151
|
Schlüter T, Berger C, Rosengauer E, Fieth P, Krohs C, Ushakov K, Steel KP, Avraham KB, Hartmann AK, Felmy F, Nothwang HG. miR-96 is required for normal development of the auditory hindbrain. Hum Mol Genet 2018; 27:860-874. [DOI: 10.1093/hmg/ddy007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 12/30/2017] [Indexed: 12/17/2022] Open
Affiliation(s)
- Tina Schlüter
- Neurogenetics Group, Center of Excellence Hearing4All, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
| | - Christina Berger
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians University Munich, 82152 Martinsried, Germany
| | - Elena Rosengauer
- Neurogenetics Group, Center of Excellence Hearing4All, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
| | - Pascal Fieth
- Computational Theoretical Physics Group, Institute of Physics, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
| | - Constanze Krohs
- Neurogenetics Group, Center of Excellence Hearing4All, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
| | - Kathy Ushakov
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Karen P Steel
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Karen B Avraham
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Alexander K Hartmann
- Computational Theoretical Physics Group, Institute of Physics, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
| | - Felix Felmy
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians University Munich, 82152 Martinsried, Germany
- Institute of Zoology, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | - Hans Gerd Nothwang
- Neurogenetics Group, Center of Excellence Hearing4All, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
- Research Center for Neurosensory Science, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
| |
Collapse
|
152
|
Ueda M, Sato T, Ohkawa Y, Inoue YH. Identification of miR-305, a microRNA that promotes aging, and its target mRNAs in Drosophila. Genes Cells 2018; 23:80-93. [PMID: 29314553 DOI: 10.1111/gtc.12555] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 12/01/2017] [Indexed: 01/07/2023]
Abstract
MicroRNAs (miRNAs) are involved in the regulation of important biological processes. Here, we describe a novel Drosophila miRNAs involved in aging. We selected eight Drosophila miRNAs, displaying high homology with seed sequences of aging-related miRNAs characterized in other species, and investigated whether the over-expression of these miRNAs affected aging in Drosophila adult flies. The lifespan of adults over-expressing miR-305, a miRNA showing high homology with miR-239 in C. elegans, was significantly shorter. Conversely, a reduction in miR-305 expression led to a longer lifespan than that in control flies. miR-305 over-expression accelerated the impairment of locomotor activity and promoted the age-dependent accumulation of poly-ubiquitinated protein aggregates in the muscle, as flies aged. Thus, we show that the ectopic expression of miR-305 has a deleterious effect on aging in Drosophila. To identify the targets of miR-305, we performed RNA-Seq. We discovered several mRNAs encoding antimicrobial peptides and insulin-like peptides, whose expression changed in adults upon miR-305 over-expression. We further confirmed, by qRT-PCR, that miR-305 over-expression significantly decreases the mRNA levels of four antimicrobial peptides. As these mRNAs contain multiple sequences matching the seed sequence of miR-305, we speculate that a reduction in target mRNA levels, caused by ectopic miRNA expression, promotes aging.
Collapse
Affiliation(s)
- Makiko Ueda
- Department of Insect Biomedical Research, Center for Advanced Insect Research Promotion, Kyoto Institute of Technology, Kyoto, Japan
| | - Tetsuya Sato
- Medical Institute of Bioregulation, Kyushu University, Kyushu, Japan
| | - Yasuyuki Ohkawa
- Medical Institute of Bioregulation, Kyushu University, Kyushu, Japan
| | - Yoshihiro H Inoue
- Department of Insect Biomedical Research, Center for Advanced Insect Research Promotion, Kyoto Institute of Technology, Kyoto, Japan
| |
Collapse
|
153
|
Likar T, Hasanhodžić M, Teran N, Maver A, Peterlin B, Writzl K. Diagnostic outcomes of exome sequencing in patients with syndromic or non-syndromic hearing loss. PLoS One 2018; 13:e0188578. [PMID: 29293505 PMCID: PMC5749682 DOI: 10.1371/journal.pone.0188578] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/09/2017] [Indexed: 12/30/2022] Open
Abstract
Hereditary hearing loss (HL) is a common sensory disorder, with an incidence of 1–2 per 1000 newborns, and has a genetic etiology in over 50% of cases. It occurs either as part of a syndrome or in isolation and is genetically very heterogeneous which poses a challenge for clinical and molecular diagnosis. We used exome sequencing to seek a genetic cause in a group of 56 subjects (49 probands) with HL: 32 with non-syndromic non-GJB2 HL and 17 with syndromic HL. Following clinical examination and clinical exome sequencing, an etiological diagnosis was established in 15 probands (15/49; 30%); eight (8/17;47%) from the syndromic group and seven (7/32; 21%) from the non-syndromic non-GJB2 subgroup. Fourteen different (half of them novel) non-GJB2 variants causing HL were found in 10 genes (CHD7, HDAC8, MITF, NEFL, OTOF, SF3B4, SLC26A4, TECTA, TMPRSS3, USH2A) among 13 probands, confirming the genetic heterogeneity of hereditary HL. Different genetic causes for HL were found in a single family while three probands with apparent syndromic HL were found to have HL as a separate clinical feature, distinct from the complex phenotype. Clinical exome sequencing proved to be an effective tool used to comprehensively address the genetic heterogeneity of HL, to detect clinically unrecognized HL syndromes, and to decipher complex phenotypes in which HL is a separate feature and not part of a syndrome.
Collapse
Affiliation(s)
- Tina Likar
- Clinical Institute of Medical Genetics, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Mensuda Hasanhodžić
- Policlinic of Medical Genetics with Genetic Counseling for Out-Patient Care, Department of Paediatrics, University Clinical Centre Tuzla, Tuzla, Bosnia and Herzegovina
| | - Nataša Teran
- Clinical Institute of Medical Genetics, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Aleš Maver
- Clinical Institute of Medical Genetics, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Borut Peterlin
- Clinical Institute of Medical Genetics, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Karin Writzl
- Clinical Institute of Medical Genetics, University Medical Centre Ljubljana, Ljubljana, Slovenia
- * E-mail:
| |
Collapse
|
154
|
Kim CW, Han JH, Wu L, Choi JY. microRNA-183 is Essential for Hair Cell Regeneration after Neomycin Injury in Zebrafish. Yonsei Med J 2018; 59:141-147. [PMID: 29214789 PMCID: PMC5725352 DOI: 10.3349/ymj.2018.59.1.141] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 10/11/2017] [Accepted: 10/29/2017] [Indexed: 12/21/2022] Open
Abstract
PURPOSE microRNAs (miRNAs) are non-coding RNAs composed of 20 to 22 nucleotides that regulate development and differentiation in various organs by silencing specific RNAs and regulating gene expression. In the present study, we show that the microRNA (miR)-183 cluster is upregulated during hair cell regeneration and that its inhibition reduces hair cell regeneration following neomycin-induced ototoxicity in zebrafish. MATERIALS AND METHODS miRNA expression patterns after neomycin exposure were analyzed using microarray chips. Quantitative polymerase chain reaction was performed to validate miR-183 cluster expression patterns following neomycin exposure (500 μM for 2 h). After injection of an antisense morpholino (MO) to miR-183 (MO-183) immediately after fertilization, hair cell regeneration after neomycin exposure in neuromast cells was evaluated by fluorescent staining (YO-PRO1). The MO-183 effect also was assessed in transgenic zebrafish larvae expressing green fluorescent protein (GFP) in inner ear hair cells. RESULTS Microarray analysis clearly showed that the miR-183 cluster (miR-96, miR-182, and miR-183) was upregulated after neomycin treatment. We also confirmed upregulated expression of the miR-183 cluster during hair cell regeneration after neomycin-induced ototoxicity. miR-183 inhibition using MO-183 reduced hair cell regeneration in both wild-type and GFP transgenic zebrafish larvae. CONCLUSION Our work demonstrates that the miR-183 cluster is essential for the regeneration of hair cells following ototoxic injury in zebrafish larvae. Therefore, regulation of the miR-183 cluster can be a novel target for stimulation of hair cell regeneration.
Collapse
Affiliation(s)
- Chang Woo Kim
- Department of Otorhinolaryngology, Hallym University College of Medicine, Seoul, Korea
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea
| | - Ji Hyuk Han
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea
| | - Ling Wu
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea
| | - Jae Young Choi
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
155
|
Peng C, Furlan A, Zhang MD, Su J, Lübke M, Lönnerberg P, Abdo H, Sontheimer J, Sundström E, Ernfors P. Termination of cell-type specification gene programs by miR-183 cluster determines the population sizes of low threshold mechanosensitive neurons. Development 2018; 145:dev.165613. [DOI: 10.1242/dev.165613] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 08/03/2018] [Indexed: 01/03/2023]
Abstract
Touch and mechanical sensations require the development of several different kinds of sensory neurons dedicated to respond to certain types of mechanical stimuli. The transcription factor Shox2 (short stature homeobox 2) is involved in the generation of TRKB+ low-threshold mechanoreceptors (LTMRs), but mechanisms terminating this program and allowing for alternative fates are unknown. Here, we show that the conditional loss of miR-183-96-182 cluster leads to a failure of extinction of Shox2 during development and an increase in the proportion of Aδ LTMRs (TRKB+/NECAB2+) neurons at the expense of Aβ slowly adapting (SA)-LTMRs (TRKC+/Runx3−) neurons. Conversely, overexpression of miR-183 cluster that represses Shox2 expression, or loss of Shox2, both increases the Aβ SA-LTMRs population at expense of Aδ LTMRs. Our results suggest that the miR-183 cluster determines the timing of Shox2 expression by direct targeting during development, and through this determines the population sizes of Aδ LTMRs and Aβ SA-LTMRs.
Collapse
Affiliation(s)
- Changgeng Peng
- The First Rehabilitation Hospital of Shanghai, Tongji University School of Medicine, 200029 Shanghai, China
| | - Alessandro Furlan
- Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Ming-Dong Zhang
- Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Jie Su
- Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Moritz Lübke
- Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Peter Lönnerberg
- Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Hind Abdo
- Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Jana Sontheimer
- Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Erik Sundström
- Department of Neurobiology, Care Sciences and Society. Karolinska Institutet, 171777 Stockholm, Sweden
| | - Patrik Ernfors
- Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institutet, 17177 Stockholm, Sweden
| |
Collapse
|
156
|
Li Q, Peng X, Huang H, Li J, Wang F, Wang J. RNA sequencing uncovers the key microRNAs potentially contributing to sudden sensorineural hearing loss. Medicine (Baltimore) 2017; 96:e8837. [PMID: 29381991 PMCID: PMC5708990 DOI: 10.1097/md.0000000000008837] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
This study aimed to identify miRNAs that may contribute to the pathogenesis of sudden sensorineural hearing loss (SSNHL) by RNA-seq (RNA-sequencing).RNA was extracted from SSNHL patients and healthy volunteers, respectively. Sequencing was performed on HiSeq4000 platform. After filtering, clean reads were mapped to the human reference genome hg19. Differential expression analysis of miRNAs between the SSNHL samples and the normal samples was performed using DEseq to identify differentially expressed microRNAs (DEMs). The target genes of the DEMs were predicted using the online tool miRWalk, which were then mapped to DAVID (https://david.ncifcrf.gov/) for functional annotation based on GO database and for pathway enrichment analysis based on KEGG. Finally, a miRNA-target-protein-protein interaction (PPIs) network was constructed using the DEMs and their target genes with interaction.Differential expression analysis reveals 24 DEMs between the SSNHL group and control group. A total of 1083 target genes were predicted. GO functional annotation analysis reveals that the target genes in the top 10 terms are mainly related to the development of salivary glands, neurotransmission, dendritic development, and other processes. KEGG pathway enrichment analysis reveals that the target genes were functionally enriched in pathways arachidonic acid metabolism, complement and coagulation cascades, linoleic acid metabolism, and MAPK signaling pathway. In the miRNA-target-PPI network, hsa-miR-34a/548n/15a/143/23a/210/1255a/18b/ /1180/99b had the most target genes; genes YWHAG, GSK3B, CDC42, NR3C1, LCK, UNC119, SIN3A, and NFKB2, interact with most other genes among all the predicted target genes.Hsa-miR-34a/15a/23a/210/18b/548n/143 is likely to have a role in the pathogenesis of SSNHL.
