151
|
Fischer LS, Rangarajan S, Sadhanasatish T, Grashoff C. Molecular Force Measurement with Tension Sensors. Annu Rev Biophys 2021; 50:595-616. [PMID: 33710908 DOI: 10.1146/annurev-biophys-101920-064756] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The ability of cells to generate mechanical forces, but also to sense, adapt to, and respond to mechanical signals, is crucial for many developmental, postnatal homeostatic, and pathophysiological processes. However, the molecular mechanisms underlying cellular mechanotransduction have remained elusive for many decades, as techniques to visualize and quantify molecular forces across individual proteins in cells were missing. The development of genetically encoded molecular tension sensors now allows the quantification of piconewton-scale forces that act upon distinct molecules in living cells and even whole organisms. In this review, we discuss the physical principles, advantages, and limitations of this increasingly popular method. By highlighting current examples from the literature, we demonstrate how molecular tension sensors can be utilized to obtain access to previously unappreciated biophysical parameters that define the propagation of mechanical forces on molecular scales. We discuss how the methodology can be further developed and provide a perspective on how the technique could be applied to uncover entirely novel aspects of mechanobiology in the future.
Collapse
Affiliation(s)
- Lisa S Fischer
- Department of Quantitative Cell Biology, Institute of Molecular Cell Biology, University of Münster, Münster D-48149, Germany;
| | - Srishti Rangarajan
- Department of Quantitative Cell Biology, Institute of Molecular Cell Biology, University of Münster, Münster D-48149, Germany;
| | - Tanmay Sadhanasatish
- Department of Quantitative Cell Biology, Institute of Molecular Cell Biology, University of Münster, Münster D-48149, Germany;
| | - Carsten Grashoff
- Department of Quantitative Cell Biology, Institute of Molecular Cell Biology, University of Münster, Münster D-48149, Germany;
| |
Collapse
|
152
|
Leggett SE, Hruska AM, Guo M, Wong IY. The epithelial-mesenchymal transition and the cytoskeleton in bioengineered systems. Cell Commun Signal 2021; 19:32. [PMID: 33691719 PMCID: PMC7945251 DOI: 10.1186/s12964-021-00713-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/26/2021] [Indexed: 01/04/2023] Open
Abstract
The epithelial-mesenchymal transition (EMT) is intrinsically linked to alterations of the intracellular cytoskeleton and the extracellular matrix. After EMT, cells acquire an elongated morphology with front/back polarity, which can be attributed to actin-driven protrusion formation as well as the gain of vimentin expression. Consequently, cells can deform and remodel the surrounding matrix in order to facilitate local invasion. In this review, we highlight recent bioengineering approaches to elucidate EMT and functional changes in the cytoskeleton. First, we review transitions between multicellular clusters and dispersed individuals on planar surfaces, which often exhibit coordinated behaviors driven by leader cells and EMT. Second, we consider the functional role of vimentin, which can be probed at subcellular length scales and within confined spaces. Third, we discuss the role of topographical patterning and EMT via a contact guidance like mechanism. Finally, we address how multicellular clusters disorganize and disseminate in 3D matrix. These new technologies enable controlled physical microenvironments and higher-resolution spatiotemporal measurements of EMT at the single cell level. In closing, we consider future directions for the field and outstanding questions regarding EMT and the cytoskeleton for human cancer progression. Video Abstract.
Collapse
Affiliation(s)
- Susan E Leggett
- Department of Chemical and Biological Engineering, Princeton University, William St, Princeton, NJ, 08544, USA
| | - Alex M Hruska
- School of Engineering, Center for Biomedical Engineering, and Joint Program in Cancer Biology, Brown University, 184 Hope St Box D, Providence, RI, 02912, USA
| | - Ming Guo
- Department of Mechanical Engineering, MIT, 77 Massachusetts Ave, Cambridge, MA, 02139, USA
| | - Ian Y Wong
- School of Engineering, Center for Biomedical Engineering, and Joint Program in Cancer Biology, Brown University, 184 Hope St Box D, Providence, RI, 02912, USA.
| |
Collapse
|
153
|
Shinde A, Illath K, Gupta P, Shinde P, Lim KT, Nagai M, Santra TS. A Review of Single-Cell Adhesion Force Kinetics and Applications. Cells 2021; 10:577. [PMID: 33808043 PMCID: PMC8000588 DOI: 10.3390/cells10030577] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 02/06/2023] Open
Abstract
Cells exert, sense, and respond to the different physical forces through diverse mechanisms and translating them into biochemical signals. The adhesion of cells is crucial in various developmental functions, such as to maintain tissue morphogenesis and homeostasis and activate critical signaling pathways regulating survival, migration, gene expression, and differentiation. More importantly, any mutations of adhesion receptors can lead to developmental disorders and diseases. Thus, it is essential to understand the regulation of cell adhesion during development and its contribution to various conditions with the help of quantitative methods. The techniques involved in offering different functionalities such as surface imaging to detect forces present at the cell-matrix and deliver quantitative parameters will help characterize the changes for various diseases. Here, we have briefly reviewed single-cell mechanical properties for mechanotransduction studies using standard and recently developed techniques. This is used to functionalize from the measurement of cellular deformability to the quantification of the interaction forces generated by a cell and exerted on its surroundings at single-cell with attachment and detachment events. The adhesive force measurement for single-cell microorganisms and single-molecules is emphasized as well. This focused review should be useful in laying out experiments which would bring the method to a broader range of research in the future.
Collapse
Affiliation(s)
- Ashwini Shinde
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India; (A.S.); (K.I.); (P.G.); (P.S.)
| | - Kavitha Illath
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India; (A.S.); (K.I.); (P.G.); (P.S.)
| | - Pallavi Gupta
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India; (A.S.); (K.I.); (P.G.); (P.S.)
| | - Pallavi Shinde
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India; (A.S.); (K.I.); (P.G.); (P.S.)
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon-Si, Gangwon-Do 24341, Korea;
| | - Moeto Nagai
- Department of Mechanical Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580, Japan;
| | - Tuhin Subhra Santra
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India; (A.S.); (K.I.); (P.G.); (P.S.)
| |
Collapse
|
154
|
Li M, Xi N, Wang YC, Liu LQ. Atomic force microscopy for revealing micro/nanoscale mechanics in tumor metastasis: from single cells to microenvironmental cues. Acta Pharmacol Sin 2021; 42:323-339. [PMID: 32807839 PMCID: PMC8027022 DOI: 10.1038/s41401-020-0494-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/27/2020] [Indexed: 02/06/2023]
Abstract
Mechanics are intrinsic properties which appears throughout the formation, development, and aging processes of biological systems. Mechanics have been shown to play important roles in regulating the development and metastasis of tumors, and understanding tumor mechanics has emerged as a promising way to reveal the underlying mechanisms guiding tumor behaviors. In particular, tumors are highly complex diseases associated with multifaceted factors, including alterations in cancerous cells, tissues, and organs as well as microenvironmental cues, indicating that investigating tumor mechanics on multiple levels is significantly helpful for comprehensively understanding the effects of mechanics on tumor progression. Recently, diverse techniques have been developed for probing the mechanics of tumors, among which atomic force microscopy (AFM) has appeared as an excellent platform enabling simultaneously characterizing the structures and mechanical properties of living biological systems ranging from individual molecules and cells to tissue samples with unprecedented spatiotemporal resolution, offering novel possibilities for understanding tumor physics and contributing much to the studies of cancer. In this review, we survey the recent progress that has been achieved with the use of AFM for revealing micro/nanoscale mechanics in tumor development and metastasis. Challenges and future progress are also discussed.
Collapse
Affiliation(s)
- Mi Li
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China.
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, 110169, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Ning Xi
- Department of Industrial and Manufacturing Systems Engineering, The University of Hong Kong, Hong Kong, China
| | - Yue-Chao Wang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, 110169, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lian-Qing Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China.
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, 110169, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
155
|
Fritzsche M. What Is the Right Mechanical Readout for Understanding the Mechanobiology of the Immune Response? Front Cell Dev Biol 2021; 9:612539. [PMID: 33718355 PMCID: PMC7946994 DOI: 10.3389/fcell.2021.612539] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/02/2021] [Indexed: 01/06/2023] Open
Affiliation(s)
- Marco Fritzsche
- Rosalind Franklin Institute, Didcot, United Kingdom.,Kennedy Institute for Rheumatology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
156
|
Doherty EL, Aw WY, Hickey AJ, Polacheck WJ. Microfluidic and Organ-on-a-Chip Approaches to Investigate Cellular and Microenvironmental Contributions to Cardiovascular Function and Pathology. Front Bioeng Biotechnol 2021; 9:624435. [PMID: 33614613 PMCID: PMC7890362 DOI: 10.3389/fbioe.2021.624435] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/08/2021] [Indexed: 01/06/2023] Open
Abstract
Over the past decade, advances in microfabrication and biomaterials have facilitated the development of microfluidic tissue and organ models to address challenges with conventional animal and cell culture systems. These systems have largely been developed for human disease modeling and preclinical drug development and have been increasingly used to understand cellular and molecular mechanisms, particularly in the cardiovascular system where the characteristic mechanics and architecture are difficult to recapitulate in traditional systems. Here, we review recent microfluidic approaches to model the cardiovascular system and novel insights provided by these systems. Key features of microfluidic approaches include the ability to pattern cells and extracellular matrix (ECM) at cellular length scales and the ability to use patient-derived cells. We focus the review on approaches that have leveraged these features to explore the relationship between genetic mutations and the microenvironment in cardiovascular disease progression. Additionally, we discuss limitations and benefits of the various approaches, and conclude by considering the role further advances in microfabrication technology and biochemistry techniques play in establishing microfluidic cardiovascular disease models as central tools for understanding biological mechanisms and for developing interventional strategies.
