151
|
Mehay D, Silberman Y, Arnold AC. The Arcuate Nucleus of the Hypothalamus and Metabolic Regulation: An Emerging Role for Renin-Angiotensin Pathways. Int J Mol Sci 2021; 22:7050. [PMID: 34208939 PMCID: PMC8268643 DOI: 10.3390/ijms22137050] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 12/02/2022] Open
Abstract
Obesity is a chronic state of energy imbalance that represents a major public health problem and greatly increases the risk for developing hypertension, hyperglycemia, and a multitude of related pathologies that encompass the metabolic syndrome. The underlying mechanisms and optimal treatment strategies for obesity, however, are still not fully understood. The control of energy balance involves the actions of circulating hormones on a widely distributed network of brain regions involved in the regulation of food intake and energy expenditure, including the arcuate nucleus of the hypothalamus. While obesity is known to disrupt neurocircuits controlling energy balance, including those in the hypothalamic arcuate nucleus, the pharmacological targeting of these central mechanisms often produces adverse cardiovascular and other off-target effects. This highlights the critical need to identify new anti-obesity drugs that can activate central neurocircuits to induce weight loss without negatively impacting blood pressure control. The renin-angiotensin system may provide this ideal target, as recent studies show this hormonal system can engage neurocircuits originating in the arcuate nucleus to improve energy balance without elevating blood pressure in animal models. This review will summarize the current knowledge of renin-angiotensin system actions within the arcuate nucleus for control of energy balance, with a focus on emerging roles for angiotensin II, prorenin, and angiotensin-(1-7) pathways.
Collapse
Affiliation(s)
| | | | - Amy C. Arnold
- Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (D.M.); (Y.S.)
| |
Collapse
|
152
|
Lagarde D, Jeanson Y, Portais JC, Galinier A, Ader I, Casteilla L, Carrière A. Lactate Fluxes and Plasticity of Adipose Tissues: A Redox Perspective. Front Physiol 2021; 12:689747. [PMID: 34276410 PMCID: PMC8278056 DOI: 10.3389/fphys.2021.689747] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/09/2021] [Indexed: 12/18/2022] Open
Abstract
Lactate, a metabolite produced when the glycolytic flux exceeds mitochondrial oxidative capacities, is now viewed as a critical regulator of metabolism by acting as both a carbon and electron carrier and a signaling molecule between cells and tissues. In recent years, increasing evidence report its key role in white, beige, and brown adipose tissue biology, and highlights new mechanisms by which lactate participates in the maintenance of whole-body energy homeostasis. Lactate displays a wide range of biological effects in adipose cells not only through its binding to the membrane receptor but also through its transport and the subsequent effect on intracellular metabolism notably on redox balance. This study explores how lactate regulates adipocyte metabolism and plasticity by balancing intracellular redox state and by regulating specific signaling pathways. We also emphasized the contribution of adipose tissues to the regulation of systemic lactate metabolism, their roles in redox homeostasis, and related putative physiopathological repercussions associated with their decline in metabolic diseases and aging.
Collapse
Affiliation(s)
- Damien Lagarde
- Goodman Cancer Research Center, McGill University, Montreal, QC, Canada.,Department of Biochemistry, McGill University, Montreal, QC, Canada.,Institut RESTORE, UMR 1301 INSERM, 5070 CNRS, Université Paul Sabatier, Toulouse, France
| | - Yannick Jeanson
- Institut RESTORE, UMR 1301 INSERM, 5070 CNRS, Université Paul Sabatier, Toulouse, France
| | - Jean-Charles Portais
- Institut RESTORE, UMR 1301 INSERM, 5070 CNRS, Université Paul Sabatier, Toulouse, France.,MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
| | - Anne Galinier
- Institut RESTORE, UMR 1301 INSERM, 5070 CNRS, Université Paul Sabatier, Toulouse, France.,Institut Fédératif de Biologie, CHU Purpan, Toulouse, France
| | - Isabelle Ader
- Institut RESTORE, UMR 1301 INSERM, 5070 CNRS, Université Paul Sabatier, Toulouse, France
| | - Louis Casteilla
- Institut RESTORE, UMR 1301 INSERM, 5070 CNRS, Université Paul Sabatier, Toulouse, France
| | - Audrey Carrière
- Institut RESTORE, UMR 1301 INSERM, 5070 CNRS, Université Paul Sabatier, Toulouse, France
| |
Collapse
|
153
|
Tan HL, Guan XH, Hu M, Wu J, Li RZ, Wang LF, Huang HD, Yu ZP, Wang XY, Xiao YF, Deng KY, Xin HB. Human amniotic mesenchymal stem cells-conditioned medium protects mice from high-fat diet-induced obesity. Stem Cell Res Ther 2021; 12:364. [PMID: 34174964 PMCID: PMC8235646 DOI: 10.1186/s13287-021-02437-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/07/2021] [Indexed: 12/24/2022] Open
Abstract
Background Obesity is a metabolic disorder syndrome characterized by excessive fat accumulation that is related to many diseases. Human amniotic mesenchymal stem cells (hAMSCs) have a great potential for cell-based therapy due to their characteristics such as pluripotency, low immunogenicity, no tumorigenicity, potent paracrine effects, and no ethical concern. Recently, we observed that both hAMSCs and their conditioned medium (hAMSCs-CM) efficiently repaired skin injury, inhibited hepatocellular carcinoma, and alleviated high-fat diet (HFD)-induced diabetes. However, the effects and the underlying mechanisms of hAMSCs-CM on high-fat diet (HFD)-induced obesity were not explored. Methods The characteristics of hAMSCs were confirmed by flow cytometry, RT-PCR, and immunofluorescence. Obese mice were induced by administrating HFD for 15 weeks and simultaneously, the mice were intraperitoneally injected with hAMSCs-CM weekly to evaluate the effects of hAMSCs-CM on HFD-induced obesity. GTT and ITT assays were used to assess the effects of hAMSCs-CM on HFD-induced glucose tolerance and insulin resistance. The lipid accumulation and adipocytes hypertrophy in mouse adipose tissues were determined by histological staining, in which the alterations of blood lipid, liver, and kidney function were also examined. The role of hAMSCs-CM in energy homeostasis was monitored by examining the oxygen consumption (VO2), carbon dioxide production (VCO2), and food and water intake in mice. Furthermore, the expressions of the genes related to glucose metabolism, fatty acid β oxidation, thermogenesis, adipogenesis, and inflammation were determined by western blot analysis, RT-PCR, and immunofluorescence staining. The roles of hAMSCs-CM in adipogenesis and M1/M2 macrophage polarization were investigated with 3T3-L1 preadipocytes or RAW264.7 cells in vitro. Results hAMSCs-CM significantly restrained HFD-induced obesity in mice by inhibiting adipogenesis and lipogenesis, promoting energy expenditure, and reducing inflammation. The underlying mechanisms of the anti-obesity of hAMSCs-CM might be involved in inhibiting PPARγ and C/EBPα-mediated lipid synthesis and adipogenesis, promoting GLUT4-mediated glucose metabolism, elevating UCP1/PPARα/PGC1α-regulated energy expenditure, and enhancing STAT3-ARG1-mediated M2-type macrophage polarization. Conclusion Our studies demonstrated that hAMSCs significantly alleviated HFD-induced obesity through their paracrine effects. Obviously, our results open up an attractive therapeutic modality for the prevention and treatment of obesity and other metabolic disorders clinically. Graphic Abstract The cytokines, exosomes, or micro-vesicles secreted from hAMSCs significantly inhibited HFD-induced obesity in mice by inhibiting lipid production and adipogenesis, promoting energy consumption, and reducing inflammation.
![]() Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02437-z.
