151
|
Abstract
Most mammalian cells have nuclei that contain DNA, which replicates during cell proliferation. DNA is destroyed by various developmental processes in mammals. It is degraded during programmed cell death that accompanies mammalian development. The nuclei of erythrocytes and eye lens fiber cells are also removed during their differentiation into mature cells. If DNA is not properly degraded in these processes, it can cause various diseases, including tissue atrophy, anemia, cataract, and autoimmune diseases, which indicates that DNA can be a pathogenic molecule. Here, I present how DNA is degraded during programmed cell death, erythroid cell differentiation, and lens cell differentiation. I discuss what might be or will be learned from understanding the molecular mechanisms of DNA degradation that occurs during mammalian development.
Collapse
Affiliation(s)
- Shigekazu Nagata
- Laboratory of Genetics, Integrated Biology Laboratories, Graduate School of Frontier Biosciences, Osaka University, Japan.
| |
Collapse
|
152
|
Hose S, Zigler JS, Sinha D. A novel rat model to study the functions of macrophages during normal development and pathophysiology of the eye. Immunol Lett 2005; 96:299-302. [PMID: 15585337 DOI: 10.1016/j.imlet.2004.09.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2004] [Revised: 09/16/2004] [Accepted: 09/20/2004] [Indexed: 11/17/2022]
Abstract
Several studies have shown that macrophages play an active role in the initiation and completion of the programmed cell death process during development. Macrophages are called professional phagocytes, as their primary role is phagocytosis. The process of phagocytosis is complex and to date only poorly defined. It has also been postulated that macrophages around the developing lens likely migrate into the neural retina and differentiate into microglia after completion of their role as debris removers. We have identified ED1 immunopositive macrophages and CD11b/18 (OX-42) immunopositive macrophage-like cells in the vitreous chamber and sub-retinal space of a rat spontaneous mutation that we have termed Nuc1. The mutation appears to affect the programmed cell death process and is highly eye specific in its effects. While ED1 and ED2-immunopositive macrophages have previously been found surrounding the developing lens and are thought to play a role in the programmed regression of the tunica vasculosa lentis (part of the vascular structure present on the posterior surface of the lens during development), OX-42-immunopositive cells have not previously been identified in the vitreous chamber under normal or pathological conditions. Macrophage subpopulations surrounding the lens may differentiate into OX-42+ cells in Nuc1 following the release of lens material into the vitreous after the posterior capsule ruptures. In Nuc1 homozygotes, the posterior lens capsule ruptures before birth, causing lens material to be extruded into the vitreous compartment and damaging the tunica vasculosa lentis. Alternatively, OX-42+ cells may be recruited due to an inflammatory response both in the vitreous compartment and sub-retinal space. Inflammation is known to have an enhanced influx of phagocytic cells. Our data suggests that subpopulations of macrophages perform distinct functions in inducing apoptosis and phagocytic activity during normal conditions and in disease.
Collapse
Affiliation(s)
- Stacey Hose
- Department of Ophthalmology, School of Medicine, The Johns Hopkins University, 600 North Wolfe Street/Jefferson 3-127A, Baltimore, MD 21287, USA
| | | | | |
Collapse
|
153
|
Abstract
Collagen XVIII is a component of basement membranes (BMs) with the structural properties of both a collagen and a proteoglycan. Proteolytic cleavage within its C-terminal domain releases a fragment, endostatin, which has been reported to have anti-angiogenesis effects. Molecular studies demonstrated binding of the endostatin domain to heparan sulfate and to BM components like laminin and perlecan, but the functional role of these interactions in vivo remains unknown. Insights into the physiological function of collagen XVIII/endostatin have recently been obtained through the identification of inactivating mutations in the human collagen XVIII/endostatin gene (COL18A1) in patients with Knobloch syndrome, characterized by age-dependent vitreoretinal degeneration and occipital encephalocele. That collagen XVIII/endostatin has an essential role in ocular development and the maintenance of visual function is further demonstrated by the ocular abnormalities seen in mice lacking collagen XVIII/endostatin. Age-dependent loss of vision in these mutant mice is associated with pathological accumulation of deposits under the retinal pigment epithelium, as seen in early stages of age-related macular degeneration in humans. In addition, recent evidence suggests that lack of collagen XVIII/endostatin predisposes to hydrocephalus formation. These recent findings demonstrate an important role for collagen XVIII/endostatin in cell-matrix interactions in certain tissues that may be compensated for in other tissues expressing this collagen.
Collapse
Affiliation(s)
- Alexander G Marneros
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
154
|
Mallat M, Marín-Teva JL, Chéret C. Phagocytosis in the developing CNS: more than clearing the corpses. Curr Opin Neurobiol 2005; 15:101-7. [PMID: 15721751 DOI: 10.1016/j.conb.2005.01.006] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Cell corpses generated during CNS development are eliminated through phagocytosis performed by a variety of cells, including mesenchyme-derived macrophages and microglia, or glial cells originating in the neurogenic ectoderm. Mounting evidence indicates that in different species, phagocytes not only clear cell corpses but also engulf still-living neural cells or axons, and thereby promote cell death or axon pruning. Knowledge of the mechanisms of corpse recognition by engulfing cells provides molecular signals to this new role for phagocytes. These observations support a conserved and instructive role for phagocytosis in the execution of regressive events during neurogenesis.
Collapse
Affiliation(s)
- Michel Mallat
- Biologie des Interactions Neurone-glie, INSERM U.495, IFR 70, UPMC, Hôpital de la Salpêtrière, 47 boulevard de l'Hôpital, 75013 Paris, France.
| | | | | |
Collapse
|
155
|
Cailhier JF, Partolina M, Vuthoori S, Wu S, Ko K, Watson S, Savill J, Hughes J, Lang RA. Conditional macrophage ablation demonstrates that resident macrophages initiate acute peritoneal inflammation. THE JOURNAL OF IMMUNOLOGY 2005; 174:2336-42. [PMID: 15699170 DOI: 10.4049/jimmunol.174.4.2336] [Citation(s) in RCA: 197] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The role played by resident macrophages (Mphi) in the initiation of peritoneal inflammation is currently unclear. We have used a conditional Mphi ablation strategy to determine the role of resident peritoneal Mphi in the regulation of neutrophil (PMN) recruitment in experimental peritonitis. We developed a novel conditional Mphi ablation transgenic mouse (designated CD11bDTR) based upon CD11b promoter-mediated expression of the human diphtheria toxin (DT) receptor. The murine DT receptor binds DT poorly such that expression of the human receptor confers toxin sensitivity. Intraperitoneal injection of minute (nanogram) doses of DT results in rapid and marked ablation of F4/80-positive Mphi populations in the peritoneum as well as the kidney, and ovary. In experimental peritonitis, resident Mphi ablation resulted in a dramatic attenuation of PMN infiltration that was rescued by the adoptive transfer of resident nontransgenic Mphi. Attenuation of PMN infiltration was associated with diminished CXC chemokine production at 1 h. These studies indicate a key role for resident peritoneal Mphi in sensing perturbation to the peritoneal microenvironment and regulating PMN infiltration.
Collapse
Affiliation(s)
- Jean Francois Cailhier
- Phagocyte Laboratory, Medical Research Council Center for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
156
|
Lahvis GP, Pyzalski RW, Glover E, Pitot HC, McElwee MK, Bradfield CA. The aryl hydrocarbon receptor is required for developmental closure of the ductus venosus in the neonatal mouse. Mol Pharmacol 2005; 67:714-20. [PMID: 15590894 DOI: 10.1124/mol.104.008888] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
A developmental role for the Ahr locus has been indicated by the observation that mice harboring a null allele display a portocaval vascular shunt throughout life. To define the ontogeny and determine the identity of this shunt, we developed a visualization approach in which three-dimensional (3D) images of the developing liver vasculature are generated from serial sections. Applying this 3D visualization approach at multiple developmental times allowed us to demonstrate that the portocaval shunt observed in Ahr-null mice is the remnant of an embryonic structure and is not acquired after birth. We observed that the shunt is found in late-stage wild-type embryos but closes during the first 48 h of postnatal life. In contrast, the same structure fails to close in Ahr-null mice and remains open throughout adulthood. The ontogeny of this shunt, along with its 3D position, allowed us to conclude that this shunt is a patent developmental structure known as the ductus venosus (DV). Upon searching for a physiological cause of the patent DV, we observed that during the first 48 h, most major hepatic veins, such as the portal and umbilical veins, normally decrease in diameter but do not change in Ahr-null mice. This observation suggests that failure of the DV to close may be the consequence of increased blood pressure or a failure in vasoconstriction in the developing liver.
Collapse
Affiliation(s)
- Garet P Lahvis
- Department of Surgery, McArdle Laboratory for Cancer Research, University of Wisconsin Medical School, Madison, WI 53706, USA
| | | | | | | | | | | |
Collapse
|
157
|
Zhang C, Gehlbach P, Gongora C, Cano M, Fariss R, Hose S, Nath A, Green WR, Goldberg MF, Zigler JS, Sinha D. A potential role for β- and γ-crystallins in the vascular remodeling of the eye. Dev Dyn 2005; 234:36-47. [PMID: 16003775 DOI: 10.1002/dvdy.20494] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We demonstrate that expression of beta- and gamma-crystallins is associated with intraocular vessels during normal vascular development of the eye and also in the Nuc1 rat, a mutant in which the hyaloid vascular system fails to regress normally. Real-Time RT PCR, Western blot and metabolic labeling studies indicate an increased expression of beta- and gamma-crystallins in Nuc1 retina. The increased expression of crystallins was localized to the astrocytes surrounding the intraocular vessels. A similar pattern of crystallin expression was also observed in the retinal vessels during normal development. Cultured human astrocytes exposed to 3-nitropropionic acid, an established model of neuronal hypoxia, increased VEGF expression, as expected, but also increased expression of crystallins. Our data suggest that crystallins may function together with VEGF during vascular remodeling. Interestingly, in human PFV (persistent fetal vasculature) disease, where the hyaloid vasculature abnormally persists after birth, we show that astrocytes express both VEGF and crystallins.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Ophthalmology, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
158
|
Martin AC, Thornton JD, Liu J, Wang X, Zuo J, Jablonski MM, Chaum E, Zindy F, Skapek SX. Pathogenesis of persistent hyperplastic primary vitreous in mice lacking the arf tumor suppressor gene. Invest Ophthalmol Vis Sci 2004; 45:3387-96. [PMID: 15452040 PMCID: PMC1557705 DOI: 10.1167/iovs.04-0349] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
PURPOSE Persistent hyperplastic primary vitreous (PHPV) is an idiopathic developmental eye disease associated with failed involution of the hyaloid vasculature. The present work addressed the pathogenesis of PHPV in a mouse model that replicates many aspects of the human disease. METHODS Ophthalmoscopic and histologic analyses documented pathologic processes in eyes of mice lacking the Arf gene compared with Ink4a-deficient and wild-type control animals. Immunohistochemical staining, in situ hybridization, and RT-PCR demonstrated the expression of relevant gene products. Arf gene expression was determined by in situ hybridization using wholemounts of wild-type mouse eyes and by immunofluorescence staining for green fluorescent protein (GFP) in Arf(+/GFP) heterozygous knock-in mouse eyes. RESULTS Abnormalities in Arf(-/-) mice mimicked those found in patients with severe PHPV. The mice had microphthalmia; fibrovascular, retrolental tissue containing retinal pigment epithelial cells and remnants of the hyaloid vascular system; posterior lens capsule destruction with lens degeneration and opacity; and severe retinal dysplasia and detachment. Eyes of mice lacking the overlapping Ink4a gene were normal. Arf was selectively expressed in perivascular cells within the vitreous of the postnatal eye. Cells composing the retrolental mass in Arf(-/-) mice expressed the Arf promoter. The remnant hyaloid vessels expressed Flk-1. Its ligand, vascular endothelial growth factor (Vegf), was expressed in the retrolental tissue and the adjacent dysplastic neuroretina. CONCLUSIONS Arf(-/-) mice have features that accurately mimic severe PHPV. In the HVS, Arf expression in perivascular cells may block their accumulation or repress Vegf expression to promote HVS involution and prevent PHPV.