Collapse
Affiliation(s)
- Elizabeth L. Doherty
- Joint Department of Biomedical Engineering, University of Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, United States
- University of North Carolina Catalyst for Rare Diseases, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Wen Yih Aw
- University of North Carolina Catalyst for Rare Diseases, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Anthony J. Hickey
- Joint Department of Biomedical Engineering, University of Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, United States
- University of North Carolina Catalyst for Rare Diseases, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- RTI International, Durham, NC, United States
| | - William J. Polacheck
- Joint Department of Biomedical Engineering, University of Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, United States
- Cell Biology and Physiology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
- McAllister Heart Institute, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
157
|
Valencia L, López-Llorente V, Lasheras JC, Jorcano JL, Rodríguez-Rodríguez J. Interaction of a Migrating Cell Monolayer with a Flexible Fiber. Biophys J 2021; 120:539-546. [PMID: 33359462 PMCID: PMC7895989 DOI: 10.1016/j.bpj.2020.12.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 11/04/2020] [Accepted: 12/08/2020] [Indexed: 12/21/2022] Open
Abstract
Mechanical forces influence the development and behavior of biological tissues. In many situations, these forces are exerted or resisted by elastic compliant structures such as the own-tissue cellular matrix or other surrounding tissues. This kind of tissue-elastic body interactions are also at the core of many state-of-the-art in situ force measurement techniques employed in biophysics. This creates the need to model tissue interaction with the surrounding elastic bodies that exert these forces, raising the question of which are the minimal ingredients needed to describe such interactions. We conduct experiments in which migrating cell monolayers push on carbon fibers as a model problem. Although the migrating tissue is able to bend the fiber for some time, it eventually recoils before coming to a stop. This stop occurs when cells have performed a fixed mechanical work on the fiber, regardless of its stiffness. Based on these observations, we develop a minimal active-fluid model that reproduces the experiments and predicts quantitatively relevant features of the system. This minimal model points out the essential ingredients needed to describe tissue-elastic solid interactions: an effective inertia and viscous stresses.
Collapse
Affiliation(s)
- Leticia Valencia
- Department of Biomedical and Aerospace Engineering, Carlos III University of Madrid, Madrid, Spain; Academic Unit for Disruptive Technologies in Regenerative Medicine, Carlos III University of Madrid, Madrid, Spain
| | | | - Juan C Lasheras
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California; Department of Bioengineering, University of California San Diego, La Jolla, California
| | - José L Jorcano
- Department of Biomedical and Aerospace Engineering, Carlos III University of Madrid, Madrid, Spain; Academic Unit for Disruptive Technologies in Regenerative Medicine, Carlos III University of Madrid, Madrid, Spain; Division of Epithelial Biomedicine, CIEMAT-CIBERER, Madrid, Spain
| | - Javier Rodríguez-Rodríguez
- Academic Unit for Disruptive Technologies in Regenerative Medicine, Carlos III University of Madrid, Madrid, Spain; Department of Thermal and Fluid Engineering, Carlos III University of Madrid, Madrid, Spain.
| |
Collapse
|
158
|
Zhang J, Scarcelli G. Mapping mechanical properties of biological materials via an add-on Brillouin module to confocal microscopes. Nat Protoc 2021; 16:1251-1275. [PMID: 33452504 PMCID: PMC8218248 DOI: 10.1038/s41596-020-00457-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/04/2020] [Indexed: 01/29/2023]
Abstract
Several techniques have been developed over the past few decades to assess the mechanical properties of biological samples, which has fueled a rapid growth in the fields of biophysics, bioengineering, and mechanobiology. In this context, Brillouin optical spectroscopy has long been known as an intriguing modality for noncontact material characterization. However, limited by speed and sample damage, it had not translated into a viable imaging modality for biomedically relevant materials. Recently, based on a novel spectroscopy strategy that substantially improves the speed of Brillouin measurement, confocal Brillouin microscopy has emerged as a unique complementary tool to traditional methods as it allows noncontact, nonperturbative, label-free measurements of material mechanical properties. The feasibility and potential of this innovative technique at both the cell and tissue level have been extensively demonstrated over the past decade. As Brillouin technology is rapidly recognized, a standard approach for building and operating Brillouin microscopes is required to facilitate the widespread adoption of this technology. In this protocol, we aim to establish a robust approach for instrumentation, and data acquisition and analysis. By carefully following this protocol, we expect that a Brillouin instrument can be built in 5-9 days by a person with basic optics knowledge and alignment experience; the data acquisition as well as postprocessing can be accomplished within 2-8 h.
Collapse
Affiliation(s)
- Jitao Zhang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA.
| | - Giuliano Scarcelli
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA.
| |
Collapse
|
159
|
Yu Z, Smith MJ, Siow RCM, Liu KK. Ageing modulates human dermal fibroblast contractility: Quantification using nano-biomechanical testing. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:118972. [PMID: 33515646 DOI: 10.1016/j.bbamcr.2021.118972] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/19/2021] [Accepted: 01/24/2021] [Indexed: 12/12/2022]
Abstract
Dermal fibroblasts play a key role in maintaining homoeostasis and functionality of the skin. Their contractility plays a role in changes observed during ageing, especially in processes such as wound healing, inflammation, wrinkling and scar tissue formation as well as structural changes on extracellular matrix. Although alternations in skin physiology and morphology have been previously described, there remains a paucity of information about the influence of chronological ageing on dermal fibroblast contractility. In this study, we applied a novel nano-biomechanical technique on cell-embedded collagen hydrogels in combination with mathematical modelling and numerical simulation to measure contraction forces of normal human dermal fibroblasts (NHDF). We achieved quantitative differentiation of the contractility of cells derived from 'young' (< 30 years old) and 'aged' (> 60 years old) donors. Transforming growth factor β1 (TGF-β1) was used to stimulate the fibroblasts to assess their contractile potential. NHDF from aged donors exhibited a greater basal contractile force, while in contrast, NHDF from young donors have shown a significantly larger contractile force in response to TGF-β1 treatment. These findings validate our nano-biomechanical measurement technique and provide new insights for considering NHDF contractility in regenerative medicine and as a biomarker of dermal ageing processes.
Collapse
Affiliation(s)
- Zhuonan Yu
- School of Engineering, University of Warwick, Coventry, United Kingdom
| | - Matthew J Smith
- School of Cardiovascular Medicine & Sciences, King's British Heart Foundation Centre of Research Excellence, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Richard C M Siow
- School of Cardiovascular Medicine & Sciences, King's British Heart Foundation Centre of Research Excellence, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Kuo-Kang Liu
- School of Engineering, University of Warwick, Coventry, United Kingdom.
| |
Collapse
|
160
|
Odom TL, Blankenship JR, Campos G, Mart DC, Liu W, Wang R, Yoshimatsu K. Effect of vortex‐induced physical stress on fluorescent properties of dye‐containing poly(ethylene glycol)‐
block
‐poly
(lactic acid) micelles. J Appl Polym Sci 2021. [DOI: 10.1002/app.49743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tyler L. Odom
- Department of Chemistry Missouri State University Springfield Missouri USA
| | | | - Giselle Campos
- Department of Chemistry Missouri State University Springfield Missouri USA
| | - Devin C. Mart
- Department of Chemistry Missouri State University Springfield Missouri USA
| | - Wenyan Liu
- Center for Research in Energy and Environment Missouri University of Science and Technology Rolla Missouri USA
- Department of Chemistry Missouri University of Science and Technology Rolla Missouri USA
| | - Risheng Wang
- Department of Chemistry Missouri University of Science and Technology Rolla Missouri USA
| | - Keiichi Yoshimatsu
- Department of Chemistry Missouri State University Springfield Missouri USA
| |
Collapse
|
161
|
Abstract
Bioimage analysis (BIA) has historically helped study how and why cells move; biological experiments evolved in intimate feedback with the most classical image processing techniques because they contribute objectivity and reproducibility to an eminently qualitative science. Cell segmentation, tracking, and morphology descriptors are all discussed here. Using ameboid motility as a case study, these methods help us illustrate how proper quantification can augment biological data, for example, by choosing mathematical representations that amplify initially subtle differences, by statistically uncovering general laws or by integrating physical insight. More recently, the non-invasive nature of quantitative imaging is fertilizing two blooming fields: mechanobiology, where many biophysical measurements remain inaccessible, and microenvironments, where the quest for physiological relevance has exploded data size. From relief to remedy, this trend indicates that BIA is to become a main vector of biological discovery as human visual analysis struggles against ever more complex data.
Collapse
Affiliation(s)
- Aleix Boquet-Pujadas
- Institut Pasteur, Bioimage Analysis Unit, 25 rue du Dr. Roux, Paris Cedex 15 75724, France
- Centre National de la Recherche Scientifique, CNRS UMR3691, Paris, France
- Sorbonne Université, Paris 75005, France
| | - Jean-Christophe Olivo-Marin
- Institut Pasteur, Bioimage Analysis Unit, 25 rue du Dr. Roux, Paris Cedex 15 75724, France
- Centre National de la Recherche Scientifique, CNRS UMR3691, Paris, France
| | - Nancy Guillén
- Institut Pasteur, Bioimage Analysis Unit, 25 rue du Dr. Roux, Paris Cedex 15 75724, France
- Centre National de la Recherche Scientifique, CNRS ERL9195, Paris, France
| |
Collapse
|
162
|
De La Pena A, Mukhtar M, Yokosawa R, Carrasquilla S, Simmons CS. Quantifying cellular forces: Practical considerations of traction force microscopy for dermal fibroblasts. Exp Dermatol 2021; 30:74-83. [PMID: 32767472 PMCID: PMC7769991 DOI: 10.1111/exd.14166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/12/2020] [Accepted: 07/30/2020] [Indexed: 12/28/2022]
Abstract
Traction force microscopy (TFM) is a well-established technique traditionally used by biophysicists to quantify the forces adherent biological cells exert on their microenvironment. As image processing software becomes increasingly user-friendly, TFM is being adopted by broader audiences to quantify contractility of (myo)fibroblasts. While many technical reviews of TFM's computational mechanics are available, this review focuses on practical experimental considerations for dermatology researchers new to cell mechanics and TFM who may wish to implement a higher throughput and less expensive alternative to collagen compaction assays. Here, we describe implementation of experimental methods, analysis using open-source software and troubleshooting of common issues to enable researchers to leverage TFM for their investigations into skin fibroblasts.
