151
|
Wakabayashi T, Kosaka J, Mori T, Takamori Y, Yamada H. Doublecortin expression continues into adulthood in horizontal cells in the rat retina. Neurosci Lett 2008; 442:249-52. [DOI: 10.1016/j.neulet.2008.07.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Revised: 06/18/2008] [Accepted: 07/10/2008] [Indexed: 11/16/2022]
|
152
|
Abstract
BACKGROUND Malformations of cortical development (MCD) are increasingly recognized as an important cause of epilepsy and developmental delay. MCD encompass a wide spectrum of disorders with various underlying genetic etiologies and clinical manifestations. High resolution imaging has dramatically improved our recognition of MCD. REVIEW SUMMARY This review will provide a brief overview of the stages of normal cortical development, including neuronal proliferation, neuroblast migration, and neuronal organization. Disruptions at various stages lead to characteristic MCD. Disorders of neurogenesis give rise to microcephaly (small brain) or macrocephaly (large brain). Disorders of early neuroblast migration give rise to periventricular heterotopia (neurons located along the ventricles), whereas abnormalities later in migration lead to lissencephaly (smooth brain) or subcortical band heterotopia (smooth brain with a band of heterotopic neurons under the cortex). Abnormal neuronal migration arrest give rise to over migration of neurons in cobblestone lissencephaly. Lastly, disorders of neuronal organization cause polymicrogyria (abnormally small gyri and sulci). This review will also discuss the known genetic mutations and potential mechanisms that contribute to these syndromes. CONCLUSION Identification of various gene mutations has not only given us greater insight into some of the pathophysiologic basis of MCD, but also an understanding of the processes involved in normal cortical development.
Collapse
|
153
|
Leger PL, Souville I, Boddaert N, Elie C, Pinard JM, Plouin P, Moutard ML, des Portes V, Van Esch H, Joriot S, Renard JL, Chelly J, Francis F, Beldjord C, Bahi-Buisson N. The location of DCX mutations predicts malformation severity in X-linked lissencephaly. Neurogenetics 2008; 9:277-85. [DOI: 10.1007/s10048-008-0141-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Accepted: 07/21/2008] [Indexed: 11/25/2022]
|
154
|
EB1 regulates microtubule dynamics and tubulin sheet closure in vitro. Nat Cell Biol 2008; 10:415-21. [PMID: 18364701 DOI: 10.1038/ncb1703] [Citation(s) in RCA: 202] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Accepted: 02/25/2008] [Indexed: 11/08/2022]
Abstract
End binding 1 (EB1) is a plus-end-tracking protein (+TIP) that localizes to microtubule plus ends where it modulates their dynamics and interactions with intracellular organelles. Although the regulating activity of EB1 on microtubule dynamics has been studied in cells and purified systems, the molecular mechanisms involved in its specific activity are still unclear. Here, we describe how EB1 regulates the dynamics and structure of microtubules assembled from pure tubulin. We found that EB1 stimulates spontaneous nucleation and growth of microtubules, and promotes both catastrophes (transitions from growth to shrinkage) and rescues (reverse events). Electron cryomicroscopy showed that EB1 induces the initial formation of tubulin sheets, which rapidly close into the common 13-protofilament-microtubule architecture. Our results suggest that EB1 favours the lateral association of free tubulin at microtubule-sheet edges, thereby stimulating nucleation, sheet growth and closure. The reduction of sheet length at microtubule growing-ends together with the elimination of stressed microtubule lattices may account for catastrophes. Conversely, occasional binding of EB1 to the microtubule lattice may induce rescues.
Collapse
|
155
|
Fitzsimons CP, Ahmed S, Wittevrongel CFW, Schouten TG, Dijkmans TF, Scheenen WJJM, Schaaf MJM, de Kloet ER, Vreugdenhil E. The microtubule-associated protein doublecortin-like regulates the transport of the glucocorticoid receptor in neuronal progenitor cells. Mol Endocrinol 2008; 22:248-62. [PMID: 17975023 PMCID: PMC5419639 DOI: 10.1210/me.2007-0233] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Accepted: 10/23/2007] [Indexed: 02/05/2023] Open
Abstract
In neuronal cells, activated glucocorticoid receptor (GR) translocates to the nucleus guided by the cytoskeleton. However, the detailed mechanisms underlying GR translocation remain unclear. Using gain and loss of function studies, we report here for the first time that the microtubule-associated protein doublecortin-like (DCL) controls GR translocation to the nucleus. DCL overexpression in COS-1 cells, neuroblastoma cells, and rat hippocampus organotypic slice cultures impaired GR translocation and decreased GR-dependent transcriptional activity, measured by a specific reporter gene assay, in COS-1 cells. Moreover, DCL and GR directly interact on microtubule bundles formed by DCL overexpression. A C-terminal truncated DCL with conserved microtubule-bundling activity did not influence GR translocation. In N1E-115 mouse neuroblastoma cells and neuronal progenitor cells in rat hippocampus organotypic slice cultures, laser-scanning confocal microscopy showed colabeling of endogenously expressed DCL and GR. In these systems, RNA-interference-mediated DCL knockdown hampered GR translocation. Thus, we conclude that DCL expression is tightly regulated to adequately control GR transport. Because DCL is primarily expressed in neuronal progenitor cells, our results introduce this microtubule-associated protein as a new modulator of GR signaling in this cell type and suggest the existence of cell-specific mechanisms regulating GR translocation to the nucleus.
