151
|
Jung S, Lee DS, Kim YO, Joshi CP, Bae HJ. Improved recombinant cellulase expression in chloroplast of tobacco through promoter engineering and 5' amplification promoting sequence. PLANT MOLECULAR BIOLOGY 2013; 83:317-28. [PMID: 23771581 DOI: 10.1007/s11103-013-0088-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Accepted: 06/03/2013] [Indexed: 05/07/2023]
Abstract
Economical production of bioethanol from lignocellulosic biomass still faces many technical limitations. Cost-effective production of fermentable sugars is still not practical for large-scale production of bioethanol due to high costs of lignocellulolytic enzymes. Therefore, plant molecular farming, where plants are used as bioreactors, was developed for the mass production of cell wall degrading enzymes that will help reduce costs. Subcellular targeting is also potentially more suitable for the accumulation of recombinant cellulases. Herein, we generated transgenic tobacco plants (Nicotiana tabacum cv. SR1) that accumulated Thermotoga maritima BglB cellulase, which was driven by the alfalfa RbcsK-1A promoter and contained a small subunit of the rubisco complex transit peptide. The generated transformants possessed high specific BglB activity and did not show any abnormal phenotypes. Furthermore, we genetically engineered the RbcsK-1A promoter (MRbcsK-1A) and fused the amplification promoting sequence (aps) to MRbcsK-1A promoter to obtain high expression of BglB in transgenic plants. AMRsB plant lines with aps-MRbcsK-1A promoter showed the highest specific activity of BglB, and the accumulated BglB protein represented up to 9.3 % of total soluble protein. When BglB was expressed in Arabidopsis and tobacco plants, the maximal production capacity of recombinant BglB was 0.59 and 1.42 mg/g wet weight, respectively. These results suggests that suitable recombinant expression of cellulases in subcellular compartments such as chloroplasts will contribute to the cost-effective production of enzymes, and will serve as the solid foundation for the future commercialization of bioethanol production via plant molecular farming.
Collapse
Affiliation(s)
- Sera Jung
- Department of Forest Products and Technology, Chonnam National University, Kwangju, 500-757, Republic of Korea
| | | | | | | | | |
Collapse
|
152
|
De Buck S, Nolf J, De Meyer T, Virdi V, De Wilde K, Van Lerberge E, Van Droogenbroeck B, Depicker A. Fusion of an Fc chain to a VHH boosts the accumulation levels in Arabidopsis seeds. PLANT BIOTECHNOLOGY JOURNAL 2013; 11:1006-16. [PMID: 23915060 DOI: 10.1111/pbi.12094] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 05/22/2013] [Accepted: 05/24/2013] [Indexed: 05/18/2023]
Abstract
Nanobodies® (VHHs) provide powerful tools in therapeutic and biotechnological applications. Nevertheless, for some applications, bivalent antibodies perform much better, and for this, an Fc chain can be fused to the VHH domain, resulting in a bivalent homodimeric VHH-Fc complex. However, the production of bivalent antibodies in Escherichia coli is rather inefficient. Therefore, we compared the production of VHH7 and VHH7-Fc as antibodies of interest in Arabidopsis seeds for detecting prostate-specific antigen (PSA), a well-known biomarker for prostate cancer in the early stages of tumour development. The influence of the signal sequence (camel versus plant) and that of the Fc chain origin (human, mouse or pig) were evaluated. The accumulation levels of VHHs were very low, with a maximum of 0.13% VHH of total soluble protein (TSP) in homozygous T3 seeds, while VHH-Fc accumulation levels were at least 10- to 100-fold higher, with a maximum of 16.25% VHH-Fc of TSP. Both the camel and plant signal peptides were efficiently cleaved off and did not affect the accumulation levels. However, the Fc chain origin strongly affected the degree of proteolysis, but only had a slight influence on the accumulation level. Analysis of the mRNA levels suggested that the low amount of VHHs produced in Arabidopsis seeds was not due to a failure in transcription, but rather to translation inefficiency, protein instability and/or degradation. Most importantly, the plant-produced VHH7 and VHH7-Fc antibodies were functional in detecting PSA and could thus be used for diagnostic applications.
Collapse
Affiliation(s)
- Sylvie De Buck
- Department of Plant Systems Biology, VIB, Gent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
153
|
Martiniuk F, Reggi S, Tchou-Wong KM, Rom WN, Busconi M, Fogher C. Production of a functional human acid maltase in tobacco seeds: biochemical analysis, uptake by human GSDII cells, and in vivo studies in GAA knockout mice. Appl Biochem Biotechnol 2013; 171:916-26. [PMID: 23907679 PMCID: PMC4703872 DOI: 10.1007/s12010-013-0367-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 06/23/2013] [Indexed: 12/25/2022]
Abstract
Genetic deficiency of acid alpha glucosidase (GAA) results in glycogen storage disease type II (GSDII) or Pompe's disease. To investigate whether we could generate a functional recombinant human GAA enzyme (tobrhGAA) in tobacco seeds for future enzyme replacement therapy, we subcloned the human GAA cDNA into the plant expression plasmid-pBI101 under the control of the soybean β-conglycinin seed-specific promoter and biochemically analyzed the tobrhGAA. Tobacco seeds contain the metabolic machinery that is more compatible with mammalian glycosylation-phosphorylation and processing. We found the tobrhGAA to be enzymatically active was readily taken up by GSDII fibroblasts and in white blood cells from whole blood to reverse the defect. The tobrhGAA corrected the enzyme defect in tissues at 7 days after a single dose following intraperitoneal (IP) administration in GAA knockout (GAA(-/-)) mice. Additionally, we could purify the tobrhGAA since it bound tightly to the matrix of Sephadex G100 and can be eluted by competition with maltose. These data demonstrate indirectly that the tobrhGAA is fully functional, predominantly proteolytically cleaved and contains the minimal phosphorylation and mannose-6-phosphate residues essential for biological activity.
Collapse
Affiliation(s)
- Frank Martiniuk
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, New York University School of Medicine, New York, NY 10016, USA. iProDynamic Therapeutics, Inc, New York, NY 10128, USA
| | - Serena Reggi
- Plantechno Srl, Via Staffolo 60, 26041 Casalmaggiore, Italy
| | - Kam-Meng Tchou-Wong
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, USA
| | - William N. Rom
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Matteo Busconi
- Università Cattolica S. Cuore, Via E. Parmense 84, 29100 Piacenza, Italy
| | - Corrado Fogher
- Plantechno Srl, Via Staffolo 60, 26041 Casalmaggiore, Italy
| |
Collapse
|
154
|
Govea-Alonso DO, Rubio-Infante N, García-Hernández AL, Varona-Santos JT, Korban SS, Moreno-Fierros L, Rosales-Mendoza S. Immunogenic properties of a lettuce-derived C4(V3)6 multiepitopic HIV protein. PLANTA 2013; 238:785-92. [PMID: 23897297 DOI: 10.1007/s00425-013-1932-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Accepted: 07/16/2013] [Indexed: 06/02/2023]
Abstract
Elicitation of broad humoral immune responses is a critical factor in the development of effective HIV vaccines. In an effort to develop low-cost candidate vaccines based on multiepitopic recombinant proteins, this study has been undertaken to assess and characterize the immunogenic properties of a lettuce-derived C4(V3)6 multiepitopic protein. This protein consists of V3 loops corresponding to five different HIV isolates, including MN, IIIB, RF, CC, and RU. In this study, both Escherichia coli and lettuce-derived C4(V3)6 have elicited local and systemic immune responses when orally administered to BALB/c mice. More importantly, lettuce-derived C4(V3)6 has shown a higher immunogenic potential than that of E. coli-derived C4(V3)6. Moreover, when reactivity of sera from mice immunized with C4(V3)6 are compared with those elicited by a chimeric protein carrying a single V3 sequence, broader responses have been observed. The lettuce-derived C4(V3)6 has elicited antibodies with positive reactivity against V3 loops from isolates MN, RF, and CC. In addition, splenocyte proliferation assays indicate that significant T-helper responses are induced by the C4(V3)6 immunogen. Taken together, these findings account for the observed elicitation of broader humoral responses by the C4(V3)6 multiepitopic protein. Moreover, they provide further validation for the production of multiepitopic vaccines in plant cells as this serves not only as a low-cost expression system, but also as an effective delivery vehicle for orally administered immunogens.
Collapse
Affiliation(s)
- Dania O Govea-Alonso
- Laboratorio de Biofarmacéuticos recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, 78210, San Luis Potosí, Mexico
| | | | | | | | | | | | | |
Collapse
|
155
|
Magnusdottir A, Vidarsson H, Björnsson JM, Örvar BL. Barley grains for the production of endotoxin-free growth factors. Trends Biotechnol 2013; 31:572-80. [DOI: 10.1016/j.tibtech.2013.06.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 06/11/2013] [Accepted: 06/12/2013] [Indexed: 02/07/2023]
|
156
|
Transgenic barley: a prospective tool for biotechnology and agriculture. Biotechnol Adv 2013; 32:137-57. [PMID: 24084493 DOI: 10.1016/j.biotechadv.2013.09.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Revised: 09/20/2013] [Accepted: 09/24/2013] [Indexed: 11/21/2022]
Abstract
Barley (Hordeum vulgare L.) is one of the founder crops of agriculture, and today it is the fourth most important cereal grain worldwide. Barley is used as malt in brewing and distilling industry, as an additive for animal feed, and as a component of various food and bread for human consumption. Progress in stable genetic transformation of barley ensures a potential for improvement of its agronomic performance or use of barley in various biotechnological and industrial applications. Recently, barley grain has been successfully used in molecular farming as a promising bioreactor adapted for production of human therapeutic proteins or animal vaccines. In addition to development of reliable transformation technologies, an extensive amount of various barley genetic resources and tools such as sequence data, microarrays, genetic maps, and databases has been generated. Current status on barley transformation technologies including gene transfer techniques, targets, and progeny stabilization, recent trials for improvement of agricultural traits and performance of barley, especially in relation to increased biotic and abiotic stress tolerance, and potential use of barley grain as a protein production platform have been reviewed in this study. Overall, barley represents a promising tool for both agricultural and biotechnological transgenic approaches, and is considered an ancient but rediscovered crop as a model industrial platform for molecular farming.
