151
|
Diet Rich in Simple Sugars Promotes Pro-Inflammatory Response via Gut Microbiota Alteration and TLR4 Signaling. Cells 2020; 9:cells9122701. [PMID: 33339337 PMCID: PMC7766268 DOI: 10.3390/cells9122701] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/05/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
Diet is a strong modifier of microbiome and mucosal microenvironment in the gut. Recently, components of western-type diets have been associated with metabolic and immune diseases. Here, we studied how high-sugar diet (HSD) consumption influences gut mucosal barrier and immune response under steady state conditions and in a mouse model of acute colitis. We found that HSD significantly increased gut permeability, spleen weight, and neutrophil levels in spleens of healthy mice. Subsequent dextran sodium sulfate administration led to severe colitis. In colon, HSD significantly promoted neutrophil infiltration and increased the levels of IL-6, IL-1β, and TNF-α. Moreover, HSD-fed mice had significantly higher abundance of pathobionts, such as Escherichia coli and Candida, in fecal samples. Although germ-free mice colonized with microbiota of conventionally reared mice that consumed different diets had equally severe colitis, mice colonized with HSD microbiota showed markedly increased infiltration of neutrophils to the gut. The induction of colitis in Toll-like receptor 4 (TLR4)-deficient HSD-fed mice led to significantly milder colitis than in wild-type mice. In conclusion, our results suggested a significant role of HSD in disruption of barrier integrity and balanced mucosal and systemic immune response. In addition, these processes seemed to be highly influenced by resident potentially pathogenic microbiota or metabolites via the TLR4 signaling pathway.
Collapse
|
152
|
Cepon-Robins TJ. Measuring attack on self: The need for field-friendly methods development and research on autoimmunity in human biology. Am J Hum Biol 2020; 33. [PMID: 33289250 DOI: 10.1002/ajhb.23544] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Autoimmune and inflammatory disorder (AIID) prevalence appears to be increasing in all but the world's poorest regions and countries. Autoimmune diseases occur when there is a breakdown in processes that regulate inflammation and self-recognition by immune cells. Very few field-based studies have been conducted among Indigenous populations and underserved communities with limited access to medical care. This is due, in part, to the fact that autoimmune diseases are difficult to diagnose, even in clinical settings. In remote field settings these difficulties are compounded by the absence of infrastructure necessary for sample storage and analysis, and the lack of hospital/clinic access for more invasive diagnostic procedures. Because of these limitations, little is known about the prevalence of autoimmunity outside wealthy regions and clinical settings. AIMS The present paper discusses why AIID are of critical importance in human biology research and why more work needs to be devoted to validating, testing, and utilizing methods for detecting autoantibodies and other biomarkers related to autoimmunity in field-friendly, minimally invasively-collected samples. This paper reviews some of the methods used to diagnose AIIDs in clinical settings, and highlights methods that have been used in studies within human biology and related fields, emphasizing the invasiveness of specific methods and their feasibility in remote field settings. DISCUSSION AND CONCLUSIONS Risk for AIID is affected by several reproductive, dietary, environmental, and genetic factors. Human biologists have unique perspectives that they can bring to autoimmunity research, and more population-based studies on autoimmunity are needed within these and related fields.
Collapse
Affiliation(s)
- Tara J Cepon-Robins
- Department of Anthropology, University of Colorado Colorado Springs, Colorado Springs, Colorado, USA
| |
Collapse
|
153
|
Akaishi T, Yamasaki K, Mori Y, Takahashi T, Izumiyama T, Terui H, Abe M, Takayama S, Aiba S, Ishii T. Psoriatic arthritis with skin lesions localized to the scalp: A case report. J Gen Fam Med 2020; 21:264-267. [PMID: 33304723 PMCID: PMC7689237 DOI: 10.1002/jgf2.358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/01/2020] [Accepted: 06/15/2020] [Indexed: 12/05/2022] Open
Abstract
A 66-year-old man with a 2-year history of suspected scalp eczema with excessive dandruff developed painful swollen joints in the extremities. Four months after developing polyarthritis and polydactylitis, eczema gradually spread to the face. He was referred to our hospital for intractable scalp and facial eczema and polyarthritis. Based on the appearance of the head and facial skin lesions, psoriasis was suspected. Treatment with apremilast (a phosphodiesterase-4-inhibitor) was initiated, which swiftly alleviated the skin lesions. The joint deformities persisted, but the pain in the joints disappeared. This case implies that psoriatic arthritis should be suspected even if psoriatic skin lesions are localized to the scalp.
Collapse
Affiliation(s)
- Tetsuya Akaishi
- Department of Education and Support for Regional MedicineTohoku University HospitalSendaiJapan
| | - Kenshi Yamasaki
- Department of DermatologyTohoku University Graduate School of MedicineSendaiJapan
| | - Yu Mori
- Department of Orthopedic SurgeryTohoku University Graduate School of MedicineSendaiJapan
| | - Toshiya Takahashi
- Department of DermatologyTohoku University Graduate School of MedicineSendaiJapan
| | - Takuya Izumiyama
- Department of Orthopedic SurgeryTohoku University Graduate School of MedicineSendaiJapan
| | - Hitoshi Terui
- Department of DermatologyTohoku University Graduate School of MedicineSendaiJapan
| | - Michiaki Abe
- Department of Education and Support for Regional MedicineTohoku University HospitalSendaiJapan
| | - Shin Takayama
- Department of Education and Support for Regional MedicineTohoku University HospitalSendaiJapan
| | - Setsuya Aiba
- Department of DermatologyTohoku University Graduate School of MedicineSendaiJapan
| | - Tadashi Ishii
- Department of Education and Support for Regional MedicineTohoku University HospitalSendaiJapan
| |
Collapse
|
154
|
Elmassry MM, Zayed A, Farag MA. Gut homeostasis and microbiota under attack: impact of the different types of food contaminants on gut health. Crit Rev Food Sci Nutr 2020; 62:738-763. [DOI: 10.1080/10408398.2020.1828263] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Moamen M. Elmassry
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Ahmed Zayed
- Department of Pharmacognosy, College of Pharmacy, Tanta University, Tanta, Egypt
- Institute of Bioprocess Engineering, Technical University of Kaiserslautern, Kaiserslautern, Germany
| | - Mohamed A. Farag
- Department of Pharmacognosy, College of Pharmacy, Cairo University, Cairo, Egypt
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, New Cairo, Egypt
| |
Collapse
|
155
|
Nonalcoholic fatty liver disease and colorectal cancer: Correlation and missing links. Life Sci 2020; 262:118507. [PMID: 33017572 DOI: 10.1016/j.lfs.2020.118507] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the major metabolic diseases that occur in almost one in every four global population, while colorectal cancer (CRC) is one of the leading causes of cancer related deaths in the world. Individuals with pre-existing NAFLD show a higher rate of developing CRC and liver metastasis, suggesting a causal relationship. Interestingly, both of these diseases are strongly associated with obesity, which is also a growing global health concern. In this current review, we will explore scientific findings that demonstrate the relationship between NAFLD, CRC and obesity, as well as the underlying mechanisms. We will also indicate the missing links and knowledge gaps that require more in-depth investigation.
Collapse
|
156
|
Ruggeri RM, CampennÌ A, Giuffrida G, Casciaro M, Barbalace MC, Hrelia S, Trimarchi F, CannavÒ S, Gangemi S. Oxidative stress as a key feature of autoimmune thyroiditis: an update. MINERVA ENDOCRINOL 2020; 45:326-344. [PMID: 32969631 DOI: 10.23736/s0391-1977.20.03268-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Oxidative stress has been proposed as one of the factors concurring in the pathophysiology of autoimmune thyroid diseases. Reactive oxygen species are the main expression of oxidative stress in biological systems, and their production can overcome antioxidant defenses ultimately leading to cell damage, apoptosis, and death. The present review was aimed at describing the state of the art of the relationships between oxidative stress and autoimmune thyroiditis. The most used biomarkers of oxidative stress and their correlation with thyroid function are reported. EVIDENCE ACQUISITION We conducted a search of the literature in the English language starting from 2000, using the following search terms: "Hashimoto thyroiditis," "autoimmune thyroiditis," "hypothyroidism," "hyperthyroidism," "oxidative stress," "oxidants," "antioxidant," "advanced glycation end products." Both clinical studies and animal models were evaluated. EVIDENCE SYNTHESIS Data form clinical studies clearly indicate that the balance between oxidants and antioxidants is shifted towards the oxidative side in patients with autoimmune thyroiditis, suggesting that oxidative stress may be a key event in the pathophysiology of the disease, irrespective of thyroid function. Studies in animal models, such as the NOD.H2h4 mouse, confirm that thyroidal accumulation of ROS plays a role in the initiation and progression of autoimmune thyroiditis. CONCLUSIONS Oxidant/antioxidant imbalance represent a key feature of thyroid autoimmunity. Oxidative stress parameters could be used as biochemical markers of chronic inflammation, to better predict the disease evolution along its natural history. Dietary habits and antioxidant supplements may provide protection from autoimmunity, opening new perspectives in the development of more tailored therapies.
Collapse
Affiliation(s)
- Rosaria M Ruggeri
- Department of Clinical and Experimental Medicine, Gaetano Martino University Hospital, University of Messina, Messina, Italy - .,Unit of Endocrinology, University Hospital of Messina, Messina, Italy -
| | - Alfredo CampennÌ
- Department of Biomedical Sciences and Morpho-Functional Imaging, University of Messina, Messina, Italy
| | - Giuseppe Giuffrida
- Department of Clinical and Experimental Medicine, Gaetano Martino University Hospital, University of Messina, Messina, Italy.,Unit of Endocrinology, University Hospital of Messina, Messina, Italy
| | - Marco Casciaro
- Unit of Allergology and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Maria C Barbalace
- Department of Life Quality Studies, University of Bologna, Bologna, Italy
| | - Silvana Hrelia
- Department of Life Quality Studies, University of Bologna, Bologna, Italy
| | | | - Salvatore CannavÒ
- Unit of Endocrinology, University Hospital of Messina, Messina, Italy.,Department of Human Pathology DETEV, University of Messina, Messina, Italy
| | - Sebastiano Gangemi
- Unit of Allergology and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| |
Collapse
|
157
|
Nezamoleslami S, Ghiasvand R, Feizi A, Salesi M, Pourmasoumi M. The relationship between dietary patterns and rheumatoid arthritis: a case-control study. Nutr Metab (Lond) 2020; 17:75. [PMID: 32963579 PMCID: PMC7499965 DOI: 10.1186/s12986-020-00502-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 09/09/2020] [Indexed: 11/10/2022] Open
Abstract
Background and aim A number of studies have investigated the effects of individual foods and/or nutrients on rheumatoid arthritis (RA), but research focusing on whole dietary patterns remains limited. The association of dietary patterns and rheumatoid arthritis is therefore not well elucidated. This study aims to determine existing relationships between major identified dietary patterns and RA. Methods This matched case-control study was conducted on 297 individuals in Isfahan, Iran. The presence of RA was determined by an expert rheumatologist, based on the American College of Rheumatology definitions, 2010. A 168-item questionnaire was used to collect dietary data. Major dietary patterns were identified using the factor analysis method. Results Two major dietary patterns, namely, healthy and western dietary patterns, were identified. Lower adherence to the healthy dietary pattern was associated with increased risk of RA (OR = 2.80; 95% CI 1.74-4.67; P < 0.001). The association remained significant even after taking other confounders into account (OR = 2.85; 95% CI 1.12-7.45; P = 0.03). A positively significant association was also observed between adherence to western dietary pattern and RA in the fully-adjusted final model (OR = 2.22; 95% CI 1.04-4.72; P = 0.03). Conclusions The study suggests that there is an inverse association between adherence to a healthy dietary pattern and the odds of RA, and a positive significant relationship was found between western dietary pattern and RA. Further studies are required to confirm these findings.
Collapse
Affiliation(s)
- Shokufeh Nezamoleslami
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza Ghiasvand
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, P.O. Box 81745, Isfahan, Iran
| | - Awat Feizi
- Department of Biostatistics and Epidemiology, School of Public Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mansour Salesi
- Department of Rheumatology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Makan Pourmasoumi
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
158
|
Raftery AL, Tsantikos E, Harris NL, Hibbs ML. Links Between Inflammatory Bowel Disease and Chronic Obstructive Pulmonary Disease. Front Immunol 2020; 11:2144. [PMID: 33042125 PMCID: PMC7517908 DOI: 10.3389/fimmu.2020.02144] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/07/2020] [Indexed: 12/14/2022] Open
Abstract
Inflammatory bowel disease (IBD) and chronic obstructive pulmonary disease (COPD) are chronic inflammatory diseases of the gastrointestinal and respiratory tracts, respectively. These mucosal tissues bear commonalities in embryology, structure and physiology. Inherent similarities in immune responses at the two sites, as well as overlapping environmental risk factors, help to explain the increase in prevalence of IBD amongst COPD patients. Over the past decade, a tremendous amount of research has been conducted to define the microbiological makeup of the intestine, known as the intestinal microbiota, and determine its contribution to health and disease. Intestinal microbial dysbiosis is now known to be associated with IBD where it impacts upon intestinal epithelial barrier integrity and leads to augmented immune responses and the perpetuation of chronic inflammation. While much less is known about the lung microbiota, like the intestine, it has its own distinct, diverse microflora, with dysbiosis being reported in respiratory disease settings such as COPD. Recent research has begun to delineate the interaction or crosstalk between the lung and the intestine and how this may influence, or be influenced by, the microbiota. It is now known that microbial products and metabolites can be transferred from the intestine to the lung via the bloodstream, providing a mechanism for communication. While recent studies indicate that intestinal microbiota can influence respiratory health, intestinal dysbiosis in COPD has not yet been described although it is anticipated since factors that lead to dysbiosis are similarly associated with COPD. This review will focus on the gut-lung axis in the context of IBD and COPD, highlighting the role of environmental and genetic factors and the impact of microbial dysbiosis on chronic inflammation in the intestinal tract and lung.
Collapse
Affiliation(s)
- April L Raftery
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Evelyn Tsantikos
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Nicola L Harris
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Margaret L Hibbs
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
159
|
Reyneveld GIJ, Savelkoul HFJ, Parmentier HK. Current Understanding of Natural Antibodies and Exploring the Possibilities of Modulation Using Veterinary Models. A Review. Front Immunol 2020; 11:2139. [PMID: 33013904 PMCID: PMC7511776 DOI: 10.3389/fimmu.2020.02139] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 08/06/2020] [Indexed: 12/20/2022] Open
Abstract
Natural antibodies (NAb) are defined as germline encoded immunoglobulins found in individuals without (known) prior antigenic experience. NAb bind exogenous (e.g., bacterial) and self-components and have been found in every vertebrate species tested. NAb likely act as a first-line immune defense against infections. A large part of NAb, so called natural autoantibodies (NAAb) bind to and clear (self) neo-epitopes, apoptotic, and necrotic cells. Such self-binding antibodies cannot, however, be considered as pathogenic autoantibodies in the classical sense. IgM and IgG NAb and NAAb and their implications in health and disease are relatively well-described in humans and mice. NAb are present in veterinary (and wildlife) species, but their relation with diseases and disorders in veterinary species are much less known. Also, there is little known of IgA NAb. IgA is the most abundant immunoglobulin with essential pro-inflammatory and homeostatic properties urging for more research on the importance of IgA NAb. Since NAb in humans were indicated to fulfill important functions in health and disease, their role in health of veterinary species should be investigated more often. Furthermore, it is unknown whether levels of NAb-isotypes and/or idiotypes can and should be modulated. Veterinary species as models of choice fill in a niche between mice and (non-human) primates, and the study of NAb in veterinary species may provide valuable new insights that will likely improve health management. Below, examples of the involvement of NAb in several diseases in mostly humans are shown. Possibilities of intravenous immunoglobulin administration, targeted immunotherapy, immunization, diet, and genetic modulation are discussed, all of which could be well-studied using animal models. Arguments are given why veterinary immunology should obtain inspiration from human studies and why human immunology would benefit from veterinary models. Within the One Health concept, findings from veterinary (and wildlife) studies can be related to human studies and vice versa so that both fields will mutually benefit. This will lead to a better understanding of NAb: their origin, activation mechanisms, and their implications in health and disease, and will lead to novel health management strategies for both human and veterinary species.