Collapse
|
157
|
Ahmed FE, Gouda MM, Hussein LA, Ahmed NC, Vos PW, Mohammad MA. Role of Melt Curve Analysis in Interpretation of Nutrigenomics' MicroRNA Expression Data. Cancer Genomics Proteomics 2017; 14:469-481. [PMID: 29109097 PMCID: PMC6070330 DOI: 10.21873/cgp.20057] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 10/05/2017] [Accepted: 10/26/2017] [Indexed: 12/23/2022] Open
Abstract
This article illustrates the importance of melt curve analysis (MCA) in interpretation of mild nutrogenomic micro(mi)RNA expression data, by measuring the magnitude of the expression of key miRNA molecules in stool of healthy human adults as molecular markers, following the intake of Pomegranate juice (PGJ), functional fermented sobya (FS), rich in potential probiotic lactobacilli, or their combination. Total small RNA was isolated from stool of 25 volunteers before and following a three-week dietary intervention trial. Expression of 88 miRNA genes was evaluated using Qiagen's 96 well plate RT2 miRNA qPCR arrays. Employing parallel coordinates plots, there was no observed significant separation for the gene expression (Cq) values, using Roche 480® PCR LightCycler instrument used in this study, and none of the miRNAs showed significant statistical expression after controlling for the false discovery rate. On the other hand, melting temperature profiles produced during PCR amplification run, found seven significant genes (miR-184, miR-203, miR-373, miR-124, miR-96, miR-373 and miR-301a), which separated candidate miRNAs that could function as novel molecular markers of relevance to oxidative stress and immunoglobulin function, for the intake of polyphenol (PP)-rich, functional fermented foods rich in lactobacilli (FS), or their combination. We elaborate on these data, and present a detailed review on use of melt curves for analyzing nutigenomic miRNA expression data, which initially appear to show no significant expressions, but are actually more subtle than this simplistic view, necessitating the understanding of the role of MCA for a comprehensive understanding of what the collective expression and MCA data collectively imply.
Collapse
Affiliation(s)
- Farid E Ahmed
- GEM Tox Labs, Institute for Research in Biotechnology, Greenville, NC, U.S.A.
| | - Mostafa M Gouda
- Department of Nutrition & Food Science, National Research Centre, Dokki, Cairo, Egypt
| | - Laila A Hussein
- Department of Nutrition & Food Science, National Research Centre, Dokki, Cairo, Egypt
| | - Nancy C Ahmed
- GEM Tox Labs, Institute for Research in Biotechnology, Greenville, NC, U.S.A
| | - Paul W Vos
- Department of Biostatistics, College of Allied Health Sciences, East Carolina University, Greenville, NC, U.S.A
| | | |
Collapse
|
158
|
Ghanbari M, Iglesias AI, Springelkamp H, van Duijn CM, Ikram MA, Dehghan A, Erkeland SJ, Klaver CCW, Meester-Smoor MA. A Genome-Wide Scan for MicroRNA-Related Genetic Variants Associated With Primary Open-Angle Glaucoma. Invest Ophthalmol Vis Sci 2017; 58:5368-5377. [PMID: 29049738 PMCID: PMC6110129 DOI: 10.1167/iovs.17-22410] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To identify microRNAs (miRNAs) involved in primary open-angle glaucoma (POAG), using genetic data. MiRNAs are small noncoding RNAs that posttranscriptionally regulate gene expression. Genetic variants in miRNAs or miRNA-binding sites within gene 3'-untranslated regions (3'UTRs) are expected to affect miRNA function and contribute to disease risk. Methods Data from the recent genome-wide association studies on intraocular pressure, vertical cup-to-disc ratio (VCDR), cupa area and disc area were used to investigate the association of miRNAs with POAG endophenotypes. Putative targets of the associated miRNAs were studied according to their association with POAG and tested in cell line by transfection experiments for regulation by the miRNAs. Results Of 411 miRNA variants, rs12803915:A/G in the terminal loop of pre-miR-612 and rs2273626:A/C in the seed sequence of miR-4707 were significantly associated with VCDR and cup area (P values < 1.2 × 10-4). The first variant is demonstrated to increase the miR-612 expression. We showed that the second variant does not affect the miR-4707 biogenesis, but reduces the binding of miR-4707-3p to CARD10, a gene known to be involved in glaucoma. Moreover, of 72,052 miRNA-binding-site variants, 47 were significantly associated with four POAG endophenotypes (P value < 6.9 × 10-6). Of these, we highlighted 10 variants that are more likely to affect miRNA-mediated gene regulation in POAG. These include rs3217992 and rs1063192, which have been shown experimentally to affect miR-138-3p- and miR-323b-5p-mediated regulation of CDKN2B. Conclusions We identified a number of miRNAs that are associated with POAG endophenotypes. The identified miRNAs and their target genes are candidates for future studies on miRNA-related therapies for POAG.
Collapse
Affiliation(s)
- Mohsen Ghanbari
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Genetics, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Adriana I Iglesias
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Henriët Springelkamp
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Cornelia M van Duijn
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Abbas Dehghan
- Department of Epidemiology & Biostatistics, Imperial College London, London, United Kingdom
| | - Stefan J Erkeland
- Department of Immunology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Caroline C W Klaver
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Ophthalmology, Radbound University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Magda A Meester-Smoor
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | |
Collapse
|
159
|
A C-terminal nonsense mutation links PTPRQ with autosomal-dominant hearing loss, DFNA73. Genet Med 2017; 20:614-621. [PMID: 29309402 PMCID: PMC5993672 DOI: 10.1038/gim.2017.155] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 08/01/2017] [Indexed: 12/28/2022] Open
Abstract
Purpose Hearing loss is genetically extremely heterogeneous, making it suitable for next-generation sequencing (NGS). We identified a four-generation family with nonsyndromic mild to severe hearing loss of the mid- to high frequencies and onset from early childhood to second decade in seven members. Methods NGS of 66 deafness genes, Sanger sequencing, genome-wide linkage analysis, whole-exome sequencing (WES), semiquantitative reverse-transcriptase polymerase chain reaction. Results We identified a heterozygous nonsense mutation, c.6881G>A (p.Trp2294*), in the last coding exon of PTPRQ. PTPRQ has been linked with recessive (DFNB84A), but not dominant deafness. NGS and Sanger sequencing of all exons (including alternatively spliced 5′ and N-scan-predicted exons of a putative “extended” transcript) did not identify a second mutation. The highest logarithm of the odds score was in the PTPRQ-containing region on chromosome 12, and p.Trp2294* cosegregated with hearing loss. WES did not identify other cosegregating candidate variants from the mapped region. PTPRQ expression in patient fibroblasts indicated that the mutant allele escapes nonsense-mediated decay (NMD). Conclusion Known PTPRQ mutations are recessive and do not affect the C-terminal exon. In contrast to recessive loss-of-function mutations, c.6881G>A transcripts may escape NMD. PTPRQTrp2294* protein would lack only six terminal residues and could exert a dominant-negative effect, a possible explanation for allelic deafness, DFNA73, clinically and genetically distinct from DFNB84A.
Collapse
|
160
|
Sekine K, Matsumura T, Takizawa T, Kimura Y, Saito S, Shiiba K, Shindo S, Okubo K, Ikezono T. Expression Profiling of MicroRNAs in the Inner Ear of Elderly People by Real-Time PCR Quantification. Audiol Neurootol 2017; 22:135-145. [DOI: 10.1159/000479724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 07/20/2017] [Indexed: 12/12/2022] Open
Abstract
The molecular mechanisms underlying age-related hearing loss are unknown, and currently, there is no treatment for this condition. Recent studies have shown that microRNAs (miRNAs) and age-related diseases are intimately linked, suggesting that some miRNAs may present attractive therapeutic targets. In this study, we obtained 8 human temporal bones from 8 elderly subjects at brain autopsy in order to investigate the expression profile of miRNAs in the inner ear with miRNA arrays. A mean of 478 different miRNAs were expressed in the samples, of which 348 were commonly expressed in all 8 samples. Of these, levels of 16 miRNAs significantly differed between young elderly and old elderly subjects. miRNAs, which play important roles in inner ear development, were detected in all samples, i.e., in both young and old elderly subjects, whether with or without hearing loss. Our results suggest that these miRNAs play important roles not only in development, but also in the maintenance of inner ear homeostasis.
Collapse
|
161
|
Tian Z, Zhou H, Xu Y, Bai J. MicroRNA-495 Inhibits New Bone Regeneration via Targeting High Mobility Group AT-Hook 2 (HMGA2). Med Sci Monit 2017; 23:4689-4698. [PMID: 28963864 PMCID: PMC5633066 DOI: 10.12659/msm.904404] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background MicroRNAs play critical roles in post-translational gene expression. In this study, we explored the role of miR-495 in new bone regeneration. Material/Methods Murine calvarial osteoblasts were isolated and cultured. Microarray was performed to identify differential miRNAs in medicarpin-induced osteoblasts differentiation. Luciferase reporter assay was performed to identify the target gene of miRNA. Murine osteoblast cells were transfected with miC, miR-495, or anti-miR-495. CCK-8 and flow cytometry were performed to detect osteoblasts proliferation and apoptosis. Western blot was used to analyze apoptosis-related proteins. qRT-PCR analysis was performed to detect gene expression. ALP activity and mineralized nodule formation test were used to evaluate bone formation. Dill-hole injury model was constructed and micro CT was utilized to measuring bone healing. Results Microarray analysis identified miR-495 as our miRNA of interest and luciferase reporter assay identified HMGA2 as its target gene. Over-expression of miR-495 significantly inhibited ALP activity and mineralized nodule formation as well as the expression of RUNX-2, BMP-2, and Osterix. Also, miR-495 over-expression inhibited osteoblasts proliferation and promoted apoptosis obviously. In this in vivo study, the downregulation of miR-495 promoted murine femur healing. Conclusions MiR-495 inhibits new bone regeneration via targeting high mobility group AT-Hook 2 (HMGA2). We propose that targeting miR-495 may be a promising therapeutic approach for bone regeneration.
Collapse
Affiliation(s)
- Zhao Tian
- Department of Hand Surgery, Honghui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi, China (mainland)
| | - Haizhen Zhou
- Department of Hand Surgery, Honghui Hospital, Xi'an Jiaotong University College of Medcine, Xi'an, Shaanxi, China (mainland)
| | - Yuben Xu
- Department of Hand Surgery, Honghui Hospital, Xi'an Jiaotong University College of Medcine, Xi'an, Shaanxi, China (mainland)
| | - Jie Bai
- Department of Hand Surgery, Honghui Hospital, Xi'an Jiaotong University College of Medcine, Xi'an, Shaanxi, China (mainland)
| |
Collapse
|
162
|
Du J, Zhang X, Cao H, Jiang D, Wang X, Zhou W, Chen K, Zhou J, Jiang H, Ba L. MiR-194 is involved in morphogenesis of spiral ganglion neurons in inner ear by rearranging actin cytoskeleton via targeting RhoB. Int J Dev Neurosci 2017; 63:16-26. [PMID: 28941704 DOI: 10.1016/j.ijdevneu.2017.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 09/17/2017] [Accepted: 09/19/2017] [Indexed: 02/05/2023] Open
Abstract
Many microRNAs participate in the development, differentiation and function preservation of the embryonic and adult inner ear, but many details still need to be elucidated regarding the numerous microRNAs in the inner ear. Based on previous investigations on the microRNA profile in the inner ear, we confirmed that several microRNAs are expressed in the inner ear, and we detected the spatial expression of these microRNAs in the neonatal mouse inner ear. Then we focused on miR-194 for its specific expression with a dynamic spatiotemporal pattern during inner ear development. Overexpression of miR-194 in cultured spiral ganglion cells significantly affected the dendrites of differentiated neurons, with more branching and obviously dispersed nerve fibres. Furthermore, the cytoskeleton of cultured cells was markedly affected, as disordered actin filaments resulting from miR-194 overexpression and enhanced filaments resulting from miR-194 knockdown were observed. Together with the bioinformatic methods, the RT-qPCR and western blot results showed that RhoB is a candidate target of miR-194 in the morphogenesis of spiral ganglion neurons. Additionally, the double luciferase reporter system was used to identify RhoB as a novel target of miR-194. Finally, the inhibition of RhoB activation by Clostridium difficile toxin B disturbed the organization of the actin filament, similar to the effects of miR-194 overexpression. In summary, we investigated microRNA expression in the mouse inner ear, and demonstrated that miR-194 is dynamically expressed during inner ear development; importantly, we found that miR-194 affects neuron morphogenesis positively through Rho B-mediated F-actin rearrangement.