Collapse
Affiliation(s)
- Carlos P Fitzsimons
- Leiden/Amsterdam Center for Drug Research/Medical Pharmacology Department, Einsteinweg 55, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
156
|
Cohen D, Segal M, Reiner O. Doublecortin supports the development of dendritic arbors in primary hippocampal neurons. Dev Neurosci 2008; 30:187-99. [PMID: 18075265 DOI: 10.1159/000109862] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2006] [Accepted: 02/02/2007] [Indexed: 12/14/2022] Open
Abstract
Doublecortin (DCX) is a microtubule-associated protein necessary for neuronal migration. In spite of its ubiquitous distribution in dendrites, its possible role in dendrite development has not yet been documented. The present study examined the effects of different expression levels of DCX on the arborization of dendrites in cultured hippocampal neurons. Reduced expression of DCX following RNAi transfection resulted in reduced branch points, total length and complexity of the dendrites. Overexpression of DCX resulted in an increase in branch points and complexity of the dendrites. In contrast to control green fluorescent protein cells, DCX-overexpressing cells maintained highly branched and complex dendritic trees when subjected to reduced neuronal activity by blockade of immature GABA(A) receptors. These results suggest that DCX supports developing dendrites, in addition to its role in neuronal migration.
Collapse
Affiliation(s)
- Dror Cohen
- Department of Neurobiology, The Weizmann Institute, Rehovot, Israel
| | | | | |
Collapse
|
157
|
Tian G, Kong XP, Jaglin XH, Chelly J, Keays D, Cowan NJ. A pachygyria-causing alpha-tubulin mutation results in inefficient cycling with CCT and a deficient interaction with TBCB. Mol Biol Cell 2008; 19:1152-61. [PMID: 18199681 DOI: 10.1091/mbc.e07-09-0861] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The agyria (lissencephaly)/pachygyria phenotypes are catastrophic developmental diseases characterized by abnormal folds on the surface of the brain and disorganized cortical layering. In addition to mutations in at least four genes--LIS1, DCX, ARX and RELN--mutations in a human alpha-tubulin gene, TUBA1A, have recently been identified that cause these diseases. Here, we show that one such mutation, R264C, leads to a diminished capacity of de novo tubulin heterodimer formation. We identify the mechanisms that contribute to this defect. First, there is a reduced efficiency whereby quasinative alpha-tubulin folding intermediates are generated via ATP-dependent interaction with the cytosolic chaperonin CCT. Second, there is a failure of CCT-generated folding intermediates to stably interact with TBCB, one of the five tubulin chaperones (TBCA-E) that participate in the pathway leading to the de novo assembly of the tubulin heterodimer. We describe the behavior of the R264C mutation in terms of its effect on the structural integrity of alpha-tubulin and its interaction with TBCB. In spite of its compromised folding efficiency, R264C molecules that do productively assemble into heterodimers are capable of copolymerizing into dynamic microtubules in vivo. The diminished production of TUBA1A tubulin in R264C individuals is consistent with haploinsufficiency as a cause of the disease phenotype.
Collapse
Affiliation(s)
- Guoling Tian
- Department of Biochemistry, New York University Medical Center, New York, NY 10016, USA
| | | | | | | | | | | |
Collapse
|
158
|
Schenk GJ, Engels B, Zhang YP, Fitzsimons CP, Schouten T, Kruidering M, Ron de Kloet E, Vreugdenhil E. A potential role for calcium / calmodulin-dependent protein kinase-related peptide in neuronal apoptosis: in vivo and in vitro evidence. Eur J Neurosci 2007; 26:3411-20. [DOI: 10.1111/j.1460-9568.2007.05956.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
159
|
Poirier K, Keays DA, Francis F, Saillour Y, Bahi N, Manouvrier S, Fallet-Bianco C, Pasquier L, Toutain A, Tuy FPD, Bienvenu T, Joriot S, Odent S, Ville D, Desguerre I, Goldenberg A, Moutard ML, Fryns JP, van Esch H, Harvey RJ, Siebold C, Flint J, Beldjord C, Chelly J. Large spectrum of lissencephaly and pachygyria phenotypes resulting from de novo missense mutations in tubulin alpha 1A (TUBA1A). Hum Mutat 2007; 28:1055-64. [PMID: 17584854 DOI: 10.1002/humu.20572] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We have recently reported a missense mutation in exon 4 of the tubulin alpha 1A (Tuba1a) gene in a hyperactive N-ethyl-N-nitrosourea (ENU) induced mouse mutant with abnormal lamination of the hippocampus. Neuroanatomical similarities between the Tuba1a mutant mouse and mice deficient for Doublecortin (Dcx) and Lis1 genes, and the well-established functional interaction between DCX and microtubules (MTs), led us to hypothesize that mutations in TUBA1A (TUBA3, previous symbol), the human homolog of Tuba1a, might give rise to cortical malformations. This hypothesis was subsequently confirmed by the identification of TUBA1A mutations in two patients with lissencephaly and pachygyria, respectively. Here we report additional TUBA1A mutations identified in six unrelated patients with a large spectrum of brain dysgeneses. The de novo occurrence was shown for all mutations, including one recurrent mutation (c.790C>T, p.R264C) detected in two patients, and two mutations that affect the same amino acid (c.1205G>A, p.R402H; c.1204C>T, p.R402C) detected in two other patients. Retrospective examination of MR images suggests that patients with TUBA1A mutations share not only cortical dysgenesis, but also cerebellar, hippocampal, corpus callosum, and brainstem abnormalities. Interestingly, the specific high level of Tuba1a expression throughout the period of central nervous system (CNS) development, shown by in situ hybridization using mouse embryos, is in accordance with the brain-restricted developmental phenotype caused by TUBA1A mutations. All together, these results, in combination with previously reported data, strengthen the relevance of the known interaction between MTs and DCX, and highlight the importance of the MTs/DCX complex in the neuronal migration process.