Collapse
Affiliation(s)
- G. IJsbrand Reyneveld
- Faculty of Science, VU University, Amsterdam, Netherlands
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University, Wageningen, Netherlands
| | - Huub F. J. Savelkoul
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University, Wageningen, Netherlands
| | - Henk K. Parmentier
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University, Wageningen, Netherlands
| |
Collapse
|
160
|
Magdy Beshbishy A, Hetta HF, Hussein DE, Saati AA, C. Uba C, Rivero-Perez N, Zaragoza-Bastida A, Shah MA, Behl T, Batiha GES. Factors Associated with Increased Morbidity and Mortality of Obese and Overweight COVID-19 Patients. BIOLOGY 2020; 9:E280. [PMID: 32916925 PMCID: PMC7564335 DOI: 10.3390/biology9090280] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/18/2020] [Accepted: 08/18/2020] [Indexed: 01/08/2023]
Abstract
Overweight and obesity are defined as an unnecessary accumulation of fat, which poses a risk to health. It is a well-identified risk factor for increased mortality due to heightened rates of heart disease, certain cancers, musculoskeletal disorders, and bacterial, protozoan and viral infections. The increasing prevalence of obesity is of concern, as conventional pathogenesis may indeed be increased in obese hosts rather than healthy hosts, especially during this COVID-19 pandemic. COVID-19 is a new disease and we do not have the luxury of cumulative data. Obesity activates the development of gene induced hypoxia and adipogenesis in obese animals. Several factors can influence obesity, for example, stress can increase the body weight by allowing people to consume high amounts of food with a higher propensity to consume palatable food. Obesity is a risk factor for the development of immune-mediated and some inflammatory-mediated diseases, including atherosclerosis and psoriasis, leading to a dampened immune response to infectious agents, leading to weaker post-infection impacts. Moreover, the obese host creates a special microenvironment for disease pathogenesis, marked by persistent low-grade inflammation. Therefore, it is advisable to sustain healthy eating habits by increasing the consumption of various plant-based and low-fat foods to protect our bodies and decrease the risk of infectious diseases, especially COVID-19.
Collapse
Affiliation(s)
- Amany Magdy Beshbishy
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-13, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | - Helal F. Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0595, USA
| | - Diaa E. Hussein
- Researcher, Department of Food Hygiene, Agricultural Research Center (ARC), Animal Health Research Institute, Port of Alexandria 26514, Egypt;
| | - Abdullah A. Saati
- Department of Community Medicine & Pilgrims Healthcare, Faculty of Medicine, Umm Al-Qura University Makkah, Mecca 24382, Saudi Arabia;
| | - Christian C. Uba
- Department of Microbiology, Paul University, Awka, Anambra State PMB 6074, Nigeria;
| | - Nallely Rivero-Perez
- Área Académica de Medicina Veterinaria y Zootecnia, Instituto de Ciencias Agropecuaria, Universidad Autónoma del Estado de Hidalgo, Av. Universidad Km 1, Ex-Hda. de Aquetzalpa, Tulancingo 43600, Hgo, Mexico; (N.R.-P.); (A.Z.-B.)
| | - Adrian Zaragoza-Bastida
- Área Académica de Medicina Veterinaria y Zootecnia, Instituto de Ciencias Agropecuaria, Universidad Autónoma del Estado de Hidalgo, Av. Universidad Km 1, Ex-Hda. de Aquetzalpa, Tulancingo 43600, Hgo, Mexico; (N.R.-P.); (A.Z.-B.)
| | - Muhammad Ajmal Shah
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan;
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India;
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| |
Collapse
|
161
|
Corsello A, Pugliese D, Gasbarrini A, Armuzzi A. Diet and Nutrients in Gastrointestinal Chronic Diseases. Nutrients 2020; 12:nu12092693. [PMID: 32899273 PMCID: PMC7551310 DOI: 10.3390/nu12092693] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/27/2020] [Accepted: 09/01/2020] [Indexed: 02/07/2023] Open
Abstract
Diet and nutrition are known to play key roles in many chronic gastrointestinal diseases, regarding both pathogenesis and therapeutic possibilities. A strong correlation between symptomatology, disease activity and eating habits has been observed in many common diseases, both organic and functional, such as inflammatory bowel disease and irritable bowel syndrome. New different dietary approaches have been evaluated in order improve patients’ symptoms, modulating the type of sugars ingested, the daily amount of fats or the kind of metabolites produced in gut. Even if many clinical studies have been conducted to fully understand the impact of nutrition on the progression of disease, more studies are needed to test the most promising approaches for different diseases, in order to define useful guidelines for patients.
Collapse
Affiliation(s)
- Antonio Corsello
- OU Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (D.P.); (A.G.); (A.A.)
- Correspondence: ; Tel.: +39-380-381-0206
| | - Daniela Pugliese
- OU Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (D.P.); (A.G.); (A.A.)
| | - Antonio Gasbarrini
- OU Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (D.P.); (A.G.); (A.A.)
- Istituto di Patologia Speciale Medica, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy
| | - Alessandro Armuzzi
- OU Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (D.P.); (A.G.); (A.A.)
- Istituto di Patologia Speciale Medica, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy
| |
Collapse
|
162
|
Tsigalou C, Vallianou N, Dalamaga M. Autoantibody Production in Obesity: Is There Evidence for a Link Between Obesity and Autoimmunity? Curr Obes Rep 2020; 9:245-254. [PMID: 32632847 DOI: 10.1007/s13679-020-00397-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
PURPOSE OF REVIEW During the last decades, obesity and autoimmune disorders have shown a parallel significant rise in industrialized countries. This review aims at providing a comprehensive update of the relationship between the adipose tissue in obesity and autoimmune disorders, highlighting the underlying mechanisms with a particular emphasis on adipokines and pro-inflammatory cytokines, the impaired B cell activity, and the production of natural and pathogenic autoantibody repertoire in the context of obesity. RECENT FINDINGS Obesity is related to a higher risk of rheumatoid arthritis, psoriasis and psoriatic arthritis, multiple sclerosis, and Hashimoto's thyroiditis, while it may promote inflammatory bowel disorders and type 1 diabetes mellitus. Interestingly, subjects with obesity present more severe forms of these autoimmune disorders as well as decreased therapeutic response. Both obesity and autoimmune disorders present elevated levels of leptin, resistin, and visfatin. Autoantibody production, a hallmark of autoimmune disorders, has been demonstrated in obese animal models and human subjects. Obesity results in deficiencies of the human self-tolerance mechanisms by promoting pro-inflammatory processes, reducing Bregs as well as Tregs, and the latter resulting in increased Th17 and Th1 cells, creating the perfect milieu for the development of autoimmune disorders. More mechanistic, animal, and clinical studies are required to delineate the exact mechanisms underlying auto-reactivity in obesity as well as the adipose-immune crosstalk for potential successful therapeutic strategies.
Collapse
Affiliation(s)
- Christina Tsigalou
- Laboratory of Microbiology, Medical School, Democritus University of Thrace, 6th Km Alexandroupolis-Makri, Alexandroupolis, Greece.
| | - Natalia Vallianou
- Department of Endocrinology, 'Evangelismos' General Hospital of Athens, 45-47 Ypsilantou street, 10676, Athens, Greece
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Goudi, 11527, Athens, Greece
| |
Collapse
|
163
|
Lo CH, Lochhead P, Khalili H, Song M, Tabung FK, Burke KE, Richter JM, Giovannucci EL, Chan AT, Ananthakrishnan AN. Dietary Inflammatory Potential and Risk of Crohn's Disease and Ulcerative Colitis. Gastroenterology 2020; 159:873-883.e1. [PMID: 32389666 PMCID: PMC7502466 DOI: 10.1053/j.gastro.2020.05.011] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 04/29/2020] [Accepted: 05/01/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Inflammation is a potential mechanism through which diet modulates the onset of inflammatory bowel disease. We analyzed data from 3 large prospective cohorts to determine the effects of dietary inflammatory potential on the risk of developing Crohn's disease (CD) and ulcerative colitis (UC). METHODS We collected data from 166,903 women and 41,931 men in the Nurses' Health Study (1984-2014), Nurses' Health Study II (1991-2015), and Health Professionals Follow-up Study (1986-2012). Empirical dietary inflammatory pattern (EDIP) scores were calculated based on the weighted sums of 18 food groups obtained via food frequency questionnaires. Self-reported CD and UC were confirmed by medical record review. Cox proportional hazards models were used to calculate hazard ratios (HRs) and 95% confidence intervals (CIs). RESULTS We documented 328 cases of CD and 428 cases of UC over 4,949,938 person-years of follow-up. The median age at IBD diagnosis was 55 years (range 29-85 years). Compared with participants in the lowest quartile of cumulative average EDIP score, those in the highest quartile (highest dietary inflammatory potential) had a 51% higher risk of CD (HR 1.51; 95% CI 1.10-2.07; Ptrend = .01). Compared with participants with persistently low EDIP scores (at 2 time points, separated by 8 years), those with a shift from a low to high inflammatory potential of diet or persistently consumed a proinflammatory diet had greater risk of CD (HR 2.05; 95% CI 1.10-3.79 and HR 1.77; 95% CI 1.10-2.84). In contrast, dietary inflammatory potential was not associated with the risk of developing UC (Ptrend = .62). CONCLUSIONS In an analysis of 3 large prospective cohorts, we found dietary patterns with high inflammatory potential to be associated with increased risk of CD but not UC.
Collapse
Affiliation(s)
- Chun-Han Lo
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Paul Lochhead
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Hamed Khalili
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Mingyang Song
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Fred K Tabung
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; Department of Internal Medicine, Division of Medical Oncology, The Ohio State University College of Medicine and Comprehensive Cancer Center - James Cancer Hospital and Solove Research Institute, Columbus, Ohio
| | - Kristin E Burke
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - James M Richter
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Edward L Giovannucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Andrew T Chan
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Ashwin N Ananthakrishnan
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
164
|
Gruneck L, Kullawong N, Kespechara K, Popluechai S. Gut microbiota of obese and diabetic Thai subjects and interplay with dietary habits and blood profiles. PeerJ 2020; 8:e9622. [PMID: 32832269 PMCID: PMC7409811 DOI: 10.7717/peerj.9622] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/07/2020] [Indexed: 12/15/2022] Open
Abstract
Obesity and type 2 diabetes mellitus (T2DM) have become major public health issues globally. Recent research indicates that intestinal microbiota play roles in metabolic disorders. Though there are numerous studies focusing on gut microbiota of health and obesity states, those are primarily focused on Western countries. Comparatively, only a few investigations exist on gut microbiota of people from Asian countries. In this study, the fecal microbiota of 30 adult volunteers living in Chiang Rai Province, Thailand were examined using next-generation sequencing (NGS) in association with blood profiles and dietary habits. Subjects were categorized by body mass index (BMI) and health status as follows; lean (L) = 8, overweight (OV) = 8, obese (OB) = 7 and diagnosed T2DM = 7. Members of T2DM group showed differences in dietary consumption and fasting glucose level compared to BMI groups. A low level of high-density cholesterol (HDL) was observed in the OB group. Principal coordinate analysis (PCoA) revealed that microbial communities of T2DM subjects were clearly distinct from those of OB. An analogous pattern was additionally illustrated by multiple factor analysis (MFA) based on dietary habits, blood profiles, and fecal gut microbiota in BMI and T2DM groups. In all four groups, Bacteroidetes and Firmicutes were the predominant phyla. Abundance of Faecalibacterium prausnitzii, a butyrate-producing bacterium, was significantly higher in OB than that in other groups. This study is the first to examine the gut microbiota of adult Thais in association with dietary intake and blood profiles and will provide the platform for future investigations.
Collapse
Affiliation(s)
- Lucsame Gruneck
- School of Science, Mae Fah Luang University, Muang, Chiang Rai, Thailand.,Gut Microbiome Research Group, Mae Fah Luang University, Muang, Chiang Rai, Thailand
| | - Niwed Kullawong
- Gut Microbiome Research Group, Mae Fah Luang University, Muang, Chiang Rai, Thailand.,School of Health Science, Mae Fah Luang University, Muang, Chiang Rai, Thailand
| | | | - Siam Popluechai
- School of Science, Mae Fah Luang University, Muang, Chiang Rai, Thailand.,Gut Microbiome Research Group, Mae Fah Luang University, Muang, Chiang Rai, Thailand
| |
Collapse
|
165
|
High salt diet may promote progression of breast tumor through eliciting immune response. Int Immunopharmacol 2020; 87:106816. [PMID: 32721893 DOI: 10.1016/j.intimp.2020.106816] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 07/05/2020] [Accepted: 07/15/2020] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Dietary patterns are believed to regulate tumor progression by altering the tumor microenvironment. Of note, a high salt diet is a risk factor for various diseases. However, the role of high salt intake in the progression of cancers remains unknown. METHODS We constructed an in vivo high salt diet model in MMTV-PyVT mice with spontaneous tumor-forming properties to explore the role of a high salt diet in the progression of breast cancer as well as the modulation of the tumor microenvironment. Also, in vitro experiments were performed to understand the mechanism. RESULTS High salt diet accelerated the development (P < 0.05) and lung metastasis (P < 0.05) of breast cancer in MMTV-PyVT mice, compared to the normal diet model. Moreover, higher frequency of Th17 cells in circulation, tumor tissue and draining lymph node tissue were observed in the high salt diet model (P < 0.05 for all). In vitro, co-culture with Th17 cells facilitated the proliferation, migration and invasion of MCF-7 human breast cancer cells, while these enhanced aggressive behaviors could be reversed by application of 1,25-vitamin D3 which could inhibit the differentiation of Th17 cells (P < 0.001 for all). In vitro, co-culture with Th17 cells activated MAPK signaling in MCF-7 cells (P < 0.001 for all). Consistently, activated MAPK/ERK signaling was observed by immunohistochemistry in breast cancer cell nodes in the high salt diet model (P < 0.05 for all). Mechanistically, higher level of IL-17F could be detected in breast tumors and serum from the high salt diet model through qRT-PCR and ELISA (P < 0.05 for all). IL-17F treatment facilitated the proliferation, migration and invasion of MCF-7 human breast cancer cells and activated MAPK/ERK signaling in MCF-7 cells (P < 0.001 for all). Moreover, the tumor-promoting function induced by Th17 cells and IL-17F could be inhibited by the administration of ERK inhibitor (sch772894) (P < 0.001 for all). Lastly, high concentration NaCl-induced Th17 cells promoted the proliferation, migration and invasion of MCF-7 human breast cancer cells and activated MAPK/ERK signaling in MCF-7 cells which could be inhibited by neutralizing anti-IL-17F (P < 0.001 for all). CONCLUSION High salt intake accelerates the growth of breast cancer and facilitates lung metastasis, as well as increases the level of Th17 cells. Increased Th17 cells might promote the growth of breast cancer via the secretion of IL-17F to activate the MAPK signaling pathway in breast cancer cells.