Collapse
Affiliation(s)
- Hui-Lan Tan
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, No. 1299 Xuefu Road, Honggutan District, Nanchang, 330031, China.,School of Pharmacy, Nanchang University, Nanchang, China
| | - Xiao-Hui Guan
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, No. 1299 Xuefu Road, Honggutan District, Nanchang, 330031, China
| | - Min Hu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, No. 1299 Xuefu Road, Honggutan District, Nanchang, 330031, China
| | - Jie Wu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, No. 1299 Xuefu Road, Honggutan District, Nanchang, 330031, China.,School of Life and Science, Nanchang University, Nanchang, China
| | - Rong-Zhen Li
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, No. 1299 Xuefu Road, Honggutan District, Nanchang, 330031, China.,School of Life and Science, Nanchang University, Nanchang, China
| | - Ling-Fang Wang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, No. 1299 Xuefu Road, Honggutan District, Nanchang, 330031, China
| | - Hou-Da Huang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, No. 1299 Xuefu Road, Honggutan District, Nanchang, 330031, China
| | - Zhen-Ping Yu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, No. 1299 Xuefu Road, Honggutan District, Nanchang, 330031, China.,School of Life and Science, Nanchang University, Nanchang, China
| | - Xiao-Yu Wang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, No. 1299 Xuefu Road, Honggutan District, Nanchang, 330031, China.,School of Life and Science, Nanchang University, Nanchang, China
| | - Yun-Fei Xiao
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, No. 1299 Xuefu Road, Honggutan District, Nanchang, 330031, China
| | - Ke-Yu Deng
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, No. 1299 Xuefu Road, Honggutan District, Nanchang, 330031, China. .,School of Pharmacy, Nanchang University, Nanchang, China. .,School of Life and Science, Nanchang University, Nanchang, China.
| | - Hong-Bo Xin
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, No. 1299 Xuefu Road, Honggutan District, Nanchang, 330031, China. .,School of Pharmacy, Nanchang University, Nanchang, China. .,School of Life and Science, Nanchang University, Nanchang, China.
| |
Collapse
|
154
|
Impaired Leptin Signalling in Obesity: Is Leptin a New Thermolipokine? Int J Mol Sci 2021; 22:ijms22126445. [PMID: 34208585 PMCID: PMC8235268 DOI: 10.3390/ijms22126445] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/03/2021] [Accepted: 06/10/2021] [Indexed: 12/17/2022] Open
Abstract
Leptin is a principal adipose-derived hormone mostly implicated in the regulation of energy balance through the activation of anorexigenic neuronal pathways. Comprehensive studies have established that the maintenance of certain concentrations of circulating leptin is essential to avoid an imbalance in nutrient intake. Indeed, genetic modifications of the leptin/leptin receptor axis and the obesogenic environment may induce changes in leptin levels or action in a manner that accelerates metabolic dysfunctions, resulting in a hyperphagic status and adipose tissue expansion. As a result, a vicious cycle begins wherein hyperleptinaemia and leptin resistance occur, in turn leading to increased food intake and fat enlargement, which is followed by leptin overproduction. In addition, in the context of obesity, a defective thermoregulatory response is associated with impaired leptin signalling overall within the ventromedial nucleus of the hypothalamus. These recent findings highlight the role of leptin in the regulation of adaptive thermogenesis, thus suggesting leptin to be potentially considered as a new thermolipokine. This review provides new insight into the link between obesity, hyperleptinaemia, leptin resistance and leptin deficiency, focusing on the ability to restore leptin sensitiveness by way of enhanced thermogenic responses and highlighting novel anti-obesity therapeutic strategies.
Collapse
|
155
|
Diminished Cold Avoidance Behaviours after Chronic Cold Exposure - Potential Involvement of TRPM8. Neuroscience 2021; 469:17-30. [PMID: 34139303 DOI: 10.1016/j.neuroscience.2021.06.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 06/02/2021] [Accepted: 06/08/2021] [Indexed: 11/22/2022]
Abstract
Ambient temperature changes trigger plastic biological responses. Cold temperature is detected by the somatosensory system and evokes perception of cold together with adaptive physiological responses. We addressed whether chronic cold exposure induces adaptive adjustments of (1) thermosensory behaviours, and (2) the principle molecular cold sensor in the transduction machinery, transient receptor potential melastatin subtype 8 (TRPM8). Mice in two groups were exposed to either cold (6 °C) or thermoneutral (27 °C) ambient temperatures for 4 weeks and subjected to thermosensory behavioural testing. Cold group mice behaved different from Thermoneutral group in the Thermal Gradient Test: the former occupied a wider temperature range and was less cold avoidant. Furthermore, subcutaneous injection of the TRPM8 agonist icilin, enhanced cold avoidance in both groups in the Thermal Gradient Test, but Cold group mice were significantly less affected by icilin. Primary sensory neuron soma are located in dorsal root ganglia (DRGs), and western blotting showed diminished TRPM8 levels in DRGs of Cold group mice, as compared to the Thermoneutral group. We conclude that acclimation to chronic cold altered thermosensory behaviours, so that mice appeared less cold sensitive, and potentially, TRPM8 is involved.
Collapse
|
156
|
Yin H, Chen W, Dong L, Zhou S, Gong F, He X. Biliary diversion increases resting energy expenditure leading to decreased blood glucose level in mice with type 2 diabetes. J Diabetes Investig 2021; 12:931-939. [PMID: 33421302 PMCID: PMC8169353 DOI: 10.1111/jdi.13499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/19/2020] [Accepted: 01/05/2021] [Indexed: 11/28/2022] Open
Abstract
AIMS/INTRODUCTION Type 2 diabetes mellitus is a group of metabolism abnormalities in carbohydrates and energy. Our aim was to investigate resting energy expenditure (REE) and blood glucose changes after biliary diversion in mice with diabetes. MATERIALS AND METHODS Male mice with diabetes were randomly divided into biliary diversion and sham groups. REE was detected by indirect calorimetry, the levels of fasting blood glucose, total bile acids and triiodothyronine were analyzed. After mice were killed, the weight amount of brown adipose tissue (BAT) and gastrocnemius was measured, and the expression level of G protein-coupled bile acid receptor and type 2 iodothyronine deiodinase in BAT and gastrocnemius were examined. RESULTS The two groups of mice were pair-fed, the bodyweights (P < 0.001) and the fasting blood glucose level (P < 0.001) in the biliary diversion group significantly decreased 24 weeks after surgery. The intraperitoneal glucose tolerance test (P = 0.035) and oral glucose tolerance test (P = 0.027) showed improvement in glucose tolerance after surgery. The REE level significantly increased 24 weeks after surgery (P = 0.005), the levels of total bile acids (P = 0.014) and triiodothyronine (P < 0.001) increased at the 24th postoperative week. The weight ratio of BAT (P = 0.038) and gastrocnemius (P = 0.026) in the biliary diversion group were higher than that in the sham group. The expression of G protein-coupled bile acid receptor in BAT (P < 0.001) and gastrocnemius (P = 0.003) were upregulated after surgery, and the type 2 iodothyronine deiodinase expression also increased in BAT (P = 0.015) and gastrocnemius (P = 0.015). CONCLUSIONS The REE level increased and the glucose metabolism improved in mice with diabetes after biliary diversion.
Collapse
Affiliation(s)
- Haixin Yin
- Department of General SurgeryPeking Union Medical College HospitalChinese Academy of Medical SciencesBeijingChina
| | - Weijie Chen
- Department of General SurgeryPeking Union Medical College HospitalChinese Academy of Medical SciencesBeijingChina
| | - Liangbo Dong
- Department of General SurgeryPeking Union Medical College HospitalChinese Academy of Medical SciencesBeijingChina
| | - Shengnan Zhou
- Department of General SurgeryPeking Union Medical College HospitalChinese Academy of Medical SciencesBeijingChina
| | - Fengying Gong
- Key Laboratory of Endocrinology of the Ministry of HealthDepartment of EndocrinologyPeking Union Medical College HospitalChinese Academy of Medical SciencesBeijingChina
| | - Xiaodong He
- Department of General SurgeryPeking Union Medical College HospitalChinese Academy of Medical SciencesBeijingChina
| |
Collapse
|
157
|
Salvianolic acid B induces browning in 3T3-L1 white adipocytes via activation of β3-AR and ERK signaling pathways. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
158
|
Sun W, Modica S, Dong H, Wolfrum C. Plasticity and heterogeneity of thermogenic adipose tissue. Nat Metab 2021; 3:751-761. [PMID: 34158657 DOI: 10.1038/s42255-021-00417-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/19/2021] [Indexed: 12/13/2022]
Abstract
The perception of adipose tissue, both in the scientific community and in the general population, has changed dramatically in the past 20 years. While adipose tissue was thought for a long time to be a rather simple lipid storage entity, it is now recognized as a highly heterogeneous organ and a critical regulator of systemic metabolism, composed of many different subtypes of cells, with important endocrine functions. Additionally, adipose tissue is nowadays recognized to contribute to energy turnover, due to the presence of specialized thermogenic adipocytes, which can be found in many adipose depots. This review discusses the unprecedented insights that we have gained into the heterogeneity of thermogenic adipocytes and their respective precursors due to the technical developments in single-cell and nucleus technologies. These methodological advances have increased our understanding of how adipose tissue catabolic function is influenced by developmental and intercellular communication events.