Collapse
Affiliation(s)
- Jintao Du
- Department of Otorhinolaryngology Head & Neck Surgery, West China Hospital, Sichuan University, 37 Guoxue Lane, Chengdu, 610041, China
| | - Xuemei Zhang
- Department of Otorhinolaryngology, the First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, China
| | - Hui Cao
- Department of Otorhinolaryngology, the First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, China
| | - Di Jiang
- Department of Otorhinolaryngology, the First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, China
| | - Xianren Wang
- Department of Otorhinolaryngology, the First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, China
| | - Wei Zhou
- Department of Otorhinolaryngology, the First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, China; Department of Otolaryngology, People's Hospital of Meishan, Meishan, Sichuan, 620010, China
| | - Kaitian Chen
- Department of Otorhinolaryngology, the First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, China
| | - Jiao Zhou
- Department of Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hongyan Jiang
- Department of Otorhinolaryngology, the First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, China.
| | - Luo Ba
- Department of Otolaryngology, People's Hospital of the Tibet Autonomous Region, Lasha, China.
| |
Collapse
|
163
|
Ushakov K, Koffler-Brill T, Rom A, Perl K, Ulitsky I, Avraham KB. Genome-wide identification and expression profiling of long non-coding RNAs in auditory and vestibular systems. Sci Rep 2017; 7:8637. [PMID: 28819115 PMCID: PMC5561060 DOI: 10.1038/s41598-017-08320-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 07/07/2017] [Indexed: 11/09/2022] Open
Abstract
Mammalian genomes encode multiple layers of regulation, including a class of RNA molecules known as long non-coding RNAs (lncRNAs). These are >200 nucleotides in length and similar to mRNAs, they are capped, polyadenylated, and spliced. In contrast to mRNAs, lncRNAs are less abundant and have higher tissue specificity, and have been linked to development, epigenetic processes, and disease. However, little is known about lncRNA function in the auditory and vestibular systems, or how they play a role in deafness and vestibular dysfunction. To help address this need, we performed a whole-genome identification of lncRNAs using RNA-seq at two developmental stages of the mouse inner ear sensory epithelium of the cochlea and vestibule. We identified 3,239 lncRNA genes, most of which were intergenic (lincRNAs) and 721 are novel. We examined temporal and tissue specificity by analyzing the developmental profiles on embryonic day 16.5 and at birth. The spatial and temporal patterns of three lncRNAs, two of which are in proximity to genes associated with hearing and deafness, were explored further. Our findings indicate that lncRNAs are prevalent in the sensory epithelium of the mouse inner ear and are likely to play key roles in regulating critical pathways for hearing and balance.
Collapse
Affiliation(s)
- Kathy Ushakov
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Tal Koffler-Brill
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Aviv Rom
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Kobi Perl
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel.,Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Igor Ulitsky
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Karen B Avraham
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel.
| |
Collapse
|
164
|
Van den Ackerveken P, Mounier A, Huyghe A, Sacheli R, Vanlerberghe PB, Volvert ML, Delacroix L, Nguyen L, Malgrange B. The miR-183/ItgA3 axis is a key regulator of prosensory area during early inner ear development. Cell Death Differ 2017; 24:2054-2065. [PMID: 28777373 DOI: 10.1038/cdd.2017.127] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 06/15/2017] [Accepted: 06/30/2017] [Indexed: 01/08/2023] Open
Abstract
MicroRNAs are important regulators of gene expression and are involved in cellular processes such as proliferation or differentiation, particularly during development of numerous organs including the inner ear. However, it remains unknown if miRNAs are required during the earliest stages of otocyst and cochlear duct development. Here, we report that a conditional loss of Dicer expression in the otocyst impairs the early development of the inner ear as a result of the accumulation of DNA damage that trigger p53-mediated apoptosis. Moreover, cochlear progenitors in the prosensory domain do not exit the cell cycle. Our unbiased approach identified ItgA3 as a target of miR-183, which are both enriched in the otic vesicle. We observed that the repression of integrin alpha 3 by miR-183 controls cell proliferation in the developing cochlea. Collectively, our results reveal that Dicer and miRNAs play essential roles in the regulation of early inner ear development.
Collapse
Affiliation(s)
- Priscilla Van den Ackerveken
- GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège B-4000, Belgium
| | - Anaïs Mounier
- GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège B-4000, Belgium
| | - Aurelia Huyghe
- GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège B-4000, Belgium
| | - Rosalie Sacheli
- GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège B-4000, Belgium
| | - Pierre-Bernard Vanlerberghe
- GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège B-4000, Belgium
| | - Marie-Laure Volvert
- GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège B-4000, Belgium
| | - Laurence Delacroix
- GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège B-4000, Belgium
| | - Laurent Nguyen
- GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège B-4000, Belgium
| | - Brigitte Malgrange
- GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège B-4000, Belgium
| |
Collapse
|
165
|
Abstract
microRNAs (miRNAs) are a small RNA species without protein-coding potential. However, they are key modulators of protein translation. Many studies have linked miRNAs with cancer initiation, progression, diagnosis, and prognosis, and recent studies have also linked them with cancer etiology and susceptibility, especially through single-nucleotide polymorphisms (SNPs). This review discusses some of the recent advances in miRNA-SNP literature-including SNPs in miRNA genes, miRNA target sites, and the processing machinery. In addition, we highlight some emerging areas of interest, including isomiRs and non-3'UTR focused miRNA-binding mechanisms that could provide further novel insight into the relationship between miR-SNPs and cancer. Finally, we note that additional epidemiological and experimental research is needed to close the gap in our understanding of the genotype-phenotype relationship between miRNA-SNPs and cancer.
Collapse
Affiliation(s)
- Bríd M Ryan
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States.
| |
Collapse
|
166
|
Role of miRNAs in development and disease: Lessons learnt from small organisms. Life Sci 2017; 185:8-14. [PMID: 28728902 DOI: 10.1016/j.lfs.2017.07.017] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 07/10/2017] [Accepted: 07/16/2017] [Indexed: 01/23/2023]
Abstract
MicroRNAs (miRNAs) constitute a class of small (18-22 nucleotides) non-coding RNAs that regulate gene expression at the post-transcriptional level. Caenorhabditis elegans, Drosophila melanogaster, and many other small organisms have been instrumental in deciphering the biological functions of miRNAs. While some miRNAs from small organisms are highly conserved across the taxa, others are organism specific. The miRNAs are known to play a crucial role during development and in various cellular functions such as cell survival, cell proliferation, and differentiation. The miRNAs associated with fragile X syndrome, Parkinson's disease, Alzheimer's disease, diabetes, cancer, malaria, infectious diseases and several other human diseases have been identified from small organisms. These organisms have been used as platforms in deciphering the functions of miRNAs in the pathogenesis of human diseases and to study miRNA biogenesis. Small organisms have also been used in the development of miRNA-based diagnostic, prognostic and therapeutic strategies. The molecular techniques such as genome sequencing, northern blot analysis, and quantitative RT-PCR, have been used in deciphering the functions of miRNAs in small organisms. How miRNAs from small organisms especially those from Drosophila and C. elegans regulate development and disease pathogenesis is the focus of this review. The outstanding questions raised by our current understanding are discussed.
Collapse
|
167
|
Huang XF, Huang ZQ, Fang XL, Chen ZJ, Cheng W, Jin ZB. Retinal miRNAs variations in a large cohort of inherited retinal disease. Ophthalmic Genet 2017; 39:175-179. [PMID: 28704127 DOI: 10.1080/13816810.2017.1329448] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Although great efforts have been paid on identification of genetic predisposition in the inherited retinal disease (IRD), genetic causes of a large proportion of patients remain a mystery. This dilemma makes us attempt to speculate that genetic components other than coding genes might be an additional pool predisposing IRD. In this study, we aim to perform a mutational screening in a large cohort of IRD patients with a particular focus on retina-specific or abundant microRNAs (miRs). MATERIAL AND METHODS A total of 324 unrelated patients with IRD were recruited. Targeted next-generation sequencing (tNGS) was performed to survey genetic mutations in 32 known miRs highly expressed in the retina, followed by validation with Sanger sequencing, co-segregation analysis in each family, and computational assessments. RESULTS Novel genotype-phenotype associations have been uncovered. In total, six different variants in the miRs were identified, including four rare ones, miR-216a (n.56C>A), miR-216b (n.43_44insG), miR-7-2 (n.107C>T), and miR-7-3 (n.95G>A). The other two variants, miR-182 (n.106G>A) and miR-216a (n.105T>A), were considered as polymorphic. CONCLUSIONS We for the first time screened candidate retinal miRs in patients with IRD. Although there is no convincing evidence that these variants are responsible for the IRD, the results enhance the current knowledge of the associations between IRD and miRNAs variants.
Collapse
Affiliation(s)
- Xiu-Feng Huang
- a Division of Ophthalmic Genetics , Lab for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, The Eye Hospital, Wenzhou Medical University , Wenzhou , China
| | - Zhi-Qin Huang
- a Division of Ophthalmic Genetics , Lab for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, The Eye Hospital, Wenzhou Medical University , Wenzhou , China
| | - Xiao-Long Fang
- a Division of Ophthalmic Genetics , Lab for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, The Eye Hospital, Wenzhou Medical University , Wenzhou , China
| | - Zhen-Ji Chen
- a Division of Ophthalmic Genetics , Lab for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, The Eye Hospital, Wenzhou Medical University , Wenzhou , China
| | - Wan Cheng
- a Division of Ophthalmic Genetics , Lab for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, The Eye Hospital, Wenzhou Medical University , Wenzhou , China
| | - Zi-Bing Jin
- a Division of Ophthalmic Genetics , Lab for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, The Eye Hospital, Wenzhou Medical University , Wenzhou , China
| |
Collapse
|
168
|
Ebeid M, Sripal P, Pecka J, Beisel KW, Kwan K, Soukup GA. Transcriptome-wide comparison of the impact of Atoh1 and miR-183 family on pluripotent stem cells and multipotent otic progenitor cells. PLoS One 2017; 12:e0180855. [PMID: 28686713 PMCID: PMC5501616 DOI: 10.1371/journal.pone.0180855] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/05/2017] [Indexed: 11/18/2022] Open
Abstract
Over 5% of the global population suffers from disabling hearing loss caused by multiple factors including aging, noise exposure, genetic predisposition, or use of ototoxic drugs. Sensorineural hearing loss is often caused by the loss of sensory hair cells (HCs) of the inner ear. A barrier to hearing restoration after HC loss is the limited ability of mammalian auditory HCs to spontaneously regenerate. Understanding the molecular mechanisms orchestrating HC development is expected to facilitate cell replacement therapies. Multiple events are known to be essential for proper HC development including the expression of Atoh1 transcription factor and the miR-183 family. We have developed a series of vectors expressing the miR-183 family and/or Atoh1 that was used to transfect two different developmental cell models: pluripotent mouse embryonic stem cells (mESCs) and immortalized multipotent otic progenitor (iMOP) cells representing an advanced developmental stage. Transcriptome profiling of transfected cells show that the impact of Atoh1 is contextually dependent with more HC-specific effects on iMOP cells. miR-183 family expression in combination with Atoh1 not only appears to fine tune gene expression in favor of HC fate, but is also required for the expression of some HC-specific genes. Overall, the work provides novel insight into the combined role of Atoh1 and the miR-183 family during HC development that may ultimately inform strategies to promote HC regeneration or maintenance.
Collapse
Affiliation(s)
- Michael Ebeid
- Department of Biomedical Sciences, Creighton University, Omaha, Nebraska, United States of America
| | - Prashanth Sripal
- Department of Biomedical Sciences, Creighton University, Omaha, Nebraska, United States of America
| | - Jason Pecka
- Department of Biomedical Sciences, Creighton University, Omaha, Nebraska, United States of America
| | - Kirk W. Beisel
- Department of Biomedical Sciences, Creighton University, Omaha, Nebraska, United States of America
| | - Kelvin Kwan
- Department of Cell Biology and Neuroscience, W. M. Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway, New Jersey, United States of America
| | - Garrett A. Soukup
- Department of Biomedical Sciences, Creighton University, Omaha, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
169
|
Association of miR-938G>A Polymorphisms with Primary Ovarian Insufficiency (POI)-Related Gene Expression. Int J Mol Sci 2017; 18:ijms18061255. [PMID: 28604625 PMCID: PMC5486077 DOI: 10.3390/ijms18061255] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 05/28/2017] [Accepted: 06/07/2017] [Indexed: 12/22/2022] Open
Abstract
MicroRNAs (miRNAs) post-transcriptionally regulate gene expression in animals and plants. The aim of this study was to investigate whether polymorphisms in miR-938 are associated with the risk of primary ovarian insufficiency (POI) and POI-related target gene regulation. We identified the miR-938G>A polymorphisms within the seed sequence of mature miRNA and aligned the seed sequence with the 3′ untranslated region (UTR) of the gonadotropin-releasing hormone receptor (GnRHR) mRNA, a miR-938 target gene. We found that the binding of miR-938 to the 3′-UTR of GnRHR mRNA was significantly different between normal and variant alleles. Our data suggests that the dysregulation of miR-938G>A influences the binding to GnRHR and that miR-938G>A polymorphisms might contribute to regulation of POI-related target genes.
Collapse
|
170
|
Sun W, Lan J, Chen L, Qiu J, Luo Z, Li M, Wang J, Zhao J, Zhang T, Long X, Chai J, Yan Z, Guo Z, Gun S. A mutation in porcine pre-miR-15b alters the biogenesis of MiR-15b\16-1 cluster and strand selection of MiR-15b. PLoS One 2017; 12:e0178045. [PMID: 28542522 PMCID: PMC5443575 DOI: 10.1371/journal.pone.0178045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 05/08/2017] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that are involved in translational regulation of the messenger RNA molecules. Sequence variations in the genes encoding miRNAs could influence their biogenesis and function. MiR-15b plays an important role in cellular proliferation, apoptosis and the cell cycle. Here, we report the identification of a C58T mutation in porcine pre-miR-15b. Through in vitro and in vivo experiments, we determined that this mutation blocks the transition from pri-miRNA to pre-miRNA, alters the strand selection between miR-15b-5p and miR-15b-3p, and obstructs biogenesis of the downstream miR-16-1. These results serve to highlight the importance of miRNA mutations and their impacts on miRNA biogenesis.
