vouchered specimens and associated samples provide both repeatability and extension to host-pathogen studies, and using them mobilizes a large workforce (i.e., biodiversity scientists) to assist in pandemic preparedness. We review several well-known examples that successfully integrate host-pathogen research with natural history collections (e.g., yellow fever, hantaviruses, helminths). However, vouchering remains an underutilized practice in such studies. Using an online survey, we assessed vouchering practices used by microbiologists (e.g., bacteriologists, parasitologists, virologists) in host-pathogen research. A much greater number of respondents permanently archive microbiological samples than archive host specimens, and less than half of respondents voucher host specimens from which microbiological samples were lethally collected. To foster collaborations between microbiologists and natural history collections, we provide recommendations for integrating vouchering techniques and archiving of microbiological samples into host-pathogen studies. This integrative approach exemplifies the premise underlying One Health initiatives, providing critical infrastructure for addressing related issues ranging from public health to global climate change and the biodiversity crisis.
Collapse
Affiliation(s)
- Cody W Thompson
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
- Museum of Zoology, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Marc W Allard
- Center of Food Safety and Applied Nutrition, U. S. Food and Drug Administration, College Park, Maryland, USA
| | - Joseph A Cook
- Museum of Southwestern Biology, Biology Department, University of New Mexico, Albuquerque, New Mexico, USA
| | - Jonathan L Dunnum
- Museum of Southwestern Biology, Biology Department, University of New Mexico, Albuquerque, New Mexico, USA
| | - Adam W Ferguson
- Gantz Family Collections Center, Field Museum of Natural History, Chicago, Illinois, USA
| | - Magnus Gelang
- Gothenburg Natural History Museum, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
| | | | - Deborah L Paul
- Florida State University, Tallahassee, Florida, USA
- Species File Group, University of Illinois, Urbana-Champaign, Illinois, USA
| | | | - Nancy B Simmons
- Department of Mammalogy, Division of Vertebrate Zoology, American Museum of Natural History, New York, New York, USA
| | - Maarten P M Vanhove
- Hasselt University, Centre for Environmental Sciences, Research Group Zoology: Biodiversity and Toxicology, Diepenbeek, Belgium
| | - Paul W Webala
- Department of Forestry and Wildlife Management, Maasai Mara University, Narok, Kenya
| | - Marcelo Weksler
- Departamento de Vertebrados, Museu Nacional, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | |
Collapse
|
127
|
Guest PC, Ozanne SE. The Worldwide Effort to Develop Vaccines for COVID-19. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1327:215-223. [PMID: 34279842 DOI: 10.1007/978-3-030-71697-4_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
There have been recent encouraging reports about the development of vaccines for COVID-19. Given the scale and effects of this pandemic on public health and economies worldwide, there has been an unprecedented approach across the globe, leading to the emergence of vaccine candidates many times faster than the normal process would allow. This review gives up-to-date information as of November 28, 2020, on the latest developments in this area and covers the plans to roll out the most promising vaccines across the entire world to halt the spread of this devastating virus.
Collapse
Affiliation(s)
- Paul C Guest
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil.
| | - Susan E Ozanne
- Addenbrookes Hospital, Institute of Metabolic Science, University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Cambridge, UK
| |
Collapse
|
128
|
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly transmissible and pathogenic coronavirus that emerged in late 2019 and has caused a pandemic of acute respiratory disease, named 'coronavirus disease 2019' (COVID-19), which threatens human health and public safety. In this Review, we describe the basic virology of SARS-CoV-2, including genomic characteristics and receptor use, highlighting its key difference from previously known coronaviruses. We summarize current knowledge of clinical, epidemiological and pathological features of COVID-19, as well as recent progress in animal models and antiviral treatment approaches for SARS-CoV-2 infection. We also discuss the potential wildlife hosts and zoonotic origin of this emerging virus in detail.
Collapse
Affiliation(s)
- Ben Hu
- grid.9227.e0000000119573309CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Hua Guo
- grid.9227.e0000000119573309CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People’s Republic of China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Peng Zhou
- grid.9227.e0000000119573309CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Zheng-Li Shi
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People's Republic of China.
| |
Collapse
|
129
|
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly transmissible and pathogenic coronavirus that emerged in late 2019 and has caused a pandemic of acute respiratory disease, named 'coronavirus disease 2019' (COVID-19), which threatens human health and public safety. In this Review, we describe the basic virology of SARS-CoV-2, including genomic characteristics and receptor use, highlighting its key difference from previously known coronaviruses. We summarize current knowledge of clinical, epidemiological and pathological features of COVID-19, as well as recent progress in animal models and antiviral treatment approaches for SARS-CoV-2 infection. We also discuss the potential wildlife hosts and zoonotic origin of this emerging virus in detail.
Collapse
|
130
|
Abstract
Since 2002, three zoonotic coronaviruses (CoV), SARS-CoV, MERS-CoV and SARS-CoV-2 have emerged in humans, establishing that emergence of coronaviruses from animal reservoirs represents a significant pandemic threat. SARS-CoV and MERS-CoV led to smaller epidemics with very high case fatality rates while SARS-CoV-2 resulted in a global pandemic. These zoonotic coronaviruses have their likely origins in bat species and they transmit to humans through intermediate hosts. Coronaviruses can occasionally jump between host species due to their high rate of recombination. Pandemic preparedness requires surveillance in animals and occupationally exposed humans and prevention and treatment strategies that have broad activity against coronaviruses.