Collapse
Affiliation(s)
| | | | | | | | - Chelsey S. Simmons
- Department of Mechanical and Aerospace Engineering
- J. Crayton Pruitt Department of Biomedical Engineering
- Division of Cardiovascular Medicine, University of Florida
| |
Collapse
|
163
|
Tu Y, Wang X. Recent Advances in Cell Adhesive Force Microscopy. SENSORS (BASEL, SWITZERLAND) 2020; 20:E7128. [PMID: 33322701 PMCID: PMC7763046 DOI: 10.3390/s20247128] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 12/22/2022]
Abstract
Cell adhesive force, exerting on the local matrix or neighboring cells, plays a critical role in regulating many cell functions and physiological processes. In the past four decades, significant efforts have been dedicated to cell adhesive force detection, visualization and quantification. A recent important methodological advancement in cell adhesive force visualization is to adopt force-to-fluorescence conversion instead of force-to-substrate strain conversion, thus greatly improving the sensitivity and resolution of force imaging. This review summarizes the recent development of force imaging techniques (collectively termed as cell adhesive force microscopy or CAFM here), with a particular focus on the improvement of CAFM's spatial resolution and the biomaterial choices for constructing the tension sensors used in force visualization. This review also highlights the importance of DNA-based tension sensors in cell adhesive force imaging and the recent breakthrough in the development of super-resolution CAFM.
Collapse
Affiliation(s)
- Ying Tu
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA;
| | - Xuefeng Wang
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA;
- Molecular, Cellular, and Development Biology Interdepartmental Program, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
164
|
Narasimhan BN, Ting MS, Kollmetz T, Horrocks MS, Chalard AE, Malmström J. Mechanical Characterization for Cellular Mechanobiology: Current Trends and Future Prospects. Front Bioeng Biotechnol 2020; 8:595978. [PMID: 33282852 PMCID: PMC7689259 DOI: 10.3389/fbioe.2020.595978] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/27/2020] [Indexed: 11/13/2022] Open
Abstract
Accurate mechanical characterization of adherent cells and their substrates is important for understanding the influence of mechanical properties on cells themselves. Recent mechanobiology studies outline the importance of mechanical parameters, such as stress relaxation and strain stiffening on the behavior of cells. Numerous techniques exist for probing mechanical properties and it is vital to understand the benefits of each technique and how they relate to each other. This mini review aims to guide the reader through the toolbox of mechanical characterization techniques by presenting well-established and emerging methods currently used to assess mechanical properties of substrates and cells.
Collapse
Affiliation(s)
- Badri Narayanan Narasimhan
- Department of Chemical and Materials Engineering, The University of Auckland, Auckland, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Matthew S. Ting
- Department of Chemical and Materials Engineering, The University of Auckland, Auckland, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Tarek Kollmetz
- Department of Chemical and Materials Engineering, The University of Auckland, Auckland, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Matthew S. Horrocks
- Department of Chemical and Materials Engineering, The University of Auckland, Auckland, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Anaïs E. Chalard
- Department of Chemical and Materials Engineering, The University of Auckland, Auckland, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Jenny Malmström
- Department of Chemical and Materials Engineering, The University of Auckland, Auckland, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| |
Collapse
|
165
|
Saffioti NA, Cavalcanti-Adam EA, Pallarola D. Biosensors for Studies on Adhesion-Mediated Cellular Responses to Their Microenvironment. Front Bioeng Biotechnol 2020; 8:597950. [PMID: 33262979 PMCID: PMC7685988 DOI: 10.3389/fbioe.2020.597950] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 10/12/2020] [Indexed: 12/28/2022] Open
Abstract
Cells interact with their microenvironment by constantly sensing mechanical and chemical cues converting them into biochemical signals. These processes allow cells to respond and adapt to changes in their environment, and are crucial for most cellular functions. Understanding the mechanism underlying this complex interplay at the cell-matrix interface is of fundamental value to decipher key biochemical and mechanical factors regulating cell fate. The combination of material science and surface chemistry aided in the creation of controllable environments to study cell mechanosensing and mechanotransduction. Biologically inspired materials tailored with specific bioactive molecules, desired physical properties and tunable topography have emerged as suitable tools to study cell behavior. Among these materials, synthetic cell interfaces with built-in sensing capabilities are highly advantageous to measure biophysical and biochemical interaction between cells and their environment. In this review, we discuss the design of micro and nanostructured biomaterials engineered not only to mimic the structure, properties, and function of the cellular microenvironment, but also to obtain quantitative information on how cells sense and probe specific adhesive cues from the extracellular domain. This type of responsive biointerfaces provides a readout of mechanics, biochemistry, and electrical activity in real time allowing observation of cellular processes with molecular specificity. Specifically designed sensors based on advanced optical and electrochemical readout are discussed. We further provide an insight into the emerging role of multifunctional micro and nanosensors to control and monitor cell functions by means of material design.
Collapse
Affiliation(s)
- Nicolás Andrés Saffioti
- Instituto de Nanosistemas, Universidad Nacional de General San Martín, San Martín, Argentina
| | | | - Diego Pallarola
- Instituto de Nanosistemas, Universidad Nacional de General San Martín, San Martín, Argentina
| |
Collapse
|
166
|
Epifluorescence-based three-dimensional traction force microscopy. Sci Rep 2020; 10:16599. [PMID: 33024138 PMCID: PMC7538907 DOI: 10.1038/s41598-020-72931-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/04/2020] [Indexed: 02/02/2023] Open
Abstract
We introduce a novel method to compute three-dimensional (3D) displacements and both in-plane and out-of-plane tractions on nominally planar transparent materials using standard epifluorescence microscopy. Despite the importance of out-of-plane components to fully understanding cell behavior, epifluorescence images are generally not used for 3D traction force microscopy (TFM) experiments due to limitations in spatial resolution and measuring out-of-plane motion. To extend an epifluorescence-based technique to 3D, we employ a topology-based single particle tracking algorithm to reconstruct high spatial-frequency 3D motion fields from densely seeded single-particle layer images. Using an open-source finite element (FE) based solver, we then compute the 3D full-field stress and strain and surface traction fields. We demonstrate this technique by measuring tractions generated by both single human neutrophils and multicellular monolayers of Madin–Darby canine kidney cells, highlighting its acuity in reconstructing both individual and collective cellular tractions. In summary, this represents a new, easily accessible method for calculating fully three-dimensional displacement and 3D surface tractions at high spatial frequency from epifluorescence images. We released and support the complete technique as a free and open-source code package.
Collapse
|
167
|
Duch M, Torras N, Asami M, Suzuki T, Arjona MI, Gómez-Martínez R, VerMilyea MD, Castilla R, Plaza JA, Perry ACF. Tracking intracellular forces and mechanical property changes in mouse one-cell embryo development. NATURE MATERIALS 2020; 19:1114-1123. [PMID: 32451513 DOI: 10.1038/s41563-020-0685-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 04/16/2020] [Indexed: 06/11/2023]
Abstract
Cells comprise mechanically active matter that governs their functionality, but intracellular mechanics are difficult to study directly and are poorly understood. However, injected nanodevices open up opportunities to analyse intracellular mechanobiology. Here, we identify a programme of forces and changes to the cytoplasmic mechanical properties required for mouse embryo development from fertilization to the first cell division. Injected, fully internalized nanodevices responded to sperm decondensation and recondensation, and subsequent device behaviour suggested a model for pronuclear convergence based on a gradient of effective cytoplasmic stiffness. The nanodevices reported reduced cytoplasmic mechanical activity during chromosome alignment and indicated that cytoplasmic stiffening occurred during embryo elongation, followed by rapid cytoplasmic softening during cytokinesis (cell division). Forces greater than those inside muscle cells were detected within embryos. These results suggest that intracellular forces are part of a concerted programme that is necessary for development at the origin of a new embryonic life.
Collapse
Affiliation(s)
- Marta Duch
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), Esfera UAB, Campus UAB, Cerdanyola, Barcelona, Spain
| | - Núria Torras
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), Esfera UAB, Campus UAB, Cerdanyola, Barcelona, Spain
- Biomimetic Systems for Cell Engineering, Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Maki Asami
- Laboratory of Mammalian Molecular Embryology, Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Toru Suzuki
- Laboratory of Mammalian Molecular Embryology, Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - María Isabel Arjona
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), Esfera UAB, Campus UAB, Cerdanyola, Barcelona, Spain
- Departamento de Electrónica y Tecnología de Computadores, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Rodrigo Gómez-Martínez
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), Esfera UAB, Campus UAB, Cerdanyola, Barcelona, Spain
| | | | - Robert Castilla
- LABSON - Department of Fluid Mechanics, ESEIAAT-Universitat Politecnica de Catalunya, Terrassa, Spain
| | - José Antonio Plaza
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), Esfera UAB, Campus UAB, Cerdanyola, Barcelona, Spain.
| | - Anthony C F Perry
- Laboratory of Mammalian Molecular Embryology, Department of Biology and Biochemistry, University of Bath, Bath, UK.
| |
Collapse
|
168
|
Brockman JM, Su H, Blanchard AT, Duan Y, Meyer T, Quach ME, Glazier R, Bazrafshan A, Bender RL, Kellner AV, Ogasawara H, Ma R, Schueder F, Petrich BG, Jungmann R, Li R, Mattheyses AL, Ke Y, Salaita K. Live-cell super-resolved PAINT imaging of piconewton cellular traction forces. Nat Methods 2020; 17:1018-1024. [PMID: 32929270 PMCID: PMC7574592 DOI: 10.1038/s41592-020-0929-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 07/20/2020] [Indexed: 11/09/2022]
Abstract
Despite the vital role of mechanical forces in biology, it still remains a challenge to image cellular force with sub-100-nm resolution. Here, we present tension points accumulation for imaging in nanoscale topography (tPAINT), integrating molecular tension probes with the DNA points accumulation for imaging in nanoscale topography (DNA-PAINT) technique to map piconewton mechanical events with ~25-nm resolution. To perform live-cell dynamic tension imaging, we engineered reversible probes with a cryptic docking site revealed only when the probe experiences forces exceeding a defined mechanical threshold (~7-21 pN). Additionally, we report a second type of irreversible tPAINT probe that exposes its cryptic docking site permanently and thus integrates force history over time, offering improved spatial resolution in exchange for temporal dynamics. We applied both types of tPAINT probes to map integrin receptor forces in live human platelets and mouse embryonic fibroblasts. Importantly, tPAINT revealed a link between platelet forces at the leading edge of cells and the dynamic actin-rich ring nucleated by the Arp2/3 complex.