Collapse
Affiliation(s)
- Karine Poirier
- Institut Cochin, Université Paris Descartes, Centre national de la recherche scientifique Unité Mixte de Recherche 8104, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Eastwood SL, Lyon L, George L, Andrieux A, Job D, Harrison PJ. Altered expression of synaptic protein mRNAs in STOP (MAP6) mutant mice. J Psychopharmacol 2007; 21:635-44. [PMID: 17050659 DOI: 10.1177/0269881106068825] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Stable tubule-only polypeptide (STOP) proteins are a family of microtubule associated proteins (MAPs) important in microtubule stabilization. Data indicating a role for microtubules in synaptic function has come from studies of the STOP null mouse, which exhibits synaptic deficits, in association with behavioural changes that are alleviated by antipsychotic treatment. These findings suggested that STOP mutant mice may be useful in studies of synaptic function, and could be especially relevant to schizophrenia, postulated to be a disorder of the synapse. Moreover, a genetic association between STOP and schizophrenia has been reported. This study aimed to further characterize synaptic alterations in STOP null and heterozygous mice. Using in situ hybridization histochemistry, the mRNA expression of three pre-synaptic (synaptophysin; growth associated protein-43 (GAP-43); vesicular glutamate transporter-1 (VGlut1)) and two post-synaptic (spinophilin; MAP2) proteins, was quantified in female STOP null (n = 7), heterozygous (n = 5) and wild type (n = 6) mice. For STOP null and heterozygous mice, synaptophysin, VGlut1, GAP-43 and spinophilin mRNAs were decreased in the hippocampus, whilst in addition in the null mice, synaptophysin, VGlut1 and spinophilin mRNAs were decreased in the cerebellum. Alterations in synaptic protein mRNA expression were also detected in the frontal and occipital cortex. MAP2 mRNA expression was unchanged in all brain regions. The profile of mRNA changes is broadly similar to that observed in schizophrenia. Together the data provide supporting evidence for a role for microtubules in synaptic function, and suggest that STOP, or other microtubule proteins, may contribute to the synaptic pathology of schizophrenia.
Collapse
Affiliation(s)
- Sharon L Eastwood
- University of Oxford, Department of Psychiatry, Warneford Hospital, Oxford, UK.
| | | | | | | | | | | |
Collapse
|
161
|
Bullmann T, de Silva R, Holzer M, Mori H, Arendt T. Expression of embryonic tau protein isoforms persist during adult neurogenesis in the hippocampus. Hippocampus 2007; 17:98-102. [PMID: 17183532 DOI: 10.1002/hipo.20255] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Tau is a microtubule-associated protein with a developmentally regulated expression of multiple isoforms. The neonatal isoform is devoid of two amino terminal inserts and contains only three instead of four microtubule-binding repeats (0N/3R-tau). We investigated the temporal expression pattern of 0N-tau and 3R-tau in the rat hippocampus. After the decline of 0N- and 3R-tau immunoreactivity during the postnatal development both isoforms remain highly expressed in a few cells residing beneath the granule cell layer. Coexpression of the polysialylated neuronal cell adhesion molecule, doublecortin, and incorporated bromodeoxyuridine showed that these cells are proliferating progenitor cells. In contrast mature granule cells express the adult tau protein isoform containing one aminoterminal insert domain (1N-tau). Therefore a shift in tau isoform expression takes place during adult neurogenesis, which might be related to migration, differentiation, and integration in the granule cell layer. A model for studying shifts in tau isoform expression in a defined subset of neurons might help to understand the etiology of tauopathies, when isoform composition is crucial for neurodegeneration, as in Pick's disease or FTDP-17.
Collapse
Affiliation(s)
- Torsten Bullmann
- Department of Neuroanatomy, Paul-Flechsig Institute of Brain Research, University of Leipzig, Leipzig, Germany
| | | | | | | | | |
Collapse
|
162
|
Boseret G, Ball GF, Balthazart J. The microtubule-associated protein doublecortin is broadly expressed in the telencephalon of adult canaries. J Chem Neuroanat 2007; 33:140-54. [PMID: 17367992 PMCID: PMC2040224 DOI: 10.1016/j.jchemneu.2007.02.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Revised: 02/07/2007] [Accepted: 02/13/2007] [Indexed: 10/23/2022]
Abstract
The protein doublecortin (DCX) is expressed in post-mitotic migrating and differentiating neurons in the developing vertebrate brain and, as a part of the microtubule machinery, is required for neuronal migration. DCX expression is generally maximal during embryonic and early post-natal life but decreases markedly and almost disappears in older animals in parallel with the major decrease or cessation of neurogenesis. In several seasonally breeding songbird species such as canaries, the volume of several song control nuclei in the brain varies seasonally such that the largest nuclei are observed in the late spring and early summer. This variation is based on changes in cell size, dendritic branching, and, in nucleus HVC, on the incorporation of neurons newly born in adulthood. Because songbirds maintain an active neurogenesis and neuronal incorporation in their telencephalon throughout their lives, we investigated here the distribution of DCX-immunoreactive (ir) structures in the brain of adult male canaries. Densely stained DCX-ir cells were found exclusively in parts of the telencephalon that are known to incorporate new neurons in adulthood, in particular the nidopallium. Within this brain region, the boundaries of the song control nucleus HVC could be clearly distinguished from surrounding structures by a higher density of DCX-ir structures. In most telencephalic areas, about two thirds of these cells displayed a uni- or bipolar fusiform morphology suggesting they were migrating neurons. The rest of the DCX-ir cells in the telencephalon were larger and had a round multipolar morphology. No such staining was found in the rest of the brain. The broad expression of DCX specifically in adult brain structures that exhibit the characteristic of active incorporation of new neurons suggests that DCX plays a key role in the migration of new neurons in the brain of adult songbirds as it presumably does during ontogeny.