Collapse
Affiliation(s)
- Wenyang Sun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Key Laboratory of Pig Industry Sciences (Ministry of Agriculture), Chongqing Academy of Animal Science, Chongqing, China
| | - Jing Lan
- Key Laboratory of Pig Industry Sciences (Ministry of Agriculture), Chongqing Academy of Animal Science, Chongqing, China
| | - Lei Chen
- Key Laboratory of Pig Industry Sciences (Ministry of Agriculture), Chongqing Academy of Animal Science, Chongqing, China
| | - Jinjie Qiu
- Key Laboratory of Pig Industry Sciences (Ministry of Agriculture), Chongqing Academy of Animal Science, Chongqing, China
| | - Zonggang Luo
- Key Laboratory of Pig Industry Sciences (Ministry of Agriculture), Chongqing Academy of Animal Science, Chongqing, China
- Department of Animal Science, Southwest University, Rongchang, Chongqing, China
| | - Mingzhou Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jinyong Wang
- Key Laboratory of Pig Industry Sciences (Ministry of Agriculture), Chongqing Academy of Animal Science, Chongqing, China
| | - Jiugang Zhao
- Key Laboratory of Pig Industry Sciences (Ministry of Agriculture), Chongqing Academy of Animal Science, Chongqing, China
| | - Tinghuan Zhang
- Key Laboratory of Pig Industry Sciences (Ministry of Agriculture), Chongqing Academy of Animal Science, Chongqing, China
| | - Xi Long
- Key Laboratory of Pig Industry Sciences (Ministry of Agriculture), Chongqing Academy of Animal Science, Chongqing, China
| | - Jie Chai
- Key Laboratory of Pig Industry Sciences (Ministry of Agriculture), Chongqing Academy of Animal Science, Chongqing, China
| | - Zunqiang Yan
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Key Laboratory of Pig Industry Sciences (Ministry of Agriculture), Chongqing Academy of Animal Science, Chongqing, China
| | - Zongyi Guo
- Key Laboratory of Pig Industry Sciences (Ministry of Agriculture), Chongqing Academy of Animal Science, Chongqing, China
| | - Shuangbao Gun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Research Center for Swine Production Engineering and Technology, Lanzhou, China
| |
Collapse
|
171
|
Abstract
MicroRNAs are a class of small non-coding RNAs that are involved in many important biological processes and the dysfunction of microRNA has been associated with many diseases. The seed region of a microRNA is of crucial importance to its target recognition. Mutations in microRNA seed regions may disrupt the binding of microRNAs to their original target genes and make them bind to new target genes. Here we use a knowledge-based computational method to systematically predict the functional effects of all the possible single nucleotide mutations in human microRNA seed regions. The result provides a comprehensive reference for the functional assessment of the impacts of possible natural and artificial single nucleotide mutations in microRNA seed regions.
Collapse
|
172
|
Vona B, Nanda I, Shehata-Dieler W, Haaf T. Genetics of Tinnitus: Still in its Infancy. Front Neurosci 2017; 11:236. [PMID: 28533738 PMCID: PMC5421307 DOI: 10.3389/fnins.2017.00236] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 04/10/2017] [Indexed: 12/20/2022] Open
Abstract
Tinnitus is the perception of a phantom sound that affects between 10 and 15% of the general population. Despite this considerable prevalence, treatments for tinnitus are presently lacking. Tinnitus exhibits a diverse array of recognized risk factors and extreme clinical heterogeneity. Furthermore, it can involve an unknown number of auditory and non-auditory networks and molecular pathways. This complex combination has hampered advancements in the field. The identification of specific genetic factors has been at the forefront of several research investigations in the past decade. Nine studies have examined genes in a case-control association approach. Recently, a genome-wide association study has highlighted several potentially significant pathways that are implicated in tinnitus. Two twin studies have calculated a moderate heritability for tinnitus and disclosed a greater concordance rate in monozygotic twins compared to dizygotic twins. Despite the more recent data alluding to genetic factors in tinnitus, a strong association with any specific genetic locus is lacking and a genetic study with sufficient statistical power has yet to be designed. Future research endeavors must overcome the many inherent limitations in previous study designs. This review summarizes the previously embarked upon tinnitus genetic investigations and summarizes the hurdles that have been encountered. The identification of candidate genes responsible for tinnitus may afford gene based diagnostic approaches, effective therapy development, and personalized therapeutic intervention.
Collapse
Affiliation(s)
- Barbara Vona
- Institute of Human Genetics, Julius Maximilians University WürzburgWürzburg, Germany
| | - Indrajit Nanda
- Institute of Human Genetics, Julius Maximilians University WürzburgWürzburg, Germany
| | - Wafaa Shehata-Dieler
- Plastic, Aesthetic and Reconstructive Surgery, Department of Otorhinolaryngology, Comprehensive Hearing Center, University Hospital WürzburgWürzburg, Germany
| | - Thomas Haaf
- Institute of Human Genetics, Julius Maximilians University WürzburgWürzburg, Germany
| |
Collapse
|
173
|
Deng Y, Luan F, Zeng L, Zhang Y, Ma K. MiR-429 suppresses the progression and metastasis of osteosarcoma by targeting ZEB1. EXCLI JOURNAL 2017; 16:618-627. [PMID: 28694763 PMCID: PMC5491908 DOI: 10.17179/excli2017-258] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 04/12/2017] [Indexed: 12/19/2022]
Abstract
MiR-429 functions as a tumor suppressor and has been observed in multiple types of cancer, but the effects and mechanisms of miR-429 in osteosarcoma are poorly understood. This study is performed to evaluate the functions of miR-429 in the progression of osteosarcoma. Firstly, the miR-429 expression in osteosarcoma tissues and osteosarcoma cells was detected using real time PCR, and the relationship between miR-429 expression and overall survival of osteosarcoma was analyzed. Secondly, the effects of miR-429 on the migration, invasion, proliferation and apoptosis of osteosarcoma cells were evaluated using transwell assay, wound-healing assay, CCK-8 assay and flow cytometry, respectively. Proteins related to epithelial-mesenchymal transition (EMT), E-cadherin, Vimentin, N-cadherin and Snail, were also detected using Western blot. Finally, the target gene of miR-429 in osteosarcoma was predicted and verified using dual luciferase assay and the expression correlation between them was analyzed using Pearson's correlation. MiR-429 was down-regulated in osteosarcoma tissues and osteosarcoma cells; the expression level of miR-429 was associated with the prognosis of osteosarcoma. High level of miR-429 in osteosarcoma cells significantly suppressed the migration, invasion and proliferation of cells but induced cells apoptosis. Furthermore, high level of miR-429 in osteosarcoma cells obviously increased the expression of E-cadherin protein but decreased the expression of Vimentin, N-Cadherin and Snail proteins. EMT inducer ZEB1 was the target gene of miR-429 and the expression of ZEB1 was negatively related to the miR-429 expression in osteosarcoma. In conclusion, miR-429 may functions as a tumor suppressor and be down-regulated in osteosarcoma. MiR-429 may suppress the progression and metastasis of osteosarcoma by down-regulating the ZEB1 expression.
Collapse
Affiliation(s)
- Yi Deng
- Department of Oncology, Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, China
| | - Fujun Luan
- Department of Orthopedics, Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, China
| | - Li Zeng
- Department of Oncology, Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, China
| | - Yanjun Zhang
- Department of General Surgery, Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, China
| | - Kunlong Ma
- Department of Orthopedics, Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, China
| |
Collapse
|
174
|
Ghanbari M, Erkeland SJ, Xu L, Colijn JM, Franco OH, Dehghan A, Klaver CCW, Meester-Smoor MA. Genetic variants in microRNAs and their binding sites within gene 3'UTRs associate with susceptibility to age-related macular degeneration. Hum Mutat 2017; 38:827-838. [PMID: 28397307 DOI: 10.1002/humu.23226] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/06/2017] [Accepted: 04/06/2017] [Indexed: 01/06/2023]
Abstract
Age-related macular degeneration (AMD), the leading cause of blindness in the elderly, is a complex disease that results from multiple genetic and environmental factors. MicroRNAs (miRNAs) are small noncoding RNAs that post-transcriptionally regulate target mRNAs and are frequently implicated in human diseases. Here, we investigated the association of genetic variants in miRNAs and miRNA-binding sites within gene 3'-untranslated regions (3'UTRs) with AMD using data from the largest AMD genome-wide association study. First, we identified three variants in miRNAs significantly associated with AMD. These include rs2168518:G>A in the miR-4513 seed sequence, rs41292412:C>T in pre-miR-122/miR-3591, and rs4351242:C>T in the terminal-loop of pre-miR-3135b. We demonstrated that these variants reduce expression levels of the mature miRNAs in vitro and pointed the target genes that may mediate downstream effects of these miRNAs in AMD. Second, we identified 54 variants (in 31 genes) in miRNA-binding sites associated with AMD. Based on stringent prioritization criteria, we highlighted the variants that are more likely to have an impact on the miRNA-target interactions. Further, we selected rs4151672:C>T within the CFB 3'UTR and experimentally showed that while miR-210-5p downregulates expression of CFB, the variant decreases miR-210-5p-mediated repression of CFB. Together, our findings support the notion that miRNAs may play a role in AMD.
Collapse
Affiliation(s)
- Mohsen Ghanbari
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Stefan J Erkeland
- Department of Immunology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Lei Xu
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Johanna M Colijn
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Oscar H Franco
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Abbas Dehghan
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Caroline C W Klaver
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Ophthalmology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Magda A Meester-Smoor
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
175
|
Doetzlhofer A, Avraham KB. Insights into inner ear-specific gene regulation: Epigenetics and non-coding RNAs in inner ear development and regeneration. Semin Cell Dev Biol 2017; 65:69-79. [PMID: 27836639 PMCID: PMC5512292 DOI: 10.1016/j.semcdb.2016.11.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/14/2016] [Accepted: 11/03/2016] [Indexed: 12/12/2022]
Abstract
The vertebrate inner ear houses highly specialized sensory organs, tuned to detect and encode sound, head motion and gravity. Gene expression programs under the control of transcription factors orchestrate the formation and specialization of the non-sensory inner ear labyrinth and its sensory constituents. More recently, epigenetic factors and non-coding RNAs emerged as an additional layer of gene regulation, both in inner ear development and disease. In this review, we provide an overview on how epigenetic modifications and non-coding RNAs, in particular microRNAs (miRNAs), influence gene expression and summarize recent discoveries that highlight their critical role in the proper formation of the inner ear labyrinth and its sensory organs. Finally, we discuss recent insights into how epigenetic factors and miRNAs may facilitate, or in the case of mammals, restrict inner ear sensory hair cell regeneration.
Collapse
Affiliation(s)
- Angelika Doetzlhofer
- The Solomon H. Snyder Department of Neuroscience, the Center for Sensory Biology, the Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA.
| | - Karen B Avraham
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel.
| |
Collapse
|
176
|
The Application of Next-Generation Sequencing for Mutation Detection in Autosomal-Dominant Hereditary Hearing Impairment. Otol Neurotol 2017; 38:900-903. [PMID: 28419064 DOI: 10.1097/mao.0000000000001432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVE Identification of the causative mutation using next-generation sequencing in autosomal-dominant hereditary hearing impairment, as mutation analysis in hereditary hearing impairment by classic genetic methods, is hindered by the high heterogeneity of the disease. PATIENTS Two Swiss families with autosomal-dominant hereditary hearing impairment. INTERVENTION Amplified DNA libraries for next-generation sequencing were constructed from extracted genomic DNA, derived from peripheral blood, and enriched by a custom-made sequence capture library. Validated, pooled libraries were sequenced on an Illumina MiSeq instrument, 300 cycles and paired-end sequencing. Technical data analysis was performed with SeqMonk, variant analysis with GeneTalk or VariantStudio. The detection of mutations in genes related to hearing loss by next-generation sequencing was subsequently confirmed using specific polymerase-chain-reaction and Sanger sequencing. MAIN OUTCOME MEASURE Mutation detection in hearing-loss-related genes. RESULTS The first family harbored the mutation c.5383+5delGTGA in the TECTA-gene. In the second family, a novel mutation c.2614-2625delCATGGCGCCGTG in the WFS1-gene and a second mutation TCOF1-c.1028G>A were identified. CONCLUSION Next-generation sequencing successfully identified the causative mutation in families with autosomal-dominant hereditary hearing impairment. The results helped to clarify the pathogenic role of a known mutation and led to the detection of a novel one. NGS represents a feasible approach with great potential future in the diagnostics of hereditary hearing impairment, even in smaller labs.