Collapse
Affiliation(s)
- Amy C. Martin
- From the Departments of Hematology/Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - J. Derek Thornton
- From the Departments of Hematology/Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jiewiu Liu
- From the Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - XiaoFei Wang
- From the Department of Ophthalmology, The University of Tennessee Health Science Center, Memphis, Tennessee
- The Departments of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, Tennessee
- The Tennessee Mouse Genome Consortium, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Jian Zuo
- From the Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Monica M. Jablonski
- From the Department of Ophthalmology, The University of Tennessee Health Science Center, Memphis, Tennessee
- The Departments of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, Tennessee
- The Tennessee Mouse Genome Consortium, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Edward Chaum
- From the Department of Ophthalmology, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Frederique Zindy
- From the Departments of Genetics and Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Stephen X. Skapek
- From the Departments of Hematology/Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
- From the Department of Ophthalmology, The University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
159
|
Abstract
Programmed cell death involves the removal of cell corpses by other cells in a process termed engulfment. Genetic studies of the nematode Caenorhabditis elegans have led to a framework not only for the killing step of programmed cell death but also for the process of cell-corpse engulfment. This work has defined two signal transduction pathways that act redundantly to control engulfment. Signals expressed by dying cells probably regulate these C. elegans pathways. Components of the cell-corpse recognition system of one of the C. elegans pathways include the CED-7 ABC transporter, which likely presents a death ligand on the surface of the dying cell; the CED-1 transmembrane receptor, which recognizes this signal; and the CED-6 adaptor protein, which may transduce a signal from CED-1. The second C. elegans pathway acts in parallel and involves a novel Rac GTPase signaling pathway, with the components CED-2 CrkII, CED-5 DOCK180, CED-12 ELMO, and CED-10 Rac. The cell-corpse recognition system that activates this pathway remains to be characterized. In C. elegans, and possibly in mammals, the process of cell-corpse engulfment promotes the death process itself. The known mechanisms for cell-corpse engulfment leave much to be discovered concerning this fundamental aspect of metazoan biology.
Collapse
Affiliation(s)
- Peter W Reddien
- Dept. of Neurobiology and Anatomy,University of Utah School of Medicine, Salt Lake City, Utah 84132, USA.
| | | |
Collapse
|
160
|
Gemensky-Metzler AJ, Wilkie DA. Surgical management and histologic and immunohistochemical features of a cataract and retrolental plaque secondary to persistent hyperplastic tunica vasculosa lentis/persistent hyperplastic primary vitreous (PHTVL/PHPV) in a Bloodhound puppy. Vet Ophthalmol 2004; 7:369-75. [PMID: 15310298 DOI: 10.1111/j.1463-5224.2004.04032.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The objective of this study was to describe the clinical, histologic and immunohistochemical features, the surgical treatment, and outcome of a cataract secondary to persistent hyperplastic tunica vasculosa lentis/persistent hyperplastic primary vitreous (PHTVL/PHPV) in a dog. A 4-month-old male Bloodhound dog presented for evaluation of a cataract. A complete ophthalmic examination and ocular ultrasonography were performed. A resorbing cataract with intralenticular hemorrhage, lens induced uveitis, and PHTVL/PHPV were diagnosed. Extracapsular cataract extraction using phacoemulsification was performed. A primary posterior capsulectomy was performed to remove a retrolental plaque with the posterior capsule; the excised plaque was submitted for histopathology and immunohistochemical staining. A 41-Diopter intraocular lens (IOL) was implanted. Functional vision was maintained postoperatively during the 21-month follow-up period. Histologically, the posterior capsule was coiled and exhibited duplication. The retrolental plaque was comprised of dense fibrous connective tissue, blood vessels, free red blood cells, hemosiderin-laden macrophages, a pocket of neural tissue and numerous perivascular mast cells. With immunohistochemical staining, the neural elements were determined to be glial cells compatible with astrocytes. Cataract secondary to PHTVL/PHPV can be successfully treated using phacoemulsification and planned posterior capsulectomy. Posterior lens capsule duplication, mast cells and astrocytic glial cells may be normal components of the fibrovascular retrolental plaque associated with PHTVL/PHPV.
Collapse
Affiliation(s)
- Anne J Gemensky-Metzler
- Department of Veterinary Clinical Sciences, The Ohio State University Veterinary Teaching Hospital, 601 Vernon Tharp Street, Columbus, OH 43210, USA.
| | | |
Collapse
|
161
|
Chimini G. Le récepteur des phosphatidylsérines, une arlésienne qui nous surprend toujours. Med Sci (Paris) 2004; 20:501-2. [PMID: 15190460 DOI: 10.1051/medsci/2004205501] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
162
|
Coultas L, Bouillet P, Stanley EG, Brodnicki TC, Adams JM, Strasser A. Proapoptotic BH3-only Bcl-2 family member Bik/Blk/Nbk is expressed in hemopoietic and endothelial cells but is redundant for their programmed death. Mol Cell Biol 2004; 24:1570-81. [PMID: 14749373 PMCID: PMC344198 DOI: 10.1128/mcb.24.4.1570-1581.2004] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The BH3-only members of the Bcl-2 protein family are essential for initiation of programmed cell death and stress-induced apoptosis. We have determined the expression pattern in mice of the BH3-only protein Bik, also called Blk or Nbk, and examined its physiological function by gene targeting. We found that Bik is expressed widely in the hematopoietic compartment and in endothelial cells of the venous but not arterial lineages. Nevertheless, its loss did not increase the numbers of such cells in mice or protect hematopoietic cells in vitro from apoptosis induced by cytokine withdrawal or diverse other cytotoxic stimuli. Moreover, whereas loss of the BH3-only protein Bim rescued mice lacking the prosurvival protein Bcl-2 from fatal polycystic kidney disease and lymphopenia, loss of Bik did not. These results indicate that any function of Bik in programmed cell death and stress-induced apoptosis must overlap that of other BH3-only proteins.
Collapse
Affiliation(s)
- Leigh Coultas
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3050, Australia
| | | | | | | | | | | |
Collapse
|
163
|
Affiliation(s)
- Jeffrey W Pollard
- Center for the Study of Reproductive Biology and Women's Health and the Albert Einstein Cancer Center, Albert Einstein College of Medicine, New York, New York 10461, USA.
| |
Collapse
|
164
|
Yoshida A, Elner SG, Bian ZM, Kindezelskii AL, Petty HR, Elner VM. Activated monocytes induce human retinal pigment epithelial cell apoptosis through caspase-3 activation. J Transl Med 2003; 83:1117-29. [PMID: 12920241 DOI: 10.1097/01.lab.0000082393.02727.b5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Dysfunction and loss of human retinal pigment epithelial (HRPE) cells is a significant component of many ocular diseases, in which mononuclear phagocyte infiltration at the HRPE-related interface is also observed. In this study, we investigated whether HRPE cell apoptosis may be induced by overlay of IFN-gamma-activated monocytes. Human monocytes primed with IFN-gamma overlaid directly onto HRPE cells elicited significant increases in terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL)-positive HRPE cells (p < 0.0001) and decreases of proliferating cell nuclear antigen-positive (p < 0.0001) HRPE cells. The activated monocytes also induced HRPE cell caspase-3 activation, which was inhibited by the caspase-3 inhibitor, Z-DEVD-fmk. However, co-incubations in which activated monocytes were prevented from direct contact with HRPE cells or in which the monocytes were separated from the HRPE cells after 30 minutes of direct contact, did not induce significant HRPE cell apoptosis. Function-blocking anti-CD18 and anti-intercellular adhesion molecule-1 (ICAM-1) antibodies significantly reduced activated monocyte-induced TUNEL-positive HRPE cells by 48% (p = 0.0051) and 38% (p = 0.046), respectively. Anti-CD18 and anti-ICAM-1 antibodies significantly inhibited caspase-3 activity by 56% (p < 0.0001) and 45% (p < 0.0001), respectively. However, antibodies to vascular cell adhesion molecule-1, TNF-alpha, IL-1beta, or TNF-related apoptosis-inducing ligand did not inhibit apoptosis or caspase-3 activation. Direct overlay of monocytes also induced reactive oxygen metabolites (ROM) within HRPE cells. The intracellular HRPE cell ROM production was inhibited by the anti-CD18 and anti-ICAM-1 antibodies, but not by superoxide dismutase, presumably due to its failure to penetrate into HRPE cells. Accordingly, neither superoxide dismutase nor N(G)-monomethyl-L-arginine had significant effects on HRPE cell apoptosis or caspase-3 activation. Our results suggest that activated monocytes may induce ROM in HRPE cells through cell-to-cell contact, in part via CD18 and ICAM-1, and promote HRPE cell apoptosis. These mechanisms may compromise HRPE cell function and survival in a variety of retinal diseases.
