1451
|
Wamalwa BM, Sakka M, Shiundu PM, Ohmiya K, Kimura T, Sakka K. Essentiality of a newly identified carbohydrate-binding module for the function of CelB (BH0603) from the alkaliphilic bacterium Bacillus halodurans. Appl Environ Microbiol 2006; 72:6851-3. [PMID: 16950908 PMCID: PMC1610286 DOI: 10.1128/aem.01209-06] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CelB (BH0603) from Bacillus halodurans is a modular glycoside hydrolase with a family 5 catalytic module, an immunoglobulin-like module, and module PfamB of unknown function. The recombinant PfamB module bound to Avicel and was essential for CelB hydrolytic function. We propose that module PfamB be designated a new carbohydrate-binding module.
Collapse
Affiliation(s)
- Benson Munyali Wamalwa
- Applied Microbiology Laboratory, Faculty of Bioresources, Mie University, 1577 Kurimamachiyacho, Tsu 514-8507, Japan
| | | | | | | | | | | |
Collapse
|
1452
|
Taylor LE, Henrissat B, Coutinho PM, Ekborg NA, Hutcheson SW, Weiner RM. Complete cellulase system in the marine bacterium Saccharophagus degradans strain 2-40T. J Bacteriol 2006; 188:3849-61. [PMID: 16707677 PMCID: PMC1482929 DOI: 10.1128/jb.01348-05] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Saccharophagus degradans strain 2-40 is a representative of an emerging group of marine complex polysaccharide (CP)-degrading bacteria. It is unique in its metabolic versatility, being able to degrade at least 10 distinct CPs from diverse algal, plant and invertebrate sources. The S. degradans genome has been sequenced to completion, and more than 180 open reading frames have been identified that encode carbohydrases. Over half of these are likely to act on plant cell wall polymers. In fact, there appears to be a full array of enzymes that degrade and metabolize plant cell walls. Genomic and proteomic analyses reveal 13 cellulose depolymerases complemented by seven accessory enzymes, including two cellodextrinases, three cellobiases, a cellodextrin phosphorylase, and a cellobiose phosphorylase. Most of these enzymes exhibit modular architecture, and some contain novel combinations of catalytic and/or substrate binding modules. This is exemplified by endoglucanase Cel5A, which has three internal family 6 carbohydrate binding modules (CBM6) and two catalytic modules from family five of glycosyl hydrolases (GH5) and by Cel6A, a nonreducing-end cellobiohydrolase from family GH6 with tandem CBM2s. This is the first report of a complete and functional cellulase system in a marine bacterium with a sequenced genome.
Collapse
Affiliation(s)
- Larry E Taylor
- Department of Marine and Estuarine Environmental Sciences, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | | | |
Collapse
|
1453
|
Blake AW, McCartney L, Flint JE, Bolam DN, Boraston AB, Gilbert HJ, Knox JP. Understanding the biological rationale for the diversity of cellulose-directed carbohydrate-binding modules in prokaryotic enzymes. J Biol Chem 2006; 281:29321-9. [PMID: 16844685 DOI: 10.1074/jbc.m605903200] [Citation(s) in RCA: 180] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plant cell walls are degraded by glycoside hydrolases that often contain noncatalytic carbohydrate-binding modules (CBMs), which potentiate degradation. There are currently 11 sequence-based cellulose-directed CBM families; however, the biological significance of the structural diversity displayed by these protein modules is uncertain. Here we interrogate the capacity of eight cellulose-binding CBMs to bind to cell walls. These modules target crystalline cellulose (type A) and are located in families 1, 2a, 3a, and 10 (CBM1, CBM2a, CBM3a, and CBM10, respectively); internal regions of amorphous cellulose (type B; CBM4-1, CBM17, CBM28); and the ends of cellulose chains (type C; CBM9-2). Type A CBMs bound particularly effectively to secondary cell walls, although they also recognized primary cell walls. Type A CBM2a and CBM10, derived from the same enzyme, displayed differential binding to cell walls depending upon cell type, tissue, and taxon of origin. Type B CBMs and the type C CBM displayed much weaker binding to cell walls than type A CBMs. CBM17 bound more extensively to cell walls than CBM4-1, even though these type B modules display similar binding to amorphous cellulose in vitro. The thickened primary cell walls of celery collenchyma showed significant binding by some type B modules, indicating that in these walls the cellulose chains do not form highly ordered crystalline structures. Pectate lyase treatment of sections resulted in an increased binding of cellulose-directed CBMs, demonstrating that decloaking cellulose microfibrils of pectic polymers can increase CBM access. The differential recognition of cell walls of diverse origin provides a biological rationale for the diversity of cellulose-directed CBMs that occur in cell wall hydrolases and conversely reveals the variety of cellulose microstructures in primary and secondary cell walls.
Collapse
Affiliation(s)
- Anthony W Blake
- Centre for Plant Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
1454
|
Larsen K, Thygesen MB, Guillaumie F, Willats WGT, Jensen KJ. Solid-phase chemical tools for glycobiology. Carbohydr Res 2006; 341:1209-34. [PMID: 16716275 DOI: 10.1016/j.carres.2006.04.045] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2006] [Revised: 04/25/2006] [Accepted: 04/28/2006] [Indexed: 11/16/2022]
Abstract
Techniques involving solid supports have played crucial roles in the development of genomics, proteomics, and in molecular biology in general. Similarly, methods for immobilization or attachment to surfaces and resins have become ubiquitous in sequencing, synthesis, analysis, and screening of oligonucleotides, peptides, and proteins. However, solid-phase tools have been employed to a much lesser extent in glycobiology and glycomics. This review provides a comprehensive overview of solid-phase chemical tools for glycobiology including methodologies and applications. We provide a broad perspective of different approaches, including some well-established ones, such as immobilization in microtiter plates and to cross-linked polymers. Emerging areas such as glycan microarrays and glycan sequencing, quantum dots, and gold nanoparticles for nanobioscience applications are also discussed. The applications reviewed here include enzymology, immunology, elucidation of biosynthesis, and systems biology, as well as first steps toward solid-supported sequencing. From these methods and applications emerge a general vision for the use of solid-phase chemical tools in glycobiology.
Collapse
Affiliation(s)
- Kim Larsen
- Department of Natural Sciences, Section for Bioorganic Chemistry, Royal Veterinary and Agricultural University, DK-1871 Frederiksberg, Denmark
| | | | | | | | | |
Collapse
|
1455
|
Chou WI, Pai TW, Liu SH, Hsiung BK, Chang MT. The family 21 carbohydrate-binding module of glucoamylase from Rhizopus oryzae consists of two sites playing distinct roles in ligand binding. Biochem J 2006; 396:469-77. [PMID: 16509822 PMCID: PMC1482813 DOI: 10.1042/bj20051982] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The starch-hydrolysing enzyme GA (glucoamylase) from Rhizopus oryzae is a commonly used glycoside hydrolase in industry. It consists of a C-terminal catalytic domain and an N-terminal starch-binding domain, which belong to the CBM21 (carbohydrate-binding module, family 21). In the present study, a molecular model of CBM21 from R. oryzae GA (RoGACBM21) was constructed according to PSSC (progressive secondary structure correlation), modified structure-based sequence alignment, and site-directed mutagenesis was used to identify and characterize potential ligand-binding sites. Our model suggests that RoGACBM21 contains two ligand-binding sites, with Tyr32 and Tyr67 grouped into site I, and Trp47, Tyr83 and Tyr93 grouped into site II. The involvement of these aromatic residues has been validated using chemical modification, UV difference spectroscopy studies, and both qualitative and quantitative binding assays on a series of RoGACBM21 mutants. Our results further reveal that binding sites I and II play distinct roles in ligand binding, the former not only is involved in binding insoluble starch, but also facilitates the binding of RoGACBM21 to long-chain soluble polysaccharides, whereas the latter serves as the major binding site mediating the binding of both soluble polysaccharide and insoluble ligands. In the present study we have for the first time demonstrated that the key ligand-binding residues of RoGACBM21 can be identified and characterized by a combination of novel bioinformatics methodologies in the absence of resolved three-dimensional structural information.
Collapse
Affiliation(s)
- Wei-I Chou
- *Institute of Molecular and Cellular Biology, Department of Life Science, National Tsing Hua University, No. 101, Sec. 2, Kuang Fu Rd, Hsinchu, Taiwan 30013, Republic of China
| | - Tun-Wen Pai
- †Department of Computer Science, National Taiwan Ocean University, No. 2, Pei Ning Rd, Keelung, Taiwan 20224, Republic of China
| | - Shi-Hwei Liu
- *Institute of Molecular and Cellular Biology, Department of Life Science, National Tsing Hua University, No. 101, Sec. 2, Kuang Fu Rd, Hsinchu, Taiwan 30013, Republic of China
| | - Bor-Kai Hsiung
- *Institute of Molecular and Cellular Biology, Department of Life Science, National Tsing Hua University, No. 101, Sec. 2, Kuang Fu Rd, Hsinchu, Taiwan 30013, Republic of China
| | - Margaret D.-T. Chang
- *Institute of Molecular and Cellular Biology, Department of Life Science, National Tsing Hua University, No. 101, Sec. 2, Kuang Fu Rd, Hsinchu, Taiwan 30013, Republic of China
- To whom correspondence should be addressed (email )
| |
Collapse
|
1456
|
Shoseyov O, Shani Z, Levy I. Carbohydrate binding modules: biochemical properties and novel applications. Microbiol Mol Biol Rev 2006; 70:283-95. [PMID: 16760304 PMCID: PMC1489539 DOI: 10.1128/mmbr.00028-05] [Citation(s) in RCA: 368] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Polysaccharide-degrading microorganisms express a repertoire of hydrolytic enzymes that act in synergy on plant cell wall and other natural polysaccharides to elicit the degradation of often-recalcitrant substrates. These enzymes, particularly those that hydrolyze cellulose and hemicellulose, have a complex molecular architecture comprising discrete modules which are normally joined by relatively unstructured linker sequences. This structure is typically comprised of a catalytic module and one or more carbohydrate binding modules (CBMs) that bind to the polysaccharide. CBMs, by bringing the biocatalyst into intimate and prolonged association with its substrate, allow and promote catalysis. Based on their properties, CBMs are grouped into 43 families that display substantial variation in substrate specificity, along with other properties that make them a gold mine for biotechnologists who seek natural molecular "Velcro" for diverse and unusual applications. In this article, we review recent progress in the field of CBMs and provide an up-to-date summary of the latest developments in CBM applications.