Collapse
|
166
|
Adda L, Melhem SA, Pol J. [Fasting reduces inflammation associated with chronic inflammatory diseases without affecting the immune response to acute infections]. Med Sci (Paris) 2020; 36:665-668. [PMID: 32614320 DOI: 10.1051/medsci/2020119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Leslie Adda
- Master 2 Immunologie Translationnelle et Biothérapies, Mention BMC, Sorbonne Université, Paris, France
| | - Sara Abou Melhem
- Master 2 Immunologie Translationnelle et Biothérapies, Mention BMC, Sorbonne Université, Paris, France
| | - Jonathan Pol
- Équipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Inserm U1138, Université de Paris, Sorbonne Université, Paris, France. - Gustave Roussy Cancer Campus, Villejuif, France. - Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| |
Collapse
|
167
|
Petrakis D, Margină D, Tsarouhas K, Tekos F, Stan M, Nikitovic D, Kouretas D, Spandidos DA, Tsatsakis A. Obesity ‑ a risk factor for increased COVID‑19 prevalence, severity and lethality (Review). Mol Med Rep 2020; 22:9-19. [PMID: 32377709 PMCID: PMC7248467 DOI: 10.3892/mmr.2020.11127] [Citation(s) in RCA: 230] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/05/2020] [Indexed: 02/07/2023] Open
Abstract
Coronaviruses (CoVs), enveloped positive-sense RNA viruses, are a group of viruses that cause infections in the human respiratory tract, which can be characterized clinically from mild to fatal. The severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) is the virus responsible. The global spread of COVID‑19 can be described as the worst pandemic in humanity in the last century. To date, COVID‑19 has infected more than 3,000,000 people worldwide and killed more than 200,000 people. All age groups can be infected from the virus, but more serious symptoms that can possibly result in death are observed in older people and those with underlying medical conditions such as cardiovascular and pulmonary disease. Novel data report more severe symptoms and even a negative prognosis for the obese patients. A growing body of evidence connects obesity with COVID‑19 and a number of mechanisms from immune system activity attenuation to chronic inflammation are implicated. Lipid peroxidation creates reactive lipid aldehydes which in a patient with metabolic disorder and COVID‑19 will affect its prognosis. Finally, pregnancy‑associated obesity needs to be studied further in connection to COVID‑19 as this infection could pose high risk both to pregnant women and the fetus.
Collapse
Affiliation(s)
- Demetrios Petrakis
- Laboratory of Toxicology, Medical School, University of Crete, 71409 Heraklion, Greece
| | - Denisa Margină
- ‘Carol Davila’ University of Medicine and Pharmacy, Faculty of Pharmacy, Department of Biochemistry, 020956 Bucharest, Romania
| | | | - Fotios Tekos
- Department of Biochemistry-Biotechnology, University of Thessaly, 41500 Larissa, Greece
| | - Miriana Stan
- ‘Carol Davila’ University of Medicine and Pharmacy, Faculty of Pharmacy, Department of Toxicology, 020956 Bucharest, Romania
| | - Dragana Nikitovic
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Demetrios Kouretas
- Department of Biochemistry-Biotechnology, University of Thessaly, 41500 Larissa, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71110 Heraklion, Greece
| | - Aristidis Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, 71409 Heraklion, Greece
| |
Collapse
|
168
|
Margină D, Ungurianu A, Purdel C, Tsoukalas D, Sarandi E, Thanasoula M, Tekos F, Mesnage R, Kouretas D, Tsatsakis A. Chronic Inflammation in the Context of Everyday Life: Dietary Changes as Mitigating Factors. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E4135. [PMID: 32531935 PMCID: PMC7312944 DOI: 10.3390/ijerph17114135] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 02/07/2023]
Abstract
The lifestyle adopted by most people in Western societies has an important impact on the propensity to metabolic disorders (e.g., diabetes, cancer, cardiovascular disease, neurodegenerative diseases). This is often accompanied by chronic low-grade inflammation, driven by the activation of various molecular pathways such as STAT3 (signal transducer and activator of transcription 3), IKK (IκB kinase), MMP9 (matrix metallopeptidase 9), MAPK (mitogen-activated protein kinases), COX2 (cyclooxigenase 2), and NF-Kβ (nuclear factor kappa-light-chain-enhancer of activated B cells). Multiple intervention studies have demonstrated that lifestyle changes can lead to reduced inflammation and improved health. This can be linked to the concept of real-life risk simulation, since humans are continuously exposed to dietary factors in small doses and complex combinations (e.g., polyphenols, fibers, polyunsaturated fatty acids, etc.). Inflammation biomarkers improve in patients who consume a certain amount of fiber per day; some even losing weight. Fasting in combination with calorie restriction modulates molecular mechanisms such as m-TOR, FOXO, NRF2, AMPK, and sirtuins, ultimately leads to significantly reduced inflammatory marker levels, as well as improved metabolic markers. Moving toward healthier dietary habits at the individual level and in publicly-funded institutions, such as schools or hospitals, could help improving public health, reducing healthcare costs and improving community resilience to epidemics (such as COVID-19), which predominantly affects individuals with metabolic diseases.
Collapse
Affiliation(s)
- Denisa Margină
- Department of Biochemistry, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania
| | - Anca Ungurianu
- Department of Biochemistry, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania
| | - Carmen Purdel
- Department of Toxicology, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania
| | - Dimitris Tsoukalas
- European Institute of Nutritional Medicine EINuM, 00198 Rome , Italy
- Metabolomic Medicine Clinic, Health Clinics for Autoimmune and Chronic Diseases, 10674 Athens, Greece
| | - Evangelia Sarandi
- Metabolomic Medicine Clinic, Health Clinics for Autoimmune and Chronic Diseases, 10674 Athens, Greece
- Laboratory of Toxicology and Forensic Sciences, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Maria Thanasoula
- Metabolomic Medicine Clinic, Health Clinics for Autoimmune and Chronic Diseases, 10674 Athens, Greece
| | - Fotios Tekos
- Department of Biochemistry-Biotechnology, School of Health Sciences, 41500 Larisa, Greece
| | - Robin Mesnage
- Gene Expression and Therapy Group, King's College London, Faculty of Life Sciences and Medicine, Department of Medical and Molecular Genetics, 8th Floor, Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | - Demetrios Kouretas
- Department of Biochemistry-Biotechnology, School of Health Sciences, 41500 Larisa, Greece
| | - Aristidis Tsatsakis
- Department Forensic Sciences and Toxicology, University of Crete, Faculty of Medicine, 71003 Heraklion, Greece
| |
Collapse
|
169
|
Marcelissen T, Anding R, Averbeck M, Hanna-Mitchell A, Rahnama'i S, Cardozo L. Exploring the relation between obesity and urinary incontinence: Pathophysiology, clinical implications, and the effect of weight reduction, ICI-RS 2018. Neurourol Urodyn 2020; 38 Suppl 5:S18-S24. [PMID: 31821633 DOI: 10.1002/nau.24072] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/19/2019] [Accepted: 05/27/2019] [Indexed: 01/10/2023]
Abstract
AIMS To evaluate the relationship between obesity and urinary incontinence (UI) and to determine the effect of weight reduction on the severity of incontinence. METHODS This is a consensus report of the proceedings of a Research Proposal from the annual International Consultation on Incontinence-Research Society, 14 June to 16 June, 2018 (Bristol, UK): "What are the relationships between obesity and UI, and the effects of successful bariatric surgery?" RESULTS Obesity is an increasing problem worldwide and is associated with many adverse effects on health and quality of life. From both translational and clinical studies, there is a strong relationship between obesity and the occurrence of UI. Both mechanical and metabolic factors seem to play an important role including systemic inflammation and oxidative stress due to the release of cytokines in visceral adipose tissue. The success rate of anti-incontinence surgery does not seem to be greatly affected by body mass index (BMI), although reliable data and long-term follow-up are currently lacking. Both weight reduction programs and bariatric surgery can result in amelioration of UI. Various studies have shown that weight loss (particularly that associated with bariatric surgery) can reduce incontinence, and the degree of weight loss is positively correlated with improvement in symptoms. CONCLUSIONS Obesity is strongly associated with an increased prevalence of both stress and urgency UI. The treatment outcome does not seem to be highly dependent on BMI. Weight reduction is positively correlated with improvement of incontinence symptoms and therefore should be advocated in the management.
Collapse
Affiliation(s)
- Tom Marcelissen
- Department of Urology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Ralf Anding
- Department of Neurourology, University Hospital Bonn, Bonn, Germany
| | - Marcio Averbeck
- Department of Urology, Moinhos de Vento Hospital, Porto Alegre, Brazil
| | | | | | - Linda Cardozo
- Department of Urogynaecology, King's College Hospital, London, UK
| |
Collapse
|
170
|
Impact of environmental factors and physical activity on disability and quality of life in CIDP. J Neurol 2020; 267:2683-2691. [DOI: 10.1007/s00415-020-09916-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 01/06/2023]
|
171
|
Gioia C, Lucchino B, Tarsitano MG, Iannuccelli C, Di Franco M. Dietary Habits and Nutrition in Rheumatoid Arthritis: Can Diet Influence Disease Development and Clinical Manifestations? Nutrients 2020; 12:nu12051456. [PMID: 32443535 PMCID: PMC7284442 DOI: 10.3390/nu12051456] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/14/2020] [Accepted: 05/14/2020] [Indexed: 12/14/2022] Open
Abstract
Rheumatoid arthritis (RA) is a systemic, autoimmune disease characterized by joint involvement, with progressive cartilage and bone destruction. Genetic and environmental factors determine RA susceptibility. In recent years, an increasing number of studies suggested that diet has a central role in disease risk and progression. Several nutrients, such as polyunsaturated fatty acids, present anti-inflammatory and antioxidant properties, featuring a protective role for RA development, while others such as red meat and salt have a harmful effect. Gut microbiota alteration and body composition modifications are indirect mechanisms of how diet influences RA onset and progression. Possible protective effects of some dietary patterns and supplements, such as the Mediterranean Diet (MD), vitamin D and probiotics, could be a possible future adjunctive therapy to standard RA treatment. Therefore, a healthy lifestyle and nutrition have to be encouraged in patients with RA.
Collapse
Affiliation(s)
- Chiara Gioia
- Dipartimento di Scienze Cliniche, Internistiche, Anestesiologiche e Cardiovascolari-Reumatologia, Sapienza University of Rome, 00161 Roma, Italy; (C.G.); (C.I.); (M.D.F.)
| | - Bruno Lucchino
- Dipartimento di Scienze Cliniche, Internistiche, Anestesiologiche e Cardiovascolari-Reumatologia, Sapienza University of Rome, 00161 Roma, Italy; (C.G.); (C.I.); (M.D.F.)
- Correspondence: ; Tel.: +39-06-4997-4635
| | | | - Cristina Iannuccelli
- Dipartimento di Scienze Cliniche, Internistiche, Anestesiologiche e Cardiovascolari-Reumatologia, Sapienza University of Rome, 00161 Roma, Italy; (C.G.); (C.I.); (M.D.F.)
| | - Manuela Di Franco
- Dipartimento di Scienze Cliniche, Internistiche, Anestesiologiche e Cardiovascolari-Reumatologia, Sapienza University of Rome, 00161 Roma, Italy; (C.G.); (C.I.); (M.D.F.)
| |
Collapse
|
172
|
Jordan S, Tung N, Casanova-Acebes M, Chang C, Cantoni C, Zhang D, Wirtz TH, Naik S, Rose SA, Brocker CN, Gainullina A, Hornburg D, Horng S, Maier BB, Cravedi P, LeRoith D, Gonzalez FJ, Meissner F, Ochando J, Rahman A, Chipuk JE, Artyomov MN, Frenette PS, Piccio L, Berres ML, Gallagher EJ, Merad M. Dietary Intake Regulates the Circulating Inflammatory Monocyte Pool. Cell 2020; 178:1102-1114.e17. [PMID: 31442403 DOI: 10.1016/j.cell.2019.07.050] [Citation(s) in RCA: 293] [Impact Index Per Article: 58.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/02/2019] [Accepted: 07/29/2019] [Indexed: 02/07/2023]
Abstract
Caloric restriction is known to improve inflammatory and autoimmune diseases. However, the mechanisms by which reduced caloric intake modulates inflammation are poorly understood. Here we show that short-term fasting reduced monocyte metabolic and inflammatory activity and drastically reduced the number of circulating monocytes. Regulation of peripheral monocyte numbers was dependent on dietary glucose and protein levels. Specifically, we found that activation of the low-energy sensor 5'-AMP-activated protein kinase (AMPK) in hepatocytes and suppression of systemic CCL2 production by peroxisome proliferator-activator receptor alpha (PPARα) reduced monocyte mobilization from the bone marrow. Importantly, we show that fasting improves chronic inflammatory diseases without compromising monocyte emergency mobilization during acute infectious inflammation and tissue repair. These results reveal that caloric intake and liver energy sensors dictate the blood and tissue immune tone and link dietary habits to inflammatory disease outcome.