Collapse
Affiliation(s)
- Ayako Yoshida
- Department of Ophthalmology, University of Michigan, Ann Arbor, Michigan 48105, USA
| | | | | | | | | | | |
Collapse
|
165
|
Sears HC, Kennedy CJ, Garrity PA. Macrophage-mediated corpse engulfment is required for normal Drosophila CNS morphogenesis. Development 2003; 130:3557-65. [PMID: 12810602 DOI: 10.1242/dev.00586] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cell death plays an essential role in development, and the removal of cell corpses presents an important challenge for the developing organism. Macrophages are largely responsible for the clearance of cell corpses in Drosophila melanogaster and mammalian systems. We have examined the developmental requirement for macrophages in Drosophila and find that macrophage function is essential for central nervous system (CNS) morphogenesis. We generate and analyze mutations in the Pvr locus, which encodes a receptor tyrosine kinase of the PDGF/VEGF family that is required for hemocyte migration. We find that loss of Pvr function causes the mispositioning of glia within the CNS and the disruption of the CNS axon scaffold. We further find that inhibition of hemocyte development or of Croquemort, a receptor required for macrophage-mediated corpse engulfment, causes similar CNS defects. These data indicate that macrophage-mediated clearance of cell corpses is required for proper morphogenesis of the Drosophila CNS.
Collapse
Affiliation(s)
- Heather C Sears
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue 68-230B, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
166
|
Durant S, Geutskens S, Van Blokland SCA, Coulaud J, Alves V, Pleau JM, Versnel M, Drexhage HA, Homo-Delarche F. Proapoptosis and antiapoptosis-related molecules during postnatal pancreas development in control and nonobese diabetic mice: relationship with innervation. J Transl Med 2003; 83:227-39. [PMID: 12594237 DOI: 10.1097/01.lab.0000053914.93282.a5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The mouse pancreas, an immature organ at birth, reaches its adult size and morphology after weaning (3 weeks of age). Around this time, apoptotic phenomena and various types of macrophages are normally present. During development, Fas-Fas ligand (FasL) interactions are known to play a role in apoptotic events involved in tissue remodeling and elimination of damaged cells, and macrophages are routinely observed near apoptotic cells. Apoptosis and Fas-FasL interactions are also thought to be involved in the pathogenesis of autoimmune diseases, particularly type 1 diabetes (T1D). Therefore, we used early postnatal mouse pancreata from three control strains (C57BL/6, DBA/2, BALB/c) and from two strains with the nonobese diabetic (NOD)-related genetic background (the spontaneous T1D NOD model and the lymphocyte-deficient NODscid strain) to study apoptotic phenomena together with the molecular and immunohistochemical expression of proapoptosis (Fas, FasL) and antiapoptosis (Bcl-2) proteins. First, although no major difference in the numbers of total pancreatic apoptotic cells was noted among strains, significantly more FasL(+) expression was detected immunohistochemically in mice with the NOD genetic background than in control pancreata from birth to 1 month of age. Second, FasL(+), Fas(+), and Bcl-2(+) structures seemed to be associated with innervation, regardless of the strain and age. Third, in control and NOD strains, nerves (identified by immunohistochemical labeling of peripherin or neurofilament 200), were often observed in periductular and peri-insular areas. Finally, some peripherin-positive nerves expressed the interferon-inducible protein-10 chemokine, and various types of macrophages were found to be in close proximity. These data highlight an overlooked, innervation-related aspect of normal mouse postnatal pancreas development with possible implications in T1D pathogenesis.
Collapse
Affiliation(s)
- Sylvie Durant
- CNRS UMR 8603 INSERM U25, FRE 2444, Université Paris V, Hôpital Necker, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
167
|
Paradis H, Liu CY, Saika S, Azhar M, Doetschman T, Good WV, Nayak R, Laver N, Kao CWC, Kao WWY, Gendron RL. Tubedown-1 in remodeling of the developing vitreal vasculature in vivo and regulation of capillary outgrowth in vitro. Dev Biol 2002; 249:140-55. [PMID: 12217325 DOI: 10.1006/dbio.2002.0757] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tubedown-1 (tbdn-1) is a mammalian homologue of the N-terminal acetyltransferase subunit NAT1 of Saccharomyces cerevisiae and copurifies with an acetyltransferase activity. Tbdn-1 expression in endothelial cells becomes downregulated during the formation of capillary-like structures in vitro and is regulated in vivo in a manner which suggests a functional role in dampening blood vessel development. Here we show that tbdn-1 is expressed highly in the vitreal vascular network (tunica vasculosa lentis and vasa hyaloidea propria) during the pruning and remodeling phases of this transient structure. The vitreal blood vessels of mice harboring a targeted inactivation of TGF-beta2 fail to remodel and abnormally accumulate, a phenomenon reminiscent of the ocular pathology resembling persistent fetal vasculature (PFV) in humans. Since suppression of normal tbdn-1 expression has been previously observed in retinal vessel proliferation, we analyzed vitreal vascular changes and tbdn-1 expression in TGF-beta2(-/-) eyes. The nuclei of vitreal vessel endothelial cells in TGF-beta2(-/-) eyes express proliferating cell nuclear antigen (PCNA) and exhibit increased levels of active (P42/44)mitogen-activated protein kinase (phospho-(P42/44)MAPK), characteristics consistent with proliferative endothelial cells. In contrast to normal vitreal vessels, collagen IV expression exhibited a disorganized pattern in the TGF-beta2(-/-) vitreal vessels, suggesting vessel disorganization and possibly a breakdown of vessel basal laminae. Moreover, vitreal vessels of TGF-beta2(-/-) mice lack expression of pericyte markers (CD13, alpha smooth muscle actin) and show ultrastructural changes consistent with pericyte degeneration. The accumulating vitreal blood vessels of TGF-beta2(-/-) mice, while maintaining expression of the endothelial marker von Willebrand Factor, show a significant decrease in the expression of tbdn-1. We addressed the functional role of tbdn-1 in the regulation of vitreal blood vessels using an in vitro model of choroid-retina capillary outgrowth. Clones of the RF/6A fetal choroid-retina endothelial cell line showing suppression of tbdn-1 levels after overexpression of an antisense TBDN-1 cDNA display a significant increase in the formation of capillary-like structures in vitro compared with controls. These findings suggest that tbdn-1 inhibits capillary-like formation in vitro and may serve to dampen vitreal blood vessel formation preceding the regression of the vitreal vasculature during development. Our results also suggest that tbdn-1 may participate with TGF-beta2 in regulating normal development of the vitreal vasculature.
Collapse
Affiliation(s)
- H Paradis
- Division of Basic Medical Sciences, Department of Medicine, Memorial University of Newfoundland, St. John's NF, A1B 3V6, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
168
|
Geske FJ, Monks J, Lehman L, Fadok VA. The role of the macrophage in apoptosis: hunter, gatherer, and regulator. Int J Hematol 2002; 76:16-26. [PMID: 12138891 DOI: 10.1007/bf02982714] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Clearance of cellular corpses is a critical feature of apoptosis in vivo during development, tissue homeostasis, and resolution of inflammation. As the professional phagocytes of the body, macrophages play a key role in this process. By recognizing emerging signals using several different receptors, macrophages engulf apoptotic cells swiftly and efficiently. In addition, the binding of apoptotic cells profoundly down-regulates the ability of the macrophage to produce inflammatory mediators by inducing the release of antiinflammatory mediators. Finally, macrophages may actually induce cell death in specific cells during embryogenesis. Abnormalities of apoptotic cell clearance may contribute to the pathogenesis of chronic inflammatory diseases, including those of autoimmune etiology. It is also possible that certain malignant tumor cells co-opt the mechanisms for apoptotic cell clearance to avoid immune surveillance by subverting macrophage and dendritic cell responses.
Collapse
Affiliation(s)
- F Jon Geske
- Department of Pediatrics, National Jewish Medical and Research Center, Denver, Colorado 80206, USA.
| | | | | | | |
Collapse
|
169
|
Abstract
Phagocytes have long been known to engulf and degrade apoptotic cells. Recent studies in mammals and the nematode Caenorhabditis elegans have shed some light on the conserved molecular mechanisms involved in this process. A series of results now challenge the traditional view of phagocytes as simply scavengers, 'cleaning up' after apoptosis to prevent inflammatory responses, and hence tissue damage. Instead, they suggest that phagocytes are active in the induction and/or execution of apoptosis in target cells.
Collapse
Affiliation(s)
- Barbara Conradt
- Max-Planck-Institute of Neurobiology, Am Klopferspitz 18a, D-82152 Martinsried/Munich, Germany.
| |
Collapse
|
170
|
Volejnikova S, Marks SC, Graves DT. Tumor necrosis factor modulates apoptosis of monocytes in areas of developmentally regulated bone remodeling. J Bone Miner Res 2002; 17:991-7. [PMID: 12054175 DOI: 10.1359/jbmr.2002.17.6.991] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Tooth eruption is characterized by spatially segregated bone resorption along the path of eruption and bone formation in the opposite direction. Monocyte recruitment occurs in two distinct peaks in both areas of resorption and formation. Without such recruitment tooth eruption does not occur. The signals that regulate this recruitment are thought to involve the expression of cytokines and chemokines. One such cytokine is tumor necrosis factor (TNF), which can affect monocyte recruitment through the induction of chemokines and adhesion molecules and increase their lifespan by acting as antiapoptotic cell survival signals. We examined the latter by studying mice with targeted deletions of TNF receptors p55 and p75 (TNFRp55/p75). The results indicate that mice that lack functional TNF receptors have a significantly reduced number of monocytes in the apical area associated with bone formation. The reduced number of monocytes in this area can be accounted for by an increase in apoptosis in TNFRp55-/-/p75-/-. In contrast, the number of monocytes, the rate of monocyte apoptosis, and the formation of osteoclasts in the occlusal area associated with bone resorption occurred independently of TNF activity. These results suggest that TNF receptor signaling can affect tooth eruption by acting as a monocyte survival signal in some but not all areas of bone undergoing developmentally regulated remodeling.
Collapse
Affiliation(s)
- S Volejnikova
- Department of Periodontology and Oral Biology, Boston University School of Dental Medicine, Massachusetts 02118, USA
| | | | | |
Collapse
|
171
|
|
172
|
Kato M, Patel MS, Levasseur R, Lobov I, Chang BHJ, Glass DA, Hartmann C, Li L, Hwang TH, Brayton CF, Lang RA, Karsenty G, Chan L. Cbfa1-independent decrease in osteoblast proliferation, osteopenia, and persistent embryonic eye vascularization in mice deficient in Lrp5, a Wnt coreceptor. J Cell Biol 2002; 157:303-14. [PMID: 11956231 PMCID: PMC2199263 DOI: 10.1083/jcb.200201089] [Citation(s) in RCA: 827] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The low-density lipoprotein receptor-related protein (Lrp)-5 functions as a Wnt coreceptor. Here we show that mice with a targeted disruption of Lrp5 develop a low bone mass phenotype. In vivo and in vitro analyses indicate that this phenotype becomes evident postnatally, and demonstrate that it is secondary to decreased osteoblast proliferation and function in a Cbfa1-independent manner. Lrp5 is expressed in osteoblasts and is required for optimal Wnt signaling in osteoblasts. In addition, Lrp5-deficient mice display persistent embryonic eye vascularization due to a failure of macrophage-induced endothelial cell apoptosis. These results implicate Wnt proteins in the postnatal control of vascular regression and bone formation, two functions affected in many diseases. Moreover, these features recapitulate human osteoporosis-pseudoglioma syndrome, caused by LRP5 inactivation.