Collapse
Affiliation(s)
- Joshua M Brockman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Hanquan Su
- Department of Chemistry, Emory University, Atlanta, GA, USA
| | - Aaron T Blanchard
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Yuxin Duan
- Department of Chemistry, Emory University, Atlanta, GA, USA
| | - Travis Meyer
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - M Edward Quach
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Roxanne Glazier
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | | | | | - Anna V Kellner
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | | | - Rong Ma
- Department of Chemistry, Emory University, Atlanta, GA, USA
| | - Florian Schueder
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Germany
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Brian G Petrich
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Ralf Jungmann
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Germany
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Renhao Li
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Alexa L Mattheyses
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yonggang Ke
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Department of Chemistry, Emory University, Atlanta, GA, USA
| | - Khalid Salaita
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
- Department of Chemistry, Emory University, Atlanta, GA, USA.
| |
Collapse
|
169
|
Chalklen T, Jing Q, Kar-Narayan S. Biosensors Based on Mechanical and Electrical Detection Techniques. SENSORS (BASEL, SWITZERLAND) 2020; 20:E5605. [PMID: 33007906 PMCID: PMC7584018 DOI: 10.3390/s20195605] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/18/2020] [Accepted: 09/23/2020] [Indexed: 12/20/2022]
Abstract
Biosensors are powerful analytical tools for biology and biomedicine, with applications ranging from drug discovery to medical diagnostics, food safety, and agricultural and environmental monitoring. Typically, biological recognition receptors, such as enzymes, antibodies, and nucleic acids, are immobilized on a surface, and used to interact with one or more specific analytes to produce a physical or chemical change, which can be captured and converted to an optical or electrical signal by a transducer. However, many existing biosensing methods rely on chemical, electrochemical and optical methods of identification and detection of specific targets, and are often: complex, expensive, time consuming, suffer from a lack of portability, or may require centralised testing by qualified personnel. Given the general dependence of most optical and electrochemical techniques on labelling molecules, this review will instead focus on mechanical and electrical detection techniques that can provide information on a broad range of species without the requirement of labelling. These techniques are often able to provide data in real time, with good temporal sensitivity. This review will cover the advances in the development of mechanical and electrical biosensors, highlighting the challenges and opportunities therein.
Collapse
Affiliation(s)
| | - Qingshen Jing
- Department of Materials Science, University of Cambridge, Cambridge CB3 0FS, UK;
| | - Sohini Kar-Narayan
- Department of Materials Science, University of Cambridge, Cambridge CB3 0FS, UK;
| |
Collapse
|
170
|
Zhou H, Simmons CS, Sarntinoranont M, Subhash G. Raman Spectroscopy Methods to Characterize the Mechanical Response of Soft Biomaterials. Biomacromolecules 2020; 21:3485-3497. [PMID: 32833438 DOI: 10.1021/acs.biomac.0c00818] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Raman spectroscopy has been used extensively to characterize the influence of mechanical deformation on microstructure changes in biomaterials. While traditional piezo-spectroscopy has been successful in assessing internal stresses of hard biomaterials by tracking prominent peak shifts, peak shifts due to applied loads are near or below the resolution limit of the spectrometer for soft biomaterials with moduli in the kilo- to mega-Pascal range. In this Review, in addition to peak shifts, other spectral features (e.g., polarized intensity and intensity ratio) that provide quantitative assessments of microstructural orientation and secondary structure in soft biomaterials and their strain dependence are discussed. We provide specific examples for each method and classify sensitive Raman characteristic bands common across natural (e.g., soft tissue) and synthetic (e.g., polymeric scaffolds) soft biomaterials upon mechanical deformation. This Review can provide guidance for researchers aiming to analyze micromechanics of soft tissues and engineered tissue constructs by Raman spectroscopy.
Collapse
Affiliation(s)
- Hui Zhou
- Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Chelsey S Simmons
- Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Malisa Sarntinoranont
- Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Ghatu Subhash
- Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
171
|
Wack M, Wiegand T, Frischknecht F, Cavalcanti-Adam EA. An in vitro DNA Sensor-based Assay to Measure Receptor-specific Adhesion Forces of Eukaryotic Cells and Pathogens. Bio Protoc 2020; 10:e3733. [PMID: 33659394 DOI: 10.21769/bioprotoc.3733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 06/10/2020] [Accepted: 06/17/2020] [Indexed: 11/02/2022] Open
Abstract
Motility of eukaryotic cells or pathogens within tissues is mediated by the turnover of specific interactions with other cells or with the extracellular matrix. Biophysical characterization of these ligand-receptor adhesions helps to unravel the molecular mechanisms driving migration. Traction force microscopy or optical tweezers are typically used to measure the cellular forces exerted by cells on a substrate. However, the spatial resolution of traction force microscopy is limited to ~2 µm and performing experiments with optical traps is very time-consuming. Here we present the production of biomimetic surfaces that enable specific cell adhesion via synthetic ligands and at the same time monitor the transmitted forces by using molecular tension sensors. The ligands were coupled to double-stranded DNA probes with defined force thresholds for DNA unzipping. Receptor-mediated forces in the pN range are thereby semi-quantitatively converted into fluorescence signals, which can be detected by standard fluorescence microscopy at the resolution limit (~0.2 µm). The modular design of the assay allows to vary the presented ligands and the mechanical strength of the DNA probes, which provides a number of possibilities to probe the adhesion of different eukaryotic cell types and pathogens and is exemplified here with osteosarcoma cells and Plasmodium berghei Sporozoites.
Collapse
Affiliation(s)
- Maurizio Wack
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
| | - Tina Wiegand
- Cellular Biophysics, Max Planck Institute for Medical Research, Heidelberg, Germany.,Institute for Physical Chemistry, Heidelberg University, Heidelberg, Germany
| | - Friedrich Frischknecht
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
| | - E Ada Cavalcanti-Adam
- Cellular Biophysics, Max Planck Institute for Medical Research, Heidelberg, Germany.,Institute for Physical Chemistry, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
172
|
Uto K, Arakawa CK, DeForest CA. Next-Generation Biomaterials for Culture and Manipulation of Stem Cells. Cold Spring Harb Perspect Biol 2020; 12:a035691. [PMID: 31843993 PMCID: PMC7461762 DOI: 10.1101/cshperspect.a035691] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Stem cell fate decisions are informed by physical and chemical cues presented within and by the extracellular matrix. Despite the generally attributed importance of extracellular cues in governing self-renewal, differentiation, and collective behavior, knowledge gaps persist with regard to the individual, synergistic, and competing effects that specific physiochemical signals have on cell function. To better understand basic stem cell biology, as well as to expand opportunities in regenerative medicine and tissue engineering, a growing suite of customizable biomaterials has been developed. These next-generation cell culture materials offer user-defined biochemical and biomechanical properties, increasingly in a manner that can be controlled in time and 3D space. This review highlights recent innovations in this regard, focusing on advances to culture and maintain stemness, direct fate, and to detect stem cell function using biomaterial-based strategies.
Collapse
Affiliation(s)
- Koichiro Uto
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044, Japan
- PRIME, Japan Agency for Medical Research and Development, Tokyo 100-0044, Japan
| | - Christopher K Arakawa
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044, Japan
- Department of Bioengineering, University of Washington, Seattle, Washington 98105, USA
| | - Cole A DeForest
- Department of Bioengineering, University of Washington, Seattle, Washington 98105, USA
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, USA
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, Washington 98109, USA
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
173
|
Song D, Dong L, Gupta M, Li L, Klaas O, Loghin A, Beall M, Chen CS, Oberai AA. Recovery of Tractions Exerted by Single Cells in Three-Dimensional Nonlinear Matrices. J Biomech Eng 2020; 142:081012. [PMID: 32320015 PMCID: PMC7477711 DOI: 10.1115/1.4046974] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 04/07/2020] [Indexed: 01/30/2023]
Abstract
Cell-generated tractions play an important role in various physiological and pathological processes such as stem-cell differentiation, cell migration, wound healing, and cancer metastasis. Traction force microscopy (TFM) is a technique for quantifying cellular tractions during cell-matrix interactions. Most applications of this technique have heretofore assumed that the matrix surrounding the cells is linear elastic and undergoes infinitesimal strains, but recent experiments have shown that the traction-induced strains can be large (e.g., more than 50%). In this paper, we propose a novel three-dimensional (3D) TFM approach that consistently accounts for both the geometric nonlinearity introduced by large strains in the matrix, and the material nonlinearity due to strain-stiffening of the matrix. In particular, we pose the TFM problem as a nonlinear inverse hyperelasticity problem in the stressed configuration of the matrix, with the objective of determining the cellular tractions that are consistent with the measured displacement field in the matrix. We formulate the inverse problem as a constrained minimization problem and develop an efficient adjoint-based minimization procedure to solve it. We first validate our approach using simulated data, and quantify its sensitivity to noise. We then employ the new approach to recover tractions exerted by NIH 3T3 cells fully encapsulated in hydrogel matrices of varying stiffness. We find that neglecting nonlinear effects can induce significant errors in traction reconstructions. We also find that cellular tractions roughly increase with gel stiffness, while the strain energy appears to saturate.
