151
|
Nozaki S, Endo Y, Nakahara H, Yoshizawa K, Ohara T, Yamamoto E. Targeting urokinase-type plasminogen activator and its receptor for cancer therapy. Anticancer Drugs 2006; 17:1109-17. [PMID: 17075310 DOI: 10.1097/01.cad.0000231483.09439.3a] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Cancer invasion and metastasis are highly complex processes and a serine protease urokinase-type plasminogen activator/urokinase-type plasminogen activator receptor system has been postulated to play a central role in the mediation of cancer progression. Of note, malignant tumor urokinase-type plasminogen activator and urokinase-type plasminogen activator receptor levels have been found to vary considerably, and to be related to patient prognosis. In mouse models, the urokinase-type plasminogen activator/urokinase-type plasminogen activator receptor system has been studied extensively as a target for anticancer therapy using a variety of approaches. In this review, we discuss the advances in the various modalities that have been used to target the urokinase-type plasminogen activator/urokinase-type plasminogen activator receptor system, including protein-based and peptide-based drugs, antisense therapy, and RNA interference technology. In particular, preclinical mouse model studies that used human tumor xenografts are reviewed.
Collapse
Affiliation(s)
- Shinichi Nozaki
- Department of Oral and Maxillofacial Surgery, Kanazawa University Graduate School of Medical Science, Japan.
| | | | | | | | | | | |
Collapse
|
152
|
Franco P, Vocca I, Carriero MV, Alfano D, Cito L, Longanesi-Cattani I, Grieco P, Ossowski L, Stoppelli MP. Activation of urokinase receptor by a novel interaction between the connecting peptide region of urokinase and αvβ5 integrin. J Cell Sci 2006; 119:3424-34. [PMID: 16882693 DOI: 10.1242/jcs.03067] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The serine protease urokinase (uPA) binds to the urokinase receptor (uPAR) through its growth-factor domain (GFD, residues 1-49), affecting cell migration, adhesion and growth. Here, we show that uPA can promote cytoskeletal rearrangements and directional cell migration in a GFD-independent manner, through a new and specific interaction between an internal uPA domain coined `connecting peptide' (residues 132-158) and cell-surface integrin αvβ5. Remarkably, a peptide corresponding to this region (CPp, residues 135-158) retains the ability to bind to αvβ5, eliciting cytoskeletal rearrangements and directing cell migration at a concentration as low as 1-10 pM. These effects are lost in cells not expressing uPAR, indicating that the uPAR is required for CPp-dependent signaling. Furthermore, the CPp-αvβ5-integrin interaction enhances F-actin-enriched protrusions and cell migration induced by the well-established interaction between the uPAR-binding peptide (GFDp, residues 12-32) of uPA and uPAR. These results provide new insight into the function of uPA, which - through individual domains - can engage two different surface receptors (uPAR and αvβ5 integrin), thus initiating and potentiating intracellular signaling and migration.
Collapse
Affiliation(s)
- Paola Franco
- Institute of Genetics and Biophysics Adriano Buzzati-Traverso, National Research Council, Via P. Castellino 111, 80131 Naples, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
153
|
Mazzieri R, Furlan F, D'Alessio S, Zonari E, Talotta F, Verde P, Blasi F. A direct link between expression of urokinase plasminogen activator receptor, growth rate and oncogenic transformation in mouse embryonic fibroblasts. Oncogene 2006; 26:725-32. [PMID: 16878153 DOI: 10.1038/sj.onc.1209833] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In addition to its role in invasion and metastasis of several tumors, the multifunctional urokinase receptor uPAR (urokinase plasminogen activator receptor) is directly involved in the growth of several cancer cells in vitro and in vivo. We have compared growth rate and oncogenic transformation in wild-type (wt) or uPAR-/- mouse embryonic fibroblasts (MEFs). Surprisingly, uPAR-/- MEFs grew faster than wt MEFs. This agreed with elevated levels of cell cycle mediators like extracellular signal-regulated protein kinase, p38, AP1 and Cyclin D1. Infection with a uPAR retrovirus reverted the effect, decreasing the growth rate. When MEFs were transformed with H-Ras(V12) and E1A oncogenes, the efficiency of transformation in uPAR-/- MEFs was higher than in wt. UPAR-/- MEFs grew faster at low serum, produced more colonies in agar and produced tumors in vivo in nude mice with a lower latency period. The properties of the heterozygous uPAR+/- MEFs were always intermediate. We conclude therefore that in MEFs uPAR concentration controls cell proliferation and the transforming activity of some oncogenes.
Collapse
MESH Headings
- Animals
- Apoptosis
- Cell Proliferation
- Cell Transformation, Neoplastic
- Cells, Cultured
- Cyclin-Dependent Kinase Inhibitor p16/genetics
- Cyclin-Dependent Kinase Inhibitor p16/physiology
- Embryo, Mammalian/cytology
- Embryo, Mammalian/metabolism
- Fibroblasts/cytology
- Fibroblasts/metabolism
- Gene Expression Regulation
- Homozygote
- Mice
- Mice, Knockout
- Mice, Nude
- Mitogen-Activated Protein Kinases/metabolism
- Neoplasm Invasiveness
- Oncogene Protein p21(ras)/genetics
- Oncogene Protein p21(ras)/metabolism
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, Urokinase Plasminogen Activator
- Transcription Factor AP-1/metabolism
- Transduction, Genetic
- Transfection
- Vitronectin/metabolism
Collapse
Affiliation(s)
- R Mazzieri
- Department of Molecular Biology and Functional Genomics, Università Vita Salute San Raffaele, Milano, Italy
| | | | | | | | | | | | | |
Collapse
|
154
|
Wang XQ, Sun P, Go L, Koti V, Fliman M, Paller AS. Ganglioside GM3 promotes carcinoma cell proliferation via urokinase plasminogen activator-induced extracellular signal-regulated kinase-independent p70S6 kinase signaling. J Invest Dermatol 2006; 126:2687-96. [PMID: 16826166 DOI: 10.1038/sj.jid.5700469] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Overexpression of NeuAcalpha2-3Galbeta1-4Glcbeta1-Cer (GM3), a major ganglioside of cutaneous tumor cell membranes, inhibits ligand-dependent and ligand-independent activation of the epidermal growth factor (EGF) receptor in normal and neoplastic epithelial cells. This leads to the suppression of Ras/extracellular signal-regulated kinase (ERK) activation and, in the presence of EGF or fibronectin, inhibits cell proliferation. However, some tumor cells show increased levels of GM3, and vaccines that target GM3 can inhibit the growth of neoplastic cells in vivo, especially melanomas. We report that in the presence of urokinase plasminogen activator (uPA), overexpression of GM3 paradoxically increases the proliferation of carcinoma cells by augmenting ERK-independent p70S6 kinase activation. Functional blockade of uPA receptor (uPAR) or inhibition of p70S6 kinase, but not inhibition of Ras/ERK signaling, suppresses this GM3-induced stimulation of cell proliferation. The ERK-independent activation of p70S6 kinase involves phosphorylation at threonine-389, threonine-421/serine-424, and serine-411 sites with intermediate phosphatidylinositol 3 kinase and protein kinase C-zeta activation. These studies implicate gangliosides as enhancers of uPAR-related signaling and suggest that the response to GM3 depends on the local concentration of uPA. Therapeutic modalities that target or supplement gangliosides may require concomitant treatment that suppresses EGFR or uPAR signaling, respectively, to control neoplastic cell proliferation.
Collapse
Affiliation(s)
- Xiao-Qi Wang
- Department of Dermatology, Northwestern University's Feinberg School of Medicine, Chicago, Illinois, USA
| | | | | | | | | | | |
Collapse
|
155
|
Ismail M, Henklein P, Huang X, Braumann C, Rückert RI, Dubiel W. Identification of HIV-1 Tat peptides for future therapeutic angiogenesis. Eur J Haematol 2006; 77:157-65. [PMID: 16800839 DOI: 10.1111/j.1600-0609.2006.00682.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Therapeutic angiogenesis represents a novel approach to treat critical limb ischemia when revascularization is no more an option. The clinical use of the vascular endothelial growth factor is questioned, because of its side effects. This study was designed to identify and characterize human immunodeficiency virus type 1 (HIV-1) Tat-derived peptides based on their pro-angiogenic properties. A series of Tat-derived peptides were synthesized containing mutations in the basic domain. To minimize side effects Tat peptides were selected exerting no effects on the proteasome and on the viability of human umbilical vein endothelial cells (HUVEC). Tatpep5, 15, and 16 increased the endogenous levels of the pro-angiogenic transcription factors c-Jun and SP-1 as well as the production of the plasminogen activator inhibitor-1 (PAI-1) by HUVEC. A significant induction of endothelial cell invasion was observed upon treatment of HUVEC with Tat peptides. In addition, selected Tat peptides induced tube formation by HUVEC as visualized and quantified in a Matrigel matrix. Our data demonstrate that the selected Tat peptides fulfill essential criteria for pro-angiogenic substances. They represent the basis for the development of novel pro-angiogenic drugs for future therapeutic angiogenesis, which might be applied for treatment of unreconstructible critical limb ischemia.
Collapse
Affiliation(s)
- Mahmoud Ismail
- Department of Surgery, Universitatsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
156
|
Bujo H, Saito Y. Modulation of Smooth Muscle Cell Migration by Members of the Low-Density Lipoprotein Receptor Family. Arterioscler Thromb Vasc Biol 2006; 26:1246-52. [PMID: 16574889 DOI: 10.1161/01.atv.0000219692.78477.17] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Low-density lipoprotein receptor family members (LRs) play a key role in the catabolism of many membrane-associated proteins, such as complexes between proteinases and their receptors, in addition to being involved in lipoprotein metabolism as suspected by the hitherto well-established functions of low-density lipoprotein receptor, in a variety of tissues. Recent studies using receptor-deficient or -overexpressing animals and cells have suggested that certain LRs are important regulators of the migration (and proliferation) of vascular smooth muscle cells (SMCs). LR expression is markedly induced in intimal or medial SMCs during the formation of atherosclerotic lesions. Because LRs can modulate the activity of the urokinase-type plasminogen activator (uPA) receptor and possibly of the platelet-derived growth factor (PDGF) receptor, LRs may influence the migration of SMCs through functional modulation of these membrane receptors. Therefore, SMC migration may be regulated by time-restricted expression of LRs. In agreement with the concept of functional interaction between LRs and membrane signaling receptors, a negative regulator of uPA receptor protein catabolism, LR11, has been identified. Statins modulate the PDGF-induced migration of intimal SMCs via the LR11/uPA receptor cascade. Selective modification of the LRs/uPA receptor/PDGF receptor systems in SMCs may be important for suppression of atherosclerotic plaque formation as well as for preventing intimal thickening after angioplasty.
Collapse
Affiliation(s)
- Hideaki Bujo
- Department of Genome Research and Clinical Application, Chiba University Graduate School of Medicine, Japan.
| | | |
Collapse
|
157
|
Bagheri-Yarmand R, Mazumdar A, Sahin AA, Kumar R. LIM kinase 1 increases tumor metastasis of human breast cancer cells via regulation of the urokinase-type plasminogen activator system. Int J Cancer 2006; 118:2703-10. [PMID: 16381000 DOI: 10.1002/ijc.21650] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Mammalian LIM kinase 1 (LIMK1) phosphorylates and inactivates the actin-binding and -depolymerizing factor cofilin and induces actin cytoskeletal changes. LIMK1 is reported to play an important role in cell motility, but the mechanism of induction of cell motility and the role of LIMK1 in tumor growth, angiogenesis and invasion are poorly understood. Here we show that expression of LIMK1 in MDA-MB-435 human breast cancer cells enhanced cell proliferation and cell invasiveness and promoted in vitro angiogenesis. Since tumor metastasis requires degradation of the extracellular matrix by the serine protease urokinase type plasminogen activator (uPA), we examined the role of LIMK1 in the regulation of uPA/uPAR system. LIMK1 overexpression in breast cancer cells upregulated the uPA system, increased uPA promoter activity, induced uPA and uPAR mRNA and protein expression and induced uPA secretion. In contrast, cells transfected with the catalytically inactive LIMK mutant D460N-LIMK1 did not exhibit these phenotypic changes. Blocking antibodies against uPA and uPAR suppressed LIMK1-induced cell invasiveness. In addition, LIMK1 overexpression increased tumor growth in female athymic nude mice, promoted tumor angiogenesis and induced metastasis to livers and lungs, possibly by increasing uPA expression in the tumors. Finally, LIMK1 and uPAR were coordinately overexpressed in human breast tumors. These results suggested an important role for LIMK1 signaling in breast cancer tumor growth, angiogenesis and invasion and a regulatory connection between LIMK1 and the uPA system.