Collapse
Affiliation(s)
- Oded Shoseyov
- The Institute of Plant Science and Genetics in Agriculture, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100, Israel.
| | | | | |
Collapse
|
1457
|
Kawamura KS, Sung M, Bolewska-Pedyczak E, Gariépy J. Probing the impact of valency on the routing of arginine-rich peptides into eukaryotic cells. Biochemistry 2006; 45:1116-27. [PMID: 16430208 DOI: 10.1021/bi051338e] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Multivalency represents a critical parameter in cell biology responsible for the overall avidity of low-affinity interactions and the triggering of cellular events. Functions such as catalytic activity, cellular uptake, or localization are frequently linked to the oligomeric state of a protein. This study explores the impact of multivalency on the import and routing of peptides into cells. Specifically, cationic import sequences such as decaarginine, decalysine, and the HIV Tat peptide (GRKKRRQRRRAP, residues 48-59) as well as the nuclear localization sequence from SV40 large T-antigen were assembled into defined peptide oligomers by fusing them to the tetramerization domain of human p53 (residues 325-355, hp53(tet) domain). The resulting tetravalent peptides typically displayed between 10- and 100-fold enhancements in cellular import and intracellular routing properties in relation to their monomeric homologues. These peptides were not toxic to cells. Flow cytometry results and transfection assays indicated that tetravalent decaarginyl peptides (10R-p53(tet) and NLS-10R-p53(tet)) were the peptides most efficiently routed into cells. Their mechanism of import was subsequently examined on unfixed, viable cells using a combination of metabolic inhibitors, flow cytometry, and microscopy techniques. These studies revealed that tetravalent arginine-rich peptides bind to heparan sulfate on the cell surface, are internalized at 37 degrees C, but not at 4 degrees C, via a clathrin-mediated pathway, and accumulate into endosome-like acidic compartments. A fraction of these tetravalent peptides access the cytosol and accumulate in the nucleus of cells. This study concludes that the oligomerization of proteins harboring arginine-rich peptide chains may profoundly influence their ability to enter and be routed into cells.
Collapse
Affiliation(s)
- Kim S Kawamura
- Department of Medical Biophysics, University of Toronto, and Ontario Cancer Institute, University Health Network, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
1458
|
Henshaw J, Horne-Bitschy A, van Bueren AL, Money VA, Bolam DN, Czjzek M, Ekborg NA, Weiner RM, Hutcheson SW, Davies GJ, Boraston AB, Gilbert HJ. Family 6 carbohydrate binding modules in beta-agarases display exquisite selectivity for the non-reducing termini of agarose chains. J Biol Chem 2006; 281:17099-17107. [PMID: 16601125 DOI: 10.1074/jbc.m600702200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Carbohydrate recognition is central to the biological and industrial exploitation of plant structural polysaccharides. These insoluble polymers are recalcitrant to microbial degradation, and enzymes that catalyze this process generally contain non-catalytic carbohydrate binding modules (CBMs) that potentiate activity by increasing substrate binding. Agarose, a repeat of the disaccharide 3,6-anhydro-alpha-L-galactose-(1,3)-beta-D-galactopyranose-(1,4), is the dominant matrix polysaccharide in marine algae, yet the role of CBMs in the hydrolysis of this important polymer has not previously been explored. Here we show that family 6 CBMs, present in two different beta-agarases, bind specifically to the non-reducing end of agarose chains, recognizing only the first repeat of the disaccharide. The crystal structure of one of these modules Aga16B-CBM6-2, in complex with neoagarohexaose, reveals the mechanism by which the protein displays exquisite specificity, targeting the equatorial O4 and the axial O3 of the anhydro-L-galactose. Targeting of the CBM6 to the non-reducing end of agarose chains may direct the appended catalytic modules to areas of the plant cell wall attacked by beta-agarases where the matrix polysaccharide is likely to be more amenable to further enzymic hydrolysis.
Collapse
Affiliation(s)
- Joanna Henshaw
- Institute for Cell and Molecular Biosciences, University of Newcastle upon Tyne, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Ami Horne-Bitschy
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 3P6, Canada
| | - Alicia Lammerts van Bueren
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 3P6, Canada
| | - Victoria A Money
- Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5YW, United Kingdom
| | - David N Bolam
- Institute for Cell and Molecular Biosciences, University of Newcastle upon Tyne, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Mirjam Czjzek
- Station Biologique de Roscoff, Vegetaux Marins et Biomolecules, UMR7139-CNRS-UPMC, Place George Teissier, B. P. 74, 29682 Roscoff, France
| | - Nathan A Ekborg
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742
| | - Ronald M Weiner
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742
| | - Steven W Hutcheson
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742
| | - Gideon J Davies
- Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5YW, United Kingdom
| | - Alisdair B Boraston
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 3P6, Canada
| | - Harry J Gilbert
- Institute for Cell and Molecular Biosciences, University of Newcastle upon Tyne, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom.
| |
Collapse
|
1459
|
Itoh Y, Watanabe J, Fukada H, Mizuno R, Kezuka Y, Nonaka T, Watanabe T. Importance of Trp59 and Trp60 in chitin-binding, hydrolytic, and antifungal activities of Streptomyces griseus chitinase C. Appl Microbiol Biotechnol 2006; 72:1176-84. [PMID: 16598448 DOI: 10.1007/s00253-006-0405-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2006] [Revised: 02/27/2006] [Accepted: 03/05/2006] [Indexed: 10/24/2022]
Abstract
The chitin-binding domain of Streptomyces griseus chitinase C (ChBD(ChiC)) belongs to CBM family 5. Only two exposed aromatic residues, W59 and W60, were observed in ChBD(ChiC), in contrast to three such residues on CBD(Cel5) in the same CBM family. To study importance of these residues in binding activity and other functions of ChBD(ChiC), site-directed mutagenesis was carried out. Single (W59A and W60A) and double (W59A/W60A) mutations abolished the binding activity of ChiC to colloidal chitin and decreased the hydrolytic activity toward not only colloidal chitin but also a soluble high Mr substrate, glycol chitin. Interaction of ChBD(ChiC) with oligosaccharide was eliminated by these mutations. The hydrolytic activity toward oligosaccharide was increased by deletion of ChBD but not affected by these mutations, indicating that ChBD interferes with oligosaccharide hydrolysis but not through its binding activity. The antifungal activity was drastically decreased by all mutations and significant difference was observed between single and double mutants. Taken together with the structural information, these results suggest that ChBD(ChiC) binds to chitin via a mechanism significantly different from CBD(Cel5), where two aromatic residues play major role, and contributes to various functions of ChiC. Sequence comparison indicated that ChBD(ChiC)-type CBMs are dominant in CBM family 5.
Collapse
Affiliation(s)
- Yoshikane Itoh
- Department of Applied Biological Chemistry, Faculty of Agriculture, Niigata University, 8050 Ikarashi-2, Niigata 950-2181, Japan
| | | | | | | | | | | | | |
Collapse
|
1460
|
Rao FV, Dorfmueller HC, Villa F, Allwood M, Eggleston IM, van Aalten DMF. Structural insights into the mechanism and inhibition of eukaryotic O-GlcNAc hydrolysis. EMBO J 2006; 25:1569-78. [PMID: 16541109 PMCID: PMC1440316 DOI: 10.1038/sj.emboj.7601026] [Citation(s) in RCA: 165] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Accepted: 02/08/2006] [Indexed: 11/08/2022] Open
Abstract
O-linked N-acetylglucosamine (O-GlcNAc) modification of specific serines/threonines on intracellular proteins in higher eukaryotes has been shown to directly regulate important processes such as the cell cycle, insulin sensitivity and transcription. The structure, molecular mechanisms of catalysis, protein substrate recognition/specificity of the eukaryotic O-GlcNAc transferase and hydrolase are largely unknown. Here we describe the crystal structure, enzymology and in vitro activity on human substrates of Clostridium perfringens NagJ, a close homologue of human O-GlcNAcase (OGA), representing the first family 84 glycoside hydrolase structure. The structure reveals a deep active site pocket highly conserved with the human enzyme, compatible with binding of O-GlcNAcylated peptides. Together with mutagenesis data, the structure supports a variant of the substrate-assisted catalytic mechanism, involving two aspartic acids and an unusually positioned tyrosine. Insights into recognition of substrate come from a complex with the transition state mimic O-(2-acetamido-2-deoxy-D-glucopyranosylidene)amino-N-phenylcarbamate (Ki=5.4 nM). Strikingly, the enzyme is inhibited by the pseudosubstrate peptide Ala-Cys(-S-GlcNAc)-Ala, and has OGA activity against O-GlcNAcylated human proteins, suggesting that the enzyme is a suitable model for further studies into the function of human OGA.
