151
|
Laurent N, Voglmeir J, Flitsch SL. Glycoarrays--tools for determining protein-carbohydrate interactions and glycoenzyme specificity. Chem Commun (Camb) 2008:4400-12. [PMID: 18802573 DOI: 10.1039/b806983m] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carbohydrate arrays (glycoarrays) have recently emerged as a high-throughput tool for studying carbohydrate-binding proteins and carbohydrate-processing enzymes. A number of sophisticated array platforms that allow for qualitative and quantitative analysis of carbohydrate binding and modification on the array surface have been developed, including analysis by fluorescence spectroscopy, mass spectrometry and surface plasmon resonance spectroscopy. These platforms, together with examples of biologically-relevant applications are reviewed in this Feature Article.
Collapse
Affiliation(s)
- Nicolas Laurent
- Manchester Interdisciplinary Biocentre and School of Chemistry, The University of Manchester, 131 Princess Street, Manchester, UK M1 7DN
| | | | | |
Collapse
|
152
|
Linman MJ, Taylor JD, Yu H, Chen X, Cheng Q. Surface plasmon resonance study of protein-carbohydrate interactions using biotinylated sialosides. Anal Chem 2008; 80:4007-13. [PMID: 18461973 DOI: 10.1021/ac702566e] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Lectins are carbohydrate binding proteins found in plants, animals, and microorganisms. They serve as important models for understanding protein-carbohydrate interactions at the molecular level. We report here the fabrication of a novel sensing interface of biotinylated sialosides to probe lectin-carbohydrate interactions using surface plasmon resonance spectroscopy (SPR). The attachment of carbohydrates to the surface using biotin-NeutrAvidin interactions and the implementation of an inert hydrophilic hexaethylene glycol spacer (HEG) between the biotin and the carbohydrate result in a well-defined interface, enabling desired orientational flexibility and enhanced access of binding partners. The specificity and sensitivity of lectin binding were characterized using Sambucus nigra agglutinin (SNA) and other lectins including Maackia amurensis lectin (MAL), concanavalin A (Con A), and wheat germ agglutinin (WGA). The results indicate that alpha2,6-linked sialosides exhibit high binding affinity to SNA, while alteration in sialyl linkage and terminal sialic acid structure compromises the affinity by a varied degree. Quantitative analysis yields an equilibrium dissociation constant (KD) of 777 +/- 93 nM for SNA binding to Neu5Ac alpha2,6-LHEB. Transient SPR kinetics confirms the K D value from the equilibrium binding studies. A linear relationship was obtained in the 10-100 microg/mL range with limit of detection of approximately 50 nM. Weak interactions with MAL, Con A, and WGA were also quantified. The control experiment with bovine serum albumin indicates that nonspecific interaction on this surface is insignificant over the concentration range studied. Multiple experiments can be performed on the same substrate using a glycine stripping buffer, which selectively regenerates the surface without damaging the sialoside or the biotin-NeutrAvidin interface. This surface design retains a high degree of native affinity for the carbohydrate motifs, allowing distinction of sialyl linkages and investigation pertaining to the effect of functional group on binding efficiency. It could be easily modified to identify and quantify binding patterns of any low-affinity biologically relevant systems, opening new avenues for probing carbohydrate-protein interactions in real time.
Collapse
Affiliation(s)
- Matthew J Linman
- Department of Chemistry, University of California, Riverside, California 92521, USA
| | | | | | | | | |
Collapse
|
153
|
Suzuki Y, Inoue T, Yoshimaru T, Ra C. Galectin-3 but not galectin-1 induces mast cell death by oxidative stress and mitochondrial permeability transition. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:924-34. [PMID: 18302939 DOI: 10.1016/j.bbamcr.2008.01.025] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Revised: 01/11/2008] [Accepted: 01/22/2008] [Indexed: 11/19/2022]
Abstract
Galectin-1 and galectin-3 are the most ubiquitously expressed members of the galectin family and more importantly, these two molecules are shown to have opposite effects on pro-inflammatory responses and/or apoptosis depending on the cell type. Herein, we demonstrate for the first time that galectin-3 induces mast cell apoptosis. Mast cells expressed substantial levels of galectin-3 and galectin-1 and to a lesser extent the receptor for advanced glycation end products (RAGE) on their surfaces. Treatment of cells with galectin-3 at concentrations of > or =100 nM for 18-44 h resulted in cell death by apoptosis. Galectin-3-induced apoptosis was completely prevented by lactose, neutralizing antibody to RAGE, and the caspase-3 inhibitor z-DEVD-fmk. Galectin-3-induced apoptosis was also completely abolished by dithiothreitol and superoxide dismutase, but not inhibited by catalase. Moreover, galectin-3 but not galectin-1 induced the release of superoxide, which was blocked by lactose, anti-RAGE, and dithiothreitol. Finally, galectin-3-induced apoptosis was blocked by bongkrekic acid, an antagonist of the mitochondrial permeability transition pore (PTP), while atractyloside, an agonist of the PTP, greatly facilitated galectin-1-induced apoptosis. These data suggest that galectin-3 induces oxidative stress, PTP opening, and the caspase-dependent death pathway by binding to putative surface receptors including RAGE via the carbohydrate recognition domain.
Collapse
Affiliation(s)
- Yoshihiro Suzuki
- Division of Molecular Cell Immunology and Allergology, Nihon University Graduate School of Medical Sciences, Tokyo, Japan.
| | | | | | | |
Collapse
|
154
|
Misawa Y, Masaka R, Maeda K, Yano M, Murata T, Kawagishi H, Usui T. Efficient synthesis of spacer-N-linked double-headed glycosides carrying N-acetylglucosamine and N,N′-diacetylchitobiose and their cross-linking activities with wheat germ agglutinin. Carbohydr Res 2008; 343:434-42. [DOI: 10.1016/j.carres.2007.11.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Revised: 11/15/2007] [Accepted: 11/25/2007] [Indexed: 10/22/2022]
|
155
|
Monzo A, Bonn GK, Guttman A. Boronic acid–lectin affinity chromatography. 1. Simultaneous glycoprotein binding with selective or combined elution. Anal Bioanal Chem 2007; 389:2097-102. [PMID: 17909756 DOI: 10.1007/s00216-007-1627-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Revised: 09/11/2007] [Accepted: 09/12/2007] [Indexed: 10/22/2022]
Abstract
We introduce a novel combination of boronic acid affinity chromatography with lectin affinity chromatography, dubbed as boronic acid-lectin affinity chromatography (BLAC). Concanavalin A and wheat germ agglutinin lectins were mixed with the pesudo-lectin boronic acid to form the BLAC affinity column and their performance was evaluated with standard glycoproteins. Optimization of the binding and elution buffers for the BLAC system is described. The BLAC columns were employed to isolate glycoproteins of interest using both selective and/or combined elution.
Collapse
Affiliation(s)
- Alex Monzo
- Horváth Laboratory of Bioseparation Sciences, Institute of Analytical Chemistry and Radiochemistry, University of Innsbruck, Innrain 66, 6020, Innsbruck, Austria
| | | | | |
Collapse
|
156
|
Belitsky JM, Nelson A, Hernandez JD, Baum LG, Stoddart JF. Multivalent interactions between lectins and supramolecular complexes: Galectin-1 and self-assembled pseudopolyrotaxanes. CHEMISTRY & BIOLOGY 2007; 14:1140-51. [PMID: 17961826 PMCID: PMC2072908 DOI: 10.1016/j.chembiol.2007.09.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2005] [Revised: 08/28/2007] [Accepted: 09/05/2007] [Indexed: 11/21/2022]
Abstract
Supramolecular chemistry has been employed to develop flexible and adaptable multivalent neoglycoconjugates for binding galectin-1 (Gal-1). Gal-1, a dimeric lectin with two galactoside-binding sites, regulates cancer progression and immune responses. Self-assembled pseudopolyrotaxanes consisting of lactoside-displaying cyclodextrin (LCD) "beads" threaded onto polyviologen "strings" display mobile ligands as a result of cyclodextrin rotation about, and limited translation along, the polymer chain. The pseudopolyrotaxanes rapidly and efficiently precipitate Gal-1 and provide valency-corrected enhancements of up to 30-fold compared to native lactose and 20-fold over free LCD in a T-cell agglutination assay. A supramolecular statistical effect was observed, wherein the efficacy of Gal-1 inhibition correlates with the number of ligands connected to each other solely through mechanical and noncovalent interactions. Such flexible and adaptable self-assembled pseudopolyrotaxanes show promise for the study of multivalent interactions and targeting of therapeutically relevant lectins.