Collapse
|
157
|
Peters J, Sabalza M, Ramessar K, Christou P, Capell T, Stöger E, Arcalís E. Efficient recovery of recombinant proteins from cereal endosperm is affected by interaction with endogenous storage proteins. Biotechnol J 2013; 8:1203-12. [PMID: 23960004 DOI: 10.1002/biot.201300068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 08/02/2013] [Accepted: 08/16/2013] [Indexed: 01/02/2023]
Abstract
Cereal seeds are versatile platforms for the production of recombinant proteins because they provide a stable environment for protein accumulation. Endogenous seed storage proteins, however, include several prolamin-type polypeptides that aggregate and crosslink via intermolecular disulfide bridges, which could potentially interact with multimeric recombinant proteins such as antibodies, which assemble in the same manner. We investigated this possibility by sequentially extracting a human antibody expressed in maize endosperm, followed by precipitation in vitro with zein. We provide evidence that a significant proportion of the antibody pool interacts with zein and therefore cannot be extracted using non-reducing buffers. Immunolocalization experiments demonstrated that antibodies targeted for secretion were instead retained within zein bodies because of such covalent interactions. Our findings suggest that the production of soluble recombinant antibodies in maize could be enhanced by eliminating or minimizing interactions with endogenous storage proteins.
Collapse
Affiliation(s)
- Jenny Peters
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
158
|
Wakasa Y, Takaiwa F. The use of rice seeds to produce human pharmaceuticals for oral therapy. Biotechnol J 2013; 8:1133-43. [PMID: 24092672 DOI: 10.1002/biot.201300065] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 07/14/2013] [Accepted: 08/23/2013] [Indexed: 11/09/2022]
Abstract
Rice (Oryza sativa L.) is the major staple food consumed by half of the world's population. Rice seeds have gained recent attention as bioreactors for the production of human pharmaceuticals such as therapeutic proteins or peptides. Rice seed production platforms have many advantages over animal cell or microbe systems in terms of cost-effectiveness, scalability, safety, product stability and productivity. Rice seed-based human pharmaceuticals are expected to become innovative therapies as edible drugs. Therapeutic proteins can be sequestered within natural cellular compartments in rice seeds and protected from harsh gastrointestinal environments. This review presents the state-of-the-art on the construction of gene cassettes for accumulation of pharmaceutical proteins or peptides in rice seeds, the generation of transgenic rice plants, and challenges involved in the use of rice seeds to produce human pharmaceuticals.
Collapse
Affiliation(s)
- Yuhya Wakasa
- Functional Transgenic Crops Research Unit, Genetically Modified Organism Research Center, National Institute of Agrobiological Sciences, Ibaraki, Japan
| | | |
Collapse
|
159
|
Yuki Y, Mejima M, Kurokawa S, Hiroiwa T, Takahashi Y, Tokuhara D, Nochi T, Katakai Y, Kuroda M, Takeyama N, Kashima K, Abe M, Chen Y, Nakanishi U, Masumura T, Takeuchi Y, Kozuka-Hata H, Shibata H, Oyama M, Tanaka K, Kiyono H. Induction of toxin-specific neutralizing immunity by molecularly uniform rice-based oral cholera toxin B subunit vaccine without plant-associated sugar modification. PLANT BIOTECHNOLOGY JOURNAL 2013; 11:799-808. [PMID: 23601492 DOI: 10.1111/pbi.12071] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 03/08/2013] [Accepted: 03/09/2013] [Indexed: 06/02/2023]
Abstract
Plants have been used as expression systems for a number of vaccines. However, the expression of vaccines in plants sometimes results in unexpected modification of the vaccines by N-terminal blocking and sugar-chain attachment. Although MucoRice-CTB was thought to be the first cold-chain-free and unpurified oral vaccine, the molecular heterogeneity of MucoRice-CTB, together with plant-based sugar modifications of the CTB protein, has made it difficult to assess immunological activity of vaccine and yield from rice seed. Using a T-DNA vector driven by a prolamin promoter and a signal peptide added to an overexpression vaccine cassette, we established MucoRice-CTB/Q as a new generation oral cholera vaccine for humans use. We confirmed that MucoRice-CTB/Q produces a single CTB monomer with an Asn to Gln substitution at the 4th glycosylation position. The complete amino acid sequence of MucoRice-CTB/Q was determined by MS/MS analysis and the exact amount of expressed CTB was determined by SDS-PAGE densitometric analysis to be an average of 2.35 mg of CTB/g of seed. To compare the immunogenicity of MucoRice-CTB/Q, which has no plant-based glycosylation modifications, with that of the original MucoRice-CTB/N, which is modified with a plant N-glycan, we orally immunized mice and macaques with the two preparations. Similar levels of CTB-specific systemic IgG and mucosal IgA antibodies with toxin-neutralizing activity were induced in mice and macaques orally immunized with MucoRice-CTB/Q or MucoRice-CTB/N. These results show that the molecular uniformed MucoRice-CTB/Q vaccine without plant N-glycan has potential as a safe and efficacious oral vaccine candidate for human use.
Collapse
Affiliation(s)
- Yoshikazu Yuki
- Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; International Research and Development Center for Mucosal Vaccine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Arcalis E, Stadlmann J, Rademacher T, Marcel S, Sack M, Altmann F, Stoger E. Plant species and organ influence the structure and subcellular localization of recombinant glycoproteins. PLANT MOLECULAR BIOLOGY 2013; 83:105-17. [PMID: 23553222 DOI: 10.1007/s11103-013-0049-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 03/22/2013] [Indexed: 05/18/2023]
Abstract
Many plant-based systems have been developed as bioreactors to produce recombinant proteins. The choice of system for large-scale production depends on its intrinsic expression efficiency and its propensity for scale-up, post-harvest storage and downstream processing. Factors that must be considered include the anticipated production scale, the value and intended use of the product, the geographical production area, the proximity of processing facilities, intellectual property, safety and economics. It is also necessary to consider whether different species and organs affect the subcellular trafficking, structure and qualitative properties of recombinant proteins. In this article we discuss the subcellular localization and N-glycosylation of two commercially-relevant recombinant glycoproteins (Aspergillus niger phytase and anti-HIV antibody 2G12) produced in different plant species and organs. We augment existing data with novel results based on the expression of the same recombinant proteins in Arabidopsis and tobacco seeds, focusing on similarities and subtle differences in N-glycosylation that often reflect the subcellular trafficking route and final destination, as well as differences generated by unique enzyme activities in different species and tissues. We discuss the potential consequences of such modifications on the stability and activity of the recombinant glycoproteins.
Collapse
Affiliation(s)
- Elsa Arcalis
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
161
|
Karimi SM, Sohail MN, Amin I, Mansoor S, Mukhtar Z. Molecular characterization of a new synthetic cry2ab gene in Nicotiana tabacum. Biotechnol Lett 2013; 35:969-74. [PMID: 23397269 DOI: 10.1007/s10529-013-1153-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 01/23/2013] [Indexed: 11/29/2022]
Abstract
A newly-synthesized cry2Ab gene was characterized in Nicotiana tabacum, before its further transformation in cotton. Synthetic cry2Ab gene was cloned in pGreen0029 and its expression was transiently analyzed at mRNA level through agroinfiltration in tobacco. The mRNA of cry2Ab was detected after 72 h agroinfiltration through PCR using total plant RNA. This construct was then transformed into N. tabacum through Agrobacterium. Insect bioassays were conducted on detached leaves using first instar Spodoptera exigua larvae; after 96 h significant insect mortality was recorded. This newly synthesized gene was effective in controlling S. exigua first instar larvae. It can be used in combinations with other Bt genes like cry1Ac for developing resistance against major insect pests of cotton and further widening the insect control spectrum.
Collapse
Affiliation(s)
- Sohail Mehmood Karimi
- National Institute for Biotechnology and Genetic Engineering, P.O. Box 577, Jhang Road, Faisalabad, Pakistan.
| | | | | | | | | |
Collapse
|
162
|
Kaldis A, Ahmad A, Reid A, McGarvey B, Brandle J, Ma S, Jevnikar A, Kohalmi SE, Menassa R. High-level production of human interleukin-10 fusions in tobacco cell suspension cultures. PLANT BIOTECHNOLOGY JOURNAL 2013; 11:535-45. [PMID: 23297698 PMCID: PMC3712471 DOI: 10.1111/pbi.12041] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 11/20/2012] [Accepted: 11/28/2012] [Indexed: 05/18/2023]
Abstract
The production of pharmaceutical proteins in plants has made much progress in recent years with the development of transient expression systems, transplastomic technology and humanizing glycosylation patterns in plants. However, the first therapeutic proteins approved for administration to humans and animals were made in plant cell suspensions for reasons of containment, rapid scale-up and lack of toxic contaminants. In this study, we have investigated the production of human interleukin-10 (IL-10) in tobacco BY-2 cell suspension and evaluated the effect of an elastin-like polypeptide tag (ELP) and a green fluorescent protein (GFP) tag on IL-10 accumulation. We report the highest accumulation levels of hIL-10 obtained with any stable plant expression system using the ELP fusion strategy. Although IL-10-ELP has cytokine activity, its activity is reduced compared to unfused IL-10, likely caused by interference of ELP with folding of IL-10. Green fluorescent protein has no effect on IL-10 accumulation, but examining the trafficking of IL-10-GFP over the cell culture cycle revealed fluorescence in the vacuole during the stationary phase of the culture growth cycle. Analysis of isolated vacuoles indicated that GFP alone is found in vacuoles, while the full-size fusion remains in the whole-cell extract. This indicates that GFP is cleaved off prior to its trafficking to the vacuole. On the other hand, IL-10-GFP-ELP remains mostly in the ER and accumulates to high levels. Protein bodies were observed at the end of the culture cycle and are thought to arise as a consequence of high levels of accumulation in the ER.
Collapse
Affiliation(s)
- Angelo Kaldis
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food CanadaLondon, ON, Canada
| | - Adil Ahmad
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food CanadaLondon, ON, Canada
- Department of Biology, Western UniversityLondon, ON, Canada
| | - Alexandra Reid
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food CanadaLondon, ON, Canada
| | - Brian McGarvey
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food CanadaLondon, ON, Canada
| | - Jim Brandle
- Vineland Research and Innovation CentreVineland Station, ON, Canada
| | - Shengwu Ma
- Department of Biology, Western UniversityLondon, ON, Canada
- Transplantation Immunology Group, Lawson Health Research InstituteLondon, ON, Canada
- Plantigen Inc.London, ON, Canada
| | - Anthony Jevnikar
- Transplantation Immunology Group, Lawson Health Research InstituteLondon, ON, Canada
- Plantigen Inc.London, ON, Canada
| | | | - Rima Menassa
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food CanadaLondon, ON, Canada
- Department of Biology, Western UniversityLondon, ON, Canada
| |
Collapse
|
163
|
Masip G, Sabalza M, Pérez-Massot E, Banakar R, Cebrian D, Twyman RM, Capell T, Albajes R, Christou P. Paradoxical EU agricultural policies on genetically engineered crops. TRENDS IN PLANT SCIENCE 2013; 18:312-324. [PMID: 23623240 DOI: 10.1016/j.tplants.2013.03.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 03/04/2013] [Accepted: 03/26/2013] [Indexed: 06/02/2023]
Abstract
European Union (EU) agricultural policy has been developed in the pursuit of laudable goals such as a competitive economy and regulatory harmony across the union. However, what has emerged is a fragmented, contradictory, and unworkable legislative framework that threatens economic disaster. In this review, we present case studies highlighting differences in the regulations applied to foods grown in EU countries and identical imported products, which show that the EU is undermining its own competitiveness in the agricultural sector, damaging both the EU and its humanitarian activities in the developing world. We recommend the adoption of rational, science-based principles for the harmonization of agricultural policies to prevent economic decline and lower standards of living across the continent.