Collapse
Affiliation(s)
- Francesco V Rao
- Division of Biological Chemistry & Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Helge C Dorfmueller
- Division of Biological Chemistry & Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Fabrizio Villa
- Division of Biological Chemistry & Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, UK
- MRC Protein Phosphorylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Matthew Allwood
- Division of Biological Chemistry & Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Ian M Eggleston
- Division of Biological Chemistry & Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Daan M F van Aalten
- Division of Biological Chemistry & Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, UK
| |
Collapse
|
1461
|
Abstract
Alternatives to petroleum-derived fuels are being sought in order to reduce the world's dependence on non-renewable resources. The most common renewable fuel today is ethanol derived from corn grain (starch) and sugar cane (sucrose). It is expected that there will be limits to the supply of these raw materials in the near future, therefore lignocellulosic biomass is seen as an attractive feedstock for future supplies of ethanol. However, there are technical and economical impediments to the development of a commercial processes utilizing biomass. Technologies are being developed that will allow cost-effective conversion of biomass into fuels and chemicals. These technologies include low-cost thermochemical pretreatment, highly effective cellulases and hemicellulases and efficient and robust fermentative microorganisms. Many advances have been made over the past few years that make commercialization more promising.
Collapse
Affiliation(s)
- Kevin A Gray
- Diversa Corporation, 4955 Directors Place, San Diego, CA 92121, USA.
| | | | | |
Collapse
|
1462
|
Kezuka Y, Ohishi M, Itoh Y, Watanabe J, Mitsutomi M, Watanabe T, Nonaka T. Structural Studies of a Two-domain Chitinase from Streptomyces griseus HUT6037. J Mol Biol 2006; 358:472-84. [PMID: 16516924 DOI: 10.1016/j.jmb.2006.02.013] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2005] [Revised: 02/05/2006] [Accepted: 02/06/2006] [Indexed: 12/01/2022]
Abstract
Chitinase C (ChiC) from Streptomyces griseus HUT6037 was the first glycoside hydrolase family 19 chitinase that was found in an organism other than higher plants. An N-terminal chitin-binding domain and a C-terminal catalytic domain connected by a linker peptide constitute ChiC. We determined the crystal structure of full-length ChiC, which is the only representative of the two-domain chitinases in the family. The catalytic domain has an alpha-helix-rich fold with a deep cleft containing a catalytic site, and lacks three loops on the domain surface compared with the catalytic domain of plant chitinases. The chitin-binding domain is an all-beta protein with two tryptophan residues (Trp59 and Trp60) aligned on the surface. We suggest the binding mechanism of tri-N-acetylchitotriose onto the chitin-binding domain on the basis of molecular dynamics (MD) simulations. In this mechanism, the ligand molecule binds well on the surface-exposed binding site through two stacking interactions and two hydrogen bonds and only Trp59 and Trp60 are involved in the binding. Furthermore, the flexibility of the Trp60 side-chain, which may be involved in adjusting the binding surface to fit the surface of crystalline chitin by the rotation of chi2 angle, is shown.
Collapse
Affiliation(s)
- Yuichiro Kezuka
- Department of BioEngineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | | | | | | | | | | | | |
Collapse
|
1463
|
Taylor EJ, Gloster TM, Turkenburg JP, Vincent F, Brzozowski AM, Dupont C, Shareck F, Centeno MSJ, Prates JAM, Puchart V, Ferreira LMA, Fontes CMGA, Biely P, Davies GJ. Structure and Activity of Two Metal Ion-dependent Acetylxylan Esterases Involved in Plant Cell Wall Degradation Reveals a Close Similarity to Peptidoglycan Deacetylases. J Biol Chem 2006; 281:10968-75. [PMID: 16431911 DOI: 10.1074/jbc.m513066200] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The enzymatic degradation of plant cell wall xylan requires the concerted action of a diverse enzymatic syndicate. Among these enzymes are xylan esterases, which hydrolyze the O-acetyl substituents, primarily at the O-2 position of the xylan backbone. All acetylxylan esterase structures described previously display a alpha/beta hydrolase fold with a "Ser-His-Asp" catalytic triad. Here we report the structures of two distinct acetylxylan esterases, those from Streptomyces lividans and Clostridium thermocellum, in native and complex forms, with x-ray data to between 1.6 and 1.0 A resolution. We show, using a novel linked assay system with PNP-2-O-acetylxyloside and a beta-xylosidase, that the enzymes are sugar-specific and metal ion-dependent and possess a single metal center with a chemical preference for Co2+. Asp and His side chains complete the catalytic machinery. Different metal ion preferences for the two enzymes may reflect the surprising diversity with which the metal ion coordinates residues and ligands in the active center environment of the S. lividans and C. thermocellum enzymes. These "CE4" esterases involved in plant cell wall degradation are shown to be closely related to the de-N-acetylases involved in chitin and peptidoglycan degradation (Blair, D. E., Schuettelkopf, A. W., MacRae, J. I., and Aalten, D. M. (2005) Proc. Natl. Acad. Sci. U. S. A., 102, 15429-15434), which form the NodB deacetylase "superfamily."
Collapse
Affiliation(s)
- Edward J Taylor
- Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5YW, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1464
|
De Vos D, Collins T, Nerinckx W, Savvides SN, Claeyssens M, Gerday C, Feller G, Van Beeumen J. Oligosaccharide Binding in Family 8 Glycosidases: Crystal Structures of Active-Site Mutants of the β-1,4-Xylanase pXyl from Pseudoaltermonas haloplanktis TAH3a in Complex with Substrate and Product,. Biochemistry 2006; 45:4797-807. [PMID: 16605248 DOI: 10.1021/bi052193e] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The structures of inactive mutants D144A and E78Q of the glycoside hydrolase family 8 (GH-8) endo-beta-1,4-d-xylanase (pXyl) from the Antarctic bacterium Pseudoalteromonas haloplanktis TAH3a in complex with its substrate xylopentaose (at 1.95 A resolution) and product xylotriose (at 1.9 A resolution) have been determined by X-ray crystallography. A detailed comparative analysis of these with the apo-enzyme and with other GH-8 structures indicates an induced fit mechanism upon ligand binding whereby a number of conformational changes and, in particular, a repositioning of the proton donor into a more catalytically competent position occurs. This has also allowed for the description of protein-ligand interactions in this enzyme and for the demarcation of subsites -3 to +3. An in-depth analysis of each of these subsites gives an insight into the structure-function relationship of this enzyme and the basis of xylose/glucose discrimination in family 8 glycoside hydrolases. Furthermore, the structure of the -1/+1 subsite spanning complex reveals that the substrate is distorted from its ground state conformation. Indeed, structural analysis and in silico docking studies indicate that substrate hydrolysis in GH-8 members is preceded by a conformational change, away from the substrate ground-state chair conformation, to a pretransition state local minimum (2)S(O) conformation.
Collapse
Affiliation(s)
- D De Vos
- Laboratorium voor Eiwitbiochemie en Eiwitengineering, Ghent University, K. L. Ledeganckstraat 35, B-9000 Gent, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
1465
|
McCartney L, Blake AW, Flint J, Bolam DN, Boraston AB, Gilbert HJ, Knox JP. Differential recognition of plant cell walls by microbial xylan-specific carbohydrate-binding modules. Proc Natl Acad Sci U S A 2006; 103:4765-70. [PMID: 16537424 PMCID: PMC1450244 DOI: 10.1073/pnas.0508887103] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2005] [Indexed: 11/18/2022] Open
Abstract
Glycoside hydrolases that degrade plant cell walls have complex molecular architectures in which one or more catalytic modules are appended to noncatalytic carbohydrate-binding modules (CBMs). CBMs promote binding to polysaccharides and potentiate enzymic hydrolysis. Although there are diverse sequence-based families of xylan-binding CBMs, these modules, in general, recognize both decorated and unsubstituted forms of the target polysaccharide, and thus the evolutionary rationale for this diversity is unclear. Using immunohistochemistry to interrogate the specificity of six xylan-binding CBMs for their target polysaccharides in cell walls has revealed considerable differences in the recognition of plant materials between these protein modules. Family 2b and 15 CBMs bind to xylan in secondary cell walls in a range of dicotyledon species, whereas family 4, 6, and 22 CBMs display a more limited capability to bind to secondary cell walls. A family 35 CBM, which displays more restricted ligand specificity against purified xylans than the other five protein modules, reveals a highly distinctive binding pattern to plant material including the recognition of primary cell walls of certain dicotyledons, a feature shared with CBM15. Differences in the specificity of the CBMs toward walls of wheat grain and maize coleoptiles were also evident. The variation in CBM specificity for ligands located in plant cell walls provides a biological rationale for the repertoire of structurally distinct xylan-binding CBMs present in nature, and points to the utility of these modules in probing the molecular architecture of cell walls.