Collapse
Affiliation(s)
- Jason M. Belitsky
- California NanoSystems Institute and Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA
| | - Alshakim Nelson
- California NanoSystems Institute and Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA
| | - Joseph D. Hernandez
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Linda G. Baum
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA
| | - J. Fraser Stoddart
- California NanoSystems Institute and Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA
| |
Collapse
|
157
|
Fukumori T, Kanayama HO, Raz A. The role of galectin-3 in cancer drug resistance. Drug Resist Updat 2007; 10:101-8. [PMID: 17544840 PMCID: PMC3626271 DOI: 10.1016/j.drup.2007.04.001] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Revised: 04/06/2007] [Accepted: 04/10/2007] [Indexed: 01/05/2023]
Abstract
The galectins comprise a family of 14 members of beta-galactoside-binding proteins, characterized by their affinity for beta-galactosides and by a conserved sequence in the carbohydrate recognition domain that bind to the carbohydrate portion of cell surface glycoproteins or glycolipids. Galectin-3, a 31kDa gene product, is a multifunctional oncogenic protein which regulates cell growth, cell adhesion, cell proliferation, angiogenesis, and apoptosis. Recent studies have revealed that galectin-3 demonstrates anti-apoptotic effects which contribute to cell survival in several types of cancer cells. Intracellular galectin-3 in particular, which contains the NWGR anti-death motif of the Bcl-2 family, inhibits cell apoptosis induced by chemotherapeutic agent such as cisplatin and etoposide in some types of cancer cells. We have also reported that nuclear export of phosphorylated galectin-3 regulates its anti-apoptotic activity in response to chemotherapeutic drugs. Here, we will describe the role of galectin-3 as an anti-apoptotic factor in response to chemotherapeutic drugs and will discuss recent data on its molecular mechanism that contribute to drug resistance. We suggest that targeting galectin-3 could improve the efficacy of anticancer drug chemotherapy in several types of cancer.
Collapse
Affiliation(s)
- Tomoharu Fukumori
- Department of Urology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8503, Japan
| | - Hiro-omi Kanayama
- Department of Urology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8503, Japan
| | - Avraham Raz
- Tumor Progression and Metastasis Program, Karmanos Cancer Institute, Wayne State University, 110 East Warren Avenue, Detroit, MI 48201, USA
- Corresponding author. Tel.: +1 313 833 0960; fax: +1 313 831 7518. (A. Raz)
| |
Collapse
|
158
|
Murakami T, Hirono R, Sato Y, Furusawa K. Efficient synthesis of ω-mercaptoalkyl 1,2-trans-glycosides from sugar peracetates. Carbohydr Res 2007; 342:1009-20. [PMID: 17362892 DOI: 10.1016/j.carres.2007.02.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2007] [Revised: 02/16/2007] [Accepted: 02/20/2007] [Indexed: 11/24/2022]
Abstract
Lewis acid-promoted reactions of peracetylated sugars (glucose, galactose, maltose, lactose) with omega-bromo-1-alkanols (C(8), C(12)) were investigated. ZnCl(2) was found to promote the 1,2-trans-glycosylation of the alcohols in toluene at about 60 degrees C in a stereocontrolled manner with better yields than commonly employed promoters such as SnCl(4). The omega-bromoalkyl acetylated glycosides were readily converted to omega-mercaptoalkyl glycosides, which are useful for the preparation of glycoclusters.
Collapse
Affiliation(s)
- Teiichi Murakami
- Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, Tsukuba, Ibaraki 305-8565, Japan.
| | | | | | | |
Collapse
|
159
|
Özyürek Z, Komber H, Gramm S, Schmaljohann D, Müller AHE, Voit B. Thermoresponsive Glycopolymers via Controlled Radical Polymerization. MACROMOL CHEM PHYS 2007. [DOI: 10.1002/macp.200600661] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
160
|
Toscano MA, Ilarregui JM, Bianco GA, Campagna L, Croci DO, Salatino M, Rabinovich GA. Dissecting the pathophysiologic role of endogenous lectins: Glycan-binding proteins with cytokine-like activity? Cytokine Growth Factor Rev 2007; 18:57-71. [PMID: 17321195 DOI: 10.1016/j.cytogfr.2007.01.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Several families of endogenous glycan-binding proteins have been implicated in a wide variety of immunological functions including first-line defence against pathogens, cell trafficking, and immune regulation. These include, among others, the C-type lectins (collectins, selectins, mannose receptor, and others), S-type lectins (galectins), I-type lectins (siglecs and others), P-type lectins (phosphomannosyl receptors), pentraxins, and tachylectins. This review will concentrate on the immunoregulatory roles of galectins (particularly galectin-1) and collectins (mannose-binding lectins and surfactant proteins) to illustrate the ability of endogenous glycan-binding proteins to act as cytokines, chemokines or growth factors, and thereby modulating innate and adaptive immune responses under physiological or pathological conditions. Understanding the pathophysiologic relevance of endogenous lectins in vivo will reveal novel targets for immunointervention during chronic infection, autoimmunity, transplantation and cancer.
Collapse
Affiliation(s)
- Marta A Toscano
- Division of Immunogenetics, Hospital de Clínicas José de San Martín, University of Buenos Aires, Buenos Aires, Argentina.
| | | | | | | | | | | | | |
Collapse
|
161
|
Guarise C, Prins LJ, Scrimin P. Fully symmetrical functionalization of multivalent scaffold molecules on solid support. Tetrahedron 2006. [DOI: 10.1016/j.tet.2006.09.053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
162
|
Monzo A, Guttman A. Immobilization Techniques for Mono- and Oligosaccharide Microarrays. ACTA ACUST UNITED AC 2006. [DOI: 10.1002/qsar.200640082] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
163
|
Abstract
A paper in this issue of Structure reports the crystal structure of griffithsin, a lectin from red algae, and demonstrates its ability to bind and neutralize the SARS coronavirus, providing a link in understanding the evolution of lectins in this family. (Ziółkowska et al., 2006).
Collapse
Affiliation(s)
- Nagasuma Chandra
- Bioinformatics Centre, Indian Institute of Science, Bangalore, 560012, India
- Ph: +91-80-22932892; Fax:+91-80-23600551
| |
Collapse
|
164
|
The Fibroblast Growth Factor (FGF) – FGF Receptor Complex: Progress Towards the Physiological State. Top Curr Chem (Cham) 2006. [DOI: 10.1007/128_068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
165
|
Tejler J, Tullberg E, Frejd T, Leffler H, Nilsson UJ. Synthesis of multivalent lactose derivatives by 1,3-dipolar cycloadditions: selective galectin-1 inhibition. Carbohydr Res 2006; 341:1353-62. [PMID: 16697988 DOI: 10.1016/j.carres.2006.04.028] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2006] [Revised: 04/10/2006] [Accepted: 04/15/2006] [Indexed: 10/24/2022]
Abstract
Acetylene derivatives of phenylalanine, phenethylamine and the multifunctional unnatural amino acids, phenyl-bis-alanine and phenyl-tris-alanine, were synthesized and functionalized with 2-azidoethyl beta-D-galactopyranosyl-(1-->4)-beta-D-glucopyranoside via regioselective copper(I)-mediated 1,3-dipolar cycloaddition to give a panel of mono-, di- and trivalent lactoside derivatives. Evaluation of the compounds as inhibitors against the tumour- and inflammation-related galectin-1, -3, -4N, -4C, -4, -7, -8N and -9N revealed a divalent compound with a Kd value as low as 3.2 microM for galectin-1, which corresponded to a relative potency of 30 per lactose unit as compared to the natural disaccharide ligand lactose. This divalent compound had at least one order of magnitude higher affinity for galectin-1 than for any of the other galectins investigated.