Collapse
Affiliation(s)
- Masaki Kato
- Department of Molecular and Cellular Biology and Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
173
|
Fukai N, Eklund L, Marneros AG, Oh SP, Keene DR, Tamarkin L, Niemelä M, Ilves M, Li E, Pihlajaniemi T, Olsen BR. Lack of collagen XVIII/endostatin results in eye abnormalities. EMBO J 2002; 21:1535-44. [PMID: 11927538 PMCID: PMC125362 DOI: 10.1093/emboj/21.7.1535] [Citation(s) in RCA: 250] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mice lacking collagen XVIII and its proteolytically derived product endostatin show delayed regression of blood vessels in the vitreous along the surface of the retina after birth and lack of or abnormal outgrowth of retinal vessels. This suggests that collagen XVIII/endostatin is critical for normal blood vessel formation in the eye. All basement membranes in wild-type eyes, except Descemet's membrane, showed immunogold labeling with antibodies against collagen XVIII. Labeling at sites where collagen fibrils in the vitreous are connected with the inner limiting membrane and separation of the vitreal matrix from the inner limiting membrane in mutant mice indicate that collagen XVIII is important for anchoring vitreal collagen fibrils to the inner limiting membrane. The findings provide an explanation for high myopia, vitreoretinal degeneration and retinal detachment seen in patients with Knobloch syndrome caused by loss-of-function mutations in collagen XVIII.
Collapse
Affiliation(s)
| | - Lauri Eklund
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA,
Collagen Research Unit, Biocenter and Department of Medical Biochemistry, University of Oulu, Oulu, FIN-90014, Finland, Department of Physiology, University of Florida, Gainesville, FL 32610, Portland Imaging Center, Shriners Hospitals for Children, Portland, OR 97201, CytImmune Sciences, Inc., College Park, MD 20740, Biocenter and Department of Physiology, University of Oulu, FIN-90014, Finland and Cardiovascular Research Division of Massachusetts General Hospital, Boston, MA 02114, USA Corresponding author e-mail: N.Fukai, L.Eklund and A.G.Marneros contributed equally to this work
| | | | - Suk Paul Oh
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA,
Collagen Research Unit, Biocenter and Department of Medical Biochemistry, University of Oulu, Oulu, FIN-90014, Finland, Department of Physiology, University of Florida, Gainesville, FL 32610, Portland Imaging Center, Shriners Hospitals for Children, Portland, OR 97201, CytImmune Sciences, Inc., College Park, MD 20740, Biocenter and Department of Physiology, University of Oulu, FIN-90014, Finland and Cardiovascular Research Division of Massachusetts General Hospital, Boston, MA 02114, USA Corresponding author e-mail: N.Fukai, L.Eklund and A.G.Marneros contributed equally to this work
| | - Douglas R. Keene
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA,
Collagen Research Unit, Biocenter and Department of Medical Biochemistry, University of Oulu, Oulu, FIN-90014, Finland, Department of Physiology, University of Florida, Gainesville, FL 32610, Portland Imaging Center, Shriners Hospitals for Children, Portland, OR 97201, CytImmune Sciences, Inc., College Park, MD 20740, Biocenter and Department of Physiology, University of Oulu, FIN-90014, Finland and Cardiovascular Research Division of Massachusetts General Hospital, Boston, MA 02114, USA Corresponding author e-mail: N.Fukai, L.Eklund and A.G.Marneros contributed equally to this work
| | - Lawrence Tamarkin
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA,
Collagen Research Unit, Biocenter and Department of Medical Biochemistry, University of Oulu, Oulu, FIN-90014, Finland, Department of Physiology, University of Florida, Gainesville, FL 32610, Portland Imaging Center, Shriners Hospitals for Children, Portland, OR 97201, CytImmune Sciences, Inc., College Park, MD 20740, Biocenter and Department of Physiology, University of Oulu, FIN-90014, Finland and Cardiovascular Research Division of Massachusetts General Hospital, Boston, MA 02114, USA Corresponding author e-mail: N.Fukai, L.Eklund and A.G.Marneros contributed equally to this work
| | - Merja Niemelä
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA,
Collagen Research Unit, Biocenter and Department of Medical Biochemistry, University of Oulu, Oulu, FIN-90014, Finland, Department of Physiology, University of Florida, Gainesville, FL 32610, Portland Imaging Center, Shriners Hospitals for Children, Portland, OR 97201, CytImmune Sciences, Inc., College Park, MD 20740, Biocenter and Department of Physiology, University of Oulu, FIN-90014, Finland and Cardiovascular Research Division of Massachusetts General Hospital, Boston, MA 02114, USA Corresponding author e-mail: N.Fukai, L.Eklund and A.G.Marneros contributed equally to this work
| | - Mika Ilves
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA,
Collagen Research Unit, Biocenter and Department of Medical Biochemistry, University of Oulu, Oulu, FIN-90014, Finland, Department of Physiology, University of Florida, Gainesville, FL 32610, Portland Imaging Center, Shriners Hospitals for Children, Portland, OR 97201, CytImmune Sciences, Inc., College Park, MD 20740, Biocenter and Department of Physiology, University of Oulu, FIN-90014, Finland and Cardiovascular Research Division of Massachusetts General Hospital, Boston, MA 02114, USA Corresponding author e-mail: N.Fukai, L.Eklund and A.G.Marneros contributed equally to this work
| | - En Li
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA,
Collagen Research Unit, Biocenter and Department of Medical Biochemistry, University of Oulu, Oulu, FIN-90014, Finland, Department of Physiology, University of Florida, Gainesville, FL 32610, Portland Imaging Center, Shriners Hospitals for Children, Portland, OR 97201, CytImmune Sciences, Inc., College Park, MD 20740, Biocenter and Department of Physiology, University of Oulu, FIN-90014, Finland and Cardiovascular Research Division of Massachusetts General Hospital, Boston, MA 02114, USA Corresponding author e-mail: N.Fukai, L.Eklund and A.G.Marneros contributed equally to this work
| | - Taina Pihlajaniemi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA,
Collagen Research Unit, Biocenter and Department of Medical Biochemistry, University of Oulu, Oulu, FIN-90014, Finland, Department of Physiology, University of Florida, Gainesville, FL 32610, Portland Imaging Center, Shriners Hospitals for Children, Portland, OR 97201, CytImmune Sciences, Inc., College Park, MD 20740, Biocenter and Department of Physiology, University of Oulu, FIN-90014, Finland and Cardiovascular Research Division of Massachusetts General Hospital, Boston, MA 02114, USA Corresponding author e-mail: N.Fukai, L.Eklund and A.G.Marneros contributed equally to this work
| | - Bjorn R. Olsen
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA,
Collagen Research Unit, Biocenter and Department of Medical Biochemistry, University of Oulu, Oulu, FIN-90014, Finland, Department of Physiology, University of Florida, Gainesville, FL 32610, Portland Imaging Center, Shriners Hospitals for Children, Portland, OR 97201, CytImmune Sciences, Inc., College Park, MD 20740, Biocenter and Department of Physiology, University of Oulu, FIN-90014, Finland and Cardiovascular Research Division of Massachusetts General Hospital, Boston, MA 02114, USA Corresponding author e-mail: N.Fukai, L.Eklund and A.G.Marneros contributed equally to this work
| |
Collapse
|
174
|
Monks J, Geske FJ, Lehman L, Fadok VA. Do inflammatory cells participate in mammary gland involution? J Mammary Gland Biol Neoplasia 2002; 7:163-76. [PMID: 12463737 DOI: 10.1023/a:1020351919634] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The processes by which the involuting mammary gland clears residual milk and milk fat, as well as apoptotic cells, have gone largely unstudied in the modern literature. Here we review the evidence for and against the involvement of professional phagocytes of hematopoietic lineage in this process. Additionally we present evidence that mammary epithelial cells themselves are capable of phagocytosis and may be responsible for the majority of apoptotic cell and residual milk clearance during murine involution. In this scheme these cells regulate their cytokine production in response to apoptotic cells in a manner similar to other cells, including macrophages. The ensuing model describes a process of involution that actively suppresses an inflammatory response in the gland, allowing for effective tissue remodeling and damage prevention.
Collapse
Affiliation(s)
- Jenifer Monks
- Department of Pediatrics, National Jewish Medical and Research Center, 1400 Jackson Street, Denver, Colorado 80206, USA
| | | | | | | |
Collapse
|
175
|
Saika S, Saika S, Liu CY, Azhar M, Sanford LP, Doetschman T, Gendron RL, Kao CW, Kao WW. TGFbeta2 in corneal morphogenesis during mouse embryonic development. Dev Biol 2001; 240:419-32. [PMID: 11784073 DOI: 10.1006/dbio.2001.0480] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To examine the roles of TGFbeta isoforms on corneal morphogenesis, the eyes of mice that lack TGFbetas were analyzed at different developmental stages for cell proliferation, migration and apoptosis, and for expression patterns of keratin 12, lumican, keratocan and collagen I. Among the three Tgfb(-/-) mice, only Tgfb2(-/-) mice have abnormal ocular morphogenesis characterized by thin corneal stroma, absence of corneal endothelium, fusion of cornea to lens (a Peters'-like anomaly phenotype), and accumulation of hyaline cells in vitreous. In Tgfb2(-/-) mice, fewer keratocytes were found in stroma that has a decreased accumulation of ECM; for example, lumican, keratocan and collagen I were greatly diminished. The absence of TGFbeta2 did not compromise cell proliferation, nor enhance apoptosis. The thinner stroma resulting from decreased ECM synthesis may account for the decreased cell number in the stroma of Tgfb2 null mice. Keratin 12 expression was not altered in Tgfb2(-/-) mice, implicating normal corneal type epithelial differentiation. Delayed appearance of macrophages in ocular tissues was observed in Tgfb2(-/-) mice. Malfunctioning macrophages may account for accumulation of cell mass in vitreous of Tgfb2 null mice.