Collapse
Affiliation(s)
- Wenfei Sun
- Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland
| | - Salvatore Modica
- Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland
| | - Hua Dong
- Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland
| | - Christian Wolfrum
- Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland.
| |
Collapse
|
159
|
MacDonald-Ramos K, Martínez-Ibarra A, Monroy A, Miranda-Ríos J, Cerbón M. Effect of Dietary Fatty Acids on MicroRNA Expression Related to Metabolic Disorders and Inflammation in Human and Animal Trials. Nutrients 2021; 13:1830. [PMID: 34072137 PMCID: PMC8226960 DOI: 10.3390/nu13061830] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 12/18/2022] Open
Abstract
Dietary fatty acids (DFAs) play key roles in different metabolic processes in humans and other mammals. DFAs have been considered beneficial for health, particularly polyunsaturated (PUFAs) and monounsaturated fatty acids (MUFAs). Additionally, microRNAs (miRNAs) exert their function on DFA metabolism by modulating gene expression, and have drawn great attention for their potential as biomarkers and therapeutic targets. This review explicitly examined the effects of DFAs on miRNA expression associated with metabolic diseases, such as obesity, non-alcoholic fatty liver disease (NAFLD), and cardiovascular disease (CVD), as well as inflammation, published in the last ten years. DFAs have been shown to induce and repress miRNA expression associated with metabolic disease and inflammation in different cell types and organisms, both in vivo and in vitro, depending on varying combinations of DFAs, doses, and the duration of treatment. However, studies are limited and heterogeneous in methodology. Additionally, recent studies demonstrated that high fat ketogenic diets, many enriched with saturated fats, do not increase serum saturated fat content in humans, and are not associated with increased inflammation. Thus, these findings shed light on the complexity of novel treatment and DFA interventions for metabolic disease and to maintain health. Further studies are needed to advance molecular therapeutic approaches, including miRNA-based strategies in human health and disease.
Collapse
Affiliation(s)
- Karla MacDonald-Ramos
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología “Isidro Espinosa de los Reyes”-Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 11000, Mexico; (K.M.-R.); (A.M.-I.)
| | - Alejandra Martínez-Ibarra
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología “Isidro Espinosa de los Reyes”-Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 11000, Mexico; (K.M.-R.); (A.M.-I.)
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Ciudad de México 04960, Mexico
| | - Adriana Monroy
- Servicio de Oncología, Hospital General de México Dr. Eduardo Liceaga, Ciudad de México 06720, Mexico;
| | - Juan Miranda-Ríos
- Unidad de Genética de la Nutrición, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas de la Universidad Nacional Autónoma de México, Ciudad de México 04530, Mexico;
- Instituto Nacional de Pediatría, Ciudad de México 04530, Mexico
| | - Marco Cerbón
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología “Isidro Espinosa de los Reyes”-Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 11000, Mexico; (K.M.-R.); (A.M.-I.)
| |
Collapse
|
160
|
Bjørklund G, Tippairote T, Dadar M, Lizcano F, Aaseth J, Borisova O. The Roles of Dietary, Nutritional and Lifestyle Interventions in Adipose Tissue Adaptation and Obesity. Curr Med Chem 2021; 28:1683-1702. [PMID: 32368968 DOI: 10.2174/0929867327666200505090449] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 03/03/2020] [Accepted: 03/28/2020] [Indexed: 11/22/2022]
Abstract
The obesity and the associated non-communicable diseases (NCDs) are globally increasing in their prevalence. While the modern-day lifestyle required less ventilation of metabolic energy through muscular activities, this lifestyle transition also provided the unlimited accession to foods around the clock, which prolong the daily eating period of foods that contained high calorie and high glycemic load. These situations promote the high continuous flux of carbon substrate availability in mitochondria and induce the indecisive bioenergetic switches. The disrupted bioenergetic milieu increases the uncoupling respiration due to the excess flow of the substrate-derived reducing equivalents and reduces ubiquinones into the respiratory chain. The diversion of the uncoupling proton gradient through adipocyte thermogenesis will then alleviate the damaging effects of free radicals to mitochondria and other organelles. The adaptive induction of white adipose tissues (WAT) to beige adipose tissues (beAT) has shown beneficial effects on glucose oxidation, ROS protection and mitochondrial function preservation through the uncoupling protein 1 (UCP1)-independent thermogenesis of beAT. However, the maladaptive stage can eventually initiate with the persistent unhealthy lifestyles. Under this metabolic gridlock, the low oxygen and pro-inflammatory environments promote the adipose breakdown with sequential metabolic dysregulation, including insulin resistance, systemic inflammation and clinical NCDs progression. It is unlikely that a single intervention can reverse all these complex interactions. A comprehensive protocol that includes dietary, nutritional and all modifiable lifestyle interventions, can be the preferable choice to decelerate, stop, or reverse the NCDs pathophysiologic processes.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| | - Torsak Tippairote
- Doctor of Philosophy Program in Nutrition, Faculty of Medicine Ramathibodi Hospital and Institute of Nutrition, Mahidol University, Bangkok, Thailand
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | | | - Jan Aaseth
- Research Department, Innlandet Hospital Trust, Brumunddal, Norway
| | - Olga Borisova
- Odesa I. I. Mechnikov National University, Odessa, Ukraine
| |
Collapse
|
161
|
Huang J, Linares JF, Duran A, Xia W, Saltiel AR, Müller TD, Diaz-Meco MT, Moscat J. NBR1 is a critical step in the repression of thermogenesis of p62-deficient adipocytes through PPARγ. Nat Commun 2021; 12:2876. [PMID: 34001883 PMCID: PMC8129077 DOI: 10.1038/s41467-021-23085-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 04/13/2021] [Indexed: 12/26/2022] Open
Abstract
Activation of non-shivering thermogenesis is considered a promising approach to lower body weight in obesity. p62 deficiency in adipocytes reduces systemic energy expenditure but its role in sustaining mitochondrial function and thermogenesis remains unresolved. NBR1 shares a remarkable structural similarity with p62 and can interact with p62 through their respective PB1 domains. However, the physiological relevance of NBR1 in metabolism, as compared to that of p62, was not clear. Here we show that whole-body and adipocyte-specific ablation of NBR1 reverts the obesity phenotype induced by p62 deficiency by restoring global energy expenditure and thermogenesis in brown adipose tissue. Impaired adrenergic-induced browning of p62-deficient adipocytes is rescued by NBR1 inactivation, unveiling a negative role of NBR1 in thermogenesis under conditions of p62 loss. We demonstrate that upon p62 inactivation, NBR1 represses the activity of PPARγ, establishing an unexplored p62/NBR1-mediated paradigm in adipocyte thermogenesis that is critical for the control of obesity.
Collapse
Affiliation(s)
- Jianfeng Huang
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Juan F Linares
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Angeles Duran
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Wenmin Xia
- Division of Metabolism and Endocrinology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Alan R Saltiel
- Division of Metabolism and Endocrinology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Centre Munich, Oberschleißheim, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls University Hospitals and Clinics, Tübingen, Germany
| | - Maria T Diaz-Meco
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Jorge Moscat
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
162
|
Targeting Energy Expenditure-Drugs for Obesity Treatment. Pharmaceuticals (Basel) 2021; 14:ph14050435. [PMID: 34066399 PMCID: PMC8148206 DOI: 10.3390/ph14050435] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/18/2021] [Accepted: 04/29/2021] [Indexed: 12/15/2022] Open
Abstract
Obesity and overweight are associated with lethal diseases. In this context, obese and overweight individuals infected by COVID-19 are at greater risk of dying. Obesity is treated by three main pharmaceutical approaches, namely suppressing appetite, reducing energy intake by impairing absorption, and increasing energy expenditure. Most compounds used for the latter were first envisaged for other medical uses. However, several candidates are now being developed explicitly for targeting obesity by increasing energy expenditure. This review analyzes the compounds that show anti-obesity activity exerted through the energy expenditure pathway. They are classified on the basis of their development status: FDA-approved, Withdrawn, Clinical Trials, and Under Development. The chemical nature, target, mechanisms of action, and description of the current stage of development are described for each one.