Collapse
Affiliation(s)
- Johan Tejler
- Organic Chemistry, Lund University, PO Box 124, SE-221 00 Lund, Sweden
| | | | | | | | | |
Collapse
|
166
|
Perone MJ, Larregina AT, Shufesky WJ, Papworth GD, Sullivan MLG, Zahorchak AF, Stolz DB, Baum LG, Watkins SC, Thomson AW, Morelli AE. Transgenic Galectin-1 Induces Maturation of Dendritic Cells That Elicit Contrasting Responses in Naive and Activated T Cells. THE JOURNAL OF IMMUNOLOGY 2006; 176:7207-20. [PMID: 16751364 DOI: 10.4049/jimmunol.176.12.7207] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Dendritic cells (DC) are professional APC that control the balance between T cell immunity and tolerance. Genetic engineering of DC to regulate the outcome of the immune response is an area of intense research. Galectin (gal)-1 is an endogenous lectin that binds to glycoproteins and exerts potent regulatory effects on T cells. Consequently, gal-1 participates in central deletion of thymocytes and exerts therapeutic effects on experimental models of T cell-mediated autoimmune disorders and graft-vs-host disease. Together, these observations strongly indicate that engineering DC to express transgenic (tg) gal-1 may be beneficial to treat T cell-mediated disorders. In this study, we have investigated the impact of the expression of high levels of tg gal-1 on maturation/activation of DC and on their T cell stimulatory function. Murine DC were transduced with a recombinant adenovirus encoding hu gal-1 (gal-1-DC). Tg gal-1 was exported by a nonclassical pathway through exosomes and was retained on the DC surface inducing segregation of its ligand CD43. Expression of tg gal-1 triggered activation of DC determined by induction of a more mature phenotype, increased levels of mRNA for proinflammatory cytokines, and enhanced ability to stimulate naive T cells. Conversely, gal-1-DC induced rapid apoptosis of activated T cells. In vivo, gal-1-DC increased significantly the sensitization phase of contact hypersensitivity assays while inducing a drastic inhibition of the elicitation phase by triggering apoptosis of activated T cells in the dermis. Gal-1-DC represent a novel tool to control differentially the afferent and efferent arms of the T cell response.
Collapse
Affiliation(s)
- Marcelo J Perone
- Thomas E. Starzl Transplantation Institute and Department of Surgery, University of Pittsburgh Medical Center, PA 15213, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
167
|
Silvius JR, Nabi IR. Fluorescence-quenching and resonance energy transfer studies of lipid microdomains in model and biological membranes. Mol Membr Biol 2006; 23:5-16. [PMID: 16611577 DOI: 10.1080/09687860500473002] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Measurements of contact-dependent fluorescence quenching and of fluorescence resonance energy transfer (FRET) within bilayers provide information concerning the spatial relationships between molecules on distance scales of a few nm or up a few tens of nm, respectively, and are therefore well suited to detect the presence and composition of membrane microdomains. As described in this review, techniques based on fluorescence quenching and FRET have been used to demonstrate the formation of nanoscale liquid-ordered domains in cholesterol-containing model membranes under physiological conditions, and to investigate the structural features of lipids and proteins that influence their partitioning between liquid-ordered and liquid-disordered domains. FRET-based methods have also been used to test for the presence of 'raft' microdomains in the plasma membranes of mammalian cells. We discuss the sometimes divergent findings of these studies, possible modifications to the 'raft hypothesis' suggested by studies using FRET and other techniques, and the further potential of FRET-based methods to test and to refine current models of the nature and organization of membrane microdomains.
Collapse
Affiliation(s)
- John R Silvius
- Department of Biochemistry, McGill University, Montréal, Québec, Canada.
| | | |
Collapse
|
168
|
Mitchell EP, Sabin C, Snajdrová L, Pokorná M, Perret S, Gautier C, Hofr C, Gilboa-Garber N, Koca J, Wimmerová M, Imberty A. High affinity fucose binding of Pseudomonas aeruginosa lectin PA-IIL: 1.0 A resolution crystal structure of the complex combined with thermodynamics and computational chemistry approaches. Proteins 2006; 58:735-46. [PMID: 15573375 DOI: 10.1002/prot.20330] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
PA-IIL is a fucose-binding lectin from Pseudomonas aeruginosa that is closely related to the virulence factors of the bacterium. Previous structural studies have revealed a new carbohydrate-binding mode with direct involvement of two calcium ions (Mitchell E, Houles C, Sudakevitz D, Wimmerova M, Gautier C, Perez S, Wu AM, Gilboa-Garber N, Imberty A. Structural basis for selective recognition of oligosaccharides from cystic fibrosis patients by the lectin PA-IIL of Pseudomonas aeruginosa. Nat Struct Biol 2002;9:918-921). A combination of thermodynamic, structural, and computational methods has been used to study the basis of the high affinity for the monosaccharide ligand. A titration microcalorimetry study indicated that the high affinity is enthalpy driven. The crystal structure of the tetrameric PA-IIL in complex with fucose and calcium was refined to 1.0 A resolution and, in combination with modeling, allowed a proposal to be made for the hydrogen-bond network in the binding site. Calculations of partial charges using ab initio computational chemistry methods indicated that extensive delocalization of charges between the calcium ions, the side chains of the protein-binding site and the carbohydrate ligand is responsible for the high enthalpy of binding and therefore for the unusually high affinity observed for this unique mode of carbohydrate recognition.
Collapse
|
169
|
Ye Y, Bloch S, Xu B, Achilefu S. Design, synthesis, and evaluation of near infrared fluorescent multimeric RGD peptides for targeting tumors. J Med Chem 2006; 49:2268-75. [PMID: 16570923 PMCID: PMC2525663 DOI: 10.1021/jm050947h] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Molecular interactions between RGD peptides and integrins are known to mediate many biological and pathological processes. This has led to an increased interest in the development of RGD compounds with high affinity and improved selectivity for integrin receptors. In this study, we synthesized and evaluated a series of multimeric RGD compounds constructed on a dicarboxylic acid-containing near-infrared (NIR) fluorescent dye (cypate) for tumor targeting. An array of NIR fluorescent RGD compounds was prepared efficiently, including one RGD monomer (cypate-(RGD)(2)-NH(2)), two RGD dimers (cypate-(RGD)(2)-NH(2) and cypate-(RGD-NH(2))(2)), one trimer (cypate-(RGD)(3)-NH(2)), two tetramers (cypate-(RGD)(4)-NH(2) and cypate-[(RGD)(2)-NH(2)](2)), one hexamer (cypate-[(RGD)(3)-NH(2)](2)), and one octamer (cypate-[(RGD)(4)-NH(2)](2)). The binding affinity of the multimeric RGD compounds for alpha(v)beta(3) integrin receptor (ABIR) showed a remarkable increase relative to the monomer cypate-RGD-NH(2). Generally, the divalent linear arrays of the multimeric RGD units bound the ABIR with slightly higher affinity than their monovalent analogues. These results suggest that the receptor binding affinity was not only dependent on the number of RGD moieties but also on the spatial alignments of the pendant peptides. Internalization of the compounds by ABIR-positive tumor cells (A549) was monitored by NIR fluorescence microscopy. The data showed that endocytosis of the octameric RGD derivative was significantly higher by comparison to other compounds in this study. In vivo noninvasive optical imaging and biodistribution data showed that the compounds were retained in A549 tumor tissue. These results clearly demonstrated that an array of simple RGD tripeptides on a NIR fluorescent dye core can be recognized by ABIR. Optimization of the spatial alignment of the RGD moieties through careful molecular design and library construction could induce multivalent ligand-receptor interactions useful for in vivo tumor imaging and tumor-targeted therapy.
Collapse
Affiliation(s)
| | | | | | - Samuel Achilefu
- Corresponding author. Phone: 314-362-8599. Fax: 314-747-5191. E-mail:
| |
Collapse
|
170
|
Kiessling LL, Gestwicki JE, Strong LE. Synthetische multivalente Liganden als Sonden für die Signaltransduktion. Angew Chem Int Ed Engl 2006. [DOI: 10.1002/ange.200502794] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
171
|
Kiessling LL, Gestwicki JE, Strong LE. Synthetic multivalent ligands as probes of signal transduction. Angew Chem Int Ed Engl 2006; 45:2348-68. [PMID: 16557636 PMCID: PMC2842921 DOI: 10.1002/anie.200502794] [Citation(s) in RCA: 696] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cell-surface receptors acquire information from the extracellular environment and coordinate intracellular responses. Many receptors do not operate as individual entities, but rather as part of dimeric or oligomeric complexes. Coupling the functions of multiple receptors may endow signaling pathways with the sensitivity and malleability required to govern cellular responses. Moreover, multireceptor signaling complexes may provide a means of spatially segregating otherwise degenerate signaling cascades. Understanding the mechanisms, extent, and consequences of receptor co-localization and interreceptor communication is critical; chemical synthesis can provide compounds to address the role of receptor assembly in signal transduction. Multivalent ligands can be generated that possess a variety of sizes, shapes, valencies, orientations, and densities of binding elements. This Review focuses on the use of synthetic multivalent ligands to characterize receptor function.