Collapse
Affiliation(s)
- Géraldine Boseret
- University of Liège, Center for Cellular and Molecular Neurobiology, Belgium
| | | | | |
Collapse
|
163
|
Keays DA, Tian G, Poirier K, Huang GJ, Siebold C, Cleak J, Oliver PL, Fray M, Harvey RJ, Molnár Z, Piñon MC, Dear N, Valdar W, Brown SD, Davies KE, Rawlins JNP, Cowan NJ, Nolan P, Chelly J, Flint J. Mutations in alpha-tubulin cause abnormal neuronal migration in mice and lissencephaly in humans. Cell 2007; 128:45-57. [PMID: 17218254 PMCID: PMC1885944 DOI: 10.1016/j.cell.2006.12.017] [Citation(s) in RCA: 334] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2006] [Revised: 07/25/2006] [Accepted: 12/18/2006] [Indexed: 02/06/2023]
Abstract
The development of the mammalian brain is dependent on extensive neuronal migration. Mutations in mice and humans that affect neuronal migration result in abnormal lamination of brain structures with associated behavioral deficits. Here, we report the identification of a hyperactive N-ethyl-N-nitrosourea (ENU)-induced mouse mutant with abnormalities in the laminar architecture of the hippocampus and cortex, accompanied by impaired neuronal migration. We show that the causative mutation lies in the guanosine triphosphate (GTP) binding pocket of α-1 tubulin (Tuba1) and affects tubulin heterodimer formation. Phenotypic similarity with existing mouse models of lissencephaly led us to screen a cohort of patients with developmental brain anomalies. We identified two patients with de novo mutations in TUBA3, the human homolog of Tuba1. This study demonstrates the utility of ENU mutagenesis in the mouse as a means to discover the basis of human neurodevelopmental disorders.
Collapse
Affiliation(s)
- David A. Keays
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Guoling Tian
- Department of Biochemistry, New York University Medical Center, New York, NY10016, USA
| | - Karine Poirier
- Institut Cochin, INSERM Unité 567, CNRS UMR 8104, Université René Descartes – Paris 5, Faculté de Médecine René Descartes, Paris, F-75014, France
| | - Guo-Jen Huang
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Christian Siebold
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - James Cleak
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Peter L. Oliver
- MRC Functional Genetics Unit, South Parks Road, Oxford, OX1 3QX, UK
| | - Martin Fray
- MRC Mammalian Genetics Unit, Harwell, Didcot, OX11 0RD, Oxfordshire, UK
| | - Robert J. Harvey
- Department of Pharmacology, The School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Zoltán Molnár
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK
| | - Maria C. Piñon
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK
| | - Neil Dear
- MRC Mammalian Genetics Unit, Harwell, Didcot, OX11 0RD, Oxfordshire, UK
| | - William Valdar
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Steve D.M. Brown
- MRC Mammalian Genetics Unit, Harwell, Didcot, OX11 0RD, Oxfordshire, UK
| | - Kay E. Davies
- MRC Functional Genetics Unit, South Parks Road, Oxford, OX1 3QX, UK
| | - J. Nicholas P. Rawlins
- Department of Experimental Psychology, University of Oxford, South Parks Road, Oxford, OX1 3UD, UK
| | - Nicholas J. Cowan
- Department of Biochemistry, New York University Medical Center, New York, NY10016, USA
| | - Patrick Nolan
- MRC Mammalian Genetics Unit, Harwell, Didcot, OX11 0RD, Oxfordshire, UK
| | - Jamel Chelly
- Institut Cochin, INSERM Unité 567, CNRS UMR 8104, Université René Descartes – Paris 5, Faculté de Médecine René Descartes, Paris, F-75014, France
| | - Jonathan Flint
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- Corresponding author
| |
Collapse
|
164
|
Howell GJ, Holloway ZG, Cobbold C, Monaco AP, Ponnambalam S. Cell biology of membrane trafficking in human disease. ACTA ACUST UNITED AC 2007; 252:1-69. [PMID: 16984815 PMCID: PMC7112332 DOI: 10.1016/s0074-7696(06)52005-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Understanding the molecular and cellular mechanisms underlying membrane traffic pathways is crucial to the treatment and cure of human disease. Various human diseases caused by changes in cellular homeostasis arise through a single gene mutation(s) resulting in compromised membrane trafficking. Many pathogenic agents such as viruses, bacteria, or parasites have evolved mechanisms to subvert the host cell response to infection, or have hijacked cellular mechanisms to proliferate and ensure pathogen survival. Understanding the consequence of genetic mutations or pathogenic infection on membrane traffic has also enabled greater understanding of the interactions between organisms and the surrounding environment. This review focuses on human genetic defects and molecular mechanisms that underlie eukaryote exocytosis and endocytosis and current and future prospects for alleviation of a variety of human diseases.