Collapse
|
177
|
Mahmoudian-Sani MR, Mehri-Ghahfarrokhi A, Ahmadinejad F, Hashemzadeh-Chaleshtori M, Saidijam M, Jami MS. MicroRNAs: effective elements in ear-related diseases and hearing loss. Eur Arch Otorhinolaryngol 2017; 274:2373-2380. [PMID: 28224282 DOI: 10.1007/s00405-017-4470-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/17/2017] [Indexed: 12/13/2022]
Abstract
miRNAs are important factors for post-transcriptional process that controls gene expression at mRNA level. Various biological processes, including growth and differentiation, are regulated by miRNAs. miRNAs have been demonstrated to play an essential role in development and progression of hearing loss. Nowadays, miRNAs are known as critical factors involved in different physiological, biological, and pathological processes, such as gene expression, progressive sensorineural hearing loss, age-related hearing loss, noise-induced hearing loss, cholesteatoma, schwannomas, and inner ear inflammation. The miR-183 family (miR-183, miR-96 and miR-182) is expressed abundantly in some types of sensory cells in inner ear specially mechanosensory hair cells that exhibit a great expression level of this family. The plasma levels of miR-24-3p, miR-16-5p, miR-185-5p, and miR-451a were upregulated during noise exposures, and increased levels of miR-21 have been found in vestibular schwannomas and human cholesteatoma. In addition, upregulation of pro-apoptotic miRNAs and downregulation of miRNAs which promote differentiation and proliferation in age-related degeneration of the organ of Corti may potentially serve as a helpful biomarker for the early detection of age-related hearing loss. This knowledge represents miRNAs as promising diagnostic and therapeutic tools in the near future.
Collapse
Affiliation(s)
- Mohammad-Reza Mahmoudian-Sani
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.,Department of Genetics and Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Fereshteh Ahmadinejad
- Cellular and Molecular Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | - Massoud Saidijam
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.,Department of Genetics and Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad-Saeid Jami
- Cellular and Molecular Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
178
|
Ahmed K, LaPierre MP, Gasser E, Denzler R, Yang Y, Rülicke T, Kero J, Latreille M, Stoffel M. Loss of microRNA-7a2 induces hypogonadotropic hypogonadism and infertility. J Clin Invest 2017; 127:1061-1074. [PMID: 28218624 DOI: 10.1172/jci90031] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 12/15/2016] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs) are negative modulators of gene expression that fine-tune numerous biological processes. miRNA loss-of-function rarely results in highly penetrant phenotypes, but rather, influences cellular responses to physiologic and pathophysiologic stresses. Here, we have reported that a single member of the evolutionarily conserved miR-7 family, miR-7a2, is essential for normal pituitary development and hypothalamic-pituitary-gonadal (HPG) function in adulthood. Genetic deletion of mir-7a2 causes infertility, with low levels of gonadotropic and sex steroid hormones, small testes or ovaries, impaired spermatogenesis, and lack of ovulation in male and female mice, respectively. We found that miR-7a2 is highly expressed in the pituitary, where it suppresses golgi glycoprotein 1 (GLG1) expression and downstream bone morphogenetic protein 4 (BMP4) signaling and also reduces expression of the prostaglandin F2a receptor negative regulator (PTGFRN), an inhibitor of prostaglandin signaling and follicle-stimulating hormone (FSH) and luteinizing hormone (LH) secretion. Our results reveal that miR-7a2 critically regulates sexual maturation and reproductive function by interconnecting miR-7 genomic circuits that regulate FSH and LH synthesis and secretion through their effects on pituitary prostaglandin and BMP4 signaling.
Collapse
|
179
|
Franco B, Malgrange B. Concise Review: Regeneration in Mammalian Cochlea Hair Cells: Help from Supporting Cells Transdifferentiation. Stem Cells 2017; 35:551-556. [PMID: 28102558 DOI: 10.1002/stem.2554] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/16/2016] [Accepted: 11/27/2016] [Indexed: 12/28/2022]
Abstract
It is commonly assumed that mammalian cochlear cells do not regenerate. Therefore, if hair cells are lost following an injury, no recovery could occur. However, during the first postnatal week, mice harbor some progenitor cells that retain the ability to give rise to new hair cells. These progenitor cells are in fact supporting cells. Upon hair cells loss, those cells are able to generate new hair cells both by direct transdifferentiation or following cell cycle re-entry and differentiation. However, this property of supporting cells is progressively lost after birth. Here, we review the molecular mechanisms that are involved in mammalian hair cell development and regeneration. Manipulating pathways used during development constitute good candidates for inducing hair cell regeneration after injury. Despite these promising studies, there is still no evidence for a recovery following hair cells loss in adult mammals. Stem Cells 2017;35:551-556.
Collapse
Affiliation(s)
- Bénédicte Franco
- Developmental Neurobiology Unit - GIGA-Neurosciences, University of Liège, Quartier Hôpital (CHU), B-4000, Liège, Belgium
| | - Brigitte Malgrange
- Developmental Neurobiology Unit - GIGA-Neurosciences, University of Liège, Quartier Hôpital (CHU), B-4000, Liège, Belgium
| |
Collapse
|
180
|
The emerging roles of MicroRNAs in autism spectrum disorders. Neurosci Biobehav Rev 2016; 71:729-738. [DOI: 10.1016/j.neubiorev.2016.10.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 05/27/2016] [Accepted: 10/22/2016] [Indexed: 12/21/2022]
|
181
|
Mahmoodian Sani MR, Hashemzadeh-Chaleshtori M, Saidijam M, Jami MS, Ghasemi-Dehkordi P. MicroRNA-183 Family in Inner Ear: Hair Cell Development and Deafness. J Audiol Otol 2016; 20:131-138. [PMID: 27942598 PMCID: PMC5144812 DOI: 10.7874/jao.2016.20.3.131] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 07/09/2016] [Accepted: 09/06/2016] [Indexed: 01/19/2023] Open
Abstract
miRNAs are essential factors of an extensively conserved post-transcriptional process controlling gene expression at mRNA level. Varoius biological processes such as growth and differentiation are regulated by miRNAs. Web of Science and PubMed databases were searched using the Endnote software for the publications about the role miRNA-183 family in inner ear: hair cell development and deafness published from 2000 to 2016. A triplet of these miRNAs particularly the miR-183 family is highly expressed in vertebrate hair cells, as with some of the peripheral neurosensory cells. Point mutations in one member of this family, miR-96, underlie DFNA50 autosomal deafness in humans and lead to abnormal hair cell development and survival in mice. In zebrafish, overexpression of the miR-183 family induces extra and ectopic hair cells, while knockdown decreases the number of hair cell. The miR-183 family (miR-183, miR-96 and miR-182) is expressed abundantly in some types of sensory cell in the eye, nose and inner ear. In the inner ear, mechanosensory hair cells have a robust expression level. Despite much similarity of these miRs sequences, small differences lead to distinct targeting of messenger RNAs targets. In the near future, miRNAs are likely to be explored as potential therapeutic agents to repair or regenerate hair cells, cell reprogramming and regenerative medicine applications in animal models because they can simultaneously down-regulate dozens or even hundreds of transcripts.
Collapse
Affiliation(s)
- Mohammad Reza Mahmoodian Sani
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Department of Genetics and Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Massoud Saidijam
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Department of Genetics and Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad-Saeid Jami
- Cellular and Molecular Research Center, Shahrekord University of Medical Sciences, Sharekord, Iran
| | - Payam Ghasemi-Dehkordi
- Cellular and Molecular Research Center, Shahrekord University of Medical Sciences, Sharekord, Iran
| |
Collapse
|
182
|
Wang L, Wang JK, Han LX, Zhuo JS, Du X, Liu D, Yang XQ. Characterization of miRNAs involved in response to poly(I:C) in porcine airway epithelial cells. Anim Genet 2016; 48:182-190. [PMID: 27878834 DOI: 10.1111/age.12524] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2016] [Indexed: 12/20/2022]
Abstract
MicroRNAs (miRNA) have been implicated in a variety of pathological conditions including infectious diseases. Knowledge of the miRNAs affected by poly(I:C), a synthetic analog of viral double-stranded RNA, in porcine airway epithelial cells (PAECs) contributes to understanding the mechanisms of swine viral respiratory diseases, which bring enormous economic loss worldwide every year. In this study, we used high throughput sequencing to profile miRNA expression in PAECs treated with poly(I:C) as compared to the untreated control. This approach revealed 23 differentially expressed miRNAs (DEMs), five of which have not been implicated in viral infection before. Nineteen of the 23 miRNAs were down-regulated including members of the miR-17-92 cluster, a well-known polycistronic oncomir and extensively involved in viral infection in humans. Target genes of DEMs, predicted using bioinformatic methods and validated by luciferase reporter analysis on two representative DEMs, were significantly enriched in several pathways including transforming growth factor-β signaling. A large quantity of sequence variations (isomiRs) were found including a substitution at position 5, which was verified to redirect miRNAs to a new spectrum of targets by luciferase reporter assay together with bioinformatics analysis. Twelve novel porcine miRNAs conserved in other species were identified by homology analysis together with cloning verification. Furthermore, the expression analysis revealed the potential importance of three novel miRNAs in porcine immune response to viruses. Overall, our data contribute to clarifying the mechanisms underlying the host immune response against respiratory viruses in pigs, and enriches the repertoire of porcine miRNAs.
Collapse
Affiliation(s)
- L Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China.,Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - J K Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - L X Han
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - J S Zhuo
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - X Du
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - D Liu
- Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - X Q Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| |
Collapse
|
183
|
Jin T, Wu X, Yang H, Liu M, He Y, He X, Shi X, Wang F, Du S, Ma Y, Bao S, Yuan D. Association of the miR-17-5p variants with susceptibility to cervical cancer in a Chinese population. Oncotarget 2016; 7:76647-76655. [PMID: 27765929 PMCID: PMC5363537 DOI: 10.18632/oncotarget.12299] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 08/30/2016] [Indexed: 01/18/2023] Open
Abstract
MicroRNAs (miRNAs) are key regulators of gene expression; however, the extent to which single nucleotide polymorphisms (SNPs) interfere with miRNA gene regulation and affect cervical cancer (CC) susceptibility remains largely unknown. Here, we systematically analyzed miRNA-related SNPs and their association with CC risk, and performed a case-control study of miR-17-5p SNPs and CC risk in a Chinese population. Sixteen SNPs were genotyped in 247 CC cases and 285 controls. Three were associated with CC risk (p < 0.05): the minor allele (A) of rs217727 in H19 increased risk (OR = 1.53, p = 0.002), while the minor alleles (T) of rs9931702 and (T) of rs9302648 in AKTIP decreased CC risk (p = 0.018, p = 0.014). Analysis of the SNPs after stratification based on CC clinical stage and subtype revealed that rs1048512, rs6659346, rs217727, rs9931702, and rs9302648 were associated with CC risk in clinical stages I-II; rs2862833, rs2732044, rs1030389, and rs1045935 were associated with CC risk in clinical stages III-IV; and rs217727, rs9931702, and rs9302648 were associated with CC risk in squamous carcinomas. These data could serve as a useful resource for understanding the miR-17 function, identification of miRNAs associated with CC, and development of better CC screening strategies.
Collapse
Affiliation(s)
- Tianbo Jin
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi 712082, China
- Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi 712082, China
- Key Laboratory for Basic Life Science Research of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi 712082, China
- Xi'an Tiangen Precision Medical Institute, Xi'an, Shaanxi 710075, China
| | - Xiaohong Wu
- Department of Maternity care, Xi'an Maternal and Child Health Hospital, Xi'an, Shaanxi 710002, China
| | - Hua Yang
- Xi'an Tiangen Precision Medical Institute, Xi'an, Shaanxi 710075, China
| | - Ming Liu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710004, China
| | - Yongjun He
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi 712082, China
- Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi 712082, China
- Key Laboratory for Basic Life Science Research of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi 712082, China
| | - Xue He
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi 712082, China
- Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi 712082, China
- Key Laboratory for Basic Life Science Research of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi 712082, China
| | - Xugang Shi
- Xi'an Tiangen Precision Medical Institute, Xi'an, Shaanxi 710075, China
| | - Fengjiao Wang
- Xi'an Tiangen Precision Medical Institute, Xi'an, Shaanxi 710075, China
| | - Shuli Du
- Xi'an Tiangen Precision Medical Institute, Xi'an, Shaanxi 710075, China
| | - Yajuan Ma
- Xi'an Tiangen Precision Medical Institute, Xi'an, Shaanxi 710075, China
| | - Shan Bao
- Clinic of Gynecology and Obstetrics, Hainan Provincial People's Hospital, Haikou, 570102, China
| | - Dongya Yuan
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi 712082, China
- Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi 712082, China
- Key Laboratory for Basic Life Science Research of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi 712082, China
| |
Collapse
|
184
|
Alipoor SD, Adcock IM, Garssen J, Mortaz E, Varahram M, Mirsaeidi M, Velayati A. The roles of miRNAs as potential biomarkers in lung diseases. Eur J Pharmacol 2016; 791:395-404. [PMID: 27634639 PMCID: PMC7094636 DOI: 10.1016/j.ejphar.2016.09.015] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 09/05/2016] [Accepted: 09/06/2016] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs which can act as master regulators of gene expression, modulate almost all biological process and are essential for maintaining cellular homeostasis. Dysregulation of miRNA expression has been associated with aberrant gene expression and may lead to pathological conditions. Evidence suggests that miRNA expression profiles are altered between health and disease and as such may be considered as biomarkers of disease. Evidence is increasing that miRNAs are particularly important in lung homeostasis and development and have been demonstrated to be the involved in many pulmonary diseases such as asthma, COPD, sarcoidosis, lung cancer and other smoking related diseases. Better understanding of the function of miRNA and the mechanisms underlying their action in the lung, would help to improve current diagnosis and therapeutics strategies in pulmonary diseases. Recently, some miRNA-based drugs have been introduced as possible therapeutic agents. In this review we aim to summarize the recent findings regarding the role of miRNAs in the airways and lung and emphasise their potential therapeutic roles in pulmonary diseases.
