101
|
Konoshenko M, Sagaradze G, Orlova E, Shtam T, Proskura K, Kamyshinsky R, Yunusova N, Alexandrova A, Efimenko A, Tamkovich S. Total Blood Exosomes in Breast Cancer: Potential Role in Crucial Steps of Tumorigenesis. Int J Mol Sci 2020; 21:E7341. [PMID: 33027894 PMCID: PMC7582945 DOI: 10.3390/ijms21197341] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/19/2020] [Accepted: 09/30/2020] [Indexed: 12/15/2022] Open
Abstract
Exosomes are crucial players in cell-to-cell communication and are involved in tumorigenesis. There are two fractions of blood circulating exosomes: free and cell-surface-associated. Here, we compared the effect of total blood exosomes (contain plasma exosomes and blood cell-surface-associated exosomes) and plasma exosomes from breast cancer patients (BCPs, n = 43) and healthy females (HFs, n = 35) on crucial steps of tumor progression. Exosomes were isolated by ultrafiltration, followed by ultracentrifugation, and characterized by cryo-electron microscopy (cryo-EM), nanoparticle tracking analysis, and flow cytometry. Cryo-EM revealed a wider spectrum of exosome morphology with lipid bilayers and vesicular internal structures in the HF total blood in comparison with plasma. No differences in the morphology of both exosomes fractions were detected in BCP blood. The plasma exosomes and total blood exosomes of BCPs had different expression levels of tumor-associated miR-92a and miR-25-3p, induced angiogenesis and epithelial-to-mesenchymal transition (EMT), and increased the number of migrating pseudo-normal breast cells and the total migration path length of cancer cells. The multidirectional effects of HF total blood exosomes on tumor dissemination were revealed; they suppress the angiogenesis and total migration path length of MCF10A, but stimulate EMT and increase the number of migrating MCF10A and the total path length of SKBR3 cells. In addition, HF plasma exosomes enhance the metastasis-promoting properties of SKBR3 cells and stimulate angiogenesis. Both cell-free and blood cell-surface-associated exosomes are involved in the crucial stages of carcinogenesis: the initiation of EMT and the stimulation of proliferation, cell migration, and angiogenesis. Thus, for the estimation of the diagnostic/prognostic significance of circulating exosomes in the blood of cancer patients more correctly, the total blood exosomes, which consist of plasma exosomes and blood cell-surface-associated exosomes should be used.
Collapse
Affiliation(s)
- Maria Konoshenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.K.); (K.P.)
| | - Georgy Sagaradze
- Medical Research and Education Center, Lomonosov Moscow State University, 119991 Moscow, Russia; (G.S.); (A.E.)
| | - Evgeniya Orlova
- N.N. Blokhin Cancer Research Center” of the Ministry of Health of the Russian Federation, 115478 Moscow, Russia; (E.O.); (A.A.)
| | - Tatiana Shtam
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Center “Kurchatov Institute”, 188300 Gatchina, Russia;
- National Research Center “Kurchatov Institute”, 123182 Moscow, Russia;
| | - Ksenia Proskura
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.K.); (K.P.)
- Novosibirsk Regional Clinical Oncological Dispensary, 630108 Novosibirsk, Russia
| | - Roman Kamyshinsky
- National Research Center “Kurchatov Institute”, 123182 Moscow, Russia;
- Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Moscow region, Russia
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre, “Crystallography and Photonics” of Russian Academy of Sciences, 119333 Moscow, Russia
| | - Natalia Yunusova
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Science, 634050 Tomsk, Russia;
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and Biology, Siberian State Medical University, 634050 Tomsk, Russia
| | - Antonina Alexandrova
- N.N. Blokhin Cancer Research Center” of the Ministry of Health of the Russian Federation, 115478 Moscow, Russia; (E.O.); (A.A.)
| | - Anastasia Efimenko
- Medical Research and Education Center, Lomonosov Moscow State University, 119991 Moscow, Russia; (G.S.); (A.E.)
| | - Svetlana Tamkovich
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.K.); (K.P.)
- Department of Molecular Biology and Biotechnology, Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
102
|
Tamessar CT, Trigg NA, Nixon B, Skerrett-Byrne DA, Sharkey DJ, Robertson SA, Bromfield EG, Schjenken JE. Roles of male reproductive tract extracellular vesicles in reproduction. Am J Reprod Immunol 2020; 85:e13338. [PMID: 32885533 DOI: 10.1111/aji.13338] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/04/2020] [Accepted: 08/27/2020] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs) are secreted cell-derived membrane structures present in all organisms across animal, bacterial, and plant phyla. These vesicles play important roles in cell-cell communication in many processes integral to health and disease. Recent studies demonstrate that EVs and their cargo have influential and conserved roles in male reproduction. While EVs have been isolated from virtually all specialized tissues comprising the male reproductive tract, they are best characterized in the epididymis (epididymosomes) and seminal fluid (seminal fluid extracellular vesicles or prostasomes). Broadly speaking, EVs promote reproductive success through supporting sperm development and function, as well as influencing the physiology of female reproductive tract cells after mating. In this review, we present current knowledge on the composition and function of male reproductive tract EV populations in both normal physiology and pathology, and argue that their functions identify them as critical regulators of fertility and fecundity.
Collapse
Affiliation(s)
- Cottrell T Tamessar
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW, Australia.,Hunter Medical Research Institute, Pregnancy and Reproduction Program, New Lambton Heights, NSW, Australia
| | - Natalie A Trigg
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW, Australia.,Hunter Medical Research Institute, Pregnancy and Reproduction Program, New Lambton Heights, NSW, Australia
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW, Australia.,Hunter Medical Research Institute, Pregnancy and Reproduction Program, New Lambton Heights, NSW, Australia
| | - David A Skerrett-Byrne
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW, Australia.,Hunter Medical Research Institute, Pregnancy and Reproduction Program, New Lambton Heights, NSW, Australia
| | - David J Sharkey
- The Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Sarah A Robertson
- The Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Elizabeth G Bromfield
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW, Australia.,Hunter Medical Research Institute, Pregnancy and Reproduction Program, New Lambton Heights, NSW, Australia.,Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - John E Schjenken
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW, Australia.,Hunter Medical Research Institute, Pregnancy and Reproduction Program, New Lambton Heights, NSW, Australia.,The Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
103
|
Vilanova-Perez T, Jones C, Balint S, Dragovic R, L Dustin M, Yeste M, Coward K. Exosomes derived from HEK293T cells interact in an efficient and noninvasive manner with mammalian sperm in vitro. Nanomedicine (Lond) 2020; 15:1965-1980. [PMID: 32794431 DOI: 10.2217/nnm-2020-0056] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim: To investigate exosomes as a noninvasive delivery tool for mammalian sperm. Materials & Methods: Exosomes were isolated from HEK293T cells and co-incubated with boar sperm in vitro. Results: Internalized exosomes were detected within 10 min of co-incubation. Computer-assisted sperm analysis and flow cytometry demonstrated that even after 5-h of exposure to exosomes, there were no significant deleterious effects with regard to sperm motility, viability, membrane integrity and mitochondrial membrane potential (p > 0.05), thus indicating that exosomes did not interfere with basic sperm function. Conclusion: HEK293T-derived exosomes interacted with boar sperm without affecting sperm function. Exosomes represent a versatile and promising research tool for studying sperm biology and provide new options for the diagnosis and treatment of male infertility.
Collapse
Affiliation(s)
- Teresa Vilanova-Perez
- Nuffield Department of Women's & Reproductive Health, University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital, OX3 9DU, Oxford, UK
| | - Celine Jones
- Nuffield Department of Women's & Reproductive Health, University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital, OX3 9DU, Oxford, UK
| | - Stefan Balint
- Nuffield Department of Orthopaedics, The Kennedy Institute of Rheumatology, Rheumatology & Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Headington, OX3 7FY, Oxford, UK
| | - Rebecca Dragovic
- Nuffield Department of Women's & Reproductive Health, University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital, OX3 9DU, Oxford, UK
| | - Michael L Dustin
- Nuffield Department of Orthopaedics, The Kennedy Institute of Rheumatology, Rheumatology & Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Headington, OX3 7FY, Oxford, UK
| | - Marc Yeste
- Department of Biology, Biotechnology of Animal & Human Reproduction (TechnoSperm), Unit of Cell Biology, Institute of Food & Agricultural Technology, University of Girona, E-17003, Girona, Spain
| | - Kevin Coward
- Nuffield Department of Women's & Reproductive Health, University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital, OX3 9DU, Oxford, UK
| |
Collapse
|
104
|
Wu J, Shen Z. Exosomal miRNAs as biomarkers for diagnostic and prognostic in lung cancer. Cancer Med 2020; 9:6909-6922. [PMID: 32779402 PMCID: PMC7541138 DOI: 10.1002/cam4.3379] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/24/2020] [Accepted: 07/26/2020] [Indexed: 12/24/2022] Open
Abstract
More and more studies report that exosomes released by various cells can serve as a medium for information exchange between different cells. Through a deep understanding of the physical and chemical properties of exosomes, the researchers revealed a more precise molecular mechanism of its participation in the process of intercellular communication. In particular, microRNA (miRNA) is found inside exosomes, as well as long noncoding RNA (lncRNA). Extensive evidence indicates that exosomal miRNAs participates in the occurrence and development of lung cancer and plays a variety of roles. Therefore, the release of RNA‐containing exosomes in many different kinds of body fluids has caused widespread interest among researchers. In this review, we report evidence from human studies involving miRNAs and other ncRNAs in exosomes associated with lung cancer as diagnostic and prognostic markers. Currently, there is a small amount of evidence that exosomal miRNAs can be used as early diagnosis and prognostic markers for lung cancer, and their exact role in lung cancer patients still needs further study.
Collapse
Affiliation(s)
- Jing Wu
- Department of Clinical Laboratory, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, Anhui, P.R. China
| | - Zuojun Shen
- Department of Clinical Laboratory, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, Anhui, P.R. China.,Department of Clinical Laboratory, Division of Life Sciences and Medicine, The First Affliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, P.R. China
| |
Collapse
|
105
|
Menck K, Sivaloganathan S, Bleckmann A, Binder C. Microvesicles in Cancer: Small Size, Large Potential. Int J Mol Sci 2020; 21:E5373. [PMID: 32731639 PMCID: PMC7432491 DOI: 10.3390/ijms21155373] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EV) are secreted by all cell types in a tumor and its microenvironment (TME), playing an essential role in intercellular communication and the establishment of a TME favorable for tumor invasion and metastasis. They encompass a variety of vesicle populations, among them the well-known endosomal-derived small exosomes (Exo), but also larger vesicles (diameter > 100 nm) that are shed directly from the plasma membrane, the so-called microvesicles (MV). Increasing evidence suggests that MV, although biologically different, share the tumor-promoting features of Exo in the TME. Due to their larger size, they can be readily harvested from patients' blood and characterized by routine methods such as conventional flow cytometry, exploiting the plethora of molecules expressed on their surface. In this review, we summarize the current knowledge about the biology and the composition of MV, as well as their role within the TME. We highlight not only the challenges and potential of MV as novel biomarkers for cancer, but also discuss their possible use for therapeutic intervention.
Collapse
Affiliation(s)
- Kerstin Menck
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, 48149 Münster, Germany; (K.M.); (S.S.); (A.B.)
| | - Suganja Sivaloganathan
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, 48149 Münster, Germany; (K.M.); (S.S.); (A.B.)
| | - Annalen Bleckmann
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, 48149 Münster, Germany; (K.M.); (S.S.); (A.B.)
- Department of Hematology/Medical Oncology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Claudia Binder
- Department of Hematology/Medical Oncology, University Medical Center Göttingen, 37075 Göttingen, Germany
| |
Collapse
|
106
|
Matthies D, Lee NYJ, Gatera I, Pasolli HA, Zhao X, Liu H, Walpita D, Liu Z, Yu Z, Ioannou MS. Microdomains form on the luminal face of neuronal extracellular vesicle membranes. Sci Rep 2020; 10:11953. [PMID: 32686698 PMCID: PMC7371872 DOI: 10.1038/s41598-020-68436-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 06/24/2020] [Indexed: 11/09/2022] Open
Abstract
Extracellular vesicles (EVs) are important mediators of cell-to-cell communication and have been implicated in several pathologies including those of the central nervous system. They are released by all cell types, including neurons, and are highly heterogenous in size and composition. Yet much remains unknown regarding the biophysical characteristics of different EVs. Here, using cryo-electron microscopy (cryoEM), we analyzed the size distribution and morphology of EVs released from primary cortical neurons. We discovered massive macromolecular clusters on the luminal face of EV membranes. These clusters are predominantly found on medium-sized vesicles, suggesting that they may be specific to microvesicles as opposed to exosomes. We propose that these clusters serve as microdomains for EV signaling and play an important role in EV physiology.
Collapse
Affiliation(s)
- Doreen Matthies
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Nathanael Y J Lee
- Department of Physiology, University of Alberta, Edmonton, AB, Canada
| | - Ian Gatera
- Department of Physiology, University of Alberta, Edmonton, AB, Canada
| | - H Amalia Pasolli
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Xiaowei Zhao
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Hui Liu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Deepika Walpita
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Zhe Liu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Zhiheng Yu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Maria S Ioannou
- Department of Physiology, University of Alberta, Edmonton, AB, Canada. .,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada. .,Group On the Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
107
|
Naryzhny S, Volnitskiy A, Kopylov A, Zorina E, Kamyshinsky R, Bairamukov V, Garaeva L, Shlikht A, Shtam T. Proteome of Glioblastoma-Derived Exosomes as a Source of Biomarkers. Biomedicines 2020; 8:E216. [PMID: 32708613 PMCID: PMC7399833 DOI: 10.3390/biomedicines8070216] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 01/18/2023] Open
Abstract
Extracellular vesicles (EV) are involved in important processes of glioblastoma multiforme (GBM), including malignancy and invasion. EV secreted by glioblastoma cells may cross the hematoencephalic barrier and carry molecular cargo derived from the tumor into the peripheral circulation. Therefore, the determination of the molecular composition of exosomes released by glioblastoma cells seems to be a promising approach for the development of non-invasive methods of the detection of the specific exosomal protein markers in the peripheral blood. The present study aimed to determine the common exosomal proteins presented in preparations from different cell lines and search potential glioblastoma biomarkers in exosomes. We have performed proteomics analysis of exosomes obtained from the conditioned culture medium of five glioblastoma cell lines. A list of 133 proteins common for all these samples was generated. Based on the data obtained, virtual two-dimensional electrophoresis (2DE) maps of proteins presented in exosomes of glioblastoma cells were constructed and the gene ontology (GO) analysis of exosome proteins was performed. A correlation between overexpressed in glial cell proteins and their presence in exosomes have been found. Thus, the existence of many potential glioblastoma biomarkers in exosomes was confirmed.
Collapse
Affiliation(s)
- Stanislav Naryzhny
- Orekhovich Institute of Biomedical Chemistry of Russian Academy of Medical Sciences Pogodinskaya 10, 119121 Moscow, Russia; (A.K.); (E.Z.)
- Petersburg Nuclear Physics Institute NRC «Kurchatov Institute», Orlova Roshcha 1, 188300 Gatchina, Russia; (A.V.); (V.B.); (L.G.)
| | - Andrey Volnitskiy
- Petersburg Nuclear Physics Institute NRC «Kurchatov Institute», Orlova Roshcha 1, 188300 Gatchina, Russia; (A.V.); (V.B.); (L.G.)
- National Research Center “Kurchatov Institute”, Akademika Kurchatova pl. 1, 123182 Moscow, Russia;
| | - Arthur Kopylov
- Orekhovich Institute of Biomedical Chemistry of Russian Academy of Medical Sciences Pogodinskaya 10, 119121 Moscow, Russia; (A.K.); (E.Z.)
| | - Elena Zorina
- Orekhovich Institute of Biomedical Chemistry of Russian Academy of Medical Sciences Pogodinskaya 10, 119121 Moscow, Russia; (A.K.); (E.Z.)
| | - Roman Kamyshinsky
- National Research Center “Kurchatov Institute”, Akademika Kurchatova pl. 1, 123182 Moscow, Russia;
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre ’Crystallography and Photonics” of Russian Academy of Sciences, Leninskiy Prospect 59, 119333 Moscow, Russia
- Moscow Institute of Physics and Technology, Institutsky Lane 9, Dolgoprudny, 141700 Moscow, Russia
| | - Viktor Bairamukov
- Petersburg Nuclear Physics Institute NRC «Kurchatov Institute», Orlova Roshcha 1, 188300 Gatchina, Russia; (A.V.); (V.B.); (L.G.)
| | - Luiza Garaeva
- Petersburg Nuclear Physics Institute NRC «Kurchatov Institute», Orlova Roshcha 1, 188300 Gatchina, Russia; (A.V.); (V.B.); (L.G.)
- National Research Center “Kurchatov Institute”, Akademika Kurchatova pl. 1, 123182 Moscow, Russia;
- Peter the Great Saint-Petersburg Polytechnic University, Politehnicheskaya 29, 19525 St. Petersburg, Russia
| | - Anatoly Shlikht
- Far Eastern Federal University, Sukhanova 8, 690091 Vladivostok, Russia;
| | - Tatiana Shtam
- Petersburg Nuclear Physics Institute NRC «Kurchatov Institute», Orlova Roshcha 1, 188300 Gatchina, Russia; (A.V.); (V.B.); (L.G.)
| |
Collapse
|
108
|
Huang G, Lin G, Zhu Y, Duan W, Jin D. Emerging technologies for profiling extracellular vesicle heterogeneity. LAB ON A CHIP 2020; 20:2423-2437. [PMID: 32537618 DOI: 10.1039/d0lc00431f] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Extracellular vesicles (EVs) are membrane-bound vesicles secreted by most cell types and exist in virtually all bodily fluids. They carry on a wealth of proteomic and genetic information including proteins, lipids, miRNAs, mRNA, non-coding RNA and other molecules from parental cells. Increasing evidence shows that within populations of EVs, their biogenesis, physical characteristics (e.g. size, density, morphology) and cargos (e.g. protein, lipid content, nucleic acids) may vary substantially, which accordingly change their biological properties. To fully exploit the potential of EVs, it requires qualified methods to profile EV heterogeneity. In this review, we survey recent approaches for EV isolation with innovative discoveries in heterogeneity. The main challenges in EV heterogeneity research are identified, and the roles of single cell EV profiling and single EV imaging are highlighted. We further discuss promising opportunities for resolving the underlying complexity of EV heterogeneity.
Collapse
Affiliation(s)
- Guan Huang
- Institute for Biomedical Materials and Devices, Faculty of Science, The University of Technology Sydney, Ultimo, New South Wales 2007, Australia.
| | | | | | | | | |
Collapse
|
109
|
Nelson BC, Minelli C, Doak SH, Roesslein M. Emerging Standards and Analytical Science for Nanoenabled Medical Products. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2020; 13:431-452. [PMID: 32084321 PMCID: PMC8221451 DOI: 10.1146/annurev-anchem-091619-102216] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Development and application of nanotechnology-enabled medical products, including drugs, devices, and in vitro diagnostics, are rapidly expanding in the global marketplace. In this review, the focus is on providing the reader with an introduction to the landscape of commercially available nanotechnology-enabled medical products as well as an overview of the international documentary standards and reference materials that support and facilitate efficient regulatory evaluation and reliable manufacturing of this diverse group of medical products. We describe the materials, test methods, and standards development needs for emerging medical products. Scientific and measurement challenges involved in the development and application of innovative nanoenabled medical products motivate discussion throughout this review.