Collapse
Affiliation(s)
- Gareth J Howell
- Endothelial Cell Biology Unit, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | | | | | | | | |
Collapse
|
165
|
Abstract
The kinesin-13 class of motors catalyses microtubule depolymerisation by bending tubulins at microtubule ends. Depolymerisation activity is intrinsic to the kinesin-13 motor core but the activity of the core alone is very low compared with that of constructs that also contain a conserved neck sequence. The full-length dimeric motor is an efficient depolymeriser and also diffuses along the microtubule lattice, which helps it to find microtubule ends. Current evidence supports the idea of a generic mechanism for kinesin-13-catalysed depolymerisation. However, the activity of kinesin-13 motors is precisely localised and regulated in vivo to enable a wide range of cellular roles. The proteins are involved in global control of microtubule dynamics. They also localise to mitotic and meiotic spindles, where they contribute to formation and maintenance of spindle bipolarity, chromosomal congression, attachment correction and chromatid separation. In interphase cells, intricate and subtle mechanisms appear to allow kinesin-13 motors to act on specific populations of microtubules. Such carefully controlled localisation and regulation makes these kinesins efficient, multi-tasking molecular motors.
Collapse
Affiliation(s)
- Carolyn A Moores
- School of Crystallography, Birkbeck College, Malet Street, London, WC1E 7HX, UK.
| | | |
Collapse
|
166
|
Abstract
The correct positioning of neurons during development--achieved through directed migration--is the basis for proper brain function. Several decades of research have yielded a comprehensive map illustrating the temporal and spatial events underlying neurogenesis and neuronal migration during development. The discovery of distinct migration modes and pathways has been accompanied by the identification of a large interwoven molecular network that transmits extracellular signals into the cell. Moreover, recent work has shed new light on how the cytoskeleton is regulated and coordinated at the molecular and cellular level to execute neuronal migration.
Collapse
Affiliation(s)
- Ramsés Ayala
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, RIKEN-MIT Neuroscience Research Center, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
167
|
Studying the Structure of Microtubules by Electron Microscopy. METHODS IN MOLECULAR MEDICINE™ 2007; 137:65-91. [DOI: 10.1007/978-1-59745-442-1_5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
168
|
Herrick SP, Waters EM, Drake CT, McEwen BS, Milner TA. Extranuclear estrogen receptor beta immunoreactivity is on doublecortin-containing cells in the adult and neonatal rat dentate gyrus. Brain Res 2006; 1121:46-58. [PMID: 17026970 DOI: 10.1016/j.brainres.2006.08.084] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2006] [Revised: 08/03/2006] [Accepted: 08/22/2006] [Indexed: 12/17/2022]
Abstract
In adult female rats, estrogen receptor (ER) activation, particularly of ERbeta, promotes hippocampal neurogenesis. We previously reported that extranuclear ERbeta immunoreactivity (ir) in adult rats is on cellular profiles in or near the granule cell layer, which is the location of newly generated cells. During development, cells in or near the granule cell layer transiently express high levels of estrogen binding and nuclear ERs. Thus, we sought to determine if extranuclear ERbeta is in newly generated cells in adult and neonatal rat dentate gyrus. Sections from the dentate gyrus of adult proestrus or postnatal day 7 and 14 female rats were dual-labeled for ERbeta and the new-cell marker doublecortin (DCX) and examined by electron microscopy. DCX-containing neurons were found in the subgranular hilus in adult rats and were more widespread throughout the granule cell layer and hilus of neonatal rats. In both adults and neonatal rats, ERbeta immunoreactivity was found in a subset of DCX-labeled neurons. Electron microscopic examination of the adult dentate gyrus revealed that most perikarya with DCX-ir had the morphological characteristics of granule cells, although a few resembled interneurons. Dendrites with DCX-ir also were observed. In both adults and neonates, DCX-labeled neuronal perikarya and dendrites contained ERbeta-ir; ERbeta-ir usually was aggregated near the plasma membrane, mitochondria or endoplasmic reticula. ERbeta-ir was in glial profiles that apposed DCX-labeled perikarya and dendrites. These findings are consistent with data showing that estrogens can exert non-genomic effects directly and indirectly on newly generated cells in neonatal and adult rat dentate gyrus.
Collapse
Affiliation(s)
- Scott P Herrick
- Department of Neurology and Neuroscience, Weill-Cornell Medical College, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
169
|
Triana-Baltzer GB, Liu Z, Berg DK. Pre- and postsynaptic actions of L1-CAM in nicotinic pathways. Mol Cell Neurosci 2006; 33:214-26. [PMID: 16952465 DOI: 10.1016/j.mcn.2006.07.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2006] [Revised: 07/25/2006] [Accepted: 07/27/2006] [Indexed: 01/05/2023] Open
Abstract
Cell adhesion molecules (CAMs) have long been known to guide axon outgrowth and pathfinding. More recent evidence indicates they contribute to synapse formation as well. The L1 family of IgCAMs has been implicated in long-term potentiation, learning, and some features of synaptic structure. We show here that L1 is localized in nicotinic pathways at both pre- and postsynaptic sites. In the chick ciliary ganglion, postsynaptic L1 is associated with nicotinic receptors and potentiates their downstream signaling. Postsynaptic L1 is also important for aligning presynaptic structures over the postsynaptic cell. Dominant negative experiments suggest this latter effect depends on homophilic interactions with presynaptic L1. At the neuromuscular junction L1 is also found presynaptically where dominant negative experiments again indicate a role in aligning presynaptic structures over postsynaptic receptors, both in culture and in vivo. These findings identify new roles for L1 at nicotinic synapses and underscore the multipotency of L1-CAMs.