Collapse
|
163
|
Mills EL, Harmon C, Jedrychowski MP, Xiao H, Garrity R, Tran NV, Bradshaw GA, Fu A, Szpyt J, Reddy A, Prendeville H, Danial NN, Gygi SP, Lynch L, Chouchani ET. UCP1 governs liver extracellular succinate and inflammatory pathogenesis. Nat Metab 2021; 3:604-617. [PMID: 34002097 PMCID: PMC8207988 DOI: 10.1038/s42255-021-00389-5] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/09/2021] [Indexed: 12/11/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD), the most prevalent liver pathology worldwide, is intimately linked with obesity and type 2 diabetes. Liver inflammation is a hallmark of NAFLD and is thought to contribute to tissue fibrosis and disease pathogenesis. Uncoupling protein 1 (UCP1) is exclusively expressed in brown and beige adipocytes, and has been extensively studied for its capacity to elevate thermogenesis and reverse obesity. Here we identify an endocrine pathway regulated by UCP1 that antagonizes liver inflammation and pathology, independent of effects on obesity. We show that, without UCP1, brown and beige fat exhibit a diminished capacity to clear succinate from the circulation. Moreover, UCP1KO mice exhibit elevated extracellular succinate in liver tissue that drives inflammation through ligation of its cognate receptor succinate receptor 1 (SUCNR1) in liver-resident stellate cell and macrophage populations. Conversely, increasing brown and beige adipocyte content in mice antagonizes SUCNR1-dependent inflammatory signalling in the liver. We show that this UCP1-succinate-SUCNR1 axis is necessary to regulate liver immune cell infiltration and pathology, and systemic glucose intolerance in an obesogenic environment. As such, the therapeutic use of brown and beige adipocytes and UCP1 extends beyond thermogenesis and may be leveraged to antagonize NAFLD and SUCNR1-dependent liver inflammation.
Collapse
Affiliation(s)
- Evanna L Mills
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Cathal Harmon
- Department of Immunology, Harvard Medical School, Boston, MA, USA
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, USA
| | - Mark P Jedrychowski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Haopeng Xiao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Ryan Garrity
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Nhien V Tran
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Gary A Bradshaw
- Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
| | - Accalia Fu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - John Szpyt
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Anita Reddy
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Hannah Prendeville
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Nika N Danial
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Lydia Lynch
- Department of Immunology, Harvard Medical School, Boston, MA, USA
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, USA
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Edward T Chouchani
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
164
|
Krapf S, Schjølberg T, Asoawe L, Honkanen SK, Kase ET, Thoresen GH, Haugen F. Novel methods for cold exposure of skeletal muscle in vivo and in vitro show temperature-dependent myokine production. J Therm Biol 2021; 98:102930. [PMID: 34016352 DOI: 10.1016/j.jtherbio.2021.102930] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 03/17/2021] [Accepted: 03/29/2021] [Indexed: 11/29/2022]
Abstract
Proteins secreted from skeletal muscle serving a signalling role have been termed myokines. Many of the myokines are exercise factors, produced and released in response to muscle activity. Cold exposures affecting muscle may occur in recreational, occupational and therapeutic settings. Whether muscle temperature independently affects myokine profile, is still to be elucidated. We hypothesized that manipulating muscle temperature by means of external cooling would change myokine production and release. In the present study we have established new models for cold exposure of muscle in vivo and in vitro where rat hind limb or cultured human myotubes were cooled to 18 °C. After a recovery period, muscle tissue, cells and culture media were harvested for further analysis by qPCR and immunoassays. Expression of several myokine genes were significantly increased after cold exposure in both models: in rat muscle, mRNA levels of CCL2 (p = 0.04), VEGFA (p = 0.02), CXCL1 (p = 0.02) and RBM3 (p = 0.02) increased while mRNA levels of IL-6 (p = 0.03) were decreased; in human myotubes, mRNA levels of IL6 (p = 0.01), CXCL8 (p = 0.04), VEGFA (p = 0.03) and CXCL1 (p < 0.01) were significantly increased, as well as intracellular protein levels of IL-8 (CXCL8 gene product; p < 0.01). The corresponding effect on myokine secretion was not observed, on the contrary, IL-8 (p = 0.02) and VEGF (VEGFA gene product) p < 0.01) concentrations in culture media were reduced after cold exposure in vitro. In conclusion, cold exposure of muscle in vivo and in vitro had an effect on the production and release of several known exercise-related myokines. Myokine expression at the level of mRNA and protein was increased by cold exposure, whereas secretion tended to be decreased.
Collapse
Affiliation(s)
- Solveig Krapf
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | | | - Lucia Asoawe
- National Institute of Occupational Health, Oslo, Norway
| | | | - Eili Tranheim Kase
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - G Hege Thoresen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway; Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Fred Haugen
- National Institute of Occupational Health, Oslo, Norway.
| |
Collapse
|
165
|
Every-other-day fasting reduces glycolytic capability in the skeletal muscle of young mice. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00717-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
166
|
Verduci E, Calcaterra V, Di Profio E, Fiore G, Rey F, Magenes VC, Todisco CF, Carelli S, Zuccotti GV. Brown Adipose Tissue: New Challenges for Prevention of Childhood Obesity. A Narrative Review. Nutrients 2021; 13:1450. [PMID: 33923364 PMCID: PMC8145569 DOI: 10.3390/nu13051450] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/14/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023] Open
Abstract
Pediatric obesity remains a challenge in modern society. Recently, research has focused on the role of the brown adipose tissue (BAT) as a potential target of intervention. In this review, we revised preclinical and clinical works on factors that may promote BAT or browning of white adipose tissue (WAT) from fetal age to adolescence. Maternal lifestyle, type of breastfeeding and healthy microbiota can affect the thermogenic activity of BAT. Environmental factors such as exposure to cold or physical activity also play a role in promoting and activating BAT. Most of the evidence is preclinical, although in clinic there is some evidence on the role of omega-3 PUFAs (EPA and DHA) supplementation on BAT activation. Clinical studies are needed to dissect the early factors and their modulation to allow proper BAT development and functions and to prevent onset of childhood obesity.
Collapse
Affiliation(s)
- Elvira Verduci
- Department of Health Sciences, University of Milan, 20146 Milan, Italy
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (V.C.); (E.D.P.); (G.F.); (V.C.M.); (C.F.T.); (G.V.Z.)
| | - Valeria Calcaterra
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (V.C.); (E.D.P.); (G.F.); (V.C.M.); (C.F.T.); (G.V.Z.)
- Pediatric and Adolescent Unit, Department of Internal Medicine, University of Pavia, 27100 Pavia, Italy
| | - Elisabetta Di Profio
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (V.C.); (E.D.P.); (G.F.); (V.C.M.); (C.F.T.); (G.V.Z.)
- Department of Animal Sciences for Health, Animal Production and Food Safety, University of Milan, 20133 Milan, Italy
| | - Giulia Fiore
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (V.C.); (E.D.P.); (G.F.); (V.C.M.); (C.F.T.); (G.V.Z.)
| | - Federica Rey
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, 20157 Milan, Italy;
- Pediatric Clinical Research Center Fondazione Romeo ed Enrica Invernizzi, University of Milan, 20157 Milan, Italy
| | - Vittoria Carlotta Magenes
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (V.C.); (E.D.P.); (G.F.); (V.C.M.); (C.F.T.); (G.V.Z.)
| | - Carolina Federica Todisco
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (V.C.); (E.D.P.); (G.F.); (V.C.M.); (C.F.T.); (G.V.Z.)
| | - Stephana Carelli
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, 20157 Milan, Italy;
- Pediatric Clinical Research Center Fondazione Romeo ed Enrica Invernizzi, University of Milan, 20157 Milan, Italy
| | - Gian Vincenzo Zuccotti
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (V.C.); (E.D.P.); (G.F.); (V.C.M.); (C.F.T.); (G.V.Z.)
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, 20157 Milan, Italy;
- Pediatric Clinical Research Center Fondazione Romeo ed Enrica Invernizzi, University of Milan, 20157 Milan, Italy
| |
Collapse
|
167
|
AIDA and UCP1 snuggle up to prevent hypothermia. Nat Cell Biol 2021; 23:216-218. [PMID: 33723427 DOI: 10.1038/s41556-021-00648-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
168
|
Ivanova YM, Blondin DP. Examining the benefits of cold exposure as a therapeutic strategy for obesity and type 2 diabetes. J Appl Physiol (1985) 2021; 130:1448-1459. [PMID: 33764169 DOI: 10.1152/japplphysiol.00934.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The pathogenesis of metabolic diseases such as obesity and type 2 diabetes are characterized by a progressive dysregulation in energy partitioning, often leading to end-organ complications. One emerging approach proposed to target this metabolic dysregulation is the application of mild cold exposure. In healthy individuals, cold exposure can increase energy expenditure and whole body glucose and fatty acid utilization. Repeated exposures can lower fasting glucose and insulin levels and improve dietary fatty acid handling, even in healthy individuals. Despite its apparent therapeutic potential, little is known regarding the effects of cold exposure in populations for which this stimulation could benefit the most. The few studies available have shown that both acute and repeated exposures to the cold can improve insulin sensitivity and reduce fasting glycemia in individuals with type 2 diabetes. However, critical gaps remain in understanding the prolonged effects of repeated cold exposures on glucose regulation and whole body insulin sensitivity in individuals with metabolic syndrome. Much of the metabolic benefits appear to be attributable to the recruitment of shivering skeletal muscles. However, further work is required to determine whether the broader recruitment of skeletal muscles observed during cold exposure can confer metabolic benefits that surpass what has been historically observed from endurance exercise. In addition, although cold exposure offers unique cardiovascular responses for a physiological stimulus that increases energy expenditure, further work is required to determine how acute and repeated cold exposure can impact cardiovascular responses and myocardial function across a broader scope of individuals.