Collapse
Affiliation(s)
- Gemma Masip
- Department of Plant Production and Forestry Science, ETSEA, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Gutiérrez SP, Saberianfar R, Kohalmi SE, Menassa R. Protein body formation in stable transgenic tobacco expressing elastin-like polypeptide and hydrophobin fusion proteins. BMC Biotechnol 2013; 13:40. [PMID: 23663656 PMCID: PMC3659085 DOI: 10.1186/1472-6750-13-40] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 05/06/2013] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Plants are recognized as an efficient and inexpensive system to produce valuable recombinant proteins. Two different strategies have been commonly used for the expression of recombinant proteins in plants: transient expression mediated by Agrobacterium; or stable transformation of the plant genome. However, the use of plants as bioreactors still faces two main limitations: low accumulation levels of some recombinant proteins and lack of efficient purification methods. Elastin-like polypeptide (ELP), hydrophobin I (HFBI) and Zera® are three fusion partners found to increase the accumulation levels of recombinant proteins and induce the formation of protein bodies (PBs) in leaves when targeted to the endoplasmic reticulum (ER) in transient expression assays. In this study the effects of ELP and HFBI fusion tags on recombinant protein accumulation levels and PB formation was examined in stable transgenic Nicotiana tabacum. RESULTS The accumulation of recombinant protein and PB formation was evaluated in two cultivars of Nicotiana tabacum transformed with green fluorescent protein (GFP) fused to ELP or HFBI, both targeted and retrieved to the ER. The ELP and HFBI tags increased the accumulation of the recombinant protein and induced the formation of PBs in leaves of stable transgenic plants from both cultivars. Furthermore, these tags induced the formation of PBs in a concentration-dependent manner, where a specific level of recombinant protein accumulation was required for PBs to appear. Moreover, agro-infiltration of plants accumulating low levels of recombinant protein with p19, a suppressor of post-transcriptional gene silencing (PTGS), increased accumulation levels in four independent transgenic lines, suggesting that PTGS might have caused the low accumulation levels in these plants. CONCLUSION The use of ELP and HFBI tags as fusion partners in stable transgenic plants of tobacco is feasible and promising. In a constitutive environment, these tags increase the accumulation levels of the recombinant protein and induce the formation of PBs regardless of the cultivar used. However, a specific level of recombinant protein accumulation needs to be reached for PBs to form.
Collapse
Affiliation(s)
- Sonia P Gutiérrez
- Department of Biology, University of Western Ontario, London, ON, Canada
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Reza Saberianfar
- Department of Biology, University of Western Ontario, London, ON, Canada
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Susanne E Kohalmi
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Rima Menassa
- Department of Biology, University of Western Ontario, London, ON, Canada
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| |
Collapse
|
165
|
Takaiwa F. Increasing the production yield of recombinant protein in transgenic seeds by expanding the deposition space within the intracellular compartment. Bioengineered 2013; 4:136-9. [PMID: 23563599 DOI: 10.4161/bioe.24187] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Seeds must maintain a constant level of nitrogen in order to germinate. When recombinant proteins are produced while endogenous seed protein expression is suppressed, the production levels of the foreign proteins increase to compensate for the decreased synthesis of endogenous proteins. Thus, exchanging the production of endogenous seed proteins for that of foreign proteins is a promising approach to increase the yield of foreign recombinant proteins. Providing a space for the deposition of recombinant protein in the intracellular compartment is critical, at this would lessen any competition in this region between the endogenous seed proteins and the introduced foreign protein. The production yields of several recombinant proteins have been greatly increased by this strategy.
Collapse
Affiliation(s)
- Fumio Takaiwa
- Functional Transgenic Crop Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Japan.
| |
Collapse
|
166
|
Kurokawa N, Hirai T, Takayama M, Hiwasa-Tanase K, Ezura H. An E8 promoter-HSP terminator cassette promotes the high-level accumulation of recombinant protein predominantly in transgenic tomato fruits: a case study of miraculin. PLANT CELL REPORTS 2013; 32:529-36. [PMID: 23306632 DOI: 10.1007/s00299-013-1384-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Revised: 12/21/2012] [Accepted: 01/02/2013] [Indexed: 05/24/2023]
Abstract
The E8 promoter-HSP terminator expression cassette is a powerful tool for increasing the accumulation of recombinant protein in a ripening tomato fruit. Strong, tissue-specific transgene expression is a desirable feature in transgenic plants to allow the production of variable recombinant proteins. The expression vector is a key tool to control the expression level and site of transgene and recombinant protein expression in transgenic plants. The combination of the E8 promoter, a fruit-ripening specific promoter, and a heat shock protein (HSP) terminator, derived from heat shock protein 18.2 of Arabidopsis thaliana, produces the strong and fruit-specific accumulation of recombinant miraculin in transgenic tomato. Miraculin gene expression was driven by an E8 promoter and HSP terminator cassette (E8-MIR-HSP) in transgenic tomato plants, and the miraculin concentration was the highest in the ripening fruits, representing 30-630 μg miraculin of the gram fresh weight. The highest level of miraculin concentration among the transgenic tomato plant lines containing the E8-MIR-HSP cassette was approximately four times higher than those observed in a previous study using a constitutive 35S promoter and NOS terminator cassette (Hiwasa-Tanase et al. in Plant Cell Rep 30:113-124, 2011). These results demonstrate that the combination of the E8 promoter and HSP terminator cassette is a useful tool to increase markedly the accumulation of recombinant proteins in a ripening fruit-specific manner.
Collapse
Affiliation(s)
- Natsuko Kurokawa
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8572, Japan
| | | | | | | | | |
Collapse
|
167
|
Juarez P, Huet-Trujillo E, Sarrion-Perdigones A, Falconi EE, Granell A, Orzaez D. Combinatorial Analysis of Secretory Immunoglobulin A (sIgA) Expression in Plants. Int J Mol Sci 2013; 14:6205-22. [PMID: 23507755 PMCID: PMC3634489 DOI: 10.3390/ijms14036205] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 01/04/2013] [Accepted: 02/27/2013] [Indexed: 12/29/2022] Open
Abstract
Delivery of secretory immunoglobulin A (sIgA) to mucosal surfaces as a passive immunotherapy agent is a promising strategy to prevent infectious diseases. Recombinant sIgA production in plants requires the co-expression of four transcriptional units encoding the light chain (LC), heavy chain (HC), joining chain (JC) and secretory component (SC). As a way to optimize sIgA production in plants, we tested the combinatorial expression of 16 versions of a human sIgA against the VP8* rotavirus antigen in Nicotiana benthamiana, using the recently developed GoldenBraid multigene assembly system. Each sIgA version was obtained by combining one of the two types of HC (α1 and α2) with one of the two LC types (k and λ) and linking or not a KDEL peptide to the HC and/or SC. From the analysis of the anti-VP8* activity, it was concluded that those sIgA versions carrying HCα1 and LCλ provided the highest yields. Moreover, ER retention significantly increased antibody production, particularly when the KDEL signal was linked to the SC. Maximum expression levels of 32.5 μg IgA/g fresh weight (FW) were obtained in the best performing combination, with an estimated 33% of it in the form of a secretory complex.
Collapse
Affiliation(s)
- Paloma Juarez
- Institute of Molecular and Cellular Plant Biology (IBMCP), Spanish Research Council Agency (CSIC), Polytechnic University of Valencia (UPV), Avda Tarongers SN, Valencia 46022, Spain.
| | | | | | | | | | | |
Collapse
|
168
|
Goojani HG, Javaran MJ, Nasiri J, Goojani EG, Alizadeh H. Expression and large-scale production of human tissue plasminogen activator (t-PA) in transgenic tobacco plants using different signal peptides. Appl Biochem Biotechnol 2013; 169:1940-51. [PMID: 23354501 DOI: 10.1007/s12010-013-0115-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 01/14/2013] [Indexed: 10/27/2022]
Abstract
An attempt was made to assess the expression level and targeting of a human protein entitled recombinant tissue plasminogen activator (rt-PA) through accumulation in three cellular compartments including the endoplasmic reticulum and cytosolic and apoplastic spaces in transgenic tobacco plants. In this context, three chimeric constructs pBI-SP-tPA, pBI-tPA-KDEL, and pBI-Ext-tPA were employed and transferred into the tobacco plants through a popular transformation-based system called Agrobacterium tumefaciens. As an initial screening system, the incorporation of the rt-PA gene in the genomic DNA of tobacco transgenic plants and the possible existence of the rt-PA-specific transcript in the total RNAs of transgenic plant leaves were confirmed via PCR and reverse transcription (RT)-PCR, respectively. Southern blot analysis, in addition, was used to determine the copy number of the corresponding gene (i.e., t-PA) transformed into the each transgenic plant; one or more copies were detected regarding transformants derived from all three abovementioned constructs. According to the enzyme-linked immunosorbent assay, the mean values of t-PA expression were calculated as 0.50, 0.68, and 0.69 μg/mg of the total soluble protein when a collection containing 30 transgenic plants transformed with pBI-SP-tPA, pBI-tPA-KDEL, and pBI-Ext-tPA was taken into account, respectively. The zymography assay was lastly performed and concluded the expression of the properly folded rt-PA in this expression system. Our results, altogether, revealed that tobacco plants could be utilized as a bioreactor system for the large-scale production of enzymatically active t-PA and presumably other therapeutic recombinant proteins in large quantities.