Collapse
Affiliation(s)
- Dawei Song
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA 90089
| | - Li Dong
- Walker Department of Mechanical Engineering, Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX 78712
| | - Mukund Gupta
- Department of Biomedical Engineering, Biological Design Center, Boston University, Boston, MA 02215
| | - Linqing Li
- Department of Biomedical Engineering, Biological Design Center, Boston University, Boston, MA 02215
| | | | | | | | - Christopher S. Chen
- Department of Biomedical Engineering, Biological Design Center, Boston University, Boston, MA 02215
| | - Assad A. Oberai
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA 90089
| |
Collapse
|
174
|
Zhao B, Li N, Xie T, Bagheri Y, Liang C, Keshri P, Sun Y, You M. Quantifying tensile forces at cell-cell junctions with a DNA-based fluorescent probe. Chem Sci 2020; 11:8558-8566. [PMID: 34123115 PMCID: PMC8163409 DOI: 10.1039/d0sc01455a] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Cells are physically contacting with each other. Direct and precise quantification of forces at cell–cell junctions is still challenging. Herein, we have developed a DNA-based ratiometric fluorescent probe, termed DNAMeter, to quantify intercellular tensile forces. These lipid-modified DNAMeters can spontaneously anchor onto live cell membranes. The DNAMeter consists of two self-assembled DNA hairpins of different force tolerance. Once the intercellular tension exceeds the force tolerance to unfold a DNA hairpin, a specific fluorescence signal will be activated, which enables the real-time imaging and quantification of tensile forces. Using E-cadherin-modified DNAMeter as an example, we have demonstrated an approach to quantify, at the molecular level, the magnitude and distribution of E-cadherin tension among epithelial cells. Compatible with readily accessible fluorescence microscopes, these easy-to-use DNA tension probes can be broadly used to quantify mechanotransduction in collective cell behaviors. A DNA-based fluorescent probe to quantify the magnitude and distribution of tensile forces at cell–cell junctions.![]()
Collapse
Affiliation(s)
- Bin Zhao
- Department of Chemistry, University of Massachusetts Amherst Massachusetts 01003 USA
| | - Ningwei Li
- Department of Mechanical & Industrial Engineering, University of Massachusetts Amherst Massachusetts 01003 USA
| | - Tianfa Xie
- Department of Mechanical & Industrial Engineering, University of Massachusetts Amherst Massachusetts 01003 USA
| | - Yousef Bagheri
- Department of Chemistry, University of Massachusetts Amherst Massachusetts 01003 USA
| | - Chungwen Liang
- Computational and Modeling Core, Institute for Applied Life Sciences (IALS), University of Massachusetts Amherst Massachusetts 01003 USA
| | - Puspam Keshri
- Department of Chemistry, University of Massachusetts Amherst Massachusetts 01003 USA
| | - Yubing Sun
- Department of Mechanical & Industrial Engineering, University of Massachusetts Amherst Massachusetts 01003 USA
| | - Mingxu You
- Department of Chemistry, University of Massachusetts Amherst Massachusetts 01003 USA
| |
Collapse
|
175
|
Massou S, Nunes Vicente F, Wetzel F, Mehidi A, Strehle D, Leduc C, Voituriez R, Rossier O, Nassoy P, Giannone G. Cell stretching is amplified by active actin remodelling to deform and recruit proteins in mechanosensitive structures. Nat Cell Biol 2020; 22:1011-1023. [PMID: 32719553 DOI: 10.1038/s41556-020-0548-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 06/22/2020] [Indexed: 02/07/2023]
Abstract
Detection and conversion of mechanical forces into biochemical signals controls cell functions during physiological and pathological processes. Mechanosensing is based on protein deformations and reorganizations, yet the molecular mechanisms are still unclear. Using a cell-stretching device compatible with super-resolution microscopy and single-protein tracking, we explored the nanoscale deformations and reorganizations of individual proteins inside mechanosensitive structures. We achieved super-resolution microscopy after live stretching on intermediate filaments, microtubules and integrin adhesions. Simultaneous single-protein tracking and stretching showed that while integrins followed the elastic deformation of the substrate, actin filaments and talin also displayed lagged and transient inelastic responses associated with active acto-myosin remodelling and talin deformations. Capturing acute reorganizations of single molecules during stretching showed that force-dependent vinculin recruitment is delayed and depends on the maturation of integrin adhesions. Thus, cells respond to external forces by amplifying transiently and locally cytoskeleton displacements, enabling protein deformation and recruitment in mechanosensitive structures.
Collapse
Affiliation(s)
- Sophie Massou
- Interdisciplinary Institute for Neuroscience, UMR 5297, Université de Bordeaux, Bordeaux, France.,Interdisciplinary Institute for Neuroscience, UMR 5297, CNRS, Bordeaux, France
| | - Filipe Nunes Vicente
- Interdisciplinary Institute for Neuroscience, UMR 5297, Université de Bordeaux, Bordeaux, France.,Interdisciplinary Institute for Neuroscience, UMR 5297, CNRS, Bordeaux, France
| | - Franziska Wetzel
- Laboratoire Photonique Numérique et Nanosciences, UMR 5298, Université de Bordeaux, Talence, France.,Laboratoire Photonique Numérique et Nanosciences, UMR 5298, Institut d'Optique and CNRS, Talence, France
| | - Amine Mehidi
- Interdisciplinary Institute for Neuroscience, UMR 5297, Université de Bordeaux, Bordeaux, France.,Interdisciplinary Institute for Neuroscience, UMR 5297, CNRS, Bordeaux, France
| | - Dan Strehle
- Laboratoire Photonique Numérique et Nanosciences, UMR 5298, Université de Bordeaux, Talence, France.,Laboratoire Photonique Numérique et Nanosciences, UMR 5298, Institut d'Optique and CNRS, Talence, France
| | - Cecile Leduc
- Cell Polarity, Migration and Cancer Unit, UMR 3691, Institut Pasteur Paris and CNRS, Paris, France
| | - Raphaël Voituriez
- Laboratoire Jean Perrin and Laboratoire de Physique Théorique de la Matière Condensée, CNRS - Sorbonne Université, Paris, France
| | - Olivier Rossier
- Interdisciplinary Institute for Neuroscience, UMR 5297, Université de Bordeaux, Bordeaux, France.,Interdisciplinary Institute for Neuroscience, UMR 5297, CNRS, Bordeaux, France
| | - Pierre Nassoy
- Laboratoire Photonique Numérique et Nanosciences, UMR 5298, Université de Bordeaux, Talence, France.,Laboratoire Photonique Numérique et Nanosciences, UMR 5298, Institut d'Optique and CNRS, Talence, France
| | - Grégory Giannone
- Interdisciplinary Institute for Neuroscience, UMR 5297, Université de Bordeaux, Bordeaux, France. .,Interdisciplinary Institute for Neuroscience, UMR 5297, CNRS, Bordeaux, France.
| |
Collapse
|
176
|
Zanotelli MR, Chada NC, Johnson CA, Reinhart-King CA. The Physical Microenvironment of Tumors: Characterization and Clinical Impact. ACTA ACUST UNITED AC 2020. [DOI: 10.1142/s1793048020300029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The tumor microenvironment plays a critical role in tumorigenesis and metastasis. As tightly controlled extracellular matrix homeostasis is lost during tumor progression, a dysregulated extracellular matrix can significantly alter cellular phenotype and drive malignancy. Altered physical properties of the tumor microenvironment alter cancer cell behavior, limit delivery and efficacy of therapies, and correlate with tumorigenesis and patient prognosis. The physical features of the extracellular matrix during tumor progression have been characterized; however, a wide range of methods have been used between studies and cancer types resulting in a large range of reported values. Here, we discuss the significant mechanical and structural properties of the tumor microenvironment, summarizing their reported values and clinical impact across cancer type and grade. We attempt to integrate the values in the literature to identify sources of reported differences and commonalities to better understand how aberrant extracellular matrix dynamics contribute to cancer progression. An intimate understanding of altered matrix properties during malignant transformation will be crucial in effectively detecting, monitoring, and treating cancer.
Collapse
Affiliation(s)
- Matthew R. Zanotelli
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Weill Hall, Ithaca, NY 14583, USA
- Department of Biomedical Engineering, Vanderbilt University, 2414 Highland Avenue, Nashville, TN 37235, USA
| | - Neil C. Chada
- Department of Biomedical Engineering, Vanderbilt University, 2414 Highland Avenue, Nashville, TN 37235, USA
| | - C. Andrew Johnson
- Department of Biomedical Engineering, Vanderbilt University, 2414 Highland Avenue, Nashville, TN 37235, USA
| | - Cynthia A. Reinhart-King
- Department of Biomedical Engineering, Vanderbilt University, 2414 Highland Avenue, Nashville, TN 37235, USA
| |
Collapse
|
177
|
Hur SS, Jeong JH, Ban MJ, Park JH, Yoon JK, Hwang Y. Traction force microscopy for understanding cellular mechanotransduction. BMB Rep 2020. [PMID: 31964473 PMCID: PMC7061206 DOI: 10.5483/bmbrep.2020.53.2.308] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Under physiological and pathological conditions, mechanical forces generated from cells themselves or transmitted from extracellular matrix (ECM) through focal adhesions (FAs) and adherens junctions (AJs) are known to play a significant role in regulating various cell behaviors. Substantial progresses have been made in the field of mechanobiology towards novel methods to understand how cells are able to sense and adapt to these mechanical forces over the years. To address these issues, this review will discuss recent advancements of traction force microscopy (TFM), intracellular force microscopy (IFM), and monolayer stress microscopy (MSM) to measure multiple aspects of cellular forces exerted by cells at cell-ECM and cell-cell junctional intracellular interfaces. We will also highlight how these methods can elucidate the roles of mechanical forces at interfaces of cell-cell/cell-ECM in regulating various cellular functions. [BMB Reports 2020; 53(2): 74-81].
Collapse
Affiliation(s)
- Sung Sik Hur
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan 31151; Department of Integrated Biomedical Science, Soonchunhyang University, Asan 31538, Korea
| | - Ji Hoon Jeong
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan 31151; Department of Integrated Biomedical Science, Soonchunhyang University, Asan 31538, Korea
| | - Myung Jin Ban
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea
| | - Jae Hong Park
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea
| | - Jeong Kyo Yoon
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan 31151; Department of Integrated Biomedical Science, Soonchunhyang University, Asan 31538, Korea
| | - Yongsung Hwang
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan 31151; Department of Integrated Biomedical Science, Soonchunhyang University, Asan 31538, Korea
| |
Collapse
|
178
|
Yasodharababu M, Nair AK. A Multiscale Model to Predict Neuronal Cell Deformation with Varying Extracellular Matrix Stiffness and Topography. Cell Mol Bioeng 2020; 13:229-245. [PMID: 32426060 PMCID: PMC7225237 DOI: 10.1007/s12195-020-00615-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 04/11/2020] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Neuronal cells are sensitive to mechanical properties of extracellular matrix (ECM) such as stiffness and topography. Cells contract and exert a force on ECM to detect the microenvironment, which activates the signaling pathway to influence the cell functions such as differentiation, migration, and proliferation. There are numerous transmembrane proteins that transmit signals; however, integrin and neural cellular adhesion molecules (NCAM) play an important role in sensing the ECM mechanical properties. Mechanotransduction of cell-ECM is the key to understand the influence of ECM stiffness and topography; therefore, in this study, we develop a multiscale computational model to investigate these properties. METHODS This model couples the molecular behavior of integrin and NCAM to microscale interactions of neuronal cell and the ECM. We analyze the atomistic/molecular behavior of integrin and NCAM due to mechanical stimuli using steered molecular dynamics. The microscale properties of the neuronal cell and the ECM are simulated using non-linear finite element analysis by applying cell contractility. RESULTS We predict that by increasing the ECM stiffness, a neuronal cell exerts greater stress on the ECM. However, this stress reaches a saturation value for a threshold stiffness of ECM, and the saturation value is affected by the ECM thickness, topography, and clustering of integrin and NCAMs. Further, the ECM topography leads to asymmetric stress and deformation in the neuronal cell. Predicted stress distribution in neuronal cell and ECM are consistent with experimental results from the literature. CONCLUSION The multiscale computational model will guide in selecting the optimal ECM stiffness and topography range for in vitro studies.