Collapse
Affiliation(s)
- Rozita Bagheri-Yarmand
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | | | | | | |
Collapse
|
158
|
Sharma MR, Koltowski L, Ownbey RT, Tuszynski GP, Sharma MC. Angiogenesis-associated protein annexin II in breast cancer: selective expression in invasive breast cancer and contribution to tumor invasion and progression. Exp Mol Pathol 2006; 81:146-56. [PMID: 16643892 DOI: 10.1016/j.yexmp.2006.03.003] [Citation(s) in RCA: 176] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2005] [Revised: 02/07/2006] [Accepted: 03/03/2006] [Indexed: 01/11/2023]
Abstract
Many advanced human tumors including breast cancer overproduce plasmin that is known to promote angiogenesis and metastasis. The mechanism of this effect is poorly understood. Here we report that annexin II, an endothelial co-receptor for tPA (tissue-type plasminogen activator) and plasminogen, was undetectable in normal and hyperplastic ductal epithelial cells and ductal complexes. By contrast, it was consistently expressed in invasive breast cancer and ductal carcinoma in situ (DCIS) indicating its involvement in breast cancer. Using the well established invasive/metastatic MDA-MB231 cell line and the noninvasive/nonmetastatic MCF-7 human breast cancer cell line, we investigated the mechanism by which annexin II regulates breast cancer progression and metastasis. Western and Northern blot analyses demonstrate selective expression of annexin II in MDA-MB231 cells but not in poorly invasive MCF-7 cells suggesting its participation in invasive breast cancer. Since annexin II is a receptor for plasminogen, we tested whether MDA-MB231 cells are capable of producing plasmin in vitro. MDA-MB231 cell membranes induced plasmin generation in a time-dependent manner while those from MCF-7 cells failed to convert plasminogen to plasmin. The generated plasmin is capable of degrading ECM consequently facilitating cell invasion and migration, biological functions required for angiogenesis and metastasis. Plasmin generation and its dependent invasion and migration can be blocked by a monoclonal antibody to annexin II or angiostatin, potent inhibitors of angiogenesis, breast cancer, and metastasis. Our findings indicate that annexin II-dependent localized plasmin generation by human breast cancer cells could contribute to angiogenesis and metastasis. These results suggest that annexin II may be an attractive target for new anti-angiogenic and anti-breast cancer therapies.
Collapse
|
159
|
Alfano D, Iaccarino I, Stoppelli MP. Urokinase signaling through its receptor protects against anoikis by increasing BCL-xL expression levels. J Biol Chem 2006; 281:17758-67. [PMID: 16632475 DOI: 10.1074/jbc.m601812200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The acquired capabilities of resistance to apoptotic cell death and tissue invasion are considered to be obligate steps in tumor progression. The binding of the serine protease urokinase (uPA) to its receptor (uPAR) plays a central role in the molecular events coordinating tumor cell adhesion, migration, and invasion. Here we investigate whether uPAR signaling may also prevent apoptosis following loss of anchorage (anoikis) or DNA damage. If nontransformed human retinal pigment epithelial cells are pre-exposed to uPA or to its noncatalytic amino-terminal region (residues 1-135), they exhibit a markedly reduced susceptibility to anoikis as well as to UV-induced apoptosis. This anti-apoptotic effect is retained by a uPA-derived synthetic peptide corresponding to the receptor binding domain and is inhibited by anti-uPAR polyclonal antibodies. Furthermore, the stable reduction of uPA or uPAR expression by RNA interference leads to an increased susceptibility to UV-, cisplatin-, and detachment-induced apoptosis. In particular, the level of uPAR expression positively correlates with cell resistance to anoikis. The protective ability of uPA is prevented by UO126, LY294002, by an MAPK targeting small interference RNA, and by a dominant negative Akt variant. Accordingly, incubation of retinal pigment epithelial cells with uPA elicits a time-dependent enhancement of MAPK and phosphatidylinositol 3-kinase activities as well as the transcriptional activation of Bcl-xL anti-apoptotic factor. Vice versa, the silencing of Bcl-xL expression prevents uPA protection from anoikis. In conclusion, the data show that ligand engagement of uPAR promotes cell survival by activating Bcl-xL transcription through the MEK/ERK- and phosphatidylinositol 3-kinase/Akt-dependent pathways.
Collapse
Affiliation(s)
- Daniela Alfano
- Institute of Genetics and Biophysics Adriano Buzzati-Traverso, Consiglio Nazionale delle Ricerche (CNR), Via P. Castellino 111, 80131 Naples, Italy
| | | | | |
Collapse
|
160
|
Chaurasia P, Aguirre-Ghiso JA, Liang OD, Gardsvoll H, Ploug M, Ossowski L. A region in urokinase plasminogen receptor domain III controlling a functional association with alpha5beta1 integrin and tumor growth. J Biol Chem 2006; 281:14852-63. [PMID: 16547007 DOI: 10.1074/jbc.m512311200] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Highly expressed urokinase plasminogen activator receptor (uPAR) can interact with alpha5beta1 integrin leading to persistent ERK activation and tumorigenicity. Disrupting this interaction reduces ERK activity, forcing cancer cells into dormancy. We identified a site in uPAR domain III that is indispensable for these effects. A 9-mer peptide derived from a sequence in domain III (residues 240-248) binds purified alpha5beta1 integrin. Substituting a single amino acid (S245A) in this peptide, or in full-length soluble uPAR, impairs binding of the purified integrin. In the recently solved crystal structure of uPAR the Ser-245 is confined to the large external surface of the receptor, a location that is well separated from the central urokinase plasminogen binding cavity. The impact of this site on alpha5beta1 integrin-dependent cell functions was examined by comparing cells induced to express uPAR(wt) or the uPAR(S245A) mutant. Transfecting uPAR(wt) into cells with low endogenous levels of uPAR, inactive integrin, low ERK activity, and a dormant phenotype in vivo restores these functions and reinstates growth in vivo. In contrast, transfection of the same cells with uPAR(S245A) elicits only very small changes. Incubation of highly malignant cells with the wild-type, but not the S245A mutant peptide, disrupts the uPAR integrin interaction leading to down-regulation of ERK activity. The relevance of this binding site, and of the lateral uPAR-alpha5beta1 integrin interaction, to ERK pathway activation and tumor growth implicates it as a possible specific target for cancer therapy.
Collapse
Affiliation(s)
- Pratima Chaurasia
- Department of Medicine, Division of Hematology/Oncology, Mount Sinai School of Medicine, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | | | | | | | | | | |
Collapse
|
161
|
Ghosh S, Johnson JJ, Sen R, Mukhopadhyay S, Liu Y, Zhang F, Wei Y, Chapman HA, Stack MS. Functional relevance of urinary-type plasminogen activator receptor-alpha3beta1 integrin association in proteinase regulatory pathways. J Biol Chem 2006; 281:13021-13029. [PMID: 16510444 DOI: 10.1074/jbc.m508526200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Squamous cell carcinoma of the oral cavity is characterized by persistent, disorganized expression of integrin alpha3beta1 and enhanced production of urinary-type plasminogen activator (uPA) and its receptor (uPAR) relative to normal oral mucosa. Because multivalent aggregation of alpha3beta1 integrin up-regulates uPA and induces a dramatic co-clustering of uPAR, we explored the hypothesis that lateral ligation of alpha3beta1 integrin by uPAR contributes to uPA regulation in oral mucosal cells. To investigate mechanisms by which uPAR/alpha3beta1 binding enhances uPA expression, integrin-dependent signal activation was assessed. Both Src and ERK1/2 were phosphorylated in response to integrin aggregation, and blocking Src kinase activity completely abrogated ERK1/2 activation and uPA induction, whereas inhibition of epidermal growth factor receptor tyrosine kinase activity did not alter uPA expression. Proteinase up-regulation occurred at the transcriptional level and mutation of the AP1 (-1967) site in the uPA promoter blocked the uPAR/integrin-mediated transcriptional activation. Because uPAR is redistributed to clustered alpha3beta1 integrins, the requirement for uPAR/alpha3beta1 interaction in uPA regulation was assessed. Clustering of alpha3beta1 in the presence of a peptide (alpha325) that disrupts uPAR/alpha3beta1 integrin binding prevented uPA induction. Depletion of cell surface uPAR using small interfering RNA also blocked uPA induction following integrin alpha3beta1 clustering. These results were confirmed using a genetic strategy in which alpha3 null epithelial cells reconstituted with wild type alpha3 integrin, but not a mutant alpha3 unable to bind uPAR, induced uPA expression upon integrin clustering, confirming the critical role of uPAR in integrin-regulated proteinase expression. Disruption of uPAR/alpha3beta1 binding using peptide alpha325 or small interfering RNA blocked filopodia formation and matrix invasion, indicating that this interaction stimulates invasive behavior. Together these data support a model wherein matrix-induced clustering ofalpha3beta1 integrin promotes uPAR/alpha3beta1 interaction, thereby potentiating cellular signal transduction pathways culminating in activation of uPA expression and enhanced uPA-dependent invasive behavior.
Collapse
Affiliation(s)
- Supurna Ghosh
- Department of Cell and Molecular Biology, Northwestern University, Chicago, Illinois 60611
| | - Jeff J Johnson
- Department of Cell and Molecular Biology, Northwestern University, Chicago, Illinois 60611
| | - Ratna Sen
- Department of Cell and Molecular Biology, Northwestern University, Chicago, Illinois 60611
| | - Subhendu Mukhopadhyay
- Department of Cell and Molecular Biology, Northwestern University, Chicago, Illinois 60611
| | - Yueying Liu
- Department of Cell and Molecular Biology, Northwestern University, Chicago, Illinois 60611
| | - Feng Zhang
- Division of Pulmonary and Critical Care Medicine, University of California, San Francisco, California 94143
| | - Ying Wei
- Division of Pulmonary and Critical Care Medicine, University of California, San Francisco, California 94143
| | - Harold A Chapman
- Division of Pulmonary and Critical Care Medicine, University of California, San Francisco, California 94143
| | - M Sharon Stack
- Department of Cell and Molecular Biology, Northwestern University, Chicago, Illinois 60611; Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611.
| |
Collapse
|
162
|
Abstract
Angiogenesis, the process by which new branches sprout from existing vessels, requires the degradation of the vascular basement membrane and remodeling of the ECM in order to allow endothelial cells to migrate and invade into the surrounding tissues. Serine, metallo, and cysteine proteinases are 3 types of a family of enzymes that proteolytically degrade various components of extracellular matrix. These proteases release various growth factors and also increase adhesive molecules and signaling pathway molecules upon their activation, which plays a significant role in angiogenesis. Downregulation of these molecules by antisense/siRNA or synthetic inhibitors decreases the levels of these molecules, inhibits the release of growth factors, and decreases the levels of various signaling pathway molecules, thereby leading to the inhibition of angiogenesis. Furthermore, MMPs degrade specific substrates and release angiogenic inhibitors which inhibit angiogenesis. Downregulation of 2 molecules, such as uPA and uPAR, uPAR and MMP-9, or Cathepsin B and MMP-9, are more effective to inhibit angiogenesis rather than downregulation of single molecules. However, careful testing of these combinations are most important because multiple effects of these combinations play a significant role in angiogenesis.
Collapse
Affiliation(s)
- Sajani S Lakka
- Division of Cancer Biology, Department of Biomedical and Therapeutic Sciences, University of Illinois College of Medicine-Peoria, Peoria, IL 61605, USA
| | | | | |
Collapse
|
163
|
Rao JS, Gondi C, Chetty C, Chittivelu S, Joseph PA, Lakka SS. Inhibition of invasion, angiogenesis, tumor growth, and metastasis by adenovirus-mediated transfer of antisense uPAR and MMP-9 in non-small cell lung cancer cells. Mol Cancer Ther 2006; 4:1399-408. [PMID: 16170032 PMCID: PMC1343495 DOI: 10.1158/1535-7163.mct-05-0082] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Lung cancer is currently the leading cause of cancer deaths in the United States. Conventional therapeutic treatments, including surgery, chemotherapy, and radiation therapy, have achieved only limited success. The overexpression of proteases, such as urokinase-type plasminogen activator (uPA), its receptor (uPAR), and matrix metalloproteinases (MMP), is correlated with the progression of lung cancer. In the present study, we used a replication-deficient adenovirus capable of expressing antisense uPAR and antisense MMP-9 transcripts to simultaneously down-regulate uPAR and MMP-9 in H1299 cells. Ad-uPAR-MMP-9 infection of H1299 cells resulted in a dose- and time-dependent decrease of uPAR protein levels and MMP-9 activity as determined by Western blotting and gelatin zymography, respectively. Corresponding immunohistochemical analysis also showed that Ad-uPAR-MMP-9 infection inhibited uPAR and MMP-9 expression. As shown by Boyden chamber assay, Ad-uPAR-MMP-9 infection significantly decreased the invasive capacity of H1299 cells compared with mock and Ad-CMV (empty vector)-infected cells in vitro. Furthermore, Ad-uPAR-MMP-9 infection inhibited capillary-like structure formation in H1299 cells cocultured with endothelial cells in a dose-dependent manner compared with mock- and Ad-CMV-infected cells. Ad-uPAR-MMP-9 injection caused the regression of s.c. induced tumors after s.c. injection with H1299 lung cancer cells and inhibited lung metastasis in the metastatic model with A549 cells. These data suggest that Ad-uPAR-MMP-9 shows its antitumor activity against both established and early phases of lung cancer metastases by causing the destruction of the tumor vasculature. In summary, adenovirus-mediated inhibition of uPA-uPAR interaction and MMP-9 on the cell surface may be a promising anti-invasion and antimetastatic strategy for cancer gene therapy.
