101
|
Liu J, Zhang K, Zhao M, Chen L, Chen H, Zhao Y, Zhao R. Dietary bile acids alleviate corticosterone-induced fatty liver and hepatic glucocorticoid receptor suppression in broiler chickens. J Anim Sci 2024; 102:skae338. [PMID: 39492782 PMCID: PMC11604113 DOI: 10.1093/jas/skae338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 11/02/2024] [Indexed: 11/05/2024] Open
Abstract
The aim of this study was to investigate the alleviating effects and mechanisms of bile acids (BA) on corticosterone-induced fatty liver in broiler chickens. Male Arbor Acres chickens were randomly divided into 3 groups: control group (CON), stress model group (CORT), and BA-treated group (CORT-BA). The CORT-BA group received a diet with 250 mg/kg BA from 21 d of age. From days 36 to 43, both the CORT and CORT-BA groups received subcutaneous injections of corticosterone to simulate chronic stress. The results indicated that BA significantly mitigated the body weight loss, liver enlargement, and hepatic lipid deposition caused by corticosterone (P < 0.05). Liver RNA-seq analysis showed that BA alleviated corticosterone-induced fatty liver by inhibiting lipid metabolism pathways, including fatty acid biosynthesis, triglyceride biosynthesis, and fatty acid transport. Additionally, BA improved corticosterone-induced downregulation of glucocorticoid receptor (GR) expression (P < 0.05). Molecular docking and cellular thermal shift assays revealed that hyodeoxycholic acid (HDCA), a major component of compound BA, could bind to GR and enhance its stability. In conclusion, BA alleviated corticosterone-induced fatty liver in broilers by inhibiting lipid synthesis pathways and mitigating the suppression of hepatic GR expression.
Collapse
Affiliation(s)
- Jie Liu
- Key Laboratory of Animal Physiology and Biochemistry, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ke Zhang
- Key Laboratory of Animal Physiology and Biochemistry, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mindie Zhao
- Key Laboratory of Animal Physiology and Biochemistry, Nanjing Agricultural University, Nanjing, 210095, China
| | - Liang Chen
- Key Laboratory of Animal Physiology and Biochemistry, Nanjing Agricultural University, Nanjing, 210095, China
| | - Huimin Chen
- Key Laboratory of Animal Physiology and Biochemistry, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yulan Zhao
- Key Laboratory of Animal Physiology and Biochemistry, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ruqian Zhao
- Key Laboratory of Animal Physiology and Biochemistry, Nanjing Agricultural University, Nanjing, 210095, China
- National Key Laboratory of Meat Quality Control and Cultured Meat Development, Nanjing, 210095, China
| |
Collapse
|
102
|
Shafqat F, Ur Rehman S, Khan MS, Niaz K. Liver. ENCYCLOPEDIA OF TOXICOLOGY 2024:897-913. [DOI: 10.1016/b978-0-12-824315-2.00138-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
103
|
Shibo C, Sili W, Yanfang Q, Shuxiao G, Susu L, Xinlou C, Yongsheng Z. Emerging trends and hotspots in the links between the bile acids and NAFLD from 2002 to 2022: A bibliometric analysis. Endocrinol Diabetes Metab 2024; 7:e460. [PMID: 37941122 PMCID: PMC10782058 DOI: 10.1002/edm2.460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 10/10/2023] [Accepted: 10/14/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is a metabolic syndrome of the liver, and its incidence is increasing worldwide. Accumulating evidence suggests that bile acids are associated with NAFLD. Although many studies on bile acids and NAFLD have been published over the past 20 years, the authors of this study have not found a relevant bibliometric analysis in this field. Therefore, this study aimed to evaluate the trend of publications, summarize current research hotspots and predict future research directions through bibliometric analysis in this field. METHOD Articles related to bile acids and NAFLD published between 2002 and 2022 were obtained from the Science Citation Index-Expanded of Web of Science Core Collection. Microsoft Excel, CiteSpace, VOSviewer and Bibliometric Online Analysis Platform were used to analyse the publication trends and research hotspots in this field. RESULTS Among the articles published between 2002 and 2022, we retrieved 1284 articles related to bile acids and NAFLD, and finally included 568 articles. The USA was dominant until 2020, after which China surpassed the USA to become the dominant force. These two countries cooperate the most closely, and are also the most active in international cooperation. The University of California (UCL) was the most published institution, with a total of 31 publications. There were six authors who have published nine articles and ranked first. The keywords cluster labels show the 10 main clusters: #0fatty liver, #1obeticholic acid, #2oxidative stress, #37 alpha hydroxy 4 cholesten 3 one, #4deoxycholic acid, #5nonalcoholic fatty liver disease, #6mouse model, #7fibroblast growth factor 21, #8animal models, #9high-fat diet. Keywords burst analysis revealed a higher intensity of study for the nuclear receptor, FXR, and metabolic syndrome. CONCLUSION Bile acids have become an important research direction in the field of NAFLD, and the intervention of gut microbiota in NAFLD by acting on bile acids may become a potential hotspot for future research. This study provides reference and guidance for future research, and will help scholars better explore the field and innovatively discover the mechanisms and treatments of NAFLD.
Collapse
Affiliation(s)
- Cong Shibo
- Beijing University of Chinese Medicine, College of Chinese MedicineBeijingChina
| | - Wang Sili
- Beijing University of Chinese Medicine, College of Chinese MedicineBeijingChina
| | - Qiao Yanfang
- Beijing University of Chinese Medicine, College of Chinese MedicineBeijingChina
| | - Gu Shuxiao
- Beijing University of Chinese Medicine, College of Chinese MedicineBeijingChina
| | - Liu Susu
- Beijing University of Chinese Medicine, College of Chinese MedicineBeijingChina
| | - Chai Xinlou
- Beijing University of Chinese Medicine, College of Chinese MedicineBeijingChina
| | - Zhang Yongsheng
- Beijing University of Chinese Medicine, Dongfang HospitalBeijingChina
| |
Collapse
|
104
|
Zhang Q, Chen Y, Li J, Xia H, Tong Y, Liu Y. Recent Advances in Hepatic Metabolic Regulation by the Nuclear Factor Rev-erbɑ. Curr Drug Metab 2024; 25:2-12. [PMID: 38409696 DOI: 10.2174/0113892002290055240212074758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/18/2024] [Accepted: 01/31/2024] [Indexed: 02/28/2024]
Abstract
Rev-erbɑ (NR1D1) is a nuclear receptor superfamily member that plays a vital role in mammalian molecular clocks and metabolism. Rev-erbɑ can regulate the metabolism of drugs and the body's glucose metabolism, lipid metabolism, and adipogenesis. It is even one of the important regulatory factors regulating the occurrence of metabolic diseases (e.g., diabetes, fatty liver). Metabolic enzymes mediate most drug metabolic reactions in the body. Rev-erbɑ has been recognized to regulate drug metabolic enzymes (such as Cyp2b10 and Ugt1a9). Therefore, this paper mainly reviewed that Rev-erbɑ regulates I and II metabolic enzymes in the liver to affect drug pharmacokinetics. The expression of these drug metabolic enzymes (up-regulated or down-regulated) is related to drug exposure and effects/ toxicity. In addition, our discussion extends to Rev-erbɑ regulating some transporters (such as P-gp, Mrp2, and Bcrp), as they also play an essential role in drug metabolism. Finally, we briefly describe the role and mechanism of nuclear receptor Rev-erbɑ in lipid and glucose homeostasis, obesity, and metabolic disorders syndrome. In conclusion, this paper aims to understand better the role and mechanism of Rev-erbɑ in regulating drug metabolism, lipid, glucose homeostasis, obesity, and metabolic disorders syndrome, which explores how to target Rev-erbɑ to guide the design and development of new drugs and provide scientific reference for the molecular mechanism of new drug development, rational drug use, and drug interaction.
Collapse
Affiliation(s)
- Qi Zhang
- College of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Yutong Chen
- College of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Jingqi Li
- College of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Haishan Xia
- College of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Yongbin Tong
- College of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Yuyu Liu
- College of Pharmacy, Guangdong Medical University, Dongguan, China
| |
Collapse
|
105
|
Narayanan AK, Surendran S, Balakrishnan D, Gopalakrishnan U, Malick S, Valsan A, Philips CA, Watson CJE. A Short Review on Obeticholic Acid: An Effective Modulator of Farnesoid X Receptor. Curr Rev Clin Exp Pharmacol 2024; 19:225-233. [PMID: 38708917 DOI: 10.2174/0127724328239536230919070001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 07/10/2023] [Accepted: 08/04/2023] [Indexed: 05/07/2024]
Abstract
Farnesoid X receptor (FXR) was identified as an orphan nuclear receptor resembling the steroid receptor in the late '90s. Activation of FXR is a crucial step in many physiological functions of the liver. A vital role of FXR is impacting the amount of bile acids in the hepatocytes, which it performs by reducing bile acid synthesis, stimulating the bile salt export pump, and inhibiting its enterohepatic circulation, thus protecting the hepatocytes against the toxic accumulation of bile acids. Furthermore, FXR mediates bile acid biotransformation in the intestine, liver regeneration, glucose hemostasis, and lipid metabolism. In this review, we first discuss the mechanisms of the disparate pleiotropic actions of FXR agonists. We then delve into the pharmacokinetics of Obeticholic acid (OCA), the first-in-class selective, potent FXR agonist. We additionally discuss the clinical journey of OCA in humans, its current evidence in various human diseases, and its plausible roles in the future.
Collapse
Affiliation(s)
- Anila Kutty Narayanan
- Department of Gastrointestinal Surgery & Solid Organ Transplant, Amrita Institute of Medical Sciences & Research Centre, Amrita University, Kochi 682041, Kerala, India
| | - Sudhindran Surendran
- Department of Gastrointestinal Surgery & Solid Organ Transplant, Amrita Institute of Medical Sciences & Research Centre, Amrita University, Kochi 682041, Kerala, India
| | - Dinesh Balakrishnan
- Department of Gastrointestinal Surgery & Solid Organ Transplant, Amrita Institute of Medical Sciences & Research Centre, Amrita University, Kochi 682041, Kerala, India
| | - Unnikrishnan Gopalakrishnan
- Department of Gastrointestinal Surgery & Solid Organ Transplant, Amrita Institute of Medical Sciences & Research Centre, Amrita University, Kochi 682041, Kerala, India
| | - Shweta Malick
- Department of Gastrointestinal Surgery & Solid Organ Transplant, Amrita Institute of Medical Sciences & Research Centre, Amrita University, Kochi 682041, Kerala, India
| | - Arun Valsan
- Department of Gastroenterology & Hepatology, Amrita Institute of Medical Sciences & Research Centre, Amrita University, Kochi 682041, Kerala, India
| | - Cyriac Abby Philips
- Department of Clinical and Translational Hepatology, The Liver Institute, Rajagiri Hospital, Aluva, Kerala, India
| | - Christopher John Edward Watson
- University of Cambridge and Honorary Consultant Surgeon, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge CB2 OQQ, UK
| |
Collapse
|
106
|
Hu L, Wang X, Qian M, Zhang H, Jin Y. Impacts of prothioconazole and prothioconazole-desthio on bile acid and glucolipid metabolism: Upregulation of CYP7A1 expression in HepG2 cells. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 198:105702. [PMID: 38225060 DOI: 10.1016/j.pestbp.2023.105702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/31/2023] [Accepted: 11/17/2023] [Indexed: 01/17/2024]
Abstract
As an efficient triazole fungicide, prothioconazole (PTC) is widely used for the prevention and control of plant fungal pathogens. It was reported that the residues of PTC and prothioconazole-desthio (PTC-d) have been detected in the environment and crops, and the effects of PTC-d may be higher than that of PTC. Currently, PTC and PTC-d have been proven to induce hepatic metabolic disorders. However, their toxic effects on cellular bile acid (BA) and glucolipid metabolism remain unknown. In this study, HepG2 cells were exposed to 1-500 μM of PTC or PTC-d. High concentrations of PTC and PTC-d were found to induce cytotoxicity; thus, subsequent experimental exposure was conducted at concentrations of 10-50 μM. The expression levels of CYP7A1 and TG synthesis-related genes and levels of TG and total BA were observed to increase in HepG2 cells. Molecular docking analysis revealed direct interactions between PTC or PTC-d and CYP7A1 protein. To further investigate the underlying mechanisms, PTC and PTC-d were treated to HepG2 cells in which CYP7A1 expression was knocked down using siCYP7A1. It was observed that PTC and PTC-d affected the BA metabolism process and regulated the glycolipid metabolism process by promoting the expression of CYP7A1. In summary, we comprehensively analyzed the effects and mechanisms of PTC and PTC-d on cellular metabolism in HepG2 cells, providing theoretical data for evaluating the safety and potential risks associated with these substances.
Collapse
Affiliation(s)
- Lingyu Hu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Xiaofang Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Mingrong Qian
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China.
| | - Hu Zhang
- Zhejiang Province Key Laboratory for Food Safety, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
107
|
Zhao R, Ji Y, Chen X, Ma G, Yao H, Li J, Hu Q, Zhao L. Flammulina velutipes polysaccharides regulate lipid metabolism disorders in HFD-fed mice via bile acids metabolism. Int J Biol Macromol 2023; 253:127308. [PMID: 37832619 DOI: 10.1016/j.ijbiomac.2023.127308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/25/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023]
Abstract
Our recent study demonstrated that the dynamic changes of gut microbiota mediated by Flammulina velutipes polysaccharide (FVP) could effectively regulate the lipid metabolism in high fat diet-fed (HFD-fed) obese mice model. In this paper, further research was carried out by examining the bile acid (BAs) profiles, as well as the BAs metabolic pathways changes in obese mice. Furthermore, the regulatory effect of BAs on lipid metabolism was verified by 3 T3-L1 preadipocyte differentiation model. The FVP administration resulted in lower BAs content in plasma of obese mice. From the qRT-PCR analysis, FVP could relieve cholestasis in obese mice through altering the BAs metabolic pathways, changing the related genes expressions in mice liver and ileum. The cholic acid (CA), chenodeoxycholic acid (CDCA), hyodeoxycholic acid (HDCA) and ursodeoxycholic acid (UDCA) were selected in cell experiment which all reduced the intracellular triglyceride content and increased the expression of AMPKα1 in 3 T3-L1 adipocytes. Furthermore, CA and CDCA were found increased the expression of PPARα. In combination with our previous research, we further confirmed in this paper that the changes of BAs metabolism caused by FVP showed a positive effect on lipid metabolism, both in obese mice and 3 T3-L1 adipocytes.
Collapse
Affiliation(s)
- Ruiqiu Zhao
- College of Animal Science and Food Engineering, Jinling Institute of Technology, Nanjing 210095, People's Republic of China; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Yang Ji
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Xin Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Gaoxing Ma
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, People's Republic of China
| | - Hongliang Yao
- College of Animal Science and Food Engineering, Jinling Institute of Technology, Nanjing 210095, People's Republic of China
| | - Jing Li
- College of Science, Jinling Institute of Technology, Nanjing 210095, People's Republic of China
| | - Qiuhui Hu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, People's Republic of China
| | - Liyan Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China.
| |
Collapse
|
108
|
Pan T, Li X, Guo X, Wang H, Zhou X, Shang R, Xie D, Qian X, Dai M, Fan E, Chen X, Chen C. Electroacupuncture Improves Insulin Resistance in Type 2 Diabetes Mice by Regulating Intestinal Flora and Bile Acid. Diabetes Metab Syndr Obes 2023; 16:4025-4042. [PMID: 38089431 PMCID: PMC10712683 DOI: 10.2147/dmso.s421134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 11/02/2023] [Indexed: 01/21/2025] Open
Abstract
INTRODUCTION Adjusting internal organs and dredging channel electroacupuncture has a definite effect on type 2 diabetes, but the specific mechanism still needs to be further clarified. This study aims to investigate the effects of electroacupuncture on the gut microbiota and bile acids in db/db mice after the intervention of "adjusting internal organs and dredging channel" and further explore its mechanism of action in treating T2DM. METHODS We used db/db mice as the animal model and db/m mice from the same litter as the blank control group, a total of 4 weeks of intervention were conducted. We evaluated the effectiveness of the "adjusting internal organs and dredging channel" treatment by detecting indicators related to glucose and lipid- metabolism. Detect changes in the gut microbiota of mice in each group using 16SrDNA sequencing technology. The content of bile acids in mouse feces was determined using liquid chromatography mass spectrometry, and the correlation analysis between different bile acids and differential bacterial communities was performed. The expression levels of TGR5 and GLP-1 proteins were measured using the Western blot method. RESULTS Adjusting internal organs and dredging channel electroacupuncture can improve blood glucose levels in db/db mice, increase the abundance of Firmicutes and Actinobacteria, and increase the content of fecal bile acid pool heavy CA and UDCA. At the same time, it also increased the content of TGR5/GLP1 in the small intestine. CONCLUSION Adjusting internal organs and dredging channel electroacupuncture can improve the disorder of glucose and lipid metabolism in db/db mice, regulate the abundance and colony composition of intestinal microbiota in mice, and regulate bile acid metabolism in mice. The interaction between bile acid and intestinal microbiota can also be observed; Mutual influence may play a role in regulating blood sugar together.
Collapse
Affiliation(s)
- Ting Pan
- College of Traditional Chinese Medicine, ChangChun University of Chinese Medicine, Changchun, Jilin, People’s Republic of China
| | - Xuefeng Li
- School of Acupuncture-Moxibustion and Tuina, Changchun University of Chinese Medicine, Changchun, Jilin, People’s Republic of China
| | - Xiaole Guo
- Prevention and Treatment Center, The Third Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, Jilin, People’s Republic of China
| | - Haili Wang
- School of Acupuncture-Moxibustion and Tuina, Changchun University of Chinese Medicine, Changchun, Jilin, People’s Republic of China
| | - Xue Zhou
- School of Acupuncture-Moxibustion and Tuina, Changchun University of Chinese Medicine, Changchun, Jilin, People’s Republic of China
| | - Rui Shang
- Traditional Chinese Medicine Rehabilitation Center, Jilin Cancer Hospital, Changchun, Jilin, People’s Republic of China
| | - Donge Xie
- Acupuncture and moxibustion Clinical Center, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, People’s Republic of China
| | - Xin Qian
- Tuina Department, Shenzhen Traditional Chinese Medicine Hospital, ShenZhen, Guangdong, People’s Republic of China
| | - Mengyao Dai
- School of Acupuncture-Moxibustion and Tuina, Changchun University of Chinese Medicine, Changchun, Jilin, People’s Republic of China
| | - Enshuo Fan
- School of Acupuncture-Moxibustion and Tuina, Changchun University of Chinese Medicine, Changchun, Jilin, People’s Republic of China
| | - Xinhua Chen
- College of Traditional Chinese Medicine, ChangChun University of Chinese Medicine, Changchun, Jilin, People’s Republic of China
| | - Chunhai Chen
- Acupuncture and moxibustion Clinical Center, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, People’s Republic of China
| |
Collapse
|
109
|
Marchianò S, Biagioli M, Bordoni M, Morretta E, Di Giorgio C, Vellecco V, Roselli R, Bellini R, Massa C, Cari L, Urbani G, Ricci P, Monti MC, Giordano A, Brancaleone V, Bucci M, Zampella A, Distrutti E, Cieri E, Cirino G, Fiorucci S. Defective Bile Acid Signaling Promotes Vascular Dysfunction, Supporting a Role for G-Protein Bile Acid Receptor 1/Farnesoid X Receptor Agonism and Statins in the Treatment of Nonalcoholic Fatty Liver Disease. J Am Heart Assoc 2023; 12:e031241. [PMID: 37996988 PMCID: PMC10727350 DOI: 10.1161/jaha.123.031241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/31/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Patients with nonalcoholic fatty liver disease are at increased risk to develop atherosclerotic cardiovascular diseases. FXR and GPBAR1 are 2 bile acid-activated receptors exploited in the treatment of nonalcoholic fatty liver disease: whether dual GPBAR1/FXR agonists synergize with statins in the treatment of the liver and cardiovascular components of nonalcoholic fatty liver disease is unknown. METHODS AND RESULTS Investigations of human aortic samples obtained from patients who underwent surgery for aortic aneurysms and Gpbar1-/-, Fxr-/-, and dual Gpbar1-/-Fxr-/- mice demonstrated that GPBAR1 and FXR are expressed in the aortic wall and regulate endothelial cell/macrophage interactions. The expression of GPBAR1 in the human endothelium correlated with the expression of inflammatory biomarkers. Mice lacking Fxr and Gpbar1-/-/Fxr-/- display hypotension and aortic inflammation, along with altered intestinal permeability that deteriorates with age, and severe dysbiosis, along with dysregulated bile acid synthesis. Vasomotor activities of aortic rings were altered by Gpbar1 and Fxr gene ablation. In apolipoprotein E-/- and wild-type mice, BAR502, a dual GPBAR1/FXR agonist, alone or in combination with atorvastatin, reduced cholesterol and low-density lipoprotein plasma levels, mitigated the development of liver steatosis and aortic plaque formation, and shifted the polarization of circulating leukocytes toward an anti-inflammatory phenotype. BAR502/atorvastatin reversed intestinal dysbiosis and dysregulated bile acid synthesis, promoting a shift of bile acid pool composition toward FXR antagonists and GPBAR1 agonists. CONCLUSIONS FXR and GPBAR1 maintain intestinal, liver, and cardiovascular homeostasis, and their therapeutic targeting with a dual GPBAR1/FXR ligand and atorvastatin holds potential in the treatment of liver and cardiovascular components of nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Silvia Marchianò
- Department of Medicine and SurgeryUniversity of PerugiaPerugiaItaly
| | - Michele Biagioli
- Department of Medicine and SurgeryUniversity of PerugiaPerugiaItaly
| | - Martina Bordoni
- Department of Medicine and SurgeryUniversity of PerugiaPerugiaItaly
| | - Elva Morretta
- Department of PharmacyUniversity of SalernoSalernoItaly
| | | | | | | | - Rachele Bellini
- Department of Medicine and SurgeryUniversity of PerugiaPerugiaItaly
| | - Carmen Massa
- Department of Medicine and SurgeryUniversity of PerugiaPerugiaItaly
| | - Luigi Cari
- Department of Medicine and SurgeryUniversity of PerugiaPerugiaItaly
| | - Ginevra Urbani
- Department of Medicine and SurgeryUniversity of PerugiaPerugiaItaly
| | - Patrizia Ricci
- Department of Medicine and SurgeryUniversity of PerugiaPerugiaItaly
| | | | | | | | | | - Angela Zampella
- Department of PharmacyUniversity of Naples Federico IINaplesItaly
| | | | - Enrico Cieri
- Department of Medicine and SurgeryUniversity of PerugiaPerugiaItaly
| | - Giuseppe Cirino
- Department of PharmacyUniversity of Naples Federico IINaplesItaly
| | - Stefano Fiorucci
- Department of Medicine and SurgeryUniversity of PerugiaPerugiaItaly
| |
Collapse
|
110
|
Gilbert MC, Setayesh T, Wan YJY. The contributions of bacteria metabolites to the development of hepatic encephalopathy. LIVER RESEARCH 2023; 7:296-303. [PMID: 38221945 PMCID: PMC10786625 DOI: 10.1016/j.livres.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Over 20% of mortality during acute liver failure is associated with the development of hepatic encephalopathy (HE). Thus, HE is a complication of acute liver failure with a broad spectrum of neuropsychiatric abnormalities ranging from subclinical alterations to coma. HE is caused by the diversion of portal blood into systemic circulation through portosystemic collateral vessels. Thus, the brain is exposed to intestinal-derived toxic substances. Moreover, the strategies to prevent advancement and improve the prognosis of such a liver-brain disease rely on intestinal microbial modulation. This is supported by the findings that antibiotics such as rifaximin and laxative lactulose can alleviate hepatic cirrhosis and/or prevent HE. Together, the significance of the gut-liver-brain axis in human health warrants attention. This review paper focuses on the roles of bacteria metabolites, mainly ammonia and bile acids (BAs) as well as BA receptors in HE. The literature search conducted for this review included searches for phrases such as BA receptors, BAs, ammonia, farnesoid X receptor (FXR), G protein-coupled bile acid receptor 1 (GPBAR1 or TGR5), sphingosine-1-phosphate receptor 2 (S1PR2), and cirrhosis in conjunction with the phrase hepatic encephalopathy and portosystemic encephalopathy. PubMed, as well as Google Scholar, was the search engines used to find relevant publications.
Collapse
Affiliation(s)
- Miranda Claire Gilbert
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA, USA
| | - Tahereh Setayesh
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA, USA
| | - Yu-Jui Yvonne Wan
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA, USA
| |
Collapse
|
111
|
Abdelsalam NA, Hegazy SM, Aziz RK. The curious case of Prevotella copri. Gut Microbes 2023; 15:2249152. [PMID: 37655441 PMCID: PMC10478744 DOI: 10.1080/19490976.2023.2249152] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/25/2023] [Accepted: 08/14/2023] [Indexed: 09/02/2023] Open
Abstract
Prevotella copri is an abundant member of the human gastrointestinal microbiome, whose relative abundance has curiously been associated with positive and negative impacts on diseases, such as Parkinson's disease and rheumatoid arthritis. Yet, the verdict is still out on the definitive role of P. copri in human health, and on the effect of different diets on its relative abundance in the gut microbiome. The puzzling discrepancies among P. copri studies have only recently been attributed to the diversity of its strains, which substantially differ in their encoded metabolic patterns from the commonly used reference strain. However, such strain differences cannot be resolved by common 16S rRNA amplicon profiling methods. Here, we scrutinize P. copri, its versatile metabolic potential, and the hypotheses behind the conflicting observations on its association with diet and human health. We also provide suggestions for designing studies and bioinformatics pipelines to better research P. copri.
Collapse
Affiliation(s)
| | - Shaimaa M. Hegazy
- Microbiology and Immunology Research Program, Children’s Cancer Hospital Egypt 57357, Cairo, Egypt
| | - Ramy K. Aziz
- Microbiology and Immunology Research Program, Children’s Cancer Hospital Egypt 57357, Cairo, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Center for Genome and Microbiome Research, Cairo University, Cairo, Egypt
| |
Collapse
|
112
|
Hu Y, Zhou J. Identification of key genes and functional enrichment analysis of liver fibrosis in nonalcoholic fatty liver disease through weighted gene co-expression network analysis. Genomics Inform 2023; 21:e45. [PMID: 38224712 PMCID: PMC10788356 DOI: 10.5808/gi.23051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/16/2023] [Accepted: 10/24/2023] [Indexed: 01/17/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a common type of chronic liver disease, with severity levels ranging from nonalcoholic fatty liver to nonalcoholic steatohepatitis (NASH). The extent of liver fibrosis indicates the severity of NASH and the risk of liver cancer. However, the mechanism underlying NASH development, which is important for early screening and intervention, remains unclear. Weighted gene co-expression network analysis (WGCNA) is a useful method for identifying hub genes and screening specific targets for diseases. In this study, we utilized an mRNA dataset of the liver tissues of patients with NASH and conducted WGCNA for various stages of liver fibrosis. Subsequently, we employed two additional mRNA datasets for validation purposes. Gene set enrichment analysis (GSEA) was conducted to analyze gene function enrichment. Through WGCNA and subsequent analyses, complemented by validation using two additional datasets, we identified five genes (BICC1, C7, EFEMP1, LUM, and STMN2) as hub genes. GSEA analysis indicated that gene sets associated with liver metabolism and cholesterol homeostasis were uniformly downregulated. BICC1, C7, EFEMP1, LUM, and STMN2 were identified as hub genes of NASH, and were all related to liver metabolism, NAFLD, NASH, and related diseases. These hub genes might serve as potential targets for the early screening and treatment of NASH.
Collapse
Affiliation(s)
- Yue Hu
- Shenzhen InnoStar Institute of Biomedical Safety Evaluation and Research Co., Ltd., Shenzhen,518000, China
| | - Jun Zhou
- Shenzhen InnoStar Institute of Biomedical Safety Evaluation and Research Co., Ltd., Shenzhen,518000, China
| |
Collapse
|
113
|
Yan J, Zhang R, Kang J, Zhong Y, Abudurexiti A, Tan H, Lei Y, Ma X. Effect of Cichorium glandulosum on intestinal microbiota and bile acid metabolism in db/db mice. Food Sci Nutr 2023; 11:7765-7778. [PMID: 38107125 PMCID: PMC10724598 DOI: 10.1002/fsn3.3694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/31/2023] [Accepted: 09/03/2023] [Indexed: 12/19/2023] Open
Abstract
This study aims to investigate the effects of Chorum glandulosum Boiss. et Huet (CG) on the intestinal microbiota and serum bile acid (BA) in db/db mice. A total of 12 db/db mice were randomly divided into model (MOD), high-dose CG (CGH), and control (CON) groups. The CON and MOD groups received distilled water by gavage for 8 weeks. Whereas, the CGH group received an alcohol extract of CG at a dose of 200 mg/kg/day. Results showed that CG can reduce blood lipid levels. It change the composition of the intestinal microbiota, and increase the relative abundances of Muribaculaceae, Prevotellaceae, Bifidobacterium_pseudolongum, Bacteroidaceae in db/db mice as well. LC-MS metabolomics results showed that CG adjusted the serum BA levels. The results reduced the levels of primary BAs, such as cholic acid (CA) and chenodeoxycholic acid (CDCA). The results decreased the primary BA/secondary BA (PSA/SBA) ratio in db/db mice. Correlation analysis showed that the abundances of Bifidobacterium_pseudolongum and Bacteroidaceae were positively correlated with acetic acid level and negatively correlated with ursocholic acid (UCA), α-muricholic acid (αMCA), triglyceride (TG), and total cholesterol levels (TC), indicating an interaction between the intestinal microbiota and serum BAs. CG may play a positive role in the interaction between the intestinal microbiota and BAs in lipid metabolism.
Collapse
Affiliation(s)
- Junlin Yan
- College of PharmacyXinjiang Medical UniversityXinjiangChina
| | - Rui Zhang
- College of PharmacyXinjiang Medical UniversityXinjiangChina
| | - Jinsen Kang
- College of PharmacyXinjiang Medical UniversityXinjiangChina
| | - Yewei Zhong
- College of PharmacyXinjiang Medical UniversityXinjiangChina
| | | | - Huiwen Tan
- College of PharmacyXinjiang Medical UniversityXinjiangChina
| | - Yi Lei
- College of PharmacyXinjiang Medical UniversityXinjiangChina
| | - Xiaoli Ma
- College of PharmacyXinjiang Medical UniversityXinjiangChina
| |
Collapse
|
114
|
Hou Y, Zhai X, Wang X, Wu Y, Wang H, Qin Y, Han J, Meng Y. Research progress on the relationship between bile acid metabolism and type 2 diabetes mellitus. Diabetol Metab Syndr 2023; 15:235. [PMID: 37978556 PMCID: PMC10656899 DOI: 10.1186/s13098-023-01207-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023] Open
Abstract
Bile acids, which are steroid molecules originating from cholesterol and synthesized in the liver, play a pivotal role in regulating glucose metabolism and maintaining energy balance. Upon release into the intestine alongside bile, they activate various nuclear and membrane receptors, influencing crucial processes. These bile acids have emerged as significant contributors to managing type 2 diabetes mellitus, a complex clinical syndrome primarily driven by insulin resistance. Bile acids substantially lower blood glucose levels through multiple pathways: BA-FXR-SHP, BA-FXR-FGFR15/19, BA-TGR5-GLP-1, and BA-TGR5-cAMP. They also impact blood glucose regulation by influencing intestinal flora, endoplasmic reticulum stress, and bitter taste receptors. Collectively, these regulatory mechanisms enhance insulin sensitivity, stimulate insulin secretion, and boost energy expenditure. This review aims to comprehensively explore the interplay between bile acid metabolism and T2DM, focusing on primary regulatory pathways. By examining the latest advancements in our understanding of these interactions, we aim to illuminate potential therapeutic strategies and identify areas for future research. Additionally, this review critically assesses current research limitations to contribute to the effective management of T2DM.
Collapse
Affiliation(s)
- Yisen Hou
- Department of Oncology Surgery, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, 710018, Shanxi, People's Republic of China
| | - Xinzhe Zhai
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, People's Republic of China
| | - Xiaotao Wang
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, People's Republic of China
| | - Yi Wu
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, People's Republic of China
| | - Heyue Wang
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, People's Republic of China
| | - Yaxin Qin
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, People's Republic of China
| | - Jianli Han
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, People's Republic of China.
| | - Yong Meng
- Department of Oncology Surgery, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, 710018, Shanxi, People's Republic of China.
| |
Collapse
|
115
|
Greimel A, Habler K, Gräfe C, Maciuga N, Brozat CI, Vogeser M, Zoller M, Happich FL, Liebchen U, Frank S, Paal M, Scharf C. Extracorporeal adsorption of protective and toxic bile acids and bilirubin in patients with cholestatic liver dysfunction: a prospective study. Ann Intensive Care 2023; 13:110. [PMID: 37943350 PMCID: PMC10635921 DOI: 10.1186/s13613-023-01198-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/27/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND The release of toxic bile acids (BAs) in the blood of critically ill patients with cholestatic liver dysfunction might lead to the damage of various organs. Their extracorporeal elimination using the cytokine adsorber Cytosorb® (CS) (adsorption of especially hydrophobic molecules < 60 kDa) might be promising, but data proving a potential adsorption are missing so far. METHODS The prospective Cyto-SOVLE study (NCT04913298) included 20 intensive care patients with cholestatic liver dysfunction, continuous kidney replacement therapy, total bilirubin concentration > 10 mg/dl and the application of CS into the dialysis circuit. Bilirubin and different BAs were measured pre- and post-CS at defined timepoints (10 min, 1, 3, 6, and 12 h after initiation). Relative reduction (RR, %) was calculated with: [Formula: see text]. RESULTS The median RR for total and conjugated bilirubin after initiation was - 31.8% and - 30.3%, respectively, and decreased to - 4.5% and - 4.8% after 6 h. A high initial RR was observed for the toxic BAs GCA (- 97.4%), TCA (- 94.9%), GCDCA (- 82.5%), and TCDCA (- 86.0%), decreasing after 6 h to - 32.9%, - 32.7%, - 12.8%, and - 14.3%, respectively. The protective hydrophilic BAs showed a comparable RR after initiation (UDCA: - 77.7%, GUDCA: - 83.0%, TUDCA: - 91.3%) dropping after 6 h to - 7.4%, - 8.5%, and - 12.5%, respectively. CONCLUSIONS Cytosorb® can adsorb bilirubin and toxic as well as protective BAs. However, a fast saturation of the adsorber resulting in a rapid decrease of the RR was observed. Furthermore, no relevant difference between hydrophobic toxic and hydrophilic protective BAs was detected regarding the adsorption amount. The clinical benefit or harm of the BA adsorption needs to be evaluated in the future.
Collapse
Affiliation(s)
- Antonia Greimel
- Department of Anesthesiology, LMU Hospital, Marchioninistrasse 15, 81377, Munich, Germany
| | | | - Caroline Gräfe
- Department of Anesthesiology, LMU Hospital, Marchioninistrasse 15, 81377, Munich, Germany
| | - Nils Maciuga
- Department of Anesthesiology, LMU Hospital, Marchioninistrasse 15, 81377, Munich, Germany
| | - Clara Isabell Brozat
- Department of Anesthesiology, LMU Hospital, Marchioninistrasse 15, 81377, Munich, Germany
| | - Michael Vogeser
- Institute of Laboratory Medicine, LMU Hospital, Munich, Germany
| | - Michael Zoller
- Department of Anesthesiology, LMU Hospital, Marchioninistrasse 15, 81377, Munich, Germany
| | - Felix L Happich
- Institute of Laboratory Medicine, LMU Hospital, Munich, Germany
| | - Uwe Liebchen
- Department of Anesthesiology, LMU Hospital, Marchioninistrasse 15, 81377, Munich, Germany
| | - Sandra Frank
- Department of Anesthesiology, LMU Hospital, Marchioninistrasse 15, 81377, Munich, Germany
| | - Michael Paal
- Institute of Laboratory Medicine, LMU Hospital, Munich, Germany
| | - Christina Scharf
- Department of Anesthesiology, LMU Hospital, Marchioninistrasse 15, 81377, Munich, Germany.
| |
Collapse
|
116
|
Balazs I, Stadlbauer V. Circulating neutrophil anti-pathogen dysfunction in cirrhosis. JHEP Rep 2023; 5:100871. [PMID: 37822786 PMCID: PMC10562928 DOI: 10.1016/j.jhepr.2023.100871] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 07/16/2023] [Accepted: 07/22/2023] [Indexed: 10/13/2023] Open
Abstract
Neutrophils are the largest population of leucocytes and are among the first cells of the innate immune system to fight against intruding pathogens. In patients with cirrhosis, neutrophils exhibit altered functionality, including changes in phagocytic ability, bacterial killing, chemotaxis, degranulation, reactive oxygen species production and NET (neutrophil extracellular trap) formation. This results in their inability to mount an adequate antibacterial response and protect the individual from infection. Prognosis and survival in patients with cirrhosis are greatly influenced by the development of infectious complications. Multidrug-resistant bacterial infections in patients with cirrhosis are currently a growing problem worldwide; therefore, alternative methods for the prevention and treatment of bacterial infections in cirrhosis are urgently needed. The prevention and treatment of neutrophil dysfunction could be a potential way to protect patients from bacterial infections. However, the reasons for changes in neutrophil function in cirrhosis are still not completely understood, which limits the development of efficient therapeutic strategies. Both cellular and serum factors have been proposed to contribute to the functional impairment of neutrophils. Herein, we review the current knowledge on features and proposed causes of neutrophil dysfunction in cirrhosis, with a focus on current knowledge gaps and limitations, as well as opportunities for future investigations in this field.
Collapse
Affiliation(s)
- Irina Balazs
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Medical University of Graz, Graz, Austria
- Center for Biomarker Research in Medicine (CBmed), Graz, Austria
| | - Vanessa Stadlbauer
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Medical University of Graz, Graz, Austria
- Center for Biomarker Research in Medicine (CBmed), Graz, Austria
| |
Collapse
|
117
|
Zhang Y, Fang XM. The pan-liver network theory: From traditional chinese medicine to western medicine. CHINESE J PHYSIOL 2023; 66:401-436. [PMID: 38149555 DOI: 10.4103/cjop.cjop-d-22-00131] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023] Open
Abstract
In traditional Chinese medicine (TCM), the liver is the "general organ" that is responsible for governing/maintaining the free flow of qi over the entire body and storing blood. According to the classic five elements theory, zang-xiang theory, yin-yang theory, meridians and collaterals theory, and the five-viscera correlation theory, the liver has essential relationships with many extrahepatic organs or tissues, such as the mother-child relationships between the liver and the heart, and the yin-yang and exterior-interior relationships between the liver and the gallbladder. The influences of the liver to the extrahepatic organs or tissues have been well-established when treating the extrahepatic diseases from the perspective of modulating the liver by using the ancient classic prescriptions of TCM and the acupuncture and moxibustion. In modern medicine, as the largest solid organ in the human body, the liver has the typical functions of filtration and storage of blood; metabolism of carbohydrates, fats, proteins, hormones, and foreign chemicals; formation of bile; storage of vitamins and iron; and formation of coagulation factors. The liver also has essential endocrine function, and acts as an immunological organ due to containing the resident immune cells. In the perspective of modern human anatomy, physiology, and pathophysiology, the liver has the organ interactions with the extrahepatic organs or tissues, for example, the gut, pancreas, adipose, skeletal muscle, heart, lung, kidney, brain, spleen, eyes, skin, bone, and sexual organs, through the circulation (including hemodynamics, redox signals, hepatokines, metabolites, and the translocation of microbiota or its products, such as endotoxins), the neural signals, or other forms of pathogenic factors, under normal or diseases status. The organ interactions centered on the liver not only influence the homeostasis of these indicated organs or tissues, but also contribute to the pathogenesis of cardiometabolic diseases (including obesity, type 2 diabetes mellitus, metabolic [dysfunction]-associated fatty liver diseases, and cardio-cerebrovascular diseases), pulmonary diseases, hyperuricemia and gout, chronic kidney disease, and male and female sexual dysfunction. Therefore, based on TCM and modern medicine, the liver has the bidirectional interaction with the extrahepatic organ or tissue, and this established bidirectional interaction system may further interact with another one or more extrahepatic organs/tissues, thus depicting a complex "pan-hepatic network" model. The pan-hepatic network acts as one of the essential mechanisms of homeostasis and the pathogenesis of diseases.
Collapse
Affiliation(s)
- Yaxing Zhang
- Department of Physiology; Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong; Issue 12th of Guangxi Apprenticeship Education of Traditional Chinese Medicine (Shi-Cheng Class of Guangxi University of Chinese Medicine), College of Continuing Education, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Xian-Ming Fang
- Department of Cardiology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine (Guangxi Hospital of Integrated Chinese Medicine and Western Medicine, Ruikang Clinical Faculty of Guangxi University of Chinese Medicine), Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| |
Collapse
|
118
|
Lan H, Zhang Y, Fan M, Wu B, Wang C. Pregnane X receptor as a therapeutic target for cholestatic liver injury. Drug Metab Rev 2023; 55:371-387. [PMID: 37593784 DOI: 10.1080/03602532.2023.2248680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/02/2023] [Indexed: 08/19/2023]
Abstract
Cholestatic liver injury (CLI) is caused by toxic bile acids (BAs) accumulation in the liver and can lead to inflammation and liver fibrosis. The mechanisms underlying CLI development remain unclear, and this disease has no effective cure. However, regulating BA synthesis and homeostasis represents a promising therapeutic strategy for CLI treatment. Pregnane X receptor (PXR) plays an essential role in the metabolism of endobiotics and xenobiotics via the transcription of metabolic enzymes and transporters, which can ultimately modulate BA homeostasis and exert anticholestatic effects. Furthermore, recent studies have demonstrated that PXR exhibits antifibrotic and anti-inflammatory properties, providing novel insights into treating CLI. Meanwhile, several drugs have been identified as PXR agonists that improve CLI. Nevertheless, the precise role of PXR in CLI still needs to be fully understood. This review summarizes how PXR improves CLI by ameliorating cholestasis, inhibiting inflammation, and reducing fibrosis and discusses the progress of promising PXR agonists for treating CLI.
Collapse
Affiliation(s)
- Huan Lan
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Ying Zhang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Minqi Fan
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Bingxin Wu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Caiyan Wang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| |
Collapse
|
119
|
Wang C, Ma Q, Yu X. Bile Acid Network and Vascular Calcification-Associated Diseases: Unraveling the Intricate Connections and Therapeutic Potential. Clin Interv Aging 2023; 18:1749-1767. [PMID: 37885621 PMCID: PMC10599251 DOI: 10.2147/cia.s431220] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
Bile acids play a crucial role in promoting intestinal nutrient absorption and biliary cholesterol excretion, thereby protecting the liver from cholesterol accumulation and bile acid toxicity. Additionally, bile acids can bind to specific nuclear and membrane receptors to regulate energy expenditure and specific functions of particular tissues. Vascular calcification refers to the pathological process of calcium-phosphate deposition in blood vessel walls, which serves as an independent predictor for cardiovascular adverse events. In addition to aging, this pathological change is associated with aging-related diseases such as atherosclerosis, hypertension, chronic kidney disease, diabetes mellitus, and osteoporosis. Emerging evidence suggests a close association between the bile acid network and these aforementioned vascular calcification-associated conditions. Several bile acids have been proven to participate in calcium-phosphate metabolism, affecting the transdifferentiation of vascular smooth muscle cells and thus influencing vascular calcification. Targeting the bile acid network shows potential for ameliorating these diseases and their concomitant vascular calcification by regulating pathways such as energy metabolism, inflammatory response, oxidative stress, and cell differentiation. Here, we present a summary of the metabolism and functions of the bile acid network and aim to provide insights into the current research on the profound connections between the bile acid network and these vascular calcification-associated diseases, as well as the therapeutic potential.
Collapse
Affiliation(s)
- Cui Wang
- Laboratory of Endocrinology & Metabolism/Department of Endocrinology & Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, People’s Republic of China
| | - Qing Ma
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, Sichuan Province, 610041, People’s Republic of China
| | - Xijie Yu
- Laboratory of Endocrinology & Metabolism/Department of Endocrinology & Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, People’s Republic of China
| |
Collapse
|
120
|
Huang Z, Zhou RR. Mechanism for FXR to regulate bile acid and glycolipid metabolism to improve NAFLD. Shijie Huaren Xiaohua Zazhi 2023; 31:797-807. [DOI: 10.11569/wcjd.v31.i19.797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/16/2023] [Accepted: 09/21/2023] [Indexed: 10/08/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the main cause of chronic liver disease, with liver metabolic disorders as major pathological changes, manifested as abnormal lipid accumulation, liver cell oxidative stress, etc., but its etiology is still unclear. The farnesol X receptor (FXR) is a major bile acid receptor in the "gut-liver axis", via which FXR regulates metabolism and affects the pathophysiological status of various substances through different pathways, thus contributing to the occurrence and development of NAFLD. Therefore, FXR has become a potential therapeutic target for NAFLD. This article reviews the relationship between FXR regulation of bile acid, glucose, and lipid metabolism through the "gut-liver axis" and the occurrence and development of NAFLD, to provide new insights and clues for further research about FXR-based pharmaceutical treatments.
Collapse
Affiliation(s)
- Zhi Huang
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha 410000, Hunan Province, China
| | - Rong-Rong Zhou
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha 410000, Hunan Province, China
| |
Collapse
|
121
|
Zhang D, Zhou X, Zhou W, Cui SW, Nie S. Intestinal organoids: A thriving and powerful tool for investigating dietary nutrients-intestinal homeostasis axis. Food Res Int 2023; 172:113109. [PMID: 37689878 DOI: 10.1016/j.foodres.2023.113109] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/03/2023] [Accepted: 06/09/2023] [Indexed: 09/11/2023]
Abstract
Dietary nutrients regulate intestinal homeostasis through a variety of complex mechanisms, to affect the host health. Nowadays, various models have been used to investigate the dietary nutrients-intestinal homeostasis axis. Different from the limited flux in animal experiments, limited intestinal cell types and distorted simulation of intestinal environment of 2D cells, intestinal organoid (IO) is a 3D culture system of mini-gut with various intestinal epithelial cells (IECs) and producibility of intestinal biology. Therefore, IOs is a powerful tool to evaluate dietary nutrients-intestinal homeostasis interaction. This review summarized the application of IOs in the investigation of mechanisms for macronutrients (carbohydrates, proteins and fats) and micronutrients (vitamins and minerals) affecting intestinal homeostasis directly or indirectly (polysaccharides-intestinal bacteria, proteins-amino acids). In addition, new perspectives of IOs in combination with advanced biological techniques and their applications in precise nutrition were proposed.
Collapse
Affiliation(s)
- Duoduo Zhang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Xingtao Zhou
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China.
| | - Wengan Zhou
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Steve W Cui
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China; Agriculture and Agri-Food Canada, Guelph Research and Development Centre, 93 Stone Road West, Guelph, Ontario NIG 5C9, Canada
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China.
| |
Collapse
|
122
|
Zhang J, Lyu A, Wang C. The molecular insights of bile acid homeostasis in host diseases. Life Sci 2023; 330:121919. [PMID: 37422071 DOI: 10.1016/j.lfs.2023.121919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
Bile acids (BAs) function as detergents promoting nutrient absorption and as hormones regulating nutrient metabolism. Most BAs are key regulatory factors of physiological activities, which are involved in the regulation of glucose, lipid, and drug metabolisms. Hepatic and intestinal diseases have close connections with the systemic cycling disorders of BAs. The abnormal in BA absorption came up with overmuch BAs could be involved in the pathophysiology of liver and bowel and metabolic disorders such as fatty liver diseases and inflammatory bowel diseases. The primary BAs (PBAs), which are synthesized in the liver, can be transformed into the secondary BAs (SBAs) by gut microbiota. The transformation processes are tightly associated with the gut microbiome and the host endogenous metabolism. The BA biosynthesis gene cluster bile-acid-inducible operon is essential for modulating BA pool, gut microbiome composition, and the onset of intestinal inflammation. This forms a bidirectional interaction between the host and its gut symbiotic ecosystem. The subtle changes in the composition and abundance of BAs perturb the host physiological and metabolic activity. Therefore, maintaining the homeostasis of BAs pool contributes to the balance of the body's physiological and metabolic system. Our review aims to dissect the molecular mechanisms underlying the BAs homeostasis, assess the key factors sustaining the homeostasis and the role of BA acting on host diseases. By linking the BAs metabolic disorders and their associated diseases, we illustrate the effects of BAs homeostasis on health and potential clinical interventions can be taken under the latest research findings.
Collapse
Affiliation(s)
- Jinfang Zhang
- HKBU lnstitute for Research and Continuing Education, Shenzhen, China; Institute of Integrated Bioinformedicine and Translational Sciences, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Aiping Lyu
- HKBU lnstitute for Research and Continuing Education, Shenzhen, China; Institute of Integrated Bioinformedicine and Translational Sciences, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China.
| | - Chao Wang
- HKBU lnstitute for Research and Continuing Education, Shenzhen, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangzhou, China; The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China.
| |
Collapse
|
123
|
Ma L, Lv J, Zhang A. Depletion of S-adenosylmethionine induced by arsenic exposure is involved in liver injury of rat through perturbing histone H3K36 trimethylation dependent bile acid metabolism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122228. [PMID: 37481032 DOI: 10.1016/j.envpol.2023.122228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/22/2023] [Accepted: 07/18/2023] [Indexed: 07/24/2023]
Abstract
Long-term exposure to arsenic, a common environmental pollutant, can induce various types of liver injury, but the mechanism and treatment measures remain unclear. This study constructed a rat model of arsenic-induced liver injury, with methyl group donor S-adenosylmethionine (SAM) supplementation and Rosa roxburghii Tratt juice intervention, to explore the epigenetic mechanism and intervention method of arsenic-induced liver injury from the perspective of hepatic bile acid metabolism. The results showed that arsenic exposure induced the accumulation of total bile acids (TBA) in the liver and serum of rats, and the abnormalities in liver function and liver histopathology. Arsenic reduced histone H3K36 trimethylation (H3K36me3) in the liver via consuming methyl group donor SAM. The reduction of H3K36me3 was involved in arsenic-induced bile acid accumulation by inhibiting the transcription of negative feedback regulators Fxr and Fgfr4 for hepatic bile acid synthesis. SAM supplementation reversed arsenic-induced bile acid accumulation and liver injury by reactivating H3k36me3-dependent transcription of Fxr and Fgfr4. Moreover, this study found that Rosa roxburghii Tratt juice could rescue arsenic-induced SAM consumption, recover H3K36me3-dependent negative feedback regulation of hepatic bile acid synthesis, and alleviate arsenic-induced bile acid accumulation and liver injury. In conclusion, arsenic exposure perturbed H3K36me3-dependent hepatic bile acid metabolism via depleting SAM, thereby inducing hepatic bile acid accumulation and liver injury, which was ameliorated by the supporting effect of Rosa roxburghii Tratt juice on SAM. This study contributes to understanding the mechanism of arsenic-induced liver injury from the perspective of SAM-dependent epigenetics, providing new insight into its prevention and treatment.
Collapse
Affiliation(s)
- Lu Ma
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, PR China.
| | - Jiaxin Lv
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, PR China.
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, PR China.
| |
Collapse
|
124
|
Wang K, Gali-Moya J, Ruano-Zaragoza M, Cain K, D'Auria G, Daly M, Barran P, Crevel R, Mills ENC. Bile salts enhance the susceptibility of the peach allergenic lipid transfer protein, Pru p 3, to in vitro gastrointestinal proteolysis. Sci Rep 2023; 13:15155. [PMID: 37704681 PMCID: PMC10499906 DOI: 10.1038/s41598-023-39599-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 07/27/2023] [Indexed: 09/15/2023] Open
Abstract
Sensitisation to the lipid transfer protein Pru p 3 is associated with severe allergic reactions to peach, the proteins stability being thought to play a role in its allergenicity. Lipid binding increases susceptibility of Pru p 3 to digestion and so the impact of bile salts on the in vitro gastrointestinal digestibility of Pru p 3 was investigated and digestion products mapped by SDS-PAGE and mass spectrometry. Bile salts enhanced the digestibility of Pru p 3 resulting in an ensemble of around 100 peptides spanning the protein's sequence which were linked by disulphide bonds into structures of ~ 5-6 kDa. IgE binding studies with a serum panel from peach allergic subjects showed digestion reduced, but did not abolish, the IgE reactivity of Pru p 3. These data show the importance of including bile salts in vitro digestion systems and emphasise the need to profile of digestion in a manner that allows identification of immunologically relevant disulphide-linked peptide aggregates.
Collapse
Affiliation(s)
- Kai Wang
- School of Biological Sciences, Manchester Academic Health Sciences Centre, Manchester Institute of Biotechnology, 131 Princess Street, Manchester, M1 7DN, UK
| | - Judit Gali-Moya
- School of Biological Sciences, Manchester Academic Health Sciences Centre, Manchester Institute of Biotechnology, 131 Princess Street, Manchester, M1 7DN, UK
| | | | - Kathleen Cain
- Department of Chemistry, Manchester Institute of Biotechnology, 131 Princess Street, Manchester, M1 7DN, UK
| | - Giovanni D'Auria
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Matthew Daly
- School of Biological Sciences, Manchester Academic Health Sciences Centre, Manchester Institute of Biotechnology, 131 Princess Street, Manchester, M1 7DN, UK
| | - Perdita Barran
- Department of Chemistry, Manchester Institute of Biotechnology, 131 Princess Street, Manchester, M1 7DN, UK
| | - René Crevel
- School of Biological Sciences, Manchester Academic Health Sciences Centre, Manchester Institute of Biotechnology, 131 Princess Street, Manchester, M1 7DN, UK
- René Crevel Consulting Ltd, Suite A 82 James Carter Road, Mildenhall, IP28 7HP, UK
| | - E N Clare Mills
- School of Biological Sciences, Manchester Academic Health Sciences Centre, Manchester Institute of Biotechnology, 131 Princess Street, Manchester, M1 7DN, UK.
- School of Biosciences and Medicine, The University of Surrey, Guildford, GU2 7XH, Surrey, UK.
| |
Collapse
|
125
|
Mayer C, Nehring S, Kücken M, Repnik U, Seifert S, Sljukic A, Delpierre J, Morales‐Navarrete H, Hinz S, Brosch M, Chung B, Karlsen T, Huch M, Kalaidzidis Y, Brusch L, Hampe J, Schafmayer C, Zerial M. Apical bulkheads accumulate as adaptive response to impaired bile flow in liver disease. EMBO Rep 2023; 24:e57181. [PMID: 37522754 PMCID: PMC10481669 DOI: 10.15252/embr.202357181] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 08/01/2023] Open
Abstract
Hepatocytes form bile canaliculi that dynamically respond to the signalling activity of bile acids and bile flow. Little is known about their responses to intraluminal pressure. During embryonic development, hepatocytes assemble apical bulkheads that increase the canalicular resistance to intraluminal pressure. Here, we investigate whether they also protect bile canaliculi against elevated pressure upon impaired bile flow in adult liver. Apical bulkheads accumulate upon bile flow obstruction in mouse models and patients with primary sclerosing cholangitis (PSC). Their loss under these conditions leads to abnormally dilated canaliculi, resembling liver cell rosettes described in other hepatic diseases. 3D reconstruction reveals that these structures are sections of cysts and tubes formed by hepatocytes. Mathematical modelling establishes that they positively correlate with canalicular pressure and occur in early PSC stages. Using primary hepatocytes and 3D organoids, we demonstrate that excessive canalicular pressure causes the loss of apical bulkheads and formation of rosettes. Our results suggest that apical bulkheads are a protective mechanism of hepatocytes against impaired bile flow, highlighting the role of canalicular pressure in liver diseases.
Collapse
Affiliation(s)
- Carlotta Mayer
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Sophie Nehring
- Department of Medicine I, Gastroenterology and HepatologyUniversity Hospital Carl‐Gustav‐Carus, Technische Universität Dresden (TU Dresden)DresdenGermany
| | - Michael Kücken
- Center for Information Services and High‐Performance ComputingTechnische Universität DresdenDresdenGermany
| | - Urska Repnik
- Central Microscopy, Department of BiologyChristian‐Albrechts‐Universtät zu Kiel (CAU)KielGermany
| | - Sarah Seifert
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Aleksandra Sljukic
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Julien Delpierre
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | | | - Sebastian Hinz
- Department of General SurgeryUniversity Hospital RostockRostockGermany
| | - Mario Brosch
- Department of Medicine I, Gastroenterology and HepatologyUniversity Hospital Carl‐Gustav‐Carus, Technische Universität Dresden (TU Dresden)DresdenGermany
- Center for Regenerative Therapies Dresden (CRTD)Technische Universität Dresden (TU Dresden)DresdenGermany
| | - Brian Chung
- Department of Transplantation Medicine, Clinic of Surgery, Inflammatory Medicine and Transplantation, Norwegian PSC Research CenterOslo University Hospital RikshospitaletOsloNorway
- Research Institute of Internal Medicine, Clinic of Surgery, Inflammatory Diseases and TransplantationOslo University Hospital and University of OsloOsloNorway
| | - Tom Karlsen
- Department of Transplantation Medicine, Clinic of Surgery, Inflammatory Medicine and Transplantation, Norwegian PSC Research CenterOslo University Hospital RikshospitaletOsloNorway
- Research Institute of Internal Medicine, Clinic of Surgery, Inflammatory Diseases and TransplantationOslo University Hospital and University of OsloOsloNorway
| | - Meritxell Huch
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Yannis Kalaidzidis
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Lutz Brusch
- Center for Information Services and High‐Performance ComputingTechnische Universität DresdenDresdenGermany
| | - Jochen Hampe
- Department of Medicine I, Gastroenterology and HepatologyUniversity Hospital Carl‐Gustav‐Carus, Technische Universität Dresden (TU Dresden)DresdenGermany
- Center for Regenerative Therapies Dresden (CRTD)Technische Universität Dresden (TU Dresden)DresdenGermany
| | | | - Marino Zerial
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| |
Collapse
|
126
|
Huang C, Mei S, Zhang X, Tian X. Inflammatory Milieu Related to Dysbiotic Gut Microbiota Promotes Tumorigenesis of Hepatocellular Carcinoma. J Clin Gastroenterol 2023; 57:782-788. [PMID: 37406184 DOI: 10.1097/mcg.0000000000001883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is an invasive primary liver cancer caused by multiple pathogenic factors and is a significant global health concern. With few effective therapeutic options, HCC is a heterogeneous carcinoma that typically arises in an inflammatory environment. Recent studies have suggested that dysbiotic gut microbiota is involved in hepatocarcinogenesis via multiple mechanisms. In this review, we discuss the effects of gut microbiota, microbial components, and microbiota-derived metabolites on the promotion and progression of HCC by feeding a persistent inflammatory milieu. In addition, we discuss the potential therapeutic modalities for HCC targeting the inflammatory status induced by gut microbiota. A better understanding of the correlation between the inflammatory milieu and gut microbiota in HCC may be beneficial for developing new therapeutic strategies and managing the disease.
Collapse
Affiliation(s)
- Caizhi Huang
- Department of Internal Medicine, College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine
- Department of Laboratory Medicine, Hunan Children's Hospital
| | - Si Mei
- Department of Physiology, Hunan University of Chinese Medicine
| | - Xue Zhang
- Key Laboratory of Traditional Chinese Medicine for Mechanism of Tumor Prevention & Treatment, Hunan University of Chinese Medicine
| | - Xuefei Tian
- Department of Internal Medicine, College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine
- Key Laboratory of Traditional Chinese Medicine for Mechanism of Tumor Prevention & Treatment, Hunan University of Chinese Medicine
- Hunan Province University Key Laboratory of Oncology of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
127
|
Mokhlesi A, Sharifi Z, Berimipour A, Taleahmad S, Talkhabi M. Identification of hub genes and microRNAs with prognostic values in esophageal cancer by integrated analysis. Noncoding RNA Res 2023; 8:459-470. [PMID: 37416747 PMCID: PMC10319852 DOI: 10.1016/j.ncrna.2023.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/07/2023] [Accepted: 05/31/2023] [Indexed: 07/08/2023] Open
Abstract
Esophageal cancer (EC) is the eighth most common cancer in the world, and the sixth most common cause of cancer-related mortality. The aim of the present study was to identify cell and molecular mechanisms involved in EC, and to provide the potential targets for diagnosis and treatment. Here, a microarray dataset (GSE20347) was screened to find differentially expressed genes (DEGs). Different bioinformatic methods were used to analyze the identified DEGs. The up-regulated DEGs were significantly involved in different biological processes and pathways including extracellular matrix organization and ECM-receptor interaction. FN1, CDK1, AURKA, TOP2A, FOXM1, BIRC5, CDC6, UBE2C, TTK, and TPX2 were identified as the most important genes among the up-regulated DEGs. Our analysis showed that has-miR-29a-3p, has-miR-29b-3p, has-miR-29c-3p, and has-miR-767-5p had the largest number of common targets among the up-regulated DEGs. These findings strengthen the understanding of EC development and progression, as well as representing potential markers for EC diagnosis and treatment.
Collapse
Affiliation(s)
- Amir Mokhlesi
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Zahra Sharifi
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Ahmad Berimipour
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Sara Taleahmad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mahmood Talkhabi
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
128
|
Zhong G, He C, Wang S, Lin C, Li M. Research progress on the mechanism of cholesterol-25-hydroxylase in intestinal immunity. Front Immunol 2023; 14:1241262. [PMID: 37720208 PMCID: PMC10500599 DOI: 10.3389/fimmu.2023.1241262] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/21/2023] [Indexed: 09/19/2023] Open
Abstract
Inflammatory bowel disease (IBD), a general term encompassing Crohn's disease (CD) and ulcerative colitis (UC), and other conditions, is a chronic and relapsing autoimmune disease that can occur in any part of the digestive tract. While the cause of IBD remains unclear, it is acknowledged that the disease has much to do with the dysregulation of intestinal immunity. In the intestinal immune regulatory system, Cholesterol-25-hydroxylase (CH25H) plays an important role in regulating the function of immune cells and lipid metabolism through catalyzing the oxidation of cholesterol into 25-hydroxycholesterol (25-HC). Specifically, CH25H focuses its mechanism of regulating the inflammatory response, signal transduction and cell migration on various types of immune cells by binding to relevant receptors, and the mechanism of regulating lipid metabolism and immune cell function via the transcription factor Sterol Regulator-Binding Protein. Based on this foundation, this article will review the function of CH25H in intestinal immunity, aiming to provide evidence for supporting the discovery of early diagnostic and treatment targets for IBD.
Collapse
Affiliation(s)
| | | | | | | | - Mingsong Li
- Inflammatory Bowel Diseases Research Center, Department of Gastroenterology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
129
|
Shan D, Dai S, Chen Q, Xie Y, Hu Y. Hepatoprotective agents in the management of intrahepatic cholestasis of pregnancy: current knowledge and prospects. Front Pharmacol 2023; 14:1218432. [PMID: 37719856 PMCID: PMC10500604 DOI: 10.3389/fphar.2023.1218432] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/16/2023] [Indexed: 09/19/2023] Open
Abstract
Intrahepatic cholestasis of pregnancy (ICP) is characterized by unexplained distressing pruritus in the mother and poses significant risk to the fetus of perinatal mortality. Occurring in the second and third trimester, the serum bile acid and aminotransferase are usually elevated in ICP patients. Ursodeoxycholic acid (UDCA) is the first line drug for ICP but the effectiveness for hepatoprotection is to a certain extent. In ICP patients with severe liver damage, combination use of hepatoprotective agents with UDCA is not uncommon. Herein, we reviewed the current clinical evidence on application of hepatoprotective agents in ICP patients. The underlying physiological mechanisms and their therapeutic effect in clinical practice are summarized. The basic pharmacologic functions of these hepatoprotective medications include detoxification, anti-inflammation, antioxidation and hepatocyte membrane protection. These hepatoprotective agents have versatile therapeutic effects including anti-inflammation, antioxidative stress, elimination of free radicals, anti-steatohepatitis, anti-fibrosis and anti-cirrhosis. They are widely used in hepatitis, non-alcoholic fatty liver disease, drug induced liver injury and cholestasis. Evidence from limited clinical data in ICP patients demonstrate reliable effectiveness and safety of these medications. Currently there is still no consensus on the application of hepatoprotective agents in ICP pregnancies. Dynamic monitoring of liver biochemical parameters and fetal condition is still the key recommendation in the management of ICP pregnancies.
Collapse
Affiliation(s)
- Dan Shan
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Siyu Dai
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Qian Chen
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Yupei Xie
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Yayi Hu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| |
Collapse
|
130
|
Masenga SK, Povia JP, Lwiindi PC, Kirabo A. Recent Advances in Microbiota-Associated Metabolites in Heart Failure. Biomedicines 2023; 11:2313. [PMID: 37626809 PMCID: PMC10452327 DOI: 10.3390/biomedicines11082313] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/16/2023] [Accepted: 08/19/2023] [Indexed: 08/27/2023] Open
Abstract
Heart failure is a risk factor for adverse events such as sudden cardiac arrest, liver and kidney failure and death. The gut microbiota and its metabolites are directly linked to the pathogenesis of heart failure. As emerging studies have increased in the literature on the role of specific gut microbiota metabolites in heart failure development, this review highlights and summarizes the current evidence and underlying mechanisms associated with the pathogenesis of heart failure. We found that gut microbiota-derived metabolites such as short chain fatty acids, bile acids, branched-chain amino acids, tryptophan and indole derivatives as well as trimethylamine-derived metabolite, trimethylamine N-oxide, play critical roles in promoting heart failure through various mechanisms. Mainly, they modulate complex signaling pathways such as nuclear factor kappa-light-chain-enhancer of activated B cells, Bcl-2 interacting protein 3, NLR Family Pyrin Domain Containing inflammasome, and Protein kinase RNA-like endoplasmic reticulum kinase. We have also highlighted the beneficial role of other gut metabolites in heart failure and other cardiovascular and metabolic diseases.
Collapse
Affiliation(s)
- Sepiso K. Masenga
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Livingstone 10101, Zambia; (J.P.P.); (P.C.L.)
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232-6602, USA
| | - Joreen P. Povia
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Livingstone 10101, Zambia; (J.P.P.); (P.C.L.)
| | - Propheria C. Lwiindi
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Livingstone 10101, Zambia; (J.P.P.); (P.C.L.)
| | - Annet Kirabo
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232-6602, USA
| |
Collapse
|
131
|
Ding L, Guan H, Yang W, Guo H, Zang C, Liu Y, Ren S, Liu J. Modulatory Effects of Co-Fermented Pu-erh Tea with Aqueous Corn Silk Extract on Gut Microbes and Fecal Metabolites in Mice Fed High-Fat Diet. Nutrients 2023; 15:3642. [PMID: 37630832 PMCID: PMC10458734 DOI: 10.3390/nu15163642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Pu-erh tea is recognized for its weight loss effects, but its potential association with gut microbiota and metabolites remains unclear. This research explored the alterations in gut flora and metabolite composition upon treatment with a co-fermented Pu-erh tea with an aqueous corn silk extract (CPC) in obese mice by employing integrated 16S ribosomal RNA gene sequencing and untargeted metabolomics processes. For 8 weeks, mice were fed control, high-fat, and high-fat diets which included a 46 mg/mL CPC extract. The CPC extract the alleviated high-fat diet (HFD), it stimulated systemic chronic inflammation, and it reduced the body weight, daily energy consumption, and adipose tissue weight of the mice. It also modified the gut microbiota composition and modulated the Lactobacillus, Bifidobacterium, Allobaculum, Turicibacter, and Rikenella genera. Fecal metabolomics analysis revealed that the CPC extract influenced the caffeine, cysteine, methionine, tryptophan, biotin metabolism pathways, primary bile acid, and steroid biosynthesis. This research revealed that the CPC extract could inhibit HFD-stimulated abnormal weight gain and adipose tissue accumulation in mice, and modulate mice gut microbiota composition and multiple metabolic pathways.
Collapse
Affiliation(s)
- Lin Ding
- Research Center of Microecological Engineering Technology, Office of Academic Research, Qiqihar Medical University, Qiqihar 161006, China; (L.D.); (H.G.); (W.Y.); (H.G.); (C.Z.); (Y.L.)
| | - Hong Guan
- Research Center of Microecological Engineering Technology, Office of Academic Research, Qiqihar Medical University, Qiqihar 161006, China; (L.D.); (H.G.); (W.Y.); (H.G.); (C.Z.); (Y.L.)
| | - Wenqing Yang
- Research Center of Microecological Engineering Technology, Office of Academic Research, Qiqihar Medical University, Qiqihar 161006, China; (L.D.); (H.G.); (W.Y.); (H.G.); (C.Z.); (Y.L.)
| | - Hao Guo
- Research Center of Microecological Engineering Technology, Office of Academic Research, Qiqihar Medical University, Qiqihar 161006, China; (L.D.); (H.G.); (W.Y.); (H.G.); (C.Z.); (Y.L.)
| | - Chuangang Zang
- Research Center of Microecological Engineering Technology, Office of Academic Research, Qiqihar Medical University, Qiqihar 161006, China; (L.D.); (H.G.); (W.Y.); (H.G.); (C.Z.); (Y.L.)
| | - Yuchao Liu
- Research Center of Microecological Engineering Technology, Office of Academic Research, Qiqihar Medical University, Qiqihar 161006, China; (L.D.); (H.G.); (W.Y.); (H.G.); (C.Z.); (Y.L.)
| | - Shan Ren
- Basic Medical Science College, Qiqihar Medical University, Qiqihar 161006, China;
| | - Jicheng Liu
- Heilongjiang Provincial Key Laboratory of Natural Medicines for Anticancer, Qiqihar Medical University, Qiqihar 161006, China
| |
Collapse
|
132
|
Shu Y, Huang Y, Dong W, Fan X, Sun Y, Chen G, Zeng X, Ye H. The polysaccharides from Auricularia auricula alleviate non-alcoholic fatty liver disease via modulating gut microbiota and bile acids metabolism. Int J Biol Macromol 2023; 246:125662. [PMID: 37399869 DOI: 10.1016/j.ijbiomac.2023.125662] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/13/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
The polysaccharides from Auricularia auricula (AAPs), containing a large number of O-acetyl groups that are related to the physiological and biological properties, seem to be potential prebiotics like other edible fungus polysaccharides. In the present study, therefore, the alleviating effects of AAPs and deacetylated AAPs (DAAPs, prepared from AAPs by alkaline treatment) on nonalcoholic fatty liver disease (NAFLD) induced by high-fat and high-cholesterol diet combined with carbon tetrachloride were investigated. The results revealed that both AAPs and DAAPs could effectively relieve liver injury, inflammation and fibrosis, and maintain intestinal barrier function. Both AAPs and DAAPs could modulate the disorder of gut microbiota and altered the composition of gut microbiota with enrichment of Odoribacter, Lactobacillus, Dorea and Bifidobacterium. Further, the alteration of gut microbiota, especially enhancement of Lactobacillus and Bifidobacterium, was contributed to the changes of bile acids (BAs) profile with increased deoxycholic acid (DCA). Farnesoid X receptor could be activated by DCA and other unconjugated BAs, which participated the BAs metabolism and alleviated the cholestasis, then protected against hepatitis in NAFLD mice. Interestingly, it was found that the deacetylation of AAPs negatively affected the anti-inflammation, thereby reducing the health benefits of A. auricula-derived polysaccharides.
Collapse
Affiliation(s)
- Yifan Shu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Yujie Huang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Wei Dong
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Xia Fan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Yi Sun
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Guijie Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Hong Ye
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| |
Collapse
|
133
|
Zhu L, Fang S, Liu W, Zhang H, Zhang Y, Xie Z, Yang P, Wan J, Gao B, Lucy Yu L. The triacylglycerol structure and composition of a human milk fat substitute affect the absorption of fatty acids and calcium, lipid metabolism and bile acid metabolism in newly-weaned Sprague-Dawley rats. Food Funct 2023; 14:7574-7585. [PMID: 37526948 DOI: 10.1039/d2fo01800d] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
In this study, the effect of sn-2 palmitic triacylglycerols (sn-2 palmitic TAGs) and the ratio between the two major sn-2 palmitic TAGs (OPL to OPO ratio) in a human milk fat substitute (HMFS) on growth, fatty acid and calcium absorptions, and lipid and bile acid metabolic alterations was investigated in Sprague-Dawley rats. After 4 weeks of high-fat feeding, rats fed with the HMFS containing a sn-2 palmitic acid content of 57.87% and an OPL to OPO ratio of 1.4 showed the lowest TAG accumulation in their livers and hypertrophy of perirenal adipocytes, compared to the groups fed with fats containing a lower sn-2 palmitic acid content or a lower OPL to OPO ratio. Meanwhile, synergistically improved absorption of fatty acids and calcium and increased levels of total bile acids (BAs), especially for the tauro-conjugated BAs (TCDCA, TUDCA, TαMCA, TβMCA, TDCA and TωMCA), were observed in rats by both increasing the sn-2 palmitic acid content and the OPL to OPO ratio in HMFS. In addition, the levels of total BAs and tauro-conjugated BAs were negatively correlated with serum TAG, TC, and LDL-c levels and positively correlated with HDL-c levels according to Spearman's correlation analysis (P < 0.05). Collectively, these findings present new nutritional evidence for the potential effects of the TAG structure and composition of a human milk fat substitute on the growth and lipid and bile acid metabolism of the host in infancy.
Collapse
Affiliation(s)
- Lin Zhu
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Shuaizhen Fang
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Wenwen Liu
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Hong Zhang
- Wilmar (Shanghai) Biotechnology Research & Development Center Co. Ltd, Shanghai 200137, China
| | - Yaqiong Zhang
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Zhuohong Xie
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland 20742, USA
| | - Puyu Yang
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Jianchun Wan
- Wilmar (Shanghai) Biotechnology Research & Development Center Co. Ltd, Shanghai 200137, China
| | - Boyan Gao
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Liangli Lucy Yu
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
134
|
Mostafa H, Cheok A, Meroño T, Andres-Lacueva C, Rodriguez-Mateos A. Biomarkers of Berry Intake: Systematic Review Update. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:11789-11805. [PMID: 37499164 PMCID: PMC10416351 DOI: 10.1021/acs.jafc.3c01142] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023]
Abstract
Berries are rich in (poly)phenols, and these compounds may be beneficial to human health. Estimating berry consumption through self-reported questionnaires has been challenging due to compliance issues and a lack of precision. Estimation via food-derived biomarkers in biofluids was proposed as a complementary alternative. We aimed to review and update the existing evidence on biomarkers of intake for six different types of berries. A systematic literature search was performed to update a previous systematic review on PubMed, Web of Science, and Scopus from January 2020 until December 2022. Out of 42 papers, only 18 studies were eligible. A multimetabolite panel is suggested for blueberry and cranberry intake. Proposed biomarkers for blueberries include hippuric acid and malvidin glycosides. For cranberries, suggested biomarkers are glycosides of peonidin and cyanidin together with sulfate and glucuronide conjugates of phenyl-γ-valerolactone derivatives. No new metabolite candidates have been found for raspberries, strawberries, blackcurrants, and blackberries. Further studies are encouraged to validate these multimetabolite panels for improving the estimation of berry consumption.
Collapse
Affiliation(s)
- Hamza Mostafa
- Biomarkers
and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences
and Gastronomy, Nutrition and Food Safety Research Institute (INSA),
Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Centro
de Investigación Biomédica en Red de Fragilidad y Envejecimiento
Saludable (CIBERFES), Instituto de Salud
Carlos III, Madrid 28029, Spain
| | - Alex Cheok
- Department
of Nutritional Sciences, School of Life Course and Population Sciences,
Faculty of Life Sciences and Medicine, King’s
College London, 150 Stamford
Street, SE1 9NH London, U.K.
| | - Tomás Meroño
- Biomarkers
and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences
and Gastronomy, Nutrition and Food Safety Research Institute (INSA),
Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Centro
de Investigación Biomédica en Red de Fragilidad y Envejecimiento
Saludable (CIBERFES), Instituto de Salud
Carlos III, Madrid 28029, Spain
| | - Cristina Andres-Lacueva
- Biomarkers
and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences
and Gastronomy, Nutrition and Food Safety Research Institute (INSA),
Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Centro
de Investigación Biomédica en Red de Fragilidad y Envejecimiento
Saludable (CIBERFES), Instituto de Salud
Carlos III, Madrid 28029, Spain
| | - Ana Rodriguez-Mateos
- Department
of Nutritional Sciences, School of Life Course and Population Sciences,
Faculty of Life Sciences and Medicine, King’s
College London, 150 Stamford
Street, SE1 9NH London, U.K.
| |
Collapse
|
135
|
Chen X, Li H, Liu Y, Qi J, Dong B, Huang S, Zhao S, Zhu Y. Dimethyl Sulfoxide Inhibits Bile Acid Synthesis in Healthy Mice but Does Not Protect Mice from Bile-Acid-Induced Liver Damage. BIOLOGY 2023; 12:1105. [PMID: 37626991 PMCID: PMC10452260 DOI: 10.3390/biology12081105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/23/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023]
Abstract
Bile acids serve a vital function in lipid digestion and absorption; however, their accumulation can precipitate liver damage. In our study, we probed the effects of dimethyl sulfoxide (DMSO) on bile acid synthesis and the ensuing liver damage in mice induced by bile acids. Our findings indicate that DMSO efficaciously curbs bile acid synthesis by inhibiting key enzymes involved in the biosynthetic pathway, both in cultured primary hepatocytes and in vivo. Contrarily, we observed that DMSO treatment did not confer protection against bile-acid-induced liver damage in two distinct mouse models: one induced by a 0.1% DDC diet, leading to bile duct obstruction, and another induced by a CDA-HFD, resulting in non-alcoholic steatohepatitis (NASH). Histopathological and biochemical analyses unveiled a comparable extent of liver injury and fibrosis levels in DMSO-treated mice, characterized by similar levels of increase in Col1a1 and Acta2 expression and equivalent total liver collagen levels. These results suggest that, while DMSO can promptly inhibit bile acid synthesis in healthy mice, compensatory mechanisms might rapidly override this effect, negating any protective impact against bile-acid-induced liver damage in mice. Through these findings, our study underscores the need to reconsider treating DMSO as a mere inert solvent and prompts further exploration to identify more effective therapeutic strategies for the prevention and treatment of bile-acid-associated liver diseases.
Collapse
Affiliation(s)
- Xi Chen
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Huiqiao Li
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yu’e Liu
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
| | - Jing Qi
- Department of Emergency, The Third Xiangya Hospital of Central South University, Changsha 410013, China;
| | - Bingning Dong
- Gastroenterology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shixia Huang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shangang Zhao
- Barshop Institute for Longevity and Aging Studies, Division of Endocrinology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Yi Zhu
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
136
|
Zhao R, Cheng W, Shen J, Liang W, Zhang Z, Sheng Y, Chai T, Chen X, Zhang Y, Huang X, Yang H, Song C, Pang L, Nan C, Zhang Y, Chen R, Mei J, Wei H, Fang X. Single-cell and spatiotemporal transcriptomic analyses reveal the effects of microorganisms on immunity and metabolism in the mouse liver. Comput Struct Biotechnol J 2023; 21:3466-3477. [PMID: 38152123 PMCID: PMC10751235 DOI: 10.1016/j.csbj.2023.06.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 12/29/2023] Open
Abstract
The gut-liver axis is a complex bidirectional communication pathway between the intestine and the liver in which microorganisms and their metabolites flow from the intestine through the portal vein to the liver and influence liver function. In a sterile environment, the phenotype or function of the liver is altered, but few studies have investigated the specific cellular and molecular effects of microorganisms on the liver. To this end, we constructed single-cell and spatial transcriptomic (ST) profiles of germ-free (GF) and specific-pathogen-free (SPF) mouse livers. Single-cell RNA sequencing (scRNA-seq) and single-nucleus RNA sequencing (snRNA-seq) revealed that the ratio of most immune cells was altered in the liver of GF mice; in particular, natural killer T (NKT) cells, IgA plasma cells (IgAs) and Kupffer cells (KCs) were significantly reduced in GF mice. Spatial enhanced resolution omics sequencing (Stereo-seq) confirmed that microorganisms mediated the accumulation of Kupffer cells in the periportal zone. Unexpectedly, IgA plasma cells were more numerous and concentrated in the periportal vein in liver sections from SPF mice but less numerous and scattered in GF mice. ST technology also enables the precise zonation of liver lobules into eight layers and three patterns based on the gene expression level in each layer, allowing us to further investigate the effects of microbes on gene zonation patterns and functions. Furthermore, untargeted metabolism experiments of the liver revealed that the propionic acid levels were significantly lower in GF mice, and this reduction may be related to the control of genes involved in bile acid and fatty acid metabolism. In conclusion, the combination of sc/snRNA-seq, Stereo-seq, and untargeted metabolomics revealed immune system defects as well as altered bile acid and lipid metabolic processes at the single-cell and spatial levels in the livers of GF mice. This study will be of great value for understanding host-microbiota interactions.
Collapse
Affiliation(s)
- Ruizhen Zhao
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI-Shenzhen, Shenzhen 518083, China
| | - Wei Cheng
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Juan Shen
- BGI-Shenzhen, Shenzhen 518083, China
| | | | - Zhao Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI-Shenzhen, Shenzhen 518083, China
| | - Yifei Sheng
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI-Shenzhen, Shenzhen 518083, China
| | - Tailiang Chai
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI-Shenzhen, Shenzhen 518083, China
| | - Xueting Chen
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI-Shenzhen, Shenzhen 518083, China
| | - Yin Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI-Shenzhen, Shenzhen 518083, China
| | - Xiang Huang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Chunqing Song
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Li Pang
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
| | - Cuoji Nan
- BGI-Shenzhen, Shenzhen 518083, China
| | | | - Rouxi Chen
- BGI-Sanya, BGI-Shenzhen, Sanya 572025, China
| | - Junpu Mei
- BGI-Shenzhen, Shenzhen 518083, China
- BGI-Sanya, BGI-Shenzhen, Sanya 572025, China
| | - Hong Wei
- Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Xiaodong Fang
- BGI-Shenzhen, Shenzhen 518083, China
- BGI-Sanya, BGI-Shenzhen, Sanya 572025, China
| |
Collapse
|
137
|
Zhang Y, Chen H, Cong W, Zhang K, Jia Y, Wu L. Chronic Heat Stress Affects Bile Acid Profile and Gut Microbiota in Broilers. Int J Mol Sci 2023; 24:10238. [PMID: 37373380 DOI: 10.3390/ijms241210238] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Heat stress (HS) can inhibit the growth performance of broilers and cause substantial economic losses. Alterations in bile acid (BA) pools have been reported to be correlated with chronic HS, yet the specific mechanism and whether it is related to gut microbiota remains unclear. In this study, 40 Rugao Yellow chickens were randomly selected and distributed into two groups (20 broilers in each group) when reaching 56-day age: a chronic heat stress group (HS, 36 ± 1 °C for 8 h per day in the first 7 days and 36 ± 1 °C for 24 h in the last 7 days) and a control group (CN, 24 ± 1 °C for 24 h within 14 days). Compared with the CN group, total BAs' serum content decreased, while cholic acid (CA), chenodeoxycholic acid (CDCA), and taurolithocholic acid (TLCA) increased significantly in HS broilers. Moreover, 12α-hydroxylase (CYP8B1) and bile salt export protein (BSEP) were upregulated in the liver, and the expression of fibroblast growth factor 19 (FGF19) decreased in the ileum of HS broilers. There were also significant changes in gut microbial composition, and the enrichment of Peptoniphilus was positively correlated with the increased serum level of TLCA. These results indicate that chronic HS disrupts the homeostasis of BA metabolism in broilers, which is associated with alterations in gut microbiota.
Collapse
Affiliation(s)
- Yuting Zhang
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Huimin Chen
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Cong
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Ke Zhang
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yimin Jia
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Lei Wu
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
138
|
Wang Z, Zang L, Ren W, Guo H, Sheng N, Zhou X, Guo Y, Dai J. Bile acid metabolism disorder mediates hepatotoxicity of Nafion by-product 2 and perfluorooctane sulfonate in male PPARα-KO mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162579. [PMID: 36870486 DOI: 10.1016/j.scitotenv.2023.162579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Perfluorooctane sulfonate (PFOS) and Nafion by-product 2 (H-PFMO2OSA) induce hepatotoxicity in male mice via activation of the peroxisome proliferator-activated receptor α (PPARα) pathway; however, accumulating evidence suggests that PPARα-independent pathways also play a vital role in hepatotoxicity after exposure to per- and polyfluoroalkyl substances (PFASs). Thus, to assess the hepatotoxicity of PFOS and H-PFMO2OSA more comprehensively, adult male wild-type (WT) and PPARα knockout (PPARα-KO) mice were exposed to PFOS and H-PFMO2OSA (1 or 5 mg/kg/d) for 28 d via oral gavage. Results showed that although elevations in alanine transaminase (ALT) and aspartate aminotransferase (AST) were alleviated in PPARα-KO mice, liver injury, including liver enlargement and necrosis, was still observed after PFOS and H-PFMO2OSA exposure. Liver transcriptome analysis identified fewer differentially expressed genes (DEGs) in the PPARα-KO mice than in the WT mice, but more DEGs associated with the bile acid secretion pathway after PFOS and H-PFMO2OSA treatment. Total bile acid content in the liver was increased in the 1 and 5 mg/kg/d PFOS-exposed and 5 mg/kg/d H-PFMO2OSA-exposed PPARα-KO mice. Furthermore, in PPARα-KO mice, proteins showing changes in transcription and translation levels after PFOS and H-PFMO2OSA exposure were involved in the synthesis, transportation, reabsorption, and excretion of bile acids. Thus, exposure to PFOS and H-PFMO2OSA in male PPARα-KO mice may disturb bile acid metabolism, which is not under the control of PPARα.
Collapse
Affiliation(s)
- Zhiru Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Lu Zang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Wanlan Ren
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Hua Guo
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Nan Sheng
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Xuming Zhou
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yong Guo
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Jiayin Dai
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China.
| |
Collapse
|
139
|
Chakraborty S, Lulla A, Cheng X, Yeo JY, Mandal J, Yang T, Mei X, Saha P, Golonka RM, Yeoh BS, Mell B, Jia W, Putluri V, Piyarathna DWB, Putluri N, Sreekumar A, Meyer K, Vijay-Kumar M, Joe B. Conjugated bile acids are nutritionally re-programmable antihypertensive metabolites. J Hypertens 2023; 41:979-994. [PMID: 37071431 PMCID: PMC10158603 DOI: 10.1097/hjh.0000000000003423] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/06/2023] [Accepted: 02/06/2023] [Indexed: 04/19/2023]
Abstract
BACKGROUND Hypertension is the largest risk factor affecting global mortality. Despite available medications, uncontrolled hypertension is on the rise, whereby there is an urgent need to develop novel and sustainable therapeutics. Because gut microbiota is now recognized as an important entity in blood pressure regulation, one such new avenue is to target the gut-liver axis wherein metabolites are transacted via host-microbiota interactions. Knowledge on which metabolites within the gut-liver axis regulate blood pressure is largely unknown. METHOD To address this, we analyzed bile acid profiles of human, hypertensive and germ-free rat models and report that conjugated bile acids are inversely correlated with blood pressure in humans and rats. RESULTS Notably intervening with taurine or tauro-cholic acid rescued bile acid conjugation and reduced blood pressure in hypertensive rats. Subsequently, untargeted metabolomics uncovered altered energy metabolism following conjugation of bile acids as a mechanism alleviating high blood pressure. CONCLUSION Together this work reveals conjugated bile acids as nutritionally re-programmable anti-hypertensive metabolites.
Collapse
Affiliation(s)
- Saroj Chakraborty
- Program in Physiological Genomics, Microbiome Consortium and Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Anju Lulla
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina
| | - Xi Cheng
- Program in Physiological Genomics, Microbiome Consortium and Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Ji-Youn Yeo
- Program in Physiological Genomics, Microbiome Consortium and Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Juthika Mandal
- Program in Physiological Genomics, Microbiome Consortium and Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Tao Yang
- Program in Physiological Genomics, Microbiome Consortium and Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Xue Mei
- Program in Physiological Genomics, Microbiome Consortium and Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Piu Saha
- Program in Physiological Genomics, Microbiome Consortium and Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Rachel M. Golonka
- Program in Physiological Genomics, Microbiome Consortium and Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Beng San Yeoh
- Program in Physiological Genomics, Microbiome Consortium and Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Blair Mell
- Program in Physiological Genomics, Microbiome Consortium and Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Wei Jia
- University of Hawaii Cancer Center, Honolulu, Hawaii
| | | | | | - Nagireddy Putluri
- Dan L. Duncan Cancer Center, Advanced Technology Core
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Arun Sreekumar
- Dan L. Duncan Cancer Center, Advanced Technology Core
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Katie Meyer
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina,USA
| | - Matam Vijay-Kumar
- Program in Physiological Genomics, Microbiome Consortium and Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Bina Joe
- Program in Physiological Genomics, Microbiome Consortium and Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| |
Collapse
|
140
|
Althagafy HS, El-Aziz MA, Ibrahim IM, Abd-Alhameed EK, Hassanein EM. Pharmacological updates of nifuroxazide: Promising preclinical effects and the underlying molecular mechanisms. Eur J Pharmacol 2023; 951:175776. [PMID: 37192715 DOI: 10.1016/j.ejphar.2023.175776] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 05/18/2023]
Abstract
Nifuroxazide (NFX) is a safe nitrofuran antibacterial drug used clinically to treat acute diarrhea and infectious traveler diarrhea or colitis. Recent studies revealed that NFX displays multiple pharmacological effects, including anticancer, antioxidant, and anti-inflammatory effects. NFX has potential roles in inhibiting thyroid, breast, lung, bladder, liver, and colon cancers and osteosarcoma, melanoma, and others mediated by suppressing STAT3 as well as ALDH1, MMP2, MMP9, Bcl2 and upregulating Bax. Moreover, it has promising effects against sepsis-induced organ injury, hepatic disorders, diabetic nephropathy, ulcerative colitis, and immune disorders. These promising effects appear to be mediated by suppressing STAT3 as well as NF-κB, TLR4, and β-catenin expressions and effectively decreasing downstream cytokines TNF-α, IL-1β, and IL-6. Our review summarizes the available studies on the molecular biological mechanisms of NFX in cancer and other diseases and it is recommended to translate the studies in experimental animals and cultured cells and repurpose NFX in various diseases for scientific evidence based on human studies.
Collapse
Affiliation(s)
- Hanan S Althagafy
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | | | - Islam M Ibrahim
- Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Esraa K Abd-Alhameed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - EmadH M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt.
| |
Collapse
|
141
|
Hualin X, Yupin X, Guoqiang Z, Xukun F, Hongmei L. Intrahepatic cholestasis of pregnancy worsening perinatal depressive tendency: A follow-up study from the second trimester to the sixth week postpartum. Heliyon 2023; 9:e15845. [PMID: 37215870 PMCID: PMC10199176 DOI: 10.1016/j.heliyon.2023.e15845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/11/2023] [Accepted: 04/25/2023] [Indexed: 05/24/2023] Open
Abstract
The total bile acid (TBA) is usually used to diagnose intrahepatic cholestasis of pregnancy (ICP) as a common clinical index. Recently many research reports on the microbiota-gut-brain axis (MGB axis) suggest that bile acids have an influence on human mental illnesses such as anxiety and depression, linked closely to intestinal microbial population. However, there is still a lack of clinical data to support intrinsic relationships about human cases. In this study, we conducted a follow-up study of 25 ICP and 98 healthy pregnant women to investigate the influence of ICP disease on perinatal depression. To further explore the effect of TBA concentration, we reviewed data of another 41 ICP women then added their cross-sectional data. The results showed that ICP disease increased mental scale scores but a conventional efficient treatment by using ursodeoxycholic acid (UDCA) could not decrease scores, suggesting intrahepatic cholestasis might make some key bile acids not to be processed by gut microbiota. UDCA could not replace the function of gut microbiota for easing depression and the change of bile acid composition in intestines worsened perinatal depressive tendency through the MGB axis.
Collapse
Affiliation(s)
- Xu Hualin
- Department of Obstetrics and Gynecology, Shaoxing Maternal and Child Health Hospital, Shaoxing, 312000, Zhejiang Province, China
| | - Xu Yupin
- School of Medicine, Shaoxing University, Shaoxing, 312000, Zhejiang Province, China
| | - Zhao Guoqiang
- Department of Obstetrics and Gynecology, Shaoxing Maternal and Child Health Hospital, Shaoxing, 312000, Zhejiang Province, China
| | - Fu Xukun
- Department of Medical Record, Shaoxing Maternal and Child Health Hospital, Shaoxing, 312000, Zhejiang Province, China
| | - Lin Hongmei
- Department of Obstetrics and Gynecology, Shaoxing Maternal and Child Health Hospital, Shaoxing, 312000, Zhejiang Province, China
| |
Collapse
|
142
|
Kotliar IB, Ceraudo E, Kemelmakher-Liben K, Oren DA, Lorenzen E, Dodig-Crnković T, Horioka-Duplix M, Huber T, Schwenk JM, Sakmar TP. Itch receptor MRGPRX4 interacts with the receptor activity-modifying proteins. J Biol Chem 2023; 299:104664. [PMID: 37003505 PMCID: PMC10165273 DOI: 10.1016/j.jbc.2023.104664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 04/03/2023] Open
Abstract
Cholestatic itch is a severe and debilitating symptom in liver diseases with limited treatment options. The class A G protein-coupled receptor (GPCR) Mas-related GPCR subtype X4 (MRGPRX4) has been identified as a receptor for bile acids, which are potential cholestatic pruritogens. An increasing number of GPCRs have been shown to interact with receptor activity-modifying proteins (RAMPs), which can modulate different aspects of GPCR biology. Using a combination of multiplexed immunoassay and proximity ligation assay, we show that MRGPRX4 interacts with RAMPs. The interaction of MRGPRX4 with RAMP2, but not RAMP1 or 3, causes attenuation of basal and agonist-dependent signaling, which correlates with a decrease of MRGPRX4 cell surface expression as measured using a quantitative NanoBRET pulse-chase assay. Finally, we use AlphaFold Multimer to predict the structure of the MRGPRX4-RAMP2 complex. The discovery that RAMP2 regulates MRGPRX4 may have direct implications for future drug development for cholestatic itch.
Collapse
Affiliation(s)
- Ilana B Kotliar
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York, USA; Tri-Institutional PhD Program in Chemical Biology, New York, New York, USA
| | - Emilie Ceraudo
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York, USA
| | - Kevin Kemelmakher-Liben
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York, USA
| | - Deena A Oren
- Structural Biology Resource Center, The Rockefeller University, New York, New York, USA
| | - Emily Lorenzen
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York, USA
| | - Tea Dodig-Crnković
- Science for Life Laboratory, Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Solna, Sweden
| | - Mizuho Horioka-Duplix
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York, USA
| | - Thomas Huber
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York, USA
| | - Jochen M Schwenk
- Science for Life Laboratory, Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Solna, Sweden
| | - Thomas P Sakmar
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York, USA; Department of Neurobiology, Care Sciences and Society, Section for Neurogeriatrics, Karolinska Institutet, Solna, Sweden.
| |
Collapse
|
143
|
Samartsev VN, Khoroshavina EI, Pavlova EK, Dubinin MV, Semenova AA. Bile Acids as Inducers of Protonophore and Ionophore Permeability of Biological and Artificial Membranes. MEMBRANES 2023; 13:membranes13050472. [PMID: 37233533 DOI: 10.3390/membranes13050472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023]
Abstract
It is now generally accepted that the role of bile acids in the organism is not limited to their participation in the process of food digestion. Indeed, bile acids are signaling molecules and being amphiphilic compounds, are also capable of modifying the properties of cell membranes and their organelles. This review is devoted to the analysis of data on the interaction of bile acids with biological and artificial membranes, in particular, their protonophore and ionophore effects. The effects of bile acids were analyzed depending on their physicochemical properties: namely the structure of their molecules, indicators of the hydrophobic-hydrophilic balance, and the critical micelle concentration. Particular attention is paid to the interaction of bile acids with the powerhouse of cells, the mitochondria. It is of note that bile acids, in addition to their protonophore and ionophore actions, can also induce Ca2+-dependent nonspecific permeability of the inner mitochondrial membrane. We consider the unique action of ursodeoxycholic acid as an inducer of potassium conductivity of the inner mitochondrial membrane. We also discuss a possible relationship between this K+ ionophore action of ursodeoxycholic acid and its therapeutic effects.
Collapse
Affiliation(s)
- Victor N Samartsev
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia
| | - Ekaterina I Khoroshavina
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia
| | - Evgeniya K Pavlova
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia
| | - Mikhail V Dubinin
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia
| | - Alena A Semenova
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia
| |
Collapse
|
144
|
Louca P, Meijnikman AS, Nogal A, Asnicar F, Attaye I, Vijay A, Kouraki A, Visconti A, Wong K, Berry SE, Leeming ER, Mompeo O, Tettamanzi F, Baleanu AF, Falchi M, Hadjigeorgiou G, Wolf J, Acherman YIZ, Van de Laar AW, Gerdes VEA, Michelotti GA, Franks PW, Segata N, Mangino M, Spector TD, Bulsiewicz WJ, Nieuwdorp M, Valdes AM, Menni C. The secondary bile acid isoursodeoxycholate correlates with post-prandial lipemia, inflammation, and appetite and changes post-bariatric surgery. Cell Rep Med 2023; 4:100993. [PMID: 37023745 PMCID: PMC10140478 DOI: 10.1016/j.xcrm.2023.100993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/12/2022] [Accepted: 03/14/2023] [Indexed: 04/08/2023]
Abstract
Primary and secondary bile acids (BAs) influence metabolism and inflammation, and the gut microbiome modulates levels of BAs. We systematically explore the host genetic, gut microbial, and habitual dietary contribution to a panel of 19 serum and 15 stool BAs in two population-based cohorts (TwinsUK, n = 2,382; ZOE PREDICT-1, n = 327) and assess changes post-bariatric surgery and after nutritional interventions. We report that BAs have a moderately heritable genetic component, and the gut microbiome accurately predicts their levels in serum and stool. The secondary BA isoursodeoxycholate (isoUDCA) can be explained mostly by gut microbes (area under the receiver operating characteristic curve [AUC] = ∼80%) and associates with post-prandial lipemia and inflammation (GlycA). Furthermore, circulating isoUDCA decreases significantly 1 year after bariatric surgery (β = -0.72, p = 1 × 10-5) and in response to fiber supplementation (β = -0.37, p < 0.03) but not omega-3 supplementation. In healthy individuals, isoUDCA fasting levels correlate with pre-meal appetite (p < 1 × 10-4). Our findings indicate an important role for isoUDCA in lipid metabolism, appetite, and, potentially, cardiometabolic risk.
Collapse
Affiliation(s)
- Panayiotis Louca
- Department of Twin Research & Genetic Epidemiology, King's College London, SE1 7EH London, UK
| | - Abraham S Meijnikman
- Department of (Experimental) Vascular Medicine, Amsterdam University Medical Centre (UMC), Amsterdam, the Netherlands
| | - Ana Nogal
- Department of Twin Research & Genetic Epidemiology, King's College London, SE1 7EH London, UK
| | | | - Ilias Attaye
- Department of (Experimental) Vascular Medicine, Amsterdam University Medical Centre (UMC), Amsterdam, the Netherlands
| | - Amrita Vijay
- Nottingham NIHR Biomedical Research Centre at the School of Medicine, University of Nottingham, NG5 1PB Nottingham, UK; Inflammation, Recovery and Injury Sciences, School of Medicine, University of Nottingham, NG5 1PB Nottingham, UK
| | - Afroditi Kouraki
- Nottingham NIHR Biomedical Research Centre at the School of Medicine, University of Nottingham, NG5 1PB Nottingham, UK; Inflammation, Recovery and Injury Sciences, School of Medicine, University of Nottingham, NG5 1PB Nottingham, UK
| | - Alessia Visconti
- Department of Twin Research & Genetic Epidemiology, King's College London, SE1 7EH London, UK
| | - Kari Wong
- Metabolon, Research Triangle Park, Morrisville, NC, USA
| | - Sarah E Berry
- Department of Nutritional Sciences, King's College London, London, UK
| | - Emily R Leeming
- Department of Twin Research & Genetic Epidemiology, King's College London, SE1 7EH London, UK
| | - Olatz Mompeo
- Department of Twin Research & Genetic Epidemiology, King's College London, SE1 7EH London, UK
| | - Francesca Tettamanzi
- Department of Twin Research & Genetic Epidemiology, King's College London, SE1 7EH London, UK
| | - Andrei-Florin Baleanu
- Department of Twin Research & Genetic Epidemiology, King's College London, SE1 7EH London, UK
| | - Mario Falchi
- Department of Twin Research & Genetic Epidemiology, King's College London, SE1 7EH London, UK
| | | | | | | | | | - Victor E A Gerdes
- Department of (Experimental) Vascular Medicine, Amsterdam University Medical Centre (UMC), Amsterdam, the Netherlands
| | | | - Paul W Franks
- Lund University Diabetes Center, Lund University, Malmö, Sweden; Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Italy
| | - Massimo Mangino
- Department of Twin Research & Genetic Epidemiology, King's College London, SE1 7EH London, UK; NIHR Biomedical Research Centre at Guy's and St Thomas' Foundation Trust, SE1 9RT London, UK
| | - Tim D Spector
- Department of Twin Research & Genetic Epidemiology, King's College London, SE1 7EH London, UK
| | | | - Max Nieuwdorp
- Department of (Experimental) Vascular Medicine, Amsterdam University Medical Centre (UMC), Amsterdam, the Netherlands
| | - Ana M Valdes
- Nottingham NIHR Biomedical Research Centre at the School of Medicine, University of Nottingham, NG5 1PB Nottingham, UK; Inflammation, Recovery and Injury Sciences, School of Medicine, University of Nottingham, NG5 1PB Nottingham, UK.
| | - Cristina Menni
- Department of Twin Research & Genetic Epidemiology, King's College London, SE1 7EH London, UK.
| |
Collapse
|
145
|
Hoff J, Xiong L, Kammann T, Neugebauer S, Micheel JM, Gaßler N, Bauer M, Press AT. RIPK3 promoter hypermethylation in hepatocytes protects from bile acid-induced inflammation and necroptosis. Cell Death Dis 2023; 14:275. [PMID: 37072399 PMCID: PMC10113265 DOI: 10.1038/s41419-023-05794-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/24/2023] [Accepted: 04/04/2023] [Indexed: 04/20/2023]
Abstract
Necroptosis facilitates cell death in a controlled manner and is employed by many cell types following injury. It plays a significant role in various liver diseases, albeit the cell-type-specific regulation of necroptosis in the liver and especially hepatocytes, has not yet been conceptualized. We demonstrate that DNA methylation suppresses RIPK3 expression in human hepatocytes and HepG2 cells. In diseases leading to cholestasis, the RIPK3 expression is induced in mice and humans in a cell-type-specific manner. Overexpression of RIPK3 in HepG2 cells leads to RIPK3 activation by phosphorylation and cell death, further modulated by different bile acids. Additionally, bile acids and RIPK3 activation further facilitate JNK phosphorylation, IL-8 expression, and its release. This suggests that hepatocytes suppress RIPK3 expression to protect themselves from necroptosis and cytokine release induced by bile acid and RIPK3. In chronic liver diseases associated with cholestasis, induction of RIPK3 expression may be an early event signaling danger and repair through releasing IL-8.
Collapse
Affiliation(s)
- Jessica Hoff
- Department of Anesthesiology and Intensive Care Medicine, Nanophysiology Group, Jena University Hospital, Jena, 07747, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Jena, 07743, Germany
| | - Ling Xiong
- Department of Anesthesiology and Intensive Care Medicine, Nanophysiology Group, Jena University Hospital, Jena, 07747, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Jena, 07743, Germany
| | - Tobias Kammann
- Department of Anesthesiology and Intensive Care Medicine, Nanophysiology Group, Jena University Hospital, Jena, 07747, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Jena, 07743, Germany
| | - Sophie Neugebauer
- Center for Sepsis Control and Care, Jena University Hospital, Jena, 07743, Germany
- Department of Clinical Chemistry and Laboratory Diagnostics, Jena University Hospital, Jena, 07747, Germany
| | - Julia M Micheel
- Department of Anesthesiology and Intensive Care Medicine, Nanophysiology Group, Jena University Hospital, Jena, 07747, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Jena, 07743, Germany
| | | | - Michael Bauer
- Department of Anesthesiology and Intensive Care Medicine, Nanophysiology Group, Jena University Hospital, Jena, 07747, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Jena, 07743, Germany
| | - Adrian T Press
- Department of Anesthesiology and Intensive Care Medicine, Nanophysiology Group, Jena University Hospital, Jena, 07747, Germany.
- Center for Sepsis Control and Care, Jena University Hospital, Jena, 07743, Germany.
- Faculty of Medicine, Friedrich Schiller University Jena, Jena, 07747, Germany.
| |
Collapse
|
146
|
Singh TP, Kadyan S, Devi H, Park G, Nagpal R. Gut microbiome as a therapeutic target for liver diseases. Life Sci 2023; 322:121685. [PMID: 37044173 DOI: 10.1016/j.lfs.2023.121685] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/27/2023] [Accepted: 04/05/2023] [Indexed: 04/14/2023]
Abstract
The prominent role of gut in regulating the physiology of different organs in a human body is increasingly acknowledged, to which the bidirectional communication between gut and liver is no exception. Liver health is modulated via different key components of gut-liver axis. The gut-derived products mainly generated from dietary components, microbial metabolites, toxins, or other antigens are sensed and transported to the liver through portal vein to which liver responds by secreting bile acids and antibodies. Therefore, maintaining a healthy gut microbiome can promote homeostasis of this gut-liver axis by regulating the intestinal barrier function and reducing the antigenic molecules. Conversely, liver secretions also regulate the gut microbiome composition. Disturbed homeostasis allows luminal antigens to reach liver leading to impaired liver functioning and instigating liver disorders. The perturbations in gut microbiome, permeability, and bile acid pool have been associated with several liver disorders, although precise mechanisms remain largely unresolved. Herein, we discuss functional fingerprints of a healthy gut-liver axis while contemplating mechanistic understanding of pathophysiology of liver diseases and plausible role of gut dysbiosis in different diseased states of liver. Further, novel therapeutic approaches to prevent the severity of liver disorders are discussed in this review.
Collapse
Affiliation(s)
- Tejinder Pal Singh
- Department of Dairy Microbiology, College of Dairy Science and Technology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana 125004, India
| | - Saurabh Kadyan
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Harisha Devi
- Department of Dairy Microbiology, College of Dairy Science and Technology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana 125004, India
| | - Gwoncheol Park
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Ravinder Nagpal
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
147
|
Wang X, Weng Y, Geng S, Wang C, Jin C, Shi L, Jin Y. Maternal procymidone exposure has lasting effects on murine gut-liver axis and glucolipid metabolism in offspring. Food Chem Toxicol 2023; 174:113657. [PMID: 36764477 DOI: 10.1016/j.fct.2023.113657] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023]
Abstract
There is increasing evidence that maternal exposure to environmental pollutants can cause intestinal and metabolic diseases, and these disease risks still exist in offspring. Here, female C57BL/6 mice were orally treated with procymidone (PRO) (10 and 100 mg/kg body weight/day) by dietary supplementation during the gestation and lactation periods. Then, we discovered PRO changed the physiology, intestinal barrier and metabolism both in the generations of F0 and different developmental stages of F1 (7 weeks and 30 weeks old, respectively). Maternal PRO exposure affected the growth phenotypes and the glucolipid metabolism related indicators and genes of mice, especially the male mice of F1 generations. The changes in bile acids (BAs) metabolism demonstrated that PRO disordered glucolipid metabolism through enterohepatic circulation. Furthermore, PRO reduced mucus secretion in the gut and altered the composition of gut microbiota, leading more bacteria to disseminate in the gut and inflammatory responses both in F0 and F1 regenerations. And PRO-induced gut microbiota dysbiosis was tightly related to BAs metabolites. Together, the results indicated that PRO destructed the functional integrity of intestinal barrier and the inflammatory reaction was triggered. And then, the disorder of glucolipid metabolism was induced through the BAs enterohepatic circulation. This study indicated that the cross-generation effects of PRO could not be ignored.
Collapse
Affiliation(s)
- Xiaofang Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - You Weng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Shinan Geng
- Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Caiyun Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Cuiyuan Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China; Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, China.
| | - Liyun Shi
- Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, China.
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
148
|
Guimarães VHD, Marinho BM, Motta-Santos D, Mendes GDRL, Santos SHS. Nutritional implications in the mechanistic link between the intestinal microbiome, renin-angiotensin system, and the development of obesity and metabolic syndrome. J Nutr Biochem 2023; 113:109252. [PMID: 36509338 DOI: 10.1016/j.jnutbio.2022.109252] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 11/12/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
Obesity and metabolic disorders represent a significant global health problem and the gut microbiota plays an important role in modulating systemic homeostasis. Recent evidence shows that microbiota and its signaling pathways may affect the whole metabolism and the Renin-Angiotensin System (RAS), which in turn seems to modify microbiota. The present review aimed to investigate nutritional implications in the mechanistic link between the intestinal microbiome, renin-angiotensin system, and the development of obesity and metabolic syndrome components. A description of metabolic changes was obtained based on relevant scientific literature. The molecular and physiological mechanisms that impact the human microbiome were addressed, including the gut microbiota associated with obesity, diabetes, and hepatic steatosis. The RAS interaction signaling and modulation were analyzed. Strategies including the use of prebiotics, symbiotics, probiotics, and biotechnology may affect the gut microbiota and its impact on human health.
Collapse
Affiliation(s)
- Victor Hugo Dantas Guimarães
- Laboratory of Health Science, Postgraduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Montes Claros, Minas Gerais, Brazil
| | - Barbhara Mota Marinho
- Laboratory of Health Science, Postgraduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Montes Claros, Minas Gerais, Brazil
| | - Daisy Motta-Santos
- School of Physical Education, Physiotherapy, and Occupational Therapy - EEFFTO, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Gabriela da Rocha Lemos Mendes
- Food Engineering, Institute of Agricultural Sciences (ICA), Universidade Federal de Minas Gerais (UFMG), Montes Claros, Minas Gerais, Brazil
| | - Sérgio Henrique Sousa Santos
- Laboratory of Health Science, Postgraduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Montes Claros, Minas Gerais, Brazil; Food Engineering, Institute of Agricultural Sciences (ICA), Universidade Federal de Minas Gerais (UFMG), Montes Claros, Minas Gerais, Brazil.
| |
Collapse
|
149
|
Yerra VG, Drosatos K. Specificity Proteins (SP) and Krüppel-like Factors (KLF) in Liver Physiology and Pathology. Int J Mol Sci 2023; 24:4682. [PMID: 36902112 PMCID: PMC10003758 DOI: 10.3390/ijms24054682] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023] Open
Abstract
The liver acts as a central hub that controls several essential physiological processes ranging from metabolism to detoxification of xenobiotics. At the cellular level, these pleiotropic functions are facilitated through transcriptional regulation in hepatocytes. Defects in hepatocyte function and its transcriptional regulatory mechanisms have a detrimental influence on liver function leading to the development of hepatic diseases. In recent years, increased intake of alcohol and western diet also resulted in a significantly increasing number of people predisposed to the incidence of hepatic diseases. Liver diseases constitute one of the serious contributors to global deaths, constituting the cause of approximately two million deaths worldwide. Understanding hepatocyte transcriptional mechanisms and gene regulation is essential to delineate pathophysiology during disease progression. The current review summarizes the contribution of a family of zinc finger family transcription factors, named specificity protein (SP) and Krüppel-like factors (KLF), in physiological hepatocyte functions, as well as how they are involved in the onset and development of hepatic diseases.
Collapse
Affiliation(s)
| | - Konstantinos Drosatos
- Metabolic Biology Laboratory, Cardiovascular Center, Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| |
Collapse
|
150
|
Xing L, Zhang Y, Li S, Tong M, Bi K, Zhang Q, Li Q. A Dual Coverage Monitoring of the Bile Acids Profile in the Liver-Gut Axis throughout the Whole Inflammation-Cancer Transformation Progressive: Reveal Hepatocellular Carcinoma Pathogenesis. Int J Mol Sci 2023; 24:ijms24054258. [PMID: 36901689 PMCID: PMC10001964 DOI: 10.3390/ijms24054258] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/23/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the terminal phase of multiple chronic liver diseases, and evidence supports chronic uncontrollable inflammation being one of the potential mechanisms leading to HCC formation. The dysregulation of bile acid homeostasis in the enterohepatic circulation has become a hot research issue concerning revealing the pathogenesis of the inflammatory-cancerous transformation process. We reproduced the development of HCC through an N-nitrosodiethylamine (DEN)-induced rat model in 20 weeks. We achieved the monitoring of the bile acid profile in the plasma, liver, and intestine during the evolution of "hepatitis-cirrhosis-HCC" by using an ultra-performance liquid chromatography-tandem mass spectrometer for absolute quantification of bile acids. We observed differences in the level of primary and secondary bile acids both in plasma, liver, and intestine when compared to controls, particularly a sustained reduction of intestine taurine-conjugated bile acid level. Moreover, we identified chenodeoxycholic acid, lithocholic acid, ursodeoxycholic acid, and glycolithocholic acid in plasma as biomarkers for early diagnosis of HCC. We also identified bile acid-CoA:amino acid N-acyltransferase (BAAT) by gene set enrichment analysis, which dominates the final step in the synthesis of conjugated bile acids associated with the inflammatory-cancer transformation process. In conclusion, our study provided comprehensive bile acid metabolic fingerprinting in the liver-gut axis during the inflammation-cancer transformation process, laying the foundation for providing a new perspective for the diagnosis, prevention, and treatment of HCC.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qing Li
- Correspondence: (Q.Z.); (Q.L.)
| |
Collapse
|