Collapse
Affiliation(s)
- Shamila D Alipoor
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran; Institute of Medical Biotechnology, Molecular Medicine Department, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Ian M Adcock
- Cell and Molecular Biology Group, Airways Disease Section, National Heart and Lung Institute, Imperial College London, Dovehouse Street, London, UK
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands; Nutricia Research Centre for Specialized Nutrition, Utrecht, The Netherlands
| | - Esmaeil Mortaz
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cell and Molecular Biology Group, Airways Disease Section, National Heart and Lung Institute, Imperial College London, Dovehouse Street, London, UK; Clinical Tuberculosis and Epidemiology Research Center, National Research and Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Varahram
- Mycobacteriology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Mirsaeidi
- Division of Pulmonary and Critical Care, University of Miami, Miami, FL, USA
| | - Aliakbar Velayati
- Mycobacteriology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
185
|
Fan Y, Zhang Y, Wu R, Chen X, Zhang Y, Chen X, Zhu D. miR-431 is involved in regulating cochlear function by targeting Eya4. Biochim Biophys Acta Mol Basis Dis 2016; 1862:2119-2126. [DOI: 10.1016/j.bbadis.2016.08.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 08/15/2016] [Accepted: 08/17/2016] [Indexed: 10/21/2022]
|
186
|
Jiang D, Du J, Zhang X, Zhou W, Zong L, Dong C, Chen K, Chen Y, Chen X, Jiang H. miR-124 promotes the neuronal differentiation of mouse inner ear neural stem cells. Int J Mol Med 2016; 38:1367-1376. [PMID: 28025992 PMCID: PMC5065304 DOI: 10.3892/ijmm.2016.2751] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 08/08/2016] [Indexed: 12/31/2022] Open
Abstract
MicroRNAs (miRNAs or miRs) act as key regulators in neuronal development, synaptic morphogenesis and plasticity. However, their role in the neuronal differentiation of inner ear neural stem cells (NSCs) remains unclear. In this study, 6 miRNAs were selected and their expression patterns during the neuronal differentiation of inner ear NSCs were examined by RT-qPCR. We demonstrated that the culture of spiral ganglion stem cells present in the inner ears of newborn mice gave rise to neurons in vitro. The expression patterns of miR-124, miR-132, miR-134, miR-20a, miR-17-5p and miR-30a-5p were examined during a 14-day neuronal differentiation period. We found that miR-124 promoted the neuronal differentiation of and neurite outgrowth in mouse inner ear NSCs, and that the changes in the expression of tropomyosin receptor kinase B (TrkB) and cell division control protein 42 homolog (Cdc42) during inner ear NSC differentiation were associated with miR-124 expression. Our findings indicate that miR-124 plays a role in the neuronal differentiation of inner ear NSCs. This finding may lead to the development of novel strategies for restoring hearing in neurodegenerative diseases.
Collapse
Affiliation(s)
- Di Jiang
- Department of Otolaryngology, The First Affiliated Hospital, and Institute of Otorhinolaryngology, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Jintao Du
- Department of Otolaryngology, The First Affiliated Hospital, and Institute of Otorhinolaryngology, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Xuemei Zhang
- Department of Otolaryngology, The First Affiliated Hospital, and Institute of Otorhinolaryngology, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Wei Zhou
- Department of Otolaryngology, The First Affiliated Hospital, and Institute of Otorhinolaryngology, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Lin Zong
- Department of Otolaryngology, The First Affiliated Hospital, and Institute of Otorhinolaryngology, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Chang Dong
- Department of Otolaryngology, The First Affiliated Hospital, and Institute of Otorhinolaryngology, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Kaitian Chen
- Department of Otolaryngology, The First Affiliated Hospital, and Institute of Otorhinolaryngology, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Yu Chen
- Department of Otolaryngology, The First Affiliated Hospital, and Institute of Otorhinolaryngology, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Xihui Chen
- Department of Otolaryngology, The First Affiliated Hospital, and Institute of Otorhinolaryngology, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Hongyan Jiang
- Department of Otolaryngology, The First Affiliated Hospital, and Institute of Otorhinolaryngology, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
187
|
Liu J, Sun Y, Yang C, Zhang Y, Jiang Q, Huang J, Ju Z, Wang X, Zhong J, Wang C. Functional SNPs of INCENP Affect Semen Quality by Alternative Splicing Mode and Binding Affinity with the Target Bta-miR-378 in Chinese Holstein Bulls. PLoS One 2016; 11:e0162730. [PMID: 27669152 PMCID: PMC5036895 DOI: 10.1371/journal.pone.0162730] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 08/26/2016] [Indexed: 12/22/2022] Open
Abstract
Inner centromere protein (INCENP) plays an important role in mitosis and meiosis as the main member of chromosomal passenger protein complex (CPC). To investigate the functional markers of the INCENP gene associated with semen quality, the single nucleotide polymorphisms (SNPs) g.19970 A>G and g.34078 T>G were identified and analyzed. The new splice variant INCENP-TV is characterized by the deletion of exon 12. The g.19970 A>G in the exonic splicing enhancer (ESE) motif region results in an aberrant splice variant by constructing two minigene expression vectors using the pSPL3 exon capturing vector and transfecting vectors into MLTC-1 cells. INCENP-TV was more highly expressed than INCENP-reference in adult bull testes. The g.34078 T>G located in the binding region of bta-miR-378 could affect the expression of INCENP, which was verified by luciferase assay. To analyze comprehensively the correlation of SNPs with sperm quality, haplotype combinations constructed by g.19970 A>G and g.34078 T>G, as well as g.-692 C>T and g.-556 G>T reported in our previous studies, were analyzed. The bulls with H1H12 and H2H2 exhibited a higher ejaculate volume than those with H2H10 and H9H12, respectively (P < 0.05). Bulls with H11H11 and H2H10 exhibited higher initial sperm motility than those with H2H2 (P < 0.05). The expression levels of INCENP in bulls with H1H12 and H11H11 were significantly higher than those in bulls with H9H12 (P < 0.05), as determined by qRT-PCR. Findings suggest that g.19970 A>G and g.34078 T>G in INCENP both of which appear to change the molecular and biological characteristics of the mRNA transcribed from the locus may serve as a biomarkers of male bovine fertility by affecting alternative splicing mode and binding affinity with the target bta-miR-378.
Collapse
Affiliation(s)
- Juan Liu
- Dairy Cattle Research Center, Shandong Academy of Agricultural Science, Jinan, P. R. China
- College of Agronomic Sciences in Shandong Agricultural University, Taian, China
| | - Yan Sun
- Dairy Cattle Research Center, Shandong Academy of Agricultural Science, Jinan, P. R. China
| | - Chunhong Yang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Science, Jinan, P. R. China
| | - Yan Zhang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Science, Jinan, P. R. China
| | - Qiang Jiang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Science, Jinan, P. R. China
| | - Jinming Huang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Science, Jinan, P. R. China
| | - Zhihua Ju
- Dairy Cattle Research Center, Shandong Academy of Agricultural Science, Jinan, P. R. China
| | - Xiuge Wang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Science, Jinan, P. R. China
| | - Jifeng Zhong
- Dairy Cattle Research Center, Shandong Academy of Agricultural Science, Jinan, P. R. China
| | - Changfa Wang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Science, Jinan, P. R. China
- * E-mail:
| |
Collapse
|
188
|
MiR-182-5p protects inner ear hair cells from cisplatin-induced apoptosis by inhibiting FOXO3a. Cell Death Dis 2016; 7:e2362. [PMID: 27607577 PMCID: PMC5059852 DOI: 10.1038/cddis.2016.246] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 06/14/2016] [Accepted: 07/13/2016] [Indexed: 01/01/2023]
Abstract
Cisplatin is widely used for chemotherapy of a variety of malignancies. However, the clinical application of cisplatin is hampered by the resultant irreversible hearing loss due to hair cell apoptosis. To date, no practical regimen to resolve this has been developed. Meanwhile, the role of microRNA in protecting hair cells from cisplatin-induced apoptosis in the inner ear has not been extensively investigated. In this study, we monitored miR-183, -96, and -182 turnover in the cochlea during cisplatin treatment in vitro. We found that overexpression of miR-182, but not miR-183 and -96, improved hair cell survival after 3 μM cisplatin treatment in vitro. We demonstrated that overexpression of miR-182 repressed the intrinsic apoptotic pathway by inhibiting the translation of FOXO3a. Our study offers a new therapeutic target for alleviating cisplatin-induced hair cell apoptosis in a rapid and tissue-specific manner.
Collapse
|
189
|
Smith ME, Rajadinakaran G. The Transcriptomics to Proteomics of Hair Cell Regeneration: Looking for a Hair Cell in a Haystack. MICROARRAYS 2016; 2. [PMID: 24416530 PMCID: PMC3886832 DOI: 10.3390/microarrays2030186] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mature mammals exhibit very limited capacity for regeneration of auditory hair cells, while all non-mammalian vertebrates examined can regenerate them. In an effort to find therapeutic targets for deafness and balance disorders, scientists have examined gene expression patterns in auditory tissues under different developmental and experimental conditions. Microarray technology has allowed the large-scale study of gene expression profiles (transcriptomics) at whole-genome levels, but since mRNA expression does not necessarily correlate with protein expression, other methods, such as microRNA analysis and proteomics, are needed to better understand the process of hair cell regeneration. These technologies and some of the results of them are discussed in this review. Although there is a considerable amount of variability found between studies owing to different species, tissues and treatments, there is some concordance between cellular pathways important for hair cell regeneration. Since gene expression and proteomics data is now commonly submitted to centralized online databases, meta-analyses of these data may provide a better picture of pathways that are common to the process of hair cell regeneration and lead to potential therapeutics. Indeed, some of the proteins found to be regulated in the inner ear of animal models (e.g., IGF-1) have now gone through human clinical trials.
Collapse
Affiliation(s)
- Michael E. Smith
- Bioinformatics and Information Science Center, Department of Biology, Western Kentucky University, Bowling Green, KY 42101, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-270-745-2405; Fax: +1-270-745-6856
| | - Gopinath Rajadinakaran
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030, USA; E-Mail:
| |
Collapse
|
190
|
Bhattacharya A, Cui Y. Knowledge-based analysis of functional impacts of mutations in microRNA seed regions. J Biosci 2016; 40:791-8. [PMID: 26564979 DOI: 10.1007/s12038-015-9560-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
MicroRNAs are a class of important post-transcriptional regulators. Genetic and somatic mutations in miRNAs, especially those in the seed regions, have profound and broad impacts on gene expression and physiological and pathological processes. Over 500 SNPs were mapped to the miRNA seeds, which are located at position 2-8 of the mature miRNA sequences. We found that the central positions of the miRNA seeds contain fewer genetic variants and therefore are more evolutionary conserved than the peripheral positions in the seeds. We developed a knowledgebased method to analyse the functional impacts of mutations in miRNA seed regions. We computed the gene ontology-based similarity score GOSS and the GOSS percentile score for all 517 SNPs in miRNA seeds. In addition to the annotation of SNPs for their functional effects, in the present article we also present a detailed analysis pipeline for finding the key functional changes for seed SNPs. We performed a detailed gene ontology graph-based analysis of enriched functional categories for miRNA target gene sets. In the analysis of a SNP in the seed region of hsa-miR-96 we found that two key biological processes for progressive hearing loss 'Neurotrophin TRK receptor signaling pathway' and 'Epidermal growth factor receptor signaling pathway' were significantly and differentially enriched by the two sets of allele-specific target genes of miRNA hsa-miR-96.