Collapse
Affiliation(s)
- Laura L Kiessling
- Department of Chemistry, University of Wisconsin--Madison, 1101 University Ave., Madison, WI 53706, USA.
| | | | | |
Collapse
|
172
|
Harmer NJ, Robinson CJ, Adam LE, Ilag LL, Robinson CV, Gallagher JT, Blundell TL. Multimers of the fibroblast growth factor (FGF)-FGF receptor-saccharide complex are formed on long oligomers of heparin. Biochem J 2006; 393:741-8. [PMID: 16223363 PMCID: PMC1360727 DOI: 10.1042/bj20050985] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2005] [Revised: 10/10/2005] [Accepted: 10/13/2005] [Indexed: 11/17/2022]
Abstract
The minimal signalling unit for tyrosine kinase receptors is two protomers dimerized by one or more ligands. However, it is clear that maximal signalling requires the formation of larger complexes of many receptors at discrete foci on the cell surface. The biological interactions that lead to this are likely to be diverse and have system specific components. In the present study, we demonstrate that, in the FGF (fibroblast growth factor)-FGFR (FGF receptor) system, multimers of the minimal complex composed of two FGF1 and two FGFR2 protomers can form on a single chain of the co-receptor heparin. Using size-exclusion chromatography, we show that two complexes can form on heparin chains as small as 16 saccharide units. We also show by MS that discrete complexes containing exactly two copies of the minimal signalling unit are formed. However, the doublet of complexes appears to be less co-operative than the formation of the 2:2:1 FGF1:FGFR2:heparin complex, suggesting that this mechanism is one of a number of weaker interactions that might be involved in the formation of a focal complex on the cell surface.
Collapse
Affiliation(s)
- Nicholas J Harmer
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK.
| | | | | | | | | | | | | |
Collapse
|
173
|
Pohl WH, Hellmuth H, Hilbert M, Seibel J, Walla PJ. A Two-Photon Fluorescence-Correlation Study of Lectins Interacting with Carbohydrated 20 nm Beads. Chembiochem 2006; 7:268-74. [PMID: 16408309 DOI: 10.1002/cbic.200500246] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We present results of a two-photon fluorescence-correlation study carried out with glycosylated and untreated 20 nm fluorescing spheres that interacted with the carbohydrate-binding proteins soybean agglutinin (SBA) and concanavalin A (Con A). The assay principle allows protein-carbohydrate binding interactions to be determined without protein labeling. This assay might serve as a simple model system for studying physical and chemical interactions between proteins and carbohydrates, for example, at cell or virus surfaces. In experiments with galactosylated 20 nm beads and SBA, several stages of protein-carbohydrate interactions could be clearly distinguished. Initially, only a few lectins bound to the nanospheres. At higher lectin concentrations polymerization occurred, and aggregates consisting of about 2.6 x 10(5) glycosylated nanospheres were formed. At very high lectin concentrations, the degree of polymerization dropped, and the size of single SBA-covered nanospheres increased to approximately 40 nm. When Con A was used instead of SBA, a significantly smaller degree of aggregation (4 x 10(4) spheres) was obtained. Treatment of unglycosylated 20 nm beads with SBA as a negative control sample resulted in a much lower unspecific aggregation (5 x 10(3) spheres). The assay principle can thus help to elucidate relative binding affinities.
Collapse
Affiliation(s)
- Wiebke H Pohl
- Max-Planck-Institute for Biophysical Chemistry, Department of Spectroscopy and Photochemical Kinetics, Am Fassberg 11, 37077 Göttingen, Germany
| | | | | | | | | |
Collapse
|
174
|
Carvalho de Souza A, Kamerling JP. Analysis of carbohydrate-carbohydrate interactions using gold glyconanoparticles and oligosaccharide self-assembling monolayers. Methods Enzymol 2006; 417:221-43. [PMID: 17132508 DOI: 10.1016/s0076-6879(06)17016-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Carbohydrates are the most extended structures exposed at the surface of most cells. These carbohydrate chains, when arranged in polyvalent clusters, offer a rich supply of low-affinity binding sites, making them a reliable and flexible system to regulate cell adhesion and recognition. The very first model system for cell-cell recognition by means of carbohydrate-carbohydrate interactions in the animal kingdom came from a primitive invertebrate animal: the marine sponge. During the past 50 years, studies have shown that highly repetitive carbohydrate motives on extracellular proteoglycan supramolecular complexes of marine sponge cells are involved in the species-specific adhesion. In this chapter, some glyconanotechnology procedures are described for the detailed investigation of the role of a carbohydrate epitope in the marine sponge cell recognition. The various protocols are generally applicable in other areas of glycoscience.
Collapse
|
175
|
Robinson A, Fang JM, Chou PT, Liao KW, Chu RM, Lee SJ. Probing lectin and sperm with carbohydrate-modified quantum dots. Chembiochem 2005; 6:1899-905. [PMID: 16149042 DOI: 10.1002/cbic.200500112] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We report the encapsulation of quantum dots with biologically important beta-N-acetylglucosamine (GlcNAc) in different ratios, together with studies of their specific/sensitive multivalent interactions with lectins and sperm by fluorimetry, transmission electron microscopy, dynamic light scattering microscopy, confocal imaging techniques, and flow cytometry. These GlcNAc-encapsulated quantum dots (QDGLNs) specifically bind to wheat germ agglutinin, and cause fluorescence quenching and aggregation. Further studies of QDGLNs and the mannose-encapsulated QDs (QDMANs) with sperm revealed site-specific interactions, in which QDGLNs bind to the head of the sperm, while QDMANs spread over the whole sperm body.
Collapse
|
176
|
Abstract
Galectin-3, a member of the beta-galactoside-binding gene family, is a multifunctional protein implicated in a variety of biological functions, including tumor cell adhesion, proliferation, differentiation, angiogenesis, cancer progression and metastasis. Recent studies revealed that intracellular galectin-3 exhibits the activity to suppress drug induced apoptosis and anoikis (apoptosis induced by the loss of cell anchorage) that contribute to cell survival. Resistance to apoptosis is essential for cancer cell survival and plays a role in tumor progression. Conversely, it was recently shown that tumor cells' secreted galectin-3 induces T-cells' apoptosis, thus playing a role in the immune escape mechanism during tumor progression through induction of apoptosis of cancer-infiltrating T-cells. This review summarizes recent evidences on the role of galectin-3 as an anti-apoptotic and/or pro-apoptotic factor in various cell types and discusses the recent understanding of the molecular mechanisms of galectin-3 role in apoptosis. We also suggest potential directions for further analyses of this multifunctional protein.
Collapse
Affiliation(s)
- S Nakahara
- Tumor Progression and Metastasis Program, Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA
| | | | | |
Collapse
|
177
|
Ish-Shalom E, Gargir A, André S, Borovsky Z, Ochanuna Z, Gabius HJ, Tykocinski ML, Rachmilewitz J. alpha2,6-Sialylation promotes binding of placental protein 14 via its Ca2+-dependent lectin activity: insights into differential effects on CD45RO and CD45RA T cells. Glycobiology 2005; 16:173-83. [PMID: 16269626 DOI: 10.1093/glycob/cwj053] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Placental protein 14 (PP14; glycodelin) is a pregnancy-associated immunoregulatory protein that is known to inhibit T cells via T-cell receptor desensitization. The recent demonstration of PP14 as lectin has provided insight into how it may mediate its CD45 glycoprotein-dependent T-cell inhibition. In this study, we have investigated PP14's lectin-binding properties in detail. Significantly, PP14 reacts with N-acetyllactosamine (LacNAc) as was also found for members of the galectin family, such as the potent immunoregulatory protein, galectin-1. However, in contrast to galectin-1, PP14's binding is significantly enhanced by alpha2,6-sialylation and also by the presence of cations. This was demonstrated by preferential binding to fetuin as compared with its desialylated variant asialofetuin (ASF) and by using free alpha2,6- versus alpha2,3-sialylated forms of LacNAc in competitive inhibition and direct solid-phase binding assays. Interestingly, from immunological point of view, PP14 also binds differentially to CD45 isoforms known to differ in their degree of sialylation. PP14 preferentially inhibits CD45RA+, as compared with CD45RO+ T cells, and preferentially co-capped this variant CD45 on the T-cell surface. Finally, we demonstrate that PP14 promotes CD45 dimerization and clustering, a phenomenon that may regulate CD45 activity.