Collapse
Affiliation(s)
- Bryant C Nelson
- National Institute of Standards and Technology (NIST), Biosystems and Biomaterials Division, Gaithersburg, Maryland 20899, USA;
| | - Caterina Minelli
- National Physical Laboratory, Chemical and Biological Science Department, Teddington TW11 0LW, United Kingdom
| | - Shareen H Doak
- Swansea University Medical School, Institute of Life Sciences, Swansea SA2 8PP, Wales, United Kingdom
| | - Matthias Roesslein
- Swiss Federal Laboratories for Materials Science and Technology (EMPA), Materials Meet Life Department, CH-9014 St. Gallen, Switzerland
| |
Collapse
|
110
|
Sánchez-López CM, Trelis M, Jara L, Cantalapiedra F, Marcilla A, Bernal D. Diversity of extracellular vesicles from different developmental stages of Fasciola hepatica. Int J Parasitol 2020; 50:663-669. [PMID: 32531305 DOI: 10.1016/j.ijpara.2020.03.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/13/2020] [Accepted: 03/23/2020] [Indexed: 12/12/2022]
Abstract
The secretion of extracellular vesicles (EVs) in Fasciola hepatica adult worms was described by our group in 2012. Since then, EVs have been found in other helminths, thus providing a new paradigm for the complete understanding of host-parasite communication. However, information was lacking regarding the possible existence and role of EVs from other developmental stages of the parasite. In this study, we confirm the secretion of EVs by F. hepatica eggs and juvenile forms. EVs were isolated by size exclusion chromatography and characterised by nanoparticle tracking analysis and electron microscopy. We observed a large diversity in the morphologies of these EVs, suggesting specific functions for different subpopulations, as has been proposed in other model systems. The identification of these populations of morphologically diverse EVs will facilitate future studies aimed at biochemically characterising the different classes of these vesicles as a first step in deciphering their role in host-parasite communication.
Collapse
Affiliation(s)
- Christian M Sánchez-López
- Àrea de Parasitologia, Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia, Universitat de València, Av. V.A. Estellés, s/n, 46100 Burjassot (Valencia), Spain; Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute La Fe, Universitat de Valencia, 46026 Valencia, Spain
| | - María Trelis
- Àrea de Parasitologia, Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia, Universitat de València, Av. V.A. Estellés, s/n, 46100 Burjassot (Valencia), Spain; Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute La Fe, Universitat de Valencia, 46026 Valencia, Spain
| | - Lidia Jara
- Àrea de Parasitologia, Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia, Universitat de València, Av. V.A. Estellés, s/n, 46100 Burjassot (Valencia), Spain
| | - Fernando Cantalapiedra
- Àrea de Parasitologia, Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia, Universitat de València, Av. V.A. Estellés, s/n, 46100 Burjassot (Valencia), Spain; Veterinari de Salut Pública, Centre de Salut Pública de Manises, 46940 Manises (Valencia), Spain
| | - Antonio Marcilla
- Àrea de Parasitologia, Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia, Universitat de València, Av. V.A. Estellés, s/n, 46100 Burjassot (Valencia), Spain; Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute La Fe, Universitat de Valencia, 46026 Valencia, Spain.
| | - Dolores Bernal
- Departament de Bioquimica i Biologia Molecular, Facultat de Ciencies Biologiques, Universitat de València, C/ Dr. Moliner, 50, 46100 Burjassot (Valencia), Spain.
| |
Collapse
|
111
|
Pascucci L, Scattini G. Imaging extracelluar vesicles by transmission electron microscopy: Coping with technical hurdles and morphological interpretation. Biochim Biophys Acta Gen Subj 2020; 1865:129648. [PMID: 32485221 DOI: 10.1016/j.bbagen.2020.129648] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/30/2020] [Accepted: 05/19/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Extracellular vesicles (EVs) are cell-derived nanometric particles governing the complex interactions among cells through their bioactive cargo. Interest in EVs is rapidly increasing due to their extensive involvement in physiological and pathological conditions, their potential employment as diagnostic and therapeutic tools and their prospective use as bio-carriers of exogenous molecules. Given their nanometric size, transmission electron microscopy (TEM) provides significant contributions to assess EV presence and purity in a sample and to study morphological features. SCOPE OF REVIEW In this review, TEM methods for EV imaging are compared with respect to their applications, benefits and drawbacks. A critical evaluation of the actual contribution of TEM to the study of EVs is also provided and the most common artifacts encountered in the literature are discussed. MAJOR CONCLUSIONS TEM techniques are powerful tools for the investigation of EVs and have the potential to reveal sample purity, ultrastructure and molecular composition. However, technical challenges, procedural errors in sample processing or misinterpretations may result in a variety of different morphologies and artifacts. GENERAL SIGNIFICANCE The last decades have seen exponential technological progress in EV imaging by TEM. Nevertheless, protocols have not been standardized yet and sample preparation remains a critical step. An optimized, standardized and integrated protocol of different techniques could minimize artifacts and interpretative errors that could significantly improve the quality and reliability of downstream studies.
Collapse
Affiliation(s)
- L Pascucci
- Department of Veterinary Medicine, University of Perugia, Via S. Costanzo, 4, Perugia, Italy.
| | - G Scattini
- Department of Veterinary Medicine, University of Perugia, Via S. Costanzo, 4, Perugia, Italy
| |
Collapse
|
112
|
Rozo AJ, Cox MH, Devitt A, Rothnie AJ, Goddard AD. Biophysical analysis of lipidic nanoparticles. Methods 2020; 180:45-55. [PMID: 32387313 DOI: 10.1016/j.ymeth.2020.05.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/29/2020] [Accepted: 05/01/2020] [Indexed: 12/18/2022] Open
Abstract
Biological nanoparticles include liposomes, extracellular vesicle and lipid-based discoidal systems. When studying such particles, there are several key parameters of interest, including particle size and concentration. Measuring these characteristics can be of particular importance in the research laboratory or when producing such particles as biotherapeutics. This article briefly describes the major types of lipid-containing nanoparticles and the techniques that can be used to study them. Such methodologies include electron microscopy, atomic force microscopy, dynamic light scattering, nanoparticle tracking analysis, flow cytometry, tunable resistive pulse sensing and microfluidic resistive pulse sensing. Whilst no technique is perfect for the analysis of all nanoparticles, this article provides advantages and disadvantages of each, highlighting the latest developments in the field. Finally, we demonstrate the use of microfluidic resistive pulse sensing for the analysis of biological nanoparticles.
Collapse
Affiliation(s)
- Annaïg J Rozo
- School of Life and Health Sciences, Aston University, Birmingham B4 7ET, UK
| | - Megan H Cox
- School of Life and Health Sciences, Aston University, Birmingham B4 7ET, UK; Meritics Ltd, Unit 3, Clipstone Brook Industrial Estate, Cherrycourt Way, Leighton Buzzard LU7 4GP, UK
| | - Andrew Devitt
- School of Life and Health Sciences, Aston University, Birmingham B4 7ET, UK
| | - Alice J Rothnie
- School of Life and Health Sciences, Aston University, Birmingham B4 7ET, UK
| | - Alan D Goddard
- School of Life and Health Sciences, Aston University, Birmingham B4 7ET, UK.
| |
Collapse
|
113
|
Saari H, Turunen T, Lõhmus A, Turunen M, Jalasvuori M, Butcher SJ, Ylä-Herttuala S, Viitala T, Cerullo V, Siljander PRM, Yliperttula M. Extracellular vesicles provide a capsid-free vector for oncolytic adenoviral DNA delivery. J Extracell Vesicles 2020; 9:1747206. [PMID: 32363012 PMCID: PMC7178890 DOI: 10.1080/20013078.2020.1747206] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/14/2020] [Accepted: 02/25/2020] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles (EVs) have been showcased as auspicious candidates for delivering therapeutic cargo, including oncolytic viruses for cancer treatment. Delivery of oncolytic viruses in EVs could provide considerable advantages, hiding the viruses from the immune system and providing alternative entry pathways into cancer cells. Here we describe the formation and viral cargo of EVs secreted by cancer cells infected with an oncolytic adenovirus (IEVs, infected cell-derived EVs) as a function of time after infection. IEVs were secreted already before the lytic release of virions and their structure resembled normally secreted EVs, suggesting that they were not just apoptotic fragments of infected cells. IEVs were able to carry the viral genome and induce infection in other cancer cells. As such, the role of EVs in the life cycle of adenoviruses may be an important part of a successful infection and may also be harnessed for cancer- and gene therapy.
Collapse
Affiliation(s)
- Heikki Saari
- Division of Pharmaceutical Biosciences and Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Tiia Turunen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Andres Lõhmus
- Division of Pharmaceutical Biosciences and Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Mikko Turunen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Matti Jalasvuori
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyvaskyla, Finland
| | - Sarah J. Butcher
- Molecular and Integrative Bioscience Research Programme, Faculty of Biological and Environmental Sciences and Helsinki Institute of Life Sciences, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Seppo Ylä-Herttuala
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tapani Viitala
- Division of Pharmaceutical Biosciences and Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Vincenzo Cerullo
- Division of Pharmaceutical Biosciences and Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Pia R. M. Siljander
- Division of Pharmaceutical Biosciences and Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- EV-group, EV-core Unit, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Marjo Yliperttula
- Division of Pharmaceutical Biosciences and Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| |
Collapse
|
114
|
Emelyanov A, Shtam T, Kamyshinsky R, Garaeva L, Verlov N, Miliukhina I, Kudrevatykh A, Gavrilov G, Zabrodskaya Y, Pchelina S, Konevega A. Cryo-electron microscopy of extracellular vesicles from cerebrospinal fluid. PLoS One 2020; 15:e0227949. [PMID: 31999742 PMCID: PMC6991974 DOI: 10.1371/journal.pone.0227949] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/03/2020] [Indexed: 12/19/2022] Open
Abstract
Extracellular vesicles (EVs) are membrane-enclosed vesicles which play important role for cell communication and physiology. EVs are found in many human biological fluids, including blood, breast milk, urine, cerebrospinal fluid (CSF), ejaculate, saliva etc. These nano-sized vesicles contain proteins, mRNAs, microRNAs, non-coding RNAs and lipids that are derived from producing cells. EVs deliver complex sets of biological information to recipient cells thereby modulating their behaviors by their molecular cargo. In this way EVs are involved in the pathological development and progression of many human disorders, including neurodegenerative diseases. In this study EVs purified by ultracentrifugation from CSF of patients with Parkinson's disease (PD) and individuals of the comparison group were characterized using nanoparticle tracking analysis, flow cytometry and cryo-electron microscopy. Vesicular size and the presence of exosomal marker CD9 on the surface provided evidence that most of the EVs were exosome-like vesicles. Cryo-electron microscopy allowed us to visualize a large spectrum of extracellular vesicles of various size and morphology with lipid bilayers and vesicular internal structures. Thus, we described the diversity and new characteristics of the vesicles from CSF suggesting that subpopulations of EVs with different and specific functions may exist.
Collapse
Affiliation(s)
- Anton Emelyanov
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Center «Kurchatov Institute», Gatchina, Russia
- Pavlov First Saint Petersburg State Medical University, St. Petersburg, Russia
| | - Tatiana Shtam
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Center «Kurchatov Institute», Gatchina, Russia
- National Research Center “Kurchatov Institute”, Moscow, Russia
| | - Roman Kamyshinsky
- National Research Center “Kurchatov Institute”, Moscow, Russia
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, Moscow, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow region, Russia
| | - Luiza Garaeva
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Center «Kurchatov Institute», Gatchina, Russia
- National Research Center “Kurchatov Institute”, Moscow, Russia
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | - Nikolai Verlov
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Center «Kurchatov Institute», Gatchina, Russia
- National Research Center “Kurchatov Institute”, Moscow, Russia
| | - Irina Miliukhina
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Center «Kurchatov Institute», Gatchina, Russia
- Pavlov First Saint Petersburg State Medical University, St. Petersburg, Russia
- Institute of Experimental Medicine, St. Petersburg, Russia
| | - Anastasia Kudrevatykh
- Pavlov First Saint Petersburg State Medical University, St. Petersburg, Russia
- Institute of Experimental Medicine, St. Petersburg, Russia
| | - Gaspar Gavrilov
- S.M. Kirov Saint-Petersburg Military Medical Academy, St. Petersburg, Russia
| | - Yulia Zabrodskaya
- Polenov Neurosurgical Institute–Branch of National Almazov Medical Research Centre, St. Petersburg, Russia
| | - Sofya Pchelina
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Center «Kurchatov Institute», Gatchina, Russia
- Pavlov First Saint Petersburg State Medical University, St. Petersburg, Russia
- National Research Center “Kurchatov Institute”, Moscow, Russia
- Institute of Experimental Medicine, St. Petersburg, Russia
| | - Andrey Konevega
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Center «Kurchatov Institute», Gatchina, Russia
- National Research Center “Kurchatov Institute”, Moscow, Russia
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| |
Collapse
|
115
|
Alvarez-Rodriguez M, Ntzouni M, Wright D, Khan KI, López-Béjar M, Martinez CA, Rodriguez-Martinez H. Chicken seminal fluid lacks CD9- and CD44-bearing extracellular vesicles. Reprod Domest Anim 2020; 55:293-300. [PMID: 31894881 DOI: 10.1111/rda.13617] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 12/26/2019] [Indexed: 01/05/2023]
Abstract
The avian seminal fluid (SF) is a protein-rich fluid, derived from the testis, the rudimentary epididymis and, finally, from the cloacal gland. The SF interacts with spermatozoa and the inner cell lining of the female genital tract, to modulate sperm functions and female immune responsiveness. Its complex proteome might either be free or linked to extracellular vesicles (EVs) as it is the case in mammals, where EVs depict the tetraspanin CD9; and where those EVs derived from the epididymis (epididymosomes) also present the receptor CD44. In the present study, sperm-free SF from Red Jungle Fowl, White Leghorn and an advanced intercross (AIL, 12th generation) were studied using flow cytometry of the membrane marker tetraspanin CD9, Western blotting of the membrane receptor CD44 and electron microscopy in non-enriched (whole SF) or enriched fractions obtained by precipitation using a commercial kit (Total Exosome Precipitation Solution). Neither CD9- nor CD44 could be detected, and the ultrastructure confirmed the relative absence of EVs, raising the possibility that avian SF interacts differently with the female genitalia as compared to the seminal plasma of mammals.
Collapse
Affiliation(s)
- Manuel Alvarez-Rodriguez
- Department of Biomedical and Clinical Services (BKV), BHK/O&G Linköping University, Linköping, Sweden
| | - Maria Ntzouni
- Microscopy Unit, Faculty of Medicine and Health Sciences (MEDFAK), Core Facility (COREF) Linköping University, Linköping, Sweden
| | - Dominic Wright
- Department of Physics, Chemistry and Biology, Faculty of Science and Engineering, Linköping University, Linköping, Sweden
| | - Kabirul Islam Khan
- Department of Genetics and Animal Breeding, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Manel López-Béjar
- Department of Animal Health and Anatomy, Faculty of Veterinary, Universitat Autòmoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Cristina A Martinez
- Department of Biomedical and Clinical Services (BKV), BHK/O&G Linköping University, Linköping, Sweden
| | | |
Collapse
|
116
|
Vickram AS, Samad HA, Latheef SK, Chakraborty S, Dhama K, Sridharan TB, Sundaram T, Gulothungan G. Human prostasomes an extracellular vesicle - Biomarkers for male infertility and prostrate cancer: The journey from identification to current knowledge. Int J Biol Macromol 2019; 146:946-958. [PMID: 31730983 DOI: 10.1016/j.ijbiomac.2019.09.218] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/24/2019] [Accepted: 09/25/2019] [Indexed: 02/07/2023]
Abstract
Extracellular vesicles (EVs) are gaining attention among the cell biologists and researchers over the last two decades. Prostasomes are considered to be (Evs) secreted by prostate epithelial cells into the semen during emission or ejaculation. Prostasomes contain various proteins required for immune regulation namely, amino and dipeptidyl peptidase; endopeptidase (neutral); decay accelerating factor; angiotensin-converting enzyme. Sperm cells need a few prerequisites in order to fertilize the egg. The role of prostasomes in enhancing the male fertility was reviewed extensively throughout the manuscript. Also, prostasomes have an immunosuppressive, immunomodulatory, antibacterial role in the female reproductive tract, and in some cases they can be used as immunocontraceptive agent to regulate the fertility status. This review will give insights to many active researchers in the field of prostasomal research and male infertility/fertility research. This review will open many unanswered mechanisms of prostasomes with respect to structure-function analysis, fatty acids patterns in diagnosis as well as prognosis of male infertility/fertility. More scientific reports are in need to support the mechanism of prostasomes and its role in immunomodulation. The development of prostasomes as a biomarker for the prostate cancer is still miserable with a lot of controversial results by various researchers.
Collapse
Affiliation(s)
- A S Vickram
- Saveetha School of Engineering, Department of Biotechnology, Saveetha Institute of Medical and Technical Sciences, Saveetha Nagar, Chennai 602 105, India.
| | - Hari Abdul Samad
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, Uttar Pradesh, India
| | - Shyma K Latheef
- Immunology Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243 122, India
| | - Sandip Chakraborty
- Department of Veterinary Microbiology, College of Veterinary Sciences and Animal Husbandry, R.K. Nagar, West Tripura 799008, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India
| | - T B Sridharan
- Department of Biotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Thanigaivel Sundaram
- Saveetha School of Engineering, Department of Biomedical Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha Nagar, Chennai 602 105, India
| | - G Gulothungan
- Saveetha School of Engineering, Department of Biomedical Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha Nagar, Chennai 602 105, India
| |
Collapse
|
117
|
Metabolomics Applied to the Study of Extracellular Vesicles. Metabolites 2019; 9:metabo9110276. [PMID: 31718094 PMCID: PMC6918219 DOI: 10.3390/metabo9110276] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 10/31/2019] [Accepted: 11/07/2019] [Indexed: 12/20/2022] Open
Abstract
Cell-secreted extracellular vesicles (EVs) have rapidly gained prominence as sources of biomarkers for non-invasive biopsies, owing to their ubiquity across human biofluids and physiological stability. There are many characterisation studies directed towards their protein, nucleic acid, lipid and glycan content, but more recently the metabolomic analysis of EV content has also gained traction. Several EV metabolite biomarker candidates have been identified across a range of diseases, including liver disease and cancers of the prostate and pancreas. Beyond clinical applications, metabolomics has also elucidated possible mechanisms of action underlying EV function, such as the arginase-mediated relaxation of pulmonary arteries or the delivery of nutrients to tumours by vesicles. However, whilst the value of EV metabolomics is clear, there are challenges inherent to working with these entities—particularly in relation to sample production and preparation. The biomolecular composition of EVs is known to change drastically depending on the isolation method used, and recent evidence has demonstrated that changes in cell culture systems impact upon the metabolome of the resulting EVs. This review aims to collect recent advances in the EV metabolomics field whilst also introducing researchers interested in this area to practical pitfalls in applying metabolomics to EV studies.
Collapse
|
118
|
Yefimova M, Bere E, Neyroud AS, Jegou B, Bourmeyster N, Ravel C. Myelinosome-like vesicles in human seminal plasma: A cryo-electron microscopy study. Cryobiology 2019; 92:15-20. [PMID: 31550454 DOI: 10.1016/j.cryobiol.2019.09.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 11/26/2022]
Abstract
Seminal plasma is particularly rich in extracellular vesicles. Myelinosomes are membranous organelles described throughout the seminiferous epithelium of the testis but never reported in semen. Our aim was to determine the presence of myelinosomes in human seminal plasma. Transmission electron microscopy and cryo electron microscopy analysis of standard myelinosome preparation from TM4 Sertoli cells and human seminal plasma samples. We have specified by cryo-EM the morphological aspect of "standard" myelinosomes isolated from the culture media of TM4 Sertoli cells. Vesicles with the same morphological appearance were revealed in human seminal plasma samples. Human seminal plasma contains a population of large EV (average diameter 200 nm) whose morphological appearance resemble those of myelinosomes. Defining the specific biomarkers and functionalities of myelinosome in human seminal plasma are the concerns to be addressed in our further research.