Collapse
Affiliation(s)
- Anindya Bhattacharya
- Department of Microbiology, Immunology and Biochemistry and Center for Integrative and Translational Genomics, University of Tennessee Health Science Center, Memphis, TN 38163, USA,
| | | |
Collapse
|
191
|
Li H, Zhang H, Lu G, Li Q, Gu J, Song Y, Gao S, Ding Y. Mechanism analysis of colorectal cancer according to the microRNA expression profile. Oncol Lett 2016; 12:2329-2336. [PMID: 27698796 PMCID: PMC5038387 DOI: 10.3892/ol.2016.5027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 03/22/2016] [Indexed: 01/17/2023] Open
Abstract
The present study aimed to identify specific microRNAs (miRs) and their predicted target genes to clarify the molecular mechanisms of colorectal cancer (CRC). An miR expression profile (array ID, GSE39833), which consisted of 88 CRC samples with various tumor-necrosis-metastasis stages and 11 healthy controls, was downloaded from the Gene Expression Omnibus database. Subsequently, the differentially expressed miRs and their target genes were screened. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathways of target genes were analyzed using the Database for Annotation Visualization and Integrated Discovery. A protein-protein interaction (PPI) network of the target genes was constructed using the Search Tool for the Retrieval of Interacting Genes database. The present study identified a total of 18 differentially expressed miRs (upregulated, 8; downregulated, 10) in the sera of the CRC patients compared with the healthy controls. Of these, 3 upregulated (let-7b, miR-1290 and miR-126) and 2 downregulated (miR-16 and miR-760) differentially expressed miRs and their target genes, including cyclin D1 (CCND1), v-myc avian myelocytomatosis viral oncogene homolog (MYC), phosphoinositide-3-kinase, regulatory subunit 2 (beta) (PIK3R2) and SMAD family member 3 (SMAD3), were significantly enriched in the CRC developmental pathway. All these target genes had higher node degrees in the PPI network. In conclusion, let-7b, miR-1290, miR-126, miR-16 and miR-760 and their target genes, CCND1, MYC, PIK3R2 and SMAD3, may be important in the molecular mechanisms for the progression of CRC.
Collapse
Affiliation(s)
- Hong Li
- Department of Clinical Laboratory, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050035, P.R. China
| | - Huichao Zhang
- Department of Clinical Laboratory, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050035, P.R. China
| | - Gang Lu
- Department of Clinical Laboratory, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050035, P.R. China
| | - Qingjing Li
- Department of Clinical Laboratory, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050035, P.R. China
| | - Jifeng Gu
- Department of Clinical Laboratory, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050035, P.R. China
| | - Yuan Song
- Department of Clinical Laboratory, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050035, P.R. China
| | - Shejun Gao
- Department of Clinical Laboratory, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050035, P.R. China
| | - Yawen Ding
- Department of Clinical Laboratory, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050035, P.R. China
| |
Collapse
|
192
|
Bhajun R, Guyon L, Gidrol X. MicroRNA degeneracy and pluripotentiality within a Lavallière-tie architecture confers robustness to gene expression networks. Cell Mol Life Sci 2016; 73:2821-7. [PMID: 27038488 PMCID: PMC4937071 DOI: 10.1007/s00018-016-2186-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 02/24/2016] [Accepted: 03/18/2016] [Indexed: 11/03/2022]
Abstract
Modularity, feedback control, functional redundancy and bowtie architecture have been proposed as key factors that confer robustness to complex biological systems. MicroRNAs (miRNAs) are highly conserved but functionally dispensable. These antinomic properties suggest that miRNAs fine-tune gene expression rather than act as genetic switches. We synthesize published and unpublished data and hypothesize that miRNA pluripotentiality acts to buffer gene expression, while miRNA degeneracy tunes the expression of targets, thus providing robustness to gene expression networks. Furthermore, we propose a Lavallière-tie architecture by integrating signal transduction, miRNAs and protein expression data to model complex gene expression networks.
Collapse
Affiliation(s)
- Ricky Bhajun
- CEA, BIG, BGE, 17, rue des Martyrs, 38000, Grenoble, France
- University Grenoble Alpes, BGE, 38000, Grenoble, France
- INSERM, U1038, 38000, Grenoble, France
| | - Laurent Guyon
- CEA, BIG, BGE, 17, rue des Martyrs, 38000, Grenoble, France
- University Grenoble Alpes, BGE, 38000, Grenoble, France
- INSERM, U1038, 38000, Grenoble, France
| | - Xavier Gidrol
- CEA, BIG, BGE, 17, rue des Martyrs, 38000, Grenoble, France.
- University Grenoble Alpes, BGE, 38000, Grenoble, France.
- INSERM, U1038, 38000, Grenoble, France.
| |
Collapse
|
193
|
Liu Y, Bailey JC, Helwa I, Dismuke WM, Cai J, Drewry M, Brilliant MH, Budenz DL, Christen WG, Chasman DI, Fingert JH, Gaasterland D, Gaasterland T, Gordon MO, Igo RP, Kang JH, Kass MA, Kraft P, Lee RK, Lichter P, Moroi SE, Realini A, Richards JE, Ritch R, Schuman JS, Scott WK, Singh K, Sit AJ, Song YE, Vollrath D, Weinreb R, Medeiros F, Wollstein G, Zack DJ, Zhang K, Pericak-Vance MA, Gonzalez P, Stamer WD, Kuchtey J, Kuchtey RW, Allingham RR, Hauser MA, Pasquale LR, Haines JL, Wiggs JL. A Common Variant in MIR182 Is Associated With Primary Open-Angle Glaucoma in the NEIGHBORHOOD Consortium. Invest Ophthalmol Vis Sci 2016; 57:4528-4535. [PMID: 27537254 PMCID: PMC4991020 DOI: 10.1167/iovs.16-19688] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 06/21/2016] [Indexed: 11/25/2022] Open
Abstract
PURPOSE Noncoding microRNAs (miRNAs) have been implicated in the pathogenesis of glaucoma. We aimed to identify common variants in miRNA coding genes (MIR) associated with primary open-angle glaucoma (POAG). METHODS Using the NEIGHBORHOOD data set (3853 cases/33,480 controls with European ancestry), we first assessed the relation between 85 variants in 76 MIR genes and overall POAG. Subtype-specific analyses were performed in high-tension glaucoma (HTG) and normal-tension glaucoma subsets. Second, we examined the expression of miR-182, which was associated with POAG, in postmortem human ocular tissues (ciliary body, cornea, retina, and trabecular meshwork [TM]), using miRNA sequencing (miRNA-Seq) and droplet digital PCR (ddPCR). Third, miR-182 expression was also examined in human aqueous humor (AH) by using miRNA-Seq. Fourth, exosomes secreted from primary human TM cells were examined for miR-182 expression by using miRNA-Seq. Fifth, using ddPCR we compared miR-182 expression in AH between five HTG cases and five controls. RESULTS Only rs76481776 in MIR182 gene was associated with POAG after adjustment for multiple comparisons (odds ratio [OR] = 1.23, 95% confidence interval [CI]: 1.11-1.42, P = 0.0002). Subtype analysis indicated that the association was primarily in the HTG subset (OR = 1.26, 95% CI: 1.08-1.47, P = 0.004). The risk allele T has been associated with elevated miR-182 expression in vitro. Data from ddPCR and miRNA-Seq confirmed miR-182 expression in all examined ocular tissues and TM-derived exosomes. Interestingly, miR-182 expression in AH was 2-fold higher in HTG patients than nonglaucoma controls (P = 0.03) without controlling for medication treatment. CONCLUSIONS Our integrative study is the first to associate rs76481776 with POAG via elevated miR-182 expression.
Collapse
Affiliation(s)
- Yutao Liu
- Department of Cellular Biology and Anatomy Augusta University, Augusta, Georgia, United States
- James & Jean Culver Vision Discovery Institute, Augusta University, Augusta, Georgia, United States
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, Georgia, United States
| | - Jessica Cooke Bailey
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, Ohio, United States
| | - Inas Helwa
- Department of Cellular Biology and Anatomy Augusta University, Augusta, Georgia, United States
| | - W. Michael Dismuke
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, United States
| | - Jingwen Cai
- Department of Cellular Biology and Anatomy Augusta University, Augusta, Georgia, United States
| | - Michelle Drewry
- Department of Cellular Biology and Anatomy Augusta University, Augusta, Georgia, United States
| | - Murray H. Brilliant
- Center for Human Genetics, Marshfield Clinic Research Foundation, Marshfield, Wisconsin, United States
| | - Donald L. Budenz
- Department of Ophthalmology, University of North Carolina, Chapel Hill, North Carolina, United States
| | - William G. Christen
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, United States
| | - Daniel I. Chasman
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, United States
| | - John H. Fingert
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
| | | | - Terry Gaasterland
- Scripps Genome Center, University of California at San Diego, San Diego, California, United States
| | - Mae O. Gordon
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Robert P. Igo
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, Ohio, United States
| | - Jae H. Kang
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts, United States
| | - Michael A. Kass
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Peter Kraft
- School of Public Health, Harvard University, Boston, Massachusetts, United States
| | - Richard K. Lee
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Paul Lichter
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan, United States
| | - Sayoko E. Moroi
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan, United States
| | - Anthony Realini
- Department of Ophthalmology, West Virginia University Eye Institute, Morgantown, West Virginia, United States
| | - Julia E. Richards
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan, United States
| | - Robert Ritch
- Einhorn Clinical Research Center, New York Eye and Ear Infirmary of Mount Sinai, New York, New York, United States
| | - Joel S. Schuman
- Department of Ophthalmology, UPMC Eye Center, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - William K. Scott
- Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Kuldev Singh
- Department of Ophthalmology, Stanford University, Palo Alto, California, United States
| | - Arthur J. Sit
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota, United States
| | - Yeunjoo E. Song
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, Ohio, United States
| | - Douglas Vollrath
- Department of Ophthalmology, Stanford University, Palo Alto, California, United States
| | - Robert Weinreb
- Department of Ophthalmology and Hamilton Glaucoma Center, University of California, San Diego, California, United States
| | - Felipe Medeiros
- Department of Ophthalmology and Hamilton Glaucoma Center, University of California, San Diego, California, United States
| | - Gadi Wollstein
- Department of Ophthalmology, UPMC Eye Center, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Donald J. Zack
- Wilmer Eye Institute, Johns Hopkins University Hospital, Baltimore, Maryland, United States
| | - Kang Zhang
- Department of Ophthalmology and Hamilton Glaucoma Center, University of California, San Diego, California, United States
| | - Margaret A. Pericak-Vance
- Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Pedro Gonzalez
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, United States
| | - W. Daniel Stamer
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, United States
| | - John Kuchtey
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Rachel W. Kuchtey
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - R. Rand Allingham
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, United States
| | - Michael A. Hauser
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, United States
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States
| | - Louis R. Pasquale
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts, United States
- Department of Ophthalmology, Mass Eye & Ear, Boston, Massachusetts, United States
| | - Jonathan L. Haines
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, Ohio, United States
| | - Janey L. Wiggs
- Department of Ophthalmology, Mass Eye & Ear, Boston, Massachusetts, United States
| |
Collapse
|
194
|
Kim YR, Hong SH. Associations of MicroRNA Polymorphisms (miR-146a, miR-196a2, and miR-499) with the Risk of Hypertension in the Korean Population. Genet Test Mol Biomarkers 2016; 20:420-6. [PMID: 27379568 DOI: 10.1089/gtmb.2016.0039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
AIMS Polymorphisms in microRNA (miR) genes are thought to be associated with various cancers and vascular diseases. To date, however, the effects of the miR gene polymorphisms on susceptibility to hypertension have rarely been investigated. In this study, we investigated the associations of three miR gene polymorphisms (miR-146aC>G/rs2910164, miR-196a2T>C/rs11614913, and miR-499A>G/rs3746444) with the risk of hypertension in Korean patients. METHODS A total of 855 study subjects (340 patients with hypertension and 515 healthy normotensive subjects) were included in this study. Genotyping of the three miR gene polymorphisms was accomplished by polymerase chain reaction-restriction fragment length polymorphism analyses. RESULTS Significant differences were observed in the genotype distributions of the miR-146aC>G polymorphism between the hypertensive patients and controls with the GG genotype, in both model-independent analyses, as well as in dominant (CC vs. CG+GG) and recessive (CC+CG vs. GG) models, being highly significantly associated with disease (AOR = 2.293, 95% CI: 1.466-3.586, p = 0.001; AOR = 1.727, 95% CI: 1.182-2.522, p = 0.015; AOR = 1.782, 95% CI: 1.267-2.506, p = 0.001, respectively). Neither the miR-196a2T>C nor the miR-499A>G polymorphisms were distributed significantly differently between hypertensive patients and control subjects. Several allelic combinations of the three miR polymorphisms were also associated with susceptibility to hypertension. Stratified analysis revealed that the miR-146aC>G and miR-499A>G polymorphisms are associated with a greater risk of hypertension. CONCLUSION This study suggests that the variant of miR-146aC>G polymorphism and allelic combinations, at least in Koreans, affect susceptibility to hypertension.