Collapse
Affiliation(s)
- Eliran Ish-Shalom
- Goldyne Savad Institute of Gene Therayp, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | | | | | | | | | | | | |
Collapse
|
178
|
Bandaru NM, Sampath S, Jayaraman N. Synthesis and Langmuir studies of bivalent and monovalent alpha-D-mannopyranosides with lectin Con A. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2005; 21:9591-6. [PMID: 16207040 DOI: 10.1021/la051433o] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Highly avid interaction between carbohydrate ligands and lectin receptors nominally requires the ligand presentation in a clustered form. We present herein an approach involving Langmuir monolayer formation of the sugar ligands and the assessment of their lectin binding at the air-water interface. Bivalent alpha-D-mannopyranoside containing the glycolipid ligand was used to study its binding profiles with lectin Con A, in comparison to the corresponding monovalent glycolipid. In addition to the bivalent and monovalent nature of the glycolipid ligands at the molecular level, the ligand densities at the monolayer level were varied with the aid of a nonsugar lipid molecule so as to obtain mixed monolayers with various sugar-nonsugar ratios. Lectin binding of bivalent and monovalent ligands at different ratios was monitored by differential changes in the surface area per molecule of the mixed monolayer, with and without the lectin. The present study shows that maximal binding of the lectin to the bivalent ligand occurs at lower sugar densities at the interface ( approximately 10% sugar in the mixed monolayer) than for that of the monovalent ligand ( approximately 20% sugar in the mixed monolayer). It is observed that complete coverage of the monolayer with only the sugar ligands does not allow all of the sugars to be functionally active.
Collapse
Affiliation(s)
- Narasimha Murthy Bandaru
- Department of Organic Chemistry and Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560 012, India
| | | | | |
Collapse
|
179
|
Garcia-Pino A, Loris R, Wyns L, Buts L. Crystallization and preliminary X-ray analysis of the Man(alpha1-2)Man-specific lectin from Bowringia mildbraedii in complex with its carbohydrate ligand. Acta Crystallogr Sect F Struct Biol Cryst Commun 2005; 61:931-4. [PMID: 16511199 PMCID: PMC1991310 DOI: 10.1107/s174430910502854x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2005] [Accepted: 09/12/2005] [Indexed: 11/10/2022]
Abstract
The lectin from Bowringia mildbraedii seeds crystallizes in the presence of the disaccharide Man(alpha1-2)Man. The best crystals grow at 293 K within four weeks after a pre-incubation at 277 K to induce nucleation. A complete data set was collected to a resolution of 1.90 A using synchrotron radiation. The crystals belong to space group I222, with unit-cell parameters a = 66.06, b = 86.35, c = 91.76 A, and contain one lectin monomer in the asymmetric unit.
Collapse
Affiliation(s)
- Abel Garcia-Pino
- Laboratorium voor Ultrastructuur, Vrije Universiteit Brussel and Department of Molecular and Cellular Interactions, Vlaams Interuniversitair Instituut voor Biotechnologie, Pleinlaan 2, B-1050 Brussel, Belgium
| | - Remy Loris
- Laboratorium voor Ultrastructuur, Vrije Universiteit Brussel and Department of Molecular and Cellular Interactions, Vlaams Interuniversitair Instituut voor Biotechnologie, Pleinlaan 2, B-1050 Brussel, Belgium
| | - Lode Wyns
- Laboratorium voor Ultrastructuur, Vrije Universiteit Brussel and Department of Molecular and Cellular Interactions, Vlaams Interuniversitair Instituut voor Biotechnologie, Pleinlaan 2, B-1050 Brussel, Belgium
| | - Lieven Buts
- Laboratorium voor Ultrastructuur, Vrije Universiteit Brussel and Department of Molecular and Cellular Interactions, Vlaams Interuniversitair Instituut voor Biotechnologie, Pleinlaan 2, B-1050 Brussel, Belgium
| |
Collapse
|
180
|
Vas V, Fajka-Boja R, Ion G, Dudics V, Monostori E, Uher F. Biphasic effect of recombinant galectin-1 on the growth and death of early hematopoietic cells. Stem Cells 2005; 23:279-87. [PMID: 15671150 DOI: 10.1634/stemcells.2004-0084] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Galectin-1 is a member of the family of beta-galactoside binding animal lectins, galectins. Its presence in the bone marrow has been detected; however, its role in the regulation of hematopoiesis is unknown. In the present study, we have evaluated the effect of recombinant human galectin-1 on the proliferation and survival of murine and human hematopoietic stem and progenitor cells. We show that low amount of galectin-1 (10 ng/ml) increases the formation of granulocyte-macrophage and erythroid colonies and the frequencies of day-7 cobblestone area-forming cells on a lactose-inhibitable fashion. In contrast, high amount of galectin-1 (10 microg/ml) dramatically reduces the growth of the committed blood-forming progenitor cells as well as the much younger, lineage-negative hematopoietic cells (day-28 to -35 cobblestone area-forming cells). This inhibition is not blocked by lactose and, therefore, is largely independent of the beta-galactoside-binding site of the lectin. Furthermore, assays to detect apoptosis render it likely that the high amount of galectin-1 acts as a classical proapoptotic factor for the premature hematopoietic cells.
Collapse
Affiliation(s)
- Virág Vas
- National Medical Center, Stem Cell Biology, Diószegi ut 64., Budapest, Hungary, H-1113
| | | | | | | | | | | |
Collapse
|
181
|
Carpenter C, Nepogodiev SA. Synthesis of a αMan(1→3)αMan(1→2)αMan Glycocluster Presented on aβ-Cyclodextrin Scaffold. European J Org Chem 2005. [DOI: 10.1002/ejoc.200500146] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
182
|
Paret C, Bourouba M, Beer A, Miyazaki K, Schnölzer M, Fiedler S, Zöller M. Ly6 family member C4.4A binds laminins 1 and 5, associates with galectin-3 and supports cell migration. Int J Cancer 2005; 115:724-33. [PMID: 15729693 DOI: 10.1002/ijc.20977] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
C4.4A is a member of the Ly6 family, with low homology to uPAR. It has been detected mainly on metastasizing carcinoma cells and proposed to be involved in wound healing. So far, C4.4A has been observed as an orphan receptor, and its functional activity has not been explored. Using recombinant rat C4.4A (rrC4.4A) made in a eukaryotic expression system, we demonstrate by immunohistology that C4.4A ligands are strongly expressed in tissues adjacent to squamous epithelia of, e.g., tongue and esophagus, the expression pattern partly overlapping with laminin (LN) and complementing the C4.4A expression that is found predominantly on the basal layers of squamous epithelium. ELISA screening of several components of the extracellular matrix revealed selective binding of rrC4.4A to LN1 and LN5 and that transfection of the BSp73AS tumor line with C4.4A cDNA (BSp73AS-1B1) promoted LN1 and LN5 binding. Binding of BSp73AS-1B1 to LN5 and, less markedly, LN1 induced spreading, lamellipodia formation and migration. C4.4A also associates with galectin-3 in nontransformed tissues and tumor lines. There is evidence that the association of C4.4A with galectin-3 influences LN adhesion. C4.4A was described originally as a metastasis-associated molecule. Our findings that LN1 and LN5 are C4.4A ligands, that galectin-3 associates with C4.4A and that C4.4A ligand binding confers a migratory phenotype are well in line with the supposed metastasis association.