Collapse
Affiliation(s)
- Lesley McCartney
- *Centre for Plant Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Anthony W. Blake
- *Centre for Plant Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - James Flint
- Institute for Cell and Molecular Biosciences, University of Newcastle-upon-Tyne, Newcastle-upon-Tyne NE2 4HH, United Kingdom; and
| | - David N. Bolam
- Institute for Cell and Molecular Biosciences, University of Newcastle-upon-Tyne, Newcastle-upon-Tyne NE2 4HH, United Kingdom; and
| | - Alisdair B. Boraston
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada V8W 3P6
| | - Harry J. Gilbert
- Institute for Cell and Molecular Biosciences, University of Newcastle-upon-Tyne, Newcastle-upon-Tyne NE2 4HH, United Kingdom; and
| | - J. Paul Knox
- *Centre for Plant Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
1466
|
Crennell SJ, Cook D, Minns A, Svergun D, Andersen RL, Nordberg Karlsson E. Dimerisation and an Increase in Active Site Aromatic Groups as Adaptations to High Temperatures: X-ray Solution Scattering and Substrate-bound Crystal Structures of Rhodothermus marinus Endoglucanase Cel12A. J Mol Biol 2006; 356:57-71. [PMID: 16343530 DOI: 10.1016/j.jmb.2005.11.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Revised: 10/25/2005] [Accepted: 11/02/2005] [Indexed: 10/25/2022]
Abstract
Cellulose, a polysaccharide consisting of beta-1,4-linked glucose, is the major component of plant cell walls and consequently one of the most abundant biopolymers on earth. Carbohydrate polymers such as cellulose are molecules with vast diversity in structure and function, and a multiplicity of hydrolases operating in concert are required for depolymerisation. The bacterium Rhodothermus marinus, isolated from shallow water marine hot springs, produces a number of carbohydrate-degrading enzymes including a family 12 cellulase Cel12A. The structure of R.marinus Cel12A in the ligand-free form (at 1.54 angstroms) and structures of RmCel12A after crystals were soaked in cellopentaose for two different lengths of time, have been determined. The shorter soaked complex revealed the conformation of unhydrolysed cellotetraose, while cellopentaose had been degraded more completely during the longer soak. Comparison of these structures with those of mesophilic family 12 cellulases in complex with inhibitors and substrate revealed that RmCel12A has a more extensive aromatic network in the active site cleft which ejects products after hydrolysis. The substrate structure confirms that during hydrolysis by family 12 cellulases glucose does not pass through a (2,5)B conformation. Small-angle X-ray scattering analysis of RmCel12A showed that the enzyme forms a loosely associated antiparallel dimer in solution, which may target the enzyme to the antiparallel polymer strands in cellulose.
Collapse
Affiliation(s)
- Susan J Crennell
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK.
| | | | | | | | | | | |
Collapse
|
1467
|
Forsee WT, Cartee RT, Yother J. Role of the carbohydrate binding site of the Streptococcus pneumoniae capsular polysaccharide type 3 synthase in the transition from oligosaccharide to polysaccharide synthesis. J Biol Chem 2006; 281:6283-9. [PMID: 16410247 DOI: 10.1074/jbc.m511124200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The type 3 synthase catalyzes the formation of the Streptococcus pneumoniae type 3 capsular polysaccharide [-3)-beta-D-GlcUA-(1, 4)-beta-D-Glc-(1-]n. Synthesis is comprised of two distinct catalytic phases separated by a transition step whereby an oligosaccharylphosphatidylglycerol primer becomes tightly bound to the carbohydrate acceptor recognition site of the synthase. Using the recombinant synthase in Escherichia coli membranes, we determined that a critical oligosaccharide length of approximately 8 monosaccharides was required for recognition of the growing chain by the synthase. Upon binding of the oligosaccharide-lipid to the carbohydrate recognition site, the polymerization reaction entered a highly processive phase to produce polymer of high molecular weight. The initial oligosaccharide-synthetic phase also appeared to be processive, the duration of which was enhanced by the concentration of UDP-GlcUA and diminished by an increase in temperature. The overall reaction approached a steady state equilibrium between the polymer- and oligosaccharide-forming phases that was shifted toward the former by higher UDP-GlcUA levels or lower temperatures and toward the latter by lower concentrations of UDP-GlcUA or higher temperatures. The transition step between the two enzymatic phases demonstrated cooperative kinetics, which is predicted to reflect a possible reorientation of the oligosaccharide-lipid in conjunction with the formation of a tight binding complex.
Collapse
Affiliation(s)
- W Thomas Forsee
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | |
Collapse
|
1468
|
Komath SS, Kavitha M, Swamy MJ. Beyond carbohydrate binding: new directions in plant lectin research. Org Biomol Chem 2006; 4:973-88. [PMID: 16525538 DOI: 10.1039/b515446d] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Although for a long time carbohydrate binding property has been used as the defining feature of lectins, studies carried out mostly during the last two decades or so demonstrate that many plant lectins exhibit specific interactions with small molecules that are predominantly hydrophobic in nature. Such interactions, in most cases, appear to be at specific sites that do not interfere with the ability of the lectins to recognise and bind carbohydrates. Further, several of these ligands have binding affinities comparable to those for the binding of specific carbohydrates to the lectins. Given the ability of lectins to specifically recognise the glycocode (carbohydrate code) on different cell surfaces and distinguish between diseased and normal tissues, these additional sites may be viewed as potential drug carrying sites that could be exploited for targeted delivery to sites of choice. Porphyrin-lectin complexes are especially suited for such targeting since porphyrins are already under investigation in photodynamic therapy for cancer. This review will provide an update on the interactions of plant lectins with non-carbohydrate ligands, with particular emphasis on porphyrin ligands. The implications and potential applications of such studies will also be discussed.
Collapse
Affiliation(s)
- Sneha Sudha Komath
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110 067, India.
| | | | | |
Collapse
|
1469
|
Miyanaga A, Koseki T, Matsuzawa H, Wakagi T, Shoun H, Fushinobu S. Crystal Structure of GH54 (.ALPHA.-L-Arabinofuranosidase and Unique Function of CBM42 Attached to It. J Appl Glycosci (1999) 2006. [DOI: 10.5458/jag.53.143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
1470
|
Tsai LC, Shyur LF, Cheng YS, Lee SH. Crystal Structure of Truncated Fibrobacter succinogenes 1,3-1,4-β-d-Glucanase in Complex with β-1,3-1,4-Cellotriose. J Mol Biol 2005; 354:642-51. [PMID: 16246371 DOI: 10.1016/j.jmb.2005.09.041] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2005] [Revised: 09/09/2005] [Accepted: 09/14/2005] [Indexed: 10/25/2022]
Abstract
Fibrobacter succinogenes 1,3-1,4-beta-D-glucanase (Fsbeta-glucanase) catalyzes the specific hydrolysis of beta-1,4 glycosidic bonds adjacent to beta-1,3 linkages in beta-D-glucans or lichenan. This is the first report to elucidate the crystal structure of a truncated Fsbeta-glucanase (TFsbeta-glucanase) in complex with beta-1,3-1,4-cellotriose, a major product of the enzyme reaction. The crystal structures, at a resolution of 2.3 angstroms, reveal that the overall fold of TFsbeta-glucanase remains virtually unchanged upon sugar binding. The enzyme accommodates five glucose residues, forming a concave active cleft. The beta-1,3-1,4-cellotriose with subsites -3 to -1 bound to the active cleft of TFsbeta-glucanase with its reducing end subsite -1 close to the key catalytic residues Glu56 and Glu60. All three subsites of the beta-1,3-1,4-cellotriose adopted a relaxed C(1)4 conformation, with a beta-1,3 glycosidic linkage between subsites -2 and -1, and a beta-1,4 glycosidic linkage between subsites -3 and -2. On the basis of the enzyme-product complex structure observed in this study, a catalytic mechanism and substrate binding conformation of the active site of TFsbeta-glucanase is proposed.
Collapse
Affiliation(s)
- Li-Chu Tsai
- Department of Molecular Science and Engineering, National Taipei University of Technology, Taipei 10608, Taiwan.
| | | | | | | |
Collapse
|
1471
|
Najmudin S, Guerreiro CIPD, Ferreira LMA, Romão MJC, Fontes CMGA, Prates JAM. Overexpression, purification and crystallization of the two C-terminal domains of the bifunctional cellulase ctCel9D-Cel44A from Clostridium thermocellum. Acta Crystallogr Sect F Struct Biol Cryst Commun 2005; 61:1043-5. [PMID: 16511230 PMCID: PMC1978147 DOI: 10.1107/s1744309105035670] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2005] [Accepted: 10/31/2005] [Indexed: 11/11/2022]
Abstract
Clostridium thermocellum produces a highly organized multi-enzyme complex of cellulases and hemicellulases for the hydrolysis of plant cell-wall polysaccharides, which is termed the cellulosome. The bifunctional multi-modular cellulase ctCel9D-Cel44A is one of the largest components of the C. thermocellum cellulosome. The enzyme contains two internal catalytic domains belonging to glycoside hydrolase families 9 and 44. The C-terminus of this cellulase, comprising a polycystic kidney-disease module (PKD) and a carbohydrate-binding module (CBM44), has been crystallized. The crystals belong to the tetragonal space group P4(3)2(1)2, containing a single molecule in the asymmetric unit. Native and seleno-L-methionine-derivative crystals diffracted to 2.1 and 2.8 A, respectively.