Collapse
Affiliation(s)
- Gallen B Triana-Baltzer
- Neurobiology Section, Division of Biology, 0357, University of California, San Diego, 9500 Gilman Drive, La Jolla, 92093-0357, USA.
| | | | | |
Collapse
|
170
|
Cierpicki T, Kim MH, Cooper DR, Derewenda U, Bushweller JH, Derewenda ZS. The DC-module of doublecortin: dynamics, domain boundaries, and functional implications. Proteins 2006; 64:874-82. [PMID: 16835924 DOI: 10.1002/prot.21068] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The doublecortin-like (DC) domains, which usually occur in tandem, constitute novel microtubule-binding modules. They were first identified in doublecortin (DCX), a protein expressed in migrating neurons, and in the doublecortin-like kinase (DCLK). They are also found in other proteins, including the RP1 gene product which-when mutated-causes a form of inherited blindness. We previously reported an X-ray structure of the N-terminal DC domain of DCLK (N-DCLK), and a solution structure of an analogous module of human doublecortin (N-DCX). These studies showed that the DC domain has a tertiary fold closely reminiscent of ubiquitin and similar to several GTPase-binding domains. We now report an X-ray structure of a mutant of N-DCX, in which the C-terminal fragment (residues 139-147) unexpectedly shows an altered, "open" conformation. However, heteronuclear NMR data show that this C-terminal fragment is only transiently open in solution, and assumes a predominantly "closed" conformation. While the "open" conformation may be artificially stabilized by crystal packing interactions, the observed switching between the "open" and "closed" conformations, which shortens the linker between the two DC-domains by approximately 20 A, is likely to be of functional importance in the control of tubulin polymerization and microtubule bundling by doublecortin.
Collapse
Affiliation(s)
- Tomasz Cierpicki
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville 22908-0736, USA
| | | | | | | | | | | |
Collapse
|
171
|
Moores CA, Perderiset M, Kappeler C, Kain S, Drummond D, Perkins SJ, Chelly J, Cross R, Houdusse A, Francis F. Distinct roles of doublecortin modulating the microtubule cytoskeleton. EMBO J 2006; 25:4448-57. [PMID: 16957770 PMCID: PMC1590004 DOI: 10.1038/sj.emboj.7601335] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2005] [Accepted: 08/16/2006] [Indexed: 11/09/2022] Open
Abstract
Doublecortin is a neuronal microtubule-stabilising protein, mutations of which cause mental retardation and epilepsy in humans. How doublecortin influences microtubule dynamics, and thereby brain development, is unclear. We show here by video microscopy that purified doublecortin has no effect on the growth rate of microtubules. However, it is a potent anti-catastrophe factor that stabilises microtubules by linking adjacent protofilaments and counteracting their outward bending in depolymerising microtubules. We show that doublecortin-stabilised microtubules are substrates for kinesin translocase motors and for depolymerase kinesins. In addition, doublecortin does not itself oligomerise and does not bind to tubulin heterodimers but does nucleate microtubules. In cells, doublecortin is enriched at the distal ends of neuronal processes and our data raise the possibility that the function of doublecortin in neurons is to drive assembly and stabilisation of non-centrosomal microtubules in these doublecortin-enriched distal zones. These distinct properties combine to give doublecortin a unique function in microtubule regulation, a role that cannot be compensated for by other microtubule-stabilising proteins and nucleating factors.
Collapse
Affiliation(s)
- Carolyn A Moores
- School of Crystallography, Birkbeck College, University of London, London, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
172
|
Metlagel Z, Kikkawa YS, Kikkawa M. Ruby-Helix: an implementation of helical image processing based on object-oriented scripting language. J Struct Biol 2006; 157:95-105. [PMID: 16996276 DOI: 10.1016/j.jsb.2006.07.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Revised: 06/20/2006] [Accepted: 07/05/2006] [Indexed: 11/16/2022]
Abstract
Helical image analysis in combination with electron microscopy has been used to study three-dimensional structures of various biological filaments or tubes, such as microtubules, actin filaments, and bacterial flagella. A number of packages have been developed to carry out helical image analysis. Some biological specimens, however, have a symmetry break (seam) in their three-dimensional structure, even though their subunits are mostly arranged in a helical manner. We refer to these objects as "asymmetric helices". All the existing packages are designed for helically symmetric specimens, and do not allow analysis of asymmetric helical objects, such as microtubules with seams. Here, we describe Ruby-Helix, a new set of programs for the analysis of "helical" objects with or without a seam. Ruby-Helix is built on top of the Ruby programming language and is the first implementation of asymmetric helical reconstruction for practical image analysis. It also allows easier and semi-automated analysis, performing iterative unbending and accurate determination of the repeat length. As a result, Ruby-Helix enables us to analyze motor-microtubule complexes with higher throughput to higher resolution.
Collapse
Affiliation(s)
- Zoltan Metlagel
- Department of Cell Biology, University of Texas, Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9039, USA
| | | | | |
Collapse
|
173
|
Reiner O, Coquelle FM, Peter B, Levy T, Kaplan A, Sapir T, Orr I, Barkai N, Eichele G, Bergmann S. The evolving doublecortin (DCX) superfamily. BMC Genomics 2006; 7:188. [PMID: 16869982 PMCID: PMC1550402 DOI: 10.1186/1471-2164-7-188] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Accepted: 07/26/2006] [Indexed: 11/18/2022] Open
Abstract
Background Doublecortin (DCX) domains serve as protein-interaction platforms. Mutations in members of this protein superfamily are linked to several genetic diseases. Mutations in the human DCX gene result in abnormal neuronal migration, epilepsy, and mental retardation; mutations in RP1 are associated with a form of inherited blindness, and DCDC2 has been associated with dyslectic reading disabilities. Results The DCX-repeat gene family is composed of eleven paralogs in human and in mouse. Its evolution was followed across vertebrates, invertebrates, and was traced to unicellular organisms, thus enabling following evolutionary additions and losses of genes or domains. The N-terminal and C-terminal DCX domains have undergone sub-specialization and divergence. Developmental in situ hybridization data for nine genes was generated. In addition, a novel co-expression analysis for most human and mouse DCX superfamily-genes was performed using high-throughput expression data extracted from Unigene. We performed an in-depth study of a complete gene superfamily using several complimentary methods. Conclusion This study reveals the existence and conservation of multiple members of the DCX superfamily in different species. Sequence analysis combined with expression analysis is likely to be a useful tool to predict correlations between human disease and mouse models. The sub-specialization of some members due to restricted expression patterns and sequence divergence may explain the successful addition of genes to this family throughout evolution.