Collapse
Affiliation(s)
- Hojjat Ghasemi Goojani
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
| | | | | | | | | |
Collapse
|
169
|
Kudo K, Ohta M, Yang L, Wakasa Y, Takahashi S, Takaiwa F. ER stress response induced by the production of human IL-7 in rice endosperm cells. PLANT MOLECULAR BIOLOGY 2013; 81:461-475. [PMID: 23371559 DOI: 10.1007/s11103-013-0016-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 01/18/2013] [Indexed: 06/01/2023]
Abstract
Rice seed has been used as a production platform for high value recombinant proteins. When mature human interleukin 7 (hIL-7) was expressed as a secretory protein in rice endosperm by ligating the N terminal glutelin signal peptide and the C terminal KDEL endoplasmic reticulum (ER) retention signal to the hIL-7 cytokine to improve production yield, this protein accumulated at levels visible by Coomassie Brilliant Blue staining. However, the production of this protein led not only to a severe reduction of endogenous seed storage proteins but also to a deterioration in grain quality. The appearance of aberrant grain phenotypes (such as floury and shrunken) was attributed to ER stress induced by the retention of highly aggregated unfolded hIL-7 in the ER lumen, and the expression levels of chaperones such as BiPs and PDIs were enhanced in parallel with the increase in hIL-7 levels. The activation of this ER stress response was shown to be mainly mediated by the OsIRE1-OsbZIP50 signal cascade, based on the appearance of unconventional splicing of OsbZIP50 mRNA and the induction of OsBiP4&5. Interestingly, the ER stress response could be induced by lower concentrations of hIL-7 versus other types of cytokines such as IL-1b, IL-4, IL-10, and IL-18. Furthermore, several ubiquitin 26S proteasome-related genes implicated in ER-associated degradation were upregulated by hIL-7 production. These results suggest that severe detrimental effects on grain properties were caused by proteo-toxicity induced by unfolded hIL-7 aggregates in the ER, resulting in the triggering of ER stress.
Collapse
Affiliation(s)
- Kyoko Kudo
- Functional Transgenic Crops Research Unit, Genetically Modified Organism Research Center, National Institute of Agrobiological Sciences, Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8602, Japan
| | | | | | | | | | | |
Collapse
|
170
|
Takaiwa F. Update on the use of transgenic rice seeds in oral immunotherapy. Immunotherapy 2013; 5:301-12. [DOI: 10.2217/imt.13.4] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Rice seed provides an ideal production platform for pharmaceuticals in terms of high productivity and stability, as well as the scalability, safety and economy that are expected in plant production systems. Furthermore, these therapeutic products are bioencapsulated in protein bodies, which are seed-specific storage organelles that provide protection from digestion by gastrointestinal enzymes during delivery to the gut-associated lymphoid tissue. Thus, rice seed provides an ideal delivery system for the mucosal immune system. Oral immunotherapy using unprocessed transgenic rice seed containing therapeutic products has been demonstrated to induce effective mucosal immune tolerance and immune reactions against allergies and pathogens.
Collapse
Affiliation(s)
- Fumio Takaiwa
- Functional Transgenic Crop Research Unit, National Institute of Agrobiological Sciences, Kannondai 2–1–2, Tsukuba, Ibaraki 305-8602, Japan
| |
Collapse
|
171
|
Zhang L, Shi J, Jiang D, Stupak J, Ou J, Qiu Q, An N, Li J, Yang D. Expression and characterization of recombinant human alpha-antitrypsin in transgenic rice seed. J Biotechnol 2013; 164:300-8. [DOI: 10.1016/j.jbiotec.2013.01.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Revised: 01/12/2013] [Accepted: 01/17/2013] [Indexed: 01/03/2023]
|
172
|
Fernandez-del-Carmen A, Juárez P, Presa S, Granell A, Orzáez D. Recombinant jacalin-like plant lectins are produced at high levels in Nicotiana benthamiana and retain agglutination activity and sugar specificity. J Biotechnol 2013; 163:391-400. [PMID: 23220214 DOI: 10.1016/j.jbiotec.2012.11.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 11/26/2012] [Accepted: 11/28/2012] [Indexed: 12/11/2022]
Abstract
The plant kingdom is an underexplored source of valuable proteins which, like plant lectins, display unique interacting specificities. Furthermore, plant protein diversity remains under-exploited due to the low availability and heterogeneity of native sources. All these hurdles could be overcome with recombinant production. A narrow phylogenetic gap between the native source and the recombinant platform is likely to facilitate proper protein processing and stability; therefore, the plant cell chassis should be specially suited for the recombinant production of many plant native proteins. This is illustrated herein with the recombinant production of two representatives of the plant jacalin-related lectin (JRLs) protein family in Nicotiana benthamiana using state-of-the-art magnICON technology. Mannose-specific Banlec JRL was produced at very high levels in leaves, reaching 1.0mg of purified protein per gram of fresh weight and showing strong agglutination activity. Galactose-specific jacalin JRL, with its complicated processing requirements, was also successfully produced in N. benthamiana at levels of 0.25 mg of purified protein per gram of fresh weight. Recombinant Jacalin (rJacalin) proved efficient in the purification of human IgA1, and was able to discriminate between plant-made and native IgA1 due to their differential glycosylation status. Together, these results show that the plant cell factory should be considered a primary option in the recombinant production of valuable plant proteins.
Collapse
Affiliation(s)
- Asun Fernandez-del-Carmen
- Instituto de Biología Molecular y Celular de Plantas-IBMCP, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, Avda Tarongers SN, 46022 Valencia, Spain
| | | | | | | | | |
Collapse
|
173
|
Sharifi Tabar M, Habashi AA, Rajabi Memari H. Human granulocyte colony-stimulating factor (hG-CSF) expression in plastids of Lactuca sativa. IRANIAN BIOMEDICAL JOURNAL 2013; 17:158-64. [PMID: 23748895 PMCID: PMC3770259 DOI: 10.6091/ibj.1180.2013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 04/06/2013] [Accepted: 04/07/2013] [Indexed: 12/21/2022]
Abstract
BACKGROUND Human granulocyte colony-stimulating factor (hG-CSF) can serve as valuable biopharmaceutical for research and treatment of the human blood cancer. Transplastomic plants have been emerged as a new and high potential candidate for production of recombinant biopharmaceutical proteins in comparison with transgenic plants due to extremely high level expression, biosafety and many other advantages. METHODS hG-CSF gene was cloned into pCL vector between prrn16S promoter and TpsbA terminator. The recombinant vector was coated on nanogold particles and transformed to lettuce chloroplasts through biolistic method. Callogenesis and regeneration of cotyledonary explants were obtained by Murashige and Skoog media containing 6-benzylaminopurine and 1-naphthaleneacetic acid hormones. The presence of hG-CSF gene in plastome was studied with four specific PCR primers and expression by Western immunoblotting. RESULTS hG-CSF gene cloning was confirmed by digestion and sequencing. Transplastomic lettuce lines were regenerated and subjected to molecular analysis. The presence of hG-CSF in plastome was confirmed by PCR using specific primers designed from the plastid genome. Western immunoblotting of extracted protein from transplastomic plants showed a 20-kDa band, which verified the expression of recombinant protein in lettuce chloroplasts. CONCLUSIONS This study is the first report that successfully express hG-CSF gene in lettuce chloroplast. The lettuce plastome can provide a cheap and safe expression platform for producing valuable biopharmaceuticals for research and treatment.
Collapse
Affiliation(s)
- Mehdi Sharifi Tabar
- Molecular Systems Biology Group of Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran;
| | - Ali Akbar Habashi
- Dept. of Tissue Culture and Cell Transformtion, Agriculture Biotechnology Research Institute of Iran (ABRII), Seed and Plant Improvement Institutes Campus, Karaj, Iran;
| | - Hamid Rajabi Memari
- Biotechnology and Life Science Centre, Shahid Chamran University of Ahvaz, Ahvaz, Iran;
- School of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
174
|
Shah KH, Almaghrabi B, Bohlmann H. Comparison of Expression Vectors for Transient Expression of Recombinant Proteins in Plants. PLANT MOLECULAR BIOLOGY REPORTER 2013; 31:1529-1538. [PMID: 24415845 PMCID: PMC3881577 DOI: 10.1007/s11105-013-0614-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Production of recombinant proteins in plants is of increasing importance for practical applications. However, the production of stable transformed transgenic plants is a lengthy procedure. Transient expression, on the other hand, can deliver recombinant proteins within a week, and many viral vectors have been constructed for that purpose. Each of them is reported to be highly efficient, robust and cost-effective. Here, a variety of expression vectors which were designed for transient and stable plant transformation, including pPZP3425, pPZP5025, pPZPTRBO, pJLTRBO, pEAQ-HT and pBY030-2R, was compared for the expression of green fluorescent protein and β-glucuronidase in Nicotiana benthamiana by Agrobacterium-mediated transient expression. Our results show that pPZPTRBO, pJLTRBO and pEAQ-HT had comparable expression levels without co-infiltration of a RNA-silencing inhibitor. The other vectors, including the non-viral vectors pPZP5025 and pPZP3425, needed co-infiltration of the RNA-silencing inhibitor P19 to give good expression levels.
Collapse
Affiliation(s)
- Kausar Hussain Shah
- Division of Plant Protection, Department of Crop Sciences, UFT, University of Natural Resources and Life Sciences, Vienna, Konrad Lorenz Strasse 24, 3430 Tulln Austria
| | - Bachar Almaghrabi
- Division of Plant Protection, Department of Crop Sciences, UFT, University of Natural Resources and Life Sciences, Vienna, Konrad Lorenz Strasse 24, 3430 Tulln Austria
| | - Holger Bohlmann
- Division of Plant Protection, Department of Crop Sciences, UFT, University of Natural Resources and Life Sciences, Vienna, Konrad Lorenz Strasse 24, 3430 Tulln Austria
| |
Collapse
|
175
|
Greenham T, Altosaar I. Molecular strategies to engineer transgenic rice seed compartments for large-scale production of plant-made pharmaceuticals. Methods Mol Biol 2013; 956:311-26. [PMID: 23135861 DOI: 10.1007/978-1-62703-194-3_22] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The use of plants as bioreactors for the large-scale production of recombinant proteins has emerged as an exciting area of research. The current shortages in protein therapeutics due to the capacity and economic bottlenecks faced with modern protein production platforms (microbial, yeast, mammalian) has driven considerable attention towards molecular pharming. Utilizing plants for the large-scale production of recombinant proteins is estimated to be 2-10% the cost of microbial platforms, and up to 1,000-fold more cost effective than mammalian platforms (Twyman et al. Trends Biotechnol 21:570-578, 2003; Sharma and Sharma, Biotechnol Adv 27:811-832, 2009). In order to achieve an economically feasible plant production host, protein expression and accumulation must be optimized. The seed, and more specifically the rice seed has emerged as an ideal candidate in molecular pharming due to its low protease activity, low water content, stable protein storage environment, relatively high biomass, and the molecular tools available for manipulation (Lau and Sun, Biotechnol Adv 27:1015-1022, 2009).
Collapse
Affiliation(s)
- Trevor Greenham
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | | |
Collapse
|
176
|
Nykiforuk CL, Boothe JG. Transgenic expression of therapeutic proteins in Arabidopsis thaliana seed. Methods Mol Biol 2012; 899:239-64. [PMID: 22735958 DOI: 10.1007/978-1-61779-921-1_16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The production of therapeutic proteins in plant seed augments alternative production platforms such as microbial fermentation, cell-based systems, transgenic animals, and other recombinant plant production systems to meet increasing demands for the existing biologics, drugs under evaluation, and undiscovered therapeutics in the future. We have developed upstream purification technologies for oilseeds which are designed to cost-effectively purify therapeutic proteins amenable to conventional downstream manufacture. A very useful tool in these endeavors is the plant model system Arabidopsis thaliana. The current chapter describes the rationale and methods used to over-express potential therapeutic products in A. thaliana seed for evaluation and definitive insight into whether our production platform, Safflower, can be utilized for large-scale manufacture.