Collapse
Affiliation(s)
- Claudia Paret
- Department of Tumor Progression and Tumor Defense, German Cancer Research Center, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
183
|
Tripathi S, Maiti TK. Immunomodulatory role of native and heat denatured agglutinin from Abrus precatorius. Int J Biochem Cell Biol 2005; 37:451-62. [PMID: 15474989 DOI: 10.1016/j.biocel.2004.07.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2003] [Revised: 04/13/2004] [Accepted: 07/22/2004] [Indexed: 01/22/2023]
Abstract
Lectins are known as polyclonal activators of lymphocytes and work through the induction of battery of cytokines, which vary from lectin to lectin. Most widely used biological response modifier Mistletoe lectin (ML-1) in therapy stimulates lymphocytes, macrophages, and natural killer cells and induces both TH1 and TH2 type cytokines. Abrus agglutinin, similar to ML-1 with respect to carbohydrate specificity [gal (beta1-->3) gal/Nac], was studied both in native (NA) and heat denatured (HDA) condition for murine splenocyte proliferation, cytokine secretion, NK-cell activation, and thymocyte proliferation in vitro with a view to assess its potential as an immunomodulator. Both NA and HDA activate splenocytes and induce production of cytokines like IL-2, IFN-gamma and TNF-alphabeta indicating a TH1 type of immune response. Native agglutinin and HDA induced conditioned media of adherent splenocytes could stimulate non-adherent splenocytes and vice versa. Heat denatured agglutinin was able to induce NK-cell activation at much lower concentration than that of NA, but the extent of NK-cell activation was higher for NA. Proliferation of thymocytes by NA and HDA was also observed. This study indicates that Abrus agglutinin could be a potential immunomodulator both in native as well as in heat denatured form.
Collapse
Affiliation(s)
- S Tripathi
- Department of Biotechnology, Indian Institute of Technology, Kharagpur 721302, West Bengal, India
| | | |
Collapse
|
184
|
Kalovidouris SA, Gama CI, Lee LW, Hsieh-Wilson LC. A role for fucose alpha(1-2) galactose carbohydrates in neuronal growth. J Am Chem Soc 2005; 127:1340-1. [PMID: 15686343 DOI: 10.1021/ja044631v] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report a fucose alpha(1-2) galactose-mediated pathway for the modulation of neuronal growth and morphology. Our studies provide strong evidence for the presence of Fucalpha(1-2)Gal glycoproteins and lectin receptors in hippocampal neurons. Additionally, we show that manipulation of Fucalpha(1-2)Gal-associated proteins using small-molecule and lectin probes induces dramatic changes in neuronal morphology. These findings may provide a novel pathway to stimulate neuronal growth and regeneration.
Collapse
Affiliation(s)
- Stacey A Kalovidouris
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | |
Collapse
|
185
|
Carrizo ME, Capaldi S, Perduca M, Irazoqui FJ, Nores GA, Monaco HL. The Antineoplastic Lectin of the Common Edible Mushroom (Agaricus bisporus) Has Two Binding Sites, Each Specific for a Different Configuration at a Single Epimeric Hydroxyl. J Biol Chem 2005; 280:10614-23. [PMID: 15596442 DOI: 10.1074/jbc.m411989200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The lectin from the common mushroom Agaricus bisporus, the most popular edible species in Western countries, has potent antiproliferative effects on human epithelial cancer cells, without any apparent cytotoxicity. This property confers to it an important therapeutic potential as an antineoplastic agent. The three-dimensional structure of the lectin was determined by x-ray diffraction. The protein is a tetramer with 222 symmetry, and each monomer presents a novel fold with two beta sheets connected by a helix-loop-helix motif. Selectivity was studied by examining the binding of four monosaccharides and seven disaccharides in two different crystal forms. The T-antigen disaccharide, Galbeta1-3GalNAc, mediator of the antiproliferative effects of the protein, binds at a shallow depression on the surface of the molecule. The binding of N-acetylgalactosamine overlaps with that moiety of the T antigen, but surprisingly, N-acetylglucosamine, which differs from N-acetylgalactosamine only in the configuration of epimeric hydroxyl 4, binds at a totally different site on the opposite side of the helix-loop-helix motif. The lectin thus has two distinct binding sites per monomer that recognize the different configuration of a single epimeric hydroxyl. The structure of the protein and its two carbohydrate-binding sites are described in detail in this study.
Collapse
Affiliation(s)
- Maria E Carrizo
- Biocrystallography Laboratory, Department of Science and Technology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | | | | | | | | | | |
Collapse
|
186
|
Bajpai P, Verma SK, Katiyar D, Tewari N, Tripathi RP, Bansal I, Saxena JK, Misra-Bhattacharya S. Search for new prototypes for the chemotherapy of filariasis: a chemotherapeutic and biochemical approach. Parasitol Res 2005; 95:383-90. [PMID: 15739072 DOI: 10.1007/s00436-004-1295-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2004] [Accepted: 12/08/2004] [Indexed: 10/25/2022]
Abstract
The antifilarial activity of two coumarin derivatives (A, B) and three glycosyl amine derivatives (D, E, F) was evaluated against a subperiodic strain of human lymphatic filarial parasite Brugia malayi by the intraperitoneal route at 50 mg/kg for 5 consecutive days. Of these, the two sugar derivatives (D and E) were selected for evaluation by the oral route based on their microfilaricidal (mild), macrofilaricidal and female worm sterilization efficacy using the i.p. route of administration. Compound E was finally selected for combination therapy on the basis of its microfilaricidal and embryostatic action by the oral route and its spectrum of activity against micro- and macrofilariae including embryostatic activity by the i.p. route. In addition, E also significantly inhibited the parasite DNA topoisomerase II. Compound A, in contrast, led to an enhanced adult worm burden. Compound B was toxic by the i.p. route, killing all of the treated animals before completion of the experiment. Some of these compounds demonstrated significant antifilarial efficacy of varying degree when tested in vitro Compounds B, D and F also killed adult B. malayi in vitro at 100 muM while 50 muM resulted in very slow motility of worms. Compound E in combination with a promising macrofilaricidal benzopyran derivative reported by us recently (compound C) did not show any synergistic or additive effect. These two compounds (C and E) individually on oral administration with either DEC or ivermectin significantly improved microfilaricidal efficacy in terms of intensity and duration of suppressed microfilaraemia. The combination of DEC with compound E demonstrated marginal enhancement in adulticidal efficacy, however, the embryostatic effect of the duo was significantly higher than that exerted by the individual agents. It may thus be inferred that in the absence of an adulticidal antifilarial drug, the use of potential antifilarials in combination with the standard filaricides may yield better results.
Collapse
Affiliation(s)
- Preeti Bajpai
- Division of Parasitology, Central Drug Research Institute, Post Box 173, 226001, Lucknow, Uttar Pradesh, India
| | | | | | | | | | | | | | | |
Collapse
|
187
|
Fitzner B, Walzel H, Sparmann G, Emmrich J, Liebe S, Jaster R. Galectin-1 is an inductor of pancreatic stellate cell activation. Cell Signal 2005; 17:1240-7. [PMID: 16038798 DOI: 10.1016/j.cellsig.2004.12.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2004] [Accepted: 12/22/2004] [Indexed: 12/25/2022]
Abstract
Pancreatic stellate cells (PSCs) play a key role in the development of pancreatic fibrosis, a pathological feature of chronic pancreatitis and pancreatic cancer. Here, we show that activation of rat PSCs in vitro is associated with increased expression of galectin-1 (gal-1) and that gal-1 modulates PSC function. Expression of the lectin was stimulated by fetal calf serum and platelet-derived growth factor. PSCs exposed to exogenous gal-1 proliferated at a higher rate and synthesised more collagen than controls. Gal-1-dependent collagen synthesis was blocked by lactose but not by cellobiose, suggesting that gal-1 acts on PSCs through targeting beta-galactoside-containing glycoconjugates. Analysis of gal-1 signalling in PSCs revealed an activation of the extracellular signal-regulated kinases 1 and 2 and enhanced DNA binding of AP-1 transcription factors. Together, our data implicate gal-1 in PSC activation and suggest further studies to analyse the role of endogenous lectins in the development of pancreatic fibrosis in vivo.