Collapse
Affiliation(s)
- Yoanna M Ivanova
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Québec, Canada.,Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Denis P Blondin
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Québec, Canada.,Division of Neurology, Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
169
|
Zu Y, Zhao L, Hao L, Mechref Y, Zabet-Moghaddam M, Keyel PA, Abbasi M, Wu D, Dawson JA, Zhang R, Nie S, Moustaid-Moussa N, Kolonin MG, Daquinag AC, Brandi L, Warraich I, San Francisco SK, Sun X, Fan Z, Wang S. Browning white adipose tissue using adipose stromal cell-targeted resveratrol-loaded nanoparticles for combating obesity. J Control Release 2021; 333:339-351. [PMID: 33766692 DOI: 10.1016/j.jconrel.2021.03.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 03/06/2021] [Accepted: 03/16/2021] [Indexed: 01/01/2023]
Abstract
Enhancing thermogenic energy expenditure via promoting the browning of white adipose tissue (WAT) is a potential therapeutic strategy to manage energy imbalance and the consequent comorbidities associated with excess body weight. Adverse effects and toxicities of currently available methods to induce browning of WAT have retarded exploration of this promising therapeutic approach. Targeted delivery of browning agents to adipose stromal cells (ASCs) in subcutaneous WAT to induce differentiation into beige adipocytes may overcome these barriers. Herein, we report for the first time, ASC-targeted delivery of trans-resveratrol (R), a representative agent, using ligand-coated R-encapsulated nanoparticles (L-Rnano) that selectively bind to glycanation site-deficient decorin receptors on ASCs. After biweekly intravenous administration of L-Rnano to obese C57BL/6 J mice for 5 weeks targeted R delivery significantly induced ASCs differentiation into beige adipocytes, which subsequently resulted in 40% decrease in fat mass, accompanied by improved glucose homeostasis and decreased inflammation. Our results suggest that the ASC-targeted nanoparticle delivery of browning agents could be a transformative technology in combating obesity and its comorbidities with high efficacy and low toxicity.
Collapse
Affiliation(s)
- Yujiao Zu
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Ling Zhao
- Department of Nutrition, The University of Tennessee, Knoxville, TN 37996, USA
| | - Lei Hao
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; Center for Biotechnology and Genomics, Texas Tech University, Lubbock, TX 79409, USA
| | - Masoud Zabet-Moghaddam
- Center for Biotechnology and Genomics, Texas Tech University, Lubbock, TX 79409, USA; Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Peter A Keyel
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Mehrnaz Abbasi
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA; College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA
| | - Dayong Wu
- Nutrition Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA
| | - John A Dawson
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA; Center for Biotechnology and Genomics, Texas Tech University, Lubbock, TX 79409, USA
| | - Ruiwen Zhang
- Department of Pharmacological and Pharmaceutical Sciences and Drug Discovery Institute, University of Houston, Houston, TX 77204, USA
| | - Shufang Nie
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | | | - Mikhail G Kolonin
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Alexes C Daquinag
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Luis Brandi
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX 70430, USA
| | - Irfan Warraich
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX 70430, USA
| | - Susan K San Francisco
- Center for Biotechnology and Genomics, Texas Tech University, Lubbock, TX 79409, USA
| | - Xiaocun Sun
- Research Computing Support, University of Tennessee, Knoxville, TN 37996, USA
| | - Zhaoyang Fan
- Department of Electrical & Computer Engineering and Nano Tech Center, Texas Tech University, Lubbock, TX 79409, USA; School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Shu Wang
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA; College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA.
| |
Collapse
|
170
|
Reguero M, Gómez de Cedrón M, Reglero G, Quintela JC, Ramírez de Molina A. Natural Extracts to Augment Energy Expenditure as a Complementary Approach to Tackle Obesity and Associated Metabolic Alterations. Biomolecules 2021; 11:biom11030412. [PMID: 33802173 PMCID: PMC7999034 DOI: 10.3390/biom11030412] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/03/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
Obesity is the epidemic of the 21st century. In developing countries, the prevalence of obesity continues to rise, and obesity is occurring at younger ages. Obesity and associated metabolic stress disrupt the whole-body physiology. Adipocytes are critical components of the systemic metabolic control, functioning as an endocrine organ. The enlarged adipocytes during obesity recruit macrophages promoting chronic inflammation and insulin resistance. Together with the genetic susceptibility (single nucleotide polymorphisms, SNP) and metabolic alterations at the molecular level, it has been highlighted that key modifiable risk factors, such as those related to lifestyle, contribute to the development of obesity. In this scenario, urgent therapeutic options are needed, including not only pharmacotherapy but also nutrients, bioactive compounds, and natural extracts to reverse the metabolic alterations associated with obesity. Herein, we first summarize the main targetable processes to tackle obesity, including activation of thermogenesis in brown adipose tissue (BAT) and in white adipose tissue (WAT-browning), and the promotion of energy expenditure and/or fatty acid oxidation (FAO) in muscles. Then, we perform a screening of 20 natural extracts (EFSA approved) to determine their potential in the activation of FAO and/or thermogenesis, as well as the increase in respiratory capacity. By means of innovative technologies, such as the study of their effects on cell bioenergetics (Seahorse bioanalyzer), we end up with the selection of four extracts with potential application to ameliorate the deleterious effects of obesity and the chronic associated inflammation.
Collapse
Affiliation(s)
- Marina Reguero
- Molecular Oncology Group, Precision Nutrition and Health, IMDEA Food Institute, CEI UAM + CSIC, Ctra. de Cantoblanco 8, 28049 Madrid, Spain;
- NATAC BIOTECH, Electronica 7, 28923 Madrid, Spain;
| | - Marta Gómez de Cedrón
- Molecular Oncology Group, Precision Nutrition and Health, IMDEA Food Institute, CEI UAM + CSIC, Ctra. de Cantoblanco 8, 28049 Madrid, Spain;
- Correspondence: (M.G.d.C.); (A.R.d.M.)
| | - Guillermo Reglero
- Production and Characterization of Novel Foods Department, Institute of Food Science Research CIAL, CEI UAM + CSIC, 28049 Madrid, Spain;
| | | | - Ana Ramírez de Molina
- Molecular Oncology Group, Precision Nutrition and Health, IMDEA Food Institute, CEI UAM + CSIC, Ctra. de Cantoblanco 8, 28049 Madrid, Spain;
- Correspondence: (M.G.d.C.); (A.R.d.M.)
| |
Collapse
|
171
|
Jo A, Kim M, Kim JI, Ha J, Hwang YS, Nam H, Hwang I, Kim JB, Park SB. Phenotypic Discovery of SB1501, an Anti-obesity Agent, through Modulating Mitochondrial Activity. ChemMedChem 2021; 16:1104-1115. [PMID: 33538065 DOI: 10.1002/cmdc.202100062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Indexed: 11/08/2022]
Abstract
Obesity has become a pandemic that threatens the quality of life and discovering novel therapeutic agents that can reverse obesity and obesity-related metabolic disorders are necessary. Here, we aimed to identify new anti-obesity agents using a phenotype-based approach. We performed image-based high-content screening with a fluorogenic bioprobe (SF44), which visualizes cellular lipid droplets (LDs), to identify initial hit compounds. A structure-activity relationship study led us to yield a bioactive compound SB1501, which reduces cellular LDs in 3T3-L1 adipocytes without cytotoxicity. SB1501 induced the expression of gene products that regulate mitochondrial biogenesis and fatty acid oxidation in 3T3-L1 adipocytes. Daily treatment with SB1501 improved the metabolic states of db/db mice by reducing body fat mass, adipose tissue mass, food intake, and increasing glucose tolerance. The anti-obesity effect of SB1501 may result from perturbation of the PGC-1α-UCP1 regulatory axis in inguinal white adipose tissue and brown adipose tissue. These data suggest the therapeutic potential of SB1501 as an anti-obesity agent via modulating mitochondrial activities.