Collapse
Affiliation(s)
- Orly Reiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Frédéric M Coquelle
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- CNRS – UMR 6026, Université de Rennes 1, Equipe SDM, Campus de Beaulieu – Bât. 13, 35042 Rennes cedex, France
| | - Bastian Peter
- Department of Medical Genetics, University of Lausanne, Switzerland
| | - Talia Levy
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Anna Kaplan
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Tamar Sapir
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Irit Orr
- Department of Biological Services, Weizmann Institute of Science, Rehovot, Israel
| | - Naama Barkai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | | | - Sven Bergmann
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- Department of Medical Genetics, University of Lausanne, Switzerland
| |
Collapse
|
174
|
Godenschwege TA, Kristiansen LV, Uthaman SB, Hortsch M, Murphey RK. A conserved role for Drosophila Neuroglian and human L1-CAM in central-synapse formation. Curr Biol 2006; 16:12-23. [PMID: 16401420 DOI: 10.1016/j.cub.2005.11.062] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2005] [Revised: 11/21/2005] [Accepted: 11/22/2005] [Indexed: 11/22/2022]
Abstract
BACKGROUND Drosophila Neuroglian (Nrg) and its vertebrate homolog L1-CAM are cell-adhesion molecules (CAM) that have been well studied in early developmental processes. Mutations in the human gene result in a broad spectrum of phenotypes (the CRASH-syndrome) that include devastating neurological disorders such as spasticity and mental retardation. Although the role of L1-CAMs in neurite extension and axon pathfinding has been extensively studied, much less is known about their role in synapse formation. RESULTS We found that a single extracellular missense mutation in nrg(849) mutants disrupted the physiological function of a central synapse in Drosophila. The identified giant neuron in nrg(849) mutants made a synaptic terminal on the appropriate target, but ultrastructural analysis revealed in the synaptic terminal a dramatic microtubule reduction, which was likely to be the cause for disrupted active zones. Our results reveal that tyrosine phosphorylation of the intracellular ankyrin binding motif was reduced in mutants, and cell-autonomous rescue experiments demonstrated the indispensability of this tyrosine in giant-synapse formation. We also show that this function in giant-synapse formation was conserved in human L1-CAM but neither in human L1-CAM with a pathological missense mutation nor in two isoforms of the paralogs NrCAM and Neurofascin. CONCLUSIONS We conclude that Nrg has a function in synapse formation by organizing microtubules in the synaptic terminal. This novel synaptic function is conserved in human L1-CAM but is not common to all L1-type proteins. Finally, our findings suggest that some aspects of L1-CAM-related neurological disorders in humans may result from a disruption in synapse formation rather than in axon pathfinding.
Collapse
Affiliation(s)
- Tanja A Godenschwege
- Department of Biology, Morrill Science Center, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, USA.
| | | | | | | | | |
Collapse
|
175
|
Shu T, Tseng HC, Sapir T, Stern P, Zhou Y, Sanada K, Fischer A, Coquelle FM, Reiner O, Tsai LH. Doublecortin-like kinase controls neurogenesis by regulating mitotic spindles and M phase progression. Neuron 2006; 49:25-39. [PMID: 16387637 DOI: 10.1016/j.neuron.2005.10.039] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Revised: 08/22/2005] [Accepted: 10/19/2005] [Indexed: 10/25/2022]
Abstract
The mechanisms controlling neurogenesis during brain development remain relatively unknown. Through a differential protein screen with developmental versus mature neural tissues, we identified a group of developmentally enriched microtubule-associated proteins (MAPs) including doublecortin-like kinase (DCLK), a protein that shares high homology with doublecortin (DCX). DCLK, but not DCX, is highly expressed in regions of active neurogenesis in the neocortex and cerebellum. Through a dynein-dependent mechanism, DCLK regulates the formation of bipolar mitotic spindles and the proper transition from prometaphase to metaphase during mitosis. In cultured cortical neural progenitors, DCLK RNAi Lentivirus disrupts the structure of mitotic spindles and the progression of M phase, causing an increase of cell-cycle exit index and an ectopic commitment to a neuronal fate. Furthermore, both DCLK gain and loss of function in vivo specifically promote a neuronal identity in neural progenitors. These data provide evidence that DCLK controls mitotic division by regulating spindle formation and also determines the fate of neural progenitors during cortical neurogenesis.
Collapse
Affiliation(s)
- Tianzhi Shu
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
176
|
Abstract
Microtubules are very dynamic polymers whose assembly and disassembly is determined by whether their heterodimeric tubulin subunits are in a straight or curved conformation. Curvature is introduced by bending at the interfaces between monomers. Assembly and disassembly are primarily controlled by the hydrolysis of guanosine triphosphate (GTP) in a site that is completed by the association of two heterodimers. However, a multitude of associated proteins are able to fine-tune these dynamics so that microtubules are assembled and disassembled where and when they are required by the cell. We review the recent progress that has been made in obtaining a glimpse of the structural interactions involved.