Collapse
Affiliation(s)
- Mohan Yasodharababu
- Multiscale Materials Modeling Lab, Department of Mechanical Engineering, University of Arkansas, Fayetteville, AR USA
| | - Arun K. Nair
- Multiscale Materials Modeling Lab, Department of Mechanical Engineering, University of Arkansas, Fayetteville, AR USA
- Institute for Nanoscience and Engineering, University of Arkansas, 731 W. Dickson Street, Fayetteville, AR USA
| |
Collapse
|
179
|
Zhou Y, Zammit P, Zickus V, Taylor JM, Harvey AR. Twin-Airy Point-Spread Function for Extended-Volume Particle Localization. PHYSICAL REVIEW LETTERS 2020; 124:198104. [PMID: 32469536 DOI: 10.1103/physrevlett.124.198104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 11/11/2019] [Accepted: 04/08/2020] [Indexed: 06/11/2023]
Abstract
The localization of point sources in optical microscopy enables nm-precision imaging of single-molecules and biological dynamics. We report a new method of localization microscopy using twin Airy beams that yields precise 3D localization with the key advantages of extended depth range, higher optical throughput, and potential for imaging higher emitter densities than are possible using other techniques. A precision of better than 30 nm was achieved over a depth range in excess of 7 μm using a 60×, 1.4 NA objective. An illustrative application to extended-depth-range blood-flow imaging in a live zebrafish is also demonstrated.
Collapse
Affiliation(s)
- Yongzhuang Zhou
- School of Physics & Astronomy, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Paul Zammit
- School of Physics & Astronomy, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Vytautas Zickus
- School of Physics & Astronomy, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Jonathan M Taylor
- School of Physics & Astronomy, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Andrew R Harvey
- School of Physics & Astronomy, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|
180
|
Shang Y, Chen Z, Zhang Z, Yang Y, Zhao Y. Heart-on-chips screening based on photonic crystals. Biodes Manuf 2020. [DOI: 10.1007/s42242-020-00073-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
181
|
|
182
|
Zhao Y, Pal K, Tu Y, Wang X. Cellular Force Nanoscopy with 50 nm Resolution Based on Integrin Molecular Tension Imaging and Localization. J Am Chem Soc 2020; 142:6930-6934. [PMID: 32227939 DOI: 10.1021/jacs.0c01722] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Integrin-transmitted cellular forces have rich spatial dynamics and are vital to many cellular functions. To advance the sensitivity and spatial resolution of cellular force imaging, we developed a force-activatable emitter reporting single-molecular tension events and the associated cellular force nanoscopy (CFN). Immobilized on a surface, the emitters are initially dark (>99.8% quenched), providing a low fluorescence background despite the high coating density (>2000/μm2) required for sampling cellular force properly. The emitters fluoresce brightly once switched on by integrin tensions and can be switched off by photobleaching, enabling continuous real-time imaging of integrin molecular tensions in live cells. With multiple cycles of molecular tension imaging and localization, CFN reproduces cellular force images with 50 nm resolution. Applied to both migratory cells and stationary cells, CFN revealed ultranarrow distribution of integrin tensions at the cell leading edge, and showed that force distribution in focal adhesions (FAs) is off-centered and FA size-dependent.
Collapse
Affiliation(s)
- Yuanchang Zhao
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, United States
| | - Kaushik Pal
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, United States
| | - Ying Tu
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, United States
| | - Xuefeng Wang
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, United States.,Molecular, Cellular, and Developmental Biology interdepartmental program, Ames, Iowa 50011, United States
| |
Collapse
|
183
|
Obenaus AM, Mollica MY, Sniadecki NJ. (De)form and Function: Measuring Cellular Forces with Deformable Materials and Deformable Structures. Adv Healthc Mater 2020; 9:e1901454. [PMID: 31951099 PMCID: PMC7274881 DOI: 10.1002/adhm.201901454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/04/2019] [Indexed: 12/29/2022]
Abstract
The ability for biological cells to produce mechanical forces is important for the development, function, and homeostasis of tissue. The measurement of cellular forces is not a straightforward task because individual cells are microscopic in size and the forces they produce are at the nanonewton scale. Consequently, studies in cell mechanics rely on advanced biomaterials or flexible structures that permit one to infer these forces by the deformation they impart on the material or structure. Herein, the scientific progression on the use of deformable materials and deformable structures to measure cellular forces are reviewed. The findings and insights made possible with these approaches in the field of cell mechanics are summarized.
Collapse
Affiliation(s)
- Ava M Obenaus
- Department of Mechanical Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Molly Y Mollica
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Nathan J Sniadecki
- Department of Mechanical Engineering, University of Washington, Seattle, WA, 98195, USA
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
184
|
Blair CA, Pruitt BL. Mechanobiology Assays with Applications in Cardiomyocyte Biology and Cardiotoxicity. Adv Healthc Mater 2020; 9:e1901656. [PMID: 32270928 PMCID: PMC7480481 DOI: 10.1002/adhm.201901656] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/31/2020] [Accepted: 02/03/2020] [Indexed: 12/19/2022]
Abstract
Cardiomyocytes are the motor units that drive the contraction and relaxation of the heart. Traditionally, testing of drugs for cardiotoxic effects has relied on primary cardiomyocytes from animal models and focused on short-term, electrophysiological, and arrhythmogenic effects. However, primary cardiomyocytes present challenges arising from their limited viability in culture, and tissue from animal models suffers from a mismatch in their physiology to that of human heart muscle. Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) can address these challenges. They also offer the potential to study not only electrophysiological effects but also changes in cardiomyocyte contractile and mechanical function in response to cardiotoxic drugs. With growing recognition of the long-term cardiotoxic effects of some drugs on subcellular structure and function, there is increasing interest in using hiPSC-CMs for in vitro cardiotoxicity studies. This review provides a brief overview of techniques that can be used to quantify changes in the active force that cardiomyocytes generate and variations in their inherent stiffness in response to cardiotoxic drugs. It concludes by discussing the application of these tools in understanding how cardiotoxic drugs directly impact the mechanobiology of cardiomyocytes and how cardiomyocytes sense and respond to mechanical load at the cellular level.
Collapse
Affiliation(s)
- Cheavar A. Blair
- Department of mechanical Engineering, University of California Santa Barbara, Santa Barbara, CA, USA
- Biomolecular Science and Engineering, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Beth L. Pruitt
- Department of mechanical Engineering, University of California Santa Barbara, Santa Barbara, CA, USA
- Biomolecular Science and Engineering, University of California Santa Barbara, Santa Barbara, CA, USA
- Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| |
Collapse
|
185
|
Messi Z, Bornert A, Raynaud F, Verkhovsky AB. Traction Forces Control Cell-Edge Dynamics and Mediate Distance Sensitivity during Cell Polarization. Curr Biol 2020; 30:1762-1769.e5. [PMID: 32220324 DOI: 10.1016/j.cub.2020.02.078] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/20/2019] [Accepted: 02/25/2020] [Indexed: 02/08/2023]
Abstract
Traction forces are generated by cellular actin-myosin system and transmitted to the environment through adhesions. They are believed to drive cell motion, shape changes, and extracellular matrix remodeling [1-3]. However, most of the traction force analysis has been performed on stationary cells, investigating forces at the level of individual focal adhesions or linking them to static cell parameters, such as area and edge curvature [4-10]. It is not well understood how traction forces are related to shape changes and motion, e.g., forces were reported to either increase or drop prior to cell retraction [11-15]. Here, we analyze the dynamics of traction forces during the protrusion-retraction cycle of polarizing fish epidermal keratocytes and find that forces fluctuate together with the cycle, increasing during protrusion and reaching maximum at the beginning of retraction. We relate force dynamics to the recently discovered phenomenological rule [16] that governs cell-edge behavior during keratocyte polarization: both traction forces and probability of switch from protrusion to retraction increase with the distance from the cell center. Diminishing forces with cell contractility inhibitor leads to decreased edge fluctuations and abnormal polarization, although externally applied force can induce protrusion-retraction switch. These results suggest that forces mediate distance sensitivity of the edge dynamics and organize cell-edge behavior, leading to spontaneous polarization. Actin flow rate did not exhibit the same distance dependence as traction stress, arguing against its role in organizing edge dynamics. Finally, using a simple model of actin-myosin network, we show that force-distance relationship might be an emergent feature of such networks.
Collapse
Affiliation(s)
- Zeno Messi
- Laboratory of Physics of Living Matter, EPFL, Route de la Sorge, Lausanne 1015, Switzerland.
| | - Alicia Bornert
- Laboratory of Physics of Living Matter, EPFL, Route de la Sorge, Lausanne 1015, Switzerland
| | - Franck Raynaud
- Scientific and Parallel Computing Group, Computer Science Department, University of Geneva, Route de Drize, Carouge 1227, Switzerland
| | - Alexander B Verkhovsky
- Laboratory of Physics of Living Matter, EPFL, Route de la Sorge, Lausanne 1015, Switzerland.
| |
Collapse
|
186
|
Layton TB, Williams L, Colin-York H, McCann FE, Cabrita M, Feldmann M, Brown C, Xie W, Fritzsche M, Furniss D, Nanchahal J. Single cell force profiling of human myofibroblasts reveals a biophysical spectrum of cell states. Biol Open 2020; 9:bio049809. [PMID: 32139395 PMCID: PMC7104857 DOI: 10.1242/bio.049809] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/21/2020] [Indexed: 01/31/2023] Open
Abstract
Mechanical force is a fundamental regulator of cell phenotype. Myofibroblasts are central mediators of fibrosis, a major unmet clinical need characterised by the deposition of excessive matrix proteins. Traction forces of myofibroblasts play a key role in remodelling the matrix and modulate the activities of embedded stromal cells. Here, we employ a combination of unsupervised computational analysis, cytoskeletal profiling and single cell traction force microscopy as a functional readout to uncover how the complex spatiotemporal dynamics and mechanics of living human myofibroblast shape sub-cellular profiling of traction forces in fibrosis. We resolve distinct biophysical communities of myofibroblasts, and our results provide a new paradigm for studying functional heterogeneity in human stromal cells.