Collapse
Affiliation(s)
- Brit Fitzner
- Department of Medicine, Division of Gastroenterology, Medical Faculty, University of Rostock, E.-Heydemann-Str. 6, 18057 Rostock, Germany
| | | | | | | | | | | |
Collapse
|
188
|
Ambrosi M, Cameron NR, Davis BG, Stolnik S. Investigation of the interaction between peanut agglutinin and synthetic glycopolymeric multivalent ligands. Org Biomol Chem 2005; 3:1476-80. [PMID: 15827644 DOI: 10.1039/b411555b] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The interaction between synthetic glycoplymers bearing beta-D-galactose side groups and the lectin peanut agglutinin (PNA) was investigated by UV-difference spectroscopy and isothermal titration calorimetry (ITC). UV-difference spectroscopy indicated that the polymer-lectin interaction was stronger than that between PNA and either the corresponding monomer, D-galactose or D-lactose. The thermodynamics of binding (K, DeltaG, DeltaH, DeltaS and n) were determined from ITC data by fitting with a two-site, non-cooperative binding model. It was found that the glycopolymer displayed around a 50 times greater affinity for the lectin than the parent carbohydrate, and around 10 times greater than the monomer, on a valency-corrected basis. Binding was found to be entropically driven, and was accompanied by aggregation and precipitation of protein molecules. Furthermore, interesting differences between polymers prepared either from deacetylated monomers, or by deacetylation of pre-formed polymers, were found.
Collapse
Affiliation(s)
- Moira Ambrosi
- Department of Chemistry and Interdisciplinary Research Centre in Polymer Science and Technology, University of Durham, UK
| | | | | | | |
Collapse
|
189
|
Vaz RJ, Gao Z, Pribish J, Chen X, Levell J, Davis L, Albert E, Brollo M, Ugolini A, Cramer DM, Cairns J, Sides K, Liu F, Kwong J, Kang J, Rebello S, Elliot M, Lim H, Chellaraj V, Singleton RW, Li Y. Design of bivalent ligands using hydrogen bond linkers: synthesis and evaluation of inhibitors for human β-tryptase. Bioorg Med Chem Lett 2004; 14:6053-6. [PMID: 15546728 DOI: 10.1016/j.bmcl.2004.09.065] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2004] [Revised: 09/23/2004] [Accepted: 09/23/2004] [Indexed: 11/24/2022]
Abstract
We exploit the concept of using hydrogen bonds to link multiple ligands for maintaining simultaneous interactions with polyvalent binding sites. This approach is demonstrated by the syntheses and evaluation of pseudo-bivalent ligands as potent inhibitors of human beta-tryptase.
Collapse
Affiliation(s)
- Roy J Vaz
- Aventis Pharmaceuticals, 1041 Route 202/206 N, Bridgewater, NJ 088707, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
190
|
Ratner DM, Adams EW, Disney MD, Seeberger PH. Tools for Glycomics: Mapping Interactions of Carbohydrates in Biological Systems. Chembiochem 2004; 5:1375-83. [PMID: 15457538 DOI: 10.1002/cbic.200400106] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The emerging field of glycomics has been challenged by difficulties associated with studying complex carbohydrates and glycoconjugates. Advances in the development of synthetic tools for glycobiology are poised to overcome some of these challenges and accelerate progress towards our understanding of the roles of carbohydrates in biology. Carbohydrate microarrays, fluorescent neoglycoconjugate probes, and aminoglycoside antibiotic microarrays are among the many new tools becoming available to glycobiologists.
Collapse
Affiliation(s)
- Daniel M Ratner
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|
191
|
Abstract
Determining the roles of carbohydrates in cell biology is hindered by the tremendous efforts that must be taken either to synthesize carbohydrates chemically or to isolate them from natural sources. Several platforms have been developed to study glycobiology. These platforms include the covalent and non-covalent immobilization of carbohydrates on microtiter plates, nitrocellulose membranes, coated slides, glass slides, gold surfaces and microspheres. Each platform has both positive and negative attributes for studying carbohydrate biology, such as flexibility and the amount of material required for study. Here we discuss these techniques with the goal of developing a ‘gold standard’ in the field of glycomics.
Collapse
|
192
|
Reddy ST, Chai W, Childs RA, Page JD, Feizi T, Dahms NM. Identification of a low affinity mannose 6-phosphate-binding site in domain 5 of the cation-independent mannose 6-phosphate receptor. J Biol Chem 2004; 279:38658-67. [PMID: 15252023 DOI: 10.1074/jbc.m407474200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The 300-kDa cation-independent mannose 6-phosphate receptor (CI-MPR) and the 46-kDa cation-dependent MPR (CD-MPR) are type I integral membrane glycoproteins that play a critical role in the intracellular delivery of newly synthesized mannose 6-phosphate (Man-6-P)-containing acid hydrolases to the lysosome. The extracytoplasmic region of the CI-MPR contains 15 contiguous domains, and the two high affinity ( approximately 1 nm) Man-6-P-binding sites have been mapped to domains 1-3 and 9, with essential residues localized to domains 3 and 9. Domain 5 of the CI-MPR exhibits significant sequence homology to domains 3 and 9 as well as to the CD-MPR. A structure-based sequence alignment was performed that predicts that domain 5 contains the four conserved key residues (Gln, Arg, Glu, and Tyr) identified as essential for carbohydrate recognition by the CD-MPR and domains 3 and 9 of the CI-MPR, but lacks two cysteine residues predicted to form a disulfide bond within the binding pocket. To determine whether domain 5 harbors a carbohydrate-binding site, a construct that encodes domain 5 alone (Dom5His) was expressed in Pichia pastoris. Microarray analysis using 30 different oligosaccharides demonstrated that Dom5His bound specifically to a Man-6-P-containing oligosaccharide (pentamannosyl 6-phosphate). Frontal affinity chromatography showed that the affinity of Dom5His for Man-6-P was approximately 300-fold lower (K(i) = 5.3 mm) than that observed for domains 1-3 and 9. The interaction affinity for the lysosomal enzyme beta-glucuronidase was also much lower (K(d) = 54 microm) as determined by surface plasmon resonance analysis. Taken together, these results demonstrate that the CI-MPR contains a third Man-6-P recognition site that is located in domain 5 and that exhibits lower affinity than the carbohydrate-binding sites present in domains 1-3 and 9.
Collapse
Affiliation(s)
- Sreelatha T Reddy
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | | | | | |
Collapse
|
193
|
Köhn M, Benito JM, Ortiz Mellet C, Lindhorst TK, García Fernández JM. Functional Evaluation of Carbohydrate-Centred Glycoclusters by Enzyme-Linked Lectin Assay: Ligands for Concanavalin A. Chembiochem 2004; 5:771-7. [PMID: 15174159 DOI: 10.1002/cbic.200300807] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The affinities of the mannose-specific lectin concanavalin A (Con A) towards D-glucose-centred mannosyl clusters differing in the anomeric configuration of the monosaccharide core, nature of the bridging functional groups and valency, have been measured by a competitive enzyme-linked lectin assay. Pentavalent thioether-linked ligands (5 and 7) were prepared by radical addition of 2,3,4,6-tetra-O-acetyl-1-thio-alpha-D-mannopyranose to the corresponding penta-O-allyl-alpha- or -beta-D-glucopyranose, followed by deacetylation. The distinct reactivity of the anomeric position in the D-glucose scaffold was exploited in the preparation of a tetravalent cluster (10) that keeps a reactive aglyconic group for further manipulation, including incorporation of a reporter group or attachment to a solid support. Hydroboration of the double bonds in the penta-O-allyl-alpha-D-glucopyranose derivative and replacement of the hydroxy groups with amine moieties gave a suitable precursor for the preparation of pentavalent and 15-valent mannosides through the thiourea-bridging reaction (17 and 20, respectively). The diastereomeric 1-thiomannose-coated clusters 5 and 7 were demonstrated to be potent ligands for Con A, with IC(50) values for the inhibition of the Con A-yeast mannan association indicative of 6.4- and 5.5-fold increases in binding affinity (valency-corrected values), respectively, relative to the value for methyl alpha-D-mannopyranoside. The tetravalent cluster 10 exhibited a valency-corrected relative lectin-binding potency virtually identical to that of the homologous pentavalent mannoside 7. In sharp contrast, replacement of the 1-thiomannose wedges of 5 with alpha-D-mannopyranosylthioureido units (17) virtually abolished any multivalent or statistic effects, with a dramatic decrease of binding affinity. The 15-valent ligand 20, possessing classical O-glycosidic linkages, exhibited a twofold increase in lectin affinity relative to the penta-O-(thioglycoside) 5; it is less efficient based on the number of mannose units. The results illustrate the potential of carbohydrates as polyfunctional platforms for glycocluster construction and underline the importance of careful design of the overall architecture in optimising glycocluster recognition by specific lectins.
Collapse
Affiliation(s)
- Maja Köhn
- Instituto de Investigaciones Químicas, CSIC, Américo Vespucio 49, Isla de la Cartuja, 41092 Seville, Spain
| | | | | | | | | |
Collapse
|
194
|
Kalovidouris SA, Blixt O, Nelson A, Vidal S, Turnbull WB, Paulson JC, Stoddart JF. Chemically defined sialoside scaffolds for investigation of multivalent interactions with sialic acid binding proteins. J Org Chem 2004; 68:8485-93. [PMID: 14575475 DOI: 10.1021/jo030203g] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Four glycodendrons and a glycocluster were synthesized from carbohydrate building blocks to form paucivalent (di- to tetravalent) structures of controlled scaffold architectures. Enzymatic sialylation of the functionalized cluster and dendrons, terminated in lactose residues, generated a library of paucivalent synthetic sialosides displaying sialic acids with different dispositions. These newly constructed bioactive sialic acid-based structures were differentially recognized by sialoadhesin, a mammalian macrophage sialic acid binding protein. The binding of the sialosides to sialoadhesin was evaluated by an enzyme-linked immunosorbant assay to investigate the complementarity of scaffold structure and binding to sialoadhesin. Modulating the interaction between sialoadhesin and its sialic acid ligands has important implications in immunobiology.
Collapse
Affiliation(s)
- Stacey A Kalovidouris
- California NanoSystems Institute and the Department of Chemistry and Biochemistry, University of California, Los Angeles, 405 Hilgard Avenue, Los Angeles, California 90095, USA
| | | | | | | | | | | | | |
Collapse
|
195
|
Mazzaglia A, Forde D, Garozzo D, Malvagna P, Ravoo BJ, Darcy R. Multivalent binding of galactosylated cyclodextrin vesicles to lectin. Org Biomol Chem 2004; 2:957-60. [PMID: 15034615 DOI: 10.1039/b400988f] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Amphiphilic beta-cyclodextrins with alkylthio chains at the primary-hydroxyl side and galactosylthio-oligo-(ethylene glycol) units at the secondary-hydroxyl side, which form nanoparticles and vesicles, show multivalent effects in their binding to lectin.
Collapse
Affiliation(s)
- Antonino Mazzaglia
- Istituto per lo Studio dei Materiali Nanostrutturati (ISMN-CNR), Unita di Messina, Dipartimento di Chimica Inorganica, Chimica Fisica e Chimica Analitica, and INFM, Salita Sperone 31, 98166 Messina, Italy.
| | | | | | | | | | | |
Collapse
|
196
|
Ratner DM, Adams EW, Su J, O'Keefe BR, Mrksich M, Seeberger PH. Probing Protein-Carbohydrate Interactions with Microarrays of Synthetic Oligosaccharides. Chembiochem 2004; 5:379-82. [PMID: 14997532 DOI: 10.1002/cbic.200300804] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Daniel M Ratner
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | |
Collapse
|
197
|
Tosin M, Müller-Bunz H, Murphy PV. Synthesis and X-ray single crystal structure of a bivalent glycocluster. Chem Commun (Camb) 2004:494-5. [PMID: 14973574 DOI: 10.1039/b313934d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The crystal structure of a bivalent glycocluster containing aromatic amides reveals that alkylation of secondary amides alters amide configuration and thus carbohydrate presentation. This also facilitates non covalent interactions (azide-azide, carbonyl-pyranose and aromatic-pyranose) and thus carbohydrate-carbohydrate stacking.
Collapse
Affiliation(s)
- Manuela Tosin
- Centre for Synthesis and Chemical Biology, Department of Chemistry, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | |
Collapse
|
198
|
Maeda N, Kawada N, Seki S, Ikeda K, Okuyama H, Hirabayashi J, Kasai KI, Yoshizato K. Involvement of Galectin-1 and Galectin-3 in Proliferation and Migration of Rat Hepatic Stellate Cells in Culture. COMPARATIVE HEPATOLOGY 2004; 3 Suppl 1:S10. [PMID: 14960162 PMCID: PMC2410233 DOI: 10.1186/1476-5926-2-s1-s10] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Naoto Maeda
- Department of Hepatology, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan
| | - Norifumi Kawada
- Department of Hepatology, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan
| | - Shuichi Seki
- Department of Hepatology, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan
| | - Kazuo Ikeda
- Department Anatomy, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan
| | - Hiroaki Okuyama
- Department of Gastroenterological Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8397, Japan
| | - Jun Hirabayashi
- Department of Biological Chemistry, Faculty of Pharmaceutical Sciences, Teikyo University, Kanagawa 199-0195, Japan
| | - Ken-ichi Kasai
- Department of Biological Chemistry, Faculty of Pharmaceutical Sciences, Teikyo University, Kanagawa 199-0195, Japan
| | - Katsutoshi Yoshizato
- Department of Biological Science, Graduate School of Science, Hiroshima University, Hiroshima 739-8526, Japan
| |
Collapse
|
199
|
Adam EC, Holgate ST, Fildew CJ, Lackie PM. Role of carbohydrates in repair of human respiratory epithelium using an in vitro model. Clin Exp Allergy 2003; 33:1398-404. [PMID: 14519146 DOI: 10.1046/j.1365-2222.2003.01771.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The epithelial layer in the conducting airway provides a primary protective barrier. Repair of this barrier normally occurs rapidly after damage, but is compromised in diseases such as asthma. OBJECTIVE We have developed a human in vitro model system to test our hypothesis that cell surface glycoconjugate-based interactions are required for the normal repair of damaged epithelium. METHODS Lectins having narrow carbohydrate specificities were used to identify and block specific carbohydrate moieties on human airway-derived epithelial cells in culture. RESULTS The lectin wheat germ agglutinin bound to N-acetyl glucosamine and inhibited the repair of epithelial damage while having little effect on cell viability. In contrast, other N-acetyl glucosamine binding lectins had no effect even when bound to the cell surface. The involvement of glycoconjugates was confirmed by pre-incubating the lectin with its specific sugar, preventing the inhibition of repair. CONCLUSION These results indicate that lectin-binding sites are involved in epithelial repair and may be important in the repetitive cycles of injury and repair seen in asthma. This model system provides an insight into the role of glycoconjugates and will help to determine the function of specific carbohydrate groups in epithelial repair. These may present a target for therapeutic intervention in respiratory and other diseases.
Collapse
Affiliation(s)
- E C Adam
- Respiratory Cell and Molecular Biology Division, University of Southampton, Southampton, UK.
| | | | | | | |
Collapse
|
200
|
Galliano M, Minchiotti L, Campagnoli M, Sala A, Visai L, Amoresano A, Pucci P, Casbarra A, Cauci M, Perduca M, Monaco HL. Structural and biochemical characterization of a new type of lectin isolated from carp eggs. Biochem J 2003; 376:433-40. [PMID: 12956625 PMCID: PMC1223786 DOI: 10.1042/bj20030413] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2003] [Revised: 09/05/2003] [Accepted: 09/05/2003] [Indexed: 11/17/2022]
Abstract
A previously unidentified glycoprotein present in the eggs of the carp ( Cyprinus carpio ) was isolated and structurally characterized. The protein binds to a Sepharose 4B matrix and can be eluted with 0.4 M N -acetylglucosamine. The protein has an apparent molecular mass of 26686.3 Da. On the basis of gel-filtration chromatography, the protein appears to be present in solution as a monomer. The sequence of its 238 amino acids, the position of its four disulphide bridges and the composition of its single N-linked carbohydrate chain were determined. The lectin shows a very low agglutinating activity for human A-type erythrocytes and interacts with both Gram-positive and -negative bacteria. These latter interactions are inhibited by N -acetylglucosamine. A database search shows that its amino acid sequence is similar to that of the members of an invertebrate lectin family that includes tachylectin-1. Tachylectin-1 is present in the amoebocytes of the horseshoe crab, Tachypleus tridentatus, and plays a role in the innate defence system of this species. Homologous genes are also present in other fish, having 85% identity with a gene expressed in the oocytes of the crucian carp ( Carassius auratus gibelio ) and 78% identity with a gene in the cDNA library of the zebrafish ( Danio rerio ).
Collapse
Affiliation(s)
- Monica Galliano
- Department of Biochemistry A. Castellani, University of Pavia, via Taramelli 3b, 27100 Pavia, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|