Collapse
Affiliation(s)
- S Saika
- Department of Ophthalmology, University of Cincinnati, Cincinnati, Ohio, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
176
|
Abstract
Apoptosis is a genetically controlled event taking care of cell turnover in healthy adult tissues and of focal elimination of cells during embryonic development. The initial phase of the program leads to corpse generation and is followed by the equally crucial removal by phagocytes. In fact, engulfment is not mere clearing of cell remnants, but rather elicits phagocyte responses able to modulate inflammation and immune reactions. The combined investigation of nematode and mammalian models has allowed, in recent years, a fast progression in the field; however, effort is still required to dissect thoroughly the molecular rules orchestrating engulfment.
Collapse
Affiliation(s)
- V A Fadok
- National Jewish Medical and Research Center, 1400 Jackson Street, Denver, CO 80206, USA
| | | |
Collapse
|
177
|
Gong Y, Slee RB, Fukai N, Rawadi G, Roman-Roman S, Reginato AM, Wang H, Cundy T, Glorieux FH, Lev D, Zacharin M, Oexle K, Marcelino J, Suwairi W, Heeger S, Sabatakos G, Apte S, Adkins WN, Allgrove J, Arslan-Kirchner M, Batch JA, Beighton P, Black GC, Boles RG, Boon LM, Borrone C, Brunner HG, Carle GF, Dallapiccola B, De Paepe A, Floege B, Halfhide ML, Hall B, Hennekam RC, Hirose T, Jans A, Jüppner H, Kim CA, Keppler-Noreuil K, Kohlschuetter A, LaCombe D, Lambert M, Lemyre E, Letteboer T, Peltonen L, Ramesar RS, Romanengo M, Somer H, Steichen-Gersdorf E, Steinmann B, Sullivan B, Superti-Furga A, Swoboda W, van den Boogaard MJ, Van Hul W, Vikkula M, Votruba M, Zabel B, Garcia T, Baron R, Olsen BR, Warman ML. LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell 2001; 107:513-23. [PMID: 11719191 DOI: 10.1016/s0092-8674(01)00571-2] [Citation(s) in RCA: 1588] [Impact Index Per Article: 66.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In humans, low peak bone mass is a significant risk factor for osteoporosis. We report that LRP5, encoding the low-density lipoprotein receptor-related protein 5, affects bone mass accrual during growth. Mutations in LRP5 cause the autosomal recessive disorder osteoporosis-pseudoglioma syndrome (OPPG). We find that OPPG carriers have reduced bone mass when compared to age- and gender-matched controls. We demonstrate LRP5 expression by osteoblasts in situ and show that LRP5 can transduce Wnt signaling in vitro via the canonical pathway. We further show that a mutant-secreted form of LRP5 can reduce bone thickness in mouse calvarial explant cultures. These data indicate that Wnt-mediated signaling via LRP5 affects bone accrual during growth and is important for the establishment of peak bone mass.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Adult
- Animals
- Animals, Outbred Strains
- Bone Density/genetics
- Bone Morphogenetic Protein 2
- Bone Morphogenetic Proteins/pharmacology
- COS Cells
- Child
- Child, Preschool
- Chlorocebus aethiops
- Chromosomes, Human, Pair 11/genetics
- Culture Media, Conditioned/pharmacology
- DNA, Complementary/genetics
- Dishevelled Proteins
- Eye/embryology
- Eye Abnormalities/genetics
- Female
- Genes, Recessive
- Heterozygote
- Humans
- LDL-Receptor Related Proteins
- Low Density Lipoprotein Receptor-Related Protein-5
- Male
- Mesoderm/cytology
- Mice
- Mice, Inbred C57BL
- Organ Culture Techniques
- Osteoblasts/metabolism
- Osteoporosis/genetics
- Phosphoproteins/genetics
- Phosphoproteins/physiology
- Proteins/genetics
- Proteins/physiology
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/physiology
- Receptors, LDL/deficiency
- Receptors, LDL/genetics
- Receptors, LDL/physiology
- Recombinant Fusion Proteins/physiology
- Recombinant Proteins
- Signal Transduction
- Skull/cytology
- Species Specificity
- Stromal Cells/cytology
- Stromal Cells/drug effects
- Syndrome
- Transfection
- Transforming Growth Factor beta
- Wnt Proteins
- Wnt-5a Protein
- Wnt2 Protein
- Wnt3 Protein
- Wnt4 Protein
- Zebrafish Proteins
Collapse
|
178
|
Chang B, Smith RS, Peters M, Savinova OV, Hawes NL, Zabaleta A, Nusinowitz S, Martin JE, Davisson ML, Cepko CL, Hogan BLM, John SWM. Haploinsufficient Bmp4 ocular phenotypes include anterior segment dysgenesis with elevated intraocular pressure. BMC Genet 2001; 2:18. [PMID: 11722794 PMCID: PMC59999 DOI: 10.1186/1471-2156-2-18] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2001] [Accepted: 11/06/2001] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Glaucoma is a blinding disease usually associated with high intraocular pressure (IOP). In some families, abnormal anterior segment development contributes to glaucoma. The genes causing anterior segment dysgenesis and glaucoma in most of these families are not identified and the affected developmental processes are poorly understood. Bone morphogenetic proteins (BMPs) participate in various developmental processes. We tested the importance of Bmp4 gene dosage for ocular development and developmental glaucoma. RESULTS Bmp4+/- mice have anterior segment abnormalities including malformed, absent or blocked trabecular meshwork and Schlemm's canal drainage structures. Mice with severe drainage structure abnormalities, over 80% or more of their angle's extent, have elevated IOP. The penetrance and severity of abnormalities is strongly influenced by genetic background, being most severe on the C57BL/6J background and absent on some other backgrounds. On the C57BL/6J background there is also persistence of the hyaloid vasculature, diminished numbers of inner retinal cells, and absence of the optic nerve. CONCLUSIONS We demonstrate that heterozygous deficiency of BMP4 results in anterior segment dysgenesis and elevated IOP. The abnormalities are similar to those in human patients with developmental glaucoma. Thus, BMP4 is a strong candidate to contribute to Axenfeld-Rieger anomaly and other developmental conditions associated with human glaucoma. BMP4 also participates in posterior segment development and wild-type levels are usually critical for optic nerve development on the C57BL/6J background. Bmp4+/- mice are useful for studying various components of ocular development, and may allow identification of strain specific modifiers affecting a variety of ocular phenotypes.
Collapse
Affiliation(s)
- Bo Chang
- The Jackson Laboratory, Bar Harbor, ME, USA
| | - Richard S Smith
- The Howard Hughes Medical Institute, USA
- The Jackson Laboratory, Bar Harbor, ME, USA
| | - Maureen Peters
- Department of Genetics, Harvard Medical School Boston, MA, USA
| | | | | | | | - Steven Nusinowitz
- Department of Ophthalmology; UCLA Jules Stein Eye Institute, Los Angeles, CA, USA
| | - Janice E Martin
- The Howard Hughes Medical Institute, USA
- The Jackson Laboratory, Bar Harbor, ME, USA
| | | | - Constance L Cepko
- The Howard Hughes Medical Institute, USA
- Department of Genetics, Harvard Medical School Boston, MA, USA
| | - Brigid LM Hogan
- The Howard Hughes Medical Institute, USA
- Department of Cell Biology, Vanderbilt University Medical School, Nashville, TN, USA
| | - Simon WM John
- The Howard Hughes Medical Institute, USA
- The Jackson Laboratory, Bar Harbor, ME, USA
- Department of Ophthalmology, Tufts University School of medicine, Boston, MA, USA
| |
Collapse
|
179
|
Abstract
Ingestion by professional or amateur phagocytes is the fate of most cells that undergo apoptosis. Studies in both Caenorhabditis elegans and mammals are now converging to reveal some of the key mechanisms and consequences of this removal process. At least seven corpse removal genes in nematodes have mammalian equivalents, and represent elements of signaling pathways involved in uptake. In mammals, a wide variety of apoptotic cell recognition receptors has been implicated and appears to be divided into two categories, involved in tethering the apoptotic cell or triggering an uptake mechanism related to macropinocytosis. Apoptotic cell removal is normally efficient and non-inflammatory. By contrast, the process may become subverted by parasites to yield a more favorable growth environment, or in other cases lead to fibrosis. Removal may also clinch the apoptotic process itself in cells not yet completely committed to death.
Collapse
Affiliation(s)
- P M Henson
- Program in Cell Biology and Department of Pediatrics, National Jewish Medical and Research Center, 1400 Jackson Street, Denver, Colorado 80206, USA.
| | | | | |
Collapse
|
180
|
Duffield JS, Ware CF, Ryffel B, Savill J. Suppression by apoptotic cells defines tumor necrosis factor-mediated induction of glomerular mesangial cell apoptosis by activated macrophages. THE AMERICAN JOURNAL OF PATHOLOGY 2001; 159:1397-404. [PMID: 11583967 PMCID: PMC1850510 DOI: 10.1016/s0002-9440(10)62526-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/05/2001] [Indexed: 10/18/2022]
Abstract
Activated macrophages (M(phi)) isolated from inflamed glomeruli or generated by interferon-gamma and lipopolysaccharide treatment in vitro induce glomerular mesangial cell apoptosis by hitherto incompletely understood mechanisms. In this report we demonstrate that nitric oxide-independent killing of co-cultured mesangial cells by interferon-gamma/lipopolysaccharide-activated M(phi) is suppressed by binding/ingestion of apoptotic cells and is mediated by tumor necrosis factor (TNF). Thus, soluble TNF receptor-1 significantly inhibited induction of mesangial cell apoptosis by 1) rodent M(phi) in the presence of nitric oxide synthase inhibitors or 2) human M(phi), both situations in which nitric oxide release was minimal. Furthermore, murine TNF knockout M(phi) were completely unable to induce mesangial cell apoptosis in the presence of nitric oxide synthase inhibitors. We conclude that TNF-restricted M(phi)-directed apoptosis of glomerular mesangial cells can be down-regulated by M(phi) binding/ingestion of apoptotic cells, suggesting a new mechanism for negative feedback regulation of M(phi) controls on resident cell number at inflamed sites.