Collapse
|
131
|
Van Vo G, Bagyinszky E, Park YS, Hulme J, An SSA. SARS-CoV-2 (COVID-19): Beginning to Understand a New Virus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1321:3-19. [PMID: 33656709 DOI: 10.1007/978-3-030-59261-5_1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Within the last two decades, several members of the Coronaviridae family demonstrated epidemic potential. In late 2019, an unnamed genetic relative, later named SARS-CoV-2 (COVID-19), erupted in the highly populous neighborhoods of Wuhan, China. Unchecked, COVID-19 spread rapidly among interconnected communities and related households before containment measures could be enacted. At present, the mortality rate of COVID-19 infection worldwide is 6.6%. In order to mitigate the number of infections, restrictions or recommendations on the number of people that can gather in a given area have been employed by governments worldwide. For governments to confidently lift these restrictions as well as counter a potential secondary wave of infections, alternative medications and diagnostic strategies against COVID-19 are urgently required. This review has focused on these issues.
Collapse
Affiliation(s)
- Giau Van Vo
- Department of Industrial and Environmental Engineering, Graduate School of Environment, Gachon University, Seongnam-si, Gyeonggi-do, South Korea
- Department of Bionanotechnology, Gachon University, Seongnam-si, Gyeonggi-do, South Korea
- School of Medicine, Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Eva Bagyinszky
- Department of Industrial and Environmental Engineering, Graduate School of Environment, Gachon University, Seongnam-si, Gyeonggi-do, South Korea
- Department of Bionanotechnology, Gachon University, Seongnam-si, Gyeonggi-do, South Korea
| | - Yoon Soo Park
- Department of Internal Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin-si, Gyeonggi-do, South Korea
| | - John Hulme
- Department of Bionanotechnology, Gachon University, Seongnam-si, Gyeonggi-do, South Korea.
| | - Seong Soo A An
- Department of Bionanotechnology, Gachon University, Seongnam-si, Gyeonggi-do, South Korea.
| |
Collapse
|
132
|
da Silva PG, Mesquita JR, de São José Nascimento M, Ferreira VAM. Viral, host and environmental factors that favor anthropozoonotic spillover of coronaviruses: An opinionated review, focusing on SARS-CoV, MERS-CoV and SARS-CoV-2. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 750:141483. [PMID: 32829257 PMCID: PMC7405882 DOI: 10.1016/j.scitotenv.2020.141483] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 05/21/2023]
Abstract
Environmental factors play a key role in the zoonotic transmission of emerging pathogenic viruses as mankind is constantly disturbing wildlife's ecosystems usually by cutting down forests to build human settlements or by catching wild animals for food, which deprives the viruses of their natural hosts and gives them opportunity to infect humans. In December 2019, a new coronavirus emerged from bats and was named SARS-CoV-2 by the International Committee for Taxonomy of Viruses, and the disease it causes named COVID-19 by the World Health Organization. Disease outbreaks such as SARS in 2002-2003, MERS in 2012 and the current COVID-19 pandemic are the result of higher mutation rates of coronaviruses and their unique capacity for genetic recombination, resulting in adaptations that make them more suitable to cross the species barriers and infect other species. This ability for host switching and interspecies infection is often attributed to the great diversity of these viruses, which is a result of viral and host factors such as the low fidelity of their RNA-dependent RNA polymerase, the high frequency of their homologous RNA recombination, and the adaptation of the S protein to bind host receptors like the angiotensin converting enzyme 2 (ACE2) in the case of SARS-CoV and SARS-CoV-2, and dipeptidyl peptidase 4 (DDP4) in MERS-CoV. This review presents an overview of the zoonotic transmission of SARS, MERS and COVID-19, focusing on the viral, host and environmental factors that favor the spillover of these viruses into humans, as well as the biological and ecological factors that make bats the perfect animal reservoir of infection for these viruses.
Collapse
Affiliation(s)
| | - João Rodrigo Mesquita
- Abel Salazar Institute of Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal; Epidemiology Research Unit (EPIUnit), Institute of Public Health, University of Porto, Porto, Portugal
| | - Maria de São José Nascimento
- Epidemiology Research Unit (EPIUnit), Institute of Public Health, University of Porto, Porto, Portugal; Faculty of Pharmacy, University of Porto (FFUP), Porto, Portugal
| | | |
Collapse
|
133
|
Wang F, Lai CX, Huang PY, Liu JM, Wang XF, Tang QY, Zhou X, Xian WJ, Chen RK, Li X, Li ZY, Liao LQ, He Q, Liu L. Comparison of Clinical Characteristics and Outcomes of Pediatric and Adult Patients with Coronavirus Disease 2019 in Shenzhen, China. BIOMEDICAL AND ENVIRONMENTAL SCIENCES : BES 2020; 33:906-915. [PMID: 33472730 PMCID: PMC7817450 DOI: 10.3967/bes2020.124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 07/24/2020] [Indexed: 06/12/2023]
Abstract
OBJECTIVE Here we aimed to investigate the difference in clinical characteristics and outcomes between pediatric and adult patients with COVID-19. METHODS A total of 333 consecutive patients with laboratory-confirmed SARS-CoV-2 infection treated in the departments of Internal medicine of Shenzhen Third People's Hospital from January 11 th to February 10 th, 2020 were included. The data were obtained from electronic medical records. The epidemiological data, clinical characteristics, length of hospital stays, and outcomes of pediatric and adult patients were compared. RESULTS Compared with adult patients, pediatric patients had a shorter time of symptom onset to hospitalization than adults [median time, 1 ( IQR, 1.0-1.0) d vs. 3 ( IQR, 2.0-6.0) d, P < 0.001], milder or fewer symptoms, less severe chest CT findings. The clinical severity classification of children was less severe than adults. Up to 15 th March, the end of the follow-up, 33 (100%) children and 292 (97.3%) adult patients had been discharged from hospital. Only 2 (0.7%) adult patients died, with an overall case mortality of 0.6%. The median length of hospital stay of pediatric patients was shorter than that of adult patients [19 (95% CI: 16.6-21.4) d vs. 21 (95% CI: 19.9-22.1) d, P = 0.024]. CONCLUSION Pediatric patients with COVID-19 had milder or less clinical symptoms, less evident pulmonary imaging changes, better prognosis, and shorter length of hospital stay.