Collapse
MESH Headings
- Adenoviridae/genetics
- Animals
- Blotting, Western
- Carcinoma, Non-Small-Cell Lung/blood supply
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/pathology
- Cell Proliferation
- DNA, Antisense/genetics
- Gene Transfer Techniques
- Genetic Vectors
- Humans
- Lung Neoplasms/blood supply
- Lung Neoplasms/genetics
- Lung Neoplasms/pathology
- Matrix Metalloproteinase 9/genetics
- Matrix Metalloproteinase 9/metabolism
- Mice
- Mice, SCID
- Neoplasm Invasiveness/prevention & control
- Neoplasm Metastasis/prevention & control
- Neovascularization, Pathologic/prevention & control
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, Urokinase Plasminogen Activator
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Jasti S. Rao
- Division of Cancer Biology, Department of Biomedical and Therapeutic Sciences, University of Illinois College of Medicine-Peoria; IL, USA
- Department of Neurosurgery, University of Illinois College of Medicine-Peoria, IL, USA
| | - Christopher Gondi
- Division of Cancer Biology, Department of Biomedical and Therapeutic Sciences, University of Illinois College of Medicine-Peoria; IL, USA
| | - Chandramu Chetty
- Division of Cancer Biology, Department of Biomedical and Therapeutic Sciences, University of Illinois College of Medicine-Peoria; IL, USA
| | | | - Pushpa A Joseph
- Department of Pathology, University of Illinois College of Medicine-Peoria; IL, USA
| | - Sajani S. Lakka
- Division of Cancer Biology, Department of Biomedical and Therapeutic Sciences, University of Illinois College of Medicine-Peoria; IL, USA
- *Correspondence: S. S. Lakka, Program of Cancer Biology, University of Illinois, College of Medicine, Box 1649, Peoria, IL 61656, USA; e-mail:
| |
Collapse
|
164
|
Abstract
BACKGROUND Colorectal cancer currently accounts for 11% of all cancers in the United States and is the second leading cause of cancer-related death, with the majority of deaths attributable to hepatic metastases. Many new studies are elucidating the complex molecular factors involved in this event, which could be used to generate clinically applicable screening and therapeutic tools. METHODS An initial Pubmed and Medline literature search using keywords such as, molecular factor, colorectal cancer, hepatic metastasis/es, and main headings, such as angiogenesis, was reviewed. Since there are many molecular factors involved in this process not all could be included in this review. The list of discussed gene products was limited to the most studied factors, identified by the number of references in the literature search, and additional recently discovered gene products with in-vivo evidence of strong metastasis association. RESULTS Twenty molecular factors were identified and included in the discussion of this review article. The molecular factors were separated into four groups based on their function, they are: proteolysis, adhesion, angiogenesis, and cell survival. All factors have a promising role as a screening or therapeutic target. CONCLUSION This review has identified the many recent advances in elucidating the pathways involved in colorectal cancer hepatic metastasis. By better understanding the many complex molecular events involved in metastasis, novel screening and therapeutic tools may be developed with the ultimate goal of preventing metastasis and increasing patient survival.
Collapse
Affiliation(s)
- L R Rudmik
- Department of Surgery, University of Calgary, Alberta, Canada.
| | | |
Collapse
|
165
|
Margheri F, Manetti M, Serratì S, Nosi D, Pucci M, Matucci-Cerinic M, Kahaleh B, Bazzichi L, Fibbi G, Ibba-Manneschi L, Del Rosso M. Domain 1 of the urokinase-type plasminogen activator receptor is required for its morphologic and functional, β2 integrin–mediated connection with actin cytoskeleton in human microvascular endothelial cells: Failure of association in systemic sclerosis endothelial cells. ACTA ACUST UNITED AC 2006; 54:3926-38. [PMID: 17133606 DOI: 10.1002/art.22263] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE In systemic sclerosis (SSc) microvascular endothelial cells (MVECs), angiogenesis is blocked by matrix metalloproteinase 12-dependent cleavage of domain 1 of the urokinase-type plasminogen activator receptor (uPAR). Since integrins are associated with the invasive activity of uPAR in angiogenesis, this study was undertaken to show whether full-size and truncated uPAR are differentially associated with integrins and with motor components of the cytoskeleton. METHODS SSc and normal MVECs were isolated from human skin biopsy specimens and studied by confocal laser scanning microscopy and immunoprecipitation to assess the mechanisms of association of truncated and full-size uPAR with integrins and the actin cytoskeleton. The integrin composition of the MVECs was studied by reverse transcription-polymerasechain reaction. Cell migration and capillary morphogenesis were studied on fibrinogen substrates. Involvement of Rac and Cdc42 was evaluated by Western blotting. RESULTS Only full-size uPAR showed a connection with the actin cytoskeleton in ECs. This connection was mediated by the uPAR-associated alphaMu- and alphaX-subunits of beta2 integrin, and was absent from SSc MVECs. The cleaved uPAR was not associated with beta2 integrins or with actin. beta3 integrins were associated with both the full-size and cleaved uPAR at focal contacts. The uncoupling of uPAR from beta2 integrins in SSc MVECs impaired the activation of Rac and Cdc42 (thus inhibiting their mediation of uPAR-dependent cytoskeletal rearrangements and cell motility) and blocked the integrin-engagement-delivered signals to the actin cytoskeleton. Invasion and capillary morphogenesis on fibrinogen-coated substrates indicated that ligation of uPAR by uPA empowers the beta2/beta3 integrin-dependent invasion of fibrinogen, and that this system is impaired in SSc MVECs. CONCLUSION The reduced angiogenic properties of SSc MVECs can be explained by the effects of uPAR truncation and the subsequent loss of the beta2 integrin-mediated connection of uPAR with the actin cytoskeleton in these ECs.
Collapse
MESH Headings
- Actins/metabolism
- CD18 Antigens/genetics
- CD18 Antigens/metabolism
- Cell Movement/drug effects
- Cells, Cultured
- Chemotaxis/drug effects
- Cytoskeleton/metabolism
- Cytoskeleton/ultrastructure
- Down-Regulation
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- GTPase-Activating Proteins/metabolism
- Gene Expression
- Humans
- Mannose-Binding Lectins/chemistry
- Mannose-Binding Lectins/metabolism
- Membrane Glycoproteins/chemistry
- Membrane Glycoproteins/metabolism
- Microcirculation/cytology
- Microcirculation/drug effects
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Neovascularization, Pathologic/physiopathology
- Protein Structure, Tertiary
- RNA, Messenger/metabolism
- Receptors, Cell Surface/chemistry
- Receptors, Cell Surface/metabolism
- Scleroderma, Systemic/metabolism
- Scleroderma, Systemic/physiopathology
- Skin/blood supply
- Urokinase-Type Plasminogen Activator/pharmacology
- cdc42 GTP-Binding Protein/metabolism
Collapse
|
166
|
Resnati M, Pallavicini I, Daverio R, Sidenius N, Bonini P, Blasi F. Specific immunofluorimetric assay detecting the chemotactic epitope of the urokinase receptor (uPAR). J Immunol Methods 2005; 308:192-202. [PMID: 16386755 DOI: 10.1016/j.jim.2005.10.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2005] [Revised: 10/31/2005] [Accepted: 10/31/2005] [Indexed: 11/23/2022]
Abstract
The urokinase plasminogen activator receptor (uPAR) fragments D1 and D2D3 are often found in biological fluids from normal individuals and patients of cancer and other diseases. The D2D3 fragment may possess chemotactic activity depending on its N-terminal sequence. We have developed a sensitive and specific immunoassay for the chemotactic form of D2D3 and show that its level can be measured with high specificity and sensitivity in human serum and urine. Synthetic peptides (residues 84-92) derived from the linker region between domains 1 and 2 of uPAR were used as immunogens to generate mouse monoclonal antibodies. Recombinant soluble uPAR (D1D2D3(1-277)) was used to immunize rabbits to obtain polyclonal antibodies. A sandwich-type immunofluorimetric assay was developed with these antibodies. The assay specifically measures D2D3 containing the 84-88 residues, has a detection limit of 0.25 ng/ml and shows no cross-reactivity with D2D3(93-274). The assay is linear at 0-30 ng/ml, with an intra-assay CV of 10% (n=20), inter-assay CV of 15% (n=9) and a recovery of D2D3(84-274) added to urine samples of between 94% and 105%. A statistically significant difference level of D2D3(84-274) was found in two groups of tumor patients versus healthy volunteers (p<or=0.009 in colorectal carcinomas and p<or=0.036 in prostatic carcinomas). For the first time, monoclonal antibodies, detecting the chemotactic form of uPAR, D2D3(84-274), have been produced. The immunofluorimetric assay will quantitate uPAR chemotactic fragments in biological samples, including serum and urine, and evaluate their diagnostic or prognostic potential in clinical studies.
Collapse
Affiliation(s)
- Massimo Resnati
- Laboratory of Molecular Genetics, DIBIT, H. San Raffaele and Università Vita-Salute San Raffaele, via Olgettina 58, 20132, Milano, Italy
| | | | | | | | | | | |
Collapse
|
167
|
|
168
|
Zannetti A, Del Vecchio S, Romanelli A, Scala S, Saviano M, Cali' G, Stoppelli MP, Pedone C, Salvatore M. Inhibition of Sp1 activity by a decoy PNA-DNA chimera prevents urokinase receptor expression and migration of breast cancer cells. Biochem Pharmacol 2005; 70:1277-87. [PMID: 16143315 DOI: 10.1016/j.bcp.2005.07.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2005] [Revised: 07/22/2005] [Accepted: 07/25/2005] [Indexed: 10/25/2022]
Abstract
Sp1 regulates the activation of many genes involved in tumor growth, apoptosis, and angiogenesis. We have previously shown the involvement of Sp1 in the up-regulation of urokinase receptor (uPAR) expression, a key molecule in tumor invasion and metastasis. Here, we investigated whether a marked down-regulation of Sp1 activity may inhibit uPAR expression and migration ability of MDA-MB-231 breast cancer cells. To this end, we tested the decoy ability of a novel peptide nucleic acid (PNA)-DNA chimera which carries a central DNA strand, containing Sp1-binding sequence, covalently linked to two PNA fragments at both ends (PNA-DNA-PNA, PDP). The chimera was synthesized, annealed with complementary DNA (PDP-DNA), and then tested for its ability to bind Sp1 both in vitro and in living MDA-MB-231 breast cancer cells in the presence of urokinase (uPA). This PDP-DNA decoy molecule efficiently competes for the binding to endogenous Sp1 in nuclear extracts, and upon transfection with liposomal vectors, causes a marked decrease of available Sp1 in both untreated and uPA-treated MDA-MB-231 cells. Accordingly, both uPA-dependent enhancement of uPAR expression and cell migration were strongly reduced in transfected cells. Interestingly, a detectable inhibitory effect is also observed in breast cancer cells exposed to PDP-DNA in the absence of transfection reagents. Finally, the inhibitory effect of PDP-DNA appeared to be stronger than that observed with oligonucleotides carrying Sp1 consensus sequence. Our findings show that this novel PNA-DNA chimera, containing Sp1 consensus sequence, effectively inhibits Sp1 activity, uPAR expression, and motility of breast cancer cells indicating its potential therapeutic use to prevent tumor dissemination.
Collapse
Affiliation(s)
- Antonella Zannetti
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche, Via S. Pansini 5, 80131 Naples, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
169
|
Akalu A, Cretu A, Brooks PC. Targeting integrins for the control of tumour angiogenesis. Expert Opin Investig Drugs 2005; 14:1475-86. [PMID: 16307488 DOI: 10.1517/13543784.14.12.1475] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The crucial role of cell extracellular matrix communication in angiogenesis is well established; thus, it is not surprising that integrins have gained considerable attention as targets for the treatment of neovascular disease. Given the diversity of ligands and complexity of integrin signalling, a new appreciation for the divergent roles of integrins in angiogenesis is emerging. It is becoming clear that integrins regulate angiogenesis in both a positive and negative manner. New studies have provided a better understanding of integrin structure as it relates to ligand binding and signalling. This new insight has opened exciting possibilities for the design of novel inhibitors for clinical applications. In this review, studies concerning the cooperative interactions between integrins and regulatory molecules and possible new strategies for controlling angiogenesis will be discussed.
Collapse
Affiliation(s)
- Abebe Akalu
- Department of Radiation Oncology, Cancer Institute, New York University School of Medicine, New York, NY 10016, USA
| | | | | |
Collapse
|
170
|
Bauer TW, Liu W, Fan F, Camp ER, Yang A, Somcio RJ, Bucana CD, Callahan J, Parry GC, Evans DB, Boyd DD, Mazar AP, Ellis LM. Targeting of urokinase plasminogen activator receptor in human pancreatic carcinoma cells inhibits c-Met- and insulin-like growth factor-I receptor-mediated migration and invasion and orthotopic tumor growth in mice. Cancer Res 2005; 65:7775-81. [PMID: 16140945 DOI: 10.1158/0008-5472.can-05-0946] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pancreatic carcinomas express high levels of urokinase-type plasminogen activator (uPA) and its receptor (uPAR), both of which mediate cell migration and invasion. We investigated the hypotheses that (a) insulin-like growth factor-I (IGF-I)- and hepatocyte growth factor (HGF)-mediated migration and invasion of human pancreatic carcinoma cells require uPA and uPAR function and (b) inhibition of uPAR inhibits tumor growth, retroperitoneal invasion, and hepatic metastasis of human pancreatic carcinomas in mice. Using transwell assays, we investigated the effect of IGF-I and HGF on L3.6pl migration and invasion. We measured the induction of uPA and uPAR following treatment of cells with IGF-I and HGF using immunoprecipitation and Western blot analysis. The importance of uPA and uPAR on L3.6pl cell migration and invasion was studied by inhibiting their activities with amiloride and antibodies before cytokine treatment. In an orthotopic mouse model of human pancreatic carcinoma, we evaluated the effect of anti-uPAR monoclonal antibodies with and without gemcitabine on primary tumor growth, retroperitoneal invasion, and hepatic metastasis. IGF-I and HGF mediated cell migration and invasion in L3.6pl cells. In addition, IGF-I and HGF induced uPA and uPAR expression in L3.6pl cells. In vitro, blockade of uPA and uPAR activity inhibited IGF-I- and HGF-mediated cell migration and invasion. Treatment of mice with anti-uPAR monoclonal antibody significantly decreased pancreatic tumor growth and hepatic metastasis and completely inhibited retroperitoneal invasion. Our study shows the importance of the uPA/uPAR system in pancreatic carcinoma cell migration and invasion. These findings suggest that uPAR is a potential target for therapy in patients with pancreatic cancer.