Collapse
Affiliation(s)
- Ala Jo
- CRI Center for Chemical Proteomics, Department of Chemistry, Seoul National University, Seoul, 08826, Korea
| | - Mingi Kim
- CRI Center for Chemical Proteomics, Department of Chemistry, Seoul National University, Seoul, 08826, Korea
| | - Jong In Kim
- CRI Center for Adipocyte Structure-Function, School of Biological Sciences, Seoul National University, Seoul, 08826, Korea
| | - Jaeyoung Ha
- Department of Biophysics and Chemical Biology, Seoul National University, Seoul, 08826, Korea
| | - Yoon Soo Hwang
- CRI Center for Chemical Proteomics, Department of Chemistry, Seoul National University, Seoul, 08826, Korea
| | - Hyunsung Nam
- CRI Center for Chemical Proteomics, Department of Chemistry, Seoul National University, Seoul, 08826, Korea
| | - Injae Hwang
- CRI Center for Adipocyte Structure-Function, School of Biological Sciences, Seoul National University, Seoul, 08826, Korea
| | - Jae Bum Kim
- CRI Center for Adipocyte Structure-Function, School of Biological Sciences, Seoul National University, Seoul, 08826, Korea
| | - Seung Bum Park
- CRI Center for Chemical Proteomics, Department of Chemistry, Seoul National University, Seoul, 08826, Korea.,Department of Biophysics and Chemical Biology, Seoul National University, Seoul, 08826, Korea
| |
Collapse
|
172
|
Functional ingredients present in whole-grain foods as therapeutic tools to counteract obesity: Effects on brown and white adipose tissues. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
173
|
Rahbani JF, Roesler A, Hussain MF, Samborska B, Dykstra CB, Tsai L, Jedrychowski MP, Vergnes L, Reue K, Spiegelman BM, Kazak L. Creatine kinase B controls futile creatine cycling in thermogenic fat. Nature 2021; 590:480-485. [PMID: 33597756 DOI: 10.1038/s41586-021-03221-y] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 01/08/2021] [Indexed: 12/31/2022]
Abstract
Obesity increases the risk of mortality because of metabolic sequelae such as type 2 diabetes and cardiovascular disease1. Thermogenesis by adipocytes can counteract obesity and metabolic diseases2,3. In thermogenic fat, creatine liberates a molar excess of mitochondrial ADP-purportedly via a phosphorylation cycle4-to drive thermogenic respiration. However, the proteins that control this futile creatine cycle are unknown. Here we show that creatine kinase B (CKB) is indispensable for thermogenesis resulting from the futile creatine cycle, during which it traffics to mitochondria using an internal mitochondrial targeting sequence. CKB is powerfully induced by thermogenic stimuli in both mouse and human adipocytes. Adipocyte-selective inactivation of Ckb in mice diminishes thermogenic capacity, increases predisposition to obesity, and disrupts glucose homeostasis. CKB is therefore a key effector of the futile creatine cycle.
Collapse
Affiliation(s)
- Janane F Rahbani
- Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada.,Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Anna Roesler
- Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada.,Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Mohammed F Hussain
- Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada.,Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Bozena Samborska
- Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada.,Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Christien B Dykstra
- Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada.,Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Linus Tsai
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Mark P Jedrychowski
- Dana-Farber Cancer Institute, Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Laurent Vergnes
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Karen Reue
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Bruce M Spiegelman
- Dana-Farber Cancer Institute, Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Lawrence Kazak
- Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada. .,Department of Biochemistry, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
174
|
Galectin-1 accelerates high-fat diet-induced obesity by activation of peroxisome proliferator-activated receptor gamma (PPARγ) in mice. Cell Death Dis 2021; 12:66. [PMID: 33431823 PMCID: PMC7801586 DOI: 10.1038/s41419-020-03367-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 11/27/2020] [Accepted: 12/04/2020] [Indexed: 12/13/2022]
Abstract
Galectin-1 contains a carbohydrate-recognition domain (CRD) as a member of the lectin family. Here, we investigated whether galectin-1 regulates adipogenesis and lipid accumulation. Galectin-1 mRNA is highly expressed in metabolic tissues such as the muscle and adipose tissues. Higher mRNA expression of galectin-1 was detected in white adipose tissues (WATs) of mice that were fed a high-fat diet (HFD) than in those of mice fed a normal-fat diet (NFD). Protein expression of galectin-1 also increased during adipocyte differentiation. Galectin-1 silencing inhibited the differentiation of 3T3-L1 cells and the expression of lipogenic factors, such as PPARγ, C/EBPα, FABP4, and FASN at both mRNA and protein levels. Lactose, an inhibitor by the binding with CRD of galectin-1 in extracellular matrix, did not affect adipocyte differentiation. Galectin-1 is localized in multiple cellular compartments in 3T3-L1 cells. However, we found that DMI (dexamethasone, methylisobutylxanthine, insulin) treatment increased its nuclear localization. Interestingly, galectin-1 interacted with PPARγ. Galectin-1 overexpression resulted in increased PPARγ expression and transcriptional activity. Furthermore, we prepared galectin-1-knockout (Lgals1−/−) mice and fed a 60% HFD. After 10 weeks, Lgals1−/− mice exhibited lower body weight and gonadal WAT (gWAT) mass than wild-type mice. Fasting glucose level was also lower in Lgals1−/−mice than that in wild-type mice. Moreover, lipogenic genes were significantly downregulated in the gWATs and liver tissues from Lgals1−/− mice. Pro-inflammatory cytokines, such as CCL2, CCL3, TNFα, and F4/80, as well as macrophage markers, were also drastically downregulated in the gWATs and liver tissues of Lgals1−/− mice. In addition, Lgals1−/−mice showed elevated expression of genes involved in thermogenesis in the brown adipose tissue. Collectively, galectin-1 exacerbates obesity of mice fed HFD by increment of PPARγ expression and activation. Our findings suggest that galectin-1 could be a potential therapeutic target for obesity and needed further study for clinical application.
Collapse
|
175
|
Makwana K, Chodavarapu H, Morones N, Chi J, Barr W, Novinbakht E, Wang Y, Nguyen PT, Jovanovic P, Cohen P, Riera CE. Sensory neurons expressing calcitonin gene-related peptide α regulate adaptive thermogenesis and diet-induced obesity. Mol Metab 2021; 45:101161. [PMID: 33412345 PMCID: PMC7820934 DOI: 10.1016/j.molmet.2021.101161] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/21/2020] [Accepted: 01/03/2021] [Indexed: 12/04/2022] Open
Abstract
Objectives Heat-sensory neurons from the dorsal root ganglia (DRG) play a pivotal role in detecting the cutaneous temperature and transmission of external signals to the brain, ensuring the maintenance of thermoregulation. However, whether these thermoreceptor neurons contribute to adaptive thermogenesis remains elusive. It is also unknown whether these neurons play a role in obesity and energy metabolism. Methods We used genetic ablation of heat-sensing neurons expressing calcitonin gene-related peptide α (CGRPα) to assess whole-body energy expenditure, weight gain, glucose tolerance, and insulin sensitivity in normal chow and high-fat diet-fed mice. Exvivo lipolysis and transcriptional characterization were combined with adipose tissue-clearing methods to visualize and probe the role of sensory nerves in adipose tissue. Adaptive thermogenesis was explored using infrared imaging of intrascapular brown adipose tissue (iBAT), tail, and core temperature upon various stimuli including diet, external temperature, and the cooling agent icilin. Results In this report, we show that genetic ablation of heat-sensing CGRPα neurons promotes resistance to weight gain upon high-fat diet (HFD) feeding and increases energy expenditure in mice. Mechanistically, we found that loss of CGRPα-expressing sensory neurons was associated with reduced lipid deposition in adipose tissue, enhanced expression of fatty acid oxidation genes, higher exvivo lipolysis in primary white adipocytes, and increased mitochondrial respiration from iBAT. Remarkably, mice lacking CGRPα sensory neurons manifested increased tail cutaneous vasoconstriction at room temperature. This exacerbated cold perception was not associated with reduced core temperature, suggesting that heat production and heat conservation mechanisms were engaged. Specific denervation of CGRPα neurons in intrascapular BAT did not contribute to the increased metabolic rate observed upon global sensory denervation. Conclusions Taken together, these findings highlight an important role of cutaneous thermoreceptors in regulating energy metabolism by triggering counter-regulatory responses involving energy dissipation processes including lipid fuel utilization and cutaneous vasodilation. Removal of sensory spinal neurons expressing CGRPα mitigates diet-induced obesity. CGRPα afferents antagonize adaptive thermogenesis in brown adipose tissue. Loss of CGRPα afferents leads to enhanced cold perception and vasoconstriction. Specific adipose denervation of CGRPα afferents does not modulate energy metabolism.