Collapse
|
177
|
Patti T, Bembi B, Cristin P, Mazzarol F, Secco E, Pappalardo C, Musetti R, Martinuzzi M, Versolatto S, Cariati R, Dardis A, Marchetti S. Endosperm-specific expression of human acid beta-glucosidase in a waxy rice. RICE (NEW YORK, N.Y.) 2012; 5:34. [PMID: 24279993 PMCID: PMC4883710 DOI: 10.1186/1939-8433-5-34] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 11/27/2012] [Indexed: 06/02/2023]
Abstract
BACKGROUND The deficiency of human acid beta-glucosidase (hGCase) causes Gaucher disease, a rare genetically-inherited disorder currently treated by enzyme replacement therapy using recombinant CHO-derived GCase. In an attempt to provide an alternative and more efficient production system, a chimeric cDNA coding for hGCase operatively linked to the signal peptide of rice glutelin 4 (GluB4) was put under the control of the GluB4 endosperm-specific promoter and inserted into the genome of a waxy rice. RESULTS Molecular, immunological and biochemical analyses showed that recombinant hGCase, targeted to the protein storage vacuoles of rice endosperm cells, is equivalent to the native protein and has a glycosylation pattern compatible with direct therapeutic use. Compared to a previous study carried out on transgenic tobacco seeds, enzyme contents per unit of biomass were drastically increased; in addition, differently from what observed in tobacco, rice seed viability was unaffected by hGCase even at the highest production level. Transgenic seed polishing combined with a pretreatment of seed flour greatly facilitated hGCase extraction and purification with an industrially-scalable procedure. CONCLUSIONS This study opens up the possibility to efficiently produce in the rice seed pharmaceutical compounds which are available in limited amounts or completely excluded from clinical practice due to the inadequacy of their production systems.
Collapse
Affiliation(s)
- Tamara Patti
- />Transactiva Srl, Via J. Linussio 51, 33100 Udine, Italy
| | - Bruno Bembi
- />Transactiva Srl, Via J. Linussio 51, 33100 Udine, Italy
- />Regional Coordination Centre for Rare Diseases, University Hospital S. Maria Misericordia, P.zale S. Maria della Misericordia 15, 33100 Udine, Italy
| | - Piero Cristin
- />Transactiva Srl, Via J. Linussio 51, 33100 Udine, Italy
| | | | - Erika Secco
- />Transactiva Srl, Via J. Linussio 51, 33100 Udine, Italy
| | - Carla Pappalardo
- />Department of Agriculture and Environmental Sciences, University of Udine, Via delle Scienze 206, 33100 Udine, Italy
| | - Rita Musetti
- />Department of Agriculture and Environmental Sciences, University of Udine, Via delle Scienze 206, 33100 Udine, Italy
| | - Maurizio Martinuzzi
- />Department of Agriculture and Environmental Sciences, University of Udine, Via delle Scienze 206, 33100 Udine, Italy
| | - Serena Versolatto
- />Department of Agriculture and Environmental Sciences, University of Udine, Via delle Scienze 206, 33100 Udine, Italy
| | - Roberta Cariati
- />Regional Coordination Centre for Rare Diseases, University Hospital S. Maria Misericordia, P.zale S. Maria della Misericordia 15, 33100 Udine, Italy
| | - Andrea Dardis
- />Regional Coordination Centre for Rare Diseases, University Hospital S. Maria Misericordia, P.zale S. Maria della Misericordia 15, 33100 Udine, Italy
| | - Stefano Marchetti
- />Transactiva Srl, Via J. Linussio 51, 33100 Udine, Italy
- />Department of Agriculture and Environmental Sciences, University of Udine, Via delle Scienze 206, 33100 Udine, Italy
| |
Collapse
|
178
|
Huang FC, Schwab W. Overexpression of hydroperoxide lyase, peroxygenase and epoxide hydrolase in tobacco for the biotechnological production of flavours and polymer precursors. PLANT BIOTECHNOLOGY JOURNAL 2012; 10:1099-109. [PMID: 22967031 DOI: 10.1111/j.1467-7652.2012.00739.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 07/30/2012] [Accepted: 08/04/2012] [Indexed: 06/01/2023]
Abstract
Plants produce short-chain aldehydes and hydroxy fatty acids, which are important industrial materials, through the lipoxygenase pathway. Based on the information that lipoxygenase activity is up-regulated in tobacco leaves upon infection with tobacco mosaic virus (TMV), we introduced a melon hydroperoxide lyase (CmHPL) gene, a tomato peroxygenase (SlPXG) gene and a potato epoxide hydrolase (StEH) into tobacco leaves using a TMV-based viral vector system to afford aldehyde and hydroxy fatty acid production. Ten days after infiltration, tobacco leaves infiltrated with CmHPL displayed high enzyme activities of 9-LOX and 9-HPL, which could efficiently transform linoleic acid into C(9) aldehydes. Protein extracts prepared from 1 g of CmHPL-infiltrated tobacco leaves (fresh weight) in combination with protein extracts prepared from 1 g of control vector-infiltrated tobacco leaves (as an additional 9-LOX source) produced 758 ± 75 μg total C(9) aldehydes in 30 min. The yield of C(9) aldehydes from linoleic acid was 60%. Besides, leaves infiltrated with SlPXG and StEH showed considerable enzyme activities of 9-LOX/PXG and 9-LOX/EH, respectively, enabling the production of 9,12,13-trihydroxy-10(E)-octadecenoic acid from linoleic acid. Protein extracts prepared from 1 g of SlPXG-infiltrated tobacco leaves (fresh weight) in combination with protein extracts prepared from 1 g of StEH-infiltrated tobacco leaves produced 1738 ± 27 μg total 9,12,13-trihydroxy-10(E)-octadecenoic acid isomers in 30 min. The yield of trihydroxyoctadecenoic acids from linoleic acid was 58%. C(9) aldehydes and trihydroxy fatty acids could likely be produced on a larger scale using this expression system with many advantages including easy handling, time-saving and low production cost.
Collapse
Affiliation(s)
- Fong-Chin Huang
- Biotechnology of Natural Products, Technische Universität München, Freising, Germany
| | | |
Collapse
|
179
|
Lotter-Stark HCT, Rybicki EP, Chikwamba RK. Plant made anti-HIV microbicides--a field of opportunity. Biotechnol Adv 2012; 30:1614-26. [PMID: 22750509 PMCID: PMC7132877 DOI: 10.1016/j.biotechadv.2012.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 06/10/2012] [Accepted: 06/20/2012] [Indexed: 12/15/2022]
Abstract
HIV remains a significant global burden and without an effective vaccine, it is crucial to develop microbicides to halt the initial transmission of the virus. Several microbicides have been researched with various levels of success. Amongst these, the broadly neutralising antibodies and peptide lectins are promising in that they can immediately act on the virus and have proven efficacious in in vitro and in vivo protection studies. For the purpose of development and access by the relevant population groups, it is crucial that these microbicides be produced at low cost. For the promising protein and peptide candidate molecules, it appears that current production systems are overburdened and expensive to establish and maintain. With recent developments in vector systems for protein expression coupled with downstream protein purification technologies, plants are rapidly gaining credibility as alternative production systems. Here we evaluate the advances made in host and vector system development for plant expression as well as the progress made in expressing HIV neutralising antibodies and peptide lectins using plant-based platforms.
Collapse
|
180
|
Stable plastid transformation for high-level recombinant protein expression: promises and challenges. J Biomed Biotechnol 2012; 2012:158232. [PMID: 23093835 PMCID: PMC3474547 DOI: 10.1155/2012/158232] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 08/10/2012] [Accepted: 08/24/2012] [Indexed: 12/22/2022] Open
Abstract
Plants are a promising expression system for the production of recombinant proteins. However, low protein productivity remains a major obstacle that limits extensive commercialization of whole plant and plant cell bioproduction platform. Plastid genetic engineering offers several advantages, including high levels of transgenic expression, transgenic containment via maternal inheritance, and multigene expression in a single transformation event. In recent years, the development of optimized expression strategies has given a huge boost to the exploitation of plastids in molecular farming. The driving forces behind the high expression level of plastid bioreactors include codon optimization, promoters and UTRs, genotypic modifications, endogenous enhancer and regulatory elements, posttranslational modification, and proteolysis. Exciting progress of the high expression level has been made with the plastid-based production of two particularly important classes of pharmaceuticals: vaccine antigens, therapeutic proteins, and antibiotics and enzymes. Approaches to overcome and solve the associated challenges of this culture system that include low transformation frequencies, the formation of inclusion bodies, and purification of recombinant proteins will also be discussed.
Collapse
|
181
|
Nadal A, Montero M, Company N, Badosa E, Messeguer J, Montesinos L, Montesinos E, Pla M. Constitutive expression of transgenes encoding derivatives of the synthetic antimicrobial peptide BP100: impact on rice host plant fitness. BMC PLANT BIOLOGY 2012; 12:159. [PMID: 22947243 PMCID: PMC3514116 DOI: 10.1186/1471-2229-12-159] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 08/07/2012] [Indexed: 05/02/2023]
Abstract
BACKGROUND The Biopeptide BP100 is a synthetic and strongly cationic α-helical undecapeptide with high, specific antibacterial activity against economically important plant-pathogenic bacteria, and very low toxicity. It was selected from a library of synthetic peptides, along with other peptides with activities against relevant bacterial and fungal species. Expression of the BP100 series of peptides in plants is of major interest to establish disease-resistant plants and facilitate molecular farming. Specific challenges were the small length, peptide degradation by plant proteases and toxicity to the host plant. Here we approached the expression of the BP100 peptide series in plants using BP100 as a proof-of-concept. RESULTS Our design considered up to three tandemly arranged BP100 units and peptide accumulation in the endoplasmic reticulum (ER), analyzing five BP100 derivatives. The ER retention sequence did not reduce the antimicrobial activity of chemically synthesized BP100 derivatives, making this strategy possible. Transformation with sequences encoding BP100 derivatives (bp100der) was over ten-fold less efficient than that of the hygromycin phosphotransferase (hptII) transgene. The BP100 direct tandems did not show higher antimicrobial activity than BP100, and genetically modified (GM) plants constitutively expressing them were not viable. In contrast, inverted repeats of BP100, whether or not elongated with a portion of a natural antimicrobial peptide (AMP), had higher antimicrobial activity, and fertile GM rice lines constitutively expressing bp100der were produced. These GM lines had increased resistance to the pathogens Dickeya chrysanthemi and Fusarium verticillioides, and tolerance to oxidative stress, with agronomic performance comparable to untransformed lines. CONCLUSIONS Constitutive expression of transgenes encoding short cationic α-helical synthetic peptides can have a strong negative impact on rice fitness. However, GM plants expressing, for example, BP100 based on inverted repeats, have adequate agronomic performance and resistant phenotypes as a result of a complex equilibrium between bp100der toxicity to plant cells, antimicrobial activity and transgene-derived plant stress response. It is likely that these results can be extended to other peptides with similar characteristics.
Collapse
Affiliation(s)
- Anna Nadal
- Institute of Food and Agricultural Technology (INTEA), University of Girona, Campus Montilivi, EPS-1 17071, Girona, Spain
| | - Maria Montero
- Institute of Food and Agricultural Technology (INTEA), University of Girona, Campus Montilivi, EPS-1 17071, Girona, Spain
| | - Nuri Company
- Institute of Food and Agricultural Technology (INTEA), University of Girona, Campus Montilivi, EPS-1 17071, Girona, Spain
| | - Esther Badosa
- Institute of Food and Agricultural Technology (INTEA), University of Girona, Campus Montilivi, EPS-1 17071, Girona, Spain
| | - Joaquima Messeguer
- Plant Genetics Department, Centre de Recerca en Agrigenòmica CSIC-IRTA-UAB-UB, Carretera de Cabrils, Km 2, 08348, Barcelona, Spain
| | - Laura Montesinos
- Institute of Food and Agricultural Technology (INTEA), University of Girona, Campus Montilivi, EPS-1 17071, Girona, Spain
| | - Emilio Montesinos
- Institute of Food and Agricultural Technology (INTEA), University of Girona, Campus Montilivi, EPS-1 17071, Girona, Spain
| | - Maria Pla
- Institute of Food and Agricultural Technology (INTEA), University of Girona, Campus Montilivi, EPS-1 17071, Girona, Spain
| |
Collapse
|
182
|
Green factory: Plants as bioproduction platforms for recombinant proteins. Biotechnol Adv 2012; 30:1171-84. [DOI: 10.1016/j.biotechadv.2011.08.020] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 08/24/2011] [Accepted: 08/30/2011] [Indexed: 12/15/2022]
|
183
|
Lee DS, Lee KH, Jung S, Jo EJ, Han KH, Bae HJ. Synergistic effects of 2A-mediated polyproteins on the production of lignocellulose degradation enzymes in tobacco plants. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:4797-810. [PMID: 22798663 PMCID: PMC3427999 DOI: 10.1093/jxb/ers159] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Cost-effective bioethanol production requires a supply of various low-cost enzymes that can hydrolyse lignocellulosic materials consisting of multiple polymers. Because plant-based enzyme expression systems offer low-cost and large-scale production, this study simultaneously expressed β-glucosidase (BglB), xylanase (XylII), exoglucanase (E3), and endoglucanase (Cel5A) in tobacco plants, which were individually fused with chloroplast-targeting transit peptides and linked via the 2A self-cleaving oligopeptideex from foot-and-mouth disease virus (FMDV) as follows: [RsBglB-2A-RaCel5A], [RsXylII-2A-RaCel5A], and [RsE3-2A-RaCel5A]. The enzymes were targeted to chloroplasts in tobacco cells and their activities were confirmed. Similarly to the results of a transient assay using Arabidopsis thaliana protoplasts, when XylII was placed upstream of the 2A sequence, the [RsXylII-2A-RaCel5A] transgenic tobacco plant had a more positive influence on expression of the protein placed downstream. The [RsBglB-2A-RaCel5A] and [RsE3-2A-RaCel5A] transgenic lines displayed higher activities towards carboxylmethylcellulose (CMC) compared to those in the [RsXylII-2A-RaCel5A] transgenic line. This higher activity was attributable to the synergistic effects of the different cellulases used. The [RsBglB-2A-RaCel5A] lines exhibited greater efficiency (35-74% increase) of CMC hydrolysis when the exoglucanase CBHII was added. Among the various exoglucanases, E3 showed higher activity with the crude extract of the [RsBglB-2A-RaCel5A] transgenic line. Transgenic expression of 2A-mediated multiple enzymes induced synergistic effects and led to more efficient hydrolysis of lignocellulosic materials for bioethanol production.
Collapse
Affiliation(s)
- Dae-Seok Lee
- Bio-energy Research Institute, Chonnam National UniversityGwangju 500–757, Republic of Korea
- Department of Forest Products and Technology (Bk21 Program), Chonnam National UniversityGwangju 500–757, Republic of Korea
| | - Kwang-Ho Lee
- Bio-energy Research Institute, Chonnam National UniversityGwangju 500–757, Republic of Korea
| | - Sera Jung
- Department of Forest Products and Technology (Bk21 Program), Chonnam National UniversityGwangju 500–757, Republic of Korea
| | - Eun-Jin Jo
- Bio-energy Research Institute, Chonnam National UniversityGwangju 500–757, Republic of Korea
| | - Kyung-Hwan Han
- Department of Plant Molecular Biology, Michigan State UniversityUSA
| | - Hyeun-Jong Bae
- Bio-energy Research Institute, Chonnam National UniversityGwangju 500–757, Republic of Korea
- Department of Forest Products and Technology (Bk21 Program), Chonnam National UniversityGwangju 500–757, Republic of Korea
- Department of Bioenergy Science and Technology, Chonnam National UniversityGwangju
| |
Collapse
|
184
|
Nelson G, Marconi P, Periolo O, La Torre J, Alvarez MA. Immunocompetent truncated E2 glycoprotein of bovine viral diarrhea virus (BVDV) expressed in Nicotiana tabacum plants: a candidate antigen for new generation of veterinary vaccines. Vaccine 2012; 30:4499-504. [PMID: 22554468 DOI: 10.1016/j.vaccine.2012.04.068] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 04/16/2012] [Accepted: 04/21/2012] [Indexed: 10/28/2022]
Abstract
The bovine viral diarrhea virus (BVDV) is the etiological agent responsible for a wide spectrum of clinical diseases in cattle. The glycoprotein E2 is the major envelope protein of this virus and the strongest inductor of the immune response. There are several available commercial vaccines against bovine viral diarrhea (BVD), which show irregular performances. Here, we report the use of tobacco plants as an alternative productive platform for the expression of the truncated version of E2 glycoprotein (tE2) from the BVDV. The tE2 sequence, lacking the transmembrane domain, was cloned into the pK7WG2 Agrobacterium binary vector. The construct also carried the 2S2 Arabidopsis thaliana signal for directing the protein into the plant secretory pathway, the Kozak sequence, an hexa-histidine tag to facilitate protein purification and the KDEL endoplasmic reticulum retention signal. The resulting plasmid (pK-2S2-tE2-His-KDEL) was introduced into Agrobacterium tumefaciens strain EHA101 by electroporation. The transformed A. tumefaciens was then used to express tE2 in leaves of Nicotiana tabacum plants. Western blot and ELISA using specific monoclonal antibodies confirmed the presence of the recombinant tE2 protein in plant extracts. An estimated amount of 20 μg of tE2 per gram of fresh leaves was regularly obtained with this plant system. Injection of guinea pigs with plant extracts containing 20 μg of rtE2 induced the production of BVDV specific antibodies at equal or higher levels than those induced by whole virus vaccines. This is the first report of the production of an immunocompetent tE2 in N. tabacum plants, having the advantage to be free of any eventual animal contaminant.
Collapse
Affiliation(s)
- Guillermo Nelson
- Instituto de Ciencia y Tecnología Dr. César Milstein, CONICET - Fundación Pablo Cassará, Saladillo 2468, Ciudad de Buenos Aires, C11440FFX, Argentina
| | | | | | | | | |
Collapse
|
185
|
Sathish K, Sriraman R, Subramanian BM, Rao NH, Kasa B, Donikeni J, Narasu ML, Srinivasan VA. Plant expressed coccidial antigens as potential vaccine candidates in protecting chicken against coccidiosis. Vaccine 2012; 30:4460-4. [PMID: 22554463 DOI: 10.1016/j.vaccine.2012.04.076] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Revised: 04/14/2012] [Accepted: 04/21/2012] [Indexed: 10/28/2022]
Abstract
Coccidiosis is a disease caused by intracellular parasites belonging to the genus Eimeria. In the present study, we transiently expressed two coccidial antigens EtMIC1 and EtMIC2 as poly histidine-tagged fusion proteins in tobacco. We have evaluated the protective efficacy of plant expressed EtMIC1 as monovalent and as well as bi-valent formulation where EtMIC1 and EtMIC2 were used in combination. The protective efficacy of these formulations was evaluated using homologous challenge in chickens. We observed better serum antibody response, weight gain and reduced oocyst shedding in birds immunized with EtMIC1 and EtMIC2 as bivalent formulation compared to monovalent formulation. However, IFN-γ response was not significant in birds immunized with EtMIC1 compared to the birds immunized with EtMIC2. Our results indicate the potential use of these antigens as vaccine candidates.
Collapse
Affiliation(s)
- Kota Sathish
- Research & Development Centre, Indian Immunologicals Limited, Rakshapuram, Gachibowli, Hyderabad 500032, Andhra Pradesh, India
| | | | | | | | | | | | | | | |
Collapse
|
186
|
Thagun C, Srisala J, Sritunyalucksana K, Narangajavana J, Sojikul P. Arabidopsis-derived shrimp viral-binding protein, PmRab7 can protect white spot syndrome virus infection in shrimp. J Biotechnol 2012; 161:60-7. [PMID: 22659272 DOI: 10.1016/j.jbiotec.2012.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 05/18/2012] [Accepted: 05/21/2012] [Indexed: 10/28/2022]
Abstract
White spot syndrome virus is currently the leading cause of production losses in the shrimp industry. Penaeus monodon Rab7 protein has been recognized as a viral-binding protein with an efficient protective effect against white spot syndrome infection. Plant-derived recombinant PmRab7 might serve as an alternative source for in-feed vaccination, considering the remarkable abilities of plant expression systems. PmRab7 was introduced into the Arabidopsis thaliana T87 genome. Arabidopsis-derived recombinant PmRab7 showed high binding activity against white spot syndrome virus and a viral envelope, VP28. The growth profile of Arabidopsis suspension culture expressing PmRab7 (ECR21# 35) resembled that of its counterpart. PmRab7 expression in ECR21# 35 reached its maximum level at 5 mg g(-1) dry weight in 12 days, which was higher than those previously reported in Escherichia coli and in Pichia. Co-injection of white spot syndrome virus and Arabidopsis crude extract containing PmRab7 in Litopenaeus vannamei showed an 87% increase in shrimp survival rate at 5 day after injection. In this study, we propose an alternative PmRab7 source with higher production yield, and cheaper culture media costs, that might serve the industry's need for an in-feed supplement against white spot syndrome infection.