Collapse
Affiliation(s)
- M Yefimova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 pr. M Thorez, 194223, St-Petersburg, Russia; Laboratoire STIM, Equipe CMCS, ERL CNRS 7368, 1, rue Georges Bonnet, 86022, Poitiers Cedex, France; CHU de Rennes, Département de Gynécologie Obstétrique et Reproduction Humaine-CECOS, Hôpital Sud, 16 boulevard de Bulgarie, 35000, Rennes, France; Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) -UMR_S 1085, F-35000, Rennes, France.
| | - E Bere
- Laboratoire STIM, Equipe CMCS, ERL CNRS 7368, 1, rue Georges Bonnet, 86022, Poitiers Cedex, France
| | - A S Neyroud
- CHU de Rennes, Département de Gynécologie Obstétrique et Reproduction Humaine-CECOS, Hôpital Sud, 16 boulevard de Bulgarie, 35000, Rennes, France
| | - B Jegou
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) -UMR_S 1085, F-35000, Rennes, France
| | - N Bourmeyster
- Laboratoire STIM, Equipe CMCS, ERL CNRS 7368, 1, rue Georges Bonnet, 86022, Poitiers Cedex, France
| | - C Ravel
- CHU de Rennes, Département de Gynécologie Obstétrique et Reproduction Humaine-CECOS, Hôpital Sud, 16 boulevard de Bulgarie, 35000, Rennes, France; Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) -UMR_S 1085, F-35000, Rennes, France
| |
Collapse
|
119
|
Yao X, Wei W, Wang X, Chenglin L, Björklund M, Ouyang H. Stem cell derived exosomes: microRNA therapy for age-related musculoskeletal disorders. Biomaterials 2019; 224:119492. [PMID: 31557588 DOI: 10.1016/j.biomaterials.2019.119492] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 12/12/2022]
Abstract
Age-associated musculoskeletal disorders (MSDs) have been historically overlooked by mainstream biopharmaceutical researchers. However, it has now been recognized that stem and progenitor cells confer innate healing capacity for the musculoskeletal system. Current evidence indicates that exosomes are particularly important in this process as they can mediate sequential and reciprocal interactions between cells to initiate and enhance healing. The present review focuses on stem cells (SCs) derived exosomes as a regenerative therapy for treatment of musculoskeletal disorders. We discuss mechanisms involving exosome-mediated transfer of RNAs and how these have been demonstrated in vitro and in vivo to affect signal transduction pathways in target cells. We envision that standardized protocols for stem cell culture as well as for the isolation and characterization of exosomes enable GMP-compliant large-scale production of SCs-derived exosomes. Hence, potential new treatment for age-related degenerative diseases can be seen in the horizon.
Collapse
Affiliation(s)
- Xudong Yao
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University, Haining, China; Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wei Wei
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University, Haining, China; Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaozhao Wang
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University, Haining, China; Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Li Chenglin
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University, Haining, China; Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Mikael Björklund
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University, Haining, China
| | - Hongwei Ouyang
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University, Haining, China; Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China.
| |
Collapse
|
120
|
Murdica V, Giacomini E, Alteri A, Bartolacci A, Cermisoni GC, Zarovni N, Papaleo E, Montorsi F, Salonia A, Viganò P, Vago R. Seminal plasma of men with severe asthenozoospermia contain exosomes that affect spermatozoa motility and capacitation. Fertil Steril 2019; 111:897-908.e2. [PMID: 31029245 DOI: 10.1016/j.fertnstert.2019.01.030] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To characterize in depth and investigate the role of exosomes present in seminal plasma in affecting parameters underlying sperm activity. DESIGN In vitro experimental study. SETTING Research hospital. PATIENT(S) Normozoospermic, severe asthenozoospermic, and post-vasectomy azoospermic men 18-55 years of age were considered for the study. Seminal plasma was collected and processed to separate spermatozoa and exosomes. INTERVENTION(S) None. MAIN OUTCOMES MEASURE(S) Exosomes from seminal plasma were isolated and characterized by means of nanoparticle tracking analysis, transmission electron microscopy and Western blot. Exosome uptake by spermatozoa was monitored by means of immunofluorescence and flow cytometry. The effect of exosomes on spermatozoa was determined by evaluating progressive motility and capacitation, the latter assessed by means of tyrosine phosphorylation and acrosome reaction. RESULT(S) We isolated and characterized exosomes from seminal plasma of normo-, astheno-, and azoospermic patients. They display similar features in terms of shape, size, expression of canonic exosome markers and proteins involved in spermatozoa maturation, and fertilization capacity. After ejaculation, sperm cells are still receptive and are able to take up exosomes in a time- and pH-dependent manner. Exosomes derived from normozoospermic but not from asthenozoospermic individuals improve spermatozoa motility and trigger capacitation. Transfer of cysteine-rich secretory protein 1 from exosomes to spermatozoa may have a role in these phenomena. CONCLUSION(S) These findings provide evidence that: 1) sperm can still receive vesicle-derived cargo after ejaculation; 2) sperm motility and ability to undergo capacitation can benefit from exosomal transfer; and 3) semen quality is affected by male tract exosomes.
Collapse
Affiliation(s)
- Valentina Murdica
- Urologic Research Institute, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Elisa Giacomini
- Reproductive Sciences Laboratory, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Alessandra Alteri
- Centro Scienze Natalità, Obstetrics and Gynecology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Bartolacci
- Centro Scienze Natalità, Obstetrics and Gynecology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Greta Chiara Cermisoni
- Centro Scienze Natalità, Obstetrics and Gynecology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Enrico Papaleo
- Reproductive Sciences Laboratory, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Francesco Montorsi
- Urologic Research Institute, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milano, Italy; Università Vita-Salute San Raffaele, Milan, Italy
| | - Andrea Salonia
- Urologic Research Institute, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milano, Italy; Università Vita-Salute San Raffaele, Milan, Italy
| | - Paola Viganò
- Reproductive Sciences Laboratory, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Riccardo Vago
- Urologic Research Institute, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milano, Italy; Università Vita-Salute San Raffaele, Milan, Italy.
| |
Collapse
|
121
|
Jang SC, Crescitelli R, Cvjetkovic A, Belgrano V, Olofsson Bagge R, Sundfeldt K, Ochiya T, Kalluri R, Lötvall J. Mitochondrial protein enriched extracellular vesicles discovered in human melanoma tissues can be detected in patient plasma. J Extracell Vesicles 2019; 8:1635420. [PMID: 31497264 PMCID: PMC6719261 DOI: 10.1080/20013078.2019.1635420] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 12/28/2022] Open
Abstract
Extracellular vesicles (EVs), including exosomes and microvesicles, are secreted from all cells, and convey messages between cells in health and disease. However, the diversity of EV subpopulations is only beginning to be explored. Since EVs have been implicated in tumour microenvironmental communication, we started to determine the diversity of EVs specifically in this tissue. To do this, we isolated EVs directly from patient melanoma metastatic tissues. Using EV membrane isolation and mass spectrometry analysis, we discovered enrichment of mitochondrial membrane proteins in the melanoma tissue-derived EVs, compared to non-melanoma-derived EVs. Interestingly, two mitochondrial inner membrane proteins MT-CO2 (encoded by the mitochondrial genome) and COX6c (encoded by the nuclear genome) were highly prevalent in the plasma of melanoma patients, as well as in ovarian and breast cancer patients. Furthermore, this subpopulation of EVs contains active mitochondrial enzymes. In summary, tumour tissues are enriched in EVs with mitochondrial membrane proteins and these mitochondrial membrane proteins can be detected in plasma and are increased in melanoma, ovarian cancer as well as breast cancer.
Collapse
Affiliation(s)
- Su Chul Jang
- Krefting Research Center, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Rossella Crescitelli
- Krefting Research Center, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Aleksander Cvjetkovic
- Krefting Research Center, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Valerio Belgrano
- Department of Surgery and Sahlgrenska Cancer Center, Institute of Clinical Sciences, the Sahgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Roger Olofsson Bagge
- Department of Surgery and Sahlgrenska Cancer Center, Institute of Clinical Sciences, the Sahgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Karin Sundfeldt
- Department of Obstretrics and Gynecology and Sahlgrenska Cancer Center, Institute of Clinical Sciences, the Sahgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jan Lötvall
- Krefting Research Center, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
122
|
Alvarez-Rodriguez M, Ljunggren SA, Karlsson H, Rodriguez-Martinez H. Exosomes in specific fractions of the boar ejaculate contain CD44: A marker for epididymosomes? Theriogenology 2019; 140:143-152. [PMID: 31473497 DOI: 10.1016/j.theriogenology.2019.08.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/10/2019] [Accepted: 08/20/2019] [Indexed: 12/16/2022]
Abstract
Seminal plasma (SP) is a complex fluid containing proteins, peptides, enzymes, hormones as well as extracellular vesicles (EVs). The SP interacts with spermatozoa and the inner cell lining of the female genital tract, adsorbing proteins and exosomes that modulate sperm functions and female immune responsiveness. In the present study, boar sperm-free SP was studied using flow cytometry (FC) after membrane tetraspanins (CD9, CD63 and CD81) and membrane receptor CD44 marking of non-enriched (whole SP) or gradient fractions enriched through two-step discontinuous KBr-density-gradient ultracentrifugation, in whole ejaculate or in selected ejaculate fractions. The results, evaluated by transmission electron microscopy, confirmed the presence of exosomes in all fractions of the pig SP. Noteworthy, these pig SP-exosomes were CD44-bearing when analysed by FC, with bands detected by western blotting (WB) at the expected 85 kD size. The two-step discontinuous KBr-density-gradient ultracentrifugation enriched the population of exosomes in two specific gradient fractions, indicating exosomes (either prostasomes or epididymosomes) could be separated from low-density lipoprotein (LDL) but they co-sediment with the high-density lipoprotein (HDL)-bearing fraction. The findings pave for the selective isolation of exosomes in functional studies of their function when interacting with spermatozoa, the oocyte and/or the female genitalia, including hyaluronan-CD44 interplay.
Collapse
Affiliation(s)
- Manuel Alvarez-Rodriguez
- Department of Clinical & Experimental Medicine (IKE), BHK/O&G Linköping University, SE-58185, Linköping, Sweden.
| | - Stefan A Ljunggren
- Occupational & Environmental Medicine Centre, Linköping University, SE-58185, Linköping, Sweden
| | - Helen Karlsson
- Occupational & Environmental Medicine Centre, Linköping University, SE-58185, Linköping, Sweden
| | | |
Collapse
|
123
|
Extracellular Vesicles in Cardiovascular Diseases: Alternative Biomarker Sources, Therapeutic Agents, and Drug Delivery Carriers. Int J Mol Sci 2019; 20:ijms20133272. [PMID: 31277271 PMCID: PMC6650854 DOI: 10.3390/ijms20133272] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 06/27/2019] [Accepted: 07/01/2019] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases (CVD) represent the leading cause of morbidity and mortality globally. The emerging role of extracellular vesicles (EVs) in intercellular communication has stimulated renewed interest in exploring the potential application of EVs as tools for diagnosis, prognosis, and therapy in CVD. The ubiquitous nature of EVs in biological fluids presents a technological advantage compared to current diagnostic tools by virtue of their notable stability. EV contents, such as proteins and microRNAs, represent specific signatures of cellular activation or injury. This feature positions EVs as an alternative source of biomarkers. Furthermore, their intrinsic activity and immunomodulatory properties offer EVs unique opportunities to act as therapeutic agents per se or to serve as drug delivery carriers by acting as miniaturized vehicles incorporating bioactive molecules. In this article, we aim to review the recent advances and applications of EV-based biomarkers and therapeutics. In addition, the potential of EVs as a drug delivery and theranostic platform for CVD will also be discussed.
Collapse
|
124
|
Gudbergsson JM, Jønsson K, Simonsen JB, Johnsen KB. Systematic review of targeted extracellular vesicles for drug delivery – Considerations on methodological and biological heterogeneity. J Control Release 2019; 306:108-120. [DOI: 10.1016/j.jconrel.2019.06.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 12/20/2022]
|
125
|
Zarà M, Guidetti GF, Camera M, Canobbio I, Amadio P, Torti M, Tremoli E, Barbieri SS. Biology and Role of Extracellular Vesicles (EVs) in the Pathogenesis of Thrombosis. Int J Mol Sci 2019; 20:ijms20112840. [PMID: 31212641 PMCID: PMC6600675 DOI: 10.3390/ijms20112840] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 06/07/2019] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles (EVs) are well-established mediators of cell-to-cell communication. EVs can be released by every cell type and they can be classified into three major groups according to their biogenesis, dimension, density, and predominant protein markers: exosomes, microvesicles, and apoptotic bodies. During their formation, EVs associate with specific cargo from their parental cell that can include RNAs, free fatty acids, surface receptors, and proteins. The biological function of EVs is to maintain cellular and tissue homeostasis by transferring critical biological cargos to distal or neighboring recipient cells. On the other hand, their role in intercellular communication may also contribute to the pathogenesis of several diseases, including thrombosis. More recently, their physiological and biochemical properties have suggested their use as a therapeutic tool in tissue regeneration as well as a novel option for drug delivery. In this review, we will summarize the impact of EVs released from blood and vascular cells in arterial and venous thrombosis, describing the mechanisms by which EVs affect thrombosis and their potential clinical applications.
Collapse
Affiliation(s)
- Marta Zarà
- Unit of Heart-Brain Axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, 20138 Milano, Italy.
| | | | - Marina Camera
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milano, Italy.
- Unit of Cell and Molecular Biology in Cardiovascular Diseases, Centro Cardiologico Monzino IRCCS, 20138 Milano, Italy.
| | - Ilaria Canobbio
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy.
| | - Patrizia Amadio
- Unit of Heart-Brain Axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, 20138 Milano, Italy.
| | - Mauro Torti
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy.
| | - Elena Tremoli
- Scientific Direction, Centro Cardiologico Monzino IRCCS, 20138 Milano, Italy.
| | - Silvia Stella Barbieri
- Unit of Heart-Brain Axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, 20138 Milano, Italy.
| |
Collapse
|
126
|
Palviainen M, Saari H, Kärkkäinen O, Pekkinen J, Auriola S, Yliperttula M, Puhka M, Hanhineva K, Siljander PRM. Metabolic signature of extracellular vesicles depends on the cell culture conditions. J Extracell Vesicles 2019; 8:1596669. [PMID: 31007875 PMCID: PMC6461113 DOI: 10.1080/20013078.2019.1596669] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 03/07/2019] [Accepted: 03/13/2019] [Indexed: 12/21/2022] Open
Abstract
One of the greatest bottlenecks in extracellular vesicle (EV) research is the production of sufficient material in a consistent and effective way using in vitro cell models. Although the production of EVs in bioreactors maximizes EV yield in comparison to conventional cell cultures, the impact of their cell growth conditions on EVs has not yet been established. In this study, we grew two prostate cancer cell lines, PC-3 and VCaP, in conventional cell culture dishes and in two-chamber bioreactors to elucidate how the growth environment affects the EV characteristics. Specifically, we wanted to investigate the growth condition-dependent differences by non-targeted metabolite profiling using liquid chromatography-mass spectrometry (LC-MS) analysis. EVs were also characterized by their morphology, size distribution, and EV protein marker expression, and the EV yields were quantified by NTA. The use of bioreactor increased the EV yield >100 times compared to the conventional cell culture system. Regarding morphology, size distribution and surface markers, only minor differences were observed between the bioreactor-derived EVs (BR-EVs) and the EVs obtained from cells grown in conventional cell cultures (C-EVs). In contrast, metabolomic analysis revealed statistically significant differences in both polar and non-polar metabolites when the BR-EVs were compared to the C-EVs. The results show that the growth conditions markedly affected the EV metabolite profiles and that metabolomics was a sensitive tool to study molecular differences of EVs. We conclude that the cell culture conditions of EV production should be standardized and carefully detailed in publications and care should be taken when EVs from different production platforms are compared with each other for systemic effects.
Collapse
Affiliation(s)
- Mari Palviainen
- EV-group, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- EV-core, University of Helsinki, Helsinki, Finland
| | - Heikki Saari
- Drug Research Program, Faculty of Pharmacy, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| | - Olli Kärkkäinen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
- LC-MS Metabolomics Center, University of Eastern Finland, Kuopio, Finland
| | - Jenna Pekkinen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
- LC-MS Metabolomics Center, University of Eastern Finland, Kuopio, Finland
| | - Seppo Auriola
- LC-MS Metabolomics Center, University of Eastern Finland, Kuopio, Finland
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Marjo Yliperttula
- Drug Research Program, Faculty of Pharmacy, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| | - Maija Puhka
- EV-core, University of Helsinki, Helsinki, Finland
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki, Finland
| | - Kati Hanhineva
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
- LC-MS Metabolomics Center, University of Eastern Finland, Kuopio, Finland
| | - Pia R.-M. Siljander
- EV-group, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- EV-core, University of Helsinki, Helsinki, Finland
- Drug Research Program, Faculty of Pharmacy, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
127
|
Rodriguez-Caro H, Dragovic R, Shen M, Dombi E, Mounce G, Field K, Meadows J, Turner K, Lunn D, Child T, Southcombe JH, Granne I. In vitro decidualisation of human endometrial stromal cells is enhanced by seminal fluid extracellular vesicles. J Extracell Vesicles 2019; 8:1565262. [PMID: 30728921 PMCID: PMC6352950 DOI: 10.1080/20013078.2019.1565262] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 11/26/2018] [Accepted: 12/21/2018] [Indexed: 11/25/2022] Open
Abstract
Extracellular vesicles are highly abundant in seminal fluids and have a known role enhancing sperm function. Clinical pregnancy rates after IVF treatment are improved after female exposure to seminal fluid. Seminal fluid extracellular vesicles (SF-EVs) are candidate enhancers, however, whether SF-EVs interact with cells from the endometrium and modulate the implantation processes is unknown. Here, we investigated whether SF-EVs interact with endometrial stromal cells (ESCs) and enhance decidualisation, a requisite for implantation. SF-EVs, isolated from human seminal fluid (n = 11) by ultracentrifugation, were characterised by nanoparticle tracking analysis and Western blotting, and purified using size exclusion chromatography. Non-decidualised and decidualised primary ESCs (n = 5) were then treated with SF-EVs. Binding of bio-maleimide-labelled SF-EVs was detected by flow cytometry and fluorescence microscopy. Prolactin and IGFBP-1 protein levels in culture media were also analysed after single and multiple SF-EV exposure. SF-EVs size ranged from 50 to 300 nm, and they expressed exosomal markers (ALIX, SYNTENIN-1, CD9 and CD81). SF-EVs bound to non-decidualised and decidualised ESCs at similar levels. ESCs prolactin secretion was increased after single (p = 0.0044) and multiple (p = 0.0021) SF-EV exposure. No differences were found in IGFBP-1 protein levels. In conclusion, SF-EVs enhance in vitro ESC decidualisation and increase secretion of prolactin, an essential hormone in implantation. This elucidates a novel role of SF-EVs on endometrial receptivity. Abbreviations: ECACC: European Collection of Authenticated Cell Cultures; ESCs: endometrial stromal cells; EVs: extracellular vesicles; FCS: foetal calf serum; HRP: horse-radish peroxidase; IFNγ: interferon-gamma; IGF: insulin-like growth factor; IGFBP-1: insulin-like growth factor binding protein 1; IVF: in vitro fertilisation; MVB: multivesicular bodies; NTA: nanoparticle tracking analysis; PRLR−/−: homozygous prolactin receptor knockout; RT: room temperature; SF-EVs: seminal fluid extracellular vesicles; STR: short tandem repeat; TGFβ: transforming growth factor β; uNK: uterine natural killer
Collapse
Affiliation(s)
- Helena Rodriguez-Caro
- Nuffield Department of Women's & Reproductive Health, University of Oxford, Women's Centre, Oxford, UK
| | - Rebecca Dragovic
- Nuffield Department of Women's & Reproductive Health, University of Oxford, Women's Centre, Oxford, UK
| | - Mengni Shen
- Nuffield Department of Women's & Reproductive Health, University of Oxford, Women's Centre, Oxford, UK
| | - Eszter Dombi
- Nuffield Department of Women's & Reproductive Health, University of Oxford, Women's Centre, Oxford, UK
| | - Ginny Mounce
- Nuffield Department of Women's & Reproductive Health, University of Oxford, Women's Centre, Oxford, UK
| | - Kate Field
- Oxford Fertility, Institute of Reproductive Sciences, Oxford, UK
| | - Jamie Meadows
- Oxford Fertility, Institute of Reproductive Sciences, Oxford, UK
| | - Karen Turner
- Nuffield Department of Women's & Reproductive Health, University of Oxford, Women's Centre, Oxford, UK.,Oxford Fertility, Institute of Reproductive Sciences, Oxford, UK
| | - Daniel Lunn
- Department of Statistics, University of Oxford, Oxford, UK
| | - Tim Child
- Nuffield Department of Women's & Reproductive Health, University of Oxford, Women's Centre, Oxford, UK.,Oxford Fertility, Institute of Reproductive Sciences, Oxford, UK
| | - Jennifer Helen Southcombe
- Nuffield Department of Women's & Reproductive Health, University of Oxford, Women's Centre, Oxford, UK
| | - Ingrid Granne
- Nuffield Department of Women's & Reproductive Health, University of Oxford, Women's Centre, Oxford, UK
| |
Collapse
|
128
|
Chiang CY, Chen C. Toward characterizing extracellular vesicles at a single-particle level. J Biomed Sci 2019; 26:9. [PMID: 30646920 PMCID: PMC6332877 DOI: 10.1186/s12929-019-0502-4] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 01/09/2019] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are cell-derived membrane-bound vesicles that serve a means of cell-cell communication. Studying EVs at a single-particle level is important because EVs are inherently heterogeneous. Novel micro- and nanotechnological tools have open opportunities for realizing single-EV measurements exploiting their biochemical, electrical, mechanical, and/or optical properties. This review summarizes the recent development of technologies toward sorting and analyzing single EVs. Sorting EVs into a more homogeneous subset relaxes the sensitivity and throughput required on the EV detection, and hence related techniques are also included in this review. These exciting technologies are on the rise and will expand our understanding of EVs and their applications in the near future.
Collapse
Affiliation(s)
- Chun-Yi Chiang
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Chihchen Chen
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu, 30013, Taiwan. .,Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
129
|
Chuo STY, Chien JCY, Lai CPK. Imaging extracellular vesicles: current and emerging methods. J Biomed Sci 2018; 25:91. [PMID: 30580764 PMCID: PMC6304785 DOI: 10.1186/s12929-018-0494-5] [Citation(s) in RCA: 227] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 12/13/2018] [Indexed: 12/15/2022] Open
Abstract
Extracellular vesicles (EVs) are lipid bilayer-enclosed nanoparticles released by cells. They range from 30 nm to several micrometers in diameter, and ferry biological cargos such as proteins, lipids, RNAs and DNAs for local and distant intercellular communications. EVs have since been found to play a role in development, as well as in diseases including cancers. To elucidate the roles of EVs, researchers have established different methods to visualize and study their spatiotemporal properties. However, since EV are nanometer-sized, imaging them demands a full understanding of each labeling strategy to ensure accurate monitoring. This review covers current and emerging strategies for EV imaging for prospective studies.
Collapse
Affiliation(s)
- Steven Ting-Yu Chuo
- Institute of Atomic and Molecular Sciences, Academia Sinica, No. 1, Roosevelt Rd., Sec. 4, Taipei, 10617 Taiwan
| | - Jasper Che-Yung Chien
- Institute of Atomic and Molecular Sciences, Academia Sinica, No. 1, Roosevelt Rd., Sec. 4, Taipei, 10617 Taiwan
| | - Charles Pin-Kuang Lai
- Institute of Atomic and Molecular Sciences, Academia Sinica, No. 1, Roosevelt Rd., Sec. 4, Taipei, 10617 Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
| |
Collapse
|
130
|
Théry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, Antoniou A, Arab T, Archer F, Atkin-Smith GK, Ayre DC, Bach JM, Bachurski D, Baharvand H, Balaj L, Baldacchino S, Bauer NN, Baxter AA, Bebawy M, Beckham C, Bedina Zavec A, Benmoussa A, Berardi AC, Bergese P, Bielska E, Blenkiron C, Bobis-Wozowicz S, Boilard E, Boireau W, Bongiovanni A, Borràs FE, Bosch S, Boulanger CM, Breakefield X, Breglio AM, Brennan MÁ, Brigstock DR, Brisson A, Broekman MLD, Bromberg JF, Bryl-Górecka P, Buch S, Buck AH, Burger D, Busatto S, Buschmann D, Bussolati B, Buzás EI, Byrd JB, Camussi G, Carter DRF, Caruso S, Chamley LW, Chang YT, Chen C, Chen S, Cheng L, Chin AR, Clayton A, Clerici SP, Cocks A, Cocucci E, Coffey RJ, Cordeiro-da-Silva A, Couch Y, Coumans FAW, Coyle B, Crescitelli R, Criado MF, D’Souza-Schorey C, Das S, Datta Chaudhuri A, de Candia P, De Santana EF, De Wever O, del Portillo HA, Demaret T, Deville S, Devitt A, Dhondt B, Di Vizio D, Dieterich LC, Dolo V, Dominguez Rubio AP, Dominici M, Dourado MR, Driedonks TAP, Duarte FV, Duncan HM, Eichenberger RM, Ekström K, EL Andaloussi S, Elie-Caille C, Erdbrügger U, Falcón-Pérez JM, Fatima F, Fish JE, Flores-Bellver M, Försönits A, Frelet-Barrand A, et alThéry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, Antoniou A, Arab T, Archer F, Atkin-Smith GK, Ayre DC, Bach JM, Bachurski D, Baharvand H, Balaj L, Baldacchino S, Bauer NN, Baxter AA, Bebawy M, Beckham C, Bedina Zavec A, Benmoussa A, Berardi AC, Bergese P, Bielska E, Blenkiron C, Bobis-Wozowicz S, Boilard E, Boireau W, Bongiovanni A, Borràs FE, Bosch S, Boulanger CM, Breakefield X, Breglio AM, Brennan MÁ, Brigstock DR, Brisson A, Broekman MLD, Bromberg JF, Bryl-Górecka P, Buch S, Buck AH, Burger D, Busatto S, Buschmann D, Bussolati B, Buzás EI, Byrd JB, Camussi G, Carter DRF, Caruso S, Chamley LW, Chang YT, Chen C, Chen S, Cheng L, Chin AR, Clayton A, Clerici SP, Cocks A, Cocucci E, Coffey RJ, Cordeiro-da-Silva A, Couch Y, Coumans FAW, Coyle B, Crescitelli R, Criado MF, D’Souza-Schorey C, Das S, Datta Chaudhuri A, de Candia P, De Santana EF, De Wever O, del Portillo HA, Demaret T, Deville S, Devitt A, Dhondt B, Di Vizio D, Dieterich LC, Dolo V, Dominguez Rubio AP, Dominici M, Dourado MR, Driedonks TAP, Duarte FV, Duncan HM, Eichenberger RM, Ekström K, EL Andaloussi S, Elie-Caille C, Erdbrügger U, Falcón-Pérez JM, Fatima F, Fish JE, Flores-Bellver M, Försönits A, Frelet-Barrand A, Fricke F, Fuhrmann G, Gabrielsson S, Gámez-Valero A, Gardiner C, Gärtner K, Gaudin R, Gho YS, Giebel B, Gilbert C, Gimona M, Giusti I, Goberdhan DCI, Görgens A, Gorski SM, Greening DW, Gross JC, Gualerzi A, Gupta GN, Gustafson D, Handberg A, Haraszti RA, Harrison P, Hegyesi H, Hendrix A, Hill AF, Hochberg FH, Hoffmann KF, Holder B, Holthofer H, Hosseinkhani B, Hu G, Huang Y, Huber V, Hunt S, Ibrahim AGE, Ikezu T, Inal JM, Isin M, Ivanova A, Jackson HK, Jacobsen S, Jay SM, Jayachandran M, Jenster G, Jiang L, Johnson SM, Jones JC, Jong A, Jovanovic-Talisman T, Jung S, Kalluri R, Kano SI, Kaur S, Kawamura Y, Keller ET, Khamari D, Khomyakova E, Khvorova A, Kierulf P, Kim KP, Kislinger T, Klingeborn M, Klinke DJ, Kornek M, Kosanović MM, Kovács ÁF, Krämer-Albers EM, Krasemann S, Krause M, Kurochkin IV, Kusuma GD, Kuypers S, Laitinen S, Langevin SM, Languino LR, Lannigan J, Lässer C, Laurent LC, Lavieu G, Lázaro-Ibáñez E, Le Lay S, Lee MS, Lee YXF, Lemos DS, Lenassi M, Leszczynska A, Li ITS, Liao K, Libregts SF, Ligeti E, Lim R, Lim SK, Linē A, Linnemannstöns K, Llorente A, Lombard CA, Lorenowicz MJ, Lörincz ÁM, Lötvall J, Lovett J, Lowry MC, Loyer X, Lu Q, Lukomska B, Lunavat TR, Maas SLN, Malhi H, Marcilla A, Mariani J, Mariscal J, Martens-Uzunova ES, Martin-Jaular L, Martinez MC, Martins VR, Mathieu M, Mathivanan S, Maugeri M, McGinnis LK, McVey MJ, Meckes DG, Meehan KL, Mertens I, Minciacchi VR, Möller A, Møller Jørgensen M, Morales-Kastresana A, Morhayim J, Mullier F, Muraca M, Musante L, Mussack V, Muth DC, Myburgh KH, Najrana T, Nawaz M, Nazarenko I, Nejsum P, Neri C, Neri T, Nieuwland R, Nimrichter L, Nolan JP, Nolte-’t Hoen ENM, Noren Hooten N, O’Driscoll L, O’Grady T, O’Loghlen A, Ochiya T, Olivier M, Ortiz A, Ortiz LA, Osteikoetxea X, Østergaard O, Ostrowski M, Park J, Pegtel DM, Peinado H, Perut F, Pfaffl MW, Phinney DG, Pieters BCH, Pink RC, Pisetsky DS, Pogge von Strandmann E, Polakovicova I, Poon IKH, Powell BH, Prada I, Pulliam L, Quesenberry P, Radeghieri A, Raffai RL, Raimondo S, Rak J, Ramirez MI, Raposo G, Rayyan MS, Regev-Rudzki N, Ricklefs FL, Robbins PD, Roberts DD, Rodrigues SC, Rohde E, Rome S, Rouschop KMA, Rughetti A, Russell AE, Saá P, Sahoo S, Salas-Huenuleo E, Sánchez C, Saugstad JA, Saul MJ, Schiffelers RM, Schneider R, Schøyen TH, Scott A, Shahaj E, Sharma S, Shatnyeva O, Shekari F, Shelke GV, Shetty AK, Shiba K, Siljander PRM, Silva AM, Skowronek A, Snyder OL, Soares RP, Sódar BW, Soekmadji C, Sotillo J, Stahl PD, Stoorvogel W, Stott SL, Strasser EF, Swift S, Tahara H, Tewari M, Timms K, Tiwari S, Tixeira R, Tkach M, Toh WS, Tomasini R, Torrecilhas AC, Tosar JP, Toxavidis V, Urbanelli L, Vader P, van Balkom BWM, van der Grein SG, Van Deun J, van Herwijnen MJC, Van Keuren-Jensen K, van Niel G, van Royen ME, van Wijnen AJ, Vasconcelos MH, Vechetti IJ, Veit TD, Vella LJ, Velot É, Verweij FJ, Vestad B, Viñas JL, Visnovitz T, Vukman KV, Wahlgren J, Watson DC, Wauben MHM, Weaver A, Webber JP, Weber V, Wehman AM, Weiss DJ, Welsh JA, Wendt S, Wheelock AM, Wiener Z, Witte L, Wolfram J, Xagorari A, Xander P, Xu J, Yan X, Yáñez-Mó M, Yin H, Yuana Y, Zappulli V, Zarubova J, Žėkas V, Zhang JY, Zhao Z, Zheng L, Zheutlin AR, Zickler AM, Zimmermann P, Zivkovic AM, Zocco D, Zuba-Surma EK. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles 2018; 7:1535750. [PMID: 30637094 PMCID: PMC6322352 DOI: 10.1080/20013078.2018.1535750] [Show More Authors] [Citation(s) in RCA: 7526] [Impact Index Per Article: 1075.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 09/25/2018] [Indexed: 11/04/2022] Open
Abstract
The last decade has seen a sharp increase in the number of scientific publications describing physiological and pathological functions of extracellular vesicles (EVs), a collective term covering various subtypes of cell-released, membranous structures, called exosomes, microvesicles, microparticles, ectosomes, oncosomes, apoptotic bodies, and many other names. However, specific issues arise when working with these entities, whose size and amount often make them difficult to obtain as relatively pure preparations, and to characterize properly. The International Society for Extracellular Vesicles (ISEV) proposed Minimal Information for Studies of Extracellular Vesicles ("MISEV") guidelines for the field in 2014. We now update these "MISEV2014" guidelines based on evolution of the collective knowledge in the last four years. An important point to consider is that ascribing a specific function to EVs in general, or to subtypes of EVs, requires reporting of specific information beyond mere description of function in a crude, potentially contaminated, and heterogeneous preparation. For example, claims that exosomes are endowed with exquisite and specific activities remain difficult to support experimentally, given our still limited knowledge of their specific molecular machineries of biogenesis and release, as compared with other biophysically similar EVs. The MISEV2018 guidelines include tables and outlines of suggested protocols and steps to follow to document specific EV-associated functional activities. Finally, a checklist is provided with summaries of key points.
Collapse
Affiliation(s)
- Clotilde Théry
- Institut Curie, INSERM U932, PSL Research University, Paris, France
| | - Kenneth W Witwer
- The Johns Hopkins University School of Medicine, Department of Molecular and Comparative Pathobiology, Baltimore, MD, USA
- The Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD, USA
| | - Elena Aikawa
- Brigham and Women’s Hospital, Center for Interdisciplinary Cardiovascular Sciences, Boston, MA, USA
- Harvard Medical School, Cardiovascular Medicine, Boston, MA, USA
| | - Maria Jose Alcaraz
- Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM), University of Valencia, Polytechnic University of Valencia, Valencia, Spain
| | | | | | - Anna Antoniou
- German Centre for Neurodegenerative Diseases (DZNE), Bonn, Germany
- University Hospital Bonn (UKB), Bonn, Germany
| | - Tanina Arab
- Université de Lille, INSERM, U-1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse - PRISM, Lille, France
| | - Fabienne Archer
- University of Lyon, INRA, EPHE, UMR754 Viral Infections and Comparative Pathology, Lyon, France
| | - Georgia K Atkin-Smith
- La Trobe University, La Trobe Institute for Molecular Science, Department of Biochemistry and Genetics, Bundoora, Australia
| | - D Craig Ayre
- Atlantic Cancer Research Institute, Moncton, Canada
- Mount Allison University, Department of Chemistry and Biochemistry, Sackville, Canada
| | - Jean-Marie Bach
- Université Bretagne Loire, Oniris, INRA, IECM, Nantes, France
| | - Daniel Bachurski
- University of Cologne, Department of Internal Medicine I, Cologne, Germany
| | - Hossein Baharvand
- Royan Institute for Stem Cell Biology and Technology, ACECR, Cell Science Research Center, Department of Stem Cells and Developmental Biology, Tehran, Iran
- University of Science and Culture, ACECR, Department of Developmental Biology, Tehran, Iran
| | - Leonora Balaj
- Massachusetts General Hospital, Department of Neurosurgery, Boston, MA, USA
| | | | - Natalie N Bauer
- University of South Alabama, Department of Pharmacology, Center for Lung Biology, Mobile, AL, USA
| | - Amy A Baxter
- La Trobe University, La Trobe Institute for Molecular Science, Department of Biochemistry and Genetics, Bundoora, Australia
| | - Mary Bebawy
- University of Technology Sydney, Discipline of Pharmacy, Graduate School of Health, Sydney, Australia
| | | | - Apolonija Bedina Zavec
- National Institute of Chemistry, Department of Molecular Biology and Nanobiotechnology, Ljubljana, Slovenia
| | - Abderrahim Benmoussa
- Université Laval, Centre de Recherche du CHU de Québec, Department of Infectious Diseases and Immunity, Quebec City, Canada
| | | | - Paolo Bergese
- CSGI - Research Center for Colloids and Nanoscience, Florence, Italy
- INSTM - National Interuniversity Consortium of Materials Science and Technology, Florence, Italy
- University of Brescia, Department of Molecular and Translational Medicine, Brescia, Italy
| | - Ewa Bielska
- University of Birmingham, Institute of Microbiology and Infection, Birmingham, UK
| | | | - Sylwia Bobis-Wozowicz
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell Biology, Kraków, Poland
| | - Eric Boilard
- Université Laval, Centre de Recherche du CHU de Québec, Department of Infectious Diseases and Immunity, Quebec City, Canada
| | - Wilfrid Boireau
- FEMTO-ST Institute, UBFC, CNRS, ENSMM, UTBM, Besançon, France
| | - Antonella Bongiovanni
- Institute of Biomedicine and Molecular Immunology (IBIM), National Research Council (CNR) of Italy, Palermo, Italy
| | - Francesc E Borràs
- Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, REMAR-IVECAT Group, Badalona, Spain
- Germans Trias i Pujol University Hospital, Nephrology Service, Badalona, Spain
- Universitat Autònoma de Barcelona, Department of Cell Biology, Physiology & Immunology, Barcelona, Spain
| | - Steffi Bosch
- Université Bretagne Loire, Oniris, INRA, IECM, Nantes, France
| | - Chantal M Boulanger
- INSERM UMR-S 970, Paris Cardiovascular Research Center, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Xandra Breakefield
- Massachusetts General Hospital and Neuroscience Program, Harvard Medical School, Department of Neurology and Radiology, Boston, MA, USA
| | - Andrew M Breglio
- Icahn School of Medicine at Mount Sinai, New York City, NY, USA
- National Institutes of Health, National Institute on Deafness and Other Communication Disorders, Bethesda, MD, USA
| | - Meadhbh Á Brennan
- Harvard University, School of Engineering and Applied Sciences, Cambridge, MA, USA
- Massachusetts General Hospital, Harvard Medical School, Department of Neurology, Boston, MA, USA
- Université de Nantes, INSERM UMR 1238, Bone Sarcoma and Remodeling of Calcified Tissues, PhyOS, Nantes, France
| | - David R Brigstock
- Nationwide Children’s Hospital, Columbus, OH, USA
- The Ohio State University, Columbus, OH, USA
| | - Alain Brisson
- UMR-CBMN, CNRS-Université de Bordeaux, Bordeaux, France
| | - Marike LD Broekman
- Haaglanden Medical Center, Department of Neurosurgery, The Hague, The Netherlands
- Leiden University Medical Center, Department of Neurosurgery, Leiden, The Netherlands
- Massachusetts General Hospital, Department of Neurology, Boston, MA, USA
| | - Jacqueline F Bromberg
- Memorial Sloan Kettering Cancer Center, Department of Medicine, New York City, NY, USA
- Weill Cornell Medicine, Department of Medicine, New York City, NY, USA
| | | | - Shilpa Buch
- University of Nebraska Medical Center, Department of Pharmacology and Experimental Neuroscience, Omaha, NE, USA
| | - Amy H Buck
- University of Edinburgh, Institute of Immunology & Infection Research, Edinburgh, UK
| | - Dylan Burger
- Kidney Research Centre, Ottawa, Canada
- Ottawa Hospital Research Institute, Ottawa, Canada
- University of Ottawa, Ottawa, Canada
| | - Sara Busatto
- Mayo Clinic, Department of Transplantation, Jacksonville, FL, USA
- University of Brescia, Department of Molecular and Translational Medicine, Brescia, Italy
| | - Dominik Buschmann
- Technical University of Munich, TUM School of Life Sciences Weihenstephan, Division of Animal Physiology and Immunology, Freising, Germany
| | - Benedetta Bussolati
- University of Torino, Department of Molecular Biotechnology and Health Sciences, Torino, Italy
| | - Edit I Buzás
- MTA-SE Immuno-Proteogenomics Research Groups, Budapest, Hungary
- Semmelweis University, Department of Genetics, Cell- and Immunobiology, Budapest, Hungary
| | - James Bryan Byrd
- University of Michigan, Department of Medicine, Ann Arbor, MI, USA
| | - Giovanni Camussi
- University of Torino, Department of Medical Sciences, Torino, Italy
| | - David RF Carter
- Oxford Brookes University, Department of Biological and Medical Sciences, Oxford, UK
| | - Sarah Caruso
- La Trobe University, La Trobe Institute for Molecular Science, Department of Biochemistry and Genetics, Bundoora, Australia
| | - Lawrence W Chamley
- University of Auckland, Department of Obstetrics and Gynaecology, Auckland, New Zealand
| | - Yu-Ting Chang
- National Taiwan University Hospital, Department of Internal Medicine, Taipei, Taiwan
| | - Chihchen Chen
- National Tsing Hua University, Department of Power Mechanical Engineering, Hsinchu, Taiwan
- National Tsing Hua University, Institute of Nanoengineering and Microsystems, Hsinchu, Taiwan
| | - Shuai Chen
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Reproductive Biology, Dummerstorf, Germany
| | - Lesley Cheng
- La Trobe University, La Trobe Institute for Molecular Science, Department of Biochemistry and Genetics, Bundoora, Australia
| | | | - Aled Clayton
- Cardiff University, School of Medicine, Cardiff, UK
| | | | - Alex Cocks
- Cardiff University, School of Medicine, Cardiff, UK
| | - Emanuele Cocucci
- The Ohio State University, College of Pharmacy, Division of Pharmaceutics and Pharmaceutical Chemistry, Columbus, OH, USA
- The Ohio State University, Comprehensive Cancer Center, Columbus, OH, USA
| | - Robert J Coffey
- Vanderbilt University Medical Center, Epithelial Biology Center, Department of Medicine, Nashville, TN, USA
| | | | - Yvonne Couch
- University of Oxford, Radcliffe Department of Medicine, Acute Stroke Programme - Investigative Medicine, Oxford, UK
| | - Frank AW Coumans
- Academic Medical Centre of the University of Amsterdam, Department of Clinical Chemistry and Vesicle Observation Centre, Amsterdam, The Netherlands
| | - Beth Coyle
- The University of Nottingham, School of Medicine, Children’s Brain Tumour Research Centre, Nottingham, UK
| | - Rossella Crescitelli
- University of Gothenburg, Institute of Medicine at Sahlgrenska Academy, Krefting Research Centre, Gothenburg, Sweden
| | | | | | - Saumya Das
- Massachusetts General Hospital, Boston, MA, USA
| | - Amrita Datta Chaudhuri
- The Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD, USA
| | | | - Eliezer F De Santana
- The Sociedade Beneficente Israelita Brasileira Albert Einstein, São Paulo, Brazil
| | - Olivier De Wever
- Cancer Research Institute Ghent, Ghent, Belgium
- Ghent University, Department of Radiation Oncology and Experimental Cancer Research, Laboratory of Experimental Cancer Research, Ghent, Belgium
| | - Hernando A del Portillo
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Institut d’Investigació Germans Trias i Pujol (IGTP), PVREX group, Badalona, Spain
- ISGlobal, Hospital Clínic - Universitat de Barcelona, PVREX Group, Barcelona, Spain
| | - Tanguy Demaret
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique (IREC), Laboratory of Pediatric Hepatology and Cell Therapy, Brussels, Belgium
| | - Sarah Deville
- Universiteit Hasselt, Diepenbeek, Belgium
- Vlaamse Instelling voor Technologisch Onderzoek (VITO), Mol, Belgium
| | - Andrew Devitt
- Aston University, School of Life & Health Sciences, Birmingham, UK
| | - Bert Dhondt
- Cancer Research Institute Ghent, Ghent, Belgium
- Ghent University Hospital, Department of Urology, Ghent, Belgium
- Ghent University, Department of Radiation Oncology and Experimental Cancer Research, Laboratory of Experimental Cancer Research, Ghent, Belgium
| | | | | | - Vincenza Dolo
- University of L’Aquila, Department of Life, Health and Environmental Sciences, L’Aquila, Italy
| | - Ana Paula Dominguez Rubio
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Buenos Aires, Argentina
| | - Massimo Dominici
- TPM of Mirandola, Mirandola, Italy
- University of Modena and Reggio Emilia, Division of Oncology, Modena, Italy
| | - Mauricio R Dourado
- University of Campinas, Piracicaba Dental School, Department of Oral Diagnosis, Piracicaba, Brazil
- University of Oulu, Faculty of Medicine, Cancer and Translational Medicine Research Unit, Oulu, Finland
| | - Tom AP Driedonks
- Utrecht University, Faculty of Veterinary Medicine, Department of Biochemistry and Cell Biology, Utrecht, The Netherlands
| | | | - Heather M Duncan
- McGill University, Division of Experimental Medicine, Montreal, Canada
- McGill University, The Research Institute of the McGill University Health Centre, Child Health and Human Development Program, Montreal, Canada
| | - Ramon M Eichenberger
- James Cook University, Australian Institute of Tropical Health and Medicine, Centre for Biodiscovery and Molecular Development of Therapeutics, Cairns, Australia
| | - Karin Ekström
- University of Gothenburg, Institute of Clinical Sciences at Sahlgrenska Academy, Department of Biomaterials, Gothenburg, Sweden
| | - Samir EL Andaloussi
- Evox Therapeutics Limited, Oxford, UK
- Karolinska Institute, Stockholm, Sweden
| | | | - Uta Erdbrügger
- University of Virginia Health System, Department of Medicine, Division of Nephrology, Charlottesville, VA, USA
| | - Juan M Falcón-Pérez
- CIC bioGUNE, CIBERehd, Exosomes Laboratory & Metabolomics Platform, Derio, Spain
- IKERBASQUE Research Science Foundation, Bilbao, Spain
| | - Farah Fatima
- University of São Paulo, Ribeirão Preto Medical School, Department of Pathology and Forensic Medicine, Ribeirão Preto, Brazil
| | - Jason E Fish
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
- University of Toronto, Department of Laboratory Medicine and Pathobiology, Toronto, Canada
| | - Miguel Flores-Bellver
- University of Colorado, School of Medicine, Department of Ophthalmology, Cell Sight-Ocular Stem Cell and Regeneration Program, Aurora, CO, USA
| | - András Försönits
- Semmelweis University, Department of Genetics, Cell- and Immunobiology, Budapest, Hungary
| | | | - Fabia Fricke
- German Cancer Research Center (DKFZ), Clinical Cooperation Unit Applied Tumor Biology, Heidelberg, Germany
- University Hospital Heidelberg, Institute of Pathology, Applied Tumor Biology, Heidelberg, Germany
| | - Gregor Fuhrmann
- Helmholtz-Centre for Infection Research, Braunschweig, Germany
- Helmholtz-Institute for Pharmaceutical Research Saarland, Saarbrücken, Germany
- Saarland University, Saarbrücken, Germany
| | - Susanne Gabrielsson
- Karolinska Institute, Department of Medicine Solna, Division for Immunology and Allergy, Stockholm, Sweden
| | - Ana Gámez-Valero
- Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, REMAR-IVECAT Group, Badalona, Spain
- Universitat Autònoma de Barcelona, Hospital Universitari and Health Sciences Research Institute Germans Trias i Pujol, Department of Pathology, Barcelona, Spain
| | | | - Kathrin Gärtner
- Helmholtz Center Munich German Research Center for Environmental Health, Research Unit Gene Vectors, Munich, Germany
| | - Raphael Gaudin
- INSERM U1110, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Yong Song Gho
- POSTECH (Pohang University of Science and Technology), Department of Life Sciences, Pohang, South Korea
| | - Bernd Giebel
- University Hospital Essen, University Duisburg-Essen, Institute for Transfusion Medicine, Essen, Germany
| | - Caroline Gilbert
- Université Laval, Centre de Recherche du CHU de Québec, Department of Infectious Diseases and Immunity, Quebec City, Canada
| | - Mario Gimona
- Paracelsus Medical University, GMP Unit, Salzburg, Austria
| | - Ilaria Giusti
- University of L’Aquila, Department of Life, Health and Environmental Sciences, L’Aquila, Italy
| | - Deborah CI Goberdhan
- University of Oxford, Department of Physiology, Anatomy and Genetics, Oxford, UK
| | - André Görgens
- Evox Therapeutics Limited, Oxford, UK
- Karolinska Institute, Clinical Research Center, Department of Laboratory Medicine, Stockholm, Sweden
- University Hospital Essen, University Duisburg-Essen, Institute for Transfusion Medicine, Essen, Germany
| | - Sharon M Gorski
- BC Cancer, Canada’s Michael Smith Genome Sciences Centre, Vancouver, Canada
- Simon Fraser University, Department of Molecular Biology and Biochemistry, Burnaby, Canada
| | - David W Greening
- La Trobe University, La Trobe Institute for Molecular Science, Department of Biochemistry and Genetics, Bundoora, Australia
| | - Julia Christina Gross
- University Medical Center Göttingen, Developmental Biochemistry, Göttingen, Germany
- University Medical Center Göttingen, Hematology and Oncology, Göttingen, Germany
| | - Alice Gualerzi
- IRCCS Fondazione Don Carlo Gnocchi, Laboratory of Nanomedicine and Clinical Biophotonics (LABION), Milan, Italy
| | - Gopal N Gupta
- Loyola University Chicago, Department of Urology, Maywood, IL, USA
| | - Dakota Gustafson
- University of Toronto, Department of Laboratory Medicine and Pathobiology, Toronto, Canada
| | - Aase Handberg
- Aalborg University Hospital, Department of Clinical Biochemistry, Aalborg, Denmark
- Aalborg University, Clinical Institute, Aalborg, Denmark
| | - Reka A Haraszti
- University of Massachusetts Medical School, RNA Therapeutics Institute, Worcester, MA, USA
| | | | - Hargita Hegyesi
- Semmelweis University, Department of Genetics, Cell- and Immunobiology, Budapest, Hungary
| | - An Hendrix
- Cancer Research Institute Ghent, Ghent, Belgium
- Ghent University, Department of Radiation Oncology and Experimental Cancer Research, Laboratory of Experimental Cancer Research, Ghent, Belgium
| | - Andrew F Hill
- La Trobe University, La Trobe Institute for Molecular Science, Department of Biochemistry and Genetics, Bundoora, Australia
| | - Fred H Hochberg
- Scintillon Institute, La Jolla, CA, USA
- University of California, San Diego, Department of Neurosurgery, La Jolla, CA, USA
| | - Karl F Hoffmann
- Aberystwyth University, Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth, United Kingdom
| | - Beth Holder
- Imperial College London, London, UK
- MRC The Gambia, Fajara, The Gambia
| | | | - Baharak Hosseinkhani
- Hasselt University, Biomedical Research Institute (BIOMED), Department of Medicine and Life Sciences, Hasselt, Belgium
| | - Guoku Hu
- University of Nebraska Medical Center, Department of Pharmacology and Experimental Neuroscience, Omaha, NE, USA
| | - Yiyao Huang
- Nanfang Hospital, Southern Medical University, Department of Clinical Laboratory Medicine, Guangzhou, China
- The Johns Hopkins University School of Medicine, Department of Molecular and Comparative Pathobiology, Baltimore, MD, USA
| | - Veronica Huber
- Fondazione IRCCS Istituto Nazionale dei Tumori, Unit of Immunotherapy of Human Tumors, Milan, Italy
| | | | | | - Tsuneya Ikezu
- Boston University School of Medicine, Boston, MA, USA
| | - Jameel M Inal
- University of Hertfordshire, School of Life and Medical Sciences, Biosciences Research Group, Hatfield, UK
| | - Mustafa Isin
- Istanbul University Oncology Institute, Basic Oncology Department, Istanbul, Turkey
| | - Alena Ivanova
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics, Heidelberg, Germany
| | - Hannah K Jackson
- The University of Nottingham, School of Medicine, Children’s Brain Tumour Research Centre, Nottingham, UK
| | - Soren Jacobsen
- Copenhagen Lupus and Vasculitis Clinic, Section 4242 - Rigshospitalet, Copenhagen, Denmark
- University of Copenhagen, Institute of Clinical Medicine, Copenhagen, Denmark
| | - Steven M Jay
- University of Maryland, Fischell Department of Bioengineering, College Park, MD, USA
| | - Muthuvel Jayachandran
- Mayo Clinic, College of Medicine, Department of Physiology and Biomedical Engineering, Rochester, MN, USA
| | | | - Lanzhou Jiang
- La Trobe University, La Trobe Institute for Molecular Science, Department of Biochemistry and Genetics, Bundoora, Australia
| | - Suzanne M Johnson
- University of Manchester, Division of Cancer Sciences, Manchester Cancer Research Centre, Manchester, UK
| | - Jennifer C Jones
- National Institutes of Health, National Cancer Institute, Center for Cancer Research, Bethesda, MD, USA
| | - Ambrose Jong
- Children’s Hospital of Los Angeles, Los Angeles, CA, USA
- University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Tijana Jovanovic-Talisman
- City of Hope Comprehensive Cancer Center, Beckman Research Institute, Department of Molecular Medicine, Duarte, CA, USA
| | - Stephanie Jung
- German Research Center for Environmental Health, Institute for Virology, Munich, Germany
| | - Raghu Kalluri
- University of Texas MD Anderson Cancer Center, Department of Cancer Biology, Metastasis Research Center, Houston, TX, USA
| | - Shin-ichi Kano
- The Johns Hopkins University School of Medicine, Department of Psychiatry and Behavioral Sciences, Baltimore, MD, USA
| | - Sukhbir Kaur
- National Institutes of Health, National Cancer Institute, Center for Cancer Research, Laboratory of Pathology, Bethesda, MD, USA
| | - Yumi Kawamura
- National Cancer Center Research Institute, Tokyo, Japan
- University of Tsukuba, Tsukuba, Japan
| | - Evan T Keller
- University of Michigan, Biointerfaces Institute, Ann Arbor, MI, USA
- University of Michigan, Department of Urology, Ann Arbor, MI, USA
| | - Delaram Khamari
- Semmelweis University, Department of Genetics, Cell- and Immunobiology, Budapest, Hungary
| | - Elena Khomyakova
- École normale supérieure, Paris, France
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - Anastasia Khvorova
- University of Massachusetts Medical School, RNA Therapeutics Institute, Worcester, MA, USA
| | - Peter Kierulf
- Oslo University Hospital, Department of Medical Biochemistry, Blood Cell Research Group, Oslo, Norway
| | - Kwang Pyo Kim
- Kyung Hee University, Department of Applied Chemistry, Yongin, Korea
| | - Thomas Kislinger
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- University of Toronto, Department of Medical Biophysics, Toronto, Canada
| | | | - David J Klinke
- West Virginia University, Department of Chemical and Biomedical Engineering and WVU Cancer Institute, Morgantown, WV, USA
- West Virginia University, Department of Microbiology Immunology and Cell Biology, Morgantown, WV, USA
| | - Miroslaw Kornek
- German Armed Forces Central Hospital, Department of General, Visceral and Thoracic Surgery, Koblenz, Germany
- Saarland University Medical Center, Department of Medicine II, Homburg, Germany
| | - Maja M Kosanović
- University of Belgrade, Institute for the Application of Nuclear Energy, INEP, Belgrade, Serbia
| | - Árpád Ferenc Kovács
- Semmelweis University, Department of Genetics, Cell- and Immunobiology, Budapest, Hungary
| | | | - Susanne Krasemann
- University Medical Center Hamburg-Eppendorf, Institute of Neuropathology, Hamburg, Germany
| | - Mirja Krause
- Hudson Institute of Medical Research, Melbourne, Australia
| | | | - Gina D Kusuma
- Hudson Institute of Medical Research, Melbourne, Australia
- Monash University, Melbourne, Australia
| | - Sören Kuypers
- Hasselt University, Biomedical Research Institute (BIOMED), Hasselt, Belgium
| | - Saara Laitinen
- Finnish Red Cross Blood Service, Research and Development, Helsinki, Finland
| | - Scott M Langevin
- Cincinnati Cancer Center, Cincinnati, OH, USA
- University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Lucia R Languino
- Thomas Jefferson University, Sidney Kimmel Medical School, Department of Cancer Biology, Philadelphia, PA, USA
| | - Joanne Lannigan
- University of Virginia, Flow Cytometry Core, School of Medicine, Charlottesville, VA, USA
| | - Cecilia Lässer
- University of Gothenburg, Institute of Medicine at Sahlgrenska Academy, Krefting Research Centre, Gothenburg, Sweden
| | - Louise C Laurent
- University of California, San Diego, Department of Obstetrics, Gynecology, and Reproductive Sciences, La Jolla, CA, USA
| | - Gregory Lavieu
- Institut Curie, INSERM U932, PSL Research University, Paris, France
| | | | - Soazig Le Lay
- INSERM U1063, Université d’Angers, CHU d’Angers, Angers, France
| | - Myung-Shin Lee
- Eulji University, School of Medicine, Daejeon, South Korea
| | | | - Debora S Lemos
- Federal University of Paraná, Department of Genetics, Human Molecular Genetics Laboratory, Curitiba, Brazil
| | - Metka Lenassi
- University of Ljubljana, Faculty of Medicine, Institute of Biochemistry, Ljubljana, Slovenia
| | | | - Isaac TS Li
- University of British Columbia Okanagan, Kelowna, Canada
| | - Ke Liao
- University of Nebraska Medical Center, Department of Pharmacology and Experimental Neuroscience, Omaha, NE, USA
| | - Sten F Libregts
- University of Cambridge School of Clinical Medicine, Addenbrooke’s Hospital, Department of Medicine, Cambridge NIHR BRC Cell Phenotyping Hub, Cambridge, UK
| | - Erzsebet Ligeti
- Semmelweis University, Department of Physiology, Budapest, Hungary
| | - Rebecca Lim
- Hudson Institute of Medical Research, Melbourne, Australia
- Monash University, Melbourne, Australia
| | - Sai Kiang Lim
- Institute of Medical Biology (IMB), Agency for Science and Technology (A*STAR), Singapore
| | - Aija Linē
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Karen Linnemannstöns
- University Medical Center Göttingen, Developmental Biochemistry, Göttingen, Germany
- University Medical Center Göttingen, Hematology and Oncology, Göttingen, Germany
| | - Alicia Llorente
- Oslo University Hospital-The Norwegian Radium Hospital, Institute for Cancer Research, Department of Molecular Cell Biology, Oslo, Norway
| | - Catherine A Lombard
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique (IREC), Laboratory of Pediatric Hepatology and Cell Therapy, Brussels, Belgium
| | - Magdalena J Lorenowicz
- Utrecht University, University Medical Center Utrecht, Center for Molecular Medicine & Regenerative Medicine Center, Utrecht, The Netherlands
| | - Ákos M Lörincz
- Semmelweis University, Department of Physiology, Budapest, Hungary
| | - Jan Lötvall
- University of Gothenburg, Institute of Medicine at Sahlgrenska Academy, Krefting Research Centre, Gothenburg, Sweden
| | - Jason Lovett
- Stellenbosch University, Department of Physiological Sciences, Stellenbosch, South Africa
| | - Michelle C Lowry
- Trinity College Dublin, School of Pharmacy and Pharmaceutical Sciences, Panoz Institute & Trinity Biomedical Sciences Institute, Dublin, Ireland
| | - Xavier Loyer
- INSERM UMR-S 970, Paris Cardiovascular Research Center, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Quan Lu
- Harvard University, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Barbara Lukomska
- Mossakowski Medical Research Centre, NeuroRepair Department, Warsaw, Poland
| | - Taral R Lunavat
- K.G. Jebsen Brain Tumor Research Centre, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Sybren LN Maas
- Utrecht University, University Medical Center Utrecht, Department of Neurosurgery, Brain Center Rudolf Magnus, Institute of Neurosciences, Utrecht, The Netherlands
- Utrecht University, University Medical Center Utrecht, Department of Pathology, Utrecht, The Netherlands
| | | | - Antonio Marcilla
- Universitat de València, Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia, Àrea de Parasitologia, Valencia, Spain
- Universitat de València, Health Research Institute La Fe, Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Valencia, Spain
| | - Jacopo Mariani
- Università degli Studi di Milano, Department of Clinical Sciences and Community Health, EPIGET LAB, Milan, Italy
| | | | | | | | | | | | - Mathilde Mathieu
- Institut Curie, INSERM U932, PSL Research University, Paris, France
| | - Suresh Mathivanan
- La Trobe University, La Trobe Institute for Molecular Science, Department of Biochemistry and Genetics, Bundoora, Australia
| | - Marco Maugeri
- University of Gothenburg, Sahlgrenska Academy, Department of Rheumatology and Inflammation Research, Gothenburg, Sweden
| | | | - Mark J McVey
- SickKids Hospital, Department of Anesthesia and Pain Medicine, Toronto, Canada
- University of Toronto, Department of Anesthesia, Toronto, Canada
| | - David G Meckes
- Florida State University College of Medicine, Department of Biomedical Sciences, Tallahassee, FL, USA
| | - Katie L Meehan
- The School of Biomedical Sciences, University of Western Australia, Perth, Australia
| | - Inge Mertens
- University of Antwerp, Centre for Proteomics, Antwerp, Belgium
- Vlaamse Instelling voor Technologisch Onderzoek (VITO), Mol, Belgium
| | - Valentina R Minciacchi
- Georg-Speyer-Haus Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - Andreas Möller
- QIMR Berghofer Medical Research Institute, Herston, Australia
| | - Malene Møller Jørgensen
- Aalborg University Hospital, Department of Clinical Immunology, Aalborg, Denmark
- EVSEARCH.DK, Denmark
| | - Aizea Morales-Kastresana
- National Institutes of Health, National Cancer Institute, Center for Cancer Research, Bethesda, MD, USA
| | | | - François Mullier
- Namur Thrombosis and Hemostasis Center (NTHC), NARILIS, Namur, Belgium
- Université Catholique de Louvain, CHU UCL Namur, Hematology-Hemostasis Laboratory, Yvoir, Belgium
| | - Maurizio Muraca
- University of Padova, Department of Women’s and Children’s Health, Padova, Italy
| | - Luca Musante
- University of Virginia Health System, Department of Medicine, Division of Nephrology, Charlottesville, VA, USA
| | - Veronika Mussack
- Technical University of Munich, TUM School of Life Sciences Weihenstephan, Division of Animal Physiology and Immunology, Freising, Germany
| | - Dillon C Muth
- The Johns Hopkins University School of Medicine, Department of Molecular and Comparative Pathobiology, Baltimore, MD, USA
| | - Kathryn H Myburgh
- Stellenbosch University, Department of Physiological Sciences, Stellenbosch, South Africa
| | - Tanbir Najrana
- Brown University, Women and Infants Hospital, Providence, RI, USA
| | - Muhammad Nawaz
- University of Gothenburg, Sahlgrenska Academy, Department of Rheumatology and Inflammation Research, Gothenburg, Sweden
| | - Irina Nazarenko
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Institute for Infection Prevention and Hospital Epidemiology, Freiburg, Germany
| | - Peter Nejsum
- Aarhus University, Department of Clinical Medicine, Aarhus, Denmark
| | - Christian Neri
- Sorbonne Université, Centre National de la Recherche Scientifique, Research Unit Biology of Adaptation and Aging (B2A), Team Compensation in Neurodegenerative and Aging (Brain-C), Paris, France
| | - Tommaso Neri
- University of Pisa, Centro Dipartimentale di Biologia Cellulare Cardio-Respiratoria, Pisa, Italy
| | - Rienk Nieuwland
- Academic Medical Centre of the University of Amsterdam, Department of Clinical Chemistry and Vesicle Observation Centre, Amsterdam, The Netherlands
| | - Leonardo Nimrichter
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia, Rio de Janeiro, Brazil
| | | | - Esther NM Nolte-’t Hoen
- Utrecht University, Faculty of Veterinary Medicine, Department of Biochemistry and Cell Biology, Utrecht, The Netherlands
| | - Nicole Noren Hooten
- National Institutes of Health, National Institute on Aging, Baltimore, MD, USA
| | - Lorraine O’Driscoll
- Trinity College Dublin, School of Pharmacy and Pharmaceutical Sciences, Panoz Institute & Trinity Biomedical Sciences Institute, Dublin, Ireland
| | - Tina O’Grady
- University of Liège, GIGA-R(MBD), PSI Laboratory, Liège, Belgium
| | - Ana O’Loghlen
- Queen Mary University of London, Blizard Institute, Epigenetics & Cellular Senescence Group, London, UK
| | - Takahiro Ochiya
- National Cancer Center Research Institute, Division of Molecular and Cellular Medicine, Tokyo, Japan
| | - Martin Olivier
- McGill University, The Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Alberto Ortiz
- IIS-Fundacion Jimenez Diaz-UAM, Department of Nephrology and Hypertension, Madrid, Spain
- Spanish Kidney Research Network, REDINREN, Madrid, Spain
- Universidad Autónoma de Madrid, School of Medicine, Department of Medicine, Madrid, Spain
| | - Luis A Ortiz
- Graduate School of Public Health at the University of Pittsburgh, Division of Occupational and Environmental Medicine, Pittsburgh, PA, USA
| | | | - Ole Østergaard
- Statens Serum Institut, Department of Autoimmunology and Biomarkers, Copenhagen, Denmark
- University of Copenhagen, Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein Research, Copenhagen, Denmark
| | - Matias Ostrowski
- University of Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina
| | - Jaesung Park
- POSTECH (Pohang University of Science and Technology), Department of Life Sciences, Pohang, South Korea
| | - D. Michiel Pegtel
- Amsterdam University Medical Centers, Department of Pathology, Amsterdam, The Netherlands
| | - Hector Peinado
- Spanish National Cancer Research Center (CNIO), Molecular Oncology Programme, Microenvironment and Metastasis Laboratory, Madrid, Spain
| | - Francesca Perut
- IRCCS - Istituto Ortopedico Rizzoli, Laboratory for Orthopaedic Pathophysiology and Regenerative Medicine, Bologna, Italy
| | - Michael W Pfaffl
- Technical University of Munich, TUM School of Life Sciences Weihenstephan, Division of Animal Physiology and Immunology, Freising, Germany
| | - Donald G Phinney
- The Scripps Research Institute-Scripps Florida, Department of Molecular Medicine, Jupiter, FL, USA
| | - Bartijn CH Pieters
- Radboud University Medical Center, Department of Rheumatology, Nijmegen, The Netherlands
| | - Ryan C Pink
- Oxford Brookes University, Department of Biological and Medical Sciences, Oxford, UK
| | - David S Pisetsky
- Duke University Medical Center, Departments of Medicine and Immunology, Durham, NC, USA
- Durham VAMC, Medical Research Service, Durham, NC, USA
| | | | - Iva Polakovicova
- Pontificia Universidad Católica de Chile, Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
- Pontificia Universidad Católica de Chile, Faculty of Medicine, Department of Hematology-Oncology, Santiago, Chile
| | - Ivan KH Poon
- La Trobe University, La Trobe Institute for Molecular Science, Department of Biochemistry and Genetics, Bundoora, Australia
| | - Bonita H Powell
- The Johns Hopkins University School of Medicine, Department of Molecular and Comparative Pathobiology, Baltimore, MD, USA
| | | | - Lynn Pulliam
- University of California, San Francisco, CA, USA
- Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Peter Quesenberry
- The Warren Alpert Medical School of Brown University, Department of Medicine, Providence, RI, USA
| | - Annalisa Radeghieri
- CSGI - Research Center for Colloids and Nanoscience, Florence, Italy
- University of Brescia, Department of Molecular and Translational Medicine, Brescia, Italy
| | - Robert L Raffai
- Department of Veterans Affairs, San Francisco, CA, USA
- University of California, San Francisco, CA, USA
| | - Stefania Raimondo
- University of Palermo, Department of Biopathology and Medical Biotechnologies, Palermo, Italy
| | - Janusz Rak
- McGill University, Montreal, Canada
- McGill University, The Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Marcel I Ramirez
- Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
- Universidade Federal de Paraná, Paraná, Brazil
| | - Graça Raposo
- Institut Curie, CNRS UMR144, PSL Research University, Paris, France
| | - Morsi S Rayyan
- University of Michigan Medical School, Ann Arbor, MI, USA
| | - Neta Regev-Rudzki
- Weizmann Institute of Science, Department of Biomolecular Sciences, Rehovot, Israel
| | - Franz L Ricklefs
- University Medical Center Hamburg-Eppendorf, Department of Neurosurgery, Hamburg, Germany
| | - Paul D Robbins
- University of Minnesota Medical School, Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, Minneapolis, MN, USA
| | - David D Roberts
- National Institutes of Health, National Cancer Institute, Center for Cancer Research, Laboratory of Pathology, Bethesda, MD, USA
| | | | - Eva Rohde
- Paracelsus Medical University, Department of Transfusion Medicine, Salzburg, Austria
- Paracelsus Medical University, GMP Unit, Salzburg, Austria
- Spinal Cord Injury & Tissue Regeneration Center Salzburg (SCI-TReCS), Salzburg, Austria
| | - Sophie Rome
- University of Lyon, Lyon-Sud Faculty of Medicine, CarMeN Laboratory (UMR INSERM 1060-INRA 1397), Pierre-Bénite, France
| | - Kasper MA Rouschop
- Maastricht University, GROW, School for Oncology and Developmental Biology, Maastricht Radiation Oncology (MaastRO) Lab, Maastricht, The Netherlands
| | - Aurelia Rughetti
- Sapienza University of Rome, Department of Experimental Medicine, Rome, Italy
| | | | - Paula Saá
- American Red Cross, Scientific Affairs, Gaithersburg, MD, USA
| | - Susmita Sahoo
- Icahn School of Medicine at Mount Sinai, Department of Medicine, Cardiology, New York City, NY, USA
| | - Edison Salas-Huenuleo
- Advanced Center for Chronic Diseases, Santiago, Chile
- University of Chile, Faculty of Chemical and Pharmaceutical Science, Laboratory of Nanobiotechnology and Nanotoxicology, Santiago, Chile
| | - Catherine Sánchez
- Clínica las Condes, Extracellular Vesicles in Personalized Medicine Group, Santiago, Chile
| | - Julie A Saugstad
- Oregon Health & Science University, Department of Anesthesiology & Perioperative Medicine, Portland, OR, USA
| | - Meike J Saul
- Technische Universität Darmstadt, Department of Biology, Darmstadt, Germany
| | - Raymond M Schiffelers
- University Medical Center Utrecht, Laboratory for Clinical Chemistry & Hematology, Utrecht, The Netherlands
| | - Raphael Schneider
- University of Toronto, Department of Laboratory Medicine and Pathobiology, Toronto, Canada
- University of Toronto, Department of Medicine, Division of Neurology, Toronto, Canada
| | - Tine Hiorth Schøyen
- The Johns Hopkins University School of Medicine, Department of Molecular and Comparative Pathobiology, Baltimore, MD, USA
| | | | - Eriomina Shahaj
- Fondazione IRCCS Istituto Nazionale dei Tumori, Unit of Immunotherapy of Human Tumors, Milan, Italy
| | - Shivani Sharma
- University of California, Los Angeles, California NanoSystems Institute, Los Angeles, CA, USA
- University of California, Los Angeles, Department of Pathology and Laboratory Medicine, Los Angeles, CA, USA
- University of California, Los Angeles, Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Olga Shatnyeva
- AstraZeneca, Discovery Sciences, IMED Biotech Unit, Gothenburg, Sweden
| | - Faezeh Shekari
- Royan Institute for Stem Cell Biology and Technology, ACECR, Cell Science Research Center, Department of Stem Cells and Developmental Biology, Tehran, Iran
| | - Ganesh Vilas Shelke
- University of Gothenburg, Institute of Clinical Sciences, Department of Surgery, Sahlgrenska Cancer Center, Gothenburg, Sweden
- University of Gothenburg, Institute of Medicine at Sahlgrenska Academy, Krefting Research Centre, Gothenburg, Sweden
| | - Ashok K Shetty
- Research Service, Olin E. Teague Veterans’ Medical Center, Temple, TX, USA
- Texas A&M University College of Medicine, Institute for Regenerative Medicine and Department of Molecular and Cellular Medicine, College Station, TX, USA
| | | | - Pia R-M Siljander
- University of Helsinki, EV Core Facility, Helsinki, Finland
- University of Helsinki, Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences Research Programme, EV group, Helsinki, Finland
| | - Andreia M Silva
- INEB - Instituto de Engenharia Biomédica, Porto, Portugal
- University of Porto, i3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- University of Porto, ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Porto, Portugal
| | - Agata Skowronek
- Maria Sklodowska-Curie Institute - Oncology Center, Gliwice Branch, Gliwice, Poland
| | - Orman L Snyder
- Kansas State University, College of Veterinary Medicine, Manhattan, KS, USA
| | | | - Barbara W Sódar
- Semmelweis University, Department of Genetics, Cell- and Immunobiology, Budapest, Hungary
| | - Carolina Soekmadji
- QIMR Berghofer Medical Research Institute, Herston, Australia
- The University of Queensland, Brisbane, Australia
| | - Javier Sotillo
- James Cook University, Australian Institute of Tropical Health and Medicine, Centre for Biodiscovery and Molecular Development of Therapeutics, Cairns, Australia
| | | | - Willem Stoorvogel
- Utrecht University, Faculty of Veterinary Medicine, Department of Biochemistry and Cell Biology, Utrecht, The Netherlands
| | - Shannon L Stott
- Harvard Medical School, Department of Medicine, Boston, MA, USA
- Massachusetts General Cancer Center, Boston, MA, USA
| | - Erwin F Strasser
- FAU Erlangen-Nuremberg, Transfusion and Haemostaseology Department, Erlangen, Germany
| | - Simon Swift
- University of Auckland, Department of Molecular Medicine and Pathology, Auckland, New Zealand
| | - Hidetoshi Tahara
- Hiroshima University, Institute of Biomedical & Health Sciences, Department of Cellular and Molecular Biology, Hiroshima, Japan
| | - Muneesh Tewari
- University of Michigan, Biointerfaces Institute, Ann Arbor, MI, USA
- University of Michigan, Department of Biomedical Engineering, Ann Arbor, MI, USA
- University of Michigan, Department of Internal Medicine - Hematology/Oncology Division, Ann Arbor, MI, USA
| | - Kate Timms
- University of Manchester, Manchester, UK
| | - Swasti Tiwari
- Georgetown University, Department of Medicine, Washington, DC, USA
- Sanjay Gandhi Postgraduate Institute of Medical Sciences, Department of Molecular Medicine & Biotechnology, Lucknow, India
| | - Rochelle Tixeira
- La Trobe University, La Trobe Institute for Molecular Science, Department of Biochemistry and Genetics, Bundoora, Australia
| | - Mercedes Tkach
- Institut Curie, INSERM U932, PSL Research University, Paris, France
| | - Wei Seong Toh
- National University of Singapore, Faculty of Dentistry, Singapore
| | - Richard Tomasini
- INSERM U1068, Aix Marseille University, CNRS UMR7258, Marseille, France
| | | | - Juan Pablo Tosar
- Institut Pasteur de Montevideo, Functional Genomics Unit, Montevideo, Uruguay
- Universidad de la República, Faculty of Science, Nuclear Research Center, Analytical Biochemistry Unit, Montevideo, Uruguay
| | | | - Lorena Urbanelli
- University of Perugia, Department of Chemistry, Biology and Biotechnology, Perugia, Italy
| | - Pieter Vader
- University Medical Center Utrecht, Laboratory for Clinical Chemistry & Hematology, Utrecht, The Netherlands
| | - Bas WM van Balkom
- University Medical Center Utrecht, Department of Nephrology and Hypertension, Utrecht, The Netherlands
| | - Susanne G van der Grein
- Utrecht University, Faculty of Veterinary Medicine, Department of Biochemistry and Cell Biology, Utrecht, The Netherlands
| | - Jan Van Deun
- Cancer Research Institute Ghent, Ghent, Belgium
- Ghent University, Department of Radiation Oncology and Experimental Cancer Research, Laboratory of Experimental Cancer Research, Ghent, Belgium
| | - Martijn JC van Herwijnen
- Utrecht University, Faculty of Veterinary Medicine, Department of Biochemistry and Cell Biology, Utrecht, The Netherlands
| | | | | | - Martin E van Royen
- Department of Pathology, Erasmus MC, Erasmus Optical Imaging Centre, Rotterdam, The Netherlands
| | | | - M Helena Vasconcelos
- IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- University of Porto, Faculty of Pharmacy (FFUP), Porto, Portugal
- University of Porto, i3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal
| | - Ivan J Vechetti
- University of Kentucky, College of Medicine, Department of Physiology, Lexington, KY, USA
| | - Tiago D Veit
- Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Departamento de Microbiologia, Imunologia e Parasitologia, Porto Alegre, Brazil
| | - Laura J Vella
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia
- The University of Melbourne, The Department of Medicine, Melbourne, Australia
| | - Émilie Velot
- UMR 7365 CNRS-Université de Lorraine, Vandœuvre-lès-Nancy, France
| | | | - Beate Vestad
- Oslo University Hospital Rikshospitalet, Research Institute of Internal Medicine, Oslo, Norway
- Regional Research Network on Extracellular Vesicles, RRNEV, Oslo, Norway
- University of Oslo, Institute of Clinical Medicine, Oslo, Norway
| | - Jose L Viñas
- Kidney Research Centre, Ottawa, Canada
- Ottawa Hospital Research Institute, Ottawa, Canada
- University of Ottawa, Ottawa, Canada
| | - Tamás Visnovitz
- Semmelweis University, Department of Genetics, Cell- and Immunobiology, Budapest, Hungary
| | - Krisztina V Vukman
- Semmelweis University, Department of Genetics, Cell- and Immunobiology, Budapest, Hungary
| | - Jessica Wahlgren
- University of Gothenburg, The Sahlgrenska Academy, Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Mölndal, Sweden
| | - Dionysios C Watson
- Case Western Reserve University, Department of Medicine, Cleveland, OH, USA
- University Hospitals Cleveland Medical Center, Department of Medicine, Cleveland, OH, USA
| | - Marca HM Wauben
- Utrecht University, Faculty of Veterinary Medicine, Department of Biochemistry and Cell Biology, Utrecht, The Netherlands
| | - Alissa Weaver
- Vanderbilt University School of Medicine, Department of Cell and Developmental Biology, Nashville, TN, USA
| | | | - Viktoria Weber
- Danube University Krems, Department for Biomedical Research and Christian Doppler Laboratory for Innovative Therapy Approaches in Sepsis, Krems an der Donau, Austria
| | - Ann M Wehman
- University of Würzburg, Rudolf Virchow Center, Würzburg, Germany
| | - Daniel J Weiss
- The University of Vermont Medical Center, Department of Medicine, Burlington, VT, USA
| | - Joshua A Welsh
- National Institutes of Health, National Cancer Institute, Center for Cancer Research, Bethesda, MD, USA
| | - Sebastian Wendt
- University Hospital RWTH Aachen, Department of Thoracic and Cardiovascular Surgery, Aachen, Germany
| | - Asa M Wheelock
- Karolinska Institute, Department of Medicine and Center for Molecular Medicine, Respiratory Medicine Unit, Stockholm, Sweden
| | - Zoltán Wiener
- Semmelweis University, Department of Genetics, Cell- and Immunobiology, Budapest, Hungary
| | - Leonie Witte
- University Medical Center Göttingen, Developmental Biochemistry, Göttingen, Germany
- University Medical Center Göttingen, Hematology and Oncology, Göttingen, Germany
| | - Joy Wolfram
- Chinese Academy of Sciences, Wenzhou Institute of Biomaterials and Engineering, Wenzhou, China
- Houston Methodist Research Institute, Department of Nanomedicine, Houston, TX, USA
- Mayo Clinic, Department of Transplantation Medicine/Department of Physiology and Biomedical Engineering, Jacksonville, FL, USA
| | - Angeliki Xagorari
- George Papanicolaou Hospital, Public Cord Blood Bank, Department of Haematology - BMT Unit, Thessaloniki, Greece
| | - Patricia Xander
- Universidade Federal de São Paulo Campus Diadema, Departamento de Ciências Farmacêuticas, Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários, São Paulo, Brazil
| | - Jing Xu
- BC Cancer, Canada’s Michael Smith Genome Sciences Centre, Vancouver, Canada
- Simon Fraser University, Department of Molecular Biology and Biochemistry, Burnaby, Canada
| | - Xiaomei Yan
- Xiamen University, Department of Chemical Biology, Xiamen, China
| | - María Yáñez-Mó
- Centro de Biología Molecular Severo Ochoa, Instituto de Investigación Sanitaria la Princesa (IIS-IP), Madrid, Spain
- Universidad Autónoma de Madrid, Departamento de Biología Molecular, Madrid, Spain
| | - Hang Yin
- Tsinghua University, School of Pharmaceutical Sciences, Beijing, China
| | - Yuana Yuana
- Technical University Eindhoven, Faculty Biomedical Technology, Eindhoven, The Netherlands
| | - Valentina Zappulli
- University of Padova, Department of Comparative Biomedicine and Food Science, Padova, Italy
| | - Jana Zarubova
- Institute of Physiology CAS, Department of Biomaterials and Tissue Engineering, BIOCEV, Vestec, Czech Republic
- Institute of Physiology CAS, Department of Biomaterials and Tissue Engineering, Prague, Czech Republic
- University of California, Los Angeles, Department of Bioengineering, Los Angeles, CA, USA
| | - Vytautas Žėkas
- Vilnius University, Institute of Biomedical Sciences, Department of Physiology, Biochemistry, Microbiology and Laboratory Medicine, Vilnius, Lithuania
| | - Jian-ye Zhang
- Guangzhou Medical University, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology, Guangzhou, China
| | - Zezhou Zhao
- The Johns Hopkins University School of Medicine, Department of Molecular and Comparative Pathobiology, Baltimore, MD, USA
| | - Lei Zheng
- Nanfang Hospital, Southern Medical University, Department of Clinical Laboratory Medicine, Guangzhou, China
| | | | - Antje M Zickler
- Karolinska Institute, Clinical Research Center, Unit for Molecular Cell and Gene Therapy Science, Stockholm, Sweden
| | - Pascale Zimmermann
- Aix-Marseille Université, Institut Paoli-Calmettes, INSERM U1068, CNRS UMR7258, Centre de Recherche en Cancérologie de Marseille, Marseille, France
- KU Leuven (Leuven University), Department of Human Genetics, Leuven, Belgium
| | - Angela M Zivkovic
- University of California, Davis, Department of Nutrition, Davis, CA, USA
| | | | - Ewa K Zuba-Surma
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell Biology, Kraków, Poland
| |
Collapse
|
131
|
Skotland T, Hessvik NP, Sandvig K, Llorente A. Exosomal lipid composition and the role of ether lipids and phosphoinositides in exosome biology. J Lipid Res 2018; 60:9-18. [PMID: 30076207 PMCID: PMC6314266 DOI: 10.1194/jlr.r084343] [Citation(s) in RCA: 483] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 07/24/2018] [Indexed: 12/11/2022] Open
Abstract
Exosomes are a type of extracellular vesicle released from cells after fusion of multivesicular bodies with the plasma membrane. These vesicles are often enriched in cholesterol, SM, glycosphingolipids, and phosphatidylserine. Lipids not only have a structural role in exosomal membranes but also are essential players in exosome formation and release to the extracellular environment. Our knowledge about the importance of lipids in exosome biology is increasing due to recent technological developments in lipidomics and a stronger focus on the biological functions of these molecules. Here, we review the available information about the lipid composition of exosomes. Special attention is given to ether lipids, a relatively unexplored type of lipids involved in membrane trafficking and abundant in some exosomes. Moreover, we discuss how the lipid composition of exosome preparations may provide useful information about their purity. Finally, we discuss the role of phosphoinositides, membrane phospholipids that help to regulate membrane dynamics, in exosome release and how this process may be linked to secretory autophagy. Knowledge about exosome lipid composition is important to understand the biology of these vesicles and to investigate possible medical applications.
Collapse
Affiliation(s)
- Tore Skotland
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital-Norwegian Radium Hospital, 0379 Oslo, Norway
| | - Nina P Hessvik
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital-Norwegian Radium Hospital, 0379 Oslo, Norway
| | - Kirsten Sandvig
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital-Norwegian Radium Hospital, 0379 Oslo, Norway.,Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Alicia Llorente
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital-Norwegian Radium Hospital, 0379 Oslo, Norway
| |
Collapse
|
132
|
Müller JA, Harms M, Krüger F, Groß R, Joas S, Hayn M, Dietz AN, Lippold S, von Einem J, Schubert A, Michel M, Mayer B, Cortese M, Jang KS, Sandi-Monroy N, Deniz M, Ebner F, Vapalahti O, Otto M, Bartenschlager R, Herbeuval JP, Schmidt-Chanasit J, Roan NR, Münch J. Semen inhibits Zika virus infection of cells and tissues from the anogenital region. Nat Commun 2018; 9:2207. [PMID: 29880824 PMCID: PMC5992203 DOI: 10.1038/s41467-018-04442-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 04/26/2018] [Indexed: 02/06/2023] Open
Abstract
Zika virus (ZIKV) causes severe birth defects and can be transmitted via sexual intercourse. Semen from ZIKV-infected individuals contains high viral loads and may therefore serve as an important vector for virus transmission. Here we analyze the effect of semen on ZIKV infection of cells and tissues derived from the anogenital region. ZIKV replicates in all analyzed cell lines, primary cells, and endometrial or vaginal tissues. However, in the presence of semen, infection by ZIKV and other flaviviruses is potently inhibited. We show that semen prevents ZIKV attachment to target cells, and that an extracellular vesicle preparation from semen is responsible for this anti-ZIKV activity. Our findings suggest that ZIKV transmission is limited by semen. As such, semen appears to serve as a protector against sexual ZIKV transmission, despite the availability of highly susceptible cells in the anogenital tract and high viral loads in this bodily fluid.
Collapse
Affiliation(s)
- Janis A Müller
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Mirja Harms
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Franziska Krüger
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Rüdiger Groß
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Simone Joas
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Manuel Hayn
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Andrea N Dietz
- Institute of Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Sina Lippold
- Institute of Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Jens von Einem
- Institute of Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Axel Schubert
- Institute of Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Manuela Michel
- Institute of Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Benjamin Mayer
- Institute of Epidemiology and Medical Biometry, Ulm University, 89075, Ulm, Germany
| | - Mirko Cortese
- Department of Infectious Diseases, Molecular Virology, Medical Faculty, Heidelberg University, 69120, Heidelberg, Germany
| | - Karen S Jang
- Gladstone Institute of Virology and Immunology, San Francisco, CA, 94158, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | | | - Miriam Deniz
- Klinik für Frauenheilkunde und Geburtshilfe, Ulm University Medical Center, 89081, Ulm, Germany
| | - Florian Ebner
- Klinik für Frauenheilkunde und Geburtshilfe, Ulm University Medical Center, 89081, Ulm, Germany
- Frauenklinik, Helios Amper Klinik, 85221, Dachau, Germany
| | - Olli Vapalahti
- Department of Virology and Immunology, University of Helsinki and Helsinki University Hospital, 00014, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, 00014, Helsinki, Finland
| | - Markus Otto
- Department of Neurology, Ulm University, 89081, Ulm, Germany
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Medical Faculty, Heidelberg University, 69120, Heidelberg, Germany
- German Center for Infection Research (DZIF), Heidelberg Partner Site, Heidelberg University, 69120, Heidelberg, Germany
| | - Jean-Philippe Herbeuval
- Chemistry, Biology, Modeling and Immunotherapy (CBMIT), CNRS, UMR8601, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Université Paris Descartes, CICB Paris, 75006, Paris, France
| | - Jonas Schmidt-Chanasit
- Bernhard Nocht Institute for Tropical Medicine, World Health Organization Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, 20359, Hamburg, Germany
- German Centre for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel, 20359, Hamburg, Germany
| | - Nadia R Roan
- Gladstone Institute of Virology and Immunology, San Francisco, CA, 94158, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany.
- Core Facility Functional Peptidomics, Ulm University Medical Center, 89081, Ulm, Germany.
| |
Collapse
|
133
|
Simon C, Greening DW, Bolumar D, Balaguer N, Salamonsen LA, Vilella F. Extracellular Vesicles in Human Reproduction in Health and Disease. Endocr Rev 2018; 39:292-332. [PMID: 29390102 DOI: 10.1210/er.2017-00229] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/25/2018] [Indexed: 02/07/2023]
Abstract
Extensive evidence suggests that the release of membrane-enclosed compartments, more commonly known as extracellular vesicles (EVs), is a potent newly identified mechanism of cell-to-cell communication both in normal physiology and in pathological conditions. This review presents evidence about the formation and release of different EVs, their definitive markers and cargo content in reproductive physiological processes, and their capacity to convey information between cells through the transfer of functional protein and genetic information to alter phenotype and function of recipient cells associated with reproductive biology. In the male reproductive tract, epididymosomes and prostasomes participate in regulating sperm motility activation, capacitation, and acrosome reaction. In the female reproductive tract, follicular fluid, oviduct/tube, and uterine cavity EVs are considered as vehicles to carry information during oocyte maturation, fertilization, and embryo-maternal crosstalk. EVs via their cargo might be also involved in the triggering, maintenance, and progression of reproductive- and obstetric-related pathologies such as endometriosis, polycystic ovarian syndrome, preeclampsia, gestational diabetes, and erectile dysfunction. In this review, we provide current knowledge on the present and future use of EVs not only as biomarkers, but also as therapeutic targeting agents, mainly as vectors for drug or compound delivery into target cells and tissues.
Collapse
Affiliation(s)
- Carlos Simon
- Igenomix Foundation, Valencia, Spain.,Instituto de Investigación Sanitaria Hospital Clínico (INCLIVA), Valencia, Spain.,Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, Valencia University, Valencia, Spain.,Department of Obstetrics and Gynecology, Stanford University, Palo Alto, California
| | - David W Greening
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - David Bolumar
- Igenomix Foundation, Valencia, Spain.,Instituto de Investigación Sanitaria Hospital Clínico (INCLIVA), Valencia, Spain
| | - Nuria Balaguer
- Igenomix Foundation, Valencia, Spain.,Instituto de Investigación Sanitaria Hospital Clínico (INCLIVA), Valencia, Spain
| | - Lois A Salamonsen
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Felipe Vilella
- Igenomix Foundation, Valencia, Spain.,Instituto de Investigación Sanitaria Hospital Clínico (INCLIVA), Valencia, Spain.,Department of Obstetrics and Gynecology, Stanford University, Palo Alto, California
| |
Collapse
|
134
|
Sharma S, LeClaire M, Gimzewski JK. Ascent of atomic force microscopy as a nanoanalytical tool for exosomes and other extracellular vesicles. NANOTECHNOLOGY 2018; 29:132001. [PMID: 29376505 DOI: 10.1088/1361-6528/aaab06] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Over the last 30 years, atomic force microscopy (AFM) has made several significant contributions to the field of biology and medicine. In this review, we draw our attention to the recent applications and promise of AFM as a high-resolution imaging and force sensing technology for probing subcellular vesicles: exosomes and other extracellular vesicles. Exosomes are naturally occurring nanoparticles found in several body fluids such as blood, saliva, cerebrospinal fluid, amniotic fluid and urine. Exosomes mediate cell-cell communication, transport proteins and genetic content between distant cells, and are now known to play important roles in progression of diseases such as cancers, neurodegenerative disorders and infectious diseases. Because exosomes are smaller than 100 nm (about 30-120 nm), the structural and molecular characterization of these vesicles at the individual level has been challenging. AFM has revealed a new degree of complexity in these nanosized vesicles and generated growing interest as a nanoscale tool for characterizing the abundance, morphology, biomechanics, and biomolecular make-up of exosomes. With the recent interest in exosomes for diagnostic and therapeutic applications, AFM-based characterization promises to contribute towards improved understanding of these particles at the single vesicle and sub-vesicular levels. When coupled with complementary methods like optical super resolution STED and Raman, AFM could further unlock the potential of exosomes as disease biomarkers and as therapeutic agents.
Collapse
Affiliation(s)
- S Sharma
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, United States of America
| | | | | |
Collapse
|
135
|
Simple isolation and characterization of seminal plasma extracellular vesicle and its total RNA in an academic lab. 3 Biotech 2018; 8:139. [PMID: 29484278 DOI: 10.1007/s13205-018-1157-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 02/05/2018] [Indexed: 01/08/2023] Open
Abstract
Extracellular vesicles (EVs) are small membrane-bound sacs, identified in many body fluids of humans. Standard extracellular vesicle separation methods such as differential and ultracentrifugation are very expensive, not affordable in academic labs. So, the current research tried to isolate seminal plasma EVs using polyethylene glycol (PEG) precipitation process. Normospermia semen from "Milann - The Fertility Center" processed to isolate EVs by PEG method. Nanodrop spectrophotometer showed presence of EVs by indirectly measuring protein content of precipitated EVs. EVs isolated by PEG precipitation showed a wide size range from 30 to 1000 nm with Z average of 75.4 nm and a PI of 0.464, whereas ultracentrifuge sample showed size range of 60-1000 nm with Z average of 501.3 nm with a PI of 0.692. Edax analysis also showed good elemental pattern. Total RNA extraction from PEG EVs analysed with nanodrop spectrophotometer, showed presence of RNA content in varying concentrations obtained from different ratios in nanograms. Thus, the current study concludes that seminal plasma EVs isolated by PEG precipitation is simple, reproducible and non-sensitive to carry out at academic labs.
Collapse
|
136
|
Lässer C, Jang SC, Lötvall J. Subpopulations of extracellular vesicles and their therapeutic potential. Mol Aspects Med 2018; 60:1-14. [PMID: 29432782 DOI: 10.1016/j.mam.2018.02.002] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 01/17/2018] [Accepted: 02/06/2018] [Indexed: 12/20/2022]
Abstract
Extracellular vesicles (EVs), such as exosomes and microvesicles, have over the last 10-15 years been recognized to convey key messages in the molecular communication between cells. Indeed, EVs have the capacity to shuttle proteins, lipids, and nucleotides such as RNA between cells, leading to an array of functional changes in the recipient cells. Importantly, the EV secretome changes significantly in diseased cells and under conditions of cellular stress. More recently, it has become evident that the EV secretome is exceptionally diverse, with many different types of EVs being released by a single cell type, and these EVs can be described in terms of differences in density, molecular cargos, and morphology. This review will discuss the diversity of EVs, will introduce some suggestions for how to categorize them, and will propose how EVs and their subpopulations might be used for very different therapeutic purposes.
Collapse
Affiliation(s)
- Cecilia Lässer
- Krefting Research Centre, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Su Chul Jang
- Krefting Research Centre, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Sweden; Codiak BioSciences, Cambridge, MA 02139, USA
| | - Jan Lötvall
- Krefting Research Centre, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Sweden.
| |
Collapse
|
137
|
Zabeo D, Heumann JM, Schwartz CL, Suzuki-Shinjo A, Morgan G, Widlund PO, Höög JL. A lumenal interrupted helix in human sperm tail microtubules. Sci Rep 2018; 8:2727. [PMID: 29426884 PMCID: PMC5807425 DOI: 10.1038/s41598-018-21165-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 01/26/2018] [Indexed: 01/16/2023] Open
Abstract
Eukaryotic flagella are complex cellular extensions involved in many human diseases gathered under the term ciliopathies. Currently, detailed insights on flagellar structure come mostly from studies on protists. Here, cryo-electron tomography (cryo-ET) was performed on intact human spermatozoon tails and showed a variable number of microtubules in the singlet region (inside the end-piece). Inside the microtubule plus end, a novel left-handed interrupted helix which extends several micrometers was discovered. This structure was named Tail Axoneme Intra-Lumenal Spiral (TAILS) and binds directly to 11 protofilaments on the internal microtubule wall, in a coaxial fashion with the surrounding microtubule lattice. It leaves a gap over the microtubule seam, which was directly visualized in both singlet and doublet microtubules. We speculate that TAILS may stabilize microtubules, enable rapid swimming or play a role in controlling the swimming direction of spermatozoa.
Collapse
Affiliation(s)
- Davide Zabeo
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, 41390, Sweden
| | - John M Heumann
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, 80309, USA
| | - Cindi L Schwartz
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, 80309, USA
| | - Azusa Suzuki-Shinjo
- Krefting Research Centre, University of Gothenburg, Gothenburg, 41390, Sweden
| | - Garry Morgan
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, 80309, USA
| | - Per O Widlund
- Sahlgrenska Academy, University of Gothenburg, Gothenburg, 41390, Sweden
| | - Johanna L Höög
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, 41390, Sweden.
| |
Collapse
|
138
|
He C, Zheng S, Luo Y, Wang B. Exosome Theranostics: Biology and Translational Medicine. Theranostics 2018; 8:237-255. [PMID: 29290805 PMCID: PMC5743472 DOI: 10.7150/thno.21945] [Citation(s) in RCA: 893] [Impact Index Per Article: 127.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 10/04/2017] [Indexed: 02/07/2023] Open
Abstract
Exosomes are common membrane-bound nanovesicles that contain diverse biomolecules, such as lipids, proteins, and nucleic acids. Exosomes are derived from cells through exocytosis, are ingested by target cells, and can transfer biological signals between local or distant cells. Exosome secretion is a constitutive phenomenon that is involved in both physiological and pathological processes and determines both the exosomal surface molecules and the contents. Hence, we can exploit exosomes as biomarkers, vaccines and drug carriers and modify them rationally for therapeutic interventions. However, it is still a challenge to identify, isolate and quantify exosomes accurately, efficiently and selectively. Further studies on exosomes will explore their potential in translational medicine and provide new avenues for the creation of effective clinical diagnostics and therapeutic strategies; the use of exosomes in these applications can be called exosome theranostics. This review describes the fundamental processes of exosome formation and uptake. In addition, the physiological and pathological roles of exosomes in biology are also illustrated with a focus on how exosomes can be exploited or engineered as powerful tools in translational medicine.
Collapse
Affiliation(s)
- Chuanjiang He
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education & Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province), The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009 China
- Institute of Translational Medicine, Zhejiang University, Hangzhou 310029 China
| | - Shu Zheng
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education & Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province), The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009 China
| | - Yan Luo
- College of Basic Medical Sciences, School of Medicine, Zhejiang University, Hangzhou, 310058 China
| | - Ben Wang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education & Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province), The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009 China
- Institute of Translational Medicine, Zhejiang University, Hangzhou 310029 China
| |
Collapse
|
139
|
Sódar BW, Kovács Á, Visnovitz T, Pállinger É, Vékey K, Pocsfalvi G, Turiák L, Buzás EI. Best practice of identification and proteomic analysis of extracellular vesicles in human health and disease. Expert Rev Proteomics 2017; 14:1073-1090. [DOI: 10.1080/14789450.2017.1392244] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Barbara W. Sódar
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Árpád Kovács
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Tamás Visnovitz
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Éva Pállinger
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Károly Vékey
- MS Proteomics Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest Hungary
| | - Gabriella Pocsfalvi
- Mass Spectrometry and Proteomics, Institute of Biosciences and BioResources, National Research Council of Italy, Naples, Italy
| | - Lilla Turiák
- MS Proteomics Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest Hungary
| | - Edit I Buzás
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
- MTA-SE Immunoproteogenomic Extracellular Vesicle Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
140
|
MicroRNA Signaling in Embryo Development. BIOLOGY 2017; 6:biology6030034. [PMID: 28906477 PMCID: PMC5617922 DOI: 10.3390/biology6030034] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/03/2017] [Accepted: 09/12/2017] [Indexed: 02/06/2023]
Abstract
Expression of microRNAs (miRNAs) is essential for embryonic development and serves important roles in gametogenesis. miRNAs are secreted into the extracellular environment by the embryo during the preimplantation stage of development. Several cell types secrete miRNAs into biological fluids in the extracellular environment. These fluid-derived miRNAs have been shown to circulate the body. Stable transport is dependent on proper packaging of the miRNAs into extracellular vesicles (EVs), including exosomes. These vesicles, which also contain RNA, DNA and proteins, are on the forefront of research on cell-to-cell communication. Interestingly, EVs have been identified in many reproductive fluids, such as uterine fluid, where their miRNA content is proposed to serve as a mechanism of crosstalk between the mother and conceptus. Here, we review the role of miRNAs in molecular signaling and discuss their transport during early embryo development and implantation.
Collapse
|
141
|
Ancarola ME, Marcilla A, Herz M, Macchiaroli N, Pérez M, Asurmendi S, Brehm K, Poncini C, Rosenzvit M, Cucher M. Cestode parasites release extracellular vesicles with microRNAs and immunodiagnostic protein cargo. Int J Parasitol 2017; 47:675-686. [PMID: 28668323 DOI: 10.1016/j.ijpara.2017.05.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 04/21/2017] [Accepted: 05/01/2017] [Indexed: 12/17/2022]
Abstract
Intercellular communication is crucial in multiple aspects of cell biology. This interaction can be mediated by several mechanisms including extracellular vesicle (EV) transfer. EV secretion by parasites has been reported in protozoans, trematodes and nematodes. Here we report that this mechanism is present in three different species of cestodes, Taenia crassiceps, Mesocestoides corti and Echinococcus multilocularis. To confirm this we determined, in vitro, the presence of EVs in culture supernatants by transmission electron microscopy. Interestingly, while T. crassiceps and M. corti metacestodes secrete membranous structures into the culture media, similar vesicles were observed in the interface of the germinal and laminated layers of E. multilocularis metacestodes and were hardly detected in culture supernatants. We then determined the protein cargo in the EV-enriched secreted fractions of T. crassiceps and M. corti conditioned media by LC-MS/MS. Among the identified proteins, eukaryotic vesicle-enriched proteins were identified as expected, but also proteins used for cestode disease diagnosis, proteins related to neurotransmission, lipid binding proteins as well as host immunoglobulins and complement factors. Finally, we confirmed by capillary electrophoresis the presence of intravesicular RNA for both parasites and detected microRNAs by reverse transcription-PCR. This is the first report of EV secretion in cestode parasites and of an RNA secretion mechanism. These findings will provide valuable data not only for basic cestode biology but also for the rational search for new diagnostic targets.
Collapse
Affiliation(s)
- María Eugenia Ancarola
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Paraguay 2155, Piso 13, Buenos Aires, Argentina
| | - Antonio Marcilla
- Área de Parasitología, Departamento de Farmacia y Tecnología Farmacéutica y Parasitología, Universitat de València, Burjassot, Valencia, Spain; Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute-La Fe, Universitat de València, 46026 Valencia, Spain
| | - Michaela Herz
- University of Würzburg, Institute of Hygiene and Microbiology, Josef-Schneider-Strasse 2, D-97080 Würzburg, Germany
| | - Natalia Macchiaroli
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Paraguay 2155, Piso 13, Buenos Aires, Argentina
| | - Matías Pérez
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Paraguay 2155, Piso 13, Buenos Aires, Argentina
| | - Sebastián Asurmendi
- Instituto de Biotecnología, CICVyA-INTA, Dr. N. Repetto y Los Reseros s/n, 1686 Hurlingham, Buenos Aires, Argentina
| | - Klaus Brehm
- University of Würzburg, Institute of Hygiene and Microbiology, Josef-Schneider-Strasse 2, D-97080 Würzburg, Germany
| | - Carolina Poncini
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Paraguay 2155, Piso 13, Buenos Aires, Argentina
| | - Mara Rosenzvit
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Paraguay 2155, Piso 13, Buenos Aires, Argentina
| | - Marcela Cucher
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Paraguay 2155, Piso 13, Buenos Aires, Argentina.
| |
Collapse
|
142
|
Dellett M, Brown ED, Guduric-Fuchs J, O'Connor A, Stitt AW, Medina RJ, Simpson DA. MicroRNA-containing extracellular vesicles released from endothelial colony-forming cells modulate angiogenesis during ischaemic retinopathy. J Cell Mol Med 2017. [PMID: 28631889 PMCID: PMC5706503 DOI: 10.1111/jcmm.13251] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Endothelial colony‐forming cells (ECFCs) are a defined subtype of endothelial progenitors that modulate vascular repair and promote perfusion in ischaemic tissues. Their paracrine activity on resident vasculature is ill‐defined, but mediated, at least in part, by the transfer of extracellular vesicles (EVs). To evaluate the potential of isolated EVs to provide an alternative to cell‐based therapies, we first performed a physical and molecular characterization of those released by ECFCs. Their effects upon endothelial cells in vitro and angiogenesis in vivo in a model of proliferative retinopathy were assessed. The EVs expressed typical markers CD9 and CD63 and formed a heterogeneous population ranging in size from ~60 to 1500 nm by electron microscopy. ECFC EVs were taken up by endothelial cells and increased cell migration. This was reflected by microarray analyses which showed significant changes in expression of genes associated with angiogenesis. Sequencing of small RNAs in ECFCs and their EVs showed that multiple microRNAs are highly expressed and concentrated in EVs. The functional categories significantly enriched for the predicted target genes of these microRNAs included angiogenesis. Intravitreally delivered ECFC EVs were associated with the vasculature and significantly reduced the avascular area in a mouse oxygen‐induced retinopathy model. Our findings confirm the potential of isolated EVs to influence endothelial cell function and act as a therapy to modulate angiogenesis. The functions associated with the specific microRNAs detected in ECFC EVs support a role for microRNA transfer in mediating the observed effects.
Collapse
Affiliation(s)
- Margaret Dellett
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast Faculty of Medicine Health and Life Sciences, The Wellcome-Wolfson Institute, Belfast, Co Antrim, UK
| | - Eoin D Brown
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast Faculty of Medicine Health and Life Sciences, The Wellcome-Wolfson Institute, Belfast, Co Antrim, UK
| | - Jasenka Guduric-Fuchs
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast Faculty of Medicine Health and Life Sciences, The Wellcome-Wolfson Institute, Belfast, Co Antrim, UK
| | - Anna O'Connor
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast Faculty of Medicine Health and Life Sciences, The Wellcome-Wolfson Institute, Belfast, Co Antrim, UK
| | - Alan W Stitt
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast Faculty of Medicine Health and Life Sciences, The Wellcome-Wolfson Institute, Belfast, Co Antrim, UK
| | - Reinhold J Medina
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast Faculty of Medicine Health and Life Sciences, The Wellcome-Wolfson Institute, Belfast, Co Antrim, UK
| | - David A Simpson
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast Faculty of Medicine Health and Life Sciences, The Wellcome-Wolfson Institute, Belfast, Co Antrim, UK
| |
Collapse
|
143
|
Zabeo D, Cvjetkovic A, Lässer C, Schorb M, Lötvall J, Höög JL. Exosomes purified from a single cell type have diverse morphology. J Extracell Vesicles 2017; 6:1329476. [PMID: 28717422 PMCID: PMC5505001 DOI: 10.1080/20013078.2017.1329476] [Citation(s) in RCA: 212] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Indexed: 12/15/2022] Open
Abstract
Extracellular vesicles (EVs) are produced by all known organisms and are important for cell communication and physiology. Great morphological diversity has been described regarding EVs found in body fluids such as blood plasma, breast milk, and ejaculate. However, a detailed morphological analysis has never been performed on exosomes when purified from a single cell type. In this study we analysed and quantified, via multiple electron microscopy techniques, the morphology of exosomes purified from the human mast cell line HMC-1. The results revealed a wide diversity in exosome morphology, suggesting that subpopulations of exosomes with different and specific functions may exist. Our findings imply that a new, more efficient way of defining exosome subpopulations is necessary. A system was proposed where exosomes were classified into nine different categories according to their size and shape. Three additional morphological features were also found in exosomes regardless of their morphological classification. These findings show that exosomes purified from a single cell line are also morphologically diverse, similar to previous observations for EVs in body fluids. This knowledge can help to improve the interpretation of experimental results and widen our general understanding of the biological functions of exosomes.
Collapse
Affiliation(s)
- Davide Zabeo
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | | | - Cecilia Lässer
- Krefting Research Center, University of Gothenburg, Gothenburg, Sweden
| | - Martin Schorb
- Electron Microscopy Core Facility, European Molecular Biology Laboratories, Heidelberg, Germany
| | - Jan Lötvall
- Krefting Research Center, University of Gothenburg, Gothenburg, Sweden
| | - Johanna L Höög
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
144
|
EV-TRACK: transparent reporting and centralizing knowledge in extracellular vesicle research. Nat Methods 2017; 14:228-232. [PMID: 28245209 DOI: 10.1038/nmeth.4185] [Citation(s) in RCA: 926] [Impact Index Per Article: 115.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We argue that the field of extracellular vesicle (EV) biology needs more transparent reporting to facilitate interpretation and replication of experiments. To achieve this, we describe EV-TRACK, a crowdsourcing knowledgebase (http://evtrack.org) that centralizes EV biology and methodology with the goal of stimulating authors, reviewers, editors and funders to put experimental guidelines into practice.
Collapse
|
145
|
Cvjetkovic A, Crescitelli R, Lässer C, Zabeo D, Widlund P, Nyström T, Höög J, Lötvall J. Extracellular vesicles in motion. ACTA ACUST UNITED AC 2017. [DOI: 10.19185/matters.201704000003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
146
|
Mellisho EA, Velásquez AE, Nuñez MJ, Cabezas JG, Cueto JA, Fader C, Castro FO, Rodríguez-Álvarez L. Identification and characteristics of extracellular vesicles from bovine blastocysts produced in vitro. PLoS One 2017; 12:e0178306. [PMID: 28542562 PMCID: PMC5444795 DOI: 10.1371/journal.pone.0178306] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 05/10/2017] [Indexed: 12/20/2022] Open
Abstract
Extracellular vesicles (EVs) have been identified within different body fluids and cell culture media. However, there is very little information on the secretion of these vesicles during early embryonic development. The aims of this work were first to demonstrate the secretion of extracellular vesicles by pre-implantation bovine embryos and second to identify and characterize the population of EVs secreted by bovine blastocysts during the period from day seven to nine of embryo culture and its correlation with further embryo development up to day 11. Bovine embryos were produced by in vitro fertilization (IVF) or parthenogenetic activation (PA) and cultured until blastocyst stage. Blastocyst selection was performed at day 7 post IVF/PA considering two variables: stage of development and quality of embryos. Selected blastocysts were cultured in vitro for 48 hours in groups (exp. 1) or individually (exp. 2) in SOF media depleted of exosomes. At day 9 post IVF/PA the media was collected and EVs isolated by ultracentrifugation. Transmission electron microscopy revealed the presence of heterogeneous vesicles of different sizes and population: microvesicles (MVs) and exosomes (EXs) of rounded shape, enclosed by a lipid bi-layer and ranging from 30 to 385 nm of diameter. Flow cytometry analysis allowed identifying CD63 and CD9 proteins as exosome markers. Nanoparticle tracking analysis generated a large number of variables, which required the use of multivariate statistics. The results indicated that the concentration of vesicles is higher in those blastocysts with arrested development from day 9 up to day 11 of in vitro development (6.7 x 108 particles/ml) derived from IVF (p <0.05), compared to PA blastocysts (4.7 x 108 particles/ml). Likewise, the profile (concentration and diameter) of particles secreted by embryos derived from IVF were different from those secreted by PA embryos. In conclusion, we demonstrated that bovine blastocysts secrete MVs/EXs to the culture media. Data suggest that characteristics of the population of EVs vary depending on embryo competence.
Collapse
Affiliation(s)
- Edwin A. Mellisho
- Laboratory of Animal Biotechnology, Department of Animal Science, Faculty of Veterinary Science, University of Concepción, Chillán, Concepción, Chile
| | - Alejandra E. Velásquez
- Laboratory of Animal Biotechnology, Department of Animal Science, Faculty of Veterinary Science, University of Concepción, Chillán, Concepción, Chile
| | - María J. Nuñez
- Laboratory of Animal Biotechnology, Department of Animal Science, Faculty of Veterinary Science, University of Concepción, Chillán, Concepción, Chile
| | - Joel G. Cabezas
- Laboratory of Animal Biotechnology, Department of Animal Science, Faculty of Veterinary Science, University of Concepción, Chillán, Concepción, Chile
| | - Juan A. Cueto
- Laboratory of Cell and Molecular Biology, IHEM-CONICET, Faculty of Medical Sciences, National University of Cuyo, Mendoza, Argentina
| | - Claudio Fader
- Laboratory of Cell and Molecular Biology, IHEM-CONICET, Faculty of Medical Sciences, National University of Cuyo, Mendoza, Argentina
| | - Fidel O. Castro
- Laboratory of Animal Biotechnology, Department of Animal Science, Faculty of Veterinary Science, University of Concepción, Chillán, Concepción, Chile
| | - Lleretny Rodríguez-Álvarez
- Laboratory of Animal Biotechnology, Department of Animal Science, Faculty of Veterinary Science, University of Concepción, Chillán, Concepción, Chile
- * E-mail:
| |
Collapse
|
147
|
Dostert G, Mesure B, Menu P, Velot É. How Do Mesenchymal Stem Cells Influence or Are Influenced by Microenvironment through Extracellular Vesicles Communication? Front Cell Dev Biol 2017; 5:6. [PMID: 28224125 PMCID: PMC5293793 DOI: 10.3389/fcell.2017.00006] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/20/2017] [Indexed: 01/08/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are widely used in cell therapy and tissue engineering thanks to their self-renewal, their multipotency, and their immunomodulatory properties that make them an attractive tool for regenerative medicine. A large part of MSCs positive effects is due to their secretion products which participate in creating a favorable microenvironment and closely relate these cells to other cell types. Extracellular vesicles (EVs) belong to cellular secretions. They are produced by cells continuously or after stimulation (e.g., calcium flux, cellular stress) and act in tissue homeostasis and intercellular communication. The understanding of the role of EVs is growing, more particularly their impact on cell migration, differentiation, or immunomodulation. EVs derived from MSCs show these interesting properties that may be considered in therapeutics, although they can have adverse effects by facilitating cancer propagation. Moreover, MSC behavior may also be influenced (proliferation, differentiation) by EVs derived from other donor cells. The aim of this mini review is to summarize the two-way communication between MSCs and other cell types, and how they can affect each other with their microenvironment through EVs. On the one hand, the manuscript presents the influence of MSC-derived EVs on diverse recipient cells and on the other hand, the effects of EVs derived from various donor cells on MSCs. The discrepancies between cancer cells and MSCs communication according to the sources of MSCs but also the tumor origins are also mentioned.
Collapse
Affiliation(s)
- Gabriel Dostert
- Laboratoire d'Ingénierie Moléculaire et Physiopathologie Articulaire, UMR 7365 Centre National de la Recherche Scientifique - Université de Lorraine, Biopôle de l'Université de Lorraine Vandœuvre-lès-Nancy, France
| | - Benjamin Mesure
- Laboratoire d'Ingénierie Moléculaire et Physiopathologie Articulaire, UMR 7365 Centre National de la Recherche Scientifique - Université de Lorraine, Biopôle de l'Université de Lorraine Vandœuvre-lès-Nancy, France
| | - Patrick Menu
- Laboratoire d'Ingénierie Moléculaire et Physiopathologie Articulaire, UMR 7365 Centre National de la Recherche Scientifique - Université de Lorraine, Biopôle de l'Université de LorraineVandœuvre-lès-Nancy, France; Faculté de Pharmacie, Université de LorraineVandœuvre-lès-Nancy, France
| | - Émilie Velot
- Laboratoire d'Ingénierie Moléculaire et Physiopathologie Articulaire, UMR 7365 Centre National de la Recherche Scientifique - Université de Lorraine, Biopôle de l'Université de LorraineVandœuvre-lès-Nancy, France; Faculté de Pharmacie, Université de LorraineVandœuvre-lès-Nancy, France
| |
Collapse
|
148
|
Dinkins MB, Wang G, Bieberich E. Sphingolipid-Enriched Extracellular Vesicles and Alzheimer's Disease: A Decade of Research. J Alzheimers Dis 2017; 60:757-768. [PMID: 27662306 PMCID: PMC5360538 DOI: 10.3233/jad-160567] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Extracellular vesicles (EVs), particularly exosomes, have emerged in the last 10 years as a new player in the progression of Alzheimer's disease (AD) with high potential for being useful as a diagnostic and treatment tool. Exosomes and other EVs are enriched with the sphingolipid ceramide as well as other more complex glycosphingolipids such as gangliosides. At least a subpopulation of exosomes requires neutral sphingomyelinase activity for their biogenesis and secretion. As ceramide is often elevated in AD, exosome secretion may be affected as well. Here, we review the available data showing that exosomes regulate the aggregation and clearance of amyloid-beta (Aβ) and discuss the differences in data from laboratories regarding Aβ binding, induction of aggregation, and glial clearance. We also summarize available data on the role of exosomes in extracellular tau propagation, AD-related exosomal mRNA/miRNA cargo, and the use of exosomes as biomarker and gene therapy vehicles for diagnosis and potential treatment.
Collapse
Affiliation(s)
- Michael B. Dinkins
- Department of Neuroscience and Regenerative Medicine, The Medical College of Georgia, Augusta University, Augusta, Georgia, 30912, USA
| | - Guanghu Wang
- Department of Neuroscience and Regenerative Medicine, The Medical College of Georgia, Augusta University, Augusta, Georgia, 30912, USA
| | - Erhard Bieberich
- Department of Neuroscience and Regenerative Medicine, The Medical College of Georgia, Augusta University, Augusta, Georgia, 30912, USA
| |
Collapse
|
149
|
Cizmar P, Yuana Y. Detection and Characterization of Extracellular Vesicles by Transmission and Cryo-Transmission Electron Microscopy. Methods Mol Biol 2017; 1660:221-232. [PMID: 28828660 DOI: 10.1007/978-1-4939-7253-1_18] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transmission electron microscopy (TEM) and transmission scanning electron Microscopy (TSEM), which denotes application of a scanning electron microscope (SEM) in the transmission mode, have been used to detect and characterize particles down to an imaging resolution of ~1 nm. In the field of EVs, TEM also has been valued for its capability to detect and characterize single EV. Furthermore, employing immunogold labeling in TEM could give information regarding biochemical properties of EV surface proteins. Significant shortcomings in TEM such as dehydration, chemical fixation, and/or staining of the biological specimens are eluded by the use of cryo-TEM. In cryo-TEM imaging, samples are directly applied onto an EM grid, vitrified and visualized, thus allowing for characterization of EVs near its native state. In this chapter, we describe a step-by-step guide for preparing EVs on the grid before TEM and cryo-TEM imaging. Finally, we provide a guide to an automated image-processing analysis to provide the size distribution of EVs.
Collapse
Affiliation(s)
- Petr Cizmar
- Imaging Division, Image Sciences Institute, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Yuana Yuana
- Imaging Division, Image Sciences Institute, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.
| |
Collapse
|
150
|
Bosch S, de Beaurepaire L, Allard M, Mosser M, Heichette C, Chrétien D, Jegou D, Bach JM. Trehalose prevents aggregation of exosomes and cryodamage. Sci Rep 2016; 6:36162. [PMID: 27824088 PMCID: PMC5099918 DOI: 10.1038/srep36162] [Citation(s) in RCA: 265] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 10/07/2016] [Indexed: 12/19/2022] Open
Abstract
Exosomes are important mediators in intercellular communication. Released by many cell types, they transport proteins, lipids, and nucleic acids to distant recipient cells and contribute to important physiopathological processes. Standard current exosome isolation methods based on differential centrifugation protocols tend to induce aggregation of particles in highly concentrated suspensions and freezing of exosomes can induce damage and inconsistent biological activity. Trehalose is a natural, non-toxic sugar widely used as a protein stabilizer and cryoprotectant by the food and drug industry. Here we report that addition of 25 mM trehalose to pancreatic beta-cell exosome-like vesicle isolation and storage buffer narrows the particle size distribution and increases the number of individual particles per microgram of protein. Repeated freeze-thaw cycles induce an increase in particle concentration and in the width of the size distribution for exosome-like vesicles stored in PBS, but not in PBS 25 mM trehalose. No signs of lysis or incomplete vesicles were observed by cryo-electron tomography in PBS and trehalose samples. In macrophage immune assays, beta-cell extracellular vesicles in trehalose show consistently higher TNF-alpha cytokine secretion stimulation indexes suggesting improved preservation of biological activity. The addition of trehalose might be an attractive means to standardize experiments in the field of exosome research and downstream applications.
Collapse
Affiliation(s)
- Steffi Bosch
- IECM, EA4644 Nantes University, ONIRIS, USC1383 INRA, Nantes, France
| | | | - Marie Allard
- IECM, EA4644 Nantes University, ONIRIS, USC1383 INRA, Nantes, France
| | - Mathilde Mosser
- IECM, EA4644 Nantes University, ONIRIS, USC1383 INRA, Nantes, France
| | | | - Denis Chrétien
- IGDR, UMR6290 CNRS, University of Rennes 1, Rennes, France.,MRIC-Biosit, UMS3480 CNRS, University of Rennes 1, Rennes, France
| | - Dominique Jegou
- IECM, EA4644 Nantes University, ONIRIS, USC1383 INRA, Nantes, France
| | - Jean-Marie Bach
- IECM, EA4644 Nantes University, ONIRIS, USC1383 INRA, Nantes, France
| |
Collapse
|