Collapse
MESH Headings
- Amiloride/pharmacology
- Animals
- Antibodies, Monoclonal/pharmacology
- Apoptosis/drug effects
- Apoptosis/physiology
- Cell Growth Processes/physiology
- Cell Line, Tumor
- Cell Movement/drug effects
- Cell Movement/physiology
- Hepatocyte Growth Factor/pharmacology
- Humans
- Insulin-Like Growth Factor I/pharmacology
- Liver Neoplasms, Experimental/secondary
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Neoplasm Invasiveness
- Neovascularization, Pathologic
- Pancreatic Neoplasms/blood supply
- Pancreatic Neoplasms/pathology
- Proto-Oncogene Proteins c-met/antagonists & inhibitors
- Proto-Oncogene Proteins c-met/physiology
- Receptor, IGF Type 1/antagonists & inhibitors
- Receptor, IGF Type 1/physiology
- Receptors, Cell Surface/antagonists & inhibitors
- Receptors, Cell Surface/biosynthesis
- Receptors, Cell Surface/immunology
- Receptors, Urokinase Plasminogen Activator
- Urokinase-Type Plasminogen Activator/antagonists & inhibitors
- Urokinase-Type Plasminogen Activator/biosynthesis
Collapse
Affiliation(s)
- Todd W Bauer
- Department of Surgical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
171
|
Mazzieri R, D'Alessio S, Kenmoe RK, Ossowski L, Blasi F. An uncleavable uPAR mutant allows dissection of signaling pathways in uPA-dependent cell migration. Mol Biol Cell 2005; 17:367-78. [PMID: 16267271 PMCID: PMC1345674 DOI: 10.1091/mbc.e05-07-0635] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Urokinase-type plasminogen activator (uPA) binding to uPAR induces migration, adhesion, and proliferation through multiple interactions with G proteins-coupled receptor FPRL1, integrins, or the epidermal growth factor (EGF) receptor (EGFR). At least two forms of uPAR are present on the cell surface: full-length and cleaved uPAR, each specifically interacting with one or more transmembrane proteins. The connection between these interactions and the effects on the signaling pathways activation is not clear. We have exploited an uPAR mutant (hcr, human cleavage resistant) to dissect the pathways involved in uPA-induced cell migration. This mutant is not cleaved by proteases, is glycosylphosphatidylinositol anchored, and binds uPA with a normal K(d). Both wild-type (wt) and hcr-uPAR are able to mediate uPA-induced migration, are constitutively associated with the EGFR, and associate with alpha3beta1 integrin upon uPA binding. However, they engage different pathways in response to uPA. wt-uPAR requires both integrins and FPRL1 to mediate uPA-induced migration, and association of wt-uPAR to alpha3beta1 results in uPAR cleavage and extracellular signal-regulated kinase (ERK) activation. On the contrary, hcr-uPAR does not activate ERK and does not engage FPRL1 or any other G protein-coupled receptor, but it activates an alternative pathway initiated by the formation of a triple complex (uPAR-alpha3beta1-EGFR) and resulting in the autotyrosine phosphorylation of EGFR.
Collapse
Affiliation(s)
- Roberta Mazzieri
- Department of Molecular Biology and Functional Genomics, Università Vita Salute San Raffaele and S. Raffaele Scientific Institute, 20132 Milan, Italy
| | | | | | | | | |
Collapse
|
172
|
Leonarduzzi G, Gamba P, Sottero B, Kadl A, Robbesyn F, Calogero RA, Biasi F, Chiarpotto E, Leitinger N, Sevanian A, Poli G. Oxysterol-induced up-regulation of MCP-1 expression and synthesis in macrophage cells. Free Radic Biol Med 2005; 39:1152-61. [PMID: 16214031 DOI: 10.1016/j.freeradbiomed.2005.06.024] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2005] [Revised: 06/10/2005] [Accepted: 06/13/2005] [Indexed: 11/22/2022]
Abstract
To investigate the proinflammatory potential of cholesterol and cholesterol oxidation products (oxysterols), which are present in oxidized low-density lipoproteins, foam cells, and fibrotic plaque, we used an in vitro model mimicking the challenge of macrophage cells by the cholesterol accumulating within the central core of atheroma. A biologically representative oxysterol mixture was shown to be potentially able to sustain a chronic inflammatory process within the vascular wall by up-regulating the expression of defined proinflammatory genes. In particular, expression and synthesis of the major chemokine for monocytes/macrophages, namely monocyte chemotactic protein-1 (MCP-1), were consistently increased when cells of the macrophage lineage (U937 cell line) were incubated with this mixture. On the contrary, an identical concentration of unoxidized cholesterol in no case modified expression or synthesis of the chemokine. Up-regulated expression and synthesis of MCP-1 by the oxysterol mixture was clearly dependent on a net increment of phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and nuclear factor kappaB (NF-kappaB) nuclear binding. The results indicate that cholesterol may contribute to the progression of atherosclerotic lesions by strongly up-regulating crucial proinflammatory factors like MCP-1, but only after having been oxidized to oxysterols.
Collapse
Affiliation(s)
- Gabriella Leonarduzzi
- Department of Clinical and Biological Sciences, University of Turin, S. Luigi Hospital, 10043 Orbassano (Turin), Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
173
|
Matsuo S, López-Guisa JM, Cai X, Okamura DM, Alpers CE, Bumgarner RE, Peters MA, Zhang G, Eddy AA. Multifunctionality of PAI-1 in fibrogenesis: evidence from obstructive nephropathy in PAI-1-overexpressing mice. Kidney Int 2005; 67:2221-38. [PMID: 15882265 DOI: 10.1111/j.1523-1755.2005.00327.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Plasminogen activator inhibitor-1 (PAI-1) has been implicated in the pathogenesis of chronic kidney disease based on its up-regulated expression and on the beneficial effects of PAI-1 inhibition or depletion in experimental models. PAI-1 is a multifunctional protein and the mechanisms that account for its profibrotic effects have not been fully elucidated. METHODS The present study was designed to investigate PAI-1-dependent fibrogenic pathways by comparing the unilateral ureteral obstruction model (UUO) (days 3, 7, and 14) in PAI-1-overexpressing mice (PAI-1 tg) to wild-type mice, both on a C57BL6 background. RESULTS Following UUO, total kidney PAI-1 mRNA and/or protein levels were significantly higher in the PAI-1 tg mice (N= 6 to 8/group) and fibrosis severity was significantly worse (days 3, 7, and 14), measured both as Sirius red-positive interstitial area (e.g., 10 +/- 3.2% vs. 4.5 +/- 1.0%) (day 14) and total kidney collagen (e.g., 11.1 +/- 1.7 vs. 6.2 +/- 1.3 microg/mg) (day 14). By day 14, the expression of two normal tubular proteins, E-cadherin and Ksp-cadherin, were significantly lower in the PAI-1 tg mice (3.2 +/- 0.5% vs. 11.7 +/- 5.9% and 2.6 +/- 1.6) vs. 6.2 +/- 0.8%, respectively), implying more extensive tubular damage. At least four fibrogenic pathways were differentially expressed in the PAI-1 tg mice. First, interstitial macrophage recruitment was more intense (P < 0.05 days 3 and 14). Second, interstitial myofibroblast density was greater (P < 0.05 days 3 and 7) despite similar numbers of proliferating tubulointerstitial cells. Third, transforming growth factor-beta1 (TGF-beta1) and collagen I mRNA were significantly higher. Finally, urokinase activity was significantly lower (P < 0.05 days 7 and 14) despite similar mRNA levels. Gene microarray studies documented that that the deletion of this single profibrotic gene had far-reaching consequences on renal cellular responses to chronic injury. CONCLUSION These data provide further evidence that PAI-1 is directly involved in interstitial fibrosis and tubular damage via two primary overlapping mechanisms: early effects on interstitial cell recruitment and late effects associated with decreased urokinase activity.
Collapse
Affiliation(s)
- Shunya Matsuo
- Children's Hospital and Regional Medical Center and Department of Pediatrics, University of Washington, Seattle, Washington 98105, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
174
|
Wu Q, Kuo HC, Deng GG. Serine proteases and cardiac function. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1751:82-94. [PMID: 16054020 DOI: 10.1016/j.bbapap.2004.09.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2004] [Revised: 07/16/2004] [Accepted: 09/10/2004] [Indexed: 11/26/2022]
Abstract
The serine proteases of the trypsin superfamily are versatile enzymes involved in a variety of biological processes. In the cardiovascular system, the importance of these enzymes in blood coagulation, platelet activation, fibrinolysis, and thrombosis has been well established. Recent studies have shown that trypin-like serine proteases are also important in maintaining cardiac function and contribute to heart-related disease processes. In this review, we describe the biological function of corin, tissue kallikrein, chymase and urokinase and discuss their roles in cardiovascular diseases such as hypertension, cardiac hypertrophy, heart failure, and aneurysm.
Collapse
Affiliation(s)
- Qingyu Wu
- Department of Cardiovascular Research, Berlex Biosciences, 2600 Hilltop Drive, Richmond, CA 94804, USA.
| | | | | |
Collapse
|
175
|
Jin H, Song YP, Boel G, Kochar J, Pancholi V. Group A streptococcal surface GAPDH, SDH, recognizes uPAR/CD87 as its receptor on the human pharyngeal cell and mediates bacterial adherence to host cells. J Mol Biol 2005; 350:27-41. [PMID: 15922359 DOI: 10.1016/j.jmb.2005.04.063] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2005] [Revised: 04/22/2005] [Accepted: 04/26/2005] [Indexed: 11/16/2022]
Abstract
Streptococcal surface dehydrogenase (SDH) is a multifunctional, anchorless protein present on the surface of group A Streptococcus (GAS). It plays a regulatory role in GAS-mediated intracellular signaling events in human pharyngeal cells. Using ligand-binding assays, we have identified an approximately 55 kDa protein as an SDH-specific receptor protein on the surface of Detroit human pharyngeal cells. LC-MS/MS analyses identified this SDH-binding pharyngeal cell-surface-exposed membrane-bound protein as uPAR (urokinase plasminogen activator receptor)/CD87. Ligand-binding assays also revealed that only the N-terminal domain (D1) of uPAR bound to SDH. uPAR-D1 more specifically bound to the C-terminal alpha-helix and two immediate flanking regions of the S-loop of the SDH molecule. Site-directed mutagenesis in GAS resulting in SDH with altered C-terminal ends, and the removal of uPAR from pharyngeal cells by phosphatidylinositol-phopsholipase C treatment decreased GAS ability to adhere to pharyngeal cells. When compared to uninfected Detroit pharyngeal cells, GAS-infected pharyngeal cells showed a transient but a significant increase in the expression of uPAR-specific mRNA, and a prolonged recycling process of uPAR on the cell surface. Together, these results indicate that the specific streptococcal surface protein-pharyngeal cell receptor interaction mediated by SDH and uPAR is modulated during GAS infection of human pharyngeal cells. This interaction significantly contributes to bacterial adherence and thus may play a significant role in GAS pathogenesis by regulating intracellular signaling events in pharyngeal cells.
Collapse
Affiliation(s)
- Hong Jin
- Laboratory of Bacterial Pathogenesis, Public Health Research Institute, At The International Center for Public Health, 225 Warren Street, Newark, NJ 07103-3535, USA
| | | | | | | | | |
Collapse
|
176
|
Margheri F, D'Alessio S, Serratí S, Pucci M, Annunziato F, Cosmi L, Liotta F, Angeli R, Angelucci A, Gravina GL, Rucci N, Bologna M, Teti A, Monia B, Fibbi G, Del Rosso M. Effects of blocking urokinase receptor signaling by antisense oligonucleotides in a mouse model of experimental prostate cancer bone metastases. Gene Ther 2005; 12:702-14. [PMID: 15674398 DOI: 10.1038/sj.gt.3302456] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
An important factor implicated in tumor cell predisposition for invasion and metastasis is the malignancy-related upregulation of urokinase plasminogen activator receptor (uPAR). uPAR signals by activating different tyrosine kinases in different cells. We examined the effects of inhibiting uPAR signaling by inhibition of uPAR expression with antisense oligonucleotides (aODNs) in PC3 human prostate cancer cells and evaluated aODN effect in a mouse model of prostate cancer bone metastasis. Following uPAR aODN treatment, PC3 cells exhibited a strong decrease in uPAR expression, evaluated by flow cytometry and by polymerase chain reaction, and of FAK/JNK/Jun phosphorylation. The synthesis of cyclins A, B, D1 and D3 was inhibited, as shown by Western blotting, flow cytometry and polymerase chain reaction, and PC3 cells accumulated in the G2 phase of the cell cycle. PC3 cells' adhesion was unaffected, while proliferation and invasion of Matrigel were impaired. A total of 60 mice were subjected to intracardiac injection of PC3 cells and were randomly assigned to three groups: aODN (treated with 0.5 mg intraperitoneum/mouse/day), dODN (treated with the same amounts of a degenerated ODN) and control (injected with a saline solution). At 28 days after heart injection, mice were subjected to a digital scan of total body radiography, which revealed 80% reduction in mice affected by bone metastasis. The use of uPAR aODNs produced a substantial prophylactic effect against prostate cancer bone metastasis, which has to be ascribed to downregulation of uPAR expression.