Collapse
Affiliation(s)
- Stefan Jordan
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA; The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA.
| | - Navpreet Tung
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA; The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Maria Casanova-Acebes
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA; The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Christie Chang
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA; The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Claudia Cantoni
- Department of Neurology, Washington University School of Medicine, 660 S Euclid Avenue, St. Louis, MO 63110, USA
| | - Dachuan Zhang
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Department of Cell Biology, Albert Einstein College of Medicine, 1301 Morris Park Avenue, The Bronx, NY 10461, USA
| | - Theresa H Wirtz
- Department of Internal Medicine III, University Hospital, RWTH Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Shruti Naik
- Department of Pathology, and Ronald O. Perelman Department of Dermatology, NYU School of Medicine, 240 East 38(th) Street, New York, NY 10016, USA
| | - Samuel A Rose
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Chad N Brocker
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 37, Bethesda, MD 20892, USA
| | - Anastasiia Gainullina
- Department of Pathology & Immunology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA; Computer Technologies Department, ITMO University, Kronverksky 49, Saint Petersburg, Russian Federation
| | - Daniel Hornburg
- Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Sam Horng
- Department of Neurology and Neuroscience, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Barbara B Maier
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA; The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Paolo Cravedi
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Derek LeRoith
- Division of Endocrinology, Diabetes and Bone Diseases, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 37, Bethesda, MD 20892, USA
| | - Felix Meissner
- Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Jordi Ochando
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Adeeb Rahman
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA; Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Jerry E Chipuk
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Maxim N Artyomov
- Department of Pathology & Immunology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Paul S Frenette
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Department of Cell Biology, Albert Einstein College of Medicine, 1301 Morris Park Avenue, The Bronx, NY 10461, USA
| | - Laura Piccio
- Department of Neurology, Washington University School of Medicine, 660 S Euclid Avenue, St. Louis, MO 63110, USA; Brain and Mind Centre, University of Sydney, 94 Mallett Street, Camperdown NSW 2050, Australia
| | - Marie-Luise Berres
- Department of Internal Medicine III, University Hospital, RWTH Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Emily J Gallagher
- Division of Endocrinology, Diabetes and Bone Diseases, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Miriam Merad
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA; The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA.
| |
Collapse
|
173
|
Coia H, Ma N, Hou Y, Permaul E, Berry DL, Cruz MI, Pannkuk E, Girgis M, Zhu Z, Lee Y, Rodriquez O, Cheema A, Chung FL. Theaphenon E prevents fatty liver disease and increases CD4+ T cell survival in mice fed a high-fat diet. Clin Nutr 2020; 40:110-119. [PMID: 32439267 DOI: 10.1016/j.clnu.2020.04.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/06/2020] [Accepted: 04/24/2020] [Indexed: 01/07/2023]
Abstract
BACKGROUND & AIMS Obesity is a major cause of non-alcoholic fatty liver disease (NAFLD). NAFLD is an epidemic affecting nearly 34% of the adult population in the US. As a chronic inflammatory disease, NAFLD influences the immune system by dysregulating T-cell activity. Remedies for the adverse effects on the immune system are urgently needed. We studied Theaphenon E (TE), a standardized formulation of green tea extract, on the adverse effects of NAFLD in C57BL/6J mice fed a high fat diet (HFD). METHODS Mice received HFD, low fat diet (LFD) or HFD+2% TE for 35 weeks. Hepatic lipid accumulation, cell proliferation, apoptosis and CD4+T lymphocytes were measured throughout the bioassay. The hepatic composition of fatty acids was determined. The effects of epigallocatechin gallate (EGCG) metabolites on lipid accumulation in mouse and primary human liver cells were studied. RESULTS Unlike mice receiving HFD, mice on HFD+2% TE maintained normal liver to body weight ratios with low levels of alanine and aspartate aminotransferase (ALT and AST). Hepatic lipid accumulation was observed in HFD mice, accompanied by increased proliferation, reduced apoptosis and loss of CD4+ T lymphocytes. TE significantly inhibited lipid accumulation, decreased proliferation, induced apoptosis and increased CD4+ T cell survival in HFD mice. It was found that the EGCG metabolite EGC-M3 reduced lipid accumulation in mouse and human hepatocytes. Linoleic acid showed the largest increase (2.5-fold) in livers of mice on a HFD and this increase was significantly suppressed by TE. CONCLUSIONS Livers of HFD-fed mice showed lipid accumulation, increased proliferation, reduced apoptosis, elevated linoleic acid and loss of CD4+ T cells. TE effectively ameliorated all of these adverse effects.
Collapse
Affiliation(s)
- Heidi Coia
- Department of Biochemistry & Molecular Biology, Georgetown University Medical Center, Washington, DC 20057, USA.
| | - Ning Ma
- Department of Biochemistry & Molecular Biology, Georgetown University Medical Center, Washington, DC 20057, USA.
| | - Yanqi Hou
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA.
| | - Eva Permaul
- Department of Pathology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA.
| | - Deborah L Berry
- Department of Pathology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA.
| | - M Idalia Cruz
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA.
| | - Evan Pannkuk
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA.
| | - Michael Girgis
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA.
| | - Zizhao Zhu
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA.
| | - Yichen Lee
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA.
| | - Olga Rodriquez
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA.
| | - Amrita Cheema
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA.
| | - Fung-Lung Chung
- Department of Biochemistry & Molecular Biology, Georgetown University Medical Center, Washington, DC 20057, USA; Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA.
| |
Collapse
|
174
|
Monda V, Polito R, Lovino A, Finaldi A, Valenzano A, Nigro E, Corso G, Sessa F, Asmundo A, Di Nunno N, Cibelli G, Messina G. Short-Term Physiological Effects of a Very Low-Calorie Ketogenic Diet: Effects on Adiponectin Levels and Inflammatory States. Int J Mol Sci 2020; 21:3228. [PMID: 32370212 PMCID: PMC7246656 DOI: 10.3390/ijms21093228] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 12/15/2022] Open
Abstract
Adipose tissue is a multifunctional organ involved in many physiological and metabolic processes through the production of adipokines and, in particular, adiponectin. Caloric restriction is one of the most important strategies against obesity today. The very low-calorie ketogenic diet (VLCKD) represents a type of caloric restriction with very or extremely low daily food energy consumption. This study aimed to investigate the physiological effects of a VLCKD on anthropometric and biochemical parameters such as adiponectin levels, as well as analyzing oligomeric profiles and cytokine serum levels in obese subjects before and after a VLCKD. Twenty obese subjects were enrolled. At baseline and after eight weeks of intervention, anthropometric and biochemical parameters, such as adiponectin levels, were recorded. Our findings showed a significant change in the anthropometric and biochemical parameters of these obese subjects before and after a VLCKD. We found a negative correlation between adiponectin and lipid profile, visceral adipose tissue (VAT), C-reactive protein (CRP), and pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α), which confirmed the important involvement of adiponectin in metabolic and inflammatory diseases. We demonstrated the beneficial short-term effects of a VLCKD not only in the treatment of obesity but also in the establishment of obesity-correlated diseases.
Collapse
Affiliation(s)
- Vincenzo Monda
- Dipartimento di Medicina Sperimentale, Sezione di Fisiologia Umana e Unità di Dietetica e Medicina dello Sport, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Rita Polito
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche Farmaceutiche, Università della Campania (Luigi Vanvitelli), 81100 Caserta, Italy; (R.P.); (E.N.)
- Dipartimento di Medicina Clinica e Sperimentale, Università di Foggia, 71100 Foggia, Italy; (A.L.); (A.F.); (A.V.); (G.C.); (F.S.); (G.C.)
| | - Annarita Lovino
- Dipartimento di Medicina Clinica e Sperimentale, Università di Foggia, 71100 Foggia, Italy; (A.L.); (A.F.); (A.V.); (G.C.); (F.S.); (G.C.)
| | - Antonio Finaldi
- Dipartimento di Medicina Clinica e Sperimentale, Università di Foggia, 71100 Foggia, Italy; (A.L.); (A.F.); (A.V.); (G.C.); (F.S.); (G.C.)
| | - Anna Valenzano
- Dipartimento di Medicina Clinica e Sperimentale, Università di Foggia, 71100 Foggia, Italy; (A.L.); (A.F.); (A.V.); (G.C.); (F.S.); (G.C.)
| | - Ersilia Nigro
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche Farmaceutiche, Università della Campania (Luigi Vanvitelli), 81100 Caserta, Italy; (R.P.); (E.N.)
| | - Gaetano Corso
- Dipartimento di Medicina Clinica e Sperimentale, Università di Foggia, 71100 Foggia, Italy; (A.L.); (A.F.); (A.V.); (G.C.); (F.S.); (G.C.)
| | - Francesco Sessa
- Dipartimento di Medicina Clinica e Sperimentale, Università di Foggia, 71100 Foggia, Italy; (A.L.); (A.F.); (A.V.); (G.C.); (F.S.); (G.C.)
| | - Alessio Asmundo
- Dipartimento di Scienze biomediche, odontoiatriche e delle immagini morfologiche e funzionali, sezione di Medicina Legale, Università di Messina, 98122 Messina, Italy;
| | | | - Giuseppe Cibelli
- Dipartimento di Medicina Clinica e Sperimentale, Università di Foggia, 71100 Foggia, Italy; (A.L.); (A.F.); (A.V.); (G.C.); (F.S.); (G.C.)
| | - Giovanni Messina
- Dipartimento di Medicina Clinica e Sperimentale, Università di Foggia, 71100 Foggia, Italy; (A.L.); (A.F.); (A.V.); (G.C.); (F.S.); (G.C.)
| |
Collapse
|
175
|
Zhang S, Wang L, Li M, Zhang F, Zeng X. The PD-1/PD-L pathway in rheumatic diseases. J Formos Med Assoc 2020; 120:48-59. [PMID: 32334916 DOI: 10.1016/j.jfma.2020.04.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND/PURPOSE Autoimmune diseases are diseases in which the body produces an abnormal immune response to self-antigens and damages its own tissues. Programmed death-1 (PD-1) and its ligands (PD-Ls) have been discovered to be important negative regulators of the immune system, playing crucial roles in autoimmunity. METHODS We analyzed the existing scientific literature dealing with this issue. In this review, the PD-1/PD-L pathway in the genetic susceptibility to and pathogenesis of rheumatic diseases is discussed. The PD-1/PD-L pathway might be helpful for diagnosing, evaluating the disease activity of and treating rheumatic diseases. RESULTS PD-1/PD-L gene polymorphisms are associated with a genetic predisposition to rheumatic disorders, which can provide reference information for diagnosis and disease activity. The conclusion of the crucial role of the PD-1/PD-L pathway in the pathogenesis of rheumatic diseases is consistent, but the details remain controversial. In some animal models, manipulating the PD-1/PD-L pathway could decrease disease severity. PD-1/PD-Ls may enable us to develop new therapeutics for patients with rheumatic diseases in the future. CONCLUSION The PD-1/PD-L pathway plays crucial roles in rheumatic disease. More work is needed to provide a better mechanistic understanding of the PD-1/PD-L pathway and to facilitate the precise therapeutic manipulation of this pathway.
Collapse
Affiliation(s)
- Shuo Zhang
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Li Wang
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Mengtao Li
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Fengchun Zhang
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xiaofeng Zeng
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| |
Collapse
|
176
|
Stathopoulou C, Nikoleri D, Bertsias G. Immunometabolism: an overview and therapeutic prospects in autoimmune diseases. Immunotherapy 2020; 11:813-829. [PMID: 31120393 DOI: 10.2217/imt-2019-0002] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Metabolism is a critical immune regulator under physiologic and pathologic conditions. Culminating evidence has disentangled the contribution of distinct metabolic pathways, namely glucolysis, pentose phosphate, fatty acid oxidation, glutaminolysis, Krebs cycle and oxidative phosphorylation, in modulating innate and adaptive immune cells based on their activation/differentiation state. Metabolic aberrations and changes in the intracellular levels of specific metabolites are linked to the inflammatory phenotype of immune cells implicated in autoimmune disorders such as systemic lupus erythematosus, rheumatoid arthritis, multiple sclerosis and diabetes. Notably, targeting metabolism such as the mTOR by rapamycin, hexokinase by 2-deoxy-D-glucose, AMP-activated protein kinase by metformin, may be used to ameliorate autoimmune inflammation. Accordingly, research in immunometabolism is expected to offer novel opportunities for monitoring and treating immune-mediated diseases.
Collapse
Affiliation(s)
- Chrysoula Stathopoulou
- Department of Rheumatology, Clinical Immunology & Allergy, University Hospital of Heraklion, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece.,Laboratory of Rheumatology, Autoimmunity & Inflammation, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece.,Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, N. Plastira 100, 70013 Heraklion, Greece
| | - Dimitra Nikoleri
- Department of Rheumatology, Clinical Immunology & Allergy, University Hospital of Heraklion, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece.,Laboratory of Rheumatology, Autoimmunity & Inflammation, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece.,Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, N. Plastira 100, 70013 Heraklion, Greece
| | - George Bertsias
- Department of Rheumatology, Clinical Immunology & Allergy, University Hospital of Heraklion, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece.,Laboratory of Rheumatology, Autoimmunity & Inflammation, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece.,Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, N. Plastira 100, 70013 Heraklion, Greece
| |
Collapse
|
177
|
Dietary Intake of Free Sugars is Associated with Disease Activity and Dyslipidemia in Systemic Lupus Erythematosus Patients. Nutrients 2020; 12:nu12041094. [PMID: 32326626 PMCID: PMC7231002 DOI: 10.3390/nu12041094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/10/2020] [Accepted: 04/13/2020] [Indexed: 12/18/2022] Open
Abstract
Diet has been closely associated with inflammatory autoimmune diseases, including systemic lupus erythematosus (SLE). Importantly, the consumption of dietary sugars has been positively linked to elevated levels of some inflammation markers, but the potential role of their consumption on the prognosis of autoimmune diseases has not yet been examined. The aim of this study was to evaluate the association between the dietary intake of free sugars and clinical parameters and cardiovascular (CVD) risk markers in patients with SLE. A cross-sectional study including a total of 193 patients with SLE (aged 48.25 ± 12.54 years) was conducted. The SLE Disease Activity Index (SLEDAI-2K) and the SDI Damage Index were used to asses disease activity and disease-related damage, respectively. Levels of C-reactive protein (CRP; mg/dL), homocysteine (Hcy; µmol/L), anti-double stranded DNA antibodies (anti-dsDNA) (IU/mL), complement C3 (mg/dL), and complement C4 (mg/dL), among other biochemical markers, were measured. The main factors we considered as risk factors for CVD were obesity, diabetes mellitus, hypertension, and blood lipids. The dietary-intrinsic sugar and added-sugar content participants consumed were obtained via a 24-h patient diary. Significant differences were observed in dietary sugar intake between patients with active and inactive SLE (in grams: 28.31 ± 24.43 vs. 38.71 ± 28.87; p = 0.035) and free sugar intake (as a percentage: 6.36 ± 4.82 vs. 8.60 ± 5.51; p = 0.020). Linear regression analysis revealed a significant association between free sugars intake (by gram or percentage) and the number of complications (β (95% CI) = 0.009 (0.001, 0.0018), p = 0.033)); (β (95% CI) = 0.046 (0.008, 0.084), p = 0.018)), and SLEDAI (β (95% CI) = 0.017 (0.001, 0.034), p = 0.043)); (β (95% CI) = 0.086 (0.011, 0.161), p = 0.024)) after adjusting for covariates. Free sugars (g and %) were also associated with the presence of dyslipidaemia (β (95% CI) = −0.003 (−0.005, 0.000), p = 0.024)) and (β (95% CI) = −0.015 (−0.028, −0.002), p = 0.021)). Our findings suggest that a higher consumption of free sugars might negatively impact the activity and complications of SLE. However, future longitudinal research on SLE patients, including dietary intervention trials, are necessary to corroborate these preliminary data.
Collapse
|
178
|
Myhill LJ, Stolzenbach S, Mejer H, Jakobsen SR, Hansen TVA, Andersen D, Brix S, Hansen LH, Krych L, Nielsen DS, Nejsum P, Thamsborg SM, Williams AR. Fermentable Dietary Fiber Promotes Helminth Infection and Exacerbates Host Inflammatory Responses. THE JOURNAL OF IMMUNOLOGY 2020; 204:3042-3055. [PMID: 32284331 DOI: 10.4049/jimmunol.1901149] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 03/24/2020] [Indexed: 01/01/2023]
Abstract
Fermentable dietary fibers promote the growth of beneficial bacteria, can enhance mucosal barrier integrity, and reduce chronic inflammation. However, effects on intestinal type 2 immune function remain unclear. In this study, we used the murine whipworm Trichuris muris to investigate the effect of the fermentable fiber inulin on host responses to infection regimes that promote distinct Th1 and Th2 responses in C57BL/6 mice. In uninfected mice, dietary inulin stimulated the growth of beneficial bacteria, such as Bifidobacterium (Actinobacteria) and Akkermansia (Verrucomicrobia). Despite this, inulin prevented worm expulsion in normally resistant mice, instead resulting in chronic infection, whereas mice fed an equivalent amount of nonfermentable fiber (cellulose) expelled worms normally. Lack of expulsion in the mice fed inulin was accompanied by a significantly Th1-skewed immune profile characterized by increased T-bet+ T cells and IFN-γ production in mesenteric lymph nodes, increased expression of Ido1 in the cecum, and a complete absence of mast cell and IgE production. Furthermore, the combination of dietary inulin and high-dose T. muris infection caused marked dysbiosis, with expansion of the Firmicutes and Proteobacteria phyla, near elimination of Bacteroidetes, and marked reductions in cecal short-chain fatty acids. Neutralization of IFN-γ during infection abrogated Ido1 expression and was sufficient to restore IgE production and worm expulsion in inulin-fed mice. Our results indicate that, whereas inulin promoted gut health in otherwise healthy mice, during T. muris infection, it exacerbated inflammatory responses and dysbiosis. Thus, the positive effects of fermentable fiber on gut inflammation appear to be context dependent, revealing a novel interaction between diet and infection.