Collapse
Affiliation(s)
- Linda A Amos
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, United Kingdom
| | | |
Collapse
|
177
|
Tsukada M, Prokscha A, Ungewickell E, Eichele G. Doublecortin Association with Actin Filaments Is Regulated by Neurabin II. J Biol Chem 2005; 280:11361-8. [PMID: 15632197 DOI: 10.1074/jbc.m405525200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mutations in the human Doublecortin (DCX) gene cause X-linked lissencephaly, a neuronal migration disorder affecting the neocortex and characterized by mental retardation and epilepsy. Because dynamic cellular asymmetries such as those seen in cell migration critically depend on a cooperation between the microtubule and actin cytoskeletal filament systems, we investigated whether Dcx, a microtubule-associated protein, is engaged in cytoskeletal cross-talk. We now demonstrate that Dcx co-sediments with actin filaments (F-actin), and using light and electron microscopy and spin down assays, we show that Dcx induces bundling and cross-linking of microtubules and F-actin in vitro. It has recently been shown that binding of Dcx to microtubules is negatively regulated by phosphorylation of the Dcx at Ser-47 or Ser-297. Although the phosphomimetic green fluorescent protein (GFP)-Dcx(S47E) transfected into COS-7 cells had a reduced affinity for microtubules, we found that pseudophosphorylation was not sufficient to cause Dcx to bind to F-actin. When cells were co-transfected with neurabin II, a protein that binds F-actin as well as Dcx, GFP-Dcx and to an even greater extent GFP-Dcx(S47E) became predominantly associated with filamentous actin. Thus Dcx phosphorylation and neurabin II combinatorially enhance Dcx binding to F-actin. Our findings raise the possibility that Dcx acts as a molecular link between microtubule and actin cytoskeletal filaments that is regulated by phosphorylation and neurabin II.
Collapse
Affiliation(s)
- Miki Tsukada
- Max Planck Institute for Experimental Endocrinology, Feodor-Lynen-Strasse 7, D-30625 Hannover, Germany.
| | | | | | | |
Collapse
|
178
|
Miranda JJL, De Wulf P, Sorger PK, Harrison SC. The yeast DASH complex forms closed rings on microtubules. Nat Struct Mol Biol 2005; 12:138-43. [PMID: 15640796 DOI: 10.1038/nsmb896] [Citation(s) in RCA: 219] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2004] [Accepted: 01/03/2005] [Indexed: 01/24/2023]
Abstract
The Saccharomyces cerevisiae DASH complex is an essential microtubule-binding component of the kinetochore. We coexpressed all ten subunits of this assembly in Escherichia coli and purified a single complex, a approximately 210-kDa heterodecamer with an apparent stoichiometry of one copy of each subunit. The hydrodynamic properties of the recombinant assembly are indistinguishable from those of the native complex in yeast extracts. The structure of DASH alone and bound to microtubules was visualized by EM. The free heterodecamer is relatively globular. In the presence of microtubules, DASH oligomerizes to form rings and paired helices that encircle the microtubules. We discuss potential roles for such collar-like structures in maintaining microtubule attachment and spindle integrity during chromosome segregation.
Collapse
Affiliation(s)
- J J L Miranda
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | | | |
Collapse
|
179
|
Díaz JF, Barasoain I, Souto AA, Amat-Guerri F, Andreu JM. Macromolecular accessibility of fluorescent taxoids bound at a paclitaxel binding site in the microtubule surface. J Biol Chem 2004; 280:3928-37. [PMID: 15550392 DOI: 10.1074/jbc.m407816200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The macromolecular accessibility of the paclitaxel binding site in microtubules has been investigated using a fluorescent taxoid and antibodies against fluorescein, which cannot diffuse into the microtubule lumen. The formation of a specific ternary complex of microtubules, Hexaflutax (7-O-{N-[6-(fluorescein-4'-carboxamido)-n-hexanoyl]-l-alanyl}paclitaxel) and 4-4-20 IgG (a monoclonal antibody against fluorescein) has been observed by means of sedimentation and electron microscopy methods. The kinetics of binding of the antibody to microtubule-bound Hexaflutax has been measured. The quenching of the observed fluorescence is fast (k+ 2.26 +/- 0.25 x 10(6) m(-1) s(-1) at 37 degrees C), indicating that the fluorescein groups of Hexaflutax are exposed to the outer solvent. The velocity of the reaction is linearly dependent on the antibody concentration, indicating that a bimolecular reaction is being observed. Another fluorescent taxoid (Flutax-2) bound to microtubules has also been shown to be rapidly accessible to polyclonal antibodies directed against fluorescein. A reduced rate of Hexaflutax quenching by the antibody is observed in microtubule-associated proteins containing microtubules or in native cellular cytoskeletons. It can be concluded that the fluorescent taxoids bind to an outer site on the microtubules that is shared with paclitaxel. Paclitaxel would be internalized in a further step of binding to reach the known luminal site, this step being blocked in the case of the fluorescent taxoids. Because the fluorescent ligands are able to induce microtubule assembly, binding to the outer site should be enough to induce assembly by a preferential binding mechanism.
Collapse
Affiliation(s)
- José Fernando Díaz
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, Madrid 28040, Spain.
| | | | | | | | | |
Collapse
|
180
|
Abstract
Doublecortin is a microtubule-associated protein that is essential for normal brain development. A recent report published in Molecular Cell shows that doublecortin associates preferentially with microtubules made of 13 protofilaments, by recognizing a novel site between the protofilaments. These findings explain how doublecortin stabilizes microtubules and provide clues about its function during neuronal migration.
Collapse
Affiliation(s)
- Anna Akhmanova
- MGC Department of Cell Biology and Genetics, Erasmus Medical Center, 3000 DR Rotterdam, The Netherlands
| | | |
Collapse
|