Collapse
Affiliation(s)
- Kuldeep Makwana
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Board of Governors of the Regenerative Medicine Institute, Department of Neurology, Cedars-Sinai Medical Center, 127 South San Vicente Boulevard, Los Angeles, CA, USA
| | - Harshita Chodavarapu
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Board of Governors of the Regenerative Medicine Institute, Department of Neurology, Cedars-Sinai Medical Center, 127 South San Vicente Boulevard, Los Angeles, CA, USA
| | - Nancy Morones
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Board of Governors of the Regenerative Medicine Institute, Department of Neurology, Cedars-Sinai Medical Center, 127 South San Vicente Boulevard, Los Angeles, CA, USA
| | - Jingyi Chi
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, NY, USA
| | - William Barr
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, NY, USA
| | - Edward Novinbakht
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Board of Governors of the Regenerative Medicine Institute, Department of Neurology, Cedars-Sinai Medical Center, 127 South San Vicente Boulevard, Los Angeles, CA, USA
| | - Yidan Wang
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Board of Governors of the Regenerative Medicine Institute, Department of Neurology, Cedars-Sinai Medical Center, 127 South San Vicente Boulevard, Los Angeles, CA, USA
| | - Peter Tuan Nguyen
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Board of Governors of the Regenerative Medicine Institute, Department of Neurology, Cedars-Sinai Medical Center, 127 South San Vicente Boulevard, Los Angeles, CA, USA
| | - Predrag Jovanovic
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Board of Governors of the Regenerative Medicine Institute, Department of Neurology, Cedars-Sinai Medical Center, 127 South San Vicente Boulevard, Los Angeles, CA, USA
| | - Paul Cohen
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, NY, USA
| | - Celine E Riera
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Board of Governors of the Regenerative Medicine Institute, Department of Neurology, Cedars-Sinai Medical Center, 127 South San Vicente Boulevard, Los Angeles, CA, USA; David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| |
Collapse
|
176
|
Yook JS, You M, Kim Y, Zhou M, Liu Z, Kim YC, Lee J, Chung S. The thermogenic characteristics of adipocytes are dependent on the regulation of iron homeostasis. J Biol Chem 2021; 296:100452. [PMID: 33631196 PMCID: PMC8010711 DOI: 10.1016/j.jbc.2021.100452] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/09/2021] [Accepted: 02/18/2021] [Indexed: 12/15/2022] Open
Abstract
The development of thermogenic adipocytes concurs with mitochondrial biogenesis, an iron-dependent pathway. Iron regulatory proteins (IRP) 1 and 2 are RNA-binding proteins that regulate intracellular iron homeostasis. IRPs bind to the iron-response element (IRE) of their target mRNAs, balancing iron uptake and deposition at the posttranscriptional levels. However, IRP/IRE-dependent iron regulation in adipocytes is largely unknown. We hypothesized that iron demands are higher in brown/beige adipocytes than white adipocytes to maintain the thermogenic mitochondrial capacity. To test this hypothesis, we investigated the IRP/IRE regulatory system in different depots of adipose tissue. Our results revealed that 1) IRP/IRE interaction was increased in proportional to the thermogenic function of the adipose depot, 2) adipose iron content was increased in adipose tissue browning upon β3-adrenoceptor stimulation, while decreased in thermoneutral conditions, and 3) modulation of iron content was linked with mitochondrial biogenesis. Moreover, the iron requirement was higher in HIB1B brown adipocytes than 3T3-L1 white adipocytes during differentiation. The reduction of the labile iron pool (LIP) suppressed the differentiation of brown/beige adipocytes and mitochondrial biogenesis. Using the 59Fe-Tf, we also demonstrated that thermogenic stimuli triggered cell-autonomous iron uptake and mitochondrial compartmentalization as well as enhanced mitochondrial respiration. Collectively, our work demonstrated that IRP/IRE signaling and subsequent adaptation in iron metabolism are a critical determinant for the thermogenic function of adipocytes.
Collapse
Affiliation(s)
- Jin-Seon Yook
- Department of Nutrition and Health Sciences, University of Massachusetts, Amherst, Massachusetts, USA
| | - Mikyoung You
- Department of Nutrition and Health Sciences, University of Massachusetts, Amherst, Massachusetts, USA
| | - Yongeun Kim
- Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, Nebraska, USA
| | - Mi Zhou
- Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, Nebraska, USA
| | - Zhenhua Liu
- Department of Nutrition and Health Sciences, University of Massachusetts, Amherst, Massachusetts, USA
| | - Young-Cheul Kim
- Department of Nutrition and Health Sciences, University of Massachusetts, Amherst, Massachusetts, USA
| | - Jaekwon Lee
- Department of Biochemistry, University of Nebraska, Lincoln, Nebraska, USA
| | - Soonkyu Chung
- Department of Nutrition and Health Sciences, University of Massachusetts, Amherst, Massachusetts, USA; Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, Nebraska, USA.
| |
Collapse
|
177
|
Lenehan PJ, Cirella A, Uchida AM, Crowley SJ, Sharova T, Boland G, Dougan M, Dougan SK, Heckler M. Type 2 immunity is maintained during cancer-associated adipose tissue wasting. IMMUNOTHERAPY ADVANCES 2021; 1:ltab011. [PMID: 34291232 PMCID: PMC8286632 DOI: 10.1093/immadv/ltab011] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/21/2021] [Accepted: 05/30/2021] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Cachexia is a systemic metabolic disorder characterized by loss of fat and muscle mass, which disproportionately impacts patients with gastrointestinal malignancies such as pancreatic cancer. While the immunologic shifts contributing to the development of other adipose tissue (AT) pathologies such as obesity have been well described, the immune microenvironment has not been studied in the context of cachexia. METHODS We performed bulk RNA-sequencing, cytokine arrays, and flow cytometry to characterize the immune landscape of visceral AT (VAT) in the setting of pancreatic and colorectal cancers. RESULTS The cachexia inducing factor IL-6 is strongly elevated in the wasting VAT of cancer bearing mice, but the regulatory type 2 immune landscape which characterizes healthy VAT is maintained. Pathologic skewing toward Th1 and Th17 inflammation is absent. Similarly, the VAT of patients with colorectal cancer is characterized by a Th2 signature with abundant IL-33 and eotaxin-2, albeit also with high levels of IL-6. CONCLUSIONS Wasting AT during the development of cachexia may not undergo drastic changes in immune composition like those seen in obese AT. Our approach provides a framework for future immunologic analyses of cancer associated cachexia.
Collapse
Affiliation(s)
- Patrick J Lenehan
- Department of Cancer Immunology and Virology, Dana Farber Cancer Institute, Boston, MA, USA
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Assunta Cirella
- Department of Cancer Immunology and Virology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Amiko M Uchida
- Department of Cancer Immunology and Virology, Dana Farber Cancer Institute, Boston, MA, USA
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Stephanie J Crowley
- Department of Cancer Immunology and Virology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Tatyana Sharova
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Genevieve Boland
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Michael Dougan
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Stephanie K Dougan
- Department of Cancer Immunology and Virology, Dana Farber Cancer Institute, Boston, MA, USA
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Max Heckler
- Department of Cancer Immunology and Virology, Dana Farber Cancer Institute, Boston, MA, USA
- Department of Surgery, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
178
|
Lagarde D, Jeanson Y, Barreau C, Moro C, Peyriga L, Cahoreau E, Guissard C, Arnaud E, Galinier A, Bouzier-Sore AK, Pellerin L, Chouchani ET, Pénicaud L, Ader I, Portais JC, Casteilla L, Carrière A. Lactate fluxes mediated by the monocarboxylate transporter-1 are key determinants of the metabolic activity of beige adipocytes. J Biol Chem 2021; 296:100137. [PMID: 33268383 PMCID: PMC7949083 DOI: 10.1074/jbc.ra120.016303] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 12/19/2022] Open
Abstract
Activation of energy-dissipating brown/beige adipocytes represents an attractive therapeutic strategy against metabolic disorders. While lactate is known to induce beiging through the regulation of Ucp1 gene expression, the role of lactate transporters on beige adipocytes' ongoing metabolic activity remains poorly understood. To explore the function of the lactate-transporting monocarboxylate transporters (MCTs), we used a combination of primary cell culture studies, 13C isotopic tracing, laser microdissection experiments, and in situ immunofluorescence of murine adipose fat pads. Dissecting white adipose tissue heterogeneity revealed that the MCT1 is expressed in inducible beige adipocytes as the emergence of uncoupling protein 1 after cold exposure was restricted to a subpopulation of MCT1-expressing adipocytes suggesting MCT1 as a marker of inducible beige adipocytes. We also observed that MCT1 mediates bidirectional and simultaneous inward and outward lactate fluxes, which were required for efficient utilization of glucose by beige adipocytes activated by the canonical β3-adrenergic signaling pathway. Finally, we demonstrated that significant lactate import through MCT1 occurs even when glucose is not limiting, which feeds the oxidative metabolism of beige adipocytes. These data highlight the key role of lactate fluxes in finely tuning the metabolic activity of beige adipocytes according to extracellular metabolic conditions and reinforce the emerging role of lactate metabolism in the control of energy homeostasis.