Collapse
Affiliation(s)
- Laura J Myhill
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C DK-1870, Denmark;
| | - Sophie Stolzenbach
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C DK-1870, Denmark
| | - Helena Mejer
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C DK-1870, Denmark
| | - Simon R Jakobsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C DK-1870, Denmark
| | - Tina V A Hansen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C DK-1870, Denmark
| | - Daniel Andersen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby DK-2800, Denmark
| | - Susanne Brix
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby DK-2800, Denmark
| | - Lars H Hansen
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg C DK-1871, Denmark
| | - Lukasz Krych
- Department of Food Sciences, Faculty of Science, University of Copenhagen, Frederiksberg C DK-1958, Denmark; and
| | - Dennis S Nielsen
- Department of Food Sciences, Faculty of Science, University of Copenhagen, Frederiksberg C DK-1958, Denmark; and
| | - Peter Nejsum
- Department of Clinical Medicine, Aarhus University, Aarhus DK-8200, Denmark
| | - Stig M Thamsborg
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C DK-1870, Denmark
| | - Andrew R Williams
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C DK-1870, Denmark;
| |
Collapse
|
179
|
Aussem A, Ludwig K. The Potential for Reducing Lynch Syndrome Cancer Risk with Nutritional Nrf2 Activators. Nutr Cancer 2020; 73:404-419. [PMID: 32281399 DOI: 10.1080/01635581.2020.1751215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Lynch syndrome (LS), is an autosomal dominant disorder predisposing patients to multiple cancers, predominantly colorectal (CRC) and endometrial, and is implicated in 2-4% of all CRC cases. LS is characterized by mutations of four mismatch repair (MMR) genes which code for proteins responsible for recognizing and repairing DNA lesions occurring through multiple mechanisms including oxidative stress (OS). Increased OS can cause DNA mutations and is considered carcinogenic. Due to reduced MMR activity, LS patients have an increased risk of cancer as a result of a decreased ability to recognize and repair DNA lesions caused by OS. Due to its carcinogenic properties, reducing the level of OS may reduce the risk of cancer. Nutritional Nrf2 activators have been shown to reduce the risk of carcinogenesis in the general population through activation of the endogenous antioxidant system. Common nutritional Nrf2 activators include sulforaphane, curcumin, DATS, quercetin, resveratrol, and EGCG. Since LS patients are more susceptible to carcinogenesis caused by OS, it is hypothesized that nutritional Nrf2 activators may have the potential to reduce the risk of cancer in those with LS by modulating OS and inflammation. The purpose of this paper is to review the available evidence in support of this statement.
Collapse
Affiliation(s)
- Andrew Aussem
- Hawthorn University, Whitethorn, California, USA.,McMaster University, Hamilton, Canada
| | - Kirsten Ludwig
- Hawthorn University, Whitethorn, California, USA.,Semel Institute for Neuroscience and Behaviour, University of California, Los Angeles, California, USA
| |
Collapse
|
180
|
Pakiet A, Jakubiak A, Mierzejewska P, Zwara A, Liakh I, Sledzinski T, Mika A. The Effect of a High-Fat Diet on the Fatty Acid Composition in the Hearts of Mice. Nutrients 2020; 12:nu12030824. [PMID: 32245049 PMCID: PMC7146498 DOI: 10.3390/nu12030824] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 12/11/2022] Open
Abstract
The Western diet can lead to alterations in cardiac function and increase cardiovascular risk, which can be reproduced in animal models by implementing a high-fat diet (HFD). However, the mechanism of these alterations is not fully understood and may be dependent on alterations in heart lipid composition. The aim of this study was to evaluate the effect of an HFD on the fatty acid (FA) composition of total lipids, as well as of various lipid fractions in the heart, and on heart function. C57BL/6 mice were fed an HFD or standard laboratory diet. The FA composition of chow, serum, heart and skeletal muscle tissues was measured by gas chromatography–mass spectrometry. Cardiac function was evaluated by ultrasonography. Our results showed an unexpected increase in polyunsaturated FAs (PUFAs) and a significant decrease in monounsaturated FAs (MUFAs) in the heart tissue of mice fed the HFD. For comparison, no such effects were observed in skeletal muscle or serum samples. Furthermore, we found that the largest increase in PUFAs was in the sphingolipid fraction, whereas the largest decrease in MUFAs was in the phospholipid and sphingomyelin fractions. The hearts of mice fed an HFD had an increased content of triacylglycerols. Moreover, the HFD treatment altered aortic flow pattern. We did not find significant changes in heart mass or oxidative stress markers between mice fed the HFD and standard diet. The above results suggest that alterations in FA composition in the heart may contribute to deterioration of heart function. A possible mechanism of this phenomenon is the alteration of sphingolipids and phospholipids in the fatty acid profile, which may change the physical properties of these lipids. Since phospho- and sphingolipids are the major components of cell membranes, alterations in their structures in heart cells can result in changes in cell membrane properties.
Collapse
Affiliation(s)
- Alicja Pakiet
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland; (A.P.); (A.Z.)
| | - Agnieszka Jakubiak
- Tri-City Academic Laboratory Animal Centre - Research & Services Centre, Medical University of Gdansk, 80-210 Gdansk, Poland;
| | - Paulina Mierzejewska
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland;
| | - Agata Zwara
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland; (A.P.); (A.Z.)
| | - Ivan Liakh
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland; (I.L.); (T.S.)
| | - Tomasz Sledzinski
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland; (I.L.); (T.S.)
| | - Adriana Mika
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland; (A.P.); (A.Z.)
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland; (I.L.); (T.S.)
- Correspondence: ; Tel.: +48-585-230-810
| |
Collapse
|
181
|
Arroyo Hornero R, Hamad I, Côrte-Real B, Kleinewietfeld M. The Impact of Dietary Components on Regulatory T Cells and Disease. Front Immunol 2020; 11:253. [PMID: 32153577 PMCID: PMC7047770 DOI: 10.3389/fimmu.2020.00253] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 01/30/2020] [Indexed: 12/13/2022] Open
Abstract
The rise in the prevalence of autoimmune diseases in developed societies has been associated with a change in lifestyle patterns. Among other factors, increased consumption of certain dietary components, such as table salt and fatty acids and excessive caloric intake has been associated with defective immunological tolerance. Dietary nutrients have shown to modulate the immune response by a direct effect on the function of immune cells or, indirectly, by acting on the microbiome of the gastrointestinal tract. FOXP3+ regulatory T cells (Tregs) suppress immune responses and are critical for maintaining peripheral tolerance and immune homeostasis, modulating chronic tissue inflammation and autoimmune disease. It is now well-recognized that Tregs show certain degree of plasticity and can gain effector functions to adapt their regulatory function to different physiological situations during an immune response. However, plasticity of Tregs might also result in conversion into effector T cells that may contribute to autoimmune pathogenesis. Yet, which environmental cues regulate Treg plasticity and function is currently poorly understood, but it is of significant importance for therapeutic purposes. Here we review the current understanding on the effect of certain dietary nutrients that characterize Western diets in Treg metabolism, stability, and function. Moreover, we will discuss the role of Tregs linking diet and autoimmunity and the potential of dietary-based interventions to modulate Treg function in disease.
Collapse
Affiliation(s)
- Rebeca Arroyo Hornero
- VIB Laboratory of Translational Immunomodulation, VIB Center for Inflammation Research (IRC), University of Hasselt, Hasselt, Belgium
| | - Ibrahim Hamad
- VIB Laboratory of Translational Immunomodulation, VIB Center for Inflammation Research (IRC), University of Hasselt, Hasselt, Belgium
| | - Beatriz Côrte-Real
- VIB Laboratory of Translational Immunomodulation, VIB Center for Inflammation Research (IRC), University of Hasselt, Hasselt, Belgium
| | - Markus Kleinewietfeld
- VIB Laboratory of Translational Immunomodulation, VIB Center for Inflammation Research (IRC), University of Hasselt, Hasselt, Belgium
| |
Collapse
|
182
|
Gusev EY, Zotova NV. Cellular Stress and General Pathological Processes. Curr Pharm Des 2020; 25:251-297. [PMID: 31198111 DOI: 10.2174/1381612825666190319114641] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 03/13/2019] [Indexed: 02/06/2023]
Abstract
From the viewpoint of the general pathology, most of the human diseases are associated with a limited number of pathogenic processes such as inflammation, tumor growth, thrombosis, necrosis, fibrosis, atrophy, pathological hypertrophy, dysplasia and metaplasia. The phenomenon of chronic low-grade inflammation could be attributed to non-classical forms of inflammation, which include many neurodegenerative processes, pathological variants of insulin resistance, atherosclerosis, and other manifestations of the endothelial dysfunction. Individual and universal manifestations of cellular stress could be considered as a basic element of all these pathologies, which has both physiological and pathophysiological significance. The review examines the causes, main phenomena, developmental directions and outcomes of cellular stress using a phylogenetically conservative set of genes and their activation pathways, as well as tissue stress and its role in inflammatory and para-inflammatory processes. The main ways towards the realization of cellular stress and its functional blocks were outlined. The main stages of tissue stress and the classification of its typical manifestations, as well as its participation in the development of the classical and non-classical variants of the inflammatory process, were also described. The mechanisms of cellular and tissue stress are structured into the complex systems, which include networks that enable the exchange of information with multidirectional signaling pathways which together make these systems internally contradictory, and the result of their effects is often unpredictable. However, the possible solutions require new theoretical and methodological approaches, one of which includes the transition to integral criteria, which plausibly reflect the holistic image of these processes.
Collapse
Affiliation(s)
- Eugeny Yu Gusev
- Laboratory of the Immunology of Inflammation, Institute of Immunology and Physiology, Yekaterinburg, Russian Federation
| | - Natalia V Zotova
- Laboratory of the Immunology of Inflammation, Institute of Immunology and Physiology, Yekaterinburg, Russian Federation.,Department of Medical Biochemistry and Biophysics, Ural Federal University named after B.N.Yeltsin, Yekaterinburg, Russian Federation
| |
Collapse
|
183
|
Azzolino D, Arosio B, Marzetti E, Calvani R, Cesari M. Nutritional Status as a Mediator of Fatigue and Its Underlying Mechanisms in Older People. Nutrients 2020; 12:E444. [PMID: 32050677 PMCID: PMC7071235 DOI: 10.3390/nu12020444] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 12/22/2022] Open
Abstract
Fatigue is an often-neglected symptom but frequently complained of by older people, leading to the inability to continue functioning at a normal level of activity. Fatigue is frequently associated with disease conditions and impacts health status and quality of life. Yet, fatigue cannot generally be completely explained as a consequence of a single disease or pathogenetic mechanism. Indeed, fatigue mirrors the exhaustion of the physiological reserves of an older individual. Despite its clinical relevance, fatigue is typically underestimated by healthcare professionals, mainly because reduced stamina is considered to be an unavoidable corollary of aging. The incomplete knowledge of pathophysiological mechanisms of fatigue and the lack of a gold standard tool for its assessment contribute to the poor appreciation of fatigue in clinical practice. Inadequate nutrition is invoked as one of the mechanisms underlying fatigue. Modifications in food intake and body composition changes seem to influence the perception of fatigue, probably through the mechanisms of inflammation and/or mitochondrial dysfunction. Here, we present an overview on the mechanisms that may mediate fatigue levels in old age, with a special focus on nutrition.
Collapse
Affiliation(s)
- Domenico Azzolino
- Geriatric Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (B.A.)
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Beatrice Arosio
- Geriatric Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (B.A.)
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Emanuele Marzetti
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (E.M.); (R.C.)
- Institute of Internal Medicine and Geriatrics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Riccardo Calvani
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (E.M.); (R.C.)
- Institute of Internal Medicine and Geriatrics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Matteo Cesari
- Geriatric Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (B.A.)
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| |
Collapse
|
184
|
Udhaya Kumar S, Thirumal Kumar D, Mandal PD, Sankar S, Haldar R, Kamaraj B, Walter CEJ, Siva R, George Priya Doss C, Zayed H. Comprehensive in silico screening and molecular dynamics studies of missense mutations in Sjogren-Larsson syndrome associated with the ALDH3A2 gene. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 120:349-377. [PMID: 32085885 DOI: 10.1016/bs.apcsb.2019.11.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sjögren-Larsson syndrome (SLS) is an autoimmune disorder inherited in an autosomal recessive pattern. To date, 80 missense mutations have been identified in association with the Aldehyde Dehydrogenase 3 Family Member A2 (ALDH3A2) gene causing SLS. Disruption of the function of ALDH3A2 leads to excessive accumulation of fat in the cells, which interferes with the normal function of protective membranes or materials that are necessary for the body to function normally. We retrieved 54 missense mutations in the ALDH3A2 from the OMIM, UniProt, dbSNP, and HGMD databases that are known to cause SLS. These mutations were examined with various in silico stability tools, which predicted that the mutations p.S308N and p.R423H that are located at the protein-protein interaction domains are the most destabilizing. Furthermore, to determine the atomistic-level differences within the protein-protein interactions owing to mutations, we performed macromolecular simulation (MMS) using GROMACS to validate the motion patterns and dynamic behavior of the biological system. We found that both mutations (p.S380N and p.R423H) had significant effects on the protein-protein interaction and disrupted the dimeric interactions. The computational pipeline provided in this study helps to elucidate the potential structural and functional differences between the ALDH3A2 native and mutant homodimeric proteins, and will pave the way for drug discovery against specific targets in the SLS patients.