Collapse
Affiliation(s)
- J S Duffield
- Medical Research Council Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom.
| | | | | | | |
Collapse
|
181
|
Affiliation(s)
- J Savill
- Royal Infirmary of Edinburgh and University of Edinburgh, Edinburgh, Scotland, United Kingdom.
| |
Collapse
|
182
|
Boyle JJ, Bowyer DE, Weissberg PL, Bennett MR. Human blood-derived macrophages induce apoptosis in human plaque-derived vascular smooth muscle cells by Fas-ligand/Fas interactions. Arterioscler Thromb Vasc Biol 2001; 21:1402-7. [PMID: 11557663 DOI: 10.1161/hq0901.094279] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Human atherosclerotic plaques that rupture are characterized by relatively low vascular smooth muscle cell (VSMC) and high inflammatory cell contents. Ruptured plaques also contain higher numbers of apoptotic VSMCs than do stable lesions, suggesting that VSMC apoptosis may promote plaque rupture. We examined the ability of human monocytes/macrophages to induce apoptosis of VSMCs derived from human carotid plaque, aortic media, and coronary media. Macrophages, but not T lymphocytes, induced a dose-dependent apoptosis of VSMCs, which required monocyte maturation to macrophages and direct cell-cell contact/proximity. VSMC apoptosis was inhibited by neutralizing antibodies to Fas-ligand (Fas-L) or an Fas-Fc fusion protein, indicating the requirement for membrane-bound Fas and Fas-L. Monocyte maturation was associated with increased surface expression of Fas-L, coincident with the onset of cytotoxicity. VSMCs expressed surface Fas, which was increased in plaque VSMCs, and plaque VSMCs also underwent Fas-induced apoptosis. We conclude that human macrophages potently induce human VSMC apoptosis, which requires direct cell-cell interactions and is in part dependent on Fas/Fas-L interactions. Macrophage-induced VSMC apoptosis may therefore directly promote plaque rupture.
Collapse
Affiliation(s)
- J J Boyle
- Unit of Cardiovascular Medicine, Addenbrooke's Hospital, Department of Pathology, University of Cambridge, Cambridge, UK.
| | | | | | | |
Collapse
|
183
|
Shi J, Gilbert GE, Kokubo Y, Ohashi T. Role of the liver in regulating numbers of circulating neutrophils. Blood 2001; 98:1226-30. [PMID: 11493474 DOI: 10.1182/blood.v98.4.1226] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Neutrophils (polymorphonuclear leukocytes [PMNs]) carry potent destructive enzymes that can destroy invasive bacteria or damage normal tissue. PMNs have a half-life of only 6 hours in the blood, but the details of this homeostasis are unknown. In a rat model of endotoxemia, P-selectin was selectively up-regulated in hepatic sinusoids and veins where it was necessary for phagocytosis of PMNs by Kupffer cells in the liver, as opposed to the spleen or the lungs. Apoptotic PMNs appeared in the lungs and spleen only after inactivation of Kupffer cells by gadolinium chloride (GdCl(3)). Blocking of Fas protein reduced the number of apoptotic cells in the liver; binding of annexin V to phosphatidylserine (PS) reduced the number of PMNs phagocytosed by Kupffer cells. The results support a clearance pathway in which apoptosis and phagocytosis are effected by Kupffer cells after P-selectin-mediated sequestration. (Blood. 2001;98:1226-1230)
Collapse
Affiliation(s)
- J Shi
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.
| | | | | | | |
Collapse
|
184
|
Abstract
In the nematode Caenorhabditis elegans programmed cell death requires the killer genes egl-1, ced-4 and ced-3 (refs 1 and 2), and the engulfment of dying cells requires the genes ced-1, ced-2, ced-5, ced-6, ced-7, ced-10 and ced-12 (refs 3,4,5). Here we show that engulfment promotes programmed cell death. Mutations that cause partial loss of function of killer genes allow the survival of some cells that are programmed to die, and mutations in engulfment genes enhance the frequency of this cell survival. Furthermore, mutations in engulfment genes alone allow the survival and differentiation of some cells that would normally die. Engulfment genes probably act in engulfing cells to promote death, as the expression in engulfing cells of ced-1, which encodes a receptor that recognizes cell corpses, rescues the cell-killing defects of ced-1 mutants. We propose that engulfing cells act to ensure that cells triggered to undergo programmed cell death by the CED-3 caspase die rather than recover after the initial stages of death.
Collapse
Affiliation(s)
- P W Reddien
- Howard Hughes Medical Institute, Department of Biology, 68-425, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|
185
|
Browning J, Reichelt ME, Gole GA, Massa H. Proximal arterial vasoconstriction precedes regression of the hyaloid vasculature. Curr Eye Res 2001; 22:405-11. [PMID: 11584339 DOI: 10.1076/ceyr.22.6.405.5482] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE To determine whether constriction of proximal arterial vessels precedes involution of the distal hyaloid vasculature in the mouse, under normal conditions, and whether this vasoconstriction is less pronounced when the distal hyaloid network persists, as it does in oxygen-induced retinopathy (OIR). METHODS Photomicrographs of the vasa hyaloidea propria were analysed from pre-term pups (1-2 days prior to birth), and on Days 1-11 post-birth. The OIR model involved exposing pups to approximately 90% O(2) from D1-5, followed by return to ambient air. At sampling times pups were anaesthetised and perfused with india ink. Retinal flatmounts were also incubated with FITC-lectin (BS-1, G. simplicifolia,); this labels all vessels, allowing identification of vessels not patent to the perfusate. RESULTS Mean diameter of proximal hyaloid vessels in pre-term pups was 25.44 +/- 1.98 microm; +/- 1 SEM). Within 3-12 hrs of birth, significant vasoconstriction was evident (diameter:12.45 +/- 0.88 microm), and normal hyaloid regression subsequently occurred. Similar vasoconstriction occurred in the O(2)-treated group, but this was reversed upon return to room air, with significant dilation of proximal vessels by D7 (diameter: 31.75 +/- 11.99 microm) and distal hyaloid vessels subsequently became enlarged and tortuous. CONCLUSIONS Under normal conditions, vasoconstriction of proximal hyaloid vessels occurs at birth, preceding attenuation of distal hyaloid vessels. Vasoconstriction also occurs in O(2)-treated pups during treatment, but upon return to room air, the remaining hyaloid vessels dilate proximally, and the distal vessels become dilated and tortuous. These observations support the contention that regression of the hyaloid network is dependent, in the first instance, on proximal arterial vasoconstriction.
Collapse
Affiliation(s)
- J Browning
- School of Health Science, Griffith University - Gold Coast, Southport, Queensland, Australia.
| | | | | | | |
Collapse
|
186
|
Abstract
The vertebrate lens has a distinct polarity with cuboidal epithelial cells on the anterior side and differentiated fiber cells on the posterior side. It has been proposed that the anterior-posterior polarity of the lens is imposed by factors present in the ocular media surrounding the lens (aqueous and vitreous humor). The differentiation factors have been hypothesized to be members of the fibroblast growth factor (FGF) family. Though FGFs have been shown to be sufficient for induction of lens differentiation both in vivo and in vitro, they have not been demonstrated to be necessary for endogenous initiation of fiber cell differentiation. To test this possibility, we have generated transgenic mice with ocular expression of secreted self-dimerizing versions of FGFR1 (FR1) and FGFR3 (FR3). Expression of FR3, but not FR1, leads to an expansion of proliferating epithelial cells from the anterior to the posterior side of the lens due to a delay in the initiation of fiber cell differentiation. This delay is most apparent postnatally and correlates with appropriate changes in expression of marker genes including p57(KIP2), Maf and Prox1. Phosphorylation of Erk1 and Erk2 was reduced in the lenses of FR3 mice compared with nontransgenic mice. Though differentiation was delayed in FR3 mice, the lens epithelial cells still retained their intrinsic ability to respond to FGF stimulation. Based on these results we propose that the initiation of lens fiber cell differentiation in mice requires FGF receptor signaling and that one of the lens differentiation signals in the vitreous humor is a ligand for FR3, and is therefore likely to be an FGF or FGF-like factor.
Collapse
MESH Headings
- Animals
- Body Patterning
- Cell Differentiation
- Crystallins/biosynthesis
- Cyclin-Dependent Kinase Inhibitor p57
- DNA-Binding Proteins/isolation & purification
- Embryonic Induction
- Epithelial Cells
- Fibroblast Growth Factors
- Homeodomain Proteins/isolation & purification
- Lens, Crystalline/blood supply
- Lens, Crystalline/cytology
- Lens, Crystalline/embryology
- Mice
- Mice, Transgenic
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3
- Mitogen-Activated Protein Kinases/metabolism
- Models, Biological
- Nuclear Proteins/isolation & purification
- Phosphorylation
- Protein-Tyrosine Kinases
- Proto-Oncogene Proteins/isolation & purification
- Proto-Oncogene Proteins c-maf
- Receptor Protein-Tyrosine Kinases/metabolism
- Receptor, Fibroblast Growth Factor, Type 1
- Receptor, Fibroblast Growth Factor, Type 3
- Receptors, Fibroblast Growth Factor/metabolism
- Transgenes
- Tumor Suppressor Proteins
Collapse
Affiliation(s)
- V Govindarajan
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
187
|
Smith RS, Zabaleta A, Savinova OV, John SWM. The mouse anterior chamber angle and trabecular meshwork develop without cell death. BMC DEVELOPMENTAL BIOLOGY 2001; 1:3. [PMID: 11228591 PMCID: PMC31337 DOI: 10.1186/1471-213x-1-3] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2000] [Accepted: 02/14/2001] [Indexed: 11/28/2022]
Abstract
BACKGROUND The iridocorneal angle forms in the mammalian eye from undifferentiated mesenchyme between the root of the iris and cornea. A major component is the trabecular meshwork, consisting of extracellular matrix organized into a network of beams, covered in trabecular endothelial cells. Between the beams, channels lead to Schlemm's canal for the drainage of aqueous humor from the eye into the blood stream. Abnormal development of the iridocorneal angle that interferes with ocular fluid drainage can lead to glaucoma in humans. Little is known about the precise mechanisms underlying angle development. There are two main hypotheses. The first proposes that morphogenesis involves mainly cell differentiation, matrix deposition and assembly of the originally continuous mesenchymal mass into beams, channels and Schlemm's canal. The second, based primarily on rat studies, proposes that cell death and macrophages play an important role in forming channels and beams. Mice provide a potentially useful model to understand the origin and development of angle structures and how defective development leads to glaucoma. Few studies have assessed the normal structure and development of the mouse angle. We used light and electron microscopy and a cell death assay to define the sequence of events underlying formation of the angle structures in mice. RESULTS The mouse angle structures and developmental sequence are similar to those in humans. Cell death was not detectable during the period of trabecular channel and beam formation. CONCLUSIONS These results support morphogenic mechanisms involving organization of cellular and extracellular matrix components without cell death or atrophy.
Collapse
Affiliation(s)
- Richard S Smith
- The Howard Hughes Medical Institute
- The Jackson Laboratory, 600 Main Street Bar Harbor, Maine
| | | | | | - Simon WM John
- The Howard Hughes Medical Institute
- The Jackson Laboratory, 600 Main Street Bar Harbor, Maine
- The Department of Ophthalmology, Tufts University School of
Medicine, Boston, Massachusetts
| |
Collapse
|
188
|
Wood W, Turmaine M, Weber R, Camp V, Maki RA, McKercher SR, Martin P. Mesenchymal cells engulf and clear apoptotic footplate cells in macrophageless PU.1 null mouse embryos. Development 2000; 127:5245-52. [PMID: 11076747 DOI: 10.1242/dev.127.24.5245] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Apoptosis is one of the key tools used by an embryo to regulate cell numbers and sculpt body shape. Although massive numbers of cells die during development, they are so rapidly phagocytosed that very few corpses are ever seen in most embryonic tissues. In this paper, we focus on the catastrophic cell death that occurs as the developing footplate is remodelled to transform webbed regions into free interdigital spaces. In the wild-type embryo, these dead cells are rapidly engulfed and cleared by macrophages. We show that in a macrophageless mouse embryo, null for the haemopoetic-lineage-specific transcription factor, PU.1, the task of phagocytosis is taken over by ‘stand-in’ mesenchymal neighbours in a clear example of cell redundancy. However, it takes three times as many of these mesenchymal phagocytes to complete the task and, at each stage of the clearance process - in the recognition of apoptotic debris, its engulfment and finally its digestion - they appear to be less efficient than macrophages. A molecular explanation for this may be that several of the engulfment genes expressed by macrophages, including the ABC1 transporter (believed to be part of the phagocytic machinery conserved from Caenorhabditis elegans to mouse), are not upregulated by these ‘stand-in’ phagocytes.
Collapse
Affiliation(s)
- W Wood
- Department of Anatomy and Developmental Biology, University College London, Gower St, London WC1E 6BT, UK
| | | | | | | | | | | | | |
Collapse
|
189
|
Colitz CM, Malarkey DE, Woychik RP, Wilkinson JE. Persistent hyperplastic tunica vasculosa lentis and persistent hyperplastic primary vitreous in transgenic line TgN3261Rpw. Vet Pathol 2000; 37:422-7. [PMID: 11055865 DOI: 10.1354/vp.37-5-422] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Persistent hyperplastic tunica vasculosa lentis and persistent hyperplastic primary vitreous are congenital ocular anomalies that can lead to cataract formation. A line of insertional mutant mice, TgN3261Rpw, generated at the Oak Ridge National Laboratory in a large-scale insertional mutagenesis program was found to have a low incidence (8/243; 3.29%) of multiple developmental ocular abnormalities. The ocular abnormalities include persistent hyperplastic primary vitreous, persistent hyperplastic tunica vasculosa lentis, failure of cleavage of the anterior segment, retrolental fibrovascular membrane, posterior polar cataract, and detached retina. This transgenic mouse line provides an ontogenetic model because of the high degree of similarity of this entity in humans, dogs, and mice.
Collapse
Affiliation(s)
- C M Colitz
- Department of Companion Animal and Special Species Medicine, North Carolina State University, College of Veterinary Medicine, Raleigh, USA
| | | | | | | |
Collapse
|
190
|
Hori S, Kobayashi A, Natori S. A novel hemocyte-specific membrane protein of Sarcophaga (flesh fly). EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:5397-403. [PMID: 10951197 DOI: 10.1046/j.1432-1327.2000.01578.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Extensive tissue remodeling takes place during metamorphosis of holometabolous insects. It has been shown that hemocytes play crucial roles in the recognition and elimination of apoptotic cells and larval tissue fragments produced during metamorphosis. We report the immunoaffinity purification, cDNA cloning, and characterization of a prepupal hemocyte membrane protein of Sarcophaga (flesh fly) with a molecular mass of 120 kDa. This protein is a novel type I transmembrane protein with 18 repeats of an epidermal growth factor-like domain in the predicted extracellular region. Expression of the protein was restricted exclusively to prepupal hemocytes. This protein is suggested to be a scavenger receptor for tissue remodeling.
Collapse
Affiliation(s)
- S Hori
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Japan
| | | | | |
Collapse
|
191
|
Ash JD, Overbeek PA. Lens-specific VEGF-A expression induces angioblast migration and proliferation and stimulates angiogenic remodeling. Dev Biol 2000; 223:383-98. [PMID: 10882523 DOI: 10.1006/dbio.2000.9755] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vascular endothelial growth factor (VEGF) is a secreted mitogen which specifically stimulates proliferation of vascular endothelial cells in vitro and in vivo. Its expression pattern is consistent with it being an important regulator of vasculogenesis and angiogenesis, and targeted disruption of VEGF-A has demonstrated that it is essential for vascular development. To determine if VEGF-A was sufficient to alter vascularization in the eye we generated transgenic mice which express human VEGF-A(165) specifically in the lens. Expression of transgenic VEGF-A led to excessive proliferation and accumulation of disorganized angioblasts and endothelial cells around the lens. The results support the hypothesis that VEGF-A can initiate the process of vascularization by stimulating chemoattraction and proliferation of angioblasts and endothelial cells and that VEGF-A expression can stimulate angiogenic remodeling. However, VEGF-A alone was not sufficient to direct blood vessel organization or maturation.
Collapse
Affiliation(s)
- J D Ash
- Department of Cell Biology, Baylor College of Medicine, Houston, Texas, 77030, USA.
| | | |
Collapse
|
192
|
Mallat Z, Tedgui A. Apoptosis in the vasculature: mechanisms and functional importance. Br J Pharmacol 2000; 130:947-62. [PMID: 10882378 PMCID: PMC1572165 DOI: 10.1038/sj.bjp.0703407] [Citation(s) in RCA: 241] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2000] [Revised: 03/30/2000] [Accepted: 04/03/2000] [Indexed: 12/12/2022] Open
Abstract
Apoptotic death has now been recognized in a number of common and threatening vascular diseases, including atherosclerosis. Interest in apoptosis research relates to the fact that apoptosis, in contrast to oncosis, is a highly regulated process of cell death which raises the hope for the development of specific therapeutic strategies to alter disease progression. This review summarizes the mechanisms involved in vascular endothelial and smooth muscle cell survival/apoptosis, and the potential roles of apoptotic death in atherosclerosis and restenosis. The potential effects of modulation of apoptosis in these diseases are also discussed.
Collapse
Affiliation(s)
- Z Mallat
- INSERM U541 & IFR "Circulation-Paris VII", 41, Bd de la Chapelle, 75475 Paris, Cedex 10, France
| | | |
Collapse
|
193
|
Meszaros AJ, Reichner JS, Albina JE. Macrophage-induced neutrophil apoptosis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:435-41. [PMID: 10861082 DOI: 10.4049/jimmunol.165.1.435] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Macrophages (Mphi) contribute to the resolution of early inflammation by recognizing and ingesting apoptotic polymorphonuclear neutrophils (PMN). In addition, experiments reported here demonstrated that Mphi can actively induce PMN apoptosis. Coculture of cells from 2- or 5-day-old wounds in rats, or of Mphi purified from such preparations, with PMN-rich wound cell populations obtained 1 day after wounding increased PMN apoptosis by >3-fold. Neither resident- nor Proprionibacterium acnes-elicited peritoneal Mphi-induced PMN apoptosis. Apoptosis was not mediated by a soluble factor and required E:T contact. Fixed wound-Mphi and membrane isolates from viable Mphi were as effective as intact cells in inducing PMN apoptosis. Mphi-induced apoptosis was inhibited by peptide Arg-Gly-Asp-Ser, anti-beta3 (CD61) Ab, CD36 peptide, or anti-TNF-alpha Ab. Soluble TNF-alpha did not induce PMN apoptosis. In additional studies, K562 cells (negative for beta3, TNF-alpha, and Fas ligand) transfected to express either alphavbeta3 integrin, an uncleavable membrane form of TNF-alpha, or both were used in cocultures with wound PMN. Only the double transfectants were able to induce PMN apoptosis, an effect inhibited by anti-beta3 (CD61) or anti-TNF-alpha Abs. These results demonstrate that wound Mphi induce PMN apoptosis through a constitutive effector mechanism requiring both intercellular binding through integrin-ligand interactions and membrane-bound TNF-alpha.
Collapse
Affiliation(s)
- A J Meszaros
- Department of Surgery, Rhode Island Hospital, Brown University School of Medicine, Providence, RI 02903, USA
| | | | | |
Collapse
|
194
|
Zhu M, Madigan MC, van Driel D, Maslim J, Billson FA, Provis JM, Penfold PL. The human hyaloid system: cell death and vascular regression. Exp Eye Res 2000; 70:767-76. [PMID: 10843781 DOI: 10.1006/exer.2000.0844] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study had investigated the roles of apoptosis and necrosis in the regression of the human fetal hyaloid vasculature. Normal human fetal hyaloid specimens (n = 67) ranging from 10 to 20 weeks' gestation were studied. Specimens were either immunolabeled with anti-von Willebrand factor and major histocompatibility complex class I antibodies or investigated using the terminal-deoxyribonucleotidyl transferase-mediated dUTP-biotin DNA nick-end labeling technique. A fluorescent DNA-binding dye acridine orange/ethidium bromide mixture was also applied to unfixed flat mounts of hyaloid vasculature and some specimens were processed for transmission electron microscopy. Vascular regression including cell loss in the connecting vessels, stretching and thinning of the vasa hyaloidea propria, tunica vasculosa lentis and the pupillary membrane was clearly evident after 13 weeks' gestation. Cresyl violet staining revealed condensed cells and pyknotic bodies throughout the hyaloid system; cell death occurred either in single cells or along small capillary segments associated with vascular regression. Acridine orange/ethidium bromide staining showed DNA condensation at early and late stages of cell death. Similarly, DNA nick-end labeling was positive in endothelial cells, pericytes and vessel and non-vessel associated hyalocytes. The observation of hyalocytes juxtaposed to cytolysed endothelial cells may indicate a role for these cells in vascular regression. Features of apoptosis were more evident during early vascular regression whilst necrosis was increasingly evident at later stages.
Collapse
Affiliation(s)
- M Zhu
- Department of Clinical Ophthalmology, University of Sydney, Sydney, New South Wales 2006, Australia.
| | | | | | | | | | | | | |
Collapse
|
195
|
Abstract
To review the data on the origins, phenotype, and function of embryonic phagocytes that has accumulated over past decade. Most of the relevant articles were selected based on the PubMed database entries. In additional, the Interactive Fly database (http://sdb.bio. purdue.edu/fly/aimain/1aahome.htm), FlyBase (http://flybase.bio. indiana.edu:82/), and TBase (http://tbase.jax.org/) were used to search for relevant information and articles. Phagocytes in a vertebrate embryo develop in two sites (yolk sac and liver) and contribute to organogenesis in part through their ability to recognize and clear apoptotic cells. Yolk sac-derived phagocytes differ in differentiation pathway and marker gene expression from macrophages produced via classic hematopoietic progenitors in the liver. We argue that yolk sac-derived phagocytes constitute a separate cell lineage. This conclusion raises the question of whether primitive phagocytes persist into the adulthood.
Collapse
Affiliation(s)
- A M Lichanska
- Departments of Medical Genetics and Ophthalmology, Queen's University of Belfast, Belfast, United Kingdom
| | | |
Collapse
|
196
|
Hughes J, Nangaku M, Alpers CE, Shankland SJ, Couser WG, Johnson RJ. C5b-9 membrane attack complex mediates endothelial cell apoptosis in experimental glomerulonephritis. Am J Physiol Renal Physiol 2000; 278:F747-57. [PMID: 10807586 DOI: 10.1152/ajprenal.2000.278.5.f747] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We studied the role of the C5b-9 membrane attack complex in two models of inflammatory glomerulonephritis (GN) initiated by acute glomerular endothelial injury in Piebold-viral-Glaxo (PVG) complement-sufficient rats (C+), C6-deficient rats (C6-), and rats systematically depleted of complement with cobra venom factor (CVF). GN was induced by performing a left nephrectomy and selectively perfusing the right kidney with either 1) the lectin concanavalin A (Con A) followed by complement-fixing anti-Con A (Con A GN) or 2) purified complement-fixing goat anti-rat glomerular endothelial cell (GEN) antibody [immune-mediated thrombotic microangiopathy (ITM)]. Comparable levels of GEN apoptosis were detected in C+ animals in both models. CVF administration reduced GEN apoptosis by 10- to 12-fold. GEN apoptosis was C5b-9 dependent because PVG C6- rats were protected from GEN loss. Furthermore, functional inhibition of the cell surface complement regulatory protein CD59 by renal perfusion with anti-CD59 antibody in ITM resulted in a 3.5-fold increase in GEN apoptosis. Last, in Con A GN, abrogation of GEN apoptosis preserved endothelial integrity and renal function. This study demonstrates the specific role of C5b-9 in the induction of GEN apoptosis in experimental inflammatory GN, a finding with implications for diseases associated with the presence of antiendothelial cell antibodies.
Collapse
Affiliation(s)
- J Hughes
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington, 98195, USA.
| | | | | | | | | | | |
Collapse
|
197
|
Abstract
Denervation of skeletal muscle is followed by the progressive loss of tissue mass and impairment of its functional properties. The purpose of the present study was to investigate the occurrence of cell death and its mechanism in rat skeletal muscle undergoing post-denervation atrophy. We studied the expression of specific markers of apoptosis and necrosis in experimentally denervated tibialis anterior, extensor digitorum longus and soleus muscles of adult rats. Fluorescent staining of nuclear DNA with propidium iodide revealed the presence of nuclei with hypercondensed chromatin and fragmented nuclei typical of apoptotic cells in the muscle tissue 2, 4 and to a lesser extent 7 months after denervation. This finding was supported by electron microscopy of the denervated muscle. We found clear morphological manifestations of muscle cell death, with ultrastructural characteristics very similar if not identical to those considered as nuclear and cytoplasmic markers of apoptosis. With increasing time of denervation, progressive destabilization of the differentiated phenotype of muscle cells was observed. It included disalignment and spatial disorganization of myofibrils as well as their resorption and formation of myofibril-free zones. These changes initially appeared in subsarcolemmal areas around myonuclei, and by 4 months following nerve transection they were spread throughout the sarcoplasm. Despite an increased number of residual bodies and secondary lysosomes in denervated muscle, we did not find any evidence of involvement of autophagocytosis in the resorption of the contractile system. Dead muscle fibers were usually surrounded by a folded intact basal lamina; they had an intact sarcolemma and highly condensed chromatin and sarcoplasm. Folds of the basal lamina around the dead cells resulted from significant shrinkage of cell volume. Macrophages were occasionally found in close proximity to dead myocytes. We detected no manifestations of inflammation in the denervated tissue. Single myocytes expressing traits of the necrotic phenotype were very rare. A search for another marker of apoptosis, nuclear DNA fragmentation, using terminal deoxyribonucleotidyl transferase mediated dUTP nick end labeling (the TUNEL method) in situ, revealed the presence of multiple DNA fragments in cell nuclei in only a very small number of cell nuclei in 2 and 4 month denervated muscle and to less extent in 7 month denervated muscle. Virtually no TUNEL reactivity was found in normal muscle. Double labeling of tissue denervated for 2 and 4 months for genome fragmentation with the TUNEL method and for total nuclear DNA with propidium iodide demonstrated co-localization of the TUNEL-positive fragmented DNA in some of the nuclei containing condensed chromatin and in fragmented nuclei. However, the numbers of nuclei of abnormal morphology containing condensed and/or irregular patterns of chromatin distribution, as revealed by DNA staining and electron microscopy, exceeded by 33-38 times the numbers of nuclei positive for the TUNEL reaction. Thus, we found a discrepancy between the frequences of expression of morphological markers of apoptosis and DNA fragmentation in denervated muscle. This provides evidence that fragmentation of the genomic DNA is not an obligatory event during atrophy and death of muscle cells, or, alternatively, it may occur only for a short period of time during this process. Unlike classical apoptosis described in mammalian thymocytes and lymphoid cells, non-inflammatory death of muscle fibers in denervated muscle occurs a long time after the removal of myotrophic influence of the nerve and is preceded by the progressive imbalance of the state of terminal differentiation. Our results indicate that apoptosis appears to be represented by a number of distinct isotypes in animals belonging to different taxonomic groups and in different cell lineages of the same organism.
Collapse
Affiliation(s)
- A B Borisov
- Department of Anatomy, Institute of Gerontology, University of Michigan, Ann Arbor, Michigan 48109-0616, USA.
| | | |
Collapse
|
198
|
Duffield JS, Erwig LP, Wei X, Liew FY, Rees AJ, Savill JS. Activated macrophages direct apoptosis and suppress mitosis of mesangial cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:2110-9. [PMID: 10657665 DOI: 10.4049/jimmunol.164.4.2110] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
During inflammation in the glomerulus, the complement of resident myofibroblast-like mesangial cells is regulated by mitosis and apoptosis, but the cellular mechanisms controlling the size of mesangial cell populations have remained obscure. Prompted by studies of development, we sought evidence that macrophages regulate mesangial cell number. Rat bone marrow-derived macrophages primed with IFN-gamma then further activated in coculture with LPS or TNF-alpha elicited a 10-fold induction of rat mesangial cell apoptosis and complete suppression of mitosis, effects inhibitable by the NO synthase inhibitors L-monomethyl arginine and L-N(6)-(1-iminoethyl) lysine dihydrochloride. Complete dependence upon macrophage-derived NO was observed in comparable experiments employing activated bone marrow macrophages from wild-type and NO synthase 2(-/-) mice. Nevertheless, when mesangial cells were primed with IFN-gamma plus TNF-alpha, increased induction by activated macrophages of mesangial apoptosis exhibited a NO-independent element. The use of gld/gld macrophages excluded a role for Fas ligand in this residual kill, despite increased expression of Fas and increased susceptibility to soluble Fas ligand exhibited by cytokine-primed mesangial cells. Finally, activated macrophages isolated from the glomeruli of rats with nephrotoxic nephritis also induced apoptosis and suppressed mitosis in mesangial cells by an L-monomethyl arginine-inhibitable mechanism. These data demonstrate that activated macrophages, via the release of NO and other mediators, regulate mesangial cell populations in vitro and may therefore control the mesangial cell complement at inflamed sites.
Collapse
Affiliation(s)
- J S Duffield
- Centre for Inflammation Research, Department of Clinical Sciences, Royal Infirmary, University of Edinburgh, Edinburgh, United Kingdom.
| | | | | | | | | | | |
Collapse
|
199
|
Cale CM, Klein NJ, Winyard PJ, Woolf AS. Inflammatory mediators in human renal dysplasia. Nephrol Dial Transplant 2000; 15:173-83. [PMID: 10648662 DOI: 10.1093/ndt/15.2.173] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Cytokines regulate many processes in the immune system and have recently been implicated in normal organogenesis. We previously demonstrated that the archetypal inflammatory cytokine tumour necrosis factor-alpha (TNF-alpha) is expressed in the murine metanephros, and exogenous TNF-alpha inhibits nephrogenesis and increases macrophage numbers in vitro (Cale et al., Int J Dev Biol 1998; 42: 663-674). The phenotype seen, with an arrest of ureteric bud branching and failure of mesenchymal to epithelial conversion, is similar to human renal dysplasia. Methods and results. In normal human fetal kidneys we demonstrated the presence of macrophages and T cells and also documented TNF receptor expression on ureteric bud derivatives. In contrast to normal tissues, TNF-alpha protein was detected in dysplastic kidneys. This factor was also detected in the urine of fetuses with obstructive uropathy and TNF receptors were expressed in dysplastic tubules. Furthermore, we noted a fetal distribution of macrophages and T cells in dysplastic tissues and persistent expression of the adhesion molecules neural cell adhesion molecule and intercellular adhesion molecule. CONCLUSIONS We suggest that abnormal expression of cytokines early in renal development dysregulates normal patterns of adhesion molecule expression and inflammatory cells, and may contribute to the pathogenesis of renal dysplasia.
Collapse
Affiliation(s)
- C M Cale
- Nephrourology Unit and Immunobiology Unit, Institute of Child Health, UCLMS, London, UK
| | | | | | | |
Collapse
|
200
|
Djano J, Griffin B, van Bruggen I, McMenamin PG. Environmental scanning electron microscopic study of macrophages associated with the tunica vasculosa lentis in the developing rat eye. Br J Ophthalmol 1999; 83:1384-5. [PMID: 10574818 PMCID: PMC1722901 DOI: 10.1136/bjo.83.12.1384] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AIMS To demonstrate the value of environmental scanning electron microscopy (ESEM) when used in combination with immunogold/silver enhancement methods as a valuable tool in ocular research, and to determine the phenotype of macrophages associated with the tunica vasculosa lentis while maintaining a topographical view of the lens surface. METHODS Prenatal and postnatal rat eyes were investigated by conventional scanning electron microscopy and ESEM. In the latter case tissues were prestained with a panel of antileucocyte monoclonal antibodies and visualised with colloidal gold conjugated secondary antibody followed by silver enhancement. RESULTS The preliminary data demonstrate that ED1(+) ED2(+) macrophages occur in large numbers around the lens and are associated with sectors of both normal vessels and those undergoing regression. CONCLUSION The present study demonstrates that ESEM is an ideal way to combine scanning electron microscopy with immunohistochemistry and is therefore likely to have multiple other applications in ocular research.
Collapse
Affiliation(s)
- J Djano
- Department of Anatomy and Human Biology, The University of Western Australia, Nedlands Perth, 6907, Western Australia
| | | | | | | |
Collapse
|