Collapse
Affiliation(s)
- Fang Wang
- National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Department of Hepatology, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, Guangdong, China
| | - Chang Xiang Lai
- National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Department of Hepatology, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, Guangdong, China
| | - Peng Yu Huang
- Fujian Provincial Reproductive Medicine Center, Fujian Maternity and Children's Hospital Affiliated to Fujian Medical University, Fuzhou 350001, Fujian, China
| | - Jia Ming Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepatopancreatobiliary Surgery I, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Xian Feng Wang
- National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Department of Hepatology, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, Guangdong, China
| | - Qi Yuan Tang
- National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Department of Hepatology, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, Guangdong, China
| | - Xuan Zhou
- National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Department of Hepatology, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, Guangdong, China
| | - Wen Jie Xian
- National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Department of Hepatology, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, Guangdong, China
| | - Rui Kun Chen
- National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Department of Hepatology, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, Guangdong, China
| | - Xuan Li
- National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Department of Hepatology, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, Guangdong, China
| | - Zhi Yu Li
- National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Department of Hepatology, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, Guangdong, China
| | - Li Qun Liao
- National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Department of Hepatology, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, Guangdong, China
| | - Qing He
- National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Department of Hepatology, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, Guangdong, China
| | - Lei Liu
- National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Department of Hepatology, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, Guangdong, China
| |
Collapse
|
134
|
Zhang F, Yu Y, Wu S, Mahmood A, Yu J, Min Y. Reducing Pangolin Demand by Understanding Motivations for Human Consumption in Guangdong, China. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.574161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pangolins are some of the most trafficked mammals in the world. China is a major destination country for illegal wildlife trade and Guangdong Province is one of the areas of high domestic wildlife consumption. A willingness to consume lies at the root of the illegal wildlife trade. To understand the ideological roots of pangolin consumption, and to propose solutions, we conducted a consumption survey in 21 prefecture-level cities in Guangdong and have collected 1,957 valid questionnaires. In these questionnaires, 108 respondents (5.52%) who had consumed pangolin-related products, scales had been consumed by 61 respondents (3.12%), 58 respondents (2.96%) had consumed meat. We found that scale consumption was primarily motivated by disease treatment (80.43%). The main reason for meat consumption was accidental (44.83%), but among those who intentionally ate pangolin were motivated by curiosity (22.41%) or “showing off” (8.62%). Simultaneously, the respondents' future consumption willingness for medicinal purposes was more difficult to change than its use for other purposes. What's more, the public's insufficient understanding of the status of pangolins in China and weak legal awareness were potential reasons for pangolin consumption. In addition to classifying pangolins as Category I state-protected animals in China and strengthening penalties and enforcement, we recommend creating public awareness of the risk of zoonotic diseases, advocating for the use of alternative medicines in disease treatment and removing scales from ingredients in patented medicines, which will all act to reduce the demand for pangolins. We expect these actions to change public consumption behaviors and their collective understanding of pangolins, which improve pangolin protection efforts around the globe.
Collapse
|
135
|
Banerjee A, Doxey AC, Mossman K, Irving AT. Unraveling the Zoonotic Origin and Transmission of SARS-CoV-2. Trends Ecol Evol 2020; 36:180-184. [PMID: 33384197 PMCID: PMC7733689 DOI: 10.1016/j.tree.2020.12.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/26/2020] [Accepted: 12/03/2020] [Indexed: 11/25/2022]
Abstract
The origin and zoonotic transmission route of SARS-CoV-2 remain speculative. We discuss scenarios for the zoonotic emergence of SARS-CoV-2, and also explore the missing evidence and ecological considerations that are necessary to confidently identify the origin and transmission route of SARS-CoV-2 and to prevent future pandemics of zoonotic viruses.
Collapse
Affiliation(s)
- Arinjay Banerjee
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada; Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| | - Andrew C Doxey
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Karen Mossman
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Aaron T Irving
- Zhejiang University-University of Edinburgh Institute, Haining, Zhejiang 314400, China; Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310027, China.
| |
Collapse
|
136
|
Zhu Z, Meng K, Meng G. Genomic recombination events may reveal the evolution of coronavirus and the origin of SARS-CoV-2. Sci Rep 2020; 10:21617. [PMID: 33303849 PMCID: PMC7728743 DOI: 10.1038/s41598-020-78703-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 11/27/2020] [Indexed: 12/14/2022] Open
Abstract
To trace the evolution of coronaviruses and reveal the possible origin of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes the coronavirus disease 2019 (COVID-19), we collected and thoroughly analyzed 29,452 publicly available coronavirus genomes, including 26,312 genomes of SARS-CoV-2 strains. We observed coronavirus recombination events among different hosts including 3 independent recombination events with statistical significance between some isolates from humans, bats and pangolins. Consistent with previous records, we also detected putative recombination between strains similar or related to Bat-CoV-RaTG13 and Pangolin-CoV-2019. The putative recombination region is located inside the receptor-binding domain (RBD) of the spike glycoprotein (S protein), which may represent the origin of SARS-CoV-2. Population genetic analyses provide estimates suggesting that the putative introduced DNA within the RBD is undergoing directional evolution. This may result in the adaptation of the virus to hosts. Unsurprisingly, we found that the putative recombination region in S protein was highly diverse among strains from bats. Bats harbor numerous coronavirus subclades that frequently participate in recombination events with human coronavirus. Therefore, bats may provide a pool of genetic diversity for the origin of SARS-CoV-2.