Collapse
Affiliation(s)
- S Udhaya Kumar
- School of BioSciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - D Thirumal Kumar
- School of BioSciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Pinky D Mandal
- School of BioSciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Srivarshini Sankar
- School of BioSciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Rishin Haldar
- School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Balu Kamaraj
- Department of Neuroscience Technology, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Jubail, Saudi Arabia
| | - Charles Emmanuel Jebaraj Walter
- Department of Biotechnology, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Chennai, India
| | - R Siva
- School of BioSciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - C George Priya Doss
- School of BioSciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health and Sciences, Qatar University, Doha, Qatar
| |
Collapse
|
185
|
da Cunha de Sá RDC, Cruz MM, de Farias TM, da Silva VS, de Jesus Simão J, Telles MM, Alonso-Vale MIC. Fish oil reverses metabolic syndrome, adipocyte dysfunction, and altered adipokines secretion triggered by high-fat diet-induced obesity. Physiol Rep 2020; 8:e14380. [PMID: 32109344 PMCID: PMC7048378 DOI: 10.14814/phy2.14380] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 02/06/2023] Open
Abstract
The effect of fish oil (FO) treatment on high-fat (HF) diet-induced obesity and metabolic syndrome was addressed by analyzing dysfunctions in cells of different adipose depots. For this purpose, mice were initially induced to obesity for 8 weeks following a treatment with FO containing high concentration of EPA compared to DHA (5:1), for additional 8 weeks (by gavage, 3 times per week). Despite the higher fat intake, the HF group showed lower food intake but higher body weight, glucose intolerance and insulin resistance, significant dyslipidemia and increased liver, subcutaneous (inguinal-ING) and visceral (retroperitoneal-RP) adipose depots mass, accompanied by adipocyte hypertrophy and decreased cellularity in both adipose tissue depots. FO treatment reversed all these effects, as well as it improved the metabolic activities of isolated adipocytes, such as glucose uptake and lipolysis in both depots, and de novo synthesis of fatty acids in ING adipocytes. HF diet also significantly increased both the pro and anti-inflammatory cytokines expression by adipocytes, while HF + FO did not differ from control group. Collectively, these data show that the concomitant administration of FO with the HF diet is able to revert metabolic changes triggered by the diet-induced obesity, as well as to promote beneficial alterations in adipose cell activities. The main mechanism underlying all systemic effects involves direct and differential effects on ING and RP adipocytes.
Collapse
Affiliation(s)
- Roberta D. C. da Cunha de Sá
- Post‐graduate Program in Chemical BiologyInstitute of Environmental Sciences, Chemical and PharmaceuticalFederal University of Sao Paulo ‐UNIFESPDiademaSao PauloBrazil
| | - Maysa M. Cruz
- Post‐graduate Program in Chemical BiologyInstitute of Environmental Sciences, Chemical and PharmaceuticalFederal University of Sao Paulo ‐UNIFESPDiademaSao PauloBrazil
| | - Talita M. de Farias
- Post‐graduate Program in Chemical BiologyInstitute of Environmental Sciences, Chemical and PharmaceuticalFederal University of Sao Paulo ‐UNIFESPDiademaSao PauloBrazil
| | - Viviane S. da Silva
- Post‐graduate Program in Chemical BiologyInstitute of Environmental Sciences, Chemical and PharmaceuticalFederal University of Sao Paulo ‐UNIFESPDiademaSao PauloBrazil
| | - Jussara de Jesus Simão
- Post‐graduate Program in Chemical BiologyInstitute of Environmental Sciences, Chemical and PharmaceuticalFederal University of Sao Paulo ‐UNIFESPDiademaSao PauloBrazil
| | - Monica M. Telles
- Post‐graduate Program in Chemical BiologyInstitute of Environmental Sciences, Chemical and PharmaceuticalFederal University of Sao Paulo ‐UNIFESPDiademaSao PauloBrazil
- Department of Biological SciencesInstitute of Environmental Sciences, Chemical and PharmaceuticalFederal University of Sao Paulo ‐ UNIFESPDiademaSao PauloBrazil
| | - Maria Isabel C. Alonso-Vale
- Post‐graduate Program in Chemical BiologyInstitute of Environmental Sciences, Chemical and PharmaceuticalFederal University of Sao Paulo ‐UNIFESPDiademaSao PauloBrazil
- Department of Biological SciencesInstitute of Environmental Sciences, Chemical and PharmaceuticalFederal University of Sao Paulo ‐ UNIFESPDiademaSao PauloBrazil
| |
Collapse
|
186
|
Wang Y, Han L, Shen M, Jones ES, Spizzo I, Walton SL, Denton KM, Gaspari TA, Samuel CS, Widdop RE. Serelaxin and the AT 2 Receptor Agonist CGP42112 Evoked a Similar, Nonadditive, Cardiac Antifibrotic Effect in High Salt-Fed Mice That Were Refractory to Candesartan Cilexetil. ACS Pharmacol Transl Sci 2020; 3:76-87. [PMID: 32259090 DOI: 10.1021/acsptsci.9b00095] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Indexed: 12/29/2022]
Abstract
Fibrosis is involved in the majority of cardiovascular diseases and is a key contributor to end-organ dysfunction. In the current study, the antifibrotic effects of recombinant human relaxin-2 (serelaxin; RLX) and/or the AT2R agonist CGP42112 (CGP) were compared with those of the established AT1R antagonist, candesartan cilexetil (CAND), in a high salt-induced cardiac fibrosis model. High salt (HS; 5%) for 8 weeks did not increase systolic blood pressure in male FVB/N mice, but CAND treatment alone significantly reduced systolic blood pressure from HS-induced levels. HS significantly increased cardiac interstitial fibrosis, which was reduced by either RLX and/or CGP, which were not additive under the current experimental conditions, while CAND failed to reduce HS-induced cardiac fibrosis. The antifibrotic effects induced by RLX and/or CGP were associated with reduced myofibroblast differentiation. Additionally, all treatments inhibited the HS-induced elevation in tissue inhibitor of matrix metalloproteinases-1, together with trends for increased MMP-13 expression, that collectively would favor collagen degradation. Furthermore, these antifibrotic effects were associated with reduced cardiac inflammation. Collectively, these results highlight that either RXFP1 or AT2R stimulation represents novel therapeutic strategies to target fibrotic conditions, particularly in HS states that may be refractory to AT1R blockade.
Collapse
Affiliation(s)
- Yan Wang
- Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, and Department of Physiology, Monash University, Clayton, Victoria 3800 Australia
| | - Lei Han
- Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, and Department of Physiology, Monash University, Clayton, Victoria 3800 Australia
| | - Matthew Shen
- Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, and Department of Physiology, Monash University, Clayton, Victoria 3800 Australia
| | - Emma S Jones
- Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, and Department of Physiology, Monash University, Clayton, Victoria 3800 Australia
| | - Iresha Spizzo
- Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, and Department of Physiology, Monash University, Clayton, Victoria 3800 Australia
| | - Sarah L Walton
- Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, and Department of Physiology, Monash University, Clayton, Victoria 3800 Australia
| | - Kate M Denton
- Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, and Department of Physiology, Monash University, Clayton, Victoria 3800 Australia
| | - Tracey A Gaspari
- Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, and Department of Physiology, Monash University, Clayton, Victoria 3800 Australia
| | - Chrishan S Samuel
- Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, and Department of Physiology, Monash University, Clayton, Victoria 3800 Australia
| | - Robert E Widdop
- Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, and Department of Physiology, Monash University, Clayton, Victoria 3800 Australia
| |
Collapse
|
187
|
Brito-Zerón P, Acar-Denizli N, Ng WF, Horváth IF, Rasmussen A, Seror R, Li X, Baldini C, Gottenberg JE, Danda D, Quartuccio L, Priori R, Hernandez-Molina G, Armagan B, Kruize AA, Kwok SK, Kvarnstrom M, Praprotnik S, Sene D, Gerli R, Solans R, Rischmueller M, Mandl T, Suzuki Y, Isenberg D, Valim V, Wiland P, Nordmark G, Fraile G, Bootsma H, Nakamura H, Giacomelli R, Devauchelle-Pensec V, Hofauer B, Bombardieri M, Trevisani VFM, Hammenfors D, Pasoto SG, Retamozo S, Gheita TA, Atzeni F, Morel J, Vollenweider C, Zeher M, Sivils K, Xu B, Bombardieri S, Sandhya P, De Vita S, Minniti A, Sánchez-Guerrero J, Kilic L, van der Heijden E, Park SH, Wahren-Herlenius M, Mariette X, Ramos-Casals M. Epidemiological profile and north–south gradient driving baseline systemic involvement of primary Sjögren’s syndrome. Rheumatology (Oxford) 2019; 59:2350-2359. [DOI: 10.1093/rheumatology/kez578] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/27/2019] [Indexed: 12/21/2022] Open
Abstract
Abstract
Objective
To characterize the systemic phenotype of primary Sjögren’s syndrome at diagnosis by analysing the EULAR-SS disease activity index (ESSDAI) scores.
Methods
The Sjögren Big Data Consortium is an international, multicentre registry based on worldwide data-sharing cooperative merging of pre-existing databases from leading centres in clinical research in Sjögren’s syndrome from the five continents.
Results
The cohort included 10 007 patients (9352 female, mean 53 years) with recorded ESSDAI scores available. At diagnosis, the mean total ESSDAI score was 6.1; 81.8% of patients had systemic activity (ESSDAI score ≥1). Males had a higher mean ESSDAI (8.1 vs 6.0, P < 0.001) compared with females, as did patients diagnosed at <35 years (6.7 vs 5.6 in patients diagnosed at >65 years, P < 0.001). The highest global ESSDAI score was reported in Black/African Americans, followed by White, Asian and Hispanic patients (6.7, 6.5, 5.4 and 4.8, respectively; P < 0.001). The frequency of involvement of each systemic organ also differed between ethnic groups, with Black/African American patients showing the highest frequencies in the lymphadenopathy, articular, peripheral nervous system, CNS and biological domains, White patients in the glandular, cutaneous and muscular domains, Asian patients in the pulmonary, renal and haematological domains and Hispanic patients in the constitutional domain. Systemic activity measured by the ESSDAI, clinical ESSDAI (clinESSDAI) and disease activity states was higher in patients from southern countries (P < 0.001).
Conclusion
The systemic phenotype of primary Sjögren’s syndrome is strongly influenced by personal determinants such as age, gender, ethnicity and place of residence, which are key geoepidemiological players in driving the expression of systemic disease at diagnosis.
Collapse
Affiliation(s)
- Pilar Brito-Zerón
- Department of Medicine, Autoimmune Diseases Unit, Hospital CIMA – Sanitas, Barcelona, Spain
- Sjögren Syndrome Research Group (AGAUR), Laboratory of Autoimmune Diseases Josep Font, IDIBAPS-CELLEX, Department of Autoimmune Diseases, ICMiD, University of Barcelona, Hospital Clínic, Barcelona, Spain
| | - Nihan Acar-Denizli
- Department of Statistics, Faculty of Science and Letters, Mimar Sinan Fine Arts University, Istanbul, Turkey
| | - Wan-Fai Ng
- Institute of Cellular Medicine, Newcastle University, NIHR Biomedical Research Centre, Newcastle Upon Tyne, UK
| | - Ildiko Fanny Horváth
- Division of Clinical Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Astrid Rasmussen
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Raphaele Seror
- Center for Immunology of Viral Infections and Autoimmune Diseases, Assistance Publique – Hôpitaux de Paris, Hôpitaux Universitaires Paris-Sud, Le Kremlin-Bicêtre, Université Paris Sud, INSERM, Paris, France
| | - Xiaomei Li
- Department of Rheumatology and Immunology, Anhui Provincial Hospital, Hefei, China
| | | | - Jacques-Eric Gottenberg
- Department of Rheumatology, Strasbourg University Hospital, Université de Strasbourg, CNRS, Strasbourg, France
| | - Debashish Danda
- Department of Clinical Immunology & Rheumatology, Christian Medical College & Hospital, Vellore, India
| | - Luca Quartuccio
- Clinic of Rheumatology, Department of Medical Area, University Hospital ‘Santa Maria della Misericordia’, Udine, Italy
| | - Roberta Priori
- Department of Internal Medicine and Medical Specialties, Rheumatology Clinic, Sapienza University of Rome, Rome, Italy
| | - Gabriela Hernandez-Molina
- Immunology and Rheumatology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, Mexico
| | - Berkan Armagan
- Department of Internal Medicine, Hacettepe University, Faculty of Medicine, Ankara, Turkey
| | - Aike A Kruize
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Seung-Ki Kwok
- Division of Rheumatology, Department of Internal Medicine, College of Medicine, Seoul St Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Marika Kvarnstrom
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Sonja Praprotnik
- Department of Rheumatology, University Medical Centre, Ljubljana, Slovenia
| | - Damien Sene
- Département de Médecine Interne, Hôpital Lariboisière, Université Paris VII, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Roberto Gerli
- Rheumatology Unit, Department of Medicine, University of Perugia, Perugia, Italy
| | - Roser Solans
- Department of Internal Medicine, Hospital Vall d'Hebron, Barcelona, Spain
| | - Maureen Rischmueller
- Department of Rheumatology, The Queen Elizabeth Hospital, Discipline of Medicine, University of Adelaide, South Australia, Australia
| | - Thomas Mandl
- Department of Rheumatology, Skane University Hospital Malmö, Lund University, Malmö, Sweden
| | - Yasunori Suzuki
- Division of Rheumatology, Kanazawa University Hospital, Kanazawa, Ishikawa, Japan
| | - David Isenberg
- Centre for Rheumatology, Division of Medicine, University College London, London, UK
| | - Valeria Valim
- Department of Medicine, Federal University of Espírito Santo, Vitória, Brazil
| | - Piotr Wiland
- Department of Rheumatology and Internal Medicine, Wroclaw Medical Hospital, Wroclaw, Poland
| | - Gunnel Nordmark
- Rheumatology, Department of Medical Sciences, University of Uppsala, Uppsala, Sweden
| | - Guadalupe Fraile
- Department of Internal Medicine, Hospital Ramón y Cajal, Madrid, Spain
| | - Hendrika Bootsma
- Department of Rheumatology & Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Hideki Nakamura
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Roberto Giacomelli
- Clinical Unit of Rheumatology, School of Medicine, University of L'Aquila, L'Aquila, Italy
| | | | - Benedikt Hofauer
- Otorhinolaryngology / Head and Neck Surgery, University Medical Center Freiburg, Freiburg, Germany
| | - Michele Bombardieri
- Centre for Experimental Medicine and Rheumatology, Queen Mary University of London, London, UK
| | | | - Daniel Hammenfors
- Section for Rheumatology, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Rheumatology, Haukeland University Hospital, Bergen, Norway
| | - Sandra G Pasoto
- Rheumatology Division, Hospital das Clinicas, Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), Sao Paulo, Brazil
| | - Soledad Retamozo
- Instituto De Investigaciones En Ciencias De La Salud (INICSA), Universidad Nacional de Córdoba (UNC), Cordoba, Argentina
- Department of Rheumatology, Instituto Modelo de Cariología Privado S.R.L, Instituto Universitario de Ciencias Biomídicas de Córdoba, Cordoba, Argentina
| | - Tamer A Gheita
- Rheumatology Department, Kasr Al Ainy School of Medicine, Cairo University, Cairo, Egypt
| | - Fabiola Atzeni
- IRCCS Galeazzi Orthopedic Institute, Milan, Italy
- Rheumatology Unit, University of Messina, Messina, Italy
| | - Jacques Morel
- Department of Rheumatology, CHU Montpellier, University of Montpellier, Montpellier, France
| | | | - Margit Zeher
- Division of Clinical Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Kathy Sivils
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Bei Xu
- Department of Rheumatology and Immunology, Anhui Provincial Hospital, Hefei, China
| | | | - Pulukool Sandhya
- Department of Clinical Immunology & Rheumatology, Christian Medical College & Hospital, Vellore, India
| | - Salvatore De Vita
- Clinic of Rheumatology, Department of Medical Area, University Hospital ‘Santa Maria della Misericordia’, Udine, Italy
| | - Antonina Minniti
- Department of Internal Medicine and Medical Specialties, Rheumatology Clinic, Sapienza University of Rome, Rome, Italy
| | - Jorge Sánchez-Guerrero
- Immunology and Rheumatology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, Mexico
| | - Levent Kilic
- Department of Internal Medicine, Hacettepe University, Faculty of Medicine, Ankara, Turkey
| | - Eefje van der Heijden
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sung-Hwan Park
- Division of Rheumatology, Department of Internal Medicine, College of Medicine, Seoul St Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Marie Wahren-Herlenius
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Xavier Mariette
- Center for Immunology of Viral Infections and Autoimmune Diseases, Assistance Publique – Hôpitaux de Paris, Hôpitaux Universitaires Paris-Sud, Le Kremlin-Bicêtre, Université Paris Sud, INSERM, Paris, France
| | - Manuel Ramos-Casals
- Sjögren Syndrome Research Group (AGAUR), Laboratory of Autoimmune Diseases Josep Font, IDIBAPS-CELLEX, Department of Autoimmune Diseases, ICMiD, University of Barcelona, Hospital Clínic, Barcelona, Spain
| | | |
Collapse
|
188
|
Herrán OF, Villamor E, Quintero-Lesmes DC. Adherence to a snacking dietary pattern is decreasing in Colombia among the youngest and the wealthiest: results of two representative national surveys. BMC Public Health 2019; 19:1702. [PMID: 31856781 PMCID: PMC6921475 DOI: 10.1186/s12889-019-8057-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 12/09/2019] [Indexed: 12/11/2022] Open
Abstract
Background A common recommendation is to reduce the consumption of snack food and replace this consumption with nutrient-dense foods. The objective was to assess whether in Colombian children and adults there were changes in the consumption of the snack dietary pattern (SP) in the 5 years 2010–2015. In addition, this study aimed to establish the relationship between the SP and some biological, socioeconomic, and geographic variables in Colombia, South America. Methods Based on a Food Frequency Questionnaire (FFQ) applied both in 2010 and 2015 in the national nutritional situation surveys, the adherence to the snack consumption pattern was established through factor analysis. The change in the adherence of consumption to the SP was established for the five-year period [2015 minus 2010], using multiple linear regression models. Crude and adjusted differences were estimated by the following covariables: sex, age, marital status, food security, wealth index, ethnicity, education of the head of the household, area and region. In total, 37,981 subjects were analyzed. In 2010, 10,150 children (5 to 17 years old) and 5145 adults (18 to 64 years old) were included, and in 2015, 13,243 children and 9443 adults. Results In children, the adjusted difference in the adherence to SP was − 0.37 (95% CI: − 0.42, − 0.32). In adults, the adjusted difference in the adherence to SP was − 0.27 (95% CI: − 0.31, − 0.24). In all categories of covariables, consumption decreased, for all p < 0.0001. In children, the decrease in consumption was inversely associated with height-age. The decrease was smaller at the extremes of the BMI distribution, Z < -2 and Z > 2. The decrease in consumption was directly associated with the level of food security in the home and the wealth index. In adults, the decrease in consumption was inversely related to age and was directly related to the level of food security of the household, wealth index, and education level. The BMI decrease was greater in subjects with 18.5–24.9. In subjects with 30+, it was lower than in subjects with 25.0–29.9. Conclusions In the 5 years 2010–2015, snack consumption is decreasing. The region, the richest subjects, those with adequate BMI, and in households with more educated heads of household, achieved a greater decrease in SP.
Collapse
Affiliation(s)
- Oscar F Herrán
- Facultad de Salud (UIS), Escuela de Nutrición y Dietética, Universidad Industrial de Santander, Carrera 32 No. 29-31, Santander, Bucaramanga, 680002, Colombia.
| | - Eduardo Villamor
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | | |
Collapse
|
189
|
Wen J, Khan I, Li A, Chen X, Yang P, Song P, Jing Y, Wei J, Che T, Zhang C. Alpha-linolenic acid given as an anti-inflammatory agent in a mouse model of colonic inflammation. Food Sci Nutr 2019; 7:3873-3882. [PMID: 31890165 PMCID: PMC6924294 DOI: 10.1002/fsn3.1225] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/08/2019] [Accepted: 04/13/2019] [Indexed: 01/12/2023] Open
Abstract
This study examined the relationship between the high-fat, high-sugar diet (HFHSD) and trinitrobenzene sulfonic acid (TNBS) induced mouse colitis, the therapeutic effect of alpha-linolenic acid (ALA) on mouse colitis, and the relationship between HFHSD and hyperlipidemia. We also examined the possible underlying mechanisms behind their interactions. Female BABL/c mice were fed with HFHSD for the 9 weeks. At the same time, ALA treatment (150 or 300 mg/kg) was administered on a daily basis. At the end of the 9 weeks, experimental colitis was induced by the intra-colonic administration of TNBS. Body weight, spleen weight, disease activity index (DAI), histological changes, T-cell-related cytokine level, and lipid profiles were measured after treatment. TNBS induced severe clinical manifestations of colitis and histological damage. Low-ALA (150 mg/kg) administration profoundly ameliorated TNBS-induced clinical manifestations, body weight loss, spleen weight loss, and histological damage. On the contrary, the high-ALA (300 mg/kg) administration did not ameliorate colitis and even exacerbated the symptoms. HFHSD consumption assisted TNBS in changing IL-12, IFN-γ, IL-2, and IL-17A in the liver. As expected, these changes were recovered through low-ALA. In addition, HFHSD had a significant impact on the total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), and triglyceride (TG), which related to the increased risk of hyperlipidemia. In summation, HFHSD exacerbated the TNBS-induced colitis via the Th1/Th17 pathway. The Low-ALA (150 mg/kg) exhibited protective effects against the TNBS-induced colitis via the Th1/Th2/Th17 pathway.
Collapse
Affiliation(s)
- Juan Wen
- School of Life SciencesLanzhou UniversityLanzhouChina
- Key Laboratory of Cell Activities and Stress AdaptationsMinistry of EducationLanzhou UniversityLanzhouChina
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental PollutionLanzhou UniversityLanzhouChina
| | - Israr Khan
- School of Life SciencesLanzhou UniversityLanzhouChina
- Key Laboratory of Cell Activities and Stress AdaptationsMinistry of EducationLanzhou UniversityLanzhouChina
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental PollutionLanzhou UniversityLanzhouChina
| | - Anping Li
- School of Life SciencesLanzhou UniversityLanzhouChina
| | - Xinjun Chen
- Laboratory of Pathogenic Biology and ImmunologyHainan Medical UniversityHaikouChina
| | - Pingrong Yang
- School of Life SciencesLanzhou UniversityLanzhouChina
- Gansu Institute of Drug ControlLanzhouChina
| | - Pingshun Song
- School of Life SciencesLanzhou UniversityLanzhouChina
- Gansu Institute of Drug ControlLanzhouChina
| | - Yaping Jing
- School of Life SciencesLanzhou UniversityLanzhouChina
- Key Laboratory of Cell Activities and Stress AdaptationsMinistry of EducationLanzhou UniversityLanzhouChina
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental PollutionLanzhou UniversityLanzhouChina
| | - Junshu Wei
- School of Life SciencesLanzhou UniversityLanzhouChina
- Key Laboratory of Cell Activities and Stress AdaptationsMinistry of EducationLanzhou UniversityLanzhouChina
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental PollutionLanzhou UniversityLanzhouChina
| | - Tuanjie Che
- Gansu Key Laboratory of Functional Genomics and Molecular DiagnosisLanzhouChina
| | - Chunjiang Zhang
- School of Life SciencesLanzhou UniversityLanzhouChina
- Key Laboratory of Cell Activities and Stress AdaptationsMinistry of EducationLanzhou UniversityLanzhouChina
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental PollutionLanzhou UniversityLanzhouChina
| |
Collapse
|
190
|
Azzolino D, Passarelli PC, De Angelis P, Piccirillo GB, D’Addona A, Cesari M. Poor Oral Health as a Determinant of Malnutrition and Sarcopenia. Nutrients 2019; 11:E2898. [PMID: 31795351 PMCID: PMC6950386 DOI: 10.3390/nu11122898] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/22/2019] [Accepted: 11/27/2019] [Indexed: 12/13/2022] Open
Abstract
Aging is accompanied by profound changes in many physiological functions, leading to a decreased ability to cope with stressors. Many changes are subtle, but can negatively affect nutrient intake, leading to overt malnutrition. Poor oral health may affect food selection and nutrient intake, leading to malnutrition and, consequently, to frailty and sarcopenia. On the other hand, it has been highlighted that sarcopenia is a whole-body process also affecting muscles dedicated to chewing and swallowing. Hence, muscle decline of these muscle groups may also have a negative impact on nutrient intake, increasing the risk for malnutrition. The interplay between oral diseases and malnutrition with frailty and sarcopenia may be explained through biological and environmental factors that are linked to the common burden of inflammation and oxidative stress. The presence of oral problems, alone or in combination with sarcopenia, may thus represent the biological substratum of the disabling cascade experienced by many frail individuals. A multimodal and multidisciplinary approach, including personalized dietary counselling and oral health care, may thus be helpful to better manage the complexity of older people. Furthermore, preventive strategies applied throughout the lifetime could help to preserve both oral and muscle function later in life. Here, we provide an overview on the relevance of poor oral health as a determinant of malnutrition and sarcopenia.
Collapse
Affiliation(s)
- Domenico Azzolino
- Geriatric Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Pier Carmine Passarelli
- Department of Head and Neck, Oral Surgery and Implantology Unit, Institute of Clinical Dentistry, Catholic University of Sacred Hearth, Fondazione Policlinico Universitario Gemelli, 00168 Rome, Italy; (P.C.P.); (P.D.A.); (G.B.P.); (A.D.)
| | - Paolo De Angelis
- Department of Head and Neck, Oral Surgery and Implantology Unit, Institute of Clinical Dentistry, Catholic University of Sacred Hearth, Fondazione Policlinico Universitario Gemelli, 00168 Rome, Italy; (P.C.P.); (P.D.A.); (G.B.P.); (A.D.)
| | - Giovan Battista Piccirillo
- Department of Head and Neck, Oral Surgery and Implantology Unit, Institute of Clinical Dentistry, Catholic University of Sacred Hearth, Fondazione Policlinico Universitario Gemelli, 00168 Rome, Italy; (P.C.P.); (P.D.A.); (G.B.P.); (A.D.)
| | - Antonio D’Addona
- Department of Head and Neck, Oral Surgery and Implantology Unit, Institute of Clinical Dentistry, Catholic University of Sacred Hearth, Fondazione Policlinico Universitario Gemelli, 00168 Rome, Italy; (P.C.P.); (P.D.A.); (G.B.P.); (A.D.)
| | - Matteo Cesari
- Geriatric Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| |
Collapse
|
191
|
Guiné RPF, Ferrão AC, Ferreira M, Correia P, Mendes M, Bartkiene E, Szűcs V, Tarcea M, Sarić MM, Černelič-Bizjak M, Isoldi K, EL-Kenawy A, Ferreira V, Klava D, Korzeniowska M, Vittadini E, Leal M, Frez-Muñoz L, Papageorgiou M, Djekić I. Influence of sociodemographic factors on eating motivations – modelling through artificial neural networks (ANN). Int J Food Sci Nutr 2019; 71:614-627. [DOI: 10.1080/09637486.2019.1695758] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Raquel P. F. Guiné
- CI&DETS Research Centre, Polytechnic Institute of Viseu, Viseu, Portugal
| | | | - Manuela Ferreira
- CI&DETS Research Centre, Polytechnic Institute of Viseu, Viseu, Portugal
| | - Paula Correia
- CI&DETS Research Centre, Polytechnic Institute of Viseu, Viseu, Portugal
| | - Mateus Mendes
- Politechnic Institute of Coimbra-ESTGOH and ISR, University of Coimbra, Portugal
| | - Elena Bartkiene
- Department of Food Safety and Quality, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Viktória Szűcs
- Directorate of Food Industry, Hungarian Chamber of Agriculture, Budapest, Hungary
| | - Monica Tarcea
- Department of Community Nutrition and Food Safety, University of Medicine, Pharmacy, Science and Technology, Targu-Mures, Romania
| | | | | | - Kathy Isoldi
- Department of Nutrition, School of Health Professions and Nursing, Long Island University, Brooklyn, NY, USA
| | - Ayman EL-Kenawy
- Molecular Biology Department, Genetic Engineering and Biotechnology Institute, University of Sadat City, Sadat, Egypt
| | - Vanessa Ferreira
- Department of Nutrition, Faculty of Biological and Health Sciences, UFVJM University, Minas Gerais, Brazil
| | - Dace Klava
- Faculty of Food Technology, Latvian University of Agriculture, Jelgava, Latvia
| | - Małgorzata Korzeniowska
- Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Wroclaw, Poland
| | - Elena Vittadini
- Department of Food Science, University of Parma, Parma, Italy
| | - Marcela Leal
- School of Nutrition, Faculty of Health Sciences, Maimonides University, Buenos Aires, Argentina
| | - Lucia Frez-Muñoz
- Food Quality and Design Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Maria Papageorgiou
- Department Food Technology, Alexander Technological Educational Institute, Thessaloniki, Greece
| | - Ilija Djekić
- Faculty of Agriculture, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
192
|
Pigneur B, Ruemmele FM. Nutritional interventions for the treatment of IBD: current evidence and controversies. Therap Adv Gastroenterol 2019; 12:1756284819890534. [PMID: 31803252 PMCID: PMC6878599 DOI: 10.1177/1756284819890534] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 10/22/2019] [Indexed: 02/04/2023] Open
Abstract
Environmental factors, particularly diet, are the focus of current research as potential triggers of inflammatory bowel disease (IBD). Epidemiological cohort data showing a rapid increase of IBD in western countries and the emergence of IBD in developing countries paralleling the introduction of a western diet are indirect arguments linking food and food behaviour to intestinal inflammation. The successful use of exclusive enteral nutrition (EEN), now considered as first-line induction therapy for paediatric Crohn's disease (CD), is the strongest argument for a link between diet and IBD. Mechanistic studies revealed that EEN impacts intestinal microbiota composition and together with the exclusion of potentially harmful food ingredients this allows the control of intestinal inflammation and induces mucosal healing. However, the exclusivity character of EEN is a major drawback. Based on the data of EEN, the search for more tolerable and still effective diets has begun. Recent reports on the new CD exclusion diet (CDED), CD-TREAT, as well as the specific carbohydrate diet (SCD) provide the first promising results, further underlining the potential of diet to control inflammation in patients with CD by excluding certain food components. Ongoing research is trying to combine nutritional interventions with analyses of intestinal microbiota and their metabolic functions with the aim of correcting the intestinal dysbiosis that characterizes IBD. This research is promising and gives new hope to patients that have been looking for decades for nutritional interventions with the aim of stabilizing their disease course. There might even be potential for disease prevention in high-risk patients by excluding potentially harmful food components.
Collapse
Affiliation(s)
- Bénédicte Pigneur
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France,Assistance Publique-Hôpitaux de Paris, Hôpital Necker-Enfants Malades, Service de Gastroentérologie pédiatrique, Paris, France
| | | |
Collapse
|
193
|
Louis-Jean S, Martirosyan D. Nutritionally Attenuating the Human Gut Microbiome To Prevent and Manage Metabolic Syndrome. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:12675-12684. [PMID: 31661963 DOI: 10.1021/acs.jafc.9b04879] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Metabolic syndrome (MSyn) constitutes a litany of pathophysiological conditions, such as central adiposity, hypertension, dyslipidemia, and hyperglycemia. As a result of the epidemic levels of MSyn, several efforts have been made to identify the etiologies of the condition and develop methods by which to reduce its prevalence. The attenuation of the gut microflora ratio of Firmicutes/Bacteroidetes through bioactive compounds found in the Mediterranean diet, dietary polysaccharides, and pre- and probiotics can be used as functional foods to improve derangements in cardiometabolic markers correlated with the development of MSyn. Although more studies are needed to understand the role of manipulating the gut microbiota in health and disease in human models, this review based on current data from epidemiologic studies and clinical trials will serve as a review to elucidate the role nutrition plays in attenuating the gut microbiota in preventing and managing MSyn.
Collapse
Affiliation(s)
- Scarlet Louis-Jean
- Functional Food Center , Functional Food Institute , Dallas , Texas 75254 , United States
| | - Danik Martirosyan
- Functional Food Center , Functional Food Institute , Dallas , Texas 75254 , United States
| |
Collapse
|
194
|
Muhammad F, Wang D, Montieth A, Lee S, Preble J, Foster CS, Larson TA, Ding K, Dvorak JD, Lee DJ. PD-1 + melanocortin receptor dependent-Treg cells prevent autoimmune disease. Sci Rep 2019; 9:16941. [PMID: 31729418 PMCID: PMC6858311 DOI: 10.1038/s41598-019-53297-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 10/25/2019] [Indexed: 02/08/2023] Open
Abstract
Experimental autoimmune uveoretinitis (EAU) is a mouse model of human autoimmune uveitis marked by ocular autoantigen-specific regulatory immunity in the spleen. The melanocortin 5 receptor (MC5r) and adenosine 2 A receptor (A2Ar) are required for induction of post-EAU regulatory T cells (Tregs) which provide resistance to EAU. We show that blocking the PD-1/PD-L1 pathway prevented suppression of EAU by post-EAU Tregs. A2Ar induction of PD-1+FoxP3+ Tregs in uveitis patients was similar compared to healthy controls, but was significantly reduced with melanocortin stimulation. Further, lower body mass index correlated with responsiveness to stimulation of this pathway. These observations indicate an importance of the PD-1/PD-L1 pathway to provide resistance to relapsing uveitis and shows a reduced capacity of uveitis patients to induce Tregs when stimulated through melanocortin receptors, but that it is possible to bypass this part of the pathway through direct stimulation of A2Ar.
Collapse
Affiliation(s)
- Fauziyya Muhammad
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Dawei Wang
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Alyssa Montieth
- Massachusetts Eye Research and Surgery Institute, Waltham, Massachusetts, USA.,Ocular Immunology and Uveitis Foundation, Waltham, Massachusetts, USA
| | - Stacey Lee
- Massachusetts Eye Research and Surgery Institute, Waltham, Massachusetts, USA.,Ocular Immunology and Uveitis Foundation, Waltham, Massachusetts, USA
| | - Janine Preble
- Massachusetts Eye Research and Surgery Institute, Waltham, Massachusetts, USA.,Ocular Immunology and Uveitis Foundation, Waltham, Massachusetts, USA
| | - C Stephen Foster
- Massachusetts Eye Research and Surgery Institute, Waltham, Massachusetts, USA.,Ocular Immunology and Uveitis Foundation, Waltham, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Theresa A Larson
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Kai Ding
- College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Justin D Dvorak
- College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Darren J Lee
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA. .,Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA.
| |
Collapse
|
195
|
Zhang D, Jin W, Wu R, Li J, Park SA, Tu E, Zanvit P, Xu J, Liu O, Cain A, Chen W. High Glucose Intake Exacerbates Autoimmunity through Reactive-Oxygen-Species-Mediated TGF-β Cytokine Activation. Immunity 2019; 51:671-681.e5. [PMID: 31451397 PMCID: PMC9811990 DOI: 10.1016/j.immuni.2019.08.001] [Citation(s) in RCA: 191] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 05/08/2019] [Accepted: 07/30/2019] [Indexed: 01/07/2023]
Abstract
Diet has been suggested to be a potential environmental risk factor for the increasing incidence of autoimmune diseases, yet the underlying mechanisms remain elusive. Here, we show that high glucose intake exacerbated autoimmunity in mouse models of colitis and experimental autoimmune encephalomyelitis (EAE). We elucidated that high amounts of glucose specifically promoted T helper-17 (Th17) cell differentiation by activating transforming growth factor-β (TGF-β) from its latent form through upregulation of reactive oxygen species (ROS) in T cells. We further determined that mitochondrial ROS (mtROS) are key for high glucose-induced TGF-β activation and Th17 cell generation. We have thus revealed a previously unrecognized mechanism underlying the adverse effects of high glucose intake in the pathogenesis of autoimmunity and inflammation.
Collapse
Affiliation(s)
- Dunfang Zhang
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wenwen Jin
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ruiqing Wu
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jia Li
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sang-A Park
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Eric Tu
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter Zanvit
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Junji Xu
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ousheng Liu
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alexander Cain
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - WanJun Chen
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
196
|
Flanagan TW, Sebastian MN, Battaglia DM, Foster TP, Maillet EL, Nichols CD. Activation of 5-HT 2 Receptors Reduces Inflammation in Vascular Tissue and Cholesterol Levels in High-Fat Diet-Fed Apolipoprotein E Knockout Mice. Sci Rep 2019; 9:13444. [PMID: 31530895 PMCID: PMC6748996 DOI: 10.1038/s41598-019-49987-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/25/2019] [Indexed: 01/14/2023] Open
Abstract
Coronary artery disease (CAD) is a progressive cardiovascular syndrome characterized by cholesterol-induced focal arterial lesions that impair oxygen delivery to the heart. As both innate and adaptive immune cells play critical roles in the formation and progression of arterial plaques and endothelial cell dysfunction, CAD is commonly viewed as a chronic inflammatory disorder. Our lab has previously discovered that 5-HT2A receptor activation with the 5-HT2 receptor selective agonist (R)-2,5-dimethoxy-4-iodoamphetamine [(R)-DOI] has potent anti-inflammatory activity in both cell culture and whole animal models. Here we have examined the putative therapeutic effects of (R)-DOI in the ApoE−/− high fat model of cardiovascular disease. Subcutaneously implanted osmotic minipumps were used to infuse sustained low rates (0.15 μg / hr) of (R)-DOI∙HCl to mice fed a high-fat “Western” diet. (R)-DOI treated mice had significant reductions in expression levels of mRNA for inflammatory markers like Il6 in vascular tissue, normalized glucose homeostasis, and reduced circulating cholesterol levels. As cardiovascular disease is a leading cause of death both globally and in the Western world, activation of 5-HT2A receptors at sub-behavioral levels may represent a new strategy to treat inflammation-based cardiovascular disease.
Collapse
Affiliation(s)
- Thomas W Flanagan
- Department of Pharmacology and Experimental Therapeutics Louisiana State University Health Sciences Center 1901 Perdido St, New Orleans, LA, 70112, USA
| | - Melaine N Sebastian
- Department of Pharmacology and Experimental Therapeutics Louisiana State University Health Sciences Center 1901 Perdido St, New Orleans, LA, 70112, USA
| | - Diana M Battaglia
- Department of Microbiology, Immunology, and Parasitology Louisiana State University Health Sciences Center 1901 Perdido St, New Orleans, LA, 70112, USA
| | - Timothy P Foster
- Department of Microbiology, Immunology, and Parasitology Louisiana State University Health Sciences Center 1901 Perdido St, New Orleans, LA, 70112, USA
| | - Emeline L Maillet
- Eleusis Benefit Corporation 11 East 44th St., Suite 104, New York, NY, 10017, USA
| | - Charles D Nichols
- Department of Pharmacology and Experimental Therapeutics Louisiana State University Health Sciences Center 1901 Perdido St, New Orleans, LA, 70112, USA.
| |
Collapse
|
197
|
The potential anti-inflammatory role of adiponectin in food allergy: a case-control study on children. Br J Nutr 2019; 120:1117-1121. [PMID: 30401008 DOI: 10.1017/s0007114518002659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We aimed to assess the possible relationship between food allergy and two key adipokines - leptin and adiponectin - in children with food allergy. A total of forty patients with definite diagnosis of food allergy according to clinical history and specific IgE (sIgE) for food allergens (group I) were enrolled in this pilot study. The control group (group II) included thirty children with no evidence of allergic symptoms. Serum levels of leptin and adiponectin were measured by ELISA. Meanwhile, sIgE was measured for the eight most common food allergens by the immunoblot method in all participants. The median ages in groups I and II were 18·5 and 23·5 months, respectively. The respective Caesarean section rate was 64·9 and 16·7 % in groups I and II (P<0·001). Serum levels of adiponectin were significantly higher in the patient group compared with controls (24·11 (sd 12·14) v. 10·67 (sd 12·23) μg/ml, P<0·001), whereas no statistically meaningful difference was detected in serum leptin concentrations (P=0·92). There was a significant inverse relationship between age and adiponectin levels in group I (P=0·002, r -0·479) and group II (P=0·04, r -0·365), and it was more significant in group I. The most common allergens in the patient group were wheat (52·5 %), hazelnut (52·5 %), cow's milk (50 %) and egg white (30 %). The results of this study suggest an essential link between adiponectin and food allergy that is probably unlikely to be affected by obesity as a confounding factor.
Collapse
|
198
|
Risk Factors for the Development of Psoriasis. Int J Mol Sci 2019; 20:ijms20184347. [PMID: 31491865 PMCID: PMC6769762 DOI: 10.3390/ijms20184347] [Citation(s) in RCA: 342] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/30/2019] [Accepted: 09/03/2019] [Indexed: 12/12/2022] Open
Abstract
Psoriasis is an immune-mediated genetic skin disease. The underlying pathomechanisms involve complex interaction between the innate and adaptive immune system. T cells interact with dendritic cells, macrophages, and keratinocytes, which can be mediated by their secreted cytokines. In the past decade, biologics targeting tumor necrosis factor-α, interleukin (IL)-23, and IL-17 have been developed and approved for the treatment of psoriasis. These biologics have dramatically changed the treatment and management of psoriasis. In contrast, various triggering factors can elicit the disease in genetically predisposed individuals. Recent studies suggest that the exacerbation of psoriasis can lead to systemic inflammation and cardiovascular comorbidity. In addition, psoriasis may be associated with other auto-inflammatory and auto-immune diseases. In this review, we summarize the risk factors, which can be divided into two groups (namely, extrinsic and intrinsic risk factors), responsible for the onset and exacerbation of psoriasis in order to facilitate its prevention.
Collapse
|
199
|
Hanna Kazazian N, Wang Y, Roussel-Queval A, Marcadet L, Chasson L, Laprie C, Desnues B, Charaix J, Irla M, Alexopoulou L. Lupus Autoimmunity and Metabolic Parameters Are Exacerbated Upon High Fat Diet-Induced Obesity Due to TLR7 Signaling. Front Immunol 2019; 10:2015. [PMID: 31552019 PMCID: PMC6738575 DOI: 10.3389/fimmu.2019.02015] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 08/08/2019] [Indexed: 12/11/2022] Open
Abstract
Systemic lupus erythematosus (SLE) patients have increased prevalence of metabolic syndrome but the underlying mechanisms are unknown. Toll-like receptor 7 (TLR7) that detects single stranded-RNA plays a key role in antimicrobial host defense and also contributes to the initiation and progression of SLE both in mice and humans. Here, we report the implication of TLR7 signaling in high fat diet (HFD)-induced metabolic syndrome and exacerbation of lupus autoimmunity in TLR8-deficient (TLR8ko) mice, which develop spontaneous lupus-like disease due to increased TLR7 signaling by dendritic cells (DCs). The aggravated SLE pathogenesis in HFD-fed TLR8ko mice was characterized by increased overall immune activation, anti-DNA autoantibody production, and IgG/IgM glomerular deposition that were coupled with increased kidney histopathology. Moreover, upon HFD TLR8ko mice developed metabolic abnormalities, including liver inflammation. In contrast, upon HFD TLR7/8ko mice did not develop SLE and both TLR7ko and TLR7/8ko mice were fully protected from metabolic abnormalities, including body weight gain, insulin resistance, and liver inflammation. Interestingly, HFD led to an increase of TLR7 expression in WT mice, that was coupled with increased TNF production by DCs, and this phenotype was more profound in TLR8ko mice. Our study uncovers the implication of TLR7 signaling in the interconnection of SLE and metabolic abnormalities, indicating that TLR7 might be a novel approach as a tailored therapy in SLE and metabolic diseases.
Collapse
Affiliation(s)
| | - Yawen Wang
- Aix Marseille University, CNRS, INSERM, CIML, Marseille, France
| | | | | | - Lionel Chasson
- Aix Marseille University, CNRS, INSERM, CIML, Marseille, France
| | - Caroline Laprie
- Aix Marseille University, CNRS, INSERM, CIML, Marseille, France
| | - Benoit Desnues
- Aix Marseille University, CNRS, INSERM, CIML, Marseille, France
| | | | - Magali Irla
- Aix Marseille University, CNRS, INSERM, CIML, Marseille, France
| | | |
Collapse
|
200
|
Probst Y, Mowbray E, Svensen E, Thompson K. A Systematic Review of the Impact of Dietary Sodium on Autoimmunity and Inflammation Related to Multiple Sclerosis. Adv Nutr 2019; 10:902-910. [PMID: 31079157 PMCID: PMC6743836 DOI: 10.1093/advances/nmz032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/14/2019] [Accepted: 03/11/2019] [Indexed: 12/23/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system. Current research into potential causes, risk factors, and treatment is largely based around the immune response involved in the pathophysiology of the disease, including factors that contribute to the augmentation of this immune response. This review aimed to determine the role of sodium as a risk factor for increased autoimmunity and inflammation in relation to MS pathogenesis. This systematic review searched the Scopus, MEDLINE, and PubMed scientific databases for studies related to MS and sodium. Studies were included if they addressed sodium intake and MS but were not limited to a disease type or to a study design. Study quality was assessed through the use of the quality rating checklist of the Academy of Nutrition and Dietetics. A total of 12 studies were included in the review, including human, animal, and cellular studies. The studies related to the proinflammatory effect of sodium, the blood-brain barrier, and an effect on autoimmunity. The data presented throughout this review provide insight into the emerging evidence base for sodium intake as a risk factor for MS disease progression and potentially onset of disease. More studies are needed to determine if the influence of sodium is as a single nutrient or has a combined effect as part of an overall eating pattern. This review was registered at PROSPERO as CRD42016039174.
Collapse
Affiliation(s)
- Yasmine Probst
- School of Medicine, University of Wollongong, Wollongong, New South Wales, Australia
| | - Erin Mowbray
- School of Medicine, University of Wollongong, Wollongong, New South Wales, Australia
| | - Erika Svensen
- School of Medicine, University of Wollongong, Wollongong, New South Wales, Australia
| | - Keats Thompson
- School of Medicine, University of Wollongong, Wollongong, New South Wales, Australia
| |
Collapse
|