Collapse
Affiliation(s)
- F Margheri
- Department of Experimental Pathology and Oncology, University of Florence, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
177
|
Gargiulo L, Longanesi-Cattani I, Bifulco K, Franco P, Raiola R, Campiglia P, Grieco P, Peluso G, Stoppelli MP, Carriero MV. Cross-talk between fMLP and Vitronectin Receptors Triggered by Urokinase Receptor-derived SRSRY Peptide. J Biol Chem 2005; 280:25225-32. [PMID: 15866865 DOI: 10.1074/jbc.m412605200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The urokinase-type plasminogen activator receptor (uPAR) sustains cell migration through its capacity to promote pericellular proteolysis, regulate integrin function, and mediate chemotactic signaling in response to urokinase. We have characterized the early signaling events triggered by the Ser-Arg-Ser-Arg-Tyr (SRSRY) chemotactic uPAR sequence. Cell exposure to SRSRY peptide promotes directional migration on vitronectin-coated filters, regardless of uPAR expression, in a specific and dose-dependent manner, with maximal effect at a concentration level as low as 10 nm. A similar concentration profile is observed in a quantitative analysis of SRSRY-dependent cytoskeletal rearrangements, mostly consisting of filamentous structures localized in a single cell region. SRSRY analogues with alanine substitutions fail to drive F-actin formation and cell migration, indicating a critical role for each amino acid residue. As with ligand-dependent uPAR signaling, SRSRY stimulates protein kinase C activity and results in ERK1/2 phosphorylation. The involvement of the high affinity N-formyl-Met-Leu-Phe receptor (FPR) in this process is indicated by the finding that 100 nm N-formyl-Met-Leu-Phe inhibits binding of D2D3 to the cell surface, as well as SRSRY-stimulated cell migration and F-actin polarization. Moreover, cell exposure to SRSRY promotes FPR-dependent vitronectin release and increased uPAR.alphavbeta5 vitronectin receptor physical association, indicating that alphavbeta5 activity is regulated by the SRSRY uPAR sequence via FPR. Finally, we provide evidence that alphavbeta5 is required for SRSRY-dependent ERK1/2 phosphorylation, whereas it is not required for protein kinase C activation. The data indicate that the ability of uPAR to stimulate cell migration and cytoskeletal rearrangements is retained by the SRSRY peptide alone and that it is supported by cross-talk between FPR and alphavbeta5.
Collapse
Affiliation(s)
- Lucia Gargiulo
- Department of Experimental Oncology, National Cancer Institute, 80131 Naples, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
178
|
Kirfel G, Rigort A, Borm B, Herzog V. Cell migration: mechanisms of rear detachment and the formation of migration tracks. Eur J Cell Biol 2005; 83:717-24. [PMID: 15679116 DOI: 10.1078/0171-9335-00421] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cell migration is central to many biological and pathological processes, including embryogenesis, tissue repair and regeneration as well as cancer and the inflammatory response. In general, cell migration can be usefully conceptualized as a cyclic process. The initial response of a cell to a migration-promoting agent is to polarize and extend protrusions in the direction of migration. These protrusions can be large, broad lamellipodia or spike-like filopodia, are usually driven by actin polymerization, and are stabilized by adhering to the extracellular matrix (ECM) via transmembrane receptors of the integrin family linked to the actin cytoskeleton. These adhesions serve as traction sites for migration as the cell moves forward over them, and they must be disassembled at the cell rear, allowing it to detach. The mechanisms of rear detachment and the regulatory processes involved are not well understood. The disassembly of adhesions that is required for detachment depends on a coordinated interaction of actin and actin-binding proteins, signaling molecules and effector enzymes including proteases, kinases and phosphatases. Originally, the biochemically regulated processes leading to rear detachment of migrating cells were thought not to be necessarily accompanied by any loss of cell material. However, it has been shown that during rear detachment long tubular extensions, the retracting fibers, are formed and that "membrane ripping" occurs at the cell rear. By this process, a major fraction of integrin-containing cellular material is left behind forming characteristic migration tracks that exactly mark the way a cell has taken.
Collapse
Affiliation(s)
- Gregor Kirfel
- Institute of Cell Biology, University of Bonn, Bonn, Germany.
| | | | | | | |
Collapse
|
179
|
Abu-Ali S, Sugiura T, Takahashi M, Shiratsuchi T, Ikari T, Seki K, Hiraki A, Matsuki R, Shirasuna K. Expression of the urokinase receptor regulates focal adhesion assembly and cell migration in adenoid cystic carcinoma cells. J Cell Physiol 2005; 203:410-9. [PMID: 15521066 DOI: 10.1002/jcp.20242] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Adenoid cystic carcinoma (AdCC) cell lines (ACCS and ACCT) showed higher migration responses and adhesion to the extracellular matrix (ECM), especially types I and IV collagen, than did the oral squamous cell carcinoma (SCC) lines (NA and TF). The response to collagens was largely and exclusively inhibited by anti-alpha(2) integrin antibody. Moreover, AdCC cell lines expressed higher surface levels of urokinase-type plasminogen activator receptor (uPAR) than did SCC cell lines. When AdCC cells were plated on collagen, the surface level of uPAR was increased, and numerous focal adhesions consisting of uPAR, vinculin, and paxillin were assembled; whereas collagen-stimulated SCC cell counterparts or AdCC cells plated on other types of ECM, such as fibronectin, failed to assemble such definite focal adhesions. In order to elucidate the association of uPAR with collagen-induced events, an ACCS-AS cell line transfected with a vector expressing antisense uPAR RNA was established and shown to have reduced uPAR (about 10% that of parental ACCS at both the protein and mRNA levels). ACCS-AS showed a strong reduction of collagen-stimulated migration and focal adhesion assembly of alpha(2) integrin, vinculin, and paxillin. These findings suggest that AdCC has a proclivity for migrating to types I and IV collagens due to the overexpression of uPAR, which plays a key role in focal adhesion assembly and migration.
Collapse
Affiliation(s)
- Samah Abu-Ali
- Department of Oral and Maxillofacial Surgery, Graduate School of Dental Science, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
180
|
Wang XQ, Sun P, Paller AS. Gangliosides inhibit urokinase-type plasminogen activator (uPA)-dependent squamous carcinoma cell migration by preventing uPA receptor/alphabeta integrin/epidermal growth factor receptor interactions. J Invest Dermatol 2005; 124:839-48. [PMID: 15816844 DOI: 10.1111/j.0022-202x.2005.23669.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The interaction of the urokinase-type plasminogen activator (uPA) receptor (uPAR) with integrins plays a critical role in the regulation of cell adhesion and migration. However, the molecular events underlying the modulation of the interaction of uPAR and integrin are poorly understood. Gangliosides are thought to regulate epithelial cell adhesion and migration by inhibiting alpha(5)beta(1) integrin and epidermal growth factor receptor (EGFR) signaling. We report here that increases in the expression of ganglioside NeuAcalpha2-->3Galbeta1-->3GalNAcbeta1-->4(NeuAcalpha2-->8NeuAcalpha2-->3)Galbeta1-->4Glcbeta1-Cer (GT1b) or NeuAcalpha2-->3Galbeta1-->4Glcbeta1-Cer (GM3) inhibit uPA-dependent cell migration by preventing the association of uPAR with alpha(5)beta(1) integrin or uPAR/alpha(5)beta(1) integrin with the EGFR, respectively. As a result, uPA-dependent focal adhesion kinase (FAK) and integrin-mediated EGFR signaling are suppressed. Both gangliosides inhibit uPAR signaling-stimulated migration; however, GM3 inhibits uPA-induced EGFR phosphorylation by blocking the crosstalk between integrin and EGFR, whereas GT1b suppresses both uPA-induced FAK and EGFR activation by preventing the activation of integrin alpha(5)beta(1).
Collapse
Affiliation(s)
- Xiao-Qi Wang
- Departments of Dermatology and Pediatrics, Northwestern University's Feinberg School of Medicine, Chicago, Illinois 60611, USA.
| | | | | |
Collapse
|
181
|
Degryse B, Resnati M, Czekay RP, Loskutoff DJ, Blasi F. Domain 2 of the urokinase receptor contains an integrin-interacting epitope with intrinsic signaling activity: generation of a new integrin inhibitor. J Biol Chem 2005; 280:24792-803. [PMID: 15863511 DOI: 10.1074/jbc.m413954200] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We investigated the interaction between the urokinase receptor (uPAR) and the integrin alphavbeta3. Vitronectin (VN) induces cell migration by binding to alphavbeta3, but expression of the uPAR boosts its efficacy. Thus, uPAR may regulate VN-induced cell migration by interacting laterally with alphavbeta3. In contrast, cells expressing a uPAR mutant lacking domain 2 do not migrate in response to VN. This effect is overcome by D2A, a synthetic peptide derived from the sequence of domain 2. In addition, D2A has chemotactic activity that requires alphavbeta3 and activates alphavbeta3-dependent signaling pathways such as the Janus kinase/Stat pathway. Moreover, D2A disrupts uPAR-alphavbeta3 and uPAR-alpha5beta1 co-immunoprecipitation, indicating that it can bind both of these integrins. We also identify the chemotactically active epitope harbored by peptide D2A. Mutating two glutamic acids into two alanines generates peptide D2A-Ala, which lacks chemotactic activity but inhibits VN-, FN-, and collagen-dependent cell migration. In fact, the GEEG peptide has potent chemotactic activity, and the GAAG sequence has inhibitory capacities. In summary, we have identified an integrin-interacting sequence located in domain 2 of uPAR, which is also a new chemotactic epitope that can activate alphavbeta3-dependent signaling pathways and stimulate cell migration. This sequence thus plays a pivotal role in the regulation of uPAR-integrin interactions. Moreover, we describe a novel, very potent inhibitor of integrin-dependent cell migration.
Collapse
Affiliation(s)
- Bernard Degryse
- Department of Molecular Biology and Functional Genomics, DIBIT, Università Vita Salute San Raffaele, Via Olgettina 58, 20132 Milan, Italy
| | | | | | | | | |
Collapse
|
182
|
Nicholl SM, Roztocil E, Davies MG. Urokinase-induced smooth muscle cell responses require distinct signaling pathways: A role for the epidermal growth factor receptor. J Vasc Surg 2005; 41:672-81. [PMID: 15874933 DOI: 10.1016/j.jvs.2005.01.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
OBJECTIVE Urokinase plasminogen activator (uPA) a key serine protease during remodeling, is capable of inducing both smooth muscle cell migration and proliferation. However, the signals that produce these responses are poorly understood. METHODS Early passage rat aortic arterial smooth muscle cells were cultured in vitro and standard assays of DNA synthesis ([ 3 H]thymidine incorporation), cell proliferation (manual cell counting), and migration (linear wound assay and Boyden chamber) were used to study the cells responses to uPA. Activation of the mitogen-activated protein kinases (MAPK), extracellular signal-regulated kinase 1/2 (ERK1/2), p38 MAPK , Akt, MAP kinase/ERK kinase (MEK1/2), MAP kinase kinase (MKK)3/6, and epidermal growth factor receptor (EGFR) in response to uPA was assayed by Western blot analysis for the phosphorylated form of each kinase. These assays were repeated in the presence of the Galphai inhibitor pertussis toxin (PTx, 100 ng/mL), the Ras inhibitor manumycin A (MA, 10 microM), the phosphatidyl-inositol 3' kinase (PI3K) inhibitor wortmannin (WN, 1 microM), the EGFR inhibitor AG1478 (AG, 10 nM), the MEK1 inhibitor PD98059 (PD, 10 microM), the p38 MAPK inhibitor SB203580 (SB, 10 microM), and the plasmin inhibitors aprotinin and epsilon-aminocaproic acid. RESULTS uPA induced a twofold increase in smooth muscle cell migration and increased smooth muscle cell DNA synthesis and proliferation. The ERK1/2 and p38 MAPK inhibitors PD98059 (PD) and SB203580 (SB) blocked cell proliferation, but only PD blocked cell migration. Although uPA-induced phosphorylation of both ERK1/2 and p38 MAPK was blocked by Galphai inhibition, inhibition of PI3K and Ras decreased the uPA-induced phosphorylation of ERK1/2 but not p38 MAPK . Activation of MEK1/2 was abrogated by inhibitors of Galphai and Ras, but not by PI3K inhibition. In contrast, activation of MKK3/6 was abrogated by inhibition of Galphai, but not by Ras or PI3K inhibition. uPA induced time-dependent phosphorylation of EGFR, which was dependent on plasmin activity. Inhibition of EGFR reduced both ERK1/2 and p38 MAPK activation. uPA activation of PI3K and MKK3/6 was EGFR-dependent and that of MEK1 was EGFR-independent. CONCLUSION uPA induces smooth muscle cell proliferation through ERK1/2- and p38 MAPK -mediated pathways. Migration appears to be dependent on ERK1/2 activity alone. Activation of EGFR appears to be required. The differential activation of pathways for ERK1/2 and p38 MAPK by uPA allows for two distinct biologic responses that both require tyrosine kinase receptor transactivation. CLINICAL RELEVANCE Elevated urokinase-like plasminogen activator (uPA) and decreased plasminogen activator inhibitor-1 (PAI-1) levels are predictors for restenosis. Matrix remodeling and smooth muscle cell responses are integrally linked. Changes in smooth muscle cell migration and proliferation are dependent on the extracellular matrix environment in which they are encased. Proteases such as uPA can effect smooth muscle cells and alter the matrix; their activity is controlled by a series of inhibitors (eg, PAI-1). The balance of activation and inhibition forms the basis of the proteolytic thermostat in the vessel wall. Understanding the biology of the proteolytic thermostat will allow for structured therapeutic interventions to control restenosis and thus improve patient care and avoid secondary interventions. Our study demonstrates that uPA is capable of inducing separate responses through more than one signaling pathway, in part, by transactivation of a nearby receptor for the unrelated ligand epidermal growth factor receptor (EGFR). Blockade of EGFR can inhibit both cell migration and proliferation induced by uPA. This is the first description of cross talk between uPA and EGFR in vascular smooth muscle cells. Targeting a pivotal receptor such as EGFR, which can be transactivated by both G-protein-coupled receptors and receptor tyrosine kinases, is an attractive molecular target to control restenosis.
Collapse
Affiliation(s)
- Suzanne M Nicholl
- Vascular Biology and Therapeutics Program, Division of Vascular Surgery, University of Rochester, NY 14642, USA
| | | | | |
Collapse
|
183
|
Nilsson A, Moller K, Dahlin L, Lundborg G, Kanje M. Early changes in gene expression in the dorsal root ganglia after transection of the sciatic nerve; effects of amphiregulin and PAI-1 on regeneration. ACTA ACUST UNITED AC 2005; 136:65-74. [PMID: 15893588 DOI: 10.1016/j.molbrainres.2005.01.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2004] [Revised: 12/29/2004] [Accepted: 01/08/2005] [Indexed: 01/04/2023]
Abstract
To characterize the gene activity that may be required for neuronal survival and regeneration, we used the Affymetrix GeneChip Mu74A to screen 12000 genes and expressed sequence tag (EST) mRNA from L4 and L5 mouse dorsal root ganglia (DRG) 12 h and 24 h after sciatic nerve transection. At 12 h, we found 17 upregulated transcripts, and at 24 h, 49 that met our criteria of a significant 2-fold increase in expression. The alterations included a total of eight transcription factors and several genes associated with TGF-beta- and IL-6-mediated signaling. Two of the changes, amphiregulin and plasminogen activator inhibitor-1 (PAI-1), were confirmed by real-time quantitative PCR (QPCR). Addition of amphiregulin (20 ng/ml) to organ-cultured DRG stimulated axonal outgrowth while PAI-1 (20 nM) inhibited migration of Schwann cells from the ganglia.
Collapse
Affiliation(s)
- Anna Nilsson
- Cell and Organism Biology, Lund University, Helgonav3 B, SE-223 62 Lund, Sweden.
| | | | | | | | | |
Collapse
|
184
|
Im JH, Fu W, Wang H, Bhatia SK, Hammer DA, Kowalska MA, Muschel RJ. Coagulation facilitates tumor cell spreading in the pulmonary vasculature during early metastatic colony formation. Cancer Res 2005; 64:8613-9. [PMID: 15574768 DOI: 10.1158/0008-5472.can-04-2078] [Citation(s) in RCA: 225] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Coagulation has long been known to facilitate metastasis. To pinpoint the steps where coagulation might play a role in the metastasis, we used three-dimensional visualization of direct infusion of fluorescence labeled antibody to observe the interaction of tumor cells with platelets and fibrinogen in isolated lung preparations. Tumor cells arrested in the pulmonary vasculature were associated with a clot composed of both platelets and fibrin(ogen). Initially, the cells attached to the pulmonary vessels were rounded. Over the next 2 to 6 hours, they spread on the vessel surface. The associated clot was lysed coincident with tumor cell spreading. To assess the importance of clot formation, we inhibited coagulation with hirudin, a potent inhibitor of thrombin. The number of tumor cells initially arrested in the lung of hirudin-treated mice was essentially the same as in control mice. However, tumor cell spreading and subsequent retention of the tumor cells in the lung was markedly inhibited in the anticoagulated mice. These associations of the tumor cells with platelets were independent of tumor cell expression of P-selectin ligands. This work identifies tumor cell spreading onto the vascular surface as an important component of the metastatic cascade and implicates coagulation in this process.
Collapse
Affiliation(s)
- Jae Hong Im
- Department of Pathology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | |
Collapse
|
185
|
Czekay RP, Loskutoff DJ. Unexpected role of plasminogen activator inhibitor 1 in cell adhesion and detachment. Exp Biol Med (Maywood) 2005; 229:1090-6. [PMID: 15564434 DOI: 10.1177/153537020422901102] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Plasminogen activator inhibitor 1 (PAI-1) is the primary physiological inhibitor of plasminogen activation in vivo, and thus it is one of the main regulators of the fibrinolytic system. In this regard, individuals with elevated PAI-1 seem to have an increased risk for thrombotic disease, whereas those lacking the inhibitor develop a lifelong bleeding diathesis. Unexpectedly, recent observations demonstrate that cancer patients with high PAI-1 levels have a poor prognosis for survival. This correlation with metastatic disease may be related to the observation that high PAI-1 levels decrease the adhesive strength of cells for their substratum, and that this de-adhesive activity of PAI-1 is not related to its role as a protease inhibitor. Initial insights into potential mechanisms by which PAI-1 regulates the attachment, detachment, and migration of cells are addressed in this review.
Collapse
Affiliation(s)
- Ralf-Peter Czekay
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
186
|
Samarakoon R, Higgins CE, Higgins SP, Kutz SM, Higgins PJ. Plasminogen activator inhibitor type-1 gene expression and induced migration in TGF-β1-stimulated smooth muscle cells is pp60c-src/MEK-dependent. J Cell Physiol 2005; 204:236-46. [PMID: 15622520 DOI: 10.1002/jcp.20279] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Transforming growth factor-beta1 (TGF-beta1) stimulates expression of plasminogen activator inhibitor type-1 (PAI-1), a serine protease inhibitor (SERPIN) important in the control of stromal barrier proteolysis and cell-to-matrix adhesion. Pharmacologic agents that target MEK (PD98059, U0126) or src family (PP1) kinases attenuated TGF-beta1-dependent PAI-1 transcription in R22 aortic smooth muscle cells. Pretreatment with PP1 at concentrations that inhibited TGF-beta1-dependent PAI-1 expression also blocked ERK1/2 activation/nuclear accumulation suggesting that the required src kinase activity is upstream of ERK1/2 in the TGF-beta1-initiated signaling cascade. The IC(50) of the PP1-sensitive kinase, furthermore, specifically implied involvement of pp60(c-src) in PAI-1 induction. Indeed, addition of TGF-beta1 to quiescent R22 cells resulted in a 3-fold increase in pp60(c-src) autophosphorylation and kinase activity. Transfection of a dominant-negative pp60(c-src) construct, moreover, reduced TGF-beta1-induced PAI-1 expression levels to that of unstimulated controls or PP1-pretreated cells. A >/=170 kDa protein that co-immunoprecipitated with TGF-beta1-activated pp60(c-src) was also phosphorylated transiently in response to TGF-beta1. TGF-beta1 is known to transactivate the 170 kDa EGF receptor (EGFR) by autocrine HB-EGF or TGF-alpha mechanisms suggesting involvement of EGFR activation in certain TGF-beta1-initiated responses. Incubation of quiescent R22 cells with the EGFR-specific inhibitor AG1478 prior to growth factor (EGF or TGF-beta1) addition effectively blocked EGFR activation as determined by direct visualization of receptor internalization. AG1478 suppressed (in a dose-dependent fashion) EGF-induced PAI-1 protein levels and, at a final concentration of 2.5 muM, virtually eliminated EGF-dependent PAI-1 synthesis. More importantly, AG1478 similarly repressed inducible PAI-1 levels in TGF-beta1-stimulated R22 cultures. PP1, PD98059, and U0126 also inhibited TGF-beta1-dependent cell motility at concentrations that significantly attenuated PAI-1 expression. Consistent with the AG1478-associated reductions in EGF- and TGF-beta1-stimulated PAI-1 expression, pretreatment of R22 cell cultures with AG1478 effectively suppressed growth factor-stimulated cell motility. These data indicate that two major phenotypic characteristics of TGF-beta1-exposure (i.e., transcription of specific target genes [e.g., PAI-1], increased cell motility) are linked in the R22 vascular smooth muscle cell system, require pp60(c-src) kinase activity and MEK signaling and involve activation of an AG1478-sensitive (likely EGFR-dependent) pathway.
Collapse
Affiliation(s)
- Rohan Samarakoon
- Center for Cell Biology & Cancer Research, Albany Medical College, Albany, New York, USA
| | | | | | | | | |
Collapse
|
187
|
Gu JM, Johns A, Morser J, Dole WP, Greaves DR, Deng GG. Urokinase plasminogen activator receptor promotes macrophage infiltration into the vascular wall of ApoE deficient mice. J Cell Physiol 2005; 204:73-82. [PMID: 15573379 DOI: 10.1002/jcp.20262] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The urokinase plasminogen activator receptor (uPAR) regulates macrophage adhesion and migration by binding directly to matrix proteins and signaling through integrin complexes. In this study, we examined the role of uPAR on macrophage infiltration into the vascular wall. Stable murine macrophage (Raw264.7) cell lines expressing high levels of human uPAR, human urokinase plasminogen activator (uPA), or both were established using expression vectors driven by the human CD68 promoter. Stimulation with human uPA specifically induced phosphorylation of early response regulated kinase (ERK) in cells expressing human uPAR but not in sham transfected cells. The human uPAR expressing Raw264.7 cells showed increased adhesion to both human uPA and vitronectin (Vn). Raw264.7 cells expressing human uPAR or both human uPAR and uPA, but not uPA alone, were detected in the aortic wall of ApoE(-/-) mice, and no cells were detected in that of age-matched C57BL/6J mice after intravenous infusion of the cells. Blocking of Mac-1/ICAM-1 interaction by anti-alphaM antibody (M1/70) significantly reduced the infiltration of huPAR-expressing Raw264.1 cells into aorta of ApoE(-/-) mice. Treatment of C57BL/6J mice with angiotensin II resulted in infiltration of Raw264.7 cells expressing human uPAR. These data demonstrate that uPAR plays a key role in promoting macrophage infiltration into the arterial wall of ApoE(-/-) mice.
Collapse
Affiliation(s)
- Jian-Ming Gu
- Cardiovascular Research, Berlex Biosciences, Richmond, California, USA.
| | | | | | | | | | | |
Collapse
|
188
|
de Paulis A, Montuori N, Prevete N, Fiorentino I, Rossi FW, Visconte V, Rossi G, Marone G, Ragno P. Urokinase induces basophil chemotaxis through a urokinase receptor epitope that is an endogenous ligand for formyl peptide receptor-like 1 and -like 2. THE JOURNAL OF IMMUNOLOGY 2004; 173:5739-48. [PMID: 15494526 DOI: 10.4049/jimmunol.173.9.5739] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Basophils circulate in the blood and are able to migrate into tissues at sites of inflammation. Urokinase plasminogen activator (uPA) binds a specific high affinity surface receptor (uPAR). The uPA-uPAR system is crucial for cell adhesion and migration, and tissue repair. We have investigated the presence and function of the uPA-uPAR system in human basophils. The expression of uPAR was found at both mRNA and protein levels. The receptor was expressed on the cell surface of basophils, in the intact and cleaved forms. Basophils did not express uPA at either the protein or mRNA level. uPA (10(-12)-10(-9) M) and its uPAR-binding N-terminal fragment (ATF) were potent chemoattractants for basophils, but did not induce histamine or cytokine release. Inactivation of uPA enzymatic activity by di-isopropyl fluorophosphate did not affect its chemotactic activity. A polyclonal Ab against uPAR inhibited uPA-dependent basophil chemotaxis. The uPAR-derived peptide 84-95 (uPAR84-95) induced basophil chemotaxis. Basophils expressed mRNA for the formyl peptide receptors formyl peptide receptor (FPR), FPR-like 1 (FPRL1), and FPRL2. The FPR antagonist cyclosporin H prevented chemotaxis induced by FMLP, but not that induced by uPA and uPAR84-95. Incubation of basophils with low and high concentrations of FMLP, which desensitize FPR and FPRL1, respectively, but not FPRL2, slightly reduced the chemotactic response to uPA and uPAR84-95. In contrast, desensitization with WKYMVm, which also binds FPRL2, markedly inhibited the response to both molecules. Thus, uPA is a potent chemoattractant for basophils that seems to act through exposure of the chemotactic uPAR epitope uPAR84-95, which is an endogenous ligand for FPRL2 and FPRL1.
Collapse
MESH Headings
- Adult
- Basophils/cytology
- Basophils/enzymology
- Basophils/metabolism
- Cell Line, Tumor
- Chemotaxis, Leukocyte/immunology
- Cytokines/metabolism
- Enzyme Inhibitors/pharmacology
- Epitopes/metabolism
- Epitopes/physiology
- Histamine Release/drug effects
- Histamine Release/immunology
- Humans
- Hydrolysis
- Isoflurophate/pharmacology
- Ligands
- Peptide Fragments/physiology
- Protein Structure, Tertiary
- RNA, Messenger/biosynthesis
- Receptors, Cell Surface/biosynthesis
- Receptors, Cell Surface/metabolism
- Receptors, Cell Surface/physiology
- Receptors, Formyl Peptide/biosynthesis
- Receptors, Formyl Peptide/metabolism
- Receptors, Lipoxin/biosynthesis
- Receptors, Lipoxin/metabolism
- Receptors, Urokinase Plasminogen Activator
- Urokinase-Type Plasminogen Activator/antagonists & inhibitors
- Urokinase-Type Plasminogen Activator/biosynthesis
- Urokinase-Type Plasminogen Activator/physiology
Collapse
Affiliation(s)
- Amato de Paulis
- Divisione di Immunologia Clinica ed Allergologia, Università di Napoli Federico II, Naples, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
189
|
Aguilar S, Corominas JM, Malats N, Pereira JA, Dufresne M, Real FX, Navarro P. Tissue plasminogen activator in murine exocrine pancreas cancer: selective expression in ductal tumors and contribution to cancer progression. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 165:1129-39. [PMID: 15466380 PMCID: PMC1618622 DOI: 10.1016/s0002-9440(10)63374-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Tissue plasminogen activator (tPA) is absent from normal human pancreas and is expressed in 95% of human pancreatic adenocarcinomas. We have analyzed the expression of components of the tPA system in murine pancreatic tumors and the role of tPA in neoplastic progression. Transgenic mice expressing T antigen and c-myc under the control of the elastase promoter (Ela1-TAg and Ela1-myc, respectively) were used. tPA was undetectable in normal pancreas, acinar dysplasia, ductal complexes, and in all acinar tumors. By contrast, it was consistently detected in Ela1-myc tumors showing ductal differentiation. Crossing transgenic Ela1-myc with tPA-/- mice had no effect on the proportion of ductal tumors, indicating that tPA is not involved in the acinar-to-ductal transition. Ela1-myc:tPA-/- mice showed an increased survival in comparison to control mice. All ductal tumors, and none of the acinar tumors, overexpressed the tPA receptor annexin A2, suggesting its participation in the effects mediated by tPA. Our findings indicate that murine and human pancreatic ductal tumors share molecular alterations in the tPA system that may play a role in tumor progression.
Collapse
Affiliation(s)
- Susana Aguilar
- Unitat de Biologia Cellular i Molecular, Institut Municipal d'Investigació Mèdica, Dr. Aiguader, 80, 08003-Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
190
|
Selleri C, Montuori N, Ricci P, Visconte V, Carriero MV, Sidenius N, Serio B, Blasi F, Rotoli B, Rossi G, Ragno P. Involvement of the urokinase-type plasminogen activator receptor in hematopoietic stem cell mobilization. Blood 2004; 105:2198-205. [PMID: 15494432 DOI: 10.1182/blood-2004-06-2424] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We investigated the involvement of the urokinase-type plasminogen-activator receptor (uPAR) in granulocyte-colony-stimulating factor (G-CSF)-induced mobilization of CD34+ hematopoietic stem cells (HSCs) from 16 healthy donors. Analysis of peripheral blood mononuclear cells (PBMNCs) showed an increased uPAR expression after G-CSF treatment in CD33+ myeloid and CD14+ monocytic cells, whereas mobilized CD34+ HSCs remained uPAR negative. G-CSF treatment also induced an increase in serum levels of soluble uPAR (suPAR). Cleaved forms of suPAR (c-suPAR) were released in vitro by PBMNCs and were also detected in the serum of G-CSF-treated donors. c-suPAR was able to chemoattract CD34+ KG1 leukemia cells and CD34+ HSCs, as documented by their in vitro migratory response to a chemotactic suPAR-derived peptide (uPAR84-95). uPAR84-95 induced CD34+ KG1 and CD34+ HSC migration by activating the high-affinity fMet-Leu-Phe (fMLP) receptor (FPR). In addition, uPAR84-95 inhibited CD34+ KG1 and CD34+ HSC in vitro migration toward the stromal-derived factor 1 (SDF1), thus suggesting the heterologous desensitization of its receptor, CXCR4. Finally, uPAR84-95 treatment significantly increased the output of clonogenic progenitors from long-term cultures of CD34+ HSCs. Our findings demonstrate that G-CSF-induced upregulation of uPAR on circulating CD33+ and CD14+ cells is associated with increased uPAR shedding, which leads to the appearance of serum c-suPAR. c-suPAR could contribute to the mobilization of HSCs by promoting their FPR-mediated migration and by inducing CXCR4 desensitization.
Collapse
Affiliation(s)
- Carmine Selleri
- Division of Hematology, Istituto di Endocrinologia ed Oncologia Sperimentale (IEOS), Consiglio Nazionale delle Ricerche, Via Pansini 5, I-80131, Naples, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
191
|
Funaro A, Ortolan E, Ferranti B, Gargiulo L, Notaro R, Luzzatto L, Malavasi F. CD157 is an important mediator of neutrophil adhesion and migration. Blood 2004; 104:4269-78. [PMID: 15328157 DOI: 10.1182/blood-2004-06-2129] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CD157, a glycosylphosphatidylinositol (GPI)-anchored protein encoded by a member of the CD38 NADase/ADP-ribosyl cyclase gene family, is expressed on the surface of most human circulating neutrophils. This work demonstrates that CD157 is a receptor that induces reorganization of the cytoskeleton and significant changes in cell shape, and that signals mediated by CD157 act through modulation of cytosolic Ca(2+) concentration. These signals are independent of the products of CD157's enzymatic activities (ie, cyclic adenosine diphosphate [ADP]-ribose and ADP-ribose). Indeed, the enzymatic activities of CD157 in circulating neutrophils as well as in dimethyl sulfoxide (DMSO)-differentiated (CD157(+)/CD38(-)) HL-60 cells, are hardly detectable. This work also shows that the receptorial activity relies on cross-talk between CD157 and beta(2) integrin. CD157 localizes in GM1-enriched lipid rafts and, upon activation, it migrates to the uropod, a structure specialized in motility and adhesive functions. Indeed, CD157 is involved in adhesion to extracellular matrix proteins and in chemotaxis induced in vitro by formyl-methionyl-leucyl-phenylalanine (fMLP). These findings were consistent with the results obtained in neutrophils from patients with paroxysmal nocturnal hemoglobinuria (PNH), in which CD157 is deficient. These neutrophils showed constant defects in adhesion and migration. Our data attribute specific and crucial roles to CD157 in the regulation of innate immunity during inflammation.
Collapse
Affiliation(s)
- Ada Funaro
- Laboratory of Immunogenetics, Department of Genetics, Biology and Biochemistry, University of Torino, Via Santena 19, 10126 Torino, Italy.
| | | | | | | | | | | | | |
Collapse
|
192
|
Al-Ejeh F, Croucher D, Ranson M. Kinetic analysis of plasminogen activator inhibitor type-2: urokinase complex formation and subsequent internalisation by carcinoma cell lines. Exp Cell Res 2004; 297:259-71. [PMID: 15194441 DOI: 10.1016/j.yexcr.2004.03.030] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2003] [Revised: 03/01/2004] [Indexed: 11/26/2022]
Abstract
The overexpression of urokinase (uPA), which plays a key role in tumour invasion and metastasis, is an established prognostic marker and potential therapeutic target. Plasminogen activator inhibitor type 2 (PAI-2), an efficient and specific inhibitor of uPA, has been shown to selectively deliver potent cytotoxins to tumour cells. However, a direct quantitative analysis of both the inhibition kinetics and subsequent fate of PAI-2 upon interaction with cell-surface uPA has not been previously undertaken. In this study, we analysed specific PAI-2 binding to receptor-bound uPA on human breast and prostate cancer cell lines to directly measure inhibition kinetics. Cell-surface uPA:PAI-2 complex formation, which is reflective of complete uPA inhibition, was found to be very efficient (inactivation constant [K(I)] = 60-80 pM, depending on cell line used) and rapid (inactivation rate constant [k(inact)] = 0.32-0.47 min(-1) at 37 degrees C, depending on cell line used). To directly quantify and visualise cellular internalisation and localisation, we developed a novel assay based on the use of PAI-2 labelled with Alexa(488) fluorochrome and a polyclonal antibody to quench Alexa(488) fluorescence. The efficient and rapid formation of uPA:PAI-2 complexes was thus shown to be associated with specific and rapid internalisation of PAI-2, which could be localised within endosomes and lysosomes. PAI-2 was subsequently degraded, presumably within lysosomes. This study is the first to provide definitive evidence for uPA/uPAR-mediated PAI-2 endocytosis.
Collapse
Affiliation(s)
- Fares Al-Ejeh
- School of Biological Sciences, University of Wollongong, NSW 2522, Australia
| | | | | |
Collapse
|
193
|
Gondi CS, Lakka SS, Yanamandra N, Olivero WC, Dinh DH, Gujrati M, Tung CH, Weissleder R, Rao JS. Adenovirus-Mediated Expression of Antisense Urokinase Plasminogen Activator Receptor and Antisense Cathepsin B Inhibits Tumor Growth, Invasion, and Angiogenesis in Gliomas. Cancer Res 2004; 64:4069-77. [PMID: 15205313 DOI: 10.1158/0008-5472.can-04-1243] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We have shown previously that urokinase plasminogen activator receptor (uPAR) and cathepsin B are overexpressed during glioma progression, particularly at the leading edge of the tumor. In the present study, we simultaneously down-regulated uPAR and cathepsin B in SNB19 glioma cell monolayer or SNB19 spheroids using an adenoviral vector carrying antisense uPAR and antisense cathepsin B and a combination of these genes as determined by Western blot analysis. The Ad-uPAR-Cath B-infected cells revealed a marked reduction in tumor growth and invasiveness as compared with the parental and vector controls. In vitro and in vivo angiogenic assays demonstrated inhibition of capillary-like structure formation and microvessel formation after Ad-uPAR-Cath B infection of SNB19 cells when compared with Ad-cytomegalovirus (CMV)-infected or mock-infected controls. Furthermore, using a near infrared fluorescence probe, in vivo imaging for cathepsin B indicated low/undetectable levels of fluorescence after injection of the Ad-uPAR-Cath B construct into pre-established s.c. tumors as compared with Ad-CMV-treated and untreated tumors. The effect with bicistronic construct (Ad-uPAR-Cath B) was much higher than with single (Ad-uPAR/Ad-Cath B) constructs. These results indicate that the down-regulation of cathepsin B and uPAR plays a significant role in inhibiting tumor growth, invasion, and angiogenesis. Hence, the targeting of these two proteases may be a potential therapy for brain tumors and other cancers.
Collapse
MESH Headings
- Adenoviridae/genetics
- Animals
- Cathepsin B/antagonists & inhibitors
- Cathepsin B/genetics
- Cell Division/genetics
- Cell Movement/genetics
- DNA, Antisense/administration & dosage
- DNA, Antisense/genetics
- Female
- Genetic Therapy/methods
- Glioblastoma/blood supply
- Glioblastoma/genetics
- Glioblastoma/therapy
- Glioblastoma/virology
- Humans
- Male
- Mice
- Mice, Nude
- Neoplasm Invasiveness
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/pathology
- Neovascularization, Pathologic/therapy
- Receptors, Cell Surface/antagonists & inhibitors
- Receptors, Cell Surface/genetics
- Receptors, Urokinase Plasminogen Activator
- Spheroids, Cellular
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Christopher S Gondi
- Program of Cancer Biology and Department of Biomedical and Therapeutic Sciences, University of Illinois College of Medicine, Peoria, 61656, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
194
|
Puig-de-Morales M, Millet E, Fabry B, Navajas D, Wang N, Butler JP, Fredberg JJ. Cytoskeletal mechanics in adherent human airway smooth muscle cells: probe specificity and scaling of protein-protein dynamics. Am J Physiol Cell Physiol 2004; 287:C643-54. [PMID: 15175221 DOI: 10.1152/ajpcell.00070.2004] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We probed elastic and loss moduli in the adherent human airway smooth muscle cell through a variety of receptor systems, each serving as a different molecular window on cytoskeletal dynamics. Coated magnetic microbeads were attached to the cell surface via coating-receptor binding. A panel of bead coatings was investigated: a peptide containing the sequence RGD, vitronectin, urokinase, activating antibody against beta(1)-integrin, nonactivating antibody against beta(1)-integrin, blocking antibody against beta(1)-integrin, antibody against beta(1)-integrin, and acetylated low-density lipoprotein. An oscillatory mechanical torque was applied to the bead, and resulting lateral displacements were measured at baseline, after actin disruption by cytochalasin D, or after contractile activation by histamine. As expected, mechanical moduli depended strongly on bead type and bead coating, differing at the extremes by as much as two orders of magnitude. In every case, however, elastic and loss moduli increased with frequency f as a weak power law, f( x-1). Moreover, with few exceptions, data could be scaled such that elastic and frictional responses depended solely on the power law exponent x. Taken together, these data suggest that power law behavior represents a generic feature of underlying protein-protein dynamics.
Collapse
Affiliation(s)
- Marina Puig-de-Morales
- Physiology Program, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02115.
| | | | | | | | | | | | | |
Collapse
|
195
|
Huang JB, Takeda Y, Araki Y, Sendo F, Petty HR. Molecular proximity of complement receptor type 3 (CR3) and the glycosylphosphatidylinositol-linked protein GPI-80 on neutrophils: effects of cell adherence, exogenous saccharides, and lipid raft disrupting agents. Mol Immunol 2004; 40:1249-56. [PMID: 15128041 DOI: 10.1016/j.molimm.2003.11.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
GPI-80, a novel glycosylphosphatidylinositol (GPI)-anchored protein on polymorphonuclear leukocytes, has been reported to cooperate with CR3 in several aspects of cell function including cell activation, adhesion and migration. The present study investigates the physical proximity of CR3 and GPI-80 on living cells using resonance energy transfer (RET) techniques, which gives positive results when the separation distance is < or = 7 nm. RET from donor-labeled anti-CR3 to acceptor-labeled anti-GPI-80 was detected on adherent neutrophils, but not observed for non-adherent cells. Furthermore, RET was not observed on cells treated with cell adhesion inhibitors 4-bromophenacyl bromide (BPB), N-ethylmaleimide (NEM) or cytochalasin D, suggesting dynamic interactions between CR3 and GPI-80. CR3-to-GPI-80 proximity was blocked by N-acetyl-D-glucosamine (NADG), but not by other monosaccharides such as D-mannose, fructose, fucose, glucose, sorbitol, or galactose; molecular proximity was also disrupted by the glycolipid raft depleting agents 2-OH-propyl-betaCD and MbetaCD. Thus, lipid rafts may be important for the physical and functional cooperation of CR3 and GPI-80.
Collapse
Affiliation(s)
- Ji-Biao Huang
- Department of Ophthalmology and Visual Science, University of Michigan Medical School, 1000 Wall Street, Ann Arbor, MI 48105, USA
| | | | | | | | | |
Collapse
|
196
|
Degryse B, Neels JG, Czekay RP, Aertgeerts K, Kamikubo YI, Loskutoff DJ. The Low Density Lipoprotein Receptor-related Protein Is a Motogenic Receptor for Plasminogen Activator Inhibitor-1. J Biol Chem 2004; 279:22595-604. [PMID: 15001579 DOI: 10.1074/jbc.m313004200] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Although plasminogen activator inhibitor-1 (PAI-1) is known to stimulate cell migration, little is known about underlying mechanisms. We show that both active and inactive (e.g. cleaved) PAI-1 can activate the Jak/Stat signaling system and stimulate cell migration in chemotaxis, haptotaxis, chemokinesis, and wound healing assays. Moreover, antibodies to the LDL receptor-related protein (LRP) and an LRP antagonist (RAP) blocked these motogenic effects of PAI-1, while a PAI-1 mutant that did not bind to LRP failed to activate the Jak/Stat signaling pathway or to stimulate cell migration. PAI-1 had no chemotactic effect on LRP-deficient cells. These results indicate that LRP is a signaling molecule, that it mediates the migration-promoting activity of PAI-1, and that this activity does not require intact, biologically active PAI-1. Activation of this LRP-dependent signaling pathway by PAI-1 may begin to explain how the inhibitor stimulates cell migration in a variety of normal and pathological processes.
Collapse
Affiliation(s)
- Bernard Degryse
- Department of Cell Biology, The Scripps Research Institute, VB-3, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|
197
|
Hiendlmeyer E, Regus S, Wassermann S, Hlubek F, Haynl A, Dimmler A, Koch C, Knoll C, van Beest M, Reuning U, Brabletz T, Kirchner T, Jung A. Beta-catenin up-regulates the expression of the urokinase plasminogen activator in human colorectal tumors. Cancer Res 2004; 64:1209-14. [PMID: 14973118 DOI: 10.1158/0008-5472.can-3627-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Expression of the urokinase plasminogen activator (uPA) increases during the progression of colorectal tumors from adenomas to carcinomas. The highest amounts of uPA are found at the invasion front of carcinomas, which also displays a strong expression of nuclear beta-catenin and is therefore a region expressing beta-catenin target genes at high levels. Here we show that beta-catenin contributes to the transactivation of uPA. Therefore, beta-catenin might have an impact on the capacity of colorectal tumors for invasion and metastasis, as well as dormancy, which are hallmarks of cancer.
Collapse
Affiliation(s)
- Elke Hiendlmeyer
- Pathologisches Institut der Universität Erlangen-Nürnberg, Krankenhausstrasse 8-10, 91054 Erlangen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
198
|
Dalvi N, Thomas GJ, Marshall JF, Morgan M, Bass R, Ellis V, Speight PM, Whawell SA. Modulation of the urokinase-type plasminogen activator receptor by the β6 integrin subunit. Biochem Biophys Res Commun 2004; 317:92-9. [PMID: 15047152 DOI: 10.1016/j.bbrc.2004.02.178] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2004] [Indexed: 11/21/2022]
Abstract
Over-expression of components of the urokinase system is well documented in cancer and is thought to enable tumour cells to migrate and invade. Changes in integrin expression are also a common feature of tumours and have been linked to changes in protease activity. It has been shown that the alphavbeta6 integrin is neo-expressed in a number of epithelial carcinomas and in wound healing situations. We therefore investigated whether alphavbeta6 is able to modulate a key regulator of proteolysis, the urokinase receptor. We report that epithelial cells expressing full-length alphavbeta6 exhibit decreased urokinase receptor expression and function. Furthermore, this novel modulation requires the C-terminal 11 amino acids of the cytoplasmic tail of the beta6 integrin subunit. Cells expressing alphavbeta3, however, did not affect urokinase receptor expression. De novo expression of beta6 by melanoma cells and beta3 by epithelial cells did not influence urokinase receptor expression or function, suggesting that modulation of urokinase system is both integrin subunit and cell-specific.
Collapse
Affiliation(s)
- Nafisa Dalvi
- Department of Oral Pathology, Eastman Dental Institute for Oral Health Care Sciences, University College London, London WC1X 8LD, UK.
| | | | | | | | | | | | | | | |
Collapse
|
199
|
Zhu Y, Bujo H, Yamazaki H, Ohwaki K, Jiang M, Hirayama S, Kanaki T, Shibasaki M, Takahashi K, Schneider WJ, Saito Y. LR11, an LDL receptor gene family member, is a novel regulator of smooth muscle cell migration. Circ Res 2004; 94:752-8. [PMID: 14764453 DOI: 10.1161/01.res.0000120862.79154.0f] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
LR11, a member of the LDL receptor family, is highly expressed in vascular smooth muscle cells (SMCs) of the hyperplastic intima, and induces enhanced migration of SMCs in vitro via its upregulation of urokinase-type plasminogen activator receptor (uPAR) expression. In this study, we have delineated the mechanism by which LR11 elevates the expression levels of uPAR in SMCs. Secretion of soluble LR11 is induced in SMCs during the rapidly proliferating phase, and the secreted LR11 induces the migration activities of SMCs. Both the cell-anchored and secreted forms of LR11 have the capacity to bind to and form complexes with uPAR. LR11-overexpressing cells show significantly enhanced uPAR binding, but decreased uPAR internalization. LR11 colocalizes with uPAR on the cell surface and inhibits the LDL receptor-related protein (LRP)-mediated binding and internalization of uPAR. Thus, LR11 mediates the uPAR localization to the plasma membrane. LR11 is highly expressed in the atheromatous plaque areas of apoE knockout mice, particularly in the intimal SMCs at the border between intima and media. The neutralization of LR11 function with anti-LR11 antibody reduced cuff-induced intimal thickness in mice. The novel mechanism of regulation of uPAR localization in SMCs accompanied with enhanced migration activity possibly constitutes an important factor in the process of atherosclerosis and arterial remodeling.
Collapse
MESH Headings
- Animals
- Apolipoproteins E/deficiency
- Apolipoproteins E/genetics
- COS Cells
- Cell Movement/drug effects
- Cell Movement/physiology
- Cells, Cultured/cytology
- Chlorocebus aethiops
- Collagen
- Culture Media, Conditioned/pharmacology
- DNA, Complementary/genetics
- Endocytosis
- Ligands
- Membrane Proteins/physiology
- Membrane Transport Proteins/genetics
- Membrane Transport Proteins/metabolism
- Membrane Transport Proteins/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/cytology
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Rabbits
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, LDL/genetics
- Receptors, LDL/physiology
- Receptors, Urokinase Plasminogen Activator
- Recombinant Fusion Proteins/metabolism
- Solubility
- Transfection
Collapse
Affiliation(s)
- Yanjuan Zhu
- Department of Clinical Cell Biology (F5), Chiba University Graduate School of Medicine,Chiba, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
200
|
Bumaschny V, Urtreger A, Diament M, Krasnapolski M, Fiszman G, Klein S, Joffé EBDK. Malignant myoepithelial cells are associated with the differentiated papillary structure and metastatic ability of a syngeneic murine mammary adenocarcinoma model. Breast Cancer Res 2004; 6:R116-29. [PMID: 14979922 PMCID: PMC400656 DOI: 10.1186/bcr757] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2002] [Revised: 12/05/2003] [Accepted: 12/16/2003] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The normal duct and lobular system of the mammary gland is lined with luminal and myoepithelial cell types. Although evidence suggests that myoepithelial cells might suppress tumor growth, invasion and angiogenesis, their role remains a major enigma in breast cancer biology and few models are currently available for exploring their influence. Several years ago a spontaneous transplantable mammary adenocarcinoma (M38) arose in our BALB/c colony; it contains a malignant myoepithelial cell component and is able to metastasize to draining lymph nodes and lung. METHODS To characterize this tumor further, primary M38 cultures were established. The low-passage LM38-LP subline contained two main cell components up to the 30th subculture, whereas the higher passage LM38-HP subline was mainly composed of small spindle-shaped cells. In addition, a large spindle cell clone (LM38-D2) was established by dilutional cloning of the low-passage MM38-LP cells. These cell lines were studied by immunocytochemistry, electron microscopy and ploidy, and syngeneic mice were inoculated subcutaneously and intravenously with the different cell lines, either singly or combined to establish their tumorigenic and metastatic capacity. RESULTS The two subpopulations of LM38-LP cultures were characterized as luminal and myoepithelium-like cells, whereas LM38-HP was mainly composed of small, spindle-shaped epithelial cells and LM38-D2 contained only large myoepithelial cells. All of them were tumorigenic when inoculated into syngeneic mice, but only LM38-LP cultures containing both conserved luminal and myoepithelial malignant cells developed aggressive papillary adenocarcinomas that spread to lung and regional lymph nodes. CONCLUSION The differentiated histopathology and metastatic ability of the spontaneous transplantable M38 murine mammary tumor is associated with the presence and/or interaction of both luminal and myoepithelial tumor cell types.
Collapse
MESH Headings
- Adenocarcinoma/enzymology
- Adenocarcinoma/genetics
- Adenocarcinoma/secondary
- Adenocarcinoma, Papillary/enzymology
- Adenocarcinoma, Papillary/genetics
- Adenocarcinoma, Papillary/pathology
- Adenocarcinoma, Papillary/ultrastructure
- Animals
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Cell Proliferation
- DNA, Neoplasm/genetics
- Disease Models, Animal
- Lung Neoplasms/genetics
- Lung Neoplasms/secondary
- Lymph Nodes/pathology
- Lymphatic Metastasis/genetics
- Lymphatic Metastasis/pathology
- Mammary Neoplasms, Animal/enzymology
- Mammary Neoplasms, Animal/genetics
- Mammary Neoplasms, Animal/pathology
- Mammary Neoplasms, Experimental/enzymology
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/pathology
- Mice
- Mice, Inbred BALB C
- Microscopy, Electron, Transmission/methods
- Myoepithelioma/genetics
- Neoplasm Transplantation/methods
- Peptide Hydrolases/biosynthesis
- Ploidies
- Spheroids, Cellular/chemistry
- Spheroids, Cellular/metabolism
- Spheroids, Cellular/ultrastructure
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Viviana Bumaschny
- Research Area, Institute of Oncology 'Angel H. Roffo', University of Buenos Aires, Argentina
| | - Alejandro Urtreger
- Research Area, Institute of Oncology 'Angel H. Roffo', University of Buenos Aires, Argentina
| | - Miriam Diament
- Research Area, Institute of Oncology 'Angel H. Roffo', University of Buenos Aires, Argentina
| | - Martín Krasnapolski
- Research Area, Institute of Oncology 'Angel H. Roffo', University of Buenos Aires, Argentina
| | - Gabriel Fiszman
- Research Area, Institute of Oncology 'Angel H. Roffo', University of Buenos Aires, Argentina
| | - Slobodanka Klein
- Research Area, Institute of Oncology 'Angel H. Roffo', University of Buenos Aires, Argentina
| | - Elisa Bal de Kier Joffé
- Research Area, Institute of Oncology 'Angel H. Roffo', University of Buenos Aires, Argentina
| |
Collapse
|