Collapse
Affiliation(s)
- Shabir Najmudin
- REQUIMTE, Departamento de Química, FCT-UNL, 2829-516 Caparica, Portugal
| | - Catarina I. P. D. Guerreiro
- CIISA – Faculdade de Medicina Veterinária, Universidade Técnica de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Luís M. A. Ferreira
- CIISA – Faculdade de Medicina Veterinária, Universidade Técnica de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Maria J. C. Romão
- REQUIMTE, Departamento de Química, FCT-UNL, 2829-516 Caparica, Portugal
| | - Carlos M. G. A. Fontes
- CIISA – Faculdade de Medicina Veterinária, Universidade Técnica de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - José A. M. Prates
- CIISA – Faculdade de Medicina Veterinária, Universidade Técnica de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| |
Collapse
|
1472
|
Najmudin S, Guerreiro CIPD, Carvalho AL, Prates JAM, Correia MAS, Alves VD, Ferreira LMA, Romão MJ, Gilbert HJ, Bolam DN, Fontes CMGA. Xyloglucan is recognized by carbohydrate-binding modules that interact with beta-glucan chains. J Biol Chem 2005; 281:8815-28. [PMID: 16314409 DOI: 10.1074/jbc.m510559200] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Enzyme systems that attack the plant cell wall contain noncatalytic carbohydrate-binding modules (CBMs) that mediate attachment to this composite structure and play a pivotal role in maximizing the hydrolytic process. Although xyloglucan, which includes a backbone of beta-1,4-glucan decorated primarily with xylose residues, is a key component of the plant cell wall, CBMs that bind to this polymer have not been identified. Here we showed that the C-terminal domain of the modular Clostridium thermocellum enzyme CtCel9D-Cel44A (formerly known as CelJ) comprises a novel CBM (designated CBM44) that binds with equal affinity to cellulose and xyloglucan. We also showed that accommodation of xyloglucan side chains is a general feature of CBMs that bind to single cellulose chains. The crystal structures of CBM44 and the other CBM (CBM30) in CtCel9D-Cel44A display a beta-sandwich fold. The concave face of both CBMs contains a hydrophobic platform comprising three tryptophan residues that can accommodate up to five glucose residues. The orientation of these aromatic residues is such that the bound ligand would adopt the twisted conformation displayed by cello-oligosaccharides in solution. Mutagenesis studies confirmed that the hydrophobic platform located on the concave face of both CBMs mediates ligand recognition. In contrast to other CBMs that bind to single polysaccharide chains, the polar residues in the binding cleft of CBM44 play only a minor role in ligand recognition. The mechanism by which these proteins are able to recognize linear and decorated beta-1,4-glucans is discussed based on the structures of CBM44 and the other CBMs that bind single cellulose chains.
Collapse
Affiliation(s)
- Shabir Najmudin
- Requimte, Departamento de Química, FCT-UNL, 2829-516 Caparica, Portugal, CIISA-Faculdade de Medicina Veterinária, Universidade Técnica de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1473
|
Barral P, Suárez C, Batanero E, Alfonso C, Alché J, Rodríguez-García M, Villalba M, Rivas G, Rodríguez R. An olive pollen protein with allergenic activity, Ole e 10, defines a novel family of carbohydrate-binding modules and is potentially implicated in pollen germination. Biochem J 2005; 390:77-84. [PMID: 15882149 PMCID: PMC1188267 DOI: 10.1042/bj20050456] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
CBMs (carbohydrate-binding modules) are the most common non-catalytic modules associated with enzymes active in plant cell-wall hydrolysis. They have been frequently identified by amino acid sequence alignments, but only a few have been experimentally established to have a carbohydrate-binding activity. A small olive pollen protein, Ole e 10 (10 kDa), has been described as a major inducer of type I allergy in humans. In the present study, the ability of Ole e 10 to bind several polysaccharides has been analysed by affinity gel electrophoresis, which demonstrated that the protein bound 1,3-beta-glucans preferentially. Analytical ultracentrifugation studies confirmed binding to laminarin, at a protein/ligand ratio of 1:1. The interaction of Ole e 10 with laminarin induced a conformational change in the protein, as detected by CD and fluorescence analyses, and an increase of 3.6 degrees C in the thermal denaturation temperature of Ole e 10 in the presence of the glycan. These results, and the absence of alignment of the sequence of Ole e 10 with that of any classified CBM, indicate that this pollen protein defines a novel family of CBMs, which we propose to name CBM43. Immunolocalization of Ole e 10 in mature and germinating pollen by transmission electron microscopy and confocal laser scanning microscopy demonstrated the co-localization of Ole e 10 and callose (1,3-beta-glucan) in the growing pollen tube, suggesting a role for this protein in the metabolism of carbohydrates and in pollen tube wall re-formation during germination.
Collapse
Affiliation(s)
- Patricia Barral
- *Departamento de Bioquímica y Biología Molecular I, Facultad de Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Cinthya Suárez
- †Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008, Granada, Spain
| | - Eva Batanero
- *Departamento de Bioquímica y Biología Molecular I, Facultad de Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Carlos Alfonso
- ‡Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Juan de Dios Alché
- †Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008, Granada, Spain
| | - María Isabel Rodríguez-García
- †Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008, Granada, Spain
| | - Mayte Villalba
- *Departamento de Bioquímica y Biología Molecular I, Facultad de Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Germán Rivas
- ‡Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Rosalía Rodríguez
- *Departamento de Bioquímica y Biología Molecular I, Facultad de Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
- To whom correspondence should be addressed (email )
| |
Collapse
|
1474
|
Davies GJ, Gloster TM, Henrissat B. Recent structural insights into the expanding world of carbohydrate-active enzymes. Curr Opin Struct Biol 2005; 15:637-45. [PMID: 16263268 DOI: 10.1016/j.sbi.2005.10.008] [Citation(s) in RCA: 202] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2005] [Revised: 09/21/2005] [Accepted: 10/20/2005] [Indexed: 11/16/2022]
Abstract
Enzymes that catalyse the synthesis and breakdown of glycosidic bonds account for 1-3% of the proteins encoded by the genomes of most organisms. At the current rate, over 12 000 glycosyltransferase and glycoside hydrolase open reading frames will appear during 2006. Recent advances in the study of the structure and mechanism of these carbohydrate-active enzymes reveal that glycoside hydrolases continue to display a wide variety of scaffolds, whereas nucleotide-sugar-dependent glycosyltransferases tend to be grafted onto just two protein folds. The past two years have seen significant advances, including the discovery of a novel NAD+-dependent glycosidase mechanism, the dissection of the reaction coordinate of sialidases and a better understanding of the expanding roles of auxiliary carbohydrate-binding domains.
Collapse
Affiliation(s)
- Gideon J Davies
- Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5YW, UK.
| | | | | |
Collapse
|
1475
|
Machovic M, Svensson B, MacGregor EA, Janecek S. A new clan of CBM families based on bioinformatics of starch-binding domains from families CBM20 and CBM21. FEBS J 2005; 272:5497-513. [PMID: 16262690 DOI: 10.1111/j.1742-4658.2005.04942.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Approximately 10% of amylolytic enzymes are able to bind and degrade raw starch. Usually a distinct domain, the starch-binding domain (SBD), is responsible for this property. These domains have been classified into families of carbohydrate-binding modules (CBM). At present, there are six SBD families: CBM20, CBM21, CBM25, CBM26, CBM34, and CBM41. This work is concentrated on CBM20 and CBM21. The CBM20 module was believed to be located almost exclusively at the C-terminal end of various amylases. The CBM21 module was known as the N-terminally positioned SBD of Rhizopus glucoamylase. Nowadays many nonamylolytic proteins have been recognized as possessing sequence segments that exhibit similarities with the experimentally observed CBM20 and CBM21. These facts have stimulated interest in carrying out a rigorous bioinformatics analysis of the two CBM families. The present analysis showed that the original idea of the CBM20 module being at the C-terminus and the CBM21 module at the N-terminus of a protein should be modified. Although the CBM20 functionally important tryptophans were found to be substituted in several cases, these aromatics and the regions around them belong to the best conserved parts of the CBM20 module. They were therefore used as templates for revealing the corresponding regions in the CBM21 family. Secondary structure prediction together with fold recognition indicated that the CBM21 module structure should be similar to that of CBM20. The evolutionary tree based on a common alignment of sequences of both modules showed that the CBM21 SBDs from alpha-amylases and glucoamylases are the closest relatives to the CBM20 counterparts, with the CBM20 modules from the glycoside hydrolase family GH13 amylopullulanases being possible candidates for the intermediate between the two CBM families.
Collapse
Affiliation(s)
- Martin Machovic
- Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia.
| | | | | | | |
Collapse
|
1476
|
Boraston AB, Healey M, Klassen J, Ficko-Blean E, Lammerts van Bueren A, Law V. A structural and functional analysis of alpha-glucan recognition by family 25 and 26 carbohydrate-binding modules reveals a conserved mode of starch recognition. J Biol Chem 2005; 281:587-98. [PMID: 16230347 DOI: 10.1074/jbc.m509958200] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Starch-hydrolyzing enzymes lacking alpha-glucan-specific carbohydrate-binding modules (CBMs) typically have lowered activity on granular starch relative to their counterparts with CBMs. Thus, consideration of starch recognition by CBMs is a key factor in understanding granular starch hydrolysis. To this end, we have dissected the modular structure of the maltohexaose-forming amylase from Bacillus halodurans (C-125). This five-module protein comprises an N-terminal family 13 catalytic module followed in order by two modules of unknown function, a family 26 CBM (BhCBM26), and a family 25 CBM (BhCBM25). Here we present a comprehensive structure-function analysis of starch and alpha-glucooligosaccharide recognition by BhCBM25 and BhCBM26 using UV methods, isothermal titration calorimetry, and x-ray crystallography. The results reveal that the two CBMs bind alpha-glucooligosaccharides, particularly those containing alpha-1,6 linkages, with different affinities but have similar abilities to bind granular starch. Notably, these CBMs appear to recognize the same binding sites in granular starch. The enhanced affinity of the tandem CBMs for granular starch is suggested to be the main biological advantage for this enzyme to contain two CBMs. Structural studies of the native and ligand-bound forms of BhCBM25 and BhCBM26 show a structurally conserved mode of ligand recognition but through non-sequence-conserved residues. Comparison of these CBM structures with other starch-specific CBM structures reveals a generally conserved mode of starch recognition.
Collapse
Affiliation(s)
- Alisdair B Boraston
- Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 3P6, Canada.
| | | | | | | | | | | |
Collapse
|
1477
|
Taylor EJ, Goyal A, Guerreiro CIPD, Prates JAM, Money VA, Ferry N, Morland C, Planas A, Macdonald JA, Stick RV, Gilbert HJ, Fontes CMGA, Davies GJ. How Family 26 Glycoside Hydrolases Orchestrate Catalysis on Different Polysaccharides. J Biol Chem 2005; 280:32761-7. [PMID: 15987675 DOI: 10.1074/jbc.m506580200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
One of the most intriguing features of the 90 glycoside hydrolase families (GHs) is the range of specificities displayed by different members of the same family, whereas the catalytic apparatus and mechanism are often invariant. Family GH26 predominantly comprises beta-1,4 mannanases; however, a bifunctional Clostridium thermocellum GH26 member (hereafter CtLic26A) displays a markedly different specificity. We show that CtLic26A is a lichenase, specific for mixed (Glcbeta1,4Glcbeta1,4Glcbeta1,3)n oligo- and polysaccharides, and displays no activity on manno-configured substrates or beta-1,4-linked homopolymers of glucose or xylose. The three-dimensional structure of the native form of CtLic26A has been solved at 1.50-A resolution, revealing a characteristic (beta/alpha)8 barrel with Glu-109 and Glu-222 acting as the catalytic acid/base and nucleophile in a double-displacement mechanism. The complex with the competitive inhibitor, Glc-beta-1,3-isofagomine (Ki 1 microm), at 1.60 A sheds light on substrate recognition in the -2 and -1 subsites and illuminates why the enzyme is specific for lichenan-based substrates. Hydrolysis of beta-mannosides by GH26 members is thought to proceed through transition states in the B2,5 (boat) conformation in which structural distinction of glucosides versus mannosides reflects not the configuration at C2 but the recognition of the pseudoaxial O3 of the B2,5 conformation. We suggest a different conformational itinerary for the GH26 enzymes active on gluco-configured substrates.
Collapse
Affiliation(s)
- Edward J Taylor
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, YO10 5YW, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1478
|
Le Nours J, Anderson L, Stoll D, Stålbrand H, Lo Leggio L. The Structure and Characterization of a Modular Endo-β-1,4-mannanase from Cellulomonas fimi,. Biochemistry 2005; 44:12700-8. [PMID: 16171384 DOI: 10.1021/bi050779v] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The endo-beta-1,4-mannanase from the soil bacterium Cellulomonas fimi is a modular plant cell wall degrading enzyme involved in the hydrolysis of the backbone of mannan, one of the most abundant polysaccharides of the hemicellulosic network in the plant cell wall. The crystal structure of a recombinant truncated endo-beta-1,4-mannanase from C. fimi (CfMan26A-50K) was determined by X-ray crystallography to 2.25 A resolution using the molecular replacement technique. The overall structure of the enzyme consists of a core (beta/alpha)8-barrel catalytic module characteristic of clan GH-A, connected via a linker to an immunoglobulin-like module of unknown function. A complex with the oligosaccharide mannotriose to 2.9 A resolution has also been obtained. Both the native structure and the complex show a cacodylate ion bound at the -1 subsite, while subsites -2, -3, and -4 are occupied by mannotriose in the complex. Enzyme kinetic analysis and the analysis of hydrolysis products from manno-oligosaccharides and mannopentitol suggest five important active-site cleft subsites. CfMan26A-50K has a high affinity -3 subsite with Phe325 as an aromatic platform, which explains the mannose releasing property of the enzyme. Structural differences with the homologous Cellvibrio japonicus beta-1,4-mannanase (CjMan26A) at the -2 and -3 subsites may explain the poor performance of CfMan26A mutants as "glycosynthases".
Collapse
Affiliation(s)
- Jérôme Le Nours
- Centre for Crystallographic Studies, Biophysical Chemistry Group, Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
1479
|
Halling PJ, Ulijn RV, Flitsch SL. Understanding enzyme action on immobilised substrates. Curr Opin Biotechnol 2005; 16:385-92. [PMID: 16005203 DOI: 10.1016/j.copbio.2005.06.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2005] [Revised: 06/10/2005] [Accepted: 06/24/2005] [Indexed: 11/22/2022]
Abstract
With increasing interest in automated synthesis and screening protocols, solid supported chemistry and biochemistry are attractive technologies. Studies with surface-immobilised substrates have been carried out to analyse enzyme accessibility, kinetics and thermodynamics. Several interesting new methods have been developed to monitor enzyme action on substrates attached to a solid phase such as polymer beads glass or gold surfaces. These include fluorescence measurements, MALDI-TOF mass spectrometry, and the use of quartz crystal microbalances to measure weight changes of immobilised molecules directly on the surface. Approaches that allow spatial resolution in single beads have also been reported. The ability of enzymes to reach the inside of beads is becoming better characterised and new supports have been developed that allow improved accessibility. The equilibrium position of reactions on the solid surface can be substantially shifted compared with reactions in solution, and this can be usefully exploited using hydrolases in reverse. Research is also starting to tackle the way in which kinetics are modified when the substrates are surface immobilised.
Collapse
Affiliation(s)
- Peter J Halling
- Department of Pure & Applied Chemistry, University of Strathclyde, Glasgow G1 1XW, UK.
| | | | | |
Collapse
|
1480
|
Yoshida M, Igarashi K, Wada M, Kaneko S, Suzuki N, Matsumura H, Nakamura N, Ohno H, Samejima M. Characterization of carbohydrate-binding cytochrome b562 from the white-rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol 2005; 71:4548-55. [PMID: 16085848 PMCID: PMC1183321 DOI: 10.1128/aem.71.8.4548-4555.2005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2004] [Accepted: 02/18/2005] [Indexed: 11/20/2022] Open
Abstract
cDNA encoding a hemoprotein similar to the cytochrome domain of extracellular flavocytochrome cellobiose dehydrogenase (CDH) was cloned from the white-rot fungus Phanerochaete chrysosporium. The deduced amino acid sequence implies that there is a two-domain structure consisting of an N-terminal cytochrome domain and a C-terminal family 1 carbohydrate-binding module (CBM1) but that the flavin-containing domain of CDH is not present. The gene transcripts were observed in cultures in cellulose medium but not in cultures in glucose medium, suggesting that there is regulation by carbon catabolite repression. The gene was successfully overexpressed in Pichia pastoris, and the recombinant protein was designated carbohydrate-binding cytochrome b562 (CBCyt. b562). The resonance Raman spectrum suggested that the heme of CBCyt. b562 is 6-coordinated in both the ferric and ferrous states. Moreover, the redox potential measured by cyclic voltammetry was similar to that of the cytochrome domain of CDH. These results suggest that the redox characteristics may be similar to those of the cytochrome domain of CDH, and so CBCyt. b562 may have an electron transfer function. In a binding study with various carbohydrates, CBCyt. b562 was adsorbed with high affinity on both cellulose and chitin. As far as we know, this is the first example of a CBM1 connected to a domain without apparent catalytic activity for carbohydrate; this CBM1 may play a role in localization of the redox protein on the surface of cellulose or on the fungal sheath in vivo.
Collapse
Affiliation(s)
- Makoto Yoshida
- Department of Biomaterials Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
1481
|
Vaaje-Kolstad G, Horn SJ, van Aalten DMF, Synstad B, Eijsink VGH. The Non-catalytic Chitin-binding Protein CBP21 from Serratia marcescens Is Essential for Chitin Degradation. J Biol Chem 2005; 280:28492-7. [PMID: 15929981 DOI: 10.1074/jbc.m504468200] [Citation(s) in RCA: 276] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Gram-negative soil bacterium Serratia marcescens uses three different family 18 chitinases to degrade chitin, an abundant insoluble carbohydrate polymer composed of beta(1,4)-linked units of N-acetylglucosamine. We show that efficient chitin degradation additionally depends on the action of a small non-catalytic protein, CBP21, which binds to the insoluble crystalline substrate, leading to structural changes in the substrate and increased substrate accessibility. CBP21 strongly promoted hydrolysis of crystalline beta-chitin by chitinases A and C, while it was essential for full degradation by chitinase B. CBP21 variants with single mutations on the largely polar binding surface lost their ability to promote chitin degradation, while retaining considerable affinity for the polymer. Thus, binding alone is not sufficient for CBP21 functionality, which seems to depend on specific, mostly polar interactions between the protein and crystalline chitin. This is the first time a secreted binding protein is shown to assist in the enzymatic degradation of an insoluble carbohydrate via non-hydrolytic disruption of the substrate. Interestingly, homologues of CBP21 occur in most chitin-degrading microorganisms, suggesting a general mechanism by which chitin-binding proteins enhance chitinolytic activity. Homologues also occur in chitinase-containing insect viruses, whose infectiousness is known to depend on chitinase efficiency.
Collapse
Affiliation(s)
- Gustav Vaaje-Kolstad
- Department of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences, P. O. Box 5003, 1432 As, Norway
| | | | | | | | | |
Collapse
|
1482
|
Carvalho AL, Pires VMR, Gloster TM, Turkenburg JP, Prates JAM, Ferreira LMA, Romão MJ, Davies GJ, Fontes CMGA, Gilbert HJ. Insights into the structural determinants of cohesin-dockerin specificity revealed by the crystal structure of the type II cohesin from Clostridium thermocellum SdbA. J Mol Biol 2005; 349:909-15. [PMID: 15913653 DOI: 10.1016/j.jmb.2005.04.037] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2005] [Revised: 04/13/2005] [Accepted: 04/17/2005] [Indexed: 10/25/2022]
Abstract
The plant cell wall degrading enzymes expressed by anaerobic microorganisms form large multienzyme complexes (cellulosomes). Cellulosomes assemble by the Type I dockerins on the catalytic subunits binding to the reiterated Type I cohesins in the molecular scaffold, while Type II dockerin-cohesin interactions anchor the complex onto the bacterial cell surface. Type I and Type II cohesin, dockerin pairs show no cross-specificity. Here we report the crystal structure of the Type II cohesin (CohII) from the Clostridium thermocellum cell surface anchoring protein SdbA. The protein domain contains nine beta-strands and a small alpha-helix. The beta-strands assemble into two elongated beta-sheets that display a typical jelly roll fold. The structure of CohII is very similar to Type I cohesins, and the dockerin binding site, which is centred at beta-strands 3, 5 and 6, is likely to be conserved in the two proteins. Subtle differences in the topology of the binding sites and a lack of sequence identity in the beta-strands that comprise the core of the dockerin binding site explain why Type I and Type II cohesins display such distinct specificities for their target dockerins.
Collapse
Affiliation(s)
- Ana L Carvalho
- REQUIMTE/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1483
|
Hashimoto H, Tamai Y, Okazaki F, Tamaru Y, Shimizu T, Araki T, Sato M. The first crystal structure of a family 31 carbohydrate-binding module with affinity to β-1,3-xylan. FEBS Lett 2005; 579:4324-8. [PMID: 16061225 DOI: 10.1016/j.febslet.2005.06.062] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2005] [Revised: 06/21/2005] [Accepted: 06/21/2005] [Indexed: 11/19/2022]
Abstract
Here, we present the crystal structure of the family 31 carbohydrate-binding module (CBM) of beta-1,3-xylanase from Alcaligenes sp. strain XY-234 (AlcCBM31) determined at a resolution of 1.25A. The AlcCBM31 shows affinity with only beta-1,3-xylan. The AlcCBM31 molecule makes a beta-sandwich structure composed of eight beta-strands with a typical immunoglobulin fold and contains two intra-molecular disulfide bonds. The folding topology of AlcCBM31 differs from that of the large majority of other CBMs, in which eight beta-strands comprise a beta-sandwich structure with a typical jelly-roll fold. AlcCBM31 shows structural similarity with CBM structures of family 34 and family 9, which also adopt structures based on immunoglobulin folds.
Collapse
Affiliation(s)
- Hiroshi Hashimoto
- International Graduate school of Arts and Sciences, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| | | | | | | | | | | | | |
Collapse
|
1484
|
Boraston A. The interaction of carbohydrate-binding modules with insoluble non-crystalline cellulose is enthalpically driven. Biochem J 2005; 385:479-84. [PMID: 15487986 PMCID: PMC1134719 DOI: 10.1042/bj20041473] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Natural cellulose exists as a composite of cellulose forms, which can be broadly characterized as crystalline or non-crystalline. The recognition of both of these forms of cellulose by the CBMs (carbohydrate-binding modules) of microbial glycoside hydrolases is important for the efficient natural and biotechnological conversion of cellulosic biomass. The category of CBM that binds insoluble non-crystalline cellulose does so with an affinity approx. 10-20-fold greater than their affinity for cello-oligosaccharides and/or soluble polysaccharides. This phenomenon has been assumed to originate from the effects of changes in configurational entropy upon binding. The loss of configurational entropy is thought to be less profound upon binding to conformationally restrained insoluble non-crystalline cellulose, resulting in larger free energies of binding. However, using isothermal titration calorimetry, it is shown that this is not the case for the high-affinity interactions of CcCBM17 (the family 17 CBM from EngF of Clostridium cellulovorans) and BspCBM28 (the family 28 CBM from Cel5A of Bacillus species 1139) with regenerated cellulose, an insoluble preparation of primarily non-crystalline cellulose. The enhanced free energy of binding of non-crystalline cellulose relative to cello-oligosaccharides is by virtue of improved enthalpy, not entropy.
Collapse
Affiliation(s)
- Alisdair B. Boraston
- Biochemistry & Microbiology, University of Victoria, P.O. Box 3055 STN CSC, Victoria, British Columbia, Canada V8W 3P6
- email
| |
Collapse
|
1485
|
Baba Y, Shimonaka A, Koga J, Kubota H, Kono T. Alternative splicing produces two endoglucanases with one or two carbohydrate-binding modules in Mucor circinelloides. J Bacteriol 2005; 187:3045-51. [PMID: 15838031 PMCID: PMC1082807 DOI: 10.1128/jb.187.9.3045-3051.2005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously cloned three endoglucanase genes, rce1, rce2, and rce3, that were isolated from Rhizopus oryzae as the first cellulase genes from a member of the subdivision Zygomycota. In this study, two cDNAs homologous to the rce1 gene, designated the mce1 and mce2 cDNAs, were cloned from Mucor circinelloides, a member of the subdivision Zygomycota. The mce1 cDNA encoded an endoglucanase (family 45 glycoside hydrolase) having one carbohydrate-binding module (CBM), designated MCE1, and the mce2 cDNA encoded the same endoglucanase having two tandem repeated CBMs, designated MCE2. The two cDNAs contained the same sequences but with a 147-bp insertion. The corresponding genomic mce gene consisted of four exons. The mce1 cDNA was created from exons 1, 3, and 4, and the mce2 cDNA was created from exons 1, 2, 3, and 4. These results indicate that the mce1 and mce2 cDNAs were created from one genomic mce gene by alternative splicing. MCE1 and MCE2, purified to apparent homogeneity from the culture supernatant of M. circinelloides, had molecular masses of 43 and 47 kDa, respectively. The carboxymethyl cellulase specific activity of MCE2 was almost the same as that of MCE1, whereas the Avicelase specific activity of MCE2 was two times higher than that of MCE1. Furthermore, MCE2, whose two tandem CBMs might be more effective for degradation of crystalline cellulose than one CBM, was secreted only at an early culture stage when crystalline cellulose was abundant.
Collapse
Affiliation(s)
- Yuko Baba
- Food and Health R&D Laboratories, Meiji Seika Kaisha, Ltd., 5-3-1, Chiyoda, Sakado-shi, Saitama 350-0289, Japan
| | | | | | | | | |
Collapse
|
1486
|
Iconomidou VA, Willis JH, Hamodrakas SJ. Unique features of the structural model of 'hard' cuticle proteins: implications for chitin-protein interactions and cross-linking in cuticle. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2005; 35:553-560. [PMID: 15857761 DOI: 10.1016/j.ibmb.2005.01.017] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2004] [Revised: 01/26/2005] [Accepted: 01/27/2005] [Indexed: 05/24/2023]
Abstract
Cuticular proteins are one of the determinants of the physical properties of cuticle. A common consensus region (extended R&R Consensus) in these proteins binds to chitin, the other major component of cuticle. We previously predicted the preponderance of beta-pleated sheet in the consensus region and proposed its responsibility for the formation of helicoidal cuticle (Iconomidou et al., Insect Biochem. Mol. Biol. 29 (1999) 285). Subsequently, we verified experimentally the abundance of antiparallel beta-pleated sheet in the structure of cuticle proteins (Iconomidou et al., Insect Biochem. Mol. Biol. 31 (2001) 877). Homology modelling of soft (RR-1) cuticular proteins using bovine plasma retinol binding protein (RBP) as a template revealed an antiparallel beta-sheet half-barrel structure as the basic folding motif (Hamodrakas et al., Insect Biochem. Molec. Biol. 32 (2002) 1577). The RR-2 proteins characteristic of hard cuticle, have a far more conserved consensus and frequently more histidine residues. Extension of modelling to this class of consensus, in this work, reveals in detail several unique features of the proposed structural model to serve as a chitin binding structural motif, thus providing the basis for elucidating cuticle's overall architecture and chitin-protein interactions in cuticle.
Collapse
Affiliation(s)
- Vassiliki A Iconomidou
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, Athens 157 01, Greece.
| | | | | |
Collapse
|
1487
|
Flint J, Bolam DN, Nurizzo D, Taylor EJ, Williamson MP, Walters C, Davies GJ, Gilbert HJ. Probing the Mechanism of Ligand Recognition in Family 29 Carbohydrate-binding Modules. J Biol Chem 2005; 280:23718-26. [PMID: 15784618 DOI: 10.1074/jbc.m501551200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The recycling of photosynthetically fixed carbon, by the action of microbial plant cell wall hydrolases, is integral to one of the major geochemical cycles and is of considerable industrial importance. Non-catalytic carbohydrate-binding modules (CBMs) play a key role in this degradative process by targeting hydrolytic enzymes to their cognate substrate within the complex milieu of polysaccharides that comprise the plant cell wall. Family 29 CBMs have, thus far, only been found in an extracellular multienzyme plant cell wall-degrading complex from the anaerobic fungus Piromyces equi, where they exist as a CBM29-1:CBM29-2 tandem. Here we present both the structure of the CBM29-1 partner, at 1.5 A resolution, and examine the importance of hydrophobic stacking interactions as well as direct and solvent-mediated hydrogen bonds in the binding of CBM29-2 to different polysaccharides. CBM29 domains display unusual binding properties, exhibiting specificity for both beta-manno- and beta-gluco-configured ligands such as mannan, cellulose, and glucomannan. Mutagenesis reveals that "stacking" of tryptophan residues in the n and n+2 subsites plays a critical role in ligand binding, whereas the loss of tyrosine-mediated stacking in the n+4 subsite reduces, but does not abrogate, polysaccharide recognition. Direct hydrogen bonds to ligand, such as those provided by Arg-112 and Glu-78, play a pivotal role in the interaction with both mannan and cellulose, whereas removal of water-mediated interactions has comparatively little effect on carbohydrate binding. The interactions of CBM29-2 with the O2 of glucose or mannose contribute little to binding affinity, explaining why this CBM displays dual gluco/manno specificity.
Collapse
Affiliation(s)
- James Flint
- Institute for Cell and Molecular Biosciences, University of Newcastle upon Tyne, Newcastle upon Tyne NE2 4HH, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
1488
|
Ali E, Zhao G, Sakka M, Kimura T, Ohmiya K, Sakka K. Functions of family-22 carbohydrate-binding module in Clostridium thermocellum Xyn10C. Biosci Biotechnol Biochem 2005; 69:160-5. [PMID: 15665481 DOI: 10.1271/bbb.69.160] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Clostridium thermocellum xylanase Xyn10C (formerly XynC) is a modular enzyme, comprising a family-22 carbohydrate-binding module (CBM), a family-10 catalytic module of the glycoside hydrolases, and a dockerin module responsible for cellulosome assembly consecutively from the N-terminus. To study the functions of the CBM, truncated derivatives of Xyn10C were constructed: a recombinant catalytic module polypeptide (rCM), a family-22 CBM polypeptide (rCBM), and a polypeptide composed of the family-22 CBM and CM (rCBM-CM). The recombinant proteins were characterized by enzyme and binding assays. Although the catalytic activity of rCBM-CM toward insoluble xylan was four times higher than that of rCM toward the same substrate, removal of the CBM did not severely affect catalytic activity toward soluble xylan or beta-1,3-1,4-glucan. rCBM showed an affinity for amorphous celluloses and insoluble and soluble xylan in qualitative binding assays. The optimum temperature of rCBM-CM was 80 degrees C and that of rCM was 60 degrees C. These results indicate that the family-22 CBM of C. thermocellum Xyn10C not only was responsible for the binding of the enzyme to the substrates, but also contributes to the stability of the CM in the presence of the substrate at high temperatures.
Collapse
Affiliation(s)
- Ehsan Ali
- Faculty of Bioresources, Mie University, Tsu, Japan
| | | | | | | | | | | |
Collapse
|
1489
|
Ichinose H, Yoshida M, Kotake T, Kuno A, Igarashi K, Tsumuraya Y, Samejima M, Hirabayashi J, Kobayashi H, Kaneko S. An exo-beta-1,3-galactanase having a novel beta-1,3-galactan-binding module from Phanerochaete chrysosporium. J Biol Chem 2005; 280:25820-9. [PMID: 15866877 DOI: 10.1074/jbc.m501024200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An exo-beta-1,3-galactanase gene from Phanerochaete chrysosporium has been cloned, sequenced, and expressed in Pichia pastoris. The complete amino acid sequence of the exo-beta-1,3-galactanase indicated that the enzyme consists of an N-terminal catalytic module with similarity to glycoside hydrolase family 43 and an additional unknown functional domain similar to carbohydrate-binding module family 6 (CBM6) in the C-terminal region. The molecular mass of the recombinant enzyme was estimated as 55 kDa based on SDS-PAGE. The enzyme showed reactivity only toward beta-1,3-linked galactosyl oligosaccharides and polysaccharide as substrates but did not hydrolyze beta-1,4-linked galacto-oligosaccharides, beta-1,6-linked galacto-oligosaccharides, pectic galactan, larch arabinogalactan, arabinan, gum arabic, debranched arabinan, laminarin, soluble birchwood xylan, or soluble oat spelled xylan. The enzyme also did not hydrolyze beta-1,3-galactosyl galactosaminide, beta-1,3-galactosyl glucosaminide, or beta-1,3-galactosyl arabinofuranoside, suggesting that it specifically cleaves the internal beta-1,3-linkage of two galactosyl residues. High performance liquid chromatographic analysis of the hydrolysis products showed that the enzyme produced galactose from beta-1,3-galactan in an exo-acting manner. However, no activity toward p-nitrophenyl beta-galactopyranoside was detected. When incubated with arabinogalactan proteins, the enzyme produced oligosaccharides together with galactose, suggesting that it is able to bypass beta-1,6-linked galactosyl side chains. The C-terminal CBM6 did not show any affinity for known substrates of CBM6 such as xylan, cellulose, and beta-1,3-glucan, although it bound beta-1,3-galactan when analyzed by affinity electrophoresis. Frontal affinity chromatography for the CBM6 moiety using several kinds of terminal galactose-containing oligosaccharides as the analytes clearly indicated that the CBM6 specifically interacted with oligosaccharides containing a beta-1,3-galactobiose moiety. When the degree of polymerization of galactose oligomers was increased, the binding affinity of the CBM6 showed no marked change.
Collapse
Affiliation(s)
- Hitomi Ichinose
- Biological Function Division, National Food Research Institute, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1490
|
Varrot A, Leydier S, Pell G, Macdonald JM, Stick RV, Henrissat B, Gilbert HJ, Davies GJ. Mycobacterium tuberculosis Strains Possess Functional Cellulases. J Biol Chem 2005; 280:20181-4. [PMID: 15824123 DOI: 10.1074/jbc.c500142200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The genomes of various Mycobacterium tuberculosis strains encode proteins that do not appear to play a role in the growth or survival of the bacterium in its mammalian host, including some implicated in plant cell wall breakdown. Here we show that M. tuberculosis H37Rv does indeed possess a functional cellulase. The x-ray crystal structure of this enzyme, in ligand complex forms, from 1.9 to 1.1A resolution, reveals a highly conserved substrate-binding cleft, which affords similar, and unusual, distortion of the substrate at the catalytic center. The endoglucanase activity, together with the existence of a putative membrane-associated crystalline polysaccharide-binding protein, may reflect the ancestral soil origin of the Mycobacterium or hint at a previously unconsidered environmental niche.
Collapse
Affiliation(s)
- Annabelle Varrot
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, Y010 5YW, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
1491
|
Tunnicliffe RB, Bolam DN, Pell G, Gilbert HJ, Williamson MP. Structure of a mannan-specific family 35 carbohydrate-binding module: evidence for significant conformational changes upon ligand binding. J Mol Biol 2005; 347:287-96. [PMID: 15740741 DOI: 10.1016/j.jmb.2005.01.038] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2004] [Revised: 01/12/2005] [Accepted: 01/17/2005] [Indexed: 10/25/2022]
Abstract
Enzymes that digest plant cell wall polysaccharides generally contain non-catalytic, carbohydrate-binding modules (CBMs) that function by attaching the enzyme to the substrate, potentiating catalytic activity. Here, we present the first structure of a family 35 CBM, derived from the Cellvibrio japonicus beta-1,4-mannanase Man5C. The NMR structure has been determined for both the free protein and the protein bound to mannopentaose. The data show that the protein displays a typical beta-jelly-roll fold. Ligand binding is not located on the concave surface of the protein, as occurs in many CBMs that display the jelly-roll fold, but is formed by the loops that link the two beta-sheets of the protein, similar to family 6 CBMs. In contrast to the majority of CBMs, which are generally rigid proteins, CBM35 undergoes significant conformational change upon ligand binding. The curvature of the binding site and the narrow binding cleft are likely to be the main determinants of binding specificity. The predicted solvent exposure of O6 at several subsites provides an explanation for the observed accommodation of decorated mannans. Two of the key aromatic residues in Man5C-CBM35 that interact with mannopentaose are conserved in mannanase-derived CBM35s, which will guide specificity predictions based on the primary sequence of proteins in this CBM family.
Collapse
Affiliation(s)
- Richard B Tunnicliffe
- Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | | | | | | | | |
Collapse
|
1492
|
van Bueren AL, Morland C, Gilbert HJ, Boraston AB. Family 6 carbohydrate binding modules recognize the non-reducing end of beta-1,3-linked glucans by presenting a unique ligand binding surface. J Biol Chem 2004; 280:530-7. [PMID: 15501830 DOI: 10.1074/jbc.m410113200] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Enzymes that hydrolyze insoluble complex polysaccharide structures contain non-catalytic carbohydrate binding modules (CBMS) that play a pivotal role in the action of these enzymes against recalcitrant substrates. Family 6 CBMs (CBM6s) are distinct from other CBM families in that these protein modules contain multiple distinct ligand binding sites, a feature that makes CBM6s particularly appropriate receptors for the beta-1,3-glucan laminarin, which displays an extended U-shaped conformation. To investigate the mechanism by which family 6 CBMs recognize laminarin, we report the biochemical and structural properties of a CBM6 (designated BhCBM6) that is located in an enzyme, which is shown, in this work, to display beta-1,3-glucanase activity. BhCBM6 binds beta-1,3-glucooligosaccharides with affinities of approximately 1 x 10(5) m(-1). The x-ray crystal structure of this CBM in complex with laminarihexaose reveals similarity with the structures of other CBM6s but a unique binding mode. The binding cleft in this protein is sealed at one end, which prevents binding of linear polysaccharides such as cellulose, and the orientation of the sugar at this site prevents glycone extension of the ligand and thus conferring specificity for the non-reducing ends of glycans. The high affinity for extended beta-1,3-glucooligosaccharides is conferred by interactions with the surface of the protein located between the two binding sites common to CBM6s and thus reveals a third ligand binding site in family 6 CBMs. This study therefore demonstrates how the multiple binding clefts and highly unusual protein surface of family 6 CBMs confers the extensive range of specificities displayed by this protein family. This is in sharp contrast to other families of CBMs where variation in specificity between different members reflects differences in the topology of a single binding site.
Collapse
|