Collapse
Affiliation(s)
- Zhenglin Zhu
- School of Life Sciences, Chongqing University, No. 55 Daxuecheng South Road, Shapingba, Chongqing, 401331, China.
| | - Kaiwen Meng
- College of Veterinary Medicine, China Agricultural University, Beijing, 100094, China
| | - Geng Meng
- College of Veterinary Medicine, China Agricultural University, Beijing, 100094, China.
| |
Collapse
|
137
|
dos Anjos F, Simões JLB, Assmann CE, Carvalho FB, Bagatini MD. Potential Therapeutic Role of Purinergic Receptors in Cardiovascular Disease Mediated by SARS-CoV-2. J Immunol Res 2020; 2020:8632048. [PMID: 33299899 PMCID: PMC7709498 DOI: 10.1155/2020/8632048] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/06/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023] Open
Abstract
Novel coronavirus disease 2019 (COVID-19) causes pulmonary and cardiovascular disorders and has become a worldwide emergency. Myocardial injury can be caused by direct or indirect damage, particularly mediated by a cytokine storm, a disordered immune response that can cause myocarditis, abnormal coagulation, arrhythmia, acute coronary syndrome, and myocardial infarction. The present review focuses on the mechanisms of this viral infection, cardiac biomarkers, consequences, and the possible therapeutic role of purinergic and adenosinergic signalling systems. In particular, we focus on the interaction of the extracellular nucleotide adenosine triphosphate (ATP) with its receptors P2X1, P2X4, P2X7, P2Y1, and P2Y2 and of adenosine (Ado) with A2A and A3 receptors, as well as their roles in host immune responses. We suggest that receptors of purinergic signalling could be ideal candidates for pharmacological targeting to protect against myocardial injury caused by a cytokine storm in COVID-19, in order to reduce systemic inflammatory damage to cells and tissues, preventing the progression of the disease by modulating the immune response and improving patient quality of life.
Collapse
Affiliation(s)
- Fernanda dos Anjos
- Medical School, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | | | - Charles Elias Assmann
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | | | - Margarete Dulce Bagatini
- Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| |
Collapse
|
138
|
Zhao X, Ding Y, Du J, Fan Y. 2020 update on human coronaviruses: One health, one world. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2020; 8:100043. [PMID: 33521622 PMCID: PMC7836940 DOI: 10.1016/j.medntd.2020.100043] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/04/2020] [Accepted: 08/19/2020] [Indexed: 01/18/2023] Open
Abstract
Since human coronavirus (HCoVs) was first described in the 1960s, seven strains of respiratory human coronaviruses have emerged and caused human infections. After the emergence of severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV), a pneumonia outbreak of coronavirus disease 2019 (COVID-19) caused by a novel coronavirus (SARS-CoV-2) has represented a pandemic threat to global public health in the 21st century. Without effectively prophylactic and therapeutic strategies including vaccines and antiviral drugs, these three coronaviruses have caused severe respiratory syndrome and high case-fatality rates around the world. In this review, we detail the emergence event, origin and reservoirs of all HCoVs, compare the differences with regard to structure and receptor usage, and summarize therapeutic strategies for COVID-19 that cause severe pneumonia and global pandemic.
Collapse
Affiliation(s)
- Xinbin Zhao
- Key Laboratory for Biomechanics and Mechanobiology of Chinese Education Ministry, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Yuecheng Ding
- School of Public Health, Peking University, Beijing, 100871, China
| | - Jing Du
- Key Laboratory for Biomechanics and Mechanobiology of Chinese Education Ministry, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, 100191, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Chinese Education Ministry, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, 100191, China
- Key Laboratory of Human Motion Analysis and Rehabilitation Technology of the Ministry of Civil Affairs, National Research Center for Rehabilitation Technical Aids, Beijing, 100176, China
| |
Collapse
|
139
|
Rastogi M, Pandey N, Shukla A, Singh SK. SARS coronavirus 2: from genome to infectome. Respir Res 2020; 21:318. [PMID: 33261606 PMCID: PMC7706175 DOI: 10.1186/s12931-020-01581-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 11/22/2020] [Indexed: 02/06/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) belongs to the group of Betacoronaviruses. The SARS-CoV-2 is closely related to SARS-CoV-1 and probably originated either from bats or pangolins. SARS-CoV-2 is an etiological agent of COVID-19, causing mild to severe respiratory disease which escalates to acute respiratory distress syndrome (ARDS) or multi-organ failure. The virus was first reported from the animal market in Hunan, Hubei province of China in the month of December, 2019, and was rapidly transmitted from animal to human and human-to-human. The human-to-human transmission can occur directly or via droplets generated during coughing and sneezing. Globally, around 53.9 million cases of COVID-19 have been registered with 1.31 million confirmed deaths. The people > 60 years, persons suffering from comorbid conditions and immunocompromised individuals are more susceptible to COVID-19 infection. The virus primarily targets the upper and the lower respiratory tract and quickly disseminates to other organs. SARS-CoV-2 dysregulates immune signaling pathways which generate cytokine storm and leads to the acute respiratory distress syndrome and other multisystemic disorders.