Collapse
Affiliation(s)
- Thomas B Layton
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, UK
| | - Lynn Williams
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, UK
| | - Huw Colin-York
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, UK
| | - Fiona E McCann
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, UK
| | - Marisa Cabrita
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, UK
| | - Marc Feldmann
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, UK
| | - Cameron Brown
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, UK
| | - Weilin Xie
- Department of Inflammation Research, Celgene Corporation, San Diego, CA 92121, USA
| | - Marco Fritzsche
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, UK
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, UK
| | - Dominic Furniss
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, UK
| | - Jagdeep Nanchahal
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, UK
| |
Collapse
|
187
|
Mechanophenotyping of 3D multicellular clusters using displacement arrays of rendered tractions. Proc Natl Acad Sci U S A 2020; 117:5655-5663. [PMID: 32123100 DOI: 10.1073/pnas.1918296117] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Epithelial tissues mechanically deform the surrounding extracellular matrix during embryonic development, wound repair, and tumor invasion. Ex vivo measurements of such multicellular tractions within three-dimensional (3D) biomaterials could elucidate collective dissemination during disease progression and enable preclinical testing of targeted antimigration therapies. However, past 3D traction measurements have been low throughput due to the challenges of imaging and analyzing information-rich 3D material deformations. Here, we demonstrate a method to profile multicellular clusters in a 96-well-plate format based on spatially heterogeneous contractile, protrusive, and circumferential tractions. As a case study, we profile multicellular clusters across varying states of the epithelial-mesenchymal transition, revealing a successive loss of protrusive and circumferential tractions, as well as the formation of localized contractile tractions with elongated cluster morphologies. These cluster phenotypes were biochemically perturbed by using drugs, biasing toward traction signatures of different epithelial or mesenchymal states. This higher-throughput analysis is promising to systematically interrogate and perturb aberrant mechanobiology, which could be utilized with human-patient samples to guide personalized therapies.
Collapse
|
188
|
Dalaka E, Kronenberg NM, Liehm P, Segall JE, Prystowsky MB, Gather MC. Direct measurement of vertical forces shows correlation between mechanical activity and proteolytic ability of invadopodia. SCIENCE ADVANCES 2020; 6:eaax6912. [PMID: 32195338 PMCID: PMC7065877 DOI: 10.1126/sciadv.aax6912] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 12/17/2019] [Indexed: 05/03/2023]
Abstract
Mechanobiology plays a prominent role in cancer invasion and metastasis. The ability of a cancer to degrade extracellular matrix (ECM) is likely connected to its invasiveness. Many cancer cells form invadopodia-micrometer-sized cellular protrusions that promote invasion through matrix degradation (proteolysis). Although it has been hypothesized that invadopodia exert mechanical force that is implicated in cancer invasion, direct measurements remain elusive. Here, we use a recently developed interferometric force imaging technique that provides piconewton resolution to quantify invadopodial forces in cells of head and neck squamous carcinoma and to monitor their temporal dynamics. We compare the force exerted by individual protrusions to their ability to degrade ECM and investigate the mechanical effects of inhibiting invadopodia through overexpression of microRNA-375. By connecting the biophysical and biochemical characteristics of invadopodia, our study provides a new perspective on cancer invasion that, in the future, may help to identify biomechanical targets for cancer therapy.
Collapse
Affiliation(s)
- E. Dalaka
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, UK
| | - N. M. Kronenberg
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, UK
| | - P. Liehm
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, UK
| | - J. E. Segall
- Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | - M. C. Gather
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, UK
- Corresponding author.
| |
Collapse
|
189
|
Zhao Y, Sarkar A, Wang X. Peptide nucleic acid based tension sensor for cellular force imaging with strong DNase resistance. Biosens Bioelectron 2020; 150:111959. [PMID: 31929090 PMCID: PMC6961813 DOI: 10.1016/j.bios.2019.111959] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/06/2019] [Accepted: 12/08/2019] [Indexed: 11/17/2022]
Abstract
DNA is a versatile biomaterial with well-defined mechanical and biochemical properties. It has been broadly adopted to synthesize tension sensors that calibrate and visualize cellular forces at the cell-matrix interface. Here we showed that DNA-based tension sensors are vulnerable to deoxyribonucleases (DNases) which cells may express on cell membrane or secret to the culture environment. These DNases can damage the sensors, lower signal-to-noise ratio or even produce false signal in cellular force imaging. To address this issue, we tested peptide nucleic acid (PNA), chemically modified RNA and their hybrids with DNA as alternative biomaterials for constructing tension sensors. Four duplexes: double-stranded DNA (dsDNA), PNA/DNA, dsRNA (modified RNA) and PNA/RNA, were tested and evaluated in terms of DNase resistance, cellular force imaging ability and material robustness. The results showed that all PNA/DNA, dsRNA and PNA/RNA exhibited strong resistance to both soluble DNase I and membrane-bound DNase on cells. However, PNA/RNA-based tension sensor had low signal-to-noise ratio in cellular force imaging, and dsRNA-based tension sensor exhibited strong non-specific signal unrelated to cellular forces. Only PNA/DNA-based tension sensor reported cellular forces with highest signal-to-noise ratio and specificity. Collectively, we confirmed that PNA/DNA hybrid is an accessible material for the synthesis of DNase-resistant tension sensor that retains the force-reporting capability and remains stable in DNase-expressing cells. This new class of tension sensors will broaden the application of tension sensors in the study of cell mechanobiology.
Collapse
Affiliation(s)
- Yuanchang Zhao
- Department of Physics and Astronomy, Iowa State University, Ames, IA, 50011, USA
| | - Anwesha Sarkar
- Department of Physics and Astronomy, Iowa State University, Ames, IA, 50011, USA
| | - Xuefeng Wang
- Department of Physics and Astronomy, Iowa State University, Ames, IA, 50011, USA; Molecular, Cellular, and Developmental Biology interdepartmental program, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
190
|
Abstract
Stem cells can be conceptualized as computational processors capable of sensing, processing, and converting environmental information (input) to yield a specific differentiation pathway (output). In this study, we employ a temperature-controlled polymer sheet actuator to interpret and transfer information, controlled by the material’s programming, to mesenchymal stem cells. The cell’s interpretation of mechanical, thermal, and biochemical signaling is shown to be dependent on the actuator’s activity, utilized to accelerate differentiation toward bone cells, further elucidating the role of microenvironmental parameters on mammalian cells. Our method provides a unique approach to processing two discrete stimuli into one biochemical signal, calcium ions, providing a basis for the logical control of the flow of biological signals and the design of cellular functions. Stem cells are capable of sensing and processing environmental inputs, converting this information to output a specific cell lineage through signaling cascades. Despite the combinatorial nature of mechanical, thermal, and biochemical signals, these stimuli have typically been decoupled and applied independently, requiring continuous regulation by controlling units. We employ a programmable polymer actuator sheet to autonomously synchronize thermal and mechanical signals applied to mesenchymal stem cells (MSCs). Using a grid on its underside, the shape change of polymer sheet, as well as cell morphology, calcium (Ca2+) influx, and focal adhesion assembly, could be visualized and quantified. This paper gives compelling evidence that the temperature sensing and mechanosensing of MSCs are interconnected via intracellular Ca2+. Up-regulated Ca2+ levels lead to a remarkable alteration of histone H3K9 acetylation and activation of osteogenic related genes. The interplay of physical, thermal, and biochemical signaling was utilized to accelerate the cell differentiation toward osteogenic lineage. The approach of programmable bioinstructivity provides a fundamental principle for functional biomaterials exhibiting multifaceted stimuli on differentiation programs. Technological impact is expected in the tissue engineering of periosteum for treating bone defects.
Collapse
|
191
|
Hou Y, Yu L, Xie W, Camacho LC, Zhang M, Chu Z, Wei Q, Haag R. Surface Roughness and Substrate Stiffness Synergize To Drive Cellular Mechanoresponse. NANO LETTERS 2020; 20:748-757. [PMID: 31820645 DOI: 10.1021/acs.nanolett.9b04761] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Material surface topographic features have been shown to be crucial for tissue regeneration and surface treatment of implanted devices. Many biomaterials were investigated with respect to the response of cells on surface roughness. However, some conclusions even conflicted with each other due to the unclear interplay of surface topographic features and substrate elastic features as well as the lack of mechanistic studies. Herein, wide-scale surface roughness gradient hydrogels, integrating the surface roughness from nanoscale to microscale with controllable stiffness, were developed via soft lithography with precise surface morphology. Based on this promising platform, we systematically studied the mechanosensitive response of human mesenchymal stem cells (MSCs) to a broad range of roughnesses (200 nm to 1.2 μm for Rq) and different substrate stiffnesses. We observed that MSCs responded to surface roughness in a stiffness-dependent manner by reorganizing the surface hierarchical structure. Surprisingly, the cellular mechanoresponse and osteogenesis were obviously enhanced on very soft hydrogels (3.8 kPa) with high surface roughness, which was comparable to or even better than that on smooth stiff substrates. These findings extend our understanding of the interactions between cells and biomaterials, highlighting an effective noninvasive approach to regulate stem cell fate via synergetic physical cues.
Collapse
Affiliation(s)
- Yong Hou
- Institute of Chemistry and Biochemistry , Freie Universität Berlin , Takustr. 3 , 14195 Berlin , Germany
| | - Leixiao Yu
- Institute of Chemistry and Biochemistry , Freie Universität Berlin , Takustr. 3 , 14195 Berlin , Germany
| | - Wenyan Xie
- Institute of Pharmacy , Freie Universität Berlin , Königin-Luise-Str. 2+4 , 14195 Berlin , Germany
| | - Luis Cuellar Camacho
- Institute of Chemistry and Biochemistry , Freie Universität Berlin , Takustr. 3 , 14195 Berlin , Germany
| | - Man Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering , Sichuan University , 610065 Chengdu , China
| | - Zhiqin Chu
- Department of Electrical and Electronic Engineering, Joint Appointment with School of Biomedical Sciences , The University of Hong Kong , Pokfulam Road , Hong Kong , China
| | - Qiang Wei
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering , Sichuan University , 610065 Chengdu , China
| | - Rainer Haag
- Institute of Chemistry and Biochemistry , Freie Universität Berlin , Takustr. 3 , 14195 Berlin , Germany
| |
Collapse
|
192
|
Vorselen D, Wang Y, de Jesus MM, Shah PK, Footer MJ, Huse M, Cai W, Theriot JA. Microparticle traction force microscopy reveals subcellular force exertion patterns in immune cell-target interactions. Nat Commun 2020; 11:20. [PMID: 31911639 PMCID: PMC6946705 DOI: 10.1038/s41467-019-13804-z] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 11/18/2019] [Indexed: 01/11/2023] Open
Abstract
Force exertion is an integral part of cellular behavior. Traction force microscopy (TFM) has been instrumental for studying such forces, providing spatial force measurements at subcellular resolution. However, the applications of classical TFM are restricted by the typical planar geometry. Here, we develop a particle-based force sensing strategy for studying cellular interactions. We establish a straightforward batch approach for synthesizing uniform, deformable and tuneable hydrogel particles, which can also be easily derivatized. The 3D shape of such particles can be resolved with superresolution (<50 nm) accuracy using conventional confocal microscopy. We introduce a reference-free computational method allowing inference of traction forces with high sensitivity directly from the particle shape. We illustrate the potential of this approach by revealing subcellular force patterns throughout phagocytic engulfment and force dynamics in the cytotoxic T-cell immunological synapse. This strategy can readily be adapted for studying cellular forces in a wide range of applications.