Collapse
Affiliation(s)
- Chonprakun Thagun
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | | | | | | | | |
Collapse
|
187
|
Segretin ME, Lentz EM, Wirth SA, Morgenfeld MM, Bravo-Almonacid FF. Transformation of Solanum tuberosum plastids allows high expression levels of β-glucuronidase both in leaves and microtubers developed in vitro. PLANTA 2012; 235:807-18. [PMID: 22071556 DOI: 10.1007/s00425-011-1541-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 10/21/2011] [Indexed: 05/03/2023]
Abstract
Plastid genome transformation offers an attractive methodology for transgene expression in plants, but for potato, only expression of gfp transgene (besides the selective gene aadA) has been published. We report here successful expression of β-glucuronidase in transplastomic Solanum tuberosum (var. Desiree) plants, with accumulation levels for the recombinant protein of up to 41% of total soluble protein in mature leaves. To our knowledge, this is the highest expression level reported for a heterologous protein in S. tuberosum. Accumulation of the recombinant protein in soil-grown minitubers was very low, as described in previous reports. Interestingly, microtubers developed in vitro showed higher accumulation of β-glucuronidase. As light exposure during their development could be the trigger for this high accumulation, we analyzed the effect of light on β-glucuronidase accumulation in transplastomic tubers. Exposure to light for 8 days increased β-glucuronidase accumulation in soil-grown tubers, acting as a light-inducible expression system for recombinant protein accumulation in tuber plastids. In this paper we show that plastid transformation in potato allows the highest recombinant protein accumulation in foliar tissue described so far for this food crop. We also demonstrate that in tubers high accumulation is possible and depends on light exposure. Because tubers have many advantages as protein storage organs, these results could lead to new recombinant protein production schemes based on potato.
Collapse
Affiliation(s)
- María Eugenia Segretin
- Laboratorio de Biotecnología Vegetal, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular-INGEBI-CONICET, Vuelta de Obligado 2490, 2do. Piso, C1428ADN, Ciudad Autónoma de Buenos Aires, Argentina.
| | | | | | | | | |
Collapse
|
188
|
He X, Galpin JD, Tropak MB, Mahuran D, Haselhorst T, von Itzstein M, Kolarich D, Packer NH, Miao Y, Jiang L, Grabowski GA, Clarke LA, Kermode AR. Production of active human glucocerebrosidase in seeds of Arabidopsis thaliana complex-glycan-deficient (cgl) plants. Glycobiology 2012; 22:492-503. [PMID: 22061999 PMCID: PMC3425599 DOI: 10.1093/glycob/cwr157] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
There is a clear need for efficient methods to produce protein therapeutics requiring mannose-termination for therapeutic efficacy. Here we report on a unique system for production of active human lysosomal acid β-glucosidase (glucocerebrosidase, GCase, EC 3.2.1.45) using seeds of the Arabidopsis thaliana complex-glycan-deficient (cgl) mutant, which are deficient in the activity of N-acetylglucosaminyl transferase I (EC 2.4.1.101). Gaucher disease is a prevalent lysosomal storage disease in which affected individuals inherit mutations in the gene (GBA1) encoding GCase. A gene cassette optimized for seed expression was used to generate the human enzyme in seeds of the cgl (C5) mutant, and the recombinant GCase was mainly accumulated in the apoplast. Importantly, the enzymatic properties including kinetic parameters, half-maximal inhibitory concentration of isofagomine and thermal stability of the cgl-derived GCase were comparable with those of imiglucerase, a commercially available recombinant human GCase used for enzyme replacement therapy in Gaucher patients. N-glycan structural analyses of recombinant cgl-GCase showed that the majority of the N-glycans (97%) were mannose terminated. Additional purification was required to remove ∼15% of the plant-derived recombinant GCase that possessed potentially immunogenic (xylose- and/or fucose-containing) N-glycans. Uptake of cgl-derived GCase by mouse macrophages was similar to that of imiglucerase. The cgl seed system requires no addition of foreign (non-native) amino acids to the mature recombinant GCase protein, and the dry transgenic seeds represent a stable repository of the therapeutic protein. Other strategies that may completely prevent plant-like complex N-glycans are discussed, including the use of a null cgl mutant.
Collapse
Affiliation(s)
- Xu He
- Department of Biological Sciences, Simon Fraser University, 8888 University Dr., Burnaby, British Columbia, V5A 1S6, Canada
| | - Jason D Galpin
- Department of Biological Sciences, Simon Fraser University, 8888 University Dr., Burnaby, British Columbia, V5A 1S6, Canada
| | - Michael B Tropak
- Research Institute, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, M5G 1X8, Canada
| | - Don Mahuran
- Research Institute, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, M5G 1X8, Canada
- Department of Laboratory Medicine and Pathology, University of Toronto, Banting Institute, 100 College Street, Toronto, Ontario, M5G 1L5, Canada
| | - Thomas Haselhorst
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland 4222, Australia
| | - Mark von Itzstein
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland 4222, Australia
| | - Daniel Kolarich
- Department of Chemistry and Biomolecular Scienes, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Nicolle H Packer
- Department of Chemistry and Biomolecular Scienes, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Yansong Miao
- Department of Biology and Molecular Biotechnology Program, Centre for Cell and Developmental Biology, the Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Liwen Jiang
- Department of Biology and Molecular Biotechnology Program, Centre for Cell and Developmental Biology, the Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Gregory A Grabowski
- Cincinnati Children’s Hospital Medical Center, Division of Human Genetics, Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Lorne A Clarke
- Department of Medical Genetics, University of British Columbia, Children’s and Family Research Institute, 950 W 28th Ave., Vancouver, BC, V6T 1Z4, Canada
| | - Allison R Kermode
- Department of Biological Sciences, Simon Fraser University, 8888 University Dr., Burnaby, British Columbia, V5A 1S6, Canada
| |
Collapse
|
189
|
Wilson SA, Roberts SC. Recent advances towards development and commercialization of plant cell culture processes for the synthesis of biomolecules. PLANT BIOTECHNOLOGY JOURNAL 2012; 10:249-68. [PMID: 22059985 PMCID: PMC3288596 DOI: 10.1111/j.1467-7652.2011.00664.x] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Plant cell culture systems were initially explored for use in commercial synthesis of several high-value secondary metabolites, allowing for sustainable production that was not limited by the low yields associated with natural harvest or the high cost associated with complex chemical synthesis. Although there have been some commercial successes, most notably paclitaxel production from Taxus sp., process limitations exist with regards to low product yields and inherent production variability. A variety of strategies are being developed to overcome these limitations including elicitation, in situ product removal and metabolic engineering with single genes and transcription factors. Recently, the plant cell culture production platform has been extended to pharmaceutically active heterologous proteins. Plant systems are beneficial because they are able to produce complex proteins that are properly glycosylated, folded and assembled without the risk of contamination by toxins that are associated with mammalian or microbial production systems. Additionally, plant cell culture isolates transgenic material from the environment, allows for more controllable conditions over field-grown crops and promotes secretion of proteins to the medium, reducing downstream purification costs. Despite these benefits, the increase in cost of heterologous protein synthesis in plant cell culture as opposed to field-grown crops is significant and therefore processes must be optimized with regard to maximizing secretion and enhancing protein stability in the cell culture media. This review discusses recent advancements in plant cell culture processing technology, focusing on progress towards overcoming the problems associated with commercialization of these production systems and highlighting recent commercial successes.
Collapse
Affiliation(s)
- Sarah A Wilson
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA, USA
| | | |
Collapse
|
190
|
Martínez CA, Giulietti AM, Talou JR. Research advances in plant-made flavivirus antigens. Biotechnol Adv 2012; 30:1493-505. [PMID: 22480936 DOI: 10.1016/j.biotechadv.2012.03.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 03/14/2012] [Accepted: 03/19/2012] [Indexed: 11/30/2022]
Abstract
Outbreaks of flaviviruses such as dengue (DV), yellow fever (YFV), Japanese encephalitis (JEV), tick-borne encephalitis (TBEV) and West Nile (WNV) affect numerous countries around the world. The fast spread of these viruses is the result of increases in the human population, rapid urbanisation and globalisation. While vector control is an important preventive measure against vector-borne diseases, it has failed to prevent the spread of these diseases, particularly in developing countries where the implementation of control measures is intermittent. As antiviral drugs against flaviviruses are not yet available, vaccination remains the most important tool for prevention. Although human vaccines for YFV, TBEV and JEV are available, on-going vaccination efforts are insufficient to prevent infection. No vaccines against DENV and WNV are available. Research advances have provided important tools for flavivirus vaccine development, such as the use of plants as a recombinant antigen production platform. This review summarises the research efforts in this area and highlights why a plant system is considered a necessary alternative production platform for high-tech subunit vaccines.
Collapse
Affiliation(s)
- C A Martínez
- Cátedra de Microbiología Industrial y Biotecnología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires. Junín 956, CP 1113, C.A.B.A, Argentina
| | | | | |
Collapse
|
191
|
Joseph M, Ludevid MD, Torrent M, Rofidal V, Tauzin M, Rossignol M, Peltier JB. Proteomic characterisation of endoplasmic reticulum-derived protein bodies in tobacco leaves. BMC PLANT BIOLOGY 2012; 12:36. [PMID: 22424442 PMCID: PMC3342223 DOI: 10.1186/1471-2229-12-36] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 03/16/2012] [Indexed: 05/18/2023]
Abstract
BACKGROUND The N-terminal proline-rich domain (Zera) of the maize storage protein γ-zein, is able to induce the formation of endoplasmic reticulum (ER)-derived protein bodies (PBs) when fused to proteins of interest. This encapsulation enables a recombinant fused protein to escape from degradation and facilitates its recovery from plant biomass by gradient purification. The aim of the present work was to evaluate if induced PBs encapsulate additional proteins jointly with the recombinant protein. The exhaustive analysis of protein composition of PBs is expected to facilitate a better understanding of PB formation and the optimization of recombinant protein purification approaches from these organelles. RESULTS We analysed the proteome of PBs induced in Nicotiana benthamiana leaves by transient transformation with Zera fused to a fluorescent marker protein (DsRed). Intact PBs with their surrounding ER-membrane were isolated on iodixanol based density gradients and their integrity verified by confocal and electron microscopy. SDS-PAGE analysis of isolated PBs showed that Zera-DsRed accounted for around 85% of PB proteins in term of abundance. Differential extraction of PBs was performed for in-depth analysis of their proteome and structure. Besides Zera-DsRed, 195 additional proteins were identified including a broad range of proteins resident or trafficking through the ER and recruited within the Zera-DsRed polymer. CONCLUSIONS This study indicates that Zera-protein fusion is still the major protein component of the new formed organelle in tobacco leaves. The analysis also reveals the presence of an unexpected diversity of proteins in PBs derived from both the insoluble Zera-DsRed polymer formation, including ER-resident and secretory proteins, and a secretory stress response induced most likely by the recombinant protein overloading. Knowledge of PBs protein composition is likely to be useful to optimize downstream purification of recombinant proteins in molecular farming applications.
Collapse
Affiliation(s)
- Minu Joseph
- Centre de Recerca en Agrigenòmica (CRAG)_CSIC-IRTA-UAB, Parc de Recerca UAB, Bellaterra (Cerdanyola del Vallés), 08193 Barcelona, Spain
| | - M Dolors Ludevid
- Centre de Recerca en Agrigenòmica (CRAG)_CSIC-IRTA-UAB, Parc de Recerca UAB, Bellaterra (Cerdanyola del Vallés), 08193 Barcelona, Spain
| | - Margarita Torrent
- Centre de Recerca en Agrigenòmica (CRAG)_CSIC-IRTA-UAB, Parc de Recerca UAB, Bellaterra (Cerdanyola del Vallés), 08193 Barcelona, Spain
| | - Valérie Rofidal
- INRA, LPF UR1199, 2 Place Viala, 34060 Montpellier cedex, France
| | - Marc Tauzin
- INRA, LPF UR1199, 2 Place Viala, 34060 Montpellier cedex, France
| | - Michel Rossignol
- INRA, LPF UR1199, 2 Place Viala, 34060 Montpellier cedex, France
| | | |
Collapse
|
192
|
Khan I, Twyman RM, Arcalis E, Stoger E. Using storage organelles for the accumulation and encapsulation of recombinant proteins. Biotechnol J 2012; 7:1099-108. [DOI: 10.1002/biot.201100089] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2011] [Revised: 01/18/2012] [Accepted: 02/06/2012] [Indexed: 11/06/2022]
|
193
|
Hiwasa-Tanase K, Hirai T, Kato K, Duhita N, Ezura H. From miracle fruit to transgenic tomato: mass production of the taste-modifying protein miraculin in transgenic plants. PLANT CELL REPORTS 2012; 31:513-25. [PMID: 22160133 DOI: 10.1007/s00299-011-1197-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 11/22/2011] [Accepted: 11/22/2011] [Indexed: 05/05/2023]
Abstract
The utility of plants as biofactories has progressed in recent years. Some recombinant plant-derived pharmaceutical products have already reached the marketplace. However, with the exception of drugs and vaccines, a strong effort has not yet been made to bring recombinant products to market, as cost-effectiveness is critically important for commercialization. Sweet-tasting proteins and taste-modifying proteins have a great deal of potential in industry as substitutes for sugars and as artificial sweeteners. The taste-modifying protein, miraculin, functions to change the perception of a sour taste to a sweet one. This taste-modifying function can potentially be used not only as a low-calorie sweetener but also as a new seasoning that could be the basis of a new dietary lifestyle. However, miraculin is far from inexpensive, and its potential as a marketable product has not yet been fully developed. For the last several years, biotechnological production of this taste-modifying protein has progressed extensively. In this review, the characteristics of miraculin and recent advances in its production using transgenic plants are summarized, focusing on such topics as the suitability of plant species as expression hosts, the cultivation method for transgenic plants, the method of purifying miraculin and future advances required to achieve industrial use.
Collapse
Affiliation(s)
- Kyoko Hiwasa-Tanase
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
| | | | | | | | | |
Collapse
|
194
|
Wilken LR, Nikolov ZL. Recovery and purification of plant-made recombinant proteins. Biotechnol Adv 2012; 30:419-33. [DOI: 10.1016/j.biotechadv.2011.07.020] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 03/22/2011] [Accepted: 07/25/2011] [Indexed: 12/24/2022]
|
195
|
Egelkrout E, Rajan V, Howard JA. Overproduction of recombinant proteins in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 184:83-101. [PMID: 22284713 DOI: 10.1016/j.plantsci.2011.12.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 12/06/2011] [Accepted: 12/09/2011] [Indexed: 05/21/2023]
Abstract
Recombinant protein production in microbial hosts and animal cell cultures has revolutionized the pharmaceutical and industrial enzyme industries. Plants as alternative hosts for the production of recombinant proteins are being actively pursued, taking advantage of their unique characteristics. The key to cost-efficient production in any system is the level of protein accumulation, which is inversely proportional to the cost. Levels of up to 5 g/kg biomass have been obtained in plants, making this production system competitive with microbial hosts. Increasing protein accumulation at the cellular level by varying host, germplasm, location of protein accumulation, and transformation procedure is reviewed. At the molecular level increased expression by improving transcription, translation and accumulation of the protein is critically evaluated. The greatest increases in protein accumulation will occur when various optimized parameters are more fully integrated with each other. Because of the complex nature of plants, this will take more time and effort to accomplish than has been the case for the simpler unicellular systems. However the potential for plants to become one of the major avenues for protein production appears very promising.
Collapse
Affiliation(s)
- Erin Egelkrout
- Applied Biotechnology Institute, Cal Poly Technology Park, Building 83, San Luis Obispo, CA 93407, USA
| | | | | |
Collapse
|
196
|
Cerovska N, Hoffmeisterova H, Moravec T, Plchova H, Folwarczna J, Synkova H, Ryslava H, Ludvikova V, Smahel M. Transient expression of Human papillomavirus type 16 L2 epitope fused to N- and C-terminus of coat protein of Potato virus X in plants. J Biosci 2012; 37:125-33. [PMID: 22357210 DOI: 10.1007/s12038-011-9177-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 12/13/2011] [Indexed: 01/29/2023]
Abstract
Transient expression of foreign genes based on plant viral vectors is a suitable system for the production of relevant immunogens that can be used for the development of a new generation of vaccines against a variety of infectious diseases. In the present study the epitope derived from HPV-16 L2 minor capsid protein (amino acids 108-120) was expressed from Potato virus X (PVX)-based vector pGR106 as N- or C-terminal fusion with the PVX coat protein (PVX CP) in transgenic Nicotiana benthamiana plants. The fusion protein L2 108-120-PVX CP was successfully expressed in plants at a level of 170 mg/kg of fresh leaf tissue. The C-terminal fusion protein PVX CP- L2 108-120 was expressed using mutated vector sequence to avoid homologous recombination at a level of 8 mg/kg of fresh leaf tissue. Immunogenicity of L2 108-120-PVX CP virus-like particles was tested after immunization of mice by subcutaneous injection or tattoo administration. In animal sera the antibodies against the PVX CP and the L2 108-120 epitope were found after both methods of vaccine delivery.
Collapse
Affiliation(s)
- Noemi Cerovska
- Institute of Experimental Botany, v. v. i., Academy of Sciences of Czech Republic, Na Karlovce 1a, 16000 Prague 6, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
197
|
Castillo E, Pérez MD, Franco I, Calvo M, Sánchez L. Kinetic and thermodynamic parameters for heat denaturation of human recombinant lactoferrin from rice. Biochem Cell Biol 2012; 90:389-96. [PMID: 22332867 DOI: 10.1139/o11-073] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Heat denaturation of recombinant human lactoferrin (rhLf) from rice with 3 different iron-saturation degrees, holo rhLf (iron-saturated), AsIs rhLf (60% iron saturation), and apo rhLf (iron-depleted), was studied. The 3 forms of rhLf were subjected to heat treatment, and the kinetic and thermodynamic parameters of the denaturation process were determined. Thermal denaturation of rhLf was assessed by measuring the loss of reactivity against specific antibodies. D(t) values (time to reduce 90% of immunoreactivity) decreased with increasing temperature of treatment for apo and holo rhLf, those values being higher for the iron-saturated form, which indicates that iron confers thermal stability to rhLf. However, AsIs rhLf showed a different behaviour with an increase in resistance to heat between 79 °C and 84 °C, so that the kinetic parameters could not be calculated. The heat denaturation process for apo and holo rhLf was best described assuming a reaction order of 1.5. The activation energy of the denaturation process was 648.20 kJ/mol for holo rhLf and 406.94 kJ/mol for apo rhLf, confirming that iron-depleted rhLf is more sensitive to heat treatment than iron-saturated rhLf.
Collapse
Affiliation(s)
- Eduardo Castillo
- Tecnología de los Alimentos, Facultad de Veterinaria, Universidad de Zaragoza, Miguel Servet, 177, 50013, Zaragoza, Spain
| | | | | | | | | |
Collapse
|
198
|
Valdés R, Tamayo A, González M, Padilla S, Geada D, Ferro W, Milá L, Gómez L, Alemán R, Leyva A, García C, Mendoza O, Alvarez T, Dorta L, Villega Y, Cecilia D, Aragón H, González T, La O M, López J. Production of a monoclonal antibody by ascites, hollow fiber system, and transgenic plants for vaccine production using CB.Hep-1 mAb as a study case. BIOTECHNOL BIOPROC E 2012. [DOI: 10.1007/s12257-011-0196-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
199
|
Singer SD, Liu Z, Cox KD. Minimizing the unpredictability of transgene expression in plants: the role of genetic insulators. PLANT CELL REPORTS 2012; 31:13-25. [PMID: 21987122 DOI: 10.1007/s00299-011-1167-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2011] [Accepted: 09/27/2011] [Indexed: 05/20/2023]
Abstract
The genetic transformation of plants has become a necessary tool for fundamental plant biology research, as well as the generation of engineered plants exhibiting improved agronomic and industrial traits. However, this technology is significantly hindered by the fact that transgene expression is often highly variable amongst independent transgenic lines. Two of the major contributing factors to this type of inconsistency are inappropriate enhancer-promoter interactions and chromosomal position effects, which frequently result in mis-expression or silencing of the transgene, respectively. Since the precise, often tissue-specific, expression of the transgene(s) of interest is often a necessity for the successful generation of transgenic plants, these undesirable side effects have the potential to pose a major challenge for the genetic engineering of these organisms. In this review, we discuss strategies for improving foreign gene expression in plants via the inclusion of enhancer-blocking insulators, which function to impede enhancer-promoter communication, and barrier insulators, which block the spread of heterochromatin, in transgenic constructs. While a complete understanding of these elements remains elusive, recent studies regarding their use in genetically engineered plants indicate that they hold great promise for the improvement of transgene expression, and thus the future of plant biotechnology.
Collapse
Affiliation(s)
- Stacy D Singer
- Department of Plant Pathology and Plant-Microbe Biology, New York State Agricultural Experiment Station, Cornell University, Geneva, NY 14456, USA
| | | | | |
Collapse
|
200
|
Li W, Li L, Sun X, Tang K. An oleosin-fusion protein driven by the CaMV35S promoter is accumulated in Arabidopsis (Brassicaceae) seeds and correctly targeted to oil bodies. GENETICS AND MOLECULAR RESEARCH 2012; 11:2138-46. [DOI: 10.4238/2012.august.13.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|