Collapse
Affiliation(s)
- Young Ree Kim
- 1 Department of Laboratory Medicine, School of Medicine, Jeju National University , Jeju, Republic of Korea
| | - Seung-Ho Hong
- 2 Department of Science Education, Teachers College, Jeju National University , Jeju, Republic of Korea
| |
Collapse
|
195
|
Fendler W, Madzio J, Kozinski K, Patel K, Janikiewicz J, Szopa M, Tracz A, Borowiec M, Jarosz-Chobot P, Mysliwiec M, Szadkowska A, Hattersley AT, Ellard S, Malecki MT, Dobrzyn A, Mlynarski W. Differential regulation of serum microRNA expression by HNF1β and HNF1α transcription factors. Diabetologia 2016; 59:1463-1473. [PMID: 27059371 PMCID: PMC4901123 DOI: 10.1007/s00125-016-3945-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 03/10/2016] [Indexed: 11/29/2022]
Abstract
AIMS/HYPOTHESIS We aimed to identify microRNAs (miRNAs) under transcriptional control of the HNF1β transcription factor, and investigate whether its effect manifests in serum. METHODS The Polish cohort (N = 60) consisted of 11 patients with HNF1B-MODY, 17 with HNF1A-MODY, 13 with GCK-MODY, an HbA1c-matched type 1 diabetic group (n = 9) and ten healthy controls. Replication was performed in 61 clinically-matched British patients mirroring the groups in the Polish cohort. The Polish cohort underwent miRNA serum level profiling with quantitative real-time PCR (qPCR) arrays to identify differentially expressed miRNAs. Validation was performed using qPCR. To determine whether serum content reflects alterations at a cellular level, we quantified miRNA levels in a human hepatocyte cell line (HepG2) with small interfering RNA knockdowns of HNF1α or HNF1β. RESULTS Significant differences (adjusted p < 0.05) were noted for 11 miRNAs. Five of them differed between HNF1A-MODY and HNF1B-MODY, and, amongst those, four (miR-24, miR-27b, miR-223 and miR-199a) showed HNF1B-MODY-specific expression levels in the replication group. In all four cases the miRNA expression level was lower in HNF1B-MODY than in all other tested groups. Areas under the receiver operating characteristic curves ranged from 0.79 to 0.86, with sensitivity and specificity reaching 91.7% (miR-24) and 82.1% (miR-199a), respectively. The cellular expression pattern of miRNA was consistent with serum levels, as all were significantly higher in HNF1α- than in HNF1β-deficient HepG2 cells. CONCLUSIONS/INTERPRETATION We have shown that expression of specific miRNAs depends on HNF1β function. The impact of HNF1β deficiency was evidenced at serum level, making HNF1β-dependent miRNAs potentially applicable in the diagnosis of HNF1B-MODY.
Collapse
Affiliation(s)
- Wojciech Fendler
- Department of Paediatrics, Oncology, Haematology and Diabetology, Medical University of Lodz, Lodz, Poland.
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, 36/50 Sporna Str., 91-738, Lodz, Poland.
| | - Joanna Madzio
- Department of Paediatrics, Oncology, Haematology and Diabetology, Medical University of Lodz, Lodz, Poland
- Studies in Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Kamil Kozinski
- Laboratory of Cell Signalling and Metabolic Disorders, Nencki Institute of Experimental Medicine, Polish Academy of Sciences, Warsaw, Poland
| | - Kashyap Patel
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Justyna Janikiewicz
- Laboratory of Cell Signalling and Metabolic Disorders, Nencki Institute of Experimental Medicine, Polish Academy of Sciences, Warsaw, Poland
| | - Magdalena Szopa
- Department of Metabolic Diseases, Jagiellonian University Medical College, Krakow, Poland
- University Hospital, Krakow, Poland
| | - Adam Tracz
- Department of Paediatrics, Oncology, Haematology and Diabetology, Medical University of Lodz, Lodz, Poland
| | - Maciej Borowiec
- Department of Clinical Genetics, Medical University of Lodz, Lodz, Poland
| | | | - Malgorzata Mysliwiec
- Department of Paediatrics, Diabetology and Endocrinology, Medical University of Gdansk, Gdansk, Poland
| | - Agnieszka Szadkowska
- Department of Paediatrics, Oncology, Haematology and Diabetology, Medical University of Lodz, Lodz, Poland
| | - Andrew T Hattersley
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Sian Ellard
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Maciej T Malecki
- Department of Metabolic Diseases, Jagiellonian University Medical College, Krakow, Poland
- University Hospital, Krakow, Poland
| | - Agnieszka Dobrzyn
- Laboratory of Cell Signalling and Metabolic Disorders, Nencki Institute of Experimental Medicine, Polish Academy of Sciences, Warsaw, Poland
| | - Wojciech Mlynarski
- Department of Paediatrics, Oncology, Haematology and Diabetology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
196
|
|
197
|
Common miR-590 Variant rs6971711 Present Only in African Americans Reduces miR-590 Biogenesis. PLoS One 2016; 11:e0156065. [PMID: 27196440 PMCID: PMC4873136 DOI: 10.1371/journal.pone.0156065] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 05/09/2016] [Indexed: 11/19/2022] Open
Abstract
MicroRNAs (miRNAs) are recognized as important regulators of cardiac development, hypertrophy and fibrosis. Recent studies have demonstrated that genetic variations which cause alterations in miRNA:target interactions can lead to disease. We hypothesized that genetic variations in miRNAs that regulate cardiac hypertrophy/fibrosis might be involved in generation of the cardiac phenotype in patients diagnosed with hypertrophic cardiomyopathy (HCM). To investigate this question, we Sanger sequenced 18 miRNA genes previously implicated in myocyte hypertrophy/fibrosis and apoptosis, using genomic DNA isolated from the leukocytes of 199 HCM patients. We identified a single nucleotide polymorphism (rs6971711, C57T SNP) at the 17th position of mature miR-590-3p (= 57th position of pre-miR-590) that is common in individuals of African ancestry. SNP frequency was higher in African American HCM patients (n = 55) than ethnically-matched controls (n = 100), but the difference was not statistically significant (8.2% vs. 6.5%; p = 0.5). Using a cell culture system, we discovered that presence of this SNP resulted in markedly lower levels of mature miR-590-5p (39 ± 16%, p<0.003) and miR-590-3p (20 ± 2%, p<0.003), when compared with wild-type (WT) miR-590, without affecting levels of pri-miR-590 and pre-miR-590. Consistent with this finding, the SNP resulted in reduced target suppression when compared to WT miR-590 (71% suppression by WT vs 60% suppression by SNP, p<0.03). Since miR-590 can regulate TGF-β, Activin A and Akt signaling, SNP-induced reduction in miR-590 biogenesis could influence cardiac phenotype by de-repression of these signaling pathways. Since the SNP is only present in African Americans, population studies in this patient population would be valuable to investigate effects of this SNP on myocyte function and cardiac physiology.
Collapse
|
198
|
Farzadfard A, Nassiri N, Moghadam TN, Paylakhi SH, Elahi E. Screening for MIR184 Mutations in Iranian Patients with Keratoconus. J Ophthalmic Vis Res 2016; 11:3-7. [PMID: 27195078 PMCID: PMC4860983 DOI: 10.4103/2008-322x.180715] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Purpose: To investigate whether microRNA (MIR)-184 mutations make a substantial contribution to keratoconus (KCN) among affected Iranian patients. Methods: A total of 47 Iranian KCN patients, diagnosed based on family history, clinical examinations using slit lamp biomicroscopy, refraction and corneal topography were enrolled in this study. The pri-miR-184 encoding gene obtained from the DNAs of all participants was amplified using polymerase chain reaction and subsequently sequenced by the Sanger dideoxynucleotide protocol. The sequences were compared to MIR184 reference sequence in order to identify sequence variations. The potential effects of a single variation observed on RNA structure was predicted. Results: Only one sequence variation, +39G >T, was observed within the pri-miR-184 encoding sequence in one proband. The patient's KCN-affected sister harbored the same variation. The variation was not novel and was recently shown to be present at similar frequencies among large cohorts of KCN patients and control individuals. Conclusion: Mutations in MIR-184 are not a major cause of keratoconus among Iranian patients. The pri-miR-184 sequence needs to be screened in larger cohorts in order to establish whether mutations in the gene are present at low frequencies among Iranian patients.
Collapse
Affiliation(s)
- Azad Farzadfard
- Department of Cellular and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Nader Nassiri
- Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Seyed Hassan Paylakhi
- Department of Cellular and Molecular Biology, School of Biology, Damghan University, Damghan, Iran
| | - Elahe Elahi
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
199
|
The Non-Coding RNA Ontology (NCRO): a comprehensive resource for the unification of non-coding RNA biology. J Biomed Semantics 2016; 7:24. [PMID: 27152146 PMCID: PMC4857245 DOI: 10.1186/s13326-016-0066-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 04/19/2016] [Indexed: 11/17/2022] Open
Abstract
In recent years, sequencing technologies have enabled the identification of a wide range of non-coding RNAs (ncRNAs). Unfortunately, annotation and integration of ncRNA data has lagged behind their identification. Given the large quantity of information being obtained in this area, there emerges an urgent need to integrate what is being discovered by a broad range of relevant communities. To this end, the Non-Coding RNA Ontology (NCRO) is being developed to provide a systematically structured and precisely defined controlled vocabulary for the domain of ncRNAs, thereby facilitating the discovery, curation, analysis, exchange, and reasoning of data about structures of ncRNAs, their molecular and cellular functions, and their impacts upon phenotypes. The goal of NCRO is to serve as a common resource for annotations of diverse research in a way that will significantly enhance integrative and comparative analysis of the myriad resources currently housed in disparate sources. It is our belief that the NCRO ontology can perform an important role in the comprehensive unification of ncRNA biology and, indeed, fill a critical gap in both the Open Biological and Biomedical Ontologies (OBO) Library and the National Center for Biomedical Ontology (NCBO) BioPortal. Our initial focus is on the ontological representation of small regulatory ncRNAs, which we see as the first step in providing a resource for the annotation of data about all forms of ncRNAs. The NCRO ontology is free and open to all users, accessible at: http://purl.obolibrary.org/obo/ncro.owl.
Collapse
|
200
|
Riccardi S, Bergling S, Sigoillot F, Beibel M, Werner A, Leighton-Davies J, Knehr J, Bouwmeester T, Parker CN, Roma G, Kinzel B. MiR-210 promotes sensory hair cell formation in the organ of corti. BMC Genomics 2016; 17:309. [PMID: 27121005 PMCID: PMC4848794 DOI: 10.1186/s12864-016-2620-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Accepted: 04/14/2016] [Indexed: 12/20/2022] Open
Abstract
Background Hearing loss is the most common sensory defect afflicting several hundred million people worldwide. In most cases, regardless of the original cause, hearing loss is related to the degeneration and death of hair cells and their associated spiral ganglion neurons. Despite this knowledge, relatively few studies have reported regeneration of the auditory system. Significant gaps remain in our understanding of the molecular mechanisms underpinning auditory function, including the factors required for sensory cell regeneration. Recently, the identification of transcriptional activators and repressors of hair cell fate has been augmented by the discovery of microRNAs (miRNAs) associated with hearing loss. As miRNAs are central players of differentiation and cell fate, identification of miRNAs and their gene targets may reveal new pathways for hair cell regeneration, thereby providing new avenues for the treatment of hearing loss. Results In order to identify new genetic elements enabling regeneration of inner ear sensory hair cells, next-generation miRNA sequencing (miRSeq) was used to identify the most prominent miRNAs expressed in the mouse embryonic inner ear cell line UB/OC-1 during differentiation towards a hair cell like phenotype. Based on these miRSeq results eight most differentially expressed miRNAs were selected for further characterization. In UB/OC-1, miR-210 silencing in vitro resulted in hair cell marker expression, whereas ectopic expression of miR-210 resulted in new hair cell formation in cochlear explants. Using a lineage tracing mouse model, transdifferentiation of supporting epithelial cells was identified as the likely mechanism for this new hair cell formation. Potential miR-210 targets were predicted in silico and validated experimentally using a miR-trap approach. Conclusion MiRSeq followed by ex vivo validation revealed miR-210 as a novel factor driving transdifferentiation of supporting epithelial cells to sensory hair cells suggesting that miR-210 might be a potential new factor for hearing loss therapy. In addition, identification of inner ear pathways regulated by miR-210 identified potential new drug targets for the treatment of hearing loss. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2620-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sabrina Riccardi
- Developmental and Molecular Pathways, Novartis Institute for Biomedical Research, Basel, Switzerland
| | - Sebastian Bergling
- Developmental and Molecular Pathways, Novartis Institute for Biomedical Research, Basel, Switzerland
| | - Frederic Sigoillot
- Developmental and Molecular Pathways, Novartis Institute for Biomedical Research, Cambridge, USA
| | - Martin Beibel
- Developmental and Molecular Pathways, Novartis Institute for Biomedical Research, Basel, Switzerland
| | - Annick Werner
- Developmental and Molecular Pathways, Novartis Institute for Biomedical Research, Basel, Switzerland
| | - Juliet Leighton-Davies
- Developmental and Molecular Pathways, Novartis Institute for Biomedical Research, Basel, Switzerland
| | - Judith Knehr
- Developmental and Molecular Pathways, Novartis Institute for Biomedical Research, Basel, Switzerland
| | - Tewis Bouwmeester
- Developmental and Molecular Pathways, Novartis Institute for Biomedical Research, Basel, Switzerland
| | - Christian N Parker
- Developmental and Molecular Pathways, Novartis Institute for Biomedical Research, Basel, Switzerland
| | - Guglielmo Roma
- Developmental and Molecular Pathways, Novartis Institute for Biomedical Research, Basel, Switzerland
| | - Bernd Kinzel
- Developmental and Molecular Pathways, Novartis Institute for Biomedical Research, Basel, Switzerland.
| |
Collapse
|