Collapse
Affiliation(s)
- Meghana Rastogi
- Molecular Biology Unit, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Neha Pandey
- Molecular Biology Unit, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Astha Shukla
- Molecular Biology Unit, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Sunit K Singh
- Molecular Biology Unit, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
140
|
Barbuddhe SB, Rawool DB, Gaonkar PP, Vergis J, Dhama K, Malik SS. Global scenario, public health concerns and mitigation strategies to counter current ongoing SARS-CoV-2 / COVID-19 pandemic. Hum Vaccin Immunother 2020; 16:3023-3033. [PMID: 33121328 PMCID: PMC7605515 DOI: 10.1080/21645515.2020.1810496] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/03/2020] [Accepted: 08/09/2020] [Indexed: 12/15/2022] Open
Abstract
Severe acute respiratory syndrome Coronavirus- 2 (SARS-CoV-2), the etiological agent of the novel coronavirus disease (COVID-19), has posed a great public health threat to the global community as a pandemic. The origin of the virus has been linked to animals, through a yet-to-be-identified intermediate host. The disease is transmitted to humans mainly through inhalation or contact with infected droplets. The variable clinical presentation of COVID-19 includes fever, cough, sore throat, breathlessness, fatigue and malaise; however, cutaneous, ocular, neurological, and gastrointestinal manifestations have also been reported. There is an urgent need to strengthen One Health surveillance, intervention, and management strategies to understand the ecology of coronaviruses and to prevent epidemics in the future. Global attention toward the development of treatments, immunotherapies, vaccines, and control options to combat the COVID-19 pandemic has been on an increasing trend. Here, we review the current epidemiological status, public health concerns, and mitigation strategies for COVID-19.
Collapse
Affiliation(s)
| | | | | | - Jess Vergis
- Department of Veterinary Public Health, College of Veterinary and Animal Sciences, Wayanad, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR- Indian Veterinary Research Institute, Izatnagar, India
| | - Satyaveer Singh Malik
- Division of Veterinary Public Health, ICAR- Indian Veterinary Research Institute, Izatnagar, India
| |
Collapse
|
141
|
Jakhmola S, Indari O, Kashyap D, Varshney N, Rani A, Sonkar C, Baral B, Chatterjee S, Das A, Kumar R, Jha HC. Recent updates on COVID-19: A holistic review. Heliyon 2020; 6:e05706. [PMID: 33324769 PMCID: PMC7729279 DOI: 10.1016/j.heliyon.2020.e05706] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/21/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023] Open
Abstract
Coronaviruses are large positive-sense RNA viruses with spike-like peplomers on their surface. The Coronaviridae family's strains infect different animals and are popularly associated with several outbreaks, namely SARS and MERS epidemic. COVID-19 is one such recent outbreak caused by SARS-CoV-2 identified first in Wuhan, China. COVID-19 was declared a pandemic by WHO on 11th March 2020. Our review provides information covering various facets of the disease starting from its origin, transmission, mutations in the virus to pathophysiological changes in the host upon infection followed by diagnostics and possible therapeutics available to tackle the situation. We have highlighted the zoonotic origin of SARS-CoV-2, known to share 96.2% nucleotide similarity with bat coronavirus. Notably, several mutations in SARS-CoV-2 spike protein, nucleocapsid protein, PLpro, and ORF3a are reported across the globe. These mutations could alter the usual receptor binding function, fusion process with the host cell, virus replication, and the virus's assembly. Therefore, studying these mutations could help understand the virus's virulence properties and design suitable therapeutics. Moreover, the aggravated immune response to COVID-19 can be fatal. Hypertension, diabetes, and cardiovascular diseases are comorbidities substantially associated with SARS-CoV-2 infection. The review article discusses these aspects, stating the importance of various comorbidities in disease outcomes. Furthermore, medications' unavailability compels the clinicians to opt for atypical drugs like remdesivir, chloroquine, etc. The current diagnostics of COVID-19 include qRT-PCR, CT scan, serological tests, etc. We have described these aspects to expose the information to the scientific community and to accelerate the research.
Collapse
Affiliation(s)
- Shweta Jakhmola
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, India
| | - Omkar Indari
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, India
| | - Dharmendra Kashyap
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, India
| | - Nidhi Varshney
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, India
| | - Annu Rani
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, India
| | - Charu Sonkar
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, India
| | - Budhadev Baral
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, India
| | - Sayantani Chatterjee
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, India
| | - Ayan Das
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, India
| | - Rajesh Kumar
- Discipline of Physics, Indian Institute of Technology, Indore, India
| | - Hem Chandra Jha
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, India
| |
Collapse
|
142
|
Han M, Zha Y, Chong H, Zhong C, Ning K. Utilizing microbiome approaches to assist source tracking, treatment and prevention of COVID-19: Review and assessment. Comput Struct Biotechnol J 2020; 18:3615-3622. [PMID: 33304459 PMCID: PMC7708852 DOI: 10.1016/j.csbj.2020.11.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/14/2020] [Accepted: 11/16/2020] [Indexed: 12/15/2022] Open
Abstract
COVID-19 has been one of the most serious infectious diseases since the end of 2019. However, the original source, as well as the treatment and prevention of causative agent of COVID-19 (namely SARS-CoV-2) are still unclear nearly a year after its publicly report. The microbiome approach, which has emerged in recent years focusing on human-related microbes, has become one of the promising avenues for source tracking, treatment, and prevention of a variety of infectious diseases including COVID-19. In this review, we summarized the microbiome approach as a supplementary approach for source tracking, treatment, and prevention of SARS-CoV-2 infection. We first provided background information on SARS-CoV-2 and microbiome approaches. Then we illustrated current strategies of microbiome methods to assist three aspects of COVID-19 research, namely source tracking, treatment, and prevention, respectively. Finally, we summarized the microbiome approaches and provided perspectives for future studies on faster and more effective SARS-CoV-2 epidemiology and pathogenesis based on microbiome approaches.
Collapse
Affiliation(s)
- Maozhen Han
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- School of Life Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| | - Yuguo Zha
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hui Chong
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chaofang Zhong
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Kang Ning
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
143
|
Garduño-Soto M, Choreño-Parra JA, Cazarin-Barrientos J. Dermatological aspects of SARS-CoV-2 infection: mechanisms and manifestations. Arch Dermatol Res 2020; 313:611-622. [PMID: 33159236 PMCID: PMC7646711 DOI: 10.1007/s00403-020-02156-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/11/2020] [Accepted: 10/17/2020] [Indexed: 02/08/2023]
Abstract
The human infection caused by the novel SARS-CoV-2 is a public health emergency of international concern. Although the disease associated to this virus, named COVID-19, mainly affects the lungs, the infection can spread to extrapulmonary tissues, causing multiorgan involvement in severely ill patients. The broad infective capacity of SARS-CoV-2 is related to the pattern of expression of the viral entry factors ACE2 and TMPRSS2 in human tissues. As such, the respiratory and gastrointestinal tracts are at high risk for SARS-CoV-2 infection due to their high expression of ACE2 and TMPRSS2, which explains the clinical phenotype described in the vast majority of infected patients that includes pneumonia and diarrhea. Recently, preoccupation about the potential of the virus to infect the skin has been raised by dermatologists due to the increasing observations of cutaneous manifestations in patients with SARS-CoV-2 infection. Although there is little evidence of the expression of ACE2 and TMPRSS2 in the normal skin, the dermatological findings observed among COVID-19 patients warrants further investigation to delineate the mechanisms of skin affection after SARS-CoV-2 infection. Here, we provide a summary of the dermatological findings observed among patients with laboratory-confirmed SARS-CoV-2 infection based on recent reports. In addition, we analyze possible mechanisms of skin injury in COVID-19 patients and discuss about the risk of individuals with chronic skin conditions for SARS-CoV-2 infection. The present review constitutes a useful informative tool to improve our understanding of the pathophysiological mechanisms of COVID-19 and the possible implications of the current pandemic in dermatology.
Collapse
Affiliation(s)
- Myriam Garduño-Soto
- Department of Dermatology, Hospital General de México "Dr. Eduardo Liceaga", Dr. Balmis 148, Doctores, Cuauhtémoc, 06720, Mexico City, Mexico.
| | | | - Jorge Cazarin-Barrientos
- Department of Dermatology, Hospital General de México "Dr. Eduardo Liceaga", Dr. Balmis 148, Doctores, Cuauhtémoc, 06720, Mexico City, Mexico
| |
Collapse
|
144
|
Johansen MD, Irving A, Montagutelli X, Tate MD, Rudloff I, Nold MF, Hansbro NG, Kim RY, Donovan C, Liu G, Faiz A, Short KR, Lyons JG, McCaughan GW, Gorrell MD, Cole A, Moreno C, Couteur D, Hesselson D, Triccas J, Neely GG, Gamble JR, Simpson SJ, Saunders BM, Oliver BG, Britton WJ, Wark PA, Nold-Petry CA, Hansbro PM. Animal and translational models of SARS-CoV-2 infection and COVID-19. Mucosal Immunol 2020; 13:877-891. [PMID: 32820248 PMCID: PMC7439637 DOI: 10.1038/s41385-020-00340-z] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 02/06/2023]
Abstract
COVID-19 is causing a major once-in-a-century global pandemic. The scientific and clinical community is in a race to define and develop effective preventions and treatments. The major features of disease are described but clinical trials have been hampered by competing interests, small scale, lack of defined patient cohorts and defined readouts. What is needed now is head-to-head comparison of existing drugs, testing of safety including in the background of predisposing chronic diseases, and the development of new and targeted preventions and treatments. This is most efficiently achieved using representative animal models of primary infection including in the background of chronic disease with validation of findings in primary human cells and tissues. We explore and discuss the diverse animal, cell and tissue models that are being used and developed and collectively recapitulate many critical aspects of disease manifestation in humans to develop and test new preventions and treatments.
Collapse
Affiliation(s)
- M D Johansen
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, Sydney, Australia
| | - A Irving
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, ZJU International Campus, Haining, China
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - X Montagutelli
- Department of Genomes and Genetics, Institut Pasteur, Paris, France
| | - M D Tate
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - I Rudloff
- Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia
- Department of Paediatrics, Monash University, Clayton, VIC, 3168, Australia
| | - M F Nold
- Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia
- Monash Newborn, Monash Children's Hospital, Clayton, VIC, Australia
| | - N G Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, Sydney, Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, NSW, Australia
| | - R Y Kim
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, Sydney, Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, NSW, Australia
| | - C Donovan
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, Sydney, Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, NSW, Australia
| | - G Liu
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, Sydney, Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, NSW, Australia
| | - A Faiz
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, Sydney, Australia
| | - K R Short
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Australia
| | - J G Lyons
- Centenary Institute and Dermatology, The University of Sydney and Cancer Services, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - G W McCaughan
- Centenary Institute and Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - M D Gorrell
- Centenary Institute and Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - A Cole
- Centenary Institute and Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - C Moreno
- Dr. John and Anne Chong Lab for Functional Genomics, Charles Perkins Centre, Centenary Institute, and School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - D Couteur
- Charles Perkins Centre and School of Life and Environmental Sciences, University of Sydney, and Faculty of Medicine and Health, Concord Clinical School, ANZAC Research Institute and Centre for Education and Research on Ageing, Sydney, Australia
| | - D Hesselson
- Centenary Institute and Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - J Triccas
- Discipline of Infectious Diseases and Immunology, Central Clinical School, Faculty of Medicine and Health and the Charles Perkins Centre, The University of Sydney, Camperdown, Sydney, Australia
| | - G G Neely
- Dr. John and Anne Chong Lab for Functional Genomics, Charles Perkins Centre, Centenary Institute, and School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - J R Gamble
- Centenary Institute and Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - S J Simpson
- Charles Perkins Centre and School of Life and Environmental Sciences, University of Sydney, and Faculty of Medicine and Health, Concord Clinical School, ANZAC Research Institute and Centre for Education and Research on Ageing, Sydney, Australia
| | - B M Saunders
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, Sydney, Australia
| | - B G Oliver
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, Sydney, Australia
- Woolcock Institute of Medical Research, Sydney, Australia
| | - W J Britton
- Centenary Institute, The University of Sydney and Department of Clinical Immunology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - P A Wark
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, NSW, Australia
| | - C A Nold-Petry
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
- Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia
| | - P M Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, Sydney, Australia.
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, NSW, Australia.
| |
Collapse
|
145
|
Roy C, Mandal SM, Mondal SK, Mukherjee S, Mapder T, Ghosh W, Chakraborty R. Trends of mutation accumulation across global SARS-CoV-2 genomes: Implications for the evolution of the novel coronavirus. Genomics 2020; 112:5331-5342. [PMID: 33161087 PMCID: PMC7644180 DOI: 10.1016/j.ygeno.2020.11.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/27/2020] [Accepted: 11/02/2020] [Indexed: 12/22/2022]
Abstract
To understand SARS-CoV-2 microevolution, this study explored the genome-wide frequency, gene-wise distribution, and molecular nature of all point-mutations detected across its 71,703 RNA-genomes deposited in GISAID till 21 August 2020. Globally, nsp1/nsp2 and orf7a/orf3a were the most mutation-ridden non-structural and structural genes respectively. Phylogeny of 4618 spatiotemporally-representative genomes revealed that entities belonging to the early lineages are mostly spread over Asian countries, including India, whereas the recently-derived lineages are more globally distributed. Of the total 20,163 instances of polymorphism detected across global genomes, 12,594 and 7569 involved transitions and transversions, predominated by cytidine-to-uridine and guanosine-to-uridine conversions, respectively. Positive selection of nonsynonymous mutations (dN/dS >1) in most of the structural, but not the non-structural, genes indicated that SARS-CoV-2 has already harmonized its replication/transcription machineries with the host metabolism, while it is still redefining virulence/transmissibility strategies at the molecular level. Mechanistic bases and evolutionary/pathogenicity-related implications are discussed for the predominant mutation-types.
Collapse
Affiliation(s)
- Chayan Roy
- College of Veterinary Medicine, Western University of Health Sciences, 309 East Second Street, Pomona, CA 91766, USA
| | - Santi M Mandal
- Central Research Facility, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Suresh K Mondal
- Central Research Facility, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Shriparna Mukherjee
- Department of Botany, Prasannadeb Women's College, Jalpaiguri, West Bengal, India
| | - Tarunendu Mapder
- Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Wriddhiman Ghosh
- Department of Microbiology, Bose Institute, P-1/12 CIT Scheme VII M, Kolkata 700054, West Bengal, India.
| | - Ranadhir Chakraborty
- Department of Biotechnology, University of North Bengal, Raja Rammohanpur, Darjeeling 734013, West Bengal, India.
| |
Collapse
|
146
|
Boni MF, Lemey P, Jiang X, Lam TTY, Perry BW, Castoe TA, Rambaut A, Robertson DL. Evolutionary origins of the SARS-CoV-2 sarbecovirus lineage responsible for the COVID-19 pandemic. Nat Microbiol 2020; 5:1408-1417. [PMID: 32724171 DOI: 10.1101/2020.03.30.015008] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/10/2020] [Indexed: 05/22/2023]
Abstract
There are outstanding evolutionary questions on the recent emergence of human coronavirus SARS-CoV-2 including the role of reservoir species, the role of recombination and its time of divergence from animal viruses. We find that the sarbecoviruses-the viral subgenus containing SARS-CoV and SARS-CoV-2-undergo frequent recombination and exhibit spatially structured genetic diversity on a regional scale in China. SARS-CoV-2 itself is not a recombinant of any sarbecoviruses detected to date, and its receptor-binding motif, important for specificity to human ACE2 receptors, appears to be an ancestral trait shared with bat viruses and not one acquired recently via recombination. To employ phylogenetic dating methods, recombinant regions of a 68-genome sarbecovirus alignment were removed with three independent methods. Bayesian evolutionary rate and divergence date estimates were shown to be consistent for these three approaches and for two different prior specifications of evolutionary rates based on HCoV-OC43 and MERS-CoV. Divergence dates between SARS-CoV-2 and the bat sarbecovirus reservoir were estimated as 1948 (95% highest posterior density (HPD): 1879-1999), 1969 (95% HPD: 1930-2000) and 1982 (95% HPD: 1948-2009), indicating that the lineage giving rise to SARS-CoV-2 has been circulating unnoticed in bats for decades.
Collapse
Affiliation(s)
- Maciej F Boni
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA, USA.
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega Institute, Leuven, Belgium.
| | - Xiaowei Jiang
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Tommy Tsan-Yuk Lam
- State Key Laboratory of Emerging Infectious Diseases, School of Public Health, The University of Hong Kong, Hong Kong SAR, China
| | - Blair W Perry
- Department of Biology, University of Texas Arlington, Arlington, TX, USA
| | - Todd A Castoe
- Department of Biology, University of Texas Arlington, Arlington, TX, USA
| | - Andrew Rambaut
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK.
| | | |
Collapse
|
147
|
de Morais HA, dos Santos AP, do Nascimento NC, Kmetiuk LB, Barbosa DS, Brandão PE, Guimarães AMS, Pettan-Brewer C, Biondo AW. Natural Infection by SARS-CoV-2 in Companion Animals: A Review of Case Reports and Current Evidence of Their Role in the Epidemiology of COVID-19. Front Vet Sci 2020; 7:591216. [PMID: 33195627 PMCID: PMC7652926 DOI: 10.3389/fvets.2020.591216] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/21/2020] [Indexed: 12/20/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), responsible for the coronavirus disease 2019 (COVID-19), is the causative infectious agent of the current pandemic. As researchers and health professionals are still learning the capabilities of this virus, public health concerns arise regarding the zoonotic potential of SARS-CoV-2. With millions of people detected with SARS-CoV-2 worldwide, reports of companion animals possibly infected with the virus started to emerge. Therefore, our aim is to review reported cases of animals naturally infected with SARS-CoV-2, particularly companion pets, shedding light on the role of these animals in the epidemiology of COVID-19.
Collapse
Affiliation(s)
| | - Andrea Pires dos Santos
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Naila Cannes do Nascimento
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Louise Bach Kmetiuk
- Graduate College of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - David Soeiro Barbosa
- Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Paulo Eduardo Brandão
- Department of Preventive Veterinary Medicine and Animal Health, University of São Paulo, São Paulo, Brazil
| | - Ana Marcia Sá Guimarães
- Laboratory of Applied Research in Mycobacteria, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Christina Pettan-Brewer
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
| | | |
Collapse
|
148
|
Ul-Rahman A, Shabbir MAB, Aziz MW, Yaqub S, Mehmood A, Raza MA, Shabbir MZ. A comparative phylogenomic analysis of SARS-CoV-2 strains reported from non-human mammalian species and environmental samples. Mol Biol Rep 2020; 47:9207-9217. [PMID: 33104993 PMCID: PMC7586201 DOI: 10.1007/s11033-020-05879-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 09/29/2020] [Indexed: 12/01/2022]
Abstract
Coronaviruses (CoVs) infect a wide range of domestic and wild mammals. These viruses have a potential and tendency to cross-species barriers and infect humans. Novel human coronavirus 2019-nCoV (hCoV-19) emerged from Wuhan, China, and has caused a global pandemic. Genomic features of SARS-CoV-2 may attribute inter-species transmission and adaptation to a novel host, and therefore is imperative to explicate the evolutionary dynamics of the viral genome and its propensity for differential host selection. We conducted an in silico analysis of all the coding gene sequences of SARS-CoV-2 strains (n = 39) originating from a range of non-human mammalian species, including pangolin, bat, dog, cat, tiger, mink, mouse, and the environmental samples such as wastewater, air and surface samples from the door handle and seafood market. Compared to the reference SARS-CoV-2 strain (MN908947; Wuhan-Hu-1), phylogenetic and comparative residue analysis revealed the circulation of three variants, including hCoV-19 virus from humans and two hCoV-19-related precursors from bats and pangolins. A lack of obvious differences as well as a maximum genetic homology among dog-, cat-, tiger-, mink-, mouse-, bat- and pangolin-derived SARS-CoV-2 sequences suggested a likely evolution of these strains from a common ancestor. Several residue substitutions were observed in the receptor-binding domain (RBD) of the spike protein, concluding a promiscuous nature of the virus for host species where genomic alternations may be required for the adaptation to novel host/s. However, such speculation needs in vitro investigations to unleash the influence of substitutions towards species-jump and disease pathogenesis.
Collapse
Affiliation(s)
- Aziz Ul-Rahman
- Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, 66000, Pakistan. .,Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, 54600, Pakistan. .,Quality Operations Laboratory, University of Veterinary and Animal Sciences, Outfall road, Lahore, 54600, Pakistan.
| | | | - Muhammad Waqar Aziz
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, 54600, Pakistan
| | - Saima Yaqub
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, 54600, Pakistan
| | - Asif Mehmood
- Veterinary Research Institute, Zarar Shaheed road, Lahore, 54000, Pakistan
| | - Muhammad Asif Raza
- Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, 66000, Pakistan
| | - Muhammad Zubair Shabbir
- Quality Operations Laboratory, University of Veterinary and Animal Sciences, Outfall road, Lahore, 54600, Pakistan
| |
Collapse
|
149
|
Berrio A, Gartner V, Wray GA. Positive selection within the genomes of SARS-CoV-2 and other Coronaviruses independent of impact on protein function. PeerJ 2020; 8:e10234. [PMID: 33088633 PMCID: PMC7571416 DOI: 10.7717/peerj.10234] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 10/04/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The emergence of a novel coronavirus (SARS-CoV-2) associated with severe acute respiratory disease (COVID-19) has prompted efforts to understand the genetic basis for its unique characteristics and its jump from non-primate hosts to humans. Tests for positive selection can identify apparently nonrandom patterns of mutation accumulation within genomes, highlighting regions where molecular function may have changed during the origin of a species. Several recent studies of the SARS-CoV-2 genome have identified signals of conservation and positive selection within the gene encoding Spike protein based on the ratio of synonymous to nonsynonymous substitution. Such tests cannot, however, detect changes in the function of RNA molecules. METHODS Here we apply a test for branch-specific oversubstitution of mutations within narrow windows of the genome without reference to the genetic code. RESULTS We recapitulate the finding that the gene encoding Spike protein has been a target of both purifying and positive selection. In addition, we find other likely targets of positive selection within the genome of SARS-CoV-2, specifically within the genes encoding Nsp4 and Nsp16. Homology-directed modeling indicates no change in either Nsp4 or Nsp16 protein structure relative to the most recent common ancestor. These SARS-CoV-2-specific mutations may affect molecular processes mediated by the positive or negative RNA molecules, including transcription, translation, RNA stability, and evasion of the host innate immune system. Our results highlight the importance of considering mutations in viral genomes not only from the perspective of their impact on protein structure, but also how they may impact other molecular processes critical to the viral life cycle.
Collapse
Affiliation(s)
| | - Valerie Gartner
- Department of Biology, Duke University, Durham, NC, USA
- University Program in Genetics and Genomics, Duke University, Durham, NC, USA
| | - Gregory A. Wray
- Department of Biology, Duke University, Durham, NC, USA
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| |
Collapse
|
150
|
Ullah MA, Araf Y, Sarkar B, Moin AT, Reshad RAI, Rahman MDH. Pathogenesis, Diagnosis and Possible Therapeutic Options for COVID-19. JOURNAL OF CLINICAL AND EXPERIMENTAL INVESTIGATIONS 2020. [DOI: 10.29333/jcei/8564] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|