Collapse
Affiliation(s)
- Damien Lagarde
- STROMALab, Université de Toulouse, CNRS ERL5311, EFS, INP-ENVT, INSERM U1031, Université Paul Sabatier, Toulouse, France; Institut RESTORE, UMR 1301 INSERM, 5070 CNRS, Université Paul Sabatier, Toulouse, France
| | - Yannick Jeanson
- STROMALab, Université de Toulouse, CNRS ERL5311, EFS, INP-ENVT, INSERM U1031, Université Paul Sabatier, Toulouse, France; Institut RESTORE, UMR 1301 INSERM, 5070 CNRS, Université Paul Sabatier, Toulouse, France
| | - Corinne Barreau
- STROMALab, Université de Toulouse, CNRS ERL5311, EFS, INP-ENVT, INSERM U1031, Université Paul Sabatier, Toulouse, France; Institut RESTORE, UMR 1301 INSERM, 5070 CNRS, Université Paul Sabatier, Toulouse, France
| | - Cedric Moro
- Institute of Metabolic and Cardiovascular Diseases, INSERM UMR1048, Paul Sabatier University, Toulouse, France
| | - Lindsay Peyriga
- Toulouse Biotechnology Institute TBI - INSA de Toulouse INSA/CNRS 5504 - UMR INSA/INRA 7924, Toulouse, France; MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
| | - Edern Cahoreau
- Toulouse Biotechnology Institute TBI - INSA de Toulouse INSA/CNRS 5504 - UMR INSA/INRA 7924, Toulouse, France; MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
| | - Christophe Guissard
- STROMALab, Université de Toulouse, CNRS ERL5311, EFS, INP-ENVT, INSERM U1031, Université Paul Sabatier, Toulouse, France; Institut RESTORE, UMR 1301 INSERM, 5070 CNRS, Université Paul Sabatier, Toulouse, France
| | - Emmanuelle Arnaud
- STROMALab, Université de Toulouse, CNRS ERL5311, EFS, INP-ENVT, INSERM U1031, Université Paul Sabatier, Toulouse, France; Institut RESTORE, UMR 1301 INSERM, 5070 CNRS, Université Paul Sabatier, Toulouse, France
| | - Anne Galinier
- STROMALab, Université de Toulouse, CNRS ERL5311, EFS, INP-ENVT, INSERM U1031, Université Paul Sabatier, Toulouse, France; Institut RESTORE, UMR 1301 INSERM, 5070 CNRS, Université Paul Sabatier, Toulouse, France; Institut Fédératif de Biologie, CHU Purpan, Toulouse, France
| | | | - Luc Pellerin
- INSERM U1082, Université de Poitiers, Poitiers Cedex, France
| | - Edward T Chouchani
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA; Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Luc Pénicaud
- STROMALab, Université de Toulouse, CNRS ERL5311, EFS, INP-ENVT, INSERM U1031, Université Paul Sabatier, Toulouse, France; Institut RESTORE, UMR 1301 INSERM, 5070 CNRS, Université Paul Sabatier, Toulouse, France
| | - Isabelle Ader
- STROMALab, Université de Toulouse, CNRS ERL5311, EFS, INP-ENVT, INSERM U1031, Université Paul Sabatier, Toulouse, France; Institut RESTORE, UMR 1301 INSERM, 5070 CNRS, Université Paul Sabatier, Toulouse, France
| | - Jean-Charles Portais
- STROMALab, Université de Toulouse, CNRS ERL5311, EFS, INP-ENVT, INSERM U1031, Université Paul Sabatier, Toulouse, France; Institut RESTORE, UMR 1301 INSERM, 5070 CNRS, Université Paul Sabatier, Toulouse, France; Toulouse Biotechnology Institute TBI - INSA de Toulouse INSA/CNRS 5504 - UMR INSA/INRA 7924, Toulouse, France; MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
| | - Louis Casteilla
- STROMALab, Université de Toulouse, CNRS ERL5311, EFS, INP-ENVT, INSERM U1031, Université Paul Sabatier, Toulouse, France; Institut RESTORE, UMR 1301 INSERM, 5070 CNRS, Université Paul Sabatier, Toulouse, France
| | - Audrey Carrière
- STROMALab, Université de Toulouse, CNRS ERL5311, EFS, INP-ENVT, INSERM U1031, Université Paul Sabatier, Toulouse, France; Institut RESTORE, UMR 1301 INSERM, 5070 CNRS, Université Paul Sabatier, Toulouse, France.
| |
Collapse
|
179
|
Maushart CI, Senn JR, Loeliger RC, Kraenzlin ME, Müller J, Becker AS, Balaz M, Wolfrum C, Burger IA, Betz MJ. Free Thyroxine Levels are Associated with Cold Induced Thermogenesis in Healthy Euthyroid Individuals. Front Endocrinol (Lausanne) 2021; 12:666595. [PMID: 34194392 PMCID: PMC8236885 DOI: 10.3389/fendo.2021.666595] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/20/2021] [Indexed: 01/06/2023] Open
Abstract
Thyroid hormone (TH) is an important regulator of mammalian metabolism and facilitates cold induced thermogenesis (CIT) in brown adipose tissue (BAT). Profound hypothyroidism or hyperthyroidism lead to alterations in BAT function and CIT. In euthyroid humans the inter-individual variation of thyroid hormones is relatively large. Therefore, we investigated whether levels of free thyroxine (T4) or free triiodothyronine (T3) are positively associated with CIT in euthyroid individuals. We performed an observational study in 79 healthy, euthyroid volunteers (mean age 25.6 years, mean BMI 23.0 kg · m-2). Resting energy expenditure (REE) was measured by indirect calorimetry during warm conditions (EEwarm) and after a mild cold stimulus of two hours (EEcold). CIT was calculated as the difference between EEcold and EEwarm. BAT activity was assessed by 18F-FDG-PET after a mild cold stimulus in a subset of 26 participants. EEcold and CIT were significantly related to levels of free T4 (R2 = 0.11, p=0.0025 and R2 = 0.13, p=0.0011, respectively) but not to free T3 and TSH. Cold induced BAT activity was also associated with levels of free T4 (R2 = 0.21, p=0.018). CIT was approximately fourfold higher in participants in the highest tertile of free T4 as compared to the lowest tertile. Additionally, free T4 was weakly, albeit significantly associated with outdoor temperature seven days prior to the respective study visit (R2 = 0.06, p=0.037). These finding suggests that variations in thyroid hormone levels within the euthyroid range are related to the capability to adapt to cool temperatures and affect energy balance.
Collapse
Affiliation(s)
- Claudia Irene Maushart
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Jaël Rut Senn
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Rahel Catherina Loeliger
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Marius E. Kraenzlin
- SpezialLABOR Hormone - Knochenstoffwechsel, University of Basel, Basel, Switzerland
| | - Julian Müller
- Department of Radiology, University Hospital Zurich, Zurich, Switzerland
| | - Anton S. Becker
- Department of Radiology, University Hospital Zurich, Zurich, Switzerland
| | - Miroslav Balaz
- Health Sciences and Technology, Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland
| | - Christian Wolfrum
- Health Sciences and Technology, Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland
| | - Irene A. Burger
- Department of Radiology, University Hospital Zurich, Zurich, Switzerland
| | - Matthias Johannes Betz
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Basel, University of Basel, Basel, Switzerland
- *Correspondence: Matthias Johannes Betz,
| |
Collapse
|
180
|
Recazens E, Mouisel E, Langin D. Hormone-sensitive lipase: sixty years later. Prog Lipid Res 2020; 82:101084. [PMID: 33387571 DOI: 10.1016/j.plipres.2020.101084] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/12/2020] [Accepted: 12/24/2020] [Indexed: 12/19/2022]
Abstract
Hormone-sensitive lipase (HSL) was initially characterized as the hormonally regulated neutral lipase activity responsible for the breakdown of triacylglycerols into fatty acids in adipose tissue. This review aims at providing up-to-date information on structural properties, regulation of expression, activity and function as well as therapeutic potential. The lipase is expressed as different isoforms produced from tissue-specific alternative promoters. All isoforms are composed of an N-terminal domain and a C-terminal catalytic domain within which a regulatory domain containing the phosphorylation sites is embedded. Some isoforms possess additional N-terminal regions. The catalytic domain shares similarities with bacteria, fungus and vascular plant proteins but not with other mammalian lipases. HSL singularity is provided by regulatory and N-terminal domains sharing no homology with other proteins. HSL has a broad substrate specificity compared to other neutral lipases. