151
|
Wu L, Yang Y, Kong L, Bian X, Guo Z, Fu S, Liang F, Li B, Ye J. Comparative transcriptome analysis of the transcriptional heterogeneity in different IgM + cell subsets from peripheral blood of Nile tilapia (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2019; 93:612-622. [PMID: 31408730 DOI: 10.1016/j.fsi.2019.08.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/07/2019] [Accepted: 08/09/2019] [Indexed: 06/10/2023]
Abstract
In teleost fish, IgM+ B cells play important roles in innate and adaptive immunity. Different IgM+ B cells are detected in teleost, named IgMlo and IgMhi B cell subsets, according to the distinct expression levels of membrane IgM (mIgM). However, the study on the heterogeneity in IgM+ B cell subsets remains poorly understood. In this study, the comparative transcriptomic profiles of IgM-, IgMlo and IgMhi from peripheral blood of Nile tilapia (Oreochromis niloticus) were carried out by using RNA-sequencing technique. A total of 6045 and 5470 differentially expressed genes (DEGs) were detected in IgMlo and IgMhi cells, respectively, as compared with IgM- lymphocytes, whereas 3835 genes were differentially expressed when IgMlo compared to IgMhi cells. Analysis of the KEGG database indicated that the DEGs were enriched in immune system categories and signaling transduction and interaction in IgM- vs IgMhi, IgM- vs IgMlo and IgMlo vs IgMhi. Comparatively, in IgMlo vs IgMhi, GO enrichment analysis indicated that the DEGs enriched in nucleic acid binding transcription factor activity. Analysis of crucial transcription factors for B cell differentiation indicated that IgMlo and IgMhi cell clusters belonged to the different B cell subsets. The data generated in this study may provide insights into understanding the heterogeneity of IgM+ cells in teleost, and suggest that IgM+ B cells play a crucial role in innate immunity.
Collapse
Affiliation(s)
- Liting Wu
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research, Center for Environmentally-Friendly Aquaculture, Guangzhou, 510631, PR China
| | - Yanjian Yang
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research, Center for Environmentally-Friendly Aquaculture, Guangzhou, 510631, PR China
| | - Linghe Kong
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research, Center for Environmentally-Friendly Aquaculture, Guangzhou, 510631, PR China
| | - Xia Bian
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research, Center for Environmentally-Friendly Aquaculture, Guangzhou, 510631, PR China
| | - Zheng Guo
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research, Center for Environmentally-Friendly Aquaculture, Guangzhou, 510631, PR China
| | - Shengli Fu
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research, Center for Environmentally-Friendly Aquaculture, Guangzhou, 510631, PR China
| | - Fang Liang
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research, Center for Environmentally-Friendly Aquaculture, Guangzhou, 510631, PR China
| | - Bingxi Li
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research, Center for Environmentally-Friendly Aquaculture, Guangzhou, 510631, PR China
| | - Jianmin Ye
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research, Center for Environmentally-Friendly Aquaculture, Guangzhou, 510631, PR China.
| |
Collapse
|
152
|
Wang Y, Wang B, Shao X, Shao J, Liu M, Wang M, Wang L. The effect of rearing density on immune responses of hepatopancreas and intestine in Litopenaeus vananmei against Vibrio paraheamolyticus E1 challenge. FISH & SHELLFISH IMMUNOLOGY 2019; 93:517-530. [PMID: 31386908 DOI: 10.1016/j.fsi.2019.08.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/27/2019] [Accepted: 08/02/2019] [Indexed: 06/10/2023]
Abstract
Rearing density and disease management are considered as pivotal factors determining shrimp farm productivity and profitability. To systematically investigate the potential mechanisms for density-related differences between disease susceptibility and rearing densities, we conducted comparative transcriptome analysis of the molecular differences between hepatopancreas and intestine of Litopenaeus vannamei under two different rearing densities (800- and 400- shrimp/m3) for 15 d and further analyzed the differences in immune response to Vibrio parahaemolyticus E1 (VPE1) raised under two density conditions. Totally 45 different expression genes (DEGs) were identified in the hepatopancreas under two different rearing densities, the DEGs were grouped into four processes or pathways related to animal immune system. Then, exposure to the VPE1 resulted in 639 DEGs, involved into fourteen immune related processes or pathways. In the intestine, seventeen processes or pathways related to the immune system were identified among the 5470 DEGs under two different rearing densities. 279 DEGs were identified post VPE1 challenge, classified into five processes or pathways associated with the immune system. Meanwhile, the results of growth performance, histopathology and the activities of antioxidant enzymes in the hepatopancreas and intestines of shrimp showed that high density decreased weight gain rate (63.20 ± 1.67% and 18.73 ± 3.35% in the high and low rearing density groups, respectively), severely destroyed the histopathology and inhibited the antioxidant enzymes activities. This study demonstrated that rearing density in L. vannamei significantly impacts susceptibility to the VPE1, via altered transcriptional challenge responses, and thus higher mortality due to disease.
Collapse
Affiliation(s)
- Yilong Wang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Baojie Wang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Xuqing Shao
- Shandong Cigna Detection Technology Co., Ltd, Qingdao, 266237, China
| | - Jianchun Shao
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mei Liu
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Mengqiang Wang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Research Platform for Marine Molecular Biotechnology, National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Lei Wang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266400, China.
| |
Collapse
|
153
|
Dietary phytogenics and galactomannan oligosaccharides in low fish meal and fish oil-based diets for European sea bass (Dicentrarchus labrax) juveniles: Effects on gut health and implications on in vivo gut bacterial translocation. PLoS One 2019; 14:e0222063. [PMID: 31532807 PMCID: PMC6750610 DOI: 10.1371/journal.pone.0222063] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 08/12/2019] [Indexed: 01/30/2023] Open
Abstract
European sea bass were fed four low FM/FO (10%/6%) diets containing galactomannan oligosaccharides (GMOS), a mixture of garlic oil and labiatae plants oils (PHYTO), or a combination of both functional products (GMOSPHYTO) for 63 days before exposing the fish to an intestinal Vibrio anguillarum infection combined with crowding stress. In order to evaluate functional diets efficacy in terms of gut health maintenance, structural, cellular, and immune intestinal status were evaluated by optical and electron microscopy and gene expression analyses. A semi-automated software was adapted to determine variations in goblet cell area and mucosal mucus coverage during the challenge test. Feeding with functional diets did not affect growth performance; however, PHYTO and GMOS dietary inclusion reduced European sea bass susceptibility to V. anguillarum after 7 days of challenge testing. Rectum (post-ileorectal valve) showed longer (p = 0.001) folds than posterior gut (pre-ileorectal valve), whereas posterior gut had thicker submucosa (p = 0.001) and higher mucus coverage as a result of an increased cell density than rectum. Functional diets did not affect mucosal fold length or the grade of granulocytes and lymphocytes infiltration in either intestinal segment. However, the posterior gut fold area covered by goblet cells was smaller in fish fed GMOS (F = 14.53; p = 0.001) and PHYTO (F = 5.52; p = 0.019) than for the other diets. PHYTO (F = 3.95; p = 0.049) reduced posterior gut goblet cell size and increased rodlet cell density (F = 3.604; p = 0.068). Dietary GMOS reduced submucosal thickness (F = 51.31; p = 0.001) and increased rodlet cell density (F = 3.604; p = 0.068) in rectum. Structural TEM analyses revealed a normal intestinal morphological pattern, but the use of GMOS increased rectum microvilli length, whereas the use of PHYTO increased (p≤0.10) Ocln, N-Cad and Cad-17 posterior gut gene expression. After bacterial intestinal inoculation, posterior gut of fish fed PHYTO responded in a more controlled and belated way in terms of goblet cell size and mucus coverage in comparison to other treatments. For rectum, the pattern of response was similar for all dietary treatments, however fish fed GMOS maintained goblet cell size along the challenge test.
Collapse
|
154
|
Mirghaed AT, Yarahmadi P, Soltani M, Paknejad H, Hoseini SM. Dietary sodium butyrate (Butirex ® C4) supplementation modulates intestinal transcriptomic responses and augments disease resistance of rainbow trout (Oncorhynchus mykiss). FISH & SHELLFISH IMMUNOLOGY 2019; 92:621-628. [PMID: 31260736 DOI: 10.1016/j.fsi.2019.06.046] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/13/2019] [Accepted: 06/24/2019] [Indexed: 06/09/2023]
Abstract
Intestine in fish is a complex multifunctional organ, not only plays roles in digestion and absorption of nutrient, but also has critical role in immunity. The present study evaluated the effects of different levels of dietary sodium butyrate [Butirex® C4 (Butirex)] on intestinal immune-,antioxidant-and tight junction-related gene expression injuvenile rainbow trout(Oncorhynchusmykiss). 240 healthy rainbow trout were dispensed in 12 fiberglass tanks appointed to four treatments [0 (control), 1.5 (B1.5), 2.5 (B2.5) and 5 (B5)g Butirex per kg diet]. After a 45-day feeding trial, the fish fed with the Butirex-supplemented diets showed higher intestinal lysozyme (LYZ), complement(ACH50) and bactericidal activities; the elevations in ACH50 and bactericidal activities depended on Butirex levels (P < 0.05). The Butirex-supplemented groups, particularly the B2.5 group, had significantly higher LYZ gene expression compared to the control group (P < 0.05). Butirex at 2.5 and 5 g/kg levels led to significantly higher IL-1β gene expression. B2.5 and B5 had significantly lower and higher TNF-α gene expression compared to the control group (P < 0.05). The B2.5 group had significantly higher TGF-B, and significantly lower IL-8 compared to the control group (P < 0.05). The B1.5 and B2.5 group had significantly higher IL-10 gene expression compared to the control group (P < 0.05). The B2.5 and B5 groups had significantly higher SOD gene expression compared to the other groups; the highest expression was related to the B2.5 group (P < 0.05). Dietary Butirex supplementation significantly up-regulated CAT and GPx genes expression compared to the control group; the highest expression as related to the B2.5 and B5 groups (P < 0.05). The B2.5 group had significantly lower CLD12 gene expression compared to the control group (P < 0.05). The B2.5 and B5 groups had significantly higher CLD3, OCLD and ZO-1 gene expression compared to the control. The highest CLD3, ZO-1 gene expressions was related to the B2.5, and B5 groups respectively (P < 0.05). After challenge with Streptococcus iniae, B2.5 and B5 had significantly higher survival compared to the control group (55.6 ± 7.70 and 68.9 ± 10.2 vs. 33.3 ± 6.67). In conclusion, Butirex is efficient immune stimulant and health booster in rainbow trout, which augments the fish resistance to disease. Modulation of immune components, cytokines, antioxidant system and intestinal integrity might involve in improving disease resistance in Butirex-treated fish. Although most of the examined genes were modulated by 2.5 g/kg Butirex under normal conditions, 5 g/kg level is recommended under pathogenic state to mitigate mortality.
Collapse
Affiliation(s)
- Ali Taheri Mirghaed
- Department of Aquatic Animal Health, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Peyman Yarahmadi
- Department of Aquatic Animal Health, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mehdi Soltani
- Department of Aquatic Animal Health, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Hamed Paknejad
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seyyed Morteza Hoseini
- Inland Waters Aquatics Resources Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research, Education and Extension Organization, Gorgan, Iran
| |
Collapse
|
155
|
Ji J, Merino S, Tomás JM, Roher N. Nanoliposomes encapsulating immunostimulants modulate the innate immune system and elicit protection in zebrafish larvae. FISH & SHELLFISH IMMUNOLOGY 2019; 92:421-429. [PMID: 31195115 DOI: 10.1016/j.fsi.2019.06.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/20/2019] [Accepted: 06/10/2019] [Indexed: 06/09/2023]
Abstract
Here we present immunostimulant-loaded nanoliposomes (NLc) as a strategy to protect zebrafish larvae against bacterial infection. The NLc encapsulate crude lipopolysaccharide (LPS) from E. coli and polyinosinic:polycytidylic acid (Poly I:C), a synthetic analogue of viral dsRNA. Fluorescently-labeled NLc were ingested by zebrafish larvae 4 days post fertilization, when administrated by bath immersion, and accumulated in the intestine. RT-qPCR analysis showed the expression of innate immune related genes (tnfα, il1β, nos2a, irf1a and ptgs2a) was significantly upregulated at 48 h post NLc treatment. A zebrafish larvae infection model for Aeromonas hydrophila was set up by bath immersion, achieving bacterial-dose-dependent significant differences in survival at day 5 post infection in both injured and non-injured larvae. Using this model, NLc protected non-injured zebrafish larvae against an A. hydrophila lethal infection. In contrast, neither the empty nanoliposomes nor the mixture of immunostimulants could protect larvae against lethal challenges. Our results demonstrate that nanoliposomes could be further developed as an efficient carrier, widening the scope for delivery of other immunostimulants in aquaculture.
Collapse
Affiliation(s)
- Jie Ji
- Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, 08193, Barcelona, Spain; Department of Cell Biology, Animal Physiology and Immunology, Universitat Autònoma de Barcelona, 08193, Barcelona, Spain
| | - Susana Merino
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, 08028, Barcelona, Spain
| | - Juan M Tomás
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, 08028, Barcelona, Spain
| | - Nerea Roher
- Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, 08193, Barcelona, Spain; Department of Cell Biology, Animal Physiology and Immunology, Universitat Autònoma de Barcelona, 08193, Barcelona, Spain.
| |
Collapse
|
156
|
Zheng Y, Hu G, Wu W, Qiu L, Bing X, Chen J. Time-dependent gut microbiota analysis of juvenile Oreochromis niloticus by dietary supplementation of resveratrol. Arch Microbiol 2019; 202:43-53. [PMID: 31463601 DOI: 10.1007/s00203-019-01712-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/24/2019] [Accepted: 07/31/2019] [Indexed: 02/07/2023]
Abstract
To evaluate the changes in bacterial diversity at various time points under resveratrol supplementation, we aimed to investigate the diversification of gut microbiota and the changes in total genetic diversity. We performed 16S rDNA gene sequencing at different time points (15, 30, and 45 days) to analyze the gut microbiota of tilapia. Fusobacteria, Proteobacteria, and Bacteroidetes (15 days) or Cyanobacteria (30 and 45 days) were found to be the three most abundant phyla. Cyanobacteria (15 and 30 days), Proteobacteria (15 days), Firmicutes and Chlamydiae (30 and 45 days), Planctomycetes (30 days), Bacteroidetes, Actinobacteria, and Fusobacteria (45 days) in the 0.05 g/kg RES group increased as compared to that in the controls. Proteobacteria and Cyanobacteria significantly decreased and increased at 30 and 45 days, respectively, while the reverse pattern was observed at 15 days. The Bacteroidetes:Firmicutes and Proteobacteria:Cyanobacteria ratios were significantly increased (15 and 45 days, P < 0.05) and decreased (30 days, P < 0.05). RES supplementation did not affect the richness and diversity of the gut microbiota in tilapia. Our findings may contribute to the development of strategies for the management of diseases.
Collapse
Affiliation(s)
- Yao Zheng
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences/Fishery Eco-Environment Monitoring Center of Lower Reaches of Yangtze River, Ministry of Agriculture/Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Environmental Factors (Wuxi), Ministry of Agriculture, No. 9 Shanshui East Rd., Wuxi, Jiangsu, 214081, People's Republic of China
| | - Gengdong Hu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences/Fishery Eco-Environment Monitoring Center of Lower Reaches of Yangtze River, Ministry of Agriculture/Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Environmental Factors (Wuxi), Ministry of Agriculture, No. 9 Shanshui East Rd., Wuxi, Jiangsu, 214081, People's Republic of China
| | - Wei Wu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences/Fishery Eco-Environment Monitoring Center of Lower Reaches of Yangtze River, Ministry of Agriculture/Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Environmental Factors (Wuxi), Ministry of Agriculture, No. 9 Shanshui East Rd., Wuxi, Jiangsu, 214081, People's Republic of China
| | - Liping Qiu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences/Fishery Eco-Environment Monitoring Center of Lower Reaches of Yangtze River, Ministry of Agriculture/Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Environmental Factors (Wuxi), Ministry of Agriculture, No. 9 Shanshui East Rd., Wuxi, Jiangsu, 214081, People's Republic of China
| | - Xuwen Bing
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences/Fishery Eco-Environment Monitoring Center of Lower Reaches of Yangtze River, Ministry of Agriculture/Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Environmental Factors (Wuxi), Ministry of Agriculture, No. 9 Shanshui East Rd., Wuxi, Jiangsu, 214081, People's Republic of China.
| | - Jiazhang Chen
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences/Fishery Eco-Environment Monitoring Center of Lower Reaches of Yangtze River, Ministry of Agriculture/Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Environmental Factors (Wuxi), Ministry of Agriculture, No. 9 Shanshui East Rd., Wuxi, Jiangsu, 214081, People's Republic of China. .,Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture, Beijing, 100141, People's Republic of China.
| |
Collapse
|
157
|
Wang Y, Wang B, Liu M, Jiang K, Wang M, Wang L. Comparative transcriptome analysis reveals the different roles between hepatopancreas and intestine of Litopenaeus vannamei in immune response to aflatoxin B1 (AFB1) challenge. Comp Biochem Physiol C Toxicol Pharmacol 2019; 222:1-10. [PMID: 30981908 DOI: 10.1016/j.cbpc.2019.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/06/2019] [Accepted: 04/08/2019] [Indexed: 11/30/2022]
Abstract
Aflatoxin B1 (AFB1) is a mycotoxin mainly produced by Aspergillus flavus and Aspergillus parasiticus contaminating food, feed ingredients and products of animal origin. In mammals, this toxin causes widespread organ-specific damage; it is immunotoxicity and could promote hepatotoxicity, alter intestinal functions and so on. In this study, we conducted transcriptome and histomorphology analyses of hepatopancreas and intestinal in Litopenaeus vannamei (L. vannamei) challenged with AFB1. Totally 12,014 and 1387 differentially expression genes (DEGs) were identified in the hepatopancreas and intestine, respectively. In hepatopancreas, a total of 1995 DEGs were mainly annotated and grouped into 18 processes or pathways related to animal immune system. With respect to intestine, a total of 152 DEGs were mainly annotated to 7 processes or pathways related to animal immune system. Meanwhile, we determined the relative mRNA expression of several crucial representative immune genes including Toll, immune deficiency (IMD), prophenoloxidase (proPO), Rab and glutathione S-transferase (GST) in the hepatopancreas and intestines of shrimp at 3-, 6-, 12-, 18-, 24- and 30-d after challenged by AFB1. Exposure to AFB1 increased mortality, decrease weight gain rate, severely destroyed the histomorphology of hepatopancreas and intestine, and resulted in the damaged of immune system of shrimp. The present data reveals the different roles between hepatopancreas and intestine of L. vannamei in immune response to AFB1 challenge, and provides insight into the molecular basis of the relationship between hepatopancreas and intestinal immunity during either homeostasis or inflammation.
Collapse
Affiliation(s)
- Yilong Wang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baojie Wang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Mei Liu
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Keyong Jiang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Mengqiang Wang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Research Platform for Marine Molecular Biotechnology, National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Lei Wang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266400, China.
| |
Collapse
|
158
|
Kole S, Qadiri SSN, Shin SM, Kim WS, Lee J, Jung SJ. Nanoencapsulation of inactivated-viral vaccine using chitosan nanoparticles: Evaluation of its protective efficacy and immune modulatory effects in olive flounder (Paralichthys olivaceus) against viral haemorrhagic septicaemia virus (VHSV) infection. FISH & SHELLFISH IMMUNOLOGY 2019; 91:136-147. [PMID: 31096061 DOI: 10.1016/j.fsi.2019.05.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 05/05/2019] [Accepted: 05/09/2019] [Indexed: 06/09/2023]
Abstract
Viral haemorrhagic septicaemia virus (VHSV), a (-) ssRNA virus belonging to the genus Novirhabdovirus of rhabdoviridae family, is the aetiological agent of viral haemorrhagic septicaemia (VHS) disease which causes huge economic losses in farmed olive flounder (Paralichthys olivaceus) and significant mortalities among several other marine fish species in Korea, Japan, and China. Previously, we developed an inactivated vaccine viz., formalin-inactivated VHSV mixed with squalene as adjuvant which was effective in conferring protective immunity (58-76% relative percentage survival) against VHSV but the mode of administration was intraperitoneal injection which is not feasible for small sized fingerling fish. To overcome this limitation, we presently focused on replacing the injection route of vaccine delivery by oral and immersion routes. In this context, we encapsulated the inactivated VHSV vaccine with chitosan nanoparticles (CNPs-IV) by water-in-oil (W/O) emulsification method. After encapsulation, two sets of in vivo vaccination trials were conducted viz., preliminary trial-I and final trial-II. In preliminary trial-I, olive flounder fingerlings (10.5 ± 1.7 g) were vaccinated with CNPs-IV by different delivery strategies involving oral and immersion routes (single/booster dose) followed by challenge with VHSV (1 × 106 TCID50 virus/fish) to evaluate an effective method amongst different applied delivery strategies. Subsequently, a final trial-II was conducted to better understand the immune mechanism behind the efficacy of the employed delivery strategy and also to further improvise the delivery mechanism with prime-boost (primary immersion and oral boosting) combination in order to improve the transient anti-VHSV response in the host. Evaluation of RPS analysis in trial-I revealed higher RPS of 46.7% and 53.3% in the CNPs-IV (immersion) and CNPs-IV (immersion/immersion) groups, respectively compared to 0% RPS in the CNPs-IV (oral) group and 20% RPS in the CNPs-IV (oral/oral) group when calculated against 100% cumulative mortality percentage in the NVC (non-vaccinated challenged) control group, whereas, in the trial-II, RPS of 60% and 66.6% were obtained for CNPs-IV (immersion/immersion) and CNPs-IV (immersion/oral) groups, respectively. In addition, specific (anti-VHSV) antibody titre in the fish sera, skin mucus and intestinal mucus of the immunized groups were significantly (p < 0.05) enhanced following vaccination. Furthermore, CNPs-IV immunized fish showed significant (p < 0.05) upregulation of different immune gene transcripts (IgM, IgT, pIgR, MHC-I, MHC-II, IFN-γ, and Caspase3) compared to control, in both the systemic (kidney) and mucosal (skin and intestine) immune compartments of the host post immunization as well as post challenge. To conclude, mucosal immunization with CNPs-IV vaccine can orchestrate an effective immunization strategy in organizing a coordinative immune response against VHSV in olive flounder thereby exhibiting higher protective efficacy to the host with minimum stress.
Collapse
Affiliation(s)
- Sajal Kole
- Department of Aqualife Medicine, Chonnam National University, Republic of Korea
| | | | - Su-Mi Shin
- Department of Aqualife Medicine, Chonnam National University, Republic of Korea
| | - Wi-Sik Kim
- Department of Aqualife Medicine, Chonnam National University, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Science, Jeju National University, Republic of Korea
| | - Sung-Ju Jung
- Department of Aqualife Medicine, Chonnam National University, Republic of Korea.
| |
Collapse
|
159
|
Zheng Y, Hu G, Wu W, Qiu L, Li D, Bing X, Chen J. Reshaping fecal gut microbiota composition by growing with Polygonum cuspidatum, Houttuynia cordata, and Ipomoea aquatica. Can J Microbiol 2019; 65:522-529. [DOI: 10.1139/cjm-2018-0497] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We carried out sequencing of samples cultivated in floating beds with different Chinese medicinal herbs (Control, Houttuynia cordata Thunb., Polygonum cuspidatum, and a combination of H. cordata with Ipomoea aquatica Forssk.; named groups A, B, C, D, respectively) to analyze changes in the composition of gut microbiota of tilapia feces. Fusobacteria (ranging from 49.0% to 73.3%), Firmicutes (12.3%–37.8%), and Proteobacteria (5.1%–23.0%) were found to be the most dominant phyla present in all samples. The operational taxonomic units and the Ace and Chao1 indices of groups A and D were significantly higher than those of group C. Polygonum cuspidatum decreased the species richness and diversity of microbial communities in tilapia intestinal feces. The phylum WCHB1-60, order Enterobacteriales, and genus Plesiomonas significantly decreased (in group A); the species Plesiomonas shigelloides significantly decreased (in groups B and C); and the genus Leucobacter significantly increased (in group D) when compared with the control. The relative abundance of the class Verrucomicrobiae (groups B vs C) significantly decreased. In the presence of I. aquatica, the phylum Bacteroidetes significantly decreased, while the genera Leucobacter and Pelotomaculum significantly increased. The ratio of Bacteroidetes to Firmicutes was significantly higher in groups B and C relative to the controls, while it decreased significantly in group D. The algae (i.e., Anabaena and Microcystis) and beneficial pathogenic bacteria decreased in groups C and D, respectively. In addition, Enterovibrio decreased in all treatment groups. The present data demonstrate that floating bed cultivation with Chinese medicinal herbs significantly alters the gut microbiota of tilapia, which may enhance its immune activity.
Collapse
Affiliation(s)
- Yao Zheng
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
| | - Gengdong Hu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
| | - Wei Wu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
| | - Liping Qiu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
| | - Dandan Li
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
| | - Xuwen Bing
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
| | - Jiazhang Chen
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
| |
Collapse
|
160
|
Zheng Y, Wu W, Hu G, Qiu L, Bing X, Chen J. Varieties of immunity activities and gut contents in tilapia with seasonal changes. FISH & SHELLFISH IMMUNOLOGY 2019; 90:466-476. [PMID: 31004800 DOI: 10.1016/j.fsi.2019.04.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/04/2019] [Accepted: 04/11/2019] [Indexed: 06/09/2023]
Abstract
We performed 16S rDNA sequencing of tilapia fecal samples to analyze changes in tilapia gut contents after cultivation of the fish in the presence of sandwich-like floating beds of Chinese medicinal herbs (5 and 10% planting-areas; 5% Polygonum cuspidatum). The interactive effects between water quality and blood and hepatic pro- and anti-inflammatory concentrations were also assessed. Our results showed that the water quality (i.e., NO3--N, NO2--N, TP removal rates) improved, and the abundance of Chloroflexi and Cyanobacteria increased. The abundance of Bacteroidetes, Verrucomicrobia, Saccharibacteria, and Actinobacteria showed both significant seasonal decreases and increases in the presence of P. cuspidatum (increases in August and decreases in July). Fish blood and hepatic IL-10 and IFN-γ levels (together with fish sampled in September) significantly increased in the P. cuspidatum group sampled in August, while those of TNF-α (10% sandwich-like, P. cuspidatum), IL-1β (P. cuspidatum), IL-8 (5% sandwich-like in September, S905S) significantly decreased. Heat shock proteins 60 and 70 levels significantly increased in the P. cuspidatum group, and complement C3 and C4 concentrations significantly increased in S905S. This study demonstrated that enhanced immunity through the regulation of pro- and anti-inflammatory proteins was sustained throughout development until harvest, particularly in fish grown with P. cuspidatum.
Collapse
Affiliation(s)
- Yao Zheng
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, No. 9 Shanshui East Rd., Wuxi, Jiangsu, 214081, China
| | - Wei Wu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, No. 9 Shanshui East Rd., Wuxi, Jiangsu, 214081, China
| | - Gengdong Hu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, No. 9 Shanshui East Rd., Wuxi, Jiangsu, 214081, China
| | - Liping Qiu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, No. 9 Shanshui East Rd., Wuxi, Jiangsu, 214081, China
| | - Xuwen Bing
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, No. 9 Shanshui East Rd., Wuxi, Jiangsu, 214081, China.
| | - Jiazhang Chen
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, No. 9 Shanshui East Rd., Wuxi, Jiangsu, 214081, China.
| |
Collapse
|
161
|
Host-Associated Bacterial Succession during the Early Embryonic Stages and First Feeding in Farmed Gilthead Sea Bream ( Sparus aurata). Genes (Basel) 2019; 10:genes10070483. [PMID: 31247994 PMCID: PMC6678923 DOI: 10.3390/genes10070483] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/07/2019] [Accepted: 06/21/2019] [Indexed: 02/07/2023] Open
Abstract
One of the most widely reared fish in the Mediterranean Sea is Sparus aurata. The succession of S. aurata whole-body microbiota in fertilized eggs, five, 15, 21 and 71 days post hatch (dph) larvae and the contribution of the rearing water and the provided feed (rotifers, Artemia sp. and commercial diet) to the host’s microbiota was investigated by 454 pyrosequencing of the 16S rRNA gene diversity. In total, 1917 bacterial operational taxonomic units (OTUs) were found in all samples. On average, between 93 ± 2.1 and 366 ± 9.2 bacterial OTUs per sample were found, with most of them belonging to Proteobacteria and Bacteroidetes. Ten OTUs were shared between all S. aurata stages and were also detected in the rearing water or diet. The highest OTU richness occurred at the egg stage and the lowest at the yolk sac stage (5 dph). The rearing water and diet microbial communities contributed in S. aurata microbiota without overlaps in their microbial composition and structure. The commercial diet showed higher contribution to the S. aurata microbiota than the rearing water. After stage D71 the observed microbiota showed similarities with that of adult S. aurata as indicated by the increased number of OTUs associated with γ-Proteobacteria and Firmicutes.
Collapse
|
162
|
Zeng L, Ai C, Zhang J, Pan Y. Toxicological effects of waterborne Zn on the proximal and distal intestines of large yellow croaker Larimichthys crocea. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 174:324-333. [PMID: 30849652 DOI: 10.1016/j.ecoenv.2019.02.088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 02/25/2019] [Accepted: 02/27/2019] [Indexed: 06/09/2023]
Abstract
The aim of the present study was to compare the differences of Zn-induced antioxidant defense, immunotoxicity and Zn homeostasis between the proximal and distal intestines of the large yellow croaker Larimichthys crocea. Fish were exposed to Zn (2 and 10 mg L-1) for 96 h. In the proximal intestine, high-concentration Zn increased mortality and oxidative damage, but reactive oxygen species (ROS), lipid peroxidation (LPO), protein carbonylation (PC) levels were not affected by low-concentration Zn, indicating Zn-induced oxidative damage was concentration-dependent. Antioxidant defense and immunotoxicity in response to Zn exposure may be involved in ROS/ NFE2-related nuclear factor 2 (Nrf2) and ROS/nuclear transcription factor κB (NF-κB) signaling pathways. In the distal intestine, Zn exposures did not induce oxidative damage, which may result from the improvement of Zn transport, antioxidant and immune defenses. Nrf2 was positively correlated with antioxidant-related gene in the distal intestine, but no relationship was observed between Nrf2 and CAT gene expressions in the proximal intestine. In conclusion, Zn induced toxicological effects were intestinal-region-dependent, which provided some novel insights into Zn toxicology.
Collapse
Affiliation(s)
- Lin Zeng
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China.
| | - Chunxiang Ai
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, PR China
| | - Jianshe Zhang
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Yun Pan
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| |
Collapse
|
163
|
Li S, Xie H, Yan Z, Li B, Wu P, Qian X, Zhang X, Wu J, Liu J, Zhao X. Development of a live vector vaccine against infectious hematopoietic necrosis virus in rainbow trout. FISH & SHELLFISH IMMUNOLOGY 2019; 89:516-524. [PMID: 30986537 DOI: 10.1016/j.fsi.2019.04.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 06/09/2023]
Abstract
Infectious hematopoietic necrosis virus (IHNV) leads to serious disease and economic losses in the salmonid aquaculture industry. The present study aimed to develop an effective and efficient vaccine to protect rainbow trout (Oncorhynchus mykiss) against IHNV infection. Administered via the immersion route, a live vector vaccine containing the regions of the IHNV glycoprotein (G) induced immune responses in rainbow trout. Use of the immersion route induced more-efficient mucosal immunity than intramuscular injection vaccination. IHNV G gene expression was detected in the spleens of rainbow trout at 3, 7 and 15 days post-vaccination (dpv). The G gene expression continuously decreased between 3 and 15 dpv. In addition, the expression of TLR-3, TLR-7 and TLR-8 was upregulated after vaccination, and the highest expression levels of IFN-1, Mx-1, Mx-3, Vig-1 and Vig-2 were observed at 3 dpv. Four markers of the adaptive immune response (CD4, CD8, IgM and IgT) gradually increased. When experimental fish were challenged with IHNV by immersion, significant differences in cumulative percentage mortality were observed in the vaccinated fish and the unvaccinated (empty-plasmid-vaccinated) fish. The relative survival rate was 92% and 6% in the vaccinated group and empty-plasmid group, respectively. Serum antibody levels gradually increased in the vaccinated fish, unlike in the unvaccinated fish, after 7 dpv. Our results suggest there was a significant increase in fish immune responses and resistance to infection with IHNV following administration of the live vector vaccine. Therefore, this live vector vaccine is a promising vaccine that may be utilized to protect rainbow trout against IHNV.
Collapse
Affiliation(s)
- Shouhu Li
- College of Veterinary Medicine, Gansu Agricultural University, 1# Yingmencun Road, Lanzhou, 730070, China.
| | - Hongxia Xie
- Center for Fisheries Technology Promotion, 533# Duanjiatan Road, Lanzhou, 730020, China.
| | - Zunqiang Yan
- College of Veterinary Medicine, Gansu Agricultural University, 1# Yingmencun Road, Lanzhou, 730070, China.
| | - Baoyu Li
- Lanzhou Weiteseng Biological Technology Co., Ltd, 102# Yandong Road, Lanzhou, 730050, China.
| | - Pengcheng Wu
- Center for Fisheries Technology Promotion, 533# Duanjiatan Road, Lanzhou, 730020, China.
| | - Xu Qian
- Center for Fisheries Technology Promotion, 533# Duanjiatan Road, Lanzhou, 730020, China.
| | - Xueliang Zhang
- Center for Fisheries Technology Promotion, 533# Duanjiatan Road, Lanzhou, 730020, China.
| | - Jintang Wu
- Lanzhou Weiteseng Biological Technology Co., Ltd, 102# Yandong Road, Lanzhou, 730050, China.
| | - Jixing Liu
- Lanzhou Weiteseng Biological Technology Co., Ltd, 102# Yandong Road, Lanzhou, 730050, China.
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agricultural University, 1# Yingmencun Road, Lanzhou, 730070, China.
| |
Collapse
|
164
|
Huyben D, Vidakovic A, Sundh H, Sundell K, Kiessling A, Lundh T. Haematological and intestinal health parameters of rainbow trout are influenced by dietary live yeast and increased water temperature. FISH & SHELLFISH IMMUNOLOGY 2019; 89:525-536. [PMID: 30999040 DOI: 10.1016/j.fsi.2019.04.047] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/11/2019] [Accepted: 04/13/2019] [Indexed: 06/09/2023]
Abstract
Live yeast may be a sustainable protein source in salmonid diets while exhibiting a probiotic effect to counteract environmental stressors, such as increased water temperature that is being exacerbated by climate change. The objective of this study was to evaluate the effects of feeding a high dietary inclusion of live yeast and increased water temperature on growth, haematological and intestinal physiology of rainbow trout. For six weeks, 129 g fish in 16 tanks (n = 4) were fed either a diet based on fishmeal or based on live yeast (214 g kg-1 of diet or 7.6 log CFU g-1 of Saccharomyces cerevisiae) that replaced 40% of fishmeal protein while fish were reared in water temperatures of either 11 °C (cold) or 18 °C (warm). Fish weights, caudal blood and proximal and distal intestines were collected and analysed. Fish fed live yeast resulted in reduced growth (SGR and WG) and higher FCR, while growth in cold and warm water was similar despite differences in TGC. However, increased mortality, plasma cortisol, and intestinal oedema and villous damage indicated fish reared in warm water were subjected to chronic stress. Temperature had a significant effect on haematocrit and red blood cell counts that resulted in significantly higher haemoglobin levels in fish kept in warm water attributed to an elevated oxygen demand. In the proximal intestine, increased temperature resulted in reduced expression of pro-inflammatory cytokines, e.g. TNFα and IL8, that were further reduced in fish fed live yeast. In addition, feeding live yeast reduced gene expression of CLD6 involved in gut barrier function, which suggests that the level of yeast was too high and masked any beneficial effects on fish health. In conclusion, feeding a high inclusion of live yeast reduced fish growth and expression of intestinal genes, while increasing the temperature from 11 to 18 °C subjected fish to chronic stress that restricted growth, suppressed innate immunity and induced intestinal damage. Replacing 40% of fishmeal protein with live yeast did not counteract negative effects caused by increased temperature, thus alternative strategies need to be explored and implemented to protect the growth and health of rainbow trout from seasonal and long-term rises in water temperature.
Collapse
Affiliation(s)
- David Huyben
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, Box 7024, 750 07 Uppsala, Sweden; Institute of Aquaculture, University of Stirling, FK9 4LA, Stirling, United Kingdom
| | - Aleksandar Vidakovic
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, Box 7024, 750 07 Uppsala, Sweden
| | - Henrik Sundh
- SWEMARC, Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, 40530, Gothenburg, Sweden
| | - Kristina Sundell
- SWEMARC, Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, 40530, Gothenburg, Sweden
| | - Anders Kiessling
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, Box 7024, 750 07 Uppsala, Sweden
| | - Torbjörn Lundh
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, Box 7024, 750 07 Uppsala, Sweden.
| |
Collapse
|
165
|
Jia Z, Wu A, He M, Zhang L, Wang C, Chen A. Metabolites of stable fly reduce diarrhea in mice by modulating the immune system, antioxidants, and composition of gut microbiota. Microb Pathog 2019; 134:103557. [PMID: 31153984 DOI: 10.1016/j.micpath.2019.103557] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/21/2019] [Accepted: 05/23/2019] [Indexed: 02/08/2023]
Abstract
Escherichia coli (E. coli) O1-induced diarrhea is associated with intestinal microbial imbalance, however, the results of using oral antibiotics still remain poor. To overcome such problem, our study investigates the role of metabolites from stable flies (MSF) in the occurrence of diarrhea. The amino acid composition and molecular weight analysis of MSF by RP-HPLC and GPC, respectively. Besides the normal control group, SPF mice in other group were inoculated with E. coli O1 received treatment as follows over a period of 7 days saline solution (E. coli control), ciprofloxacin (0.13 g/kg; positive control) and MSF (2, 4 and 8 mg/kg) dosage. Throughout the experiment, defecation and body weights were examined and recorded. On the eighth day, after administering anesthesia, blood, tissue of small intestine samples were obtained for immunological and anti-oxidant. Small intestinal tissues and cecum contents samples were used for histopathological and 16S rDNA sequencing analysis. Our showed that MSF was rich in isoleucine, and its molecular weight less than 400 Da is 60.03%. MSF (4 and 8 mg/kg) and ciprofloxacin, significantly decreased IL-6, IL-8 and TNF-α levels, whereas, increased IL-2, IL-4, IL-10, INF-γ, IgA and IgG levels in mice having diarrhea. These treatments also reversed intestinal flora imbalance as indicated by the increased in Firmicutes-to-Bacteroidetes ratio and Clostridium levels (P < 0.05) and improved 5-HT, CAT and SOD levels. MSF favored diarrhea management as compared to ciprofloxacin, suggesting that MSF can be used in the management of E. coli O1-induced diarrhea, in normal gut microbiota and normal intestinal antioxidant function.
Collapse
Affiliation(s)
- Zhifeng Jia
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, PR China
| | - Aqima Wu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, PR China; College of Vocational, Inner Mongolia University of Finance and Economics, Hohhot, 010070, PR China
| | - Meiling He
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, PR China
| | - Liang Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, PR China
| | - Chunjie Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, PR China.
| | - Aorigele Chen
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, PR China.
| |
Collapse
|
166
|
The Costs of Living Together: Immune Responses to the Microbiota and Chronic Gut Inflammation. Appl Environ Microbiol 2019; 85:AEM.02147-18. [PMID: 30530709 DOI: 10.1128/aem.02147-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
While the vertebrate microbiota is critical to the normal function of many host traits, hosts may expend a large amount of energy to constrain and interface with their microbiota via their immune system to avoid the high fitness costs associated with gut dysbiosis, pathobionts, and opportunistic pathogens. All jawed vertebrates share mucosal immunity dedicated to isolating the microbiota, and a breakdown of this system can result in chronic gut inflammation. In humans, chronic gut inflammation negatively affects growth and development. There is little information available on the prevalence of chronic gut inflammation in wild animals, but given that animals with different life histories emphasize different immune responses, it follows that wild animals may vary in their susceptibility to chronic gut inflammation, and most animals will experience signaling that can lead to this state. These can be top-down signals originating from sources like the central nervous system or bottom-up signals originating from changes in the gut microbiota. The sources of these signals might include stress, developmental transitions, food restriction, and dietary shifts. Here, we briefly discuss host-microbiota interactions from the perspective of life history theory and ecoimmunology, focusing on the mucosal immune system and chronic gut inflammation. We also include future directions for research and the tools necessary to investigate them.
Collapse
|
167
|
Yang HL, Sun YZ, Hu X, Ye JD, Lu KL, Hu LH, Zhang JJ. Bacillus pumilus SE5 originated PG and LTA tuned the intestinal TLRs/MyD88 signaling and microbiota in grouper (Epinephelus coioides). FISH & SHELLFISH IMMUNOLOGY 2019; 88:266-271. [PMID: 30849499 DOI: 10.1016/j.fsi.2019.03.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/27/2019] [Accepted: 03/01/2019] [Indexed: 06/09/2023]
Abstract
The normal microbiota plays a key role in the health of host, but little is known of how the fish immune system recognizes and responds to indigenous bacteria/probiotics. Our previous studies have showed that heat-inactivated indigenous Bacillus pumilus SE5 activate the TLR2 signaling pathways and modulate the intestinal microbiota in grouper (Epinephelus coioides), suggesting microbial-associated molecular patterns (MAMPs) involved. In this study, whole cell wall (CW) and two possible MAMPs, peptidoglycan (PG) and lipoteichoic acid (LTA) have been extracted from B. pumilus SE5 and their effects on intestinal immune related genes expression and microbiota were evaluated in a 60 days feeding trial. Significantly elevated expression of TLR1, TLR2, TLR5 and MyD88 was observed in fish fed the CW, PG and LTA containing diets, and the highest expression was observed in groups PG and LTA. At the same time, significantly upregulated expression of antimicrobial effectors, such as antimicrobial peptides (epinecidin-1, hepcidin-1 and β-defensin), C-type Lectin and IgM was observed in fish fed PG and LTA containing diets. This induced activation of intestinal immunity was consistent with the microbiota data showing that CW, PG and LTA originated from SE5 modulated the overall structure of intestinal microbiota, and the relative abundance of potentially pathogenic Vibrio decreased significantly while beneficial Lactobacillus increased significantly in fish fed PG and LTA. In conclusion, both the PG and LTA originated from B. pumilus SE5 could activate TLRs/MyD88 signaling and expression of wide-ranging antibacterial effectors, and therefore shape the intestinal microbiota in grouper.
Collapse
Affiliation(s)
- Hong-Ling Yang
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, China; The Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Yun-Zhang Sun
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, China; The Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China; Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, China.
| | - Xi Hu
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Ji-Dan Ye
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, China; The Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Kang-Le Lu
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Ling-Hao Hu
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Jiao-Jing Zhang
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, China
| |
Collapse
|
168
|
Huang T, Li LP, Liu Y, Luo YJ, Wang R, Tang JY, Chen M. Spatiotemporal distribution of Streptococcus agalactiae attenuated vaccine strain YM001 in the intestinal tract of tilapia and its effect on mucosal associated immune cells. FISH & SHELLFISH IMMUNOLOGY 2019; 87:714-720. [PMID: 30738148 DOI: 10.1016/j.fsi.2019.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 06/09/2023]
Abstract
In this study, the tilapia was orally vaccinated by the attenuated Streptococcus agalactiae(S. agalactiae) strain YM001, and the distribution and the pathological effect of strain YM001 in different intestinal segments of tilapia were evaluated by real-time PCR(qPCR), immunohistochemistry(IHC) and histomorphology. The qPCR results showed that the number of bacteria was the highest in the intestinal tracts at 12 h post oral gavage in the YM001 group, then began to decrease sharply and eliminated at 7 d. And the number of bacteria was highest in the foregut, hindgut, and rectum at 12 h, 24 h, and 3 d, respectively. IHC indicated that bacteria mainly distributed in the margin epithelium and the goblet cells at 12 h - 24 h, and in the submucosa and muscle layer in the YM001 group in 3 d post gavage, then almost disappeared at 7 d. Histological examination of intestines post gavage displayed that an inflammation was observed at 7 d in the YM001 group and the intestinal structure was fully recovered at 15 d. and the intestinal structure was fully recovered at 15 d. Conclusion: The attenuated S. agalactiae vaccine strain YM001 could enter the intestinal tissue after oral gavage and had a strong spatial and temporal selectivity in the intestinal tract, which could cause obvious mucosal immune response and mild pathological reaction, but the pathological change could be gradually repaired with the extinction of bacteria in the body.
Collapse
Affiliation(s)
- Ting Huang
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Institute of Fisheries, Nanning, 530021, China
| | - Li-Ping Li
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Institute of Fisheries, Nanning, 530021, China
| | - Yu Liu
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Institute of Fisheries, Nanning, 530021, China
| | - Yong-Ju Luo
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Institute of Fisheries, Nanning, 530021, China
| | - Rui Wang
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Institute of Fisheries, Nanning, 530021, China
| | - Jia-You Tang
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Institute of Fisheries, Nanning, 530021, China
| | - Ming Chen
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Institute of Fisheries, Nanning, 530021, China.
| |
Collapse
|
169
|
Tajimi S, Kondo M, Nakanishi T, Nagasawa T, Nakao M, Somamoto T. Generation of virus-specific CD8 + T cells by vaccination with inactivated virus in the intestine of ginbuna crucian carp. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 93:37-44. [PMID: 30579936 DOI: 10.1016/j.dci.2018.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 12/19/2018] [Accepted: 12/19/2018] [Indexed: 06/09/2023]
Abstract
Although a previous study using ginbuna crucian carp suggested that cell-mediated immunity can be induced by the oral administration of inactivated viruses, which are exogenous antigens, there is no direct evidence that CD8+ cytotoxic T cells (CTLs) in teleost fish are generated by vaccination with exogenous antigens. In the present study, we investigated whether antigen-specific CD8+ CTLs in ginbuna crucian carp can be elicited by intestinal immunization with an exogenous antigen without any adjuvant. The IFNγ-1 and T-bet mRNA expressions were up-regulated in intestinal leukocytes following the administration of formalin-inactivated crucian hematopoietic necrosis virus (FI-CHNV), whereas the down-regulation of these genes was observed in kidney leukocytes. Furthermore, an increase in the percentage of proliferating CD8+ cells was detected in the posterior portion of the hindgut, suggesting that the virus-specific CTLs are locally generated in this site. In addition, cell-mediated cytotoxicity against CHNV-infected syngeneic cells and the in vivo inhibition of viral replication were induced by immunization with FI-CHNV. Unexpectedly, intraperitoneal immunization with FI-CHNV induced a type I helper T cell (Th1)-response in the intestine, but not in the kidney; however, its effect was slightly lower than that reported after intestinal immunization. These findings suggest that the posterior portion of the intestine is an important site for generating virus-specific CTLs by vaccination with the inactivated vaccine.
Collapse
Affiliation(s)
- Seisuke Tajimi
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Masakazu Kondo
- Department of Applied Aquabiology, National Fisheries University, Japan Fisheries Research and Education Agency, Shimonoseki, Yamaguchi, 759-6595, Japan
| | - Teruyuki Nakanishi
- Department of Veterinary Medicine, Nihon University, Fujisawa, Kanagawa, 252-8510, Japan
| | - Takahiro Nagasawa
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Miki Nakao
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Tomonori Somamoto
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan.
| |
Collapse
|
170
|
Guardiola FA, Mabrok M, Machado M, Azeredo R, Afonso A, Esteban MA, Costas B. Mucosal and systemic immune responses in Senegalese sole (Solea senegalensis Kaup) bath challenged with Tenacibaculum maritimum: A time-course study. FISH & SHELLFISH IMMUNOLOGY 2019; 87:744-754. [PMID: 30763617 DOI: 10.1016/j.fsi.2019.02.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 02/07/2019] [Accepted: 02/11/2019] [Indexed: 06/09/2023]
Abstract
Tenacibaculosis, caused by Tenacibaculum maritimum, continues to inflict substantial losses among cultured marine species, particularly in the Senegalese sole. However, the immune mechanisms in fish involved in fighting against this disease are still poorly understood. Thus, the present study aimed to investigate the skin mucus's terminal carbohydrate composition, several immune-related enzymes (i.e. lysozyme, peroxidase, proteases and antiproteases), the haemolytic activity of complement and the bactericidal activity in the skin mucus and plasma of the Senegalese sole in a time-course study following a bath challenge with T. maritimum. The haematological profile and the kinetics of cell migration post-infection were also considered. The bath challenge induced slight variations in the terminal carbohydrate composition of Senegalese sole skin mucus. In general, results from this study showed a delay in the mucosal immune response compared to that found at the systemic level (i.e. blood and plasma). For instance, a significant increase in the skin mucus's lysozyme, complement, protease and antiprotease activities were observed at the end of the experiment (14 d post-challenge). Interestingly, the higher activity of these enzymes could be related to the skin mucus's bactericidal capacity and haemolytic complement activity, suggesting that these enzymes play an important role in the defence against Gram-negative bacteria. The haematological profile revealed a significant increase in circulating neutrophils in challenged fish after 48 and 72 h, which was positively correlated to the increments observed in peroxidase and lysozyme activities, respectively, in the plasma of challenged fish at the same time. Although the route of entry and the survival strategy of T. maritimum are still not fully elucidated, results from the present study will contribute to this endeavour through the study of the mucosal immune responses of fish against this particular pathogen.
Collapse
Affiliation(s)
- F A Guardiola
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Porto, Portugal; Department of Cell Biology and Histology. Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain.
| | - M Mabrok
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Porto, Portugal; Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Suez Canal University, Egypt
| | - M Machado
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS-UP), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - R Azeredo
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Porto, Portugal
| | - A Afonso
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS-UP), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - M A Esteban
- Department of Cell Biology and Histology. Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - B Costas
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS-UP), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.
| |
Collapse
|
171
|
Jiang B, Li Z, Ou B, Duan Q, Zhu G. Targeting ideal oral vaccine vectors based on probiotics: a systematical view. Appl Microbiol Biotechnol 2019; 103:3941-3953. [PMID: 30915504 DOI: 10.1007/s00253-019-09770-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/11/2019] [Accepted: 03/12/2019] [Indexed: 12/29/2022]
Abstract
Probiotics have great potential to be engineered into oral vaccine delivery systems, which can facilitate elicitation of mucosal immunity without latent risks of pathogenicity. Combined with the progressive understanding of probiotics and the mucosal immune system as well as the advanced biotechniques of genetic engineering, the development of promising oral vaccine vectors based on probiotics is available while complicated and demanding. Therefore, a systematical view on the design of practical probiotic vectors is necessary, which will help to logically analyze and resolve the problems that might be neglected during our exploration. Here, we attempt to systematically summarize several fundamental issues vital to the effectiveness of the vector of probiotics, including the stability of the engineered vectors, the optimization of antigen expression, the improvement of colonization, and the enhancement of immunoreactivity. We also compared the existent strategies and some developing ones, attempting to figure out an optimal strategy that might deserve to be referred in the future development of oral vaccine vectors based on probiotics.
Collapse
Affiliation(s)
- Boyu Jiang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou, 225009, China
| | - Zhendong Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou, 225009, China
| | - Bingming Ou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou, 225009, China.,College of Life Science, Zhaoqing University, Zhaoqing, 526061, China
| | - Qiangde Duan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China. .,Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou, 225009, China.
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China. .,Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou, 225009, China.
| |
Collapse
|
172
|
Lin M, Zeng C, Jia X, Zhai S, Li Z, Ma Y. The composition and structure of the intestinal microflora of
Anguilla marmorata
at different growth rates: a deep sequencing study. J Appl Microbiol 2019; 126:1340-1352. [DOI: 10.1111/jam.14174] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 11/01/2018] [Accepted: 12/06/2018] [Indexed: 12/21/2022]
Affiliation(s)
- M. Lin
- Jimei University Xiamen China
- Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education Xiamen China
| | | | | | | | - Z.Q. Li
- Jimei University Xiamen China
- Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education Xiamen China
| | - Y. Ma
- Jimei University Xiamen China
- Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education Xiamen China
| |
Collapse
|
173
|
Eslamloo K, Ghorbani A, Xue X, Inkpen SM, Larijani M, Rise ML. Characterization and Transcript Expression Analyses of Atlantic Cod Viperin. Front Immunol 2019; 10:311. [PMID: 30894853 PMCID: PMC6414715 DOI: 10.3389/fimmu.2019.00311] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 02/06/2019] [Indexed: 12/29/2022] Open
Abstract
Viperin is a key antiviral effector in immune responses of vertebrates including the Atlantic cod (Gadus morhua). Using cloning, sequencing and gene expression analyses, we characterized the Atlantic cod viperin at the nucleotide and hypothetical amino acid levels, and its regulating factors were investigated. Atlantic cod viperin cDNA is 1,342 bp long, and its predicted protein contains 347 amino acids. Using in silico analyses, we showed that Atlantic cod viperin is composed of 5 exons, as in other vertebrate orthologs. In addition, the radical SAM domain and C-terminal sequences of the predicted Viperin protein are highly conserved among various species. As expected, Atlantic cod Viperin was most closely related to other teleost orthologs. Using computational modeling, we show that the Atlantic cod Viperin forms similar overall protein architecture compared to mammalian Viperins. qPCR revealed that viperin is a weakly expressed transcript during embryonic development of Atlantic cod. In adults, the highest constitutive expression of viperin transcript was found in blood compared with 18 other tissues. Using isolated macrophages and synthetic dsRNA (pIC) stimulation, we tested various immune inhibitors to determine the possible regulating pathways of Atlantic cod viperin. Atlantic cod viperin showed a comparable pIC induction to other well-known antiviral genes (e.g., interferon gamma and interferon-stimulated gene 15-1) in response to various immune inhibitors. The pIC induction of Atlantic cod viperin was significantly inhibited with 2-Aminopurine, Chloroquine, SB202190, and Ruxolitinib. Therefore, endosomal-TLR-mediated pIC recognition and signal transducers (i.e., PKR and p38 MAPK) downstream of the TLR-dependent pathway may activate the gene expression response of Atlantic cod viperin. Also, these results suggest that antiviral responses of Atlantic cod viperin may be transcriptionally regulated through the interferon-activated pathway.
Collapse
Affiliation(s)
- Khalil Eslamloo
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Atefeh Ghorbani
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Xi Xue
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Sabrina M Inkpen
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Mani Larijani
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
174
|
Wang KZ, Feng L, Jiang WD, Wu P, Liu Y, Jiang J, Kuang SY, Tang L, Zhang YA, Zhou XQ. Dietary gossypol reduced intestinal immunity and aggravated inflammation in on-growing grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2019; 86:814-831. [PMID: 30543935 DOI: 10.1016/j.fsi.2018.12.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/25/2018] [Accepted: 12/09/2018] [Indexed: 06/09/2023]
Abstract
The present study explored the effects of dietary gossypol on the gut health of on-growing grass carp. The fish were fed six diets containing different levels of free gossypol (0, 121.38, 243.94, 363.89, 759.93 and 1162.06 mg/kg diet) from gossypol-acetic acid for 60 days and then challenged with Aeromonas hydrophila for 14 days. The results showed that dietary gossypol (1) could aggravate enteritis and damage the structure of intestinal epithelial cells, (2) decreased the lysozyme (LZ) and Acid phosphatase (ACP) activities, complement 3 (C3), C4 and immunoglobulin M (IgM) contents, and it down-regulated the Hepcidin (rather than distal intestine (DI)), immunoglobulin Z (IgZ), liver-expressed antimicrobial peptide (LEAP)-2B, Mucin2 and β-defensin-1 mRNA levels in the proximal intestine (PI), mid intestine (MI) and DI, (3) up-regulated intestinal pro-inflammatory cytokines tumor necrosis factor α (TNF-α), interferon γ2 (IFN-γ2), interleukin 1β (IL-1β), IL-6 (only in PI), IL-8 and IL-12p35 mRNA levels partly related to nuclear factor kappa B (NF-κB) signalling, and (4) down-regulated the mRNA levels of anti-inflammatory cytokines such as transforming growth factor (TGF)-β1, TGF-β2, interleukin 4/13A (IL-4/13A) (except IL-4/13B), IL-10 and IL-11 partly relating to target of rapamycin (TOR) signalling in the intestines of on-growing grass carp. Moreover, the dietary gossypol had no impact on the LEAP-2A, IL-12P40, IL-17D, IL-10, NF-κBp52, IKKα and eIF4E-binding proteins 2 (4E-BP2) mRNA levels in the intestines. Finally, based on the intestinal histopathological results, enteritis morbidity, LZ activity and IgM content, the safe dose of gossypol in the diets for on-growing grass carp should be less than 103.42 mg/kg diet.
Collapse
Affiliation(s)
- Kai-Zhuo Wang
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan, Agricultural University, Sichuan, Chengdu, 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan, Agricultural University, Sichuan, Chengdu, 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan, Agricultural University, Sichuan, Chengdu, 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan, Agricultural University, Sichuan, Chengdu, 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan, Agricultural University, Sichuan, Chengdu, 611130, China.
| |
Collapse
|
175
|
Lange MD, Waldbieser GC, Lobb CJ. The proliferation and clonal migration of B cells in the systemic and mucosal tissues of channel catfish suggests there is an interconnected mucosal immune system. FISH & SHELLFISH IMMUNOLOGY 2019; 84:1134-1144. [PMID: 30414491 PMCID: PMC6335153 DOI: 10.1016/j.fsi.2018.11.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/01/2018] [Accepted: 11/05/2018] [Indexed: 06/08/2023]
Abstract
IgM transcripts from different mucosal and systemic tissues from a single adult channel catfish have been evaluated. Arrayed heavy chain cDNA libraries from each of these different mucosal and systemic tissues were separately constructed, hybridized with VH family specific probes and a variety of approaches were used to define their structural relationships. Baseline hybridization studies indicated that the tissue libraries had different VH expression patterns, and sequencing studies indicated this was not simply due to varying proportions of the same B cell population. In the systemic tissues of PBL, spleen, and anterior kidney >95% of the sequenced clones in the arrayed libraries represented different heavy chain rearrangements. Diversity was also found in the mucosal libraries of skin, gill lamellae, and two non-adjoining regions of the intestine, but additional populations were identified which indicated localized clonal expansion. Various clonal sets were characterized in detail, and their genealogies indicated somatic mutation accompanied localized clonal expansion with some members undergoing additional mutations and expansion after migration to different mucosal sites. PCR analyses indicated these mucosal clonal sets were more abundant within different mucosal tissues rather than in the systemic tissues. These studies indicate that the mucosal immune system in fish can express B cell transcripts differently from those found systemically. These studies further indicate that the mucosal immune system is interconnected with clonal B cells migrating between different mucosal tissues, results which yield new insight into immune diversity in early vertebrate phylogeny.
Collapse
Affiliation(s)
- Miles D Lange
- Department of Microbiology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216-4505, USA.
| | - Geoffrey C Waldbieser
- United States Department of Agriculture, Agricultural Research Service, Warmwater Aquaculture Research Unit, Stoneville, MS, 38776, USA
| | - Craig J Lobb
- Department of Microbiology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216-4505, USA
| |
Collapse
|
176
|
Ašmonaitė G, Sundh H, Asker N, Carney Almroth B. Rainbow Trout Maintain Intestinal Transport and Barrier Functions Following Exposure to Polystyrene Microplastics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:14392-14401. [PMID: 30451503 DOI: 10.1021/acs.est.8b04848] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Ingestion has been proposed as a prominent exposure route for plastic debris in aquatic organisms, including fish. While the consequences of ingestion of large plastic litter are mostly understood, the impacts resulting from ingestion of microplastics (MPs) are largely unknown. We designed a study that aimed to assess impacts of MPs on fish intestinal physiology and examined integrity of extrinsic, physical and immunological barriers. Rainbow trout were exposed to polystyrene (PS) MPs (100-400 μm) via feed for a period of 4 weeks. Fish were fed four types of diets: control, diets containing virgin PS particles, or particles exposed to two different environmental matrices (sewage or harbor effluent). Extrinsic barrier disturbance in intestinal tissue was evaluated via histology. The paracellular permeability toward ions and molecules was examined using Ussing chambers and mRNA expression analysis of tight junction proteins. Active transport was monitored as transepithelial potential difference, short-circuits current and uptake rate of amino acid 3H-lysine. Immune status parameters were measured through mRNA expression level of cytokines, lysozyme activity, and hematological analysis of immune cells. We could not show that PS MPs induced inflammatory responses or acted as physical or chemical hazards upon ingestion. No measurable effects were exerted on fish intestinal permeability, active transport or electrophysiology.
Collapse
Affiliation(s)
- Giedrė Ašmonaitė
- Department of Biological and Environmental Sciences , University of Gothenburg , Medicinaregatan 18 , 413 90 Göteborg , Sweden
| | - Henrik Sundh
- Department of Biological and Environmental Sciences , University of Gothenburg , Medicinaregatan 18 , 413 90 Göteborg , Sweden
| | - Noomi Asker
- Department of Biological and Environmental Sciences , University of Gothenburg , Medicinaregatan 18 , 413 90 Göteborg , Sweden
| | - Bethanie Carney Almroth
- Department of Biological and Environmental Sciences , University of Gothenburg , Medicinaregatan 18 , 413 90 Göteborg , Sweden
| |
Collapse
|
177
|
Zeng L, Wang YH, Ai CX, Zhang JS. Differential effects of β-glucan on oxidative stress, inflammation and copper transport in two intestinal regions of large yellow croaker Larimichthys crocea under acute copper stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 165:78-87. [PMID: 30193167 DOI: 10.1016/j.ecoenv.2018.08.098] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/20/2018] [Accepted: 08/27/2018] [Indexed: 06/08/2023]
Abstract
The aim of the present study was to evaluate investigate the effects of β-glucan on oxidative stress, inflammation and copper transport in two intestinal regions of large yellow croaker under acute copper stress. Fish were injected with β-glucan at a dose of 0 or 5 mg kg-1 body weight on 6, 4 and 2 days before exposed to 0 and 368 μg Cu L-1 for 48 h. Biochemical indicators (MDA, Cu content, MTs protein levels, Cu/Zn-SOD, CAT and iNOS activities), gene expressions of oxidative stresses (Cu/Zn-SOD, CAT, Nrf2, MTs and MTF-1), inflammatory responses (NF-κB, iNOS, IL-1β, IL-6 and TNF-α) and Cu transporters (ATP7A, ATP7B and CTR1) were determined. In the anterior intestine, β-glucan increased MTs levels, activities of Cu/Zn-SOD, CAT and iNOS, mRNA levels of MTs, CAT, iNOS, ATP7A and ATP7B, and reduced Cu content and CTR1 gene expression to inhibite Cu-induced MDA. But β-glucan had no effect on inflammatory gene expressions. In the mid intestine, β-glucan increased activities of Cu/Zn-SOD and iNOS, mRNA levels of Cu/Zn-SOD, CAT and iNOS to maintain MDA content. However, unlike the anterior intestine, β-glucan had no effect on Cu transporter gene expressions. Furthermore, transcription factors (Nrf2, NF-κB and MTF-1) paralleled with their target genes in the mid intestine, but no correlation was observed between NF-κB and IL-1β and TNF-α gene expressions in the anterior intestine. In conclusion, our results unambiguously showed that β-glucan induced oxidative stress, inflammation and copper transport were varied between the anterior and mid intestines of fish under Cu stress.
Collapse
Affiliation(s)
- Lin Zeng
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China.
| | - Yong-Hong Wang
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Chun-Xiang Ai
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, PR China
| | - Jian-She Zhang
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| |
Collapse
|
178
|
Liu M, Wu T, Li S, Wei P, Yan Y, Gu W, Wang W, Meng Q. Combined transcriptomic/proteomic analysis of crucian carp Carassius auratus gibelio in cyprinid herpesvirus 2 infection. FISH & SHELLFISH IMMUNOLOGY 2018; 82:386-399. [PMID: 30071344 DOI: 10.1016/j.fsi.2018.07.057] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 05/10/2018] [Accepted: 07/28/2018] [Indexed: 06/08/2023]
Abstract
Cyprinid herpesvirus 2 (CyHV-2) is a pathogen of herpesviral hematopoietic necrosis disease of crucian carp. Our study aimed to investigate the molecular mechanisms and immune response at the mRNA and protein levels in head kidney during CyHV-2 infection. Three days after infection with CyHV-2, 7085 differentially expressed genes were identified by transcriptome sequencing, of which 3090 were up-regulated and 3995 were down-regulated. And 338 differentially expressed proteins including 277 up-regulated and 61 down-regulated were identified using tandem mass tag labeling followed by liquid chromatography tandem mass spectrometry. Notably, 128 differentially co-expressed genes at mRNA and protein levels (cDEGs) were reliably quantified, including 86 co-up-regulated and 42 co-down-regulated. In addition, 10 cDGEs in the above pathways were selected for qRT-PCR to confirm the validity of the transcriptome and proteome changes by showing that RIG-I, MDA5, LGP2, FAS, PKR and PKZ up-regulated and Integrin α, Integrin β2, NCF2 and NCF4 down-regulated. This indicated that after CyHV-2 infection, the herpes simplex infection pathway, RIG-I like receptor signaling pathway, necroptosis pathway and p53 signaling pathway were activated and the phagosome pathway was suppressed. Our findings reveal the pathogenesis and the host immune mechanism of CyHV-2 infection of crucian carp.
Collapse
Affiliation(s)
- Min Liu
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Ting Wu
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China; Baoying Center for Control and Prevention of Aquatic Animal Infectious Disease, 30# Yeting East Road, Baoying, 225800, China
| | - Shuang Li
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Panpan Wei
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Yuye Yan
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Wei Gu
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu, 222005, China
| | - Wen Wang
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Qingguo Meng
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu, 222005, China.
| |
Collapse
|
179
|
Zhang F, Feng R, Fang W, Shi Y, An L, Yang G. Cytochemical characterization of peripheral blood cell populations of two Cyprinidae, Carassius auratus and Ctenopharyngodon idellus. Anat Histol Embryol 2018; 48:22-32. [PMID: 30353570 DOI: 10.1111/ahe.12407] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 09/06/2018] [Accepted: 09/12/2018] [Indexed: 01/16/2023]
Abstract
Fish are the most diverse species of all vertebrate groups, and their blood cells have shown variable characteristics in terms of morphology. Cytochemical staining for enzyme activity in blood leukocytes will help assess the immune function of fish. We characterize blood cells from crucian carp (Carassius auratus) and grass carp (Ctenopharyngodon idellus) by using a Diff-Quick stain as well as different cytochemical methods. Blood specimens obtained from crucian carp and grass carp were evaluated after cytochemical staining for acid phosphatase (ACP), alkaline phosphatase (ALP), naphthol AS chloroacetate esterase (AS-DNCE), naphthyl acetate esterase (NAE), α-naphthyl butyrate esterase (NBE), peroxidase (MPO) and periodic acid-Schiff's reaction (PAS) using commercial kits. Blood cell types were evaluated based on their morphological characteristics and the presence or absence of specific chromogen. The expression pattern of enzymes was similar between the two Cyprinidae and was also broadly consistent with other fish species. However, there were some interesting differences detected between crucian carp and grass carp, including naphthol AS chloroacetate esterase activity in monocytes, peroxidase activity and location in thrombocytes. The ACP, ALP and MPO expressions of different leukocytes of the two Cyprinidae were evaluated by Image Pro Plus and were analysed for statistical significant differences. This investigation provides basic haematology and enzyme activity analyses for crucian carp and grass carp and serves as an approach to evaluating the immune response of fish.
Collapse
Affiliation(s)
- Fumiao Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Ranran Feng
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Wei Fang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Yanhui Shi
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Liguo An
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Guiwen Yang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
180
|
Ren G, Xu L, Lu T, Zhang Y, Wang Y, Yin J. Protective effects of lentinan on lipopolysaccharide induced inflammatory response in intestine of juvenile taimen (Hucho taimen, Pallas). Int J Biol Macromol 2018; 121:317-325. [PMID: 30248420 DOI: 10.1016/j.ijbiomac.2018.09.121] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/19/2018] [Accepted: 09/20/2018] [Indexed: 02/07/2023]
Abstract
Antioxidant effects of lentinan on LPS induced inflammatory response in intestine of juvenile taimen were evaluated, and its prebiotic-like efficacy on intestinal microbiota was also investigated. The results showed that LPS decreased the activities of antioxidant enzymes and increased the expression levels of inflammatory cytokines in intestine of juvenile taimen. Dietary lentinan significantly enhanced intestinal antioxidant ability by increasing the activities of SOD, GSH-Px and CAT, and inhibiting the lipid peroxidation in juvenile taimen. Appropriate lentinan prevented the increases in the expression levels of TGF-β, TNF-α, IL1β, IL6 and IL8 and ensured the relatively high expression levels of claudin d, SOD, CAT and IκBα after LPS challenge. Furthermore, dietary lentinan effectively modified intestinal microbiota, represented by increasing the relative abundance of beneficial bacteria such as Lactobacillaceae, Lachnospiraceae and Ruminococcaceae, and decreasing those of detrimental bacteria such as Enterobacteriaceae, Fusobacteriaceae and Flavobacteriaceae. Taken together, dietary lentinan availably decreased LPS induced inflammatory response, indicating that lentinan has the potential anti-inflammatory effects for preventing inflammation diseases in cold-water fish.
Collapse
Affiliation(s)
- Guangming Ren
- Heilongjiang River Fishery Research Institute Chinese Academy of Fishery Sciences, Harbin 150070, PR China
| | - Liming Xu
- Heilongjiang River Fishery Research Institute Chinese Academy of Fishery Sciences, Harbin 150070, PR China
| | - Tongyan Lu
- Heilongjiang River Fishery Research Institute Chinese Academy of Fishery Sciences, Harbin 150070, PR China
| | - Yongquan Zhang
- Heilongjiang River Fishery Research Institute Chinese Academy of Fishery Sciences, Harbin 150070, PR China
| | - Yuanyuan Wang
- Heilongjiang River Fishery Research Institute Chinese Academy of Fishery Sciences, Harbin 150070, PR China
| | - Jiasheng Yin
- Heilongjiang River Fishery Research Institute Chinese Academy of Fishery Sciences, Harbin 150070, PR China.
| |
Collapse
|
181
|
Attaya A, Wang T, Zou J, Herath T, Adams A, Secombes CJ, Yoon S. Gene expression analysis of isolated salmonid GALT leucocytes in response to PAMPs and recombinant cytokines. FISH & SHELLFISH IMMUNOLOGY 2018; 80:426-436. [PMID: 29906623 DOI: 10.1016/j.fsi.2018.06.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/30/2018] [Accepted: 06/11/2018] [Indexed: 06/08/2023]
Abstract
Increased knowledge of the immune response of the intestine, a physiologically critical organ involved in absorption, secretion and homeostasis in a non-sterile environment, is needed to better understand the mechanisms involved in the induction of long-lasting immunity and, subsequently, the development of efficacious gastrointestinal immunization approaches. To this end, analysis of isolated gut cells will give an insight into the cell types present and their immune capability. Hence, in this study we first optimised a method for salmonid gut leucocyte isolation and characterised the cells on the basis of their expression of a range of selected cell markers associated with T & B cells and dendritic cells. The GALT leucocytes were then stimulated with a variety of PAMPs, recombinant cytokines and PHA, as a means to help characterise the diversity of the immune repertoire present in such cells. The stimulants tested were designed to examine the nature of the antibacterial, antiviral and T cell type responses in the cells (at the transcript level) using a panel of genes relevant to innate and adaptive immunity. The results showed distinct responses to the stimulants, with a clear delineation seen between the stimulant used (eg viral or bacterial PAMP) and the pathway elicited. The changes in the expression patterns of the immune genes in these cells indicates that the salmonid intestine contains a good repertoire of competent immune cells able to respond to different pathogen types. Such information may aid the development of efficient priming by oral vaccination in salmonids.
Collapse
Affiliation(s)
- A Attaya
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
| | - T Wang
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
| | - J Zou
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
| | - T Herath
- Institute of Aquaculture, University of Stirling, Stirling, FK9 4LA, UK
| | - A Adams
- Institute of Aquaculture, University of Stirling, Stirling, FK9 4LA, UK
| | - C J Secombes
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK.
| | - S Yoon
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK.
| |
Collapse
|
182
|
Shoemaker CA, LaFrentz BR, Peatman E, Beck BH. Influence of native catfish mucus on Flavobacterium columnare growth and proteolytic activity. JOURNAL OF FISH DISEASES 2018; 41:1395-1402. [PMID: 29893005 DOI: 10.1111/jfd.12833] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 06/08/2023]
Abstract
Flavobacterium columnare causes columnaris disease of farmed and wild freshwater fish. Skin mucus is an important factor in early stages of columnaris pathogenesis, albeit little studied. Our objectives were to (a) characterize the terminal glycosylation pattern (TGP) of catfish mucus, (b) determine the growth of F. columnare in formulated water (FW)-containing channel catfish (Ictalurus punctatus) or hybrid catfish (Ictalurus punctatus X Ictalurus furcatus) mucus and (c) examine extracellular protease activity of two F. columnare isolates differing in virulence. The TGP of catfish mucus by lectin binding was as follows: alpha-D-mannose/alpha-D-glucose >N-acetyl-beta-D-glucosamine >N-acetyl-beta-D-glucosamine/N-acetylneuraminic acid >N-acetyl-D-galactosamine >alpha-D-galactose/N-acetyl-alpha-D-galactosamine >beta-D-galactose = alpha-L-fucose. Virulence studies demonstrated isolate AL-02-36 was highly virulent in channel catfish fry (0.1 g) with cumulative mortality of 90%-100% versus 60% for isolate ALG-00-530 at equivalent doses (~3 × 106 CFU/ml); a similar result was observed in larger (0.7 g) catfish. In multiple experiments, F. columnare replicated (2-3 logs) and survived (28 days) in formulated water-containing catfish mucus. Highly virulent isolate AL-02-36 possessed at least 2.5- to fivefold higher protease activity following growth in mucus than the less virulent ALG-00-530. Flavobacterium columnare utilized catfish mucus as a nutrient source and mucus presence modulated extracellular protease production.
Collapse
Affiliation(s)
- Craig A Shoemaker
- U.S. Department of Agriculture, Agricultural Research Service, Aquatic Animal Health Research Unit, Auburn, Alabama
| | - Benjamin R LaFrentz
- U.S. Department of Agriculture, Agricultural Research Service, Aquatic Animal Health Research Unit, Auburn, Alabama
| | - Eric Peatman
- School of Fisheries Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama
| | - Benjamin H Beck
- U.S. Department of Agriculture, Agricultural Research Service, Aquatic Animal Health Research Unit, Auburn, Alabama
| |
Collapse
|
183
|
Sundh H, Gräns A, Brijs J, Sandblom E, Axelsson M, Berg C, Sundell K. Effects of coeliacomesenteric blood flow reduction on intestinal barrier function in rainbow trout Oncorhynchus mykiss. JOURNAL OF FISH BIOLOGY 2018; 93:519-527. [PMID: 29934951 DOI: 10.1111/jfb.13658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 05/16/2018] [Indexed: 06/08/2023]
Abstract
The aim of the current work was to elucidate if there is a connection between stress-induced decrease in coeliacomesenteric artery blood flow (i.e. gastrointestinal blood flow; GBF) and disruption of the intestinal primary barrier in rainbow trout Oncorhynchus mykiss. Upon initiation of a 15 min acute chasing stress, the GBF decreased instantly by c. 92%. The GBF then slowly increased and reached c. 28% of resting values at the end of the stress protocol. After the stress was ceased, the GBF slowly increased and returned to resting values within c. 45 min. Intestinal permeability assessment in an Ussing-chambers set-up revealed impaired intestinal barrier function 24 h after stress. When the stress-induced GBF reduction was mimicked by an experimental occlusion of the coeliacomesenteric artery for 15 min followed by 24 h recovery, no effect on intestinal barrier function was observed. These results suggest that no direct causal relationship can be found between the GBF reduction and development of intestinal barrier dysfunction following periods of acute stress in this species of fish.
Collapse
Affiliation(s)
- Henrik Sundh
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Albin Gräns
- Department of Animal Environment and Health, Swedish University of Agricultural Sciences, Skara, Sweden
| | - Jeroen Brijs
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Erik Sandblom
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Michael Axelsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Charlotte Berg
- Department of Animal Environment and Health, Swedish University of Agricultural Sciences, Skara, Sweden
| | - Kristina Sundell
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
184
|
Vadstein O, Attramadal KJK, Bakke I, Forberg T, Olsen Y, Verdegem M, Giatsis C, Skjermo J, Aasen IM, Gatesoupe FJ, Dierckens K, Sorgeloos P, Bossier P. Managing the Microbial Community of Marine Fish Larvae: A Holistic Perspective for Larviculture. Front Microbiol 2018; 9:1820. [PMID: 30210457 PMCID: PMC6119882 DOI: 10.3389/fmicb.2018.01820] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/19/2018] [Indexed: 12/24/2022] Open
Abstract
The availability of high-quality juveniles is a bottleneck in the farming of many marine fish species. Detrimental larvae-microbe interactions are a main reason for poor viability and quality in larval rearing. In this review, we explore the microbial community of fish larvae from an ecological and eco-physiological perspective, with the aim to develop the knowledge basis for microbial management. The larvae are exposed to a huge number of microbes from external and internal sources in intensive aquaculture, but their relative importance depend on the rearing technology used (especially flow-through vs. recirculating systems) and the retention time of the water in the fish tanks. Generally, focus has been on microbes entering the system, but microbes from growth within the system is normally a substantial part of the microbes encountered by larvae. Culture independent methods have revealed an unexpected high richness of bacterial species associated with larvae, with 100-250 operational taxonomic units associated with one individual. The microbiota of larvae changes rapidly until metamorphosis, most likely due to changes in the selection pressure in the digestive tract caused by changes in host-microbe and microbe-microbe interactions. Even though the microbiota of larvae is distinctly different from the microbiota of the water and the live food, the microbiota of the water strongly affects the microbiota of the larvae. We are in the early phase of understanding larvae-microbe interactions in vivo, but some studies with other animals than fish emphasize that we so far have underestimated the complexity of these interactions. We present examples demonstrating the diversity of these interactions. A large variety of microbial management methods exist, focusing on non-selective reduction of microbes, selective enhancement of microbes, and on improvement of the resistance of larvae against microbes. However, relatively few methods have been studied extensively. We believe that there is a lot to gain by increasing the diversity of approaches for microbial management. As many microbial management methods are perturbations of the microbial community, we argue that ecological theory is needed to foresee and test for longer term consequences in microbe-microbe and microbe-larvae interactions. We finally make some recommendations for future research and development.
Collapse
Affiliation(s)
- Olav Vadstein
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kari J. K. Attramadal
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Biology, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Ingrid Bakke
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Torunn Forberg
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Yngvar Olsen
- Department of Biology, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Marc Verdegem
- Aquaculture and Fisheries Group, Wageningen University, Wageningen, Netherlands
| | - Cristos Giatsis
- Aquaculture and Fisheries Group, Wageningen University, Wageningen, Netherlands
| | - Jorunn Skjermo
- Department of Environment and New Resources, SINTEF Ocean, Trondheim, Norway
| | - Inga M. Aasen
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | | | - Kristof Dierckens
- Faculty of Bioscience Engineering, Laboratory of Aquaculture and Artemia Reference Center, Ghent University, Ghent, Belgium
| | - Patrick Sorgeloos
- Faculty of Bioscience Engineering, Laboratory of Aquaculture and Artemia Reference Center, Ghent University, Ghent, Belgium
| | - Peter Bossier
- Faculty of Bioscience Engineering, Laboratory of Aquaculture and Artemia Reference Center, Ghent University, Ghent, Belgium
| |
Collapse
|
185
|
Sheng X, Qian X, Tang X, Xing J, Zhan W. Polymeric Immunoglobulin Receptor Mediates Immune Excretion of Mucosal IgM-Antigen Complexes Across Intestinal Epithelium in Flounder ( Paralichthys olivaceus). Front Immunol 2018; 9:1562. [PMID: 30072985 PMCID: PMC6060246 DOI: 10.3389/fimmu.2018.01562] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/25/2018] [Indexed: 11/13/2022] Open
Abstract
Polymeric immunoglobulin receptor (pIgR) is one important player of mucosal defenses, but very little is known on pIgR-mediated immune excretion of the antigens that penetrate mucosal surface in fish. Previously, we cloned the pIgR of flounder (Paralichthys olivaceus) and developed anti-pIgR antibody. In this study, the flounders were immunized intraperitoneally with the chicken ovalbumin (OVA) and the control protein bovine serum albumin (BSA) to elicit mucosal IgM antibody and pIgR response, and then challenged with OVA via caudal vein injection after the immunized OVA was absent from fish body at the fourth week after immunization. After OVA challenge, strong OVA-positive fluorescence signals were observed in lamina propria (LP) submucosa and epithelial cells of the hindgut at 30 min, increased proceeding toward the distal portion of intestinal folds, reached a peak at 2–3 h, and then weakened and disappeared at 12 h, indicating that the OVA rapidly diffused from bloodstream into LP submucosa and excreted across intestinal epithelium. Whereas in BSA-immunized and OVA-challenged control fish, the OVA was detected in LP submucosa but not in intestinal epithelium due to the lack of OVA-specific antibody. Accordingly, in intestinal epithelium, the transepithelial transport of OVA was confirmed by immunogold electron microscopy, and co-localization of OVA, IgM, and pIgR was illuminated by multiple-label immunofluorescence confocal microscopy and analyzed using Image J software. Furthermore, in gut mucus but not in serum, an ~800-kDa protein band showed IgM-positive, OVA-positive, and pIgR-positive simultaneously, and the OVA, together with IgM and secretory component (SC) of pIgR, could be immunoprecipitated by anti-OVA antibody, demonstrating the existence of SC–polymeric IgM–OVA complexes. All these results collectively revealed that the pIgR could transport mucosal IgM–OVA complexes from LP across intestinal epithelium into gut mucus via the transcytosis in flounder. These new findings provided direct evidences for pIgR-mediated immune excretion of IgM–antigen complexes, and better understanding the role of pIgR in mucosal immunity in teleost fish.
Collapse
Affiliation(s)
- Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
| | - Xiaoyu Qian
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
186
|
Zheng Y, Wu W, Hu G, Qiu L, Meng S, Song C, Fan L, Zhao Z, Bing X, Chen J. Gut microbiota analysis of juvenile genetically improved farmed tilapia (Oreochromis niloticus) by dietary supplementation of different resveratrol concentrations. FISH & SHELLFISH IMMUNOLOGY 2018; 77:200-207. [PMID: 29574130 DOI: 10.1016/j.fsi.2018.03.040] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 03/05/2018] [Accepted: 03/20/2018] [Indexed: 06/08/2023]
Abstract
The genetically improved farmed tilapia (GIFT, Oreochromis niloticus) is cultured widely for production of freshwater fish in China, while streptococcosis, likely related to pathogenic infections, occurs frequently in juvenile, mother, and operated GIFT. The gut microbiota plays an important role in nutrient digestibility in animals, and resveratrol (RES) has been used in feed for different freshwater fish species. Therefore, understanding changes in the tilapia gut microbiota across different concentrations of dietary RES supplementation is extremely important. The gut microbiota population in tilapia at 45 d after supplementation with different concentrations (0, 0.025, 0.05, 0.1 g/kg) of dietary RES was assessed by 16S rDNA gene sequencing. A total of 5445 operational taxonomic units were identified from all samples, and 14 phyla and 81 families were identified from all fecal samples. The bacteria of the phylum Firmicutes were significantly enriched in the 0.025 g/kg RES group when compared with the controls. Proteobacteria, Firmicutes and Cyanobacteria were the most dominant three phyla in all samples. With the increasing concentrations, the proportion of beneficial microbial taxa (Acetobacteraceae and Methylobacteriaceae) increased, whereas the proportion of harmful microbial taxa decreased, eg. Streptococcaceae except for 0.1 g/kg RES groups. RES did not affect the richness and diversity in tilapia gut microbiota. These findings provide information on the diversity and differences in GIFT gut microbiota database, and may contribute to developing strategies for management of diseases and long-term sustainability of O. niloticus culture.
Collapse
Affiliation(s)
- Yao Zheng
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences/Fishery Eco-Evironment Monitoring Center of Lower Reaches of Yangtze River, Ministry of Agriculture/Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors(Wuxi), Ministry of Agriculture, Wuxi, Jiangsu, 214081, PR China
| | - Wei Wu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences/Fishery Eco-Evironment Monitoring Center of Lower Reaches of Yangtze River, Ministry of Agriculture/Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors(Wuxi), Ministry of Agriculture, Wuxi, Jiangsu, 214081, PR China
| | - Gengdong Hu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences/Fishery Eco-Evironment Monitoring Center of Lower Reaches of Yangtze River, Ministry of Agriculture/Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors(Wuxi), Ministry of Agriculture, Wuxi, Jiangsu, 214081, PR China
| | - Liping Qiu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences/Fishery Eco-Evironment Monitoring Center of Lower Reaches of Yangtze River, Ministry of Agriculture/Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors(Wuxi), Ministry of Agriculture, Wuxi, Jiangsu, 214081, PR China
| | - Shunlong Meng
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences/Fishery Eco-Evironment Monitoring Center of Lower Reaches of Yangtze River, Ministry of Agriculture/Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors(Wuxi), Ministry of Agriculture, Wuxi, Jiangsu, 214081, PR China
| | - Chao Song
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences/Fishery Eco-Evironment Monitoring Center of Lower Reaches of Yangtze River, Ministry of Agriculture/Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors(Wuxi), Ministry of Agriculture, Wuxi, Jiangsu, 214081, PR China
| | - Limin Fan
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences/Fishery Eco-Evironment Monitoring Center of Lower Reaches of Yangtze River, Ministry of Agriculture/Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors(Wuxi), Ministry of Agriculture, Wuxi, Jiangsu, 214081, PR China
| | - Zhixiang Zhao
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi, Jiangsu, 214081, PR China
| | - Xuwen Bing
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences/Fishery Eco-Evironment Monitoring Center of Lower Reaches of Yangtze River, Ministry of Agriculture/Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors(Wuxi), Ministry of Agriculture, Wuxi, Jiangsu, 214081, PR China; Wuxi Fishery College, Nanjing Agricultural University, Wuxi, Jiangsu, 214081, PR China.
| | - Jiazhang Chen
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences/Fishery Eco-Evironment Monitoring Center of Lower Reaches of Yangtze River, Ministry of Agriculture/Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors(Wuxi), Ministry of Agriculture, Wuxi, Jiangsu, 214081, PR China; Wuxi Fishery College, Nanjing Agricultural University, Wuxi, Jiangsu, 214081, PR China; Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture, PR China.
| |
Collapse
|
187
|
Jia Z, Chen A, Bao F, He M, Gao S, Xu J, Zhang X, Niu P, Wang C. Effect of nisin on microbiome-brain-gut axis neurochemicals by Escherichia coli -induced diarrhea in mice. Microb Pathog 2018; 119:65-71. [DOI: 10.1016/j.micpath.2018.04.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/18/2018] [Accepted: 04/03/2018] [Indexed: 12/22/2022]
|
188
|
Egerton S, Culloty S, Whooley J, Stanton C, Ross RP. The Gut Microbiota of Marine Fish. Front Microbiol 2018; 9:873. [PMID: 29780377 PMCID: PMC5946678 DOI: 10.3389/fmicb.2018.00873] [Citation(s) in RCA: 395] [Impact Index Per Article: 56.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/16/2018] [Indexed: 12/19/2022] Open
Abstract
The body of work relating to the gut microbiota of fish is dwarfed by that on humans and mammals. However, it is a field that has had historical interest and has grown significantly along with the expansion of the aquaculture industry and developments in microbiome research. Research is now moving quickly in this field. Much recent focus has been on nutritional manipulation and modification of the gut microbiota to meet the needs of fish farming, while trying to maintain host health and welfare. However, the diversity amongst fish means that baseline data from wild fish and a clear understanding of the role that specific gut microbiota play is still lacking. We review here the factors shaping marine fish gut microbiota and highlight gaps in the research.
Collapse
Affiliation(s)
- Sian Egerton
- School of Microbiology, University College Cork, Cork, Ireland.,School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland
| | - Sarah Culloty
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland.,Environmental Research Institute, University College Cork, Cork, Ireland
| | - Jason Whooley
- Bio-marine Ingredients Ireland Ltd., Killybegs, Ireland
| | - Catherine Stanton
- Teagasc Research Centre, Fermoy, Ireland.,APC Microbiome Ireland, Teagasc and University College Cork, Cork, Ireland
| | - R Paul Ross
- School of Microbiology, University College Cork, Cork, Ireland.,Teagasc Research Centre, Fermoy, Ireland.,APC Microbiome Ireland, Teagasc and University College Cork, Cork, Ireland
| |
Collapse
|
189
|
Khansari AR, Balasch JC, Vallejos-Vidal E, Parra D, Reyes-López FE, Tort L. Comparative Immune- and Stress-Related Transcript Response Induced by Air Exposure and Vibrio anguillarum Bacterin in Rainbow Trout ( Oncorhynchus mykiss) and Gilthead Seabream ( Sparus aurata) Mucosal Surfaces. Front Immunol 2018; 9:856. [PMID: 29770134 PMCID: PMC5940744 DOI: 10.3389/fimmu.2018.00856] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 04/06/2018] [Indexed: 11/13/2022] Open
Abstract
Fish have to face various environmental challenges that may compromise the efficacy of the immune response in mucosal surfaces. Since the effect of acute stress on mucosal barriers in fish has still not been fully elucidated, we aimed to compare the short-term mucosal stress and immune transcriptomic responses in a freshwater (rainbow trout, Oncorhynchus mykiss) and a marine fish (gilthead seabream, Sparus aurata) to bacterial immersion (Vibrio anguillarum bacterin vaccine) and air exposure stress in skin, gills, and intestine. Air exposure and combined (vaccine + air) stressors exposure were found to be inducers of the cortisol secretion in plasma and skin mucus on both species in a time-dependent manner, while V. anguillarum bacterin exposure induced cortisol release in trout skin mucus only. This was coincident with a marked differential increase in transcriptomic patterns of stress- and immune-related gene expression profiles. Particularly in seabream skin, the expression of cytokines was markedly enhanced, whereas in gills the response was mainly suppressed. In rainbow trout gut, both air exposure and vaccine stimulated the transcriptomic response, whereas in seabream, stress and immune responses were mainly induced by air exposure. Therefore, our comparative survey on the transcriptomic mucosal responses demonstrates that skin and gut were generally more reactive in both species. However, the upregulation of immune transcripts was more pronounced in gills and gut of vaccinated trout, whereas seabream appeared to be more stress-prone and less responsive to V. anguillarum bacterin in gills and gut. When fish were subjected to both treatments no definite pattern was observed. Overall, the results indicate that (1) the immune response was not homogeneous among mucosae (2), it was greatly influenced by the specific traits of each stressor in each surface and (3) was highly species-specific, probably as a result of the adaptive life story of each species to the microbial load and environmental characteristics of their respective natural habitats.
Collapse
Affiliation(s)
- Ali Reza Khansari
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Joan Carles Balasch
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Eva Vallejos-Vidal
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - David Parra
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Felipe E Reyes-López
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Lluís Tort
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
190
|
Lie KK, Tørresen OK, Solbakken MH, Rønnestad I, Tooming-Klunderud A, Nederbragt AJ, Jentoft S, Sæle Ø. Loss of stomach, loss of appetite? Sequencing of the ballan wrasse (Labrus bergylta) genome and intestinal transcriptomic profiling illuminate the evolution of loss of stomach function in fish. BMC Genomics 2018; 19:186. [PMID: 29510660 PMCID: PMC5840709 DOI: 10.1186/s12864-018-4570-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 02/28/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The ballan wrasse (Labrus bergylta) belongs to a large teleost family containing more than 600 species showing several unique evolutionary traits such as lack of stomach and hermaphroditism. Agastric fish are found throughout the teleost phylogeny, in quite diverse and unrelated lineages, indicating stomach loss has occurred independently multiple times in the course of evolution. By assembling the ballan wrasse genome and transcriptome we aimed to determine the genetic basis for its digestive system function and appetite regulation. Among other, this knowledge will aid the formulation of aquaculture diets that meet the nutritional needs of agastric species. RESULTS Long and short read sequencing technologies were combined to generate a ballan wrasse genome of 805 Mbp. Analysis of the genome and transcriptome assemblies confirmed the absence of genes that code for proteins involved in gastric function. The gene coding for the appetite stimulating protein ghrelin was also absent in wrasse. Gene synteny mapping identified several appetite-controlling genes and their paralogs previously undescribed in fish. Transcriptome profiling along the length of the intestine found a declining expression gradient from the anterior to the posterior, and a distinct expression profile in the hind gut. CONCLUSIONS We showed gene loss has occurred for all known genes related to stomach function in the ballan wrasse, while the remaining functions of the digestive tract appear intact. The results also show appetite control in ballan wrasse has undergone substantial changes. The loss of ghrelin suggests that other genes, such as motilin, may play a ghrelin like role. The wrasse genome offers novel insight in to the evolutionary traits of this large family. As the stomach plays a major role in protein digestion, the lack of genes related to stomach digestion in wrasse suggests it requires formulated diets with higher levels of readily digestible protein than those for gastric species.
Collapse
Affiliation(s)
- Kai K. Lie
- Institute of Marine Research, P.O. Box. 1870, Nordnes, 5817 Bergen, NO Norway
| | - Ole K. Tørresen
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, P.O. Box 1066, Blindern, 0316 Oslo, NO Norway
| | - Monica Hongrø Solbakken
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, P.O. Box 1066, Blindern, 0316 Oslo, NO Norway
| | - Ivar Rønnestad
- Department of Biology, University of Bergen, P.O. Box 7803, 5020 Bergen, NO Norway
| | - Ave Tooming-Klunderud
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, P.O. Box 1066, Blindern, 0316 Oslo, NO Norway
| | - Alexander J. Nederbragt
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, P.O. Box 1066, Blindern, 0316 Oslo, NO Norway
- Biomedical Informatics Research Group, Department of Informatics, University of Oslo, P.O. Box 1066, Blindern, 0316 Oslo, Norway
| | - Sissel Jentoft
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, P.O. Box 1066, Blindern, 0316 Oslo, NO Norway
| | - Øystein Sæle
- Institute of Marine Research, P.O. Box. 1870, Nordnes, 5817 Bergen, NO Norway
| |
Collapse
|
191
|
Wu P, Pan FY, Feng L, Jiang WD, Jiang J, Kuang SY, Tang L, Tang WN, Zhang YA, Zhou XQ, Liu Y. Methionine hydroxy analogue supplementation modulates gill immunological and barrier health status of grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2018; 74:637-648. [PMID: 29360541 DOI: 10.1016/j.fsi.2018.01.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 01/17/2018] [Accepted: 01/18/2018] [Indexed: 06/07/2023]
Abstract
This study was conducted to investigate the effects of methionine hydroxy analogue (MHA) on the physical barrier and immune defence in the gill of young grass carp (Ctenopharyngodon idella). A total 630 young grass carp with an average initial weight of 259.70 ± 0.47 g were fed graded levels of MHA (0, 2.4, 4.4, 6.4, 8.5 and 10.5 g/kg diet) and one DL-methionine (DLM) group (6.4 g/kg diet) for 8 weeks. After feeding trial, 15 fish from each treatment were challenged with Flavobacterium columnare. Compared to the basal diet, optimal MHA improved cellular structure integrity of gill via repressing death receptor and mitochondria pathways induced apoptosis, which might be related to the down-regulation of c-Jun-N-terminal kinase mRNA levels (P < .05). Simultaneously, optimal MHA supplementation improved cellular structure integrity of gill via elevating glutathione contents, antioxidant enzymes activities and corresponding isoforms mRNA levels to attenuate oxidative damage, which might be to the up-regulation of NF-E2-related factor 2 mRNA levels and down-regulation of Kelch-like ECH-associating protein 1a mRNA levels (P < .05). Besides, optimal MHA improved intercellular structure integrity of immune organs via up-regulating the mRNA levels of intercellular tight junctions-related genes, which might be owing to the down-regulation of myosin light chain kinase (MLCK) mRNA levels (P < .05). Summarily, MHA could improve the physical barrier of fish gill. In addition, optimal MHA supplementation increased lysozyme (LZ) and acid phosphatase (ACP) activities, complement 3 (C3), C4 and immunoglobulin M contents and up-regulated mRNA levels of liver-expressed antimicrobial peptide 2, hepcidin and β-defensin, suggesting that MHA could enhance antimicrobial ability of fish gill. Meanwhile, optimal MHA supplementation enhanced the immune defence of gill via down-regulating pro-inflammatory cytokines mRNA levels and up-regulated anti-inflammatory cytokines mRNA levels, which might be attributed to the down-regulation of nuclear factor κB p65, c-Rel, IκB kinase β, p38 mitogen activated protein kinase, eIF4E-binding protein1 (4E-BP1) and 4E-BP2 mRNA levels and up-regulation of inhibitor of κBα, ribosomal protein S6 kinase 1 and target of rapamycin mRNA levels (P < .05). In conclusion, the positive effect of MHA on gill health is associated with the improvement of the defence against apoptosis, antioxidant status, tight junctions and immune defence of fish gill. Meanwhile, MHA was superior to DLM on improving the physical barrier of fish gill. For the direction to healthy breeding of young grass carp, the optimal MHA supplementation levels on the premise of 4.01 g/kg methionine basal were estimated by quadratic regression curve, such as 5.49, 6.17 and 6.02 g/kg diet bases on the defence against gill-rot, malondialdehyde content and LZ activity in the gill, respectively.
Collapse
Affiliation(s)
- Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Fei-Yu Pan
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Wu-Neng Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China.
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
192
|
Su YN, Wu P, Feng L, Jiang WD, Jiang J, Zhang YA, Figueiredo-Silva C, Zhou XQ, Liu Y. The improved growth performance and enhanced immune function by DL-methionyl-DL-methionine are associated with NF-κB and TOR signalling in intestine of juvenile grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2018; 74:101-118. [PMID: 29292200 DOI: 10.1016/j.fsi.2017.12.051] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 12/26/2017] [Accepted: 12/27/2017] [Indexed: 06/07/2023]
Abstract
The present study investigated the effects of dietary DL-methionyl-DL-methionine (Met-Met) on growth performance, intestinal immune function and the underlying signalling molecules in juvenile grass carp (Ctenopharyngodon idella). Fish were fed one DL-methionine (DL-Met) group (2.50 g/kg diet) and six graded levels of Met-Met groups (0, 0.79, 1.44, 1.84, 2.22 and 2.85 g/kg diet) for 10 weeks, and then challenged with Aeromonas hydrophila for 14 days. Results indicated that the optimal Met-Met supplementation: (1) increased fish growth performance, intestinal lysozyme (LZ) and acid phosphatase (ACP) activities, complement (C3 and C4) and immunoglobulin M (IgM) contents, up-regulated hepcidin, liver expressed antimicrobial peptide 2A (LEAP-2A), LEAP-2B, β-defensin-1 and Mucin2 mRNA levels; (2) down-regulated tumour necrosis factor α (TNF-α), interferon γ2 (IFN-γ2), interleukin 1β (IL-1β), IL-8 [only in the distal intestine (DI)], IL-12p35, IL-12p40 and IL-15 (not IL-17D) mRNA levels partially related to the down-regulation of IκB kinase β (IKKβ) and IKKγ (rather than IKKα), nuclear factor kappa B (NF-κB) p65 and c-Rel (rather than NF-κB p52) mRNA levels and the up-regulation of inhibitor of κBα (IκBα) mRNA levels; (3) up-regulated IL-4/13A, IL-4/13B, IL-6, IL-10, IL-11 and transforming growth factor (TGF)-β1 (not TGF-β2) mRNA levels partially associated with the target of rapamycin (TOR) signalling pathway [TOR/ribosomal protein S6 kinases 1 (S6K1), eIF4E-binding proteins (4E-BP)] in three intestinal segments of juvenile grass carp. These results suggest that Met-Met supplementation improves growth and intestinal immune function in fish. Furthermore, according to a positive effect, the optimal Met-Met supplementation was superior to the optimal DL-Met supplementation at improving the growth performance and enhancing the intestinal immune function in fish. Finally, based on percent weight gain (PWG), protection against enteritis morbidity and immune index (LZ activity), the optimal Met-Met supplementation for juvenile grass carp was estimated as 1.61, 1.64 and 1.68 g/kg diet, respectively, as the basal diet contains 8.03 g/kg total sulfur amino acids (TSAA) (4.26 g methionine/kg and 3.77 g cysteine/kg).
Collapse
Affiliation(s)
- Yue-Ning Su
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Claudia Figueiredo-Silva
- Evonik Nutrition & Care GmbH, NC, 10-B531, Postfach 1345, Rodenbacher Chausse 4, 63404 Hanau, Germany
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China.
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China.
| |
Collapse
|
193
|
CHO HS, SEO JY, PARK SI, KIM TG, KIM TJ. Oral immunization with recombinant protein antigen expressed in tobacco against fish nervous necrosis virus. J Vet Med Sci 2018; 80:272-279. [PMID: 29249747 PMCID: PMC5836763 DOI: 10.1292/jvms.16-0408] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 12/04/2017] [Indexed: 01/19/2023] Open
Abstract
Nervous necrosis virus (NNV), also known as betanodavirus, has been recently implicated in mass mortalities of cultured marine fish. An effective vaccine is urgently needed to protect fish against this virus. However, parenteral immunization methods are very stressful. Individual immunization for thousands of fish is very labor intensive and expensive. Therefore, we expressed NNV coat protein in tobacco chloroplasts and used it as an oral vaccine to induce immunities in fish followed by challenges with NNV. Our results revealed that mice (IgG and IgA) and fish (IgM) immunized with the oral vaccine developed significantly higher antibody titers against the NNV coat protein. Fish were partially protected against viral challenge. Taken together, our results demonstrated that a plant-based vaccine could effectively induce immune response and protect groupers against NNV. The present method could be used to develop oral fish vaccine in the future.
Collapse
Affiliation(s)
- Ho Seong CHO
- College of Veterinary Medicine and Bio-safety Research
Center, Chonbuk National University, Iksan 54596, Republic of Korea
| | - Ja Young SEO
- College of Veterinary Medicine, Chonnam National University,
Gwangju 61186, Republic of Korea
| | - Sang Ik PARK
- College of Veterinary Medicine, Chonnam National University,
Gwangju 61186, Republic of Korea
| | - Tae Geum KIM
- Center for Jeongup Industry-Academy-Institute Cooperation,
Chonbuk National University, Jeonju 54896, Republic of Korea
| | - Tae Jung KIM
- College of Veterinary Medicine, Chonnam National University,
Gwangju 61186, Republic of Korea
| |
Collapse
|
194
|
Eto S, Fernandes D, Rosolem M, Marinho-Neto F, Pizauro J, Salvador R, Moraes J, Moraes F. Ativação de células de memória na produção de anticorpos e na expressão de células IgM positivas no baço de tilápias-do-nilo. ARQ BRAS MED VET ZOO 2018. [DOI: 10.1590/1678-4162-9063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
RESUMO O presente trabalho avaliou o papel do baço no armazenamento e na reativação das linhagens de células B, representadas por células IgM positivas imunomarcadas no tecido esplênico, bem como a funcionalidade dessas células, sobre a cinética dos linfócitos e na produção sistêmica de anticorpos em tilápias-do-nilo (Oreochromis niloticus). Foram separados dois grupos: grupo memória, constituído por peixes previamente imunizados com hemácia de carneiro a 2,5%, para a geração da memória imune, e o grupo naive, que recebeu o mesmo volume de solução salina a 0,65%. Após 32 dias, os dois grupos foram submetidos a uma nova dose do antígeno na mesma concentração, volume e via de inoculação. A reativação dos clones de memória foi evidenciada pelo aumento do número de células IgM positivas no baço do grupo memória no dia zero/pré-imune. Além disso, o mesmo grupo apresentou aumento dos títulos de anticorpos séricos no 14º dia e no número absoluto de linfócitos no 21º dia em relação ao grupo naive. Esses resultados sugerem que o baço não seja apenas um local de armazenamento, mas também de reativação de células B de memória em tilápia-do-nilo.
Collapse
Affiliation(s)
- S.F. Eto
- Universidade Estadual Paulista Júlio de Mesquita Filho, Brazil
| | - D.C. Fernandes
- Universidade Estadual Paulista Júlio de Mesquita Filho, Brazil
| | - M.C. Rosolem
- Universidade Estadual Paulista Júlio de Mesquita Filho, Brazil
| | | | - J.M. Pizauro
- Universidade Estadual Paulista Júlio de Mesquita Filho, Brazil; Universidade Estadual Paulista Júlio de Mesquita Filho, Brazil
| | - R. Salvador
- Universidade Estadual do Norte do Paraná, Brazil
| | - J.R.E. Moraes
- Universidade Estadual Paulista Júlio de Mesquita Filho, Brazil
| | - F.R. Moraes
- Universidade Estadual Paulista Júlio de Mesquita Filho, Brazil
| |
Collapse
|
195
|
Li S, Li J, Zhao Y, Zhang Q, Wang Q. Nutrient sensing signaling integrates nutrient metabolism and intestinal immunity in grass carp, Ctenopharyngodon idellus after prolonged starvation. FISH & SHELLFISH IMMUNOLOGY 2017; 71:50-57. [PMID: 28964867 DOI: 10.1016/j.fsi.2017.09.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 09/13/2017] [Accepted: 09/17/2017] [Indexed: 06/07/2023]
Abstract
Starvation has been shown to affect growth and nutrient metabolism in fish; however, little information about the nutrient sensing signaling and mucosal adaptive immunity in fish was known. In the present study, grass carp was starved for 8weeks to simulate the natural aquaculture practice in Hubei during winter. The histology of liver was significantly affected with decreased expression of tight junction proteins including claudin-3, claudin-b and ZO-1. Muscle gene expression was also affected, with decreased expression of muscle growth promoting factors such as Myogenin, MyoD, Myf5, and increased expression of muscle degradation factors, such as CathepsinD. In addition, mucosal adaptive immunity was also significantly affected, with decreased expression of antibodies including IgZ and IgM in gut. Along with these changes was the inhibition of several nutrient sensing signaling including MAPK and TOR signaling, which leads to the inhibition of the synthesis of protein including immunoglobulin. The increased phosphorylation of eIF2α not only inhibited the translation, but also resulted in the decreased expression of IkB and increased expression of NF-<kappa>B, with the activation of pro-inflammatory genes including IL8 and TNF<alpha>.
Collapse
Affiliation(s)
- Shan Li
- College of Fisheries, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan 430070, Hubei Province, China
| | - Jiabo Li
- College of Fisheries, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan 430070, Hubei Province, China
| | - Yongliang Zhao
- College of Fisheries, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan 430070, Hubei Province, China
| | - Qin Zhang
- Key Laboratory of Marine Biotechnology of Guangxi, Guangxi Institute of Oceanology, Beihai 536000, China
| | - Qingchao Wang
- College of Fisheries, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan 430070, Hubei Province, China.
| |
Collapse
|
196
|
Azeredo R, Machado M, Guardiola FA, Cerezuela R, Afonso A, Peres H, Oliva-Teles A, Esteban MA, Costas B. Local immune response of two mucosal surfaces of the European seabass, Dicentrarchus labrax, fed tryptophan- or methionine-supplemented diets. FISH & SHELLFISH IMMUNOLOGY 2017; 70:76-86. [PMID: 28882794 DOI: 10.1016/j.fsi.2017.09.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/29/2017] [Accepted: 09/03/2017] [Indexed: 06/07/2023]
Abstract
Immune responses relies on an adequate provision of multiple nutrients that sustain the synthesis of key effector molecules. These needs are depicted in the already reported increase of circulating free amino acids in fish under stressful conditions. Since aquaculture and the inherent fish welfare are an emergent call, the immunomodulatory effects of amino acids on gut- and skin-associated lymphoid tissues of the European seabass (Dicentrarchus labrax) were studied under unstressed conditions and after an inflammatory insult. To achieve this goal, fish were distributed in duplicate tanks (fifteen fish per tank) and were fed for 14 days with methionine or tryptophan-supplemented diets at 2× dietary requirement level (MET and TRP, respectively) or a control diet meeting the amino acids requirement levels (CTRL). Afterwards, samples of skin and posterior gut were collected from 6 fish per dietary treatment for the assessment of the immune status while the remaining animals were intraperitoneally-injected with inactivated Photobacterium damselae subsp. piscicida and subsequently sampled either 4 or 24 h post-injection. The immune status of both mucosal surfaces was poorly affected, although a tryptophan effect was denoted after bacterial inoculation, with several immune-related genes up-regulated in the gut at 4 h post-injection, which seems to suggest a neuroendocrine-immune systems interaction. In contrast, skin mucosal immunity was inhibited by tryptophan dietary supplementation. Regarding methionine, results were often statistically non-significant, though increasing trends were denoted in a few parameters. Overall, dietary methionine did not significantly affect neither gut nor skin immunity, whereas tryptophan supplementation seems to induce modulatory mechanisms that might be tissue-specific.
Collapse
Affiliation(s)
- R Azeredo
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, Matosinhos, Portugal; Departamento de Biologia, Faculdade de Ciências da Universidade do Porto (FCUP), 4169-007 Porto, Portugal.
| | - M Machado
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, Matosinhos, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS-UP), Universidade do Porto, Rua de Jorge Viterbo Ferreira N° 228, 4050-313 Porto, Portugal
| | - F A Guardiola
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, Matosinhos, Portugal; Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain
| | - R Cerezuela
- Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain
| | - A Afonso
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, Matosinhos, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS-UP), Universidade do Porto, Rua de Jorge Viterbo Ferreira N° 228, 4050-313 Porto, Portugal
| | - H Peres
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, Matosinhos, Portugal
| | - A Oliva-Teles
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, Matosinhos, Portugal; Departamento de Biologia, Faculdade de Ciências da Universidade do Porto (FCUP), 4169-007 Porto, Portugal
| | - M A Esteban
- Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain
| | - B Costas
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, Matosinhos, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS-UP), Universidade do Porto, Rua de Jorge Viterbo Ferreira N° 228, 4050-313 Porto, Portugal.
| |
Collapse
|
197
|
Kong WG, Li SS, Chen XX, Huang YQ, Tang Y, Wu ZX. A study of the damage of the intestinal mucosa barrier structure and function of Ctenopharyngodon idella with Aeromonas hydrophila. FISH PHYSIOLOGY AND BIOCHEMISTRY 2017; 43:1223-1235. [PMID: 28425012 DOI: 10.1007/s10695-017-0366-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 03/16/2017] [Indexed: 06/07/2023]
Abstract
The aim of this study is to explore the effect of Aeromonas hydrophila on the intestinal mucosal barrier structure and intestinal permeability in grass carp (Ctenopharyngodon idella). Histopathological examinations showed that A. hydrophila induced severe intestinal lesions, including inflammatory cell infiltration and intestinal villus fusion and swelling. Messenger RNA (mRNA) expression of the inflammatory cytokines TNF-α, IL-1β, IL-8, IL-10 and MyD88 was significantly increased after infection with A. hydrophila. The permeability of intestinal mucosa was determined using Evans blue (EB) and D-lactic acid. The results indicated that the levels of EB and serum D-lactic acid were significantly increased after infection with A. hydrophila (p < 0.05). Our results also indicated that the intestinal mucosal barrier injury induced by A. hydrophila infection was closely associated with the expression of the tight junction (TJ) protein zonula occludens-1 (ZO-1), occludin, claudin b and claudin c as well as the activity of Na+, K+-ATPase and Ca2+, Mg2+-ATPase. Lower mRNA levels of occludin and lower Na+, K+-ATPase and Ca2+, Mg2+-ATPase activity in the intestines were observed after challenge. ZO-1 and claudin c were significantly increased 24 h after infection with A. hydrophila. The most interesting finding was that claudin b also significantly increased 24 h after challenge and then decreased to lower levels at 72, 120 and 168 h post-infection compared to the PBS-treated control group. The results demonstrated that grass carp infection with A. hydrophila induced intestinal inflammation and impaired the structure and function of the intestinal mucosal barrier.
Collapse
Affiliation(s)
- Wei-Guang Kong
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
- Freshwater Aquaculture Collaborative Innovation Center, Wuhan, 430070, China
| | - Si-Si Li
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
- Freshwater Aquaculture Collaborative Innovation Center, Wuhan, 430070, China
| | - Xiao-Xuan Chen
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
- Freshwater Aquaculture Collaborative Innovation Center, Wuhan, 430070, China
| | - Yu-Qing Huang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
- Freshwater Aquaculture Collaborative Innovation Center, Wuhan, 430070, China
| | - Ying Tang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
- Freshwater Aquaculture Collaborative Innovation Center, Wuhan, 430070, China
| | - Zhi-Xin Wu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China.
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China.
- Freshwater Aquaculture Collaborative Innovation Center, Wuhan, 430070, China.
| |
Collapse
|
198
|
Dietary cholesterol-induced transcriptome differences in the intestine, hepatopancreas, and muscle of Oriental River prawn Macrobrachium nipponense. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2017; 23:39-48. [DOI: 10.1016/j.cbd.2017.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/10/2017] [Accepted: 06/11/2017] [Indexed: 11/18/2022]
|
199
|
Threonine deficiency decreased intestinal immunity and aggravated inflammation associated with NF-κB and target of rapamycin signalling pathways in juvenile grass carp (Ctenopharyngodon idella) after infection with Aeromonas hydrophila. Br J Nutr 2017; 118:92-108. [PMID: 28820083 DOI: 10.1017/s0007114517001830] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This study aimed to investigate the impacts of dietary threonine on intestinal immunity and inflammation in juvenile grass carp. Six iso-nitrogenous semi-purified diets containing graded levels of threonine (3·99-21·66 g threonine/kg) were formulated and fed to fishes for 8 weeks, and then challenged with Aeromonas hydrophila for 14 d. Results showed that, compared with optimum threonine supplementation, threonine deficiency (1) decreased the ability of fish against enteritis, intestinal lysozyme activities (except in the distal intestine), acid phosphatase activities, complement 3 (C3) and C4 contents and IgM contents (except in the proximal intestine (PI)), and it down-regulated the transcript abundances of liver-expressed antimicrobial peptide (LEAP)-2A, LEAP-2B, hepcidin, IgZ, IgM and β-defensin1 (except in the PI) (P<0·05); (2) could up-regulate intestinal pro-inflammatory cytokines TNF-α, IL-1β, IL-6, IL-8 and IL-17D mRNA levels partly related to NF-κB signalling; (3) could down-regulate intestinal anti-inflammatory cytokine transforming growth factor (TGF)-β1, TGF-β2, IL-4/13A (not IL-4/13B) and IL-10 mRNA levels partly by target of rapamycin signalling. Finally, on the basis of the specific growth rate, against the enteritis morbidity and IgM contents, the optimum threonine requirements were estimated to be 14·53 g threonine/kg diet (4·48 g threonine/100 g protein), 15.05 g threonine/kg diet (4·64 g threonine/100 g protein) and 15·17 g threonine/kg diet (4·68 g threonine/100 g protein), respectively.
Collapse
|
200
|
Hoare R, Ngo TPH, Bartie KL, Adams A. Efficacy of a polyvalent immersion vaccine against Flavobacterium psychrophilum and evaluation of immune response to vaccination in rainbow trout fry (Onchorynchus mykiss L.). Vet Res 2017; 48:43. [PMID: 28821298 PMCID: PMC5563058 DOI: 10.1186/s13567-017-0448-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 07/19/2017] [Indexed: 11/24/2022] Open
Abstract
Rainbow trout fry syndrome (RTFS) is a disease caused by the Gram-negative bacterium Flavobacterium psychrophilum, responsible for significant economic losses in salmonid aquaculture worldwide. The diversity of F. psychrophilum isolates and the inherent difficulties in vaccinating juvenile fish has hampered the development of a vaccine for RTFS. Disease episodes tend to occur between 10–14 °C with necrotic lesions often seen on the skin surrounding the dorsal fin and tail. At present no commercial vaccines are available for RTFS in the UK, leaving antibiotics as the only course of action to control disease outbreaks. The current work was performed as a pilot study to assess the efficacy of a polyvalent, whole cell vaccine containing formalin-inactivated F. psychrophilum, to induce protective immunity in rainbow trout fry. Duplicate groups of 30 trout (5 g) were immersed in 1 L of the vaccine for 30 s. Samples were taken 4 h, day 2 and 7 post-vaccination (pv) of skin mucus, tissues for histology and gene expression analysis; serum and histology samples were taken 6 weeks pv. A booster vaccination was given at 315 degree days (dd) also by immersion. Challenge was by immersion with a heterologous isolate of F. psychrophilum 630 dd post primary vaccination. The vaccine provided significant protection to the trout fry with a RPS of 84% (p < 0.0001). Detection of increased numbers of IgT positive cells in systemic organs, up-regulation of IgT expression in hind-gut and an increase in total IgT in serum was observed in vaccinated fish; however a functional role of IgT in the observed protection remains to be demonstrated.
Collapse
Affiliation(s)
- R Hoare
- Institute of Aquaculture, University of Stirling, Stirling, FK9 4LA, UK.
| | - T P H Ngo
- Institute of Aquaculture, University of Stirling, Stirling, FK9 4LA, UK
| | - K L Bartie
- Institute of Aquaculture, University of Stirling, Stirling, FK9 4LA, UK
| | - A Adams
- Institute of Aquaculture, University of Stirling, Stirling, FK9 4LA, UK
| |
Collapse
|