Collapse
Affiliation(s)
- Daan Vorselen
- Department of Biochemistry, Stanford University, Stanford, CA, 94305, USA
- Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98105, USA
| | - Yifan Wang
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Miguel M de Jesus
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Pavak K Shah
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, 10065, USA
| | - Matthew J Footer
- Department of Biochemistry, Stanford University, Stanford, CA, 94305, USA
- Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98105, USA
| | - Morgan Huse
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Wei Cai
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Julie A Theriot
- Department of Biochemistry, Stanford University, Stanford, CA, 94305, USA.
- Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98105, USA.
| |
Collapse
|
193
|
Mechanics of actin filaments in cancer onset and progress. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 355:205-243. [DOI: 10.1016/bs.ircmb.2020.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
194
|
Lejeune E, Khang A, Sansom J, Sacks MS. FM-Track: A fiducial marker tracking software for studying cell mechanics in a three-dimensional environment. SOFTWAREX 2020; 11:100417. [PMID: 34291145 PMCID: PMC8291167 DOI: 10.1016/j.softx.2020.100417] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Tracking the deformation of fiducial markers in the vicinity of living cells embedded in compliant synthetic or biological gels is a powerful means to study cell mechanics and mechanobiology in three-dimensional environments. However, current approaches to track and quantify three-dimensional (3D) fiducial marker displacements remain ad-hoc, can be difficult to implement, and may not produce reliable results. Herein, we present a compact software package entitled "FM-Track," written in the popular Python language, to facilitate feature-based particle tracking tailored for 3D cell micromechanical environment studies. FM-Track contains functions for pre-processing images, running fiducial marker tracking, and post-processing and visualization. FM-Track can thus aid the study of cellular mechanics and mechanobiology by providing an extensible software platform to more reliably extract complex local 3D cell contractile information in transparent compliant gel systems.
Collapse
Affiliation(s)
- Emma Lejeune
- James T. Willerson Center for Cardiovascular Modeling and Simulation, Oden Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, Austin TX, United States
- The Department of Mechanical Engineering, Boston University, Boston MA, United States
| | - Alex Khang
- James T. Willerson Center for Cardiovascular Modeling and Simulation, Oden Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, Austin TX, United States
| | - Jacob Sansom
- James T. Willerson Center for Cardiovascular Modeling and Simulation, Oden Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, Austin TX, United States
- The Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin TX, United States
| | - Michael S Sacks
- James T. Willerson Center for Cardiovascular Modeling and Simulation, Oden Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, Austin TX, United States
| |
Collapse
|
195
|
Mularski A, Niedergang F. Force Measurement of Living Professional Phagocytes of the Immune System. Aust J Chem 2020. [DOI: 10.1071/ch19409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In higher organisms, the professional phagocytes of the immune system (dendritic cells, neutrophils, monocytes, and macrophages) are responsible for pathogen clearance, the development of immune responses via cytokine secretion and presentation of antigens derived from internalized material, and the normal turnover and remodelling of tissues and disposal of dead cells. These functions rely on the ability of phagocytes to migrate and adhere to sites of infection, dynamically probe their environments to make contact with phagocytic targets, and perform phagocytosis, a mechanism of internalization of large particles, microorganisms, and cellular debris for intracellular degradation. The cell-generated forces that are necessary for the professional phagocytes to act in their roles as ‘first responders’ of the immune system have been the subject of mechanical studies in recent years. Methods of force measurement such as atomic force microscopy, traction force microscopy, micropipette aspiration, magnetic and optical tweezers, and exciting new variants of these have accompanied classical biological methods to perform mechanical investigations of these highly dynamic immune cells.
Collapse
|
196
|
|
197
|
Abstract
At the nanoscale, pushing, pulling, and shearing forces drive biochemical processes in development and remodeling as well as in wound healing and disease progression. Research in the field of mechanobiology investigates not only how these loads affect biochemical signaling pathways but also how signaling pathways respond to local loading by triggering mechanical changes such as regional stiffening of a tissue. This feedback between mechanical and biochemical signaling is increasingly recognized as fundamental in embryonic development, tissue morphogenesis, cell signaling, and disease pathogenesis. Historically, the interdisciplinary field of mechanobiology has been driven by the development of technologies for measuring and manipulating cellular and molecular forces, with each new tool enabling vast new lines of inquiry. In this review, we discuss recent advances in the manufacturing and capabilities of molecular-scale force and strain sensors. We also demonstrate how DNA nanotechnology has been critical to the enhancement of existing techniques and to the development of unique capabilities for future mechanosensor assembly. DNA is a responsive and programmable building material for sensor fabrication. It enables the systematic interrogation of molecular biomechanics with forces at the 1- to 200-pN scale that are needed to elucidate the fundamental means by which cells and proteins transduce mechanical signals.
Collapse
Affiliation(s)
- Susana M. Beltrán
- Department of Mechanical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania
| | - Marvin J. Slepian
- Department of Medicine and Sarver Heart Center, University
of Arizona, Tucson
- Department of Biomedical Engineering, University of
Arizona, Tucson
- Department of Materials Science and Engineering, University
of Arizona, Tucson
| | - Rebecca E. Taylor
- Department of Mechanical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania
- Department of Biomedical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania
- Department of Electrical and Computer Engineering, Carnegie
Mellon University, Pittsburgh, Pennsylvania
| |
Collapse
|
198
|
Schutrum BE, Whitman MA, Fischbach C. Biomaterials-Based Model Systems to Study Tumor–Microenvironment Interactions. Biomater Sci 2020. [DOI: 10.1016/b978-0-12-816137-1.00077-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
199
|
Zhang J, Chada NC, Reinhart-King CA. Microscale Interrogation of 3D Tissue Mechanics. Front Bioeng Biotechnol 2019; 7:412. [PMID: 31921816 PMCID: PMC6927918 DOI: 10.3389/fbioe.2019.00412] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 11/28/2019] [Indexed: 01/02/2023] Open
Abstract
Cells in vivo live in a complex microenvironment composed of the extracellular matrix (ECM) and other cells. Growing evidence suggests that the mechanical interaction between the cells and their microenvironment is of critical importance to their behaviors under both normal and diseased conditions, such as migration, differentiation, and proliferation. The study of tissue mechanics in the past two decades, including the assessment of both mechanical properties and mechanical stresses of the extracellular microenvironment, has greatly enriched our knowledge about how cells interact with their mechanical environment. Tissue mechanical properties are often heterogeneous and sometimes anisotropic, which makes them difficult to obtain from macroscale bulk measurements. Mechanical stresses were first measured for cells cultured on two-dimensional (2D) surfaces with well-defined mechanical properties. While 2D measurements are relatively straightforward and efficient, and they have provided us with valuable knowledge on cell-ECM interactions, that knowledge may not be directly applicable to in vivo systems. Hence, the measurement of tissue stresses in a more physiologically relevant three-dimensional (3D) environment is required. In this mini review, we will summarize and discuss recent developments in using optical, magnetic, genetic, and mechanical approaches to interrogate 3D tissue stresses and mechanical properties at the microscale.
Collapse
|
200
|
Pagan-Diaz GJ, Ramos-Cruz KP, Sam R, Kandel ME, Aydin O, Saif MTA, Popescu G, Bashir R. Engineering geometrical 3-dimensional untethered in vitro neural tissue mimic. Proc Natl Acad Sci U S A 2019; 116:25932-25940. [PMID: 31796592 PMCID: PMC6926042 DOI: 10.1073/pnas.1916138116] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Formation of tissue models in 3 dimensions is more effective in recapitulating structure and function compared to their 2-dimensional (2D) counterparts. Formation of 3D engineered tissue to control shape and size can have important implications in biomedical research and in engineering applications such as biological soft robotics. While neural spheroids routinely are created during differentiation processes, further geometric control of in vitro neural models has not been demonstrated. Here, we present an approach to form functional in vitro neural tissue mimic (NTM) of different shapes using stem cells, a fibrin matrix, and 3D printed molds. We used murine-derived embryonic stem cells for optimizing cell-seeding protocols, characterization of the resulting internal structure of the construct, and remodeling of the extracellular matrix, as well as validation of electrophysiological activity. Then, we used these findings to biofabricate these constructs using neurons derived from human embryonic stem cells. This method can provide a large degree of design flexibility for development of in vitro functional neural tissue models of varying forms for therapeutic biomedical research, drug discovery, and disease modeling, and engineering applications.
Collapse
Affiliation(s)
- Gelson J Pagan-Diaz
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, IL 61801
| | - Karla P Ramos-Cruz
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, IL 61801
| | - Richard Sam
- School of Molecular and Cellular Biology, University of Illinois, Urbana-Champaign, Urbana, IL 61801
| | - Mikhail E Kandel
- Department of Electrical and Computer Engineering, University of Illinois, Urbana-Champaign, Urbana, IL 61801
| | - Onur Aydin
- Department of Mechanical Science and Engineering, University of Illinois, Urbana-Champaign, Urbana, IL 61801
| | - M Taher A Saif
- Department of Mechanical Science and Engineering, University of Illinois, Urbana-Champaign, Urbana, IL 61801
| | - Gabriel Popescu
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, IL 61801
- Department of Electrical and Computer Engineering, University of Illinois, Urbana-Champaign, Urbana, IL 61801
| | - Rashid Bashir
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, IL 61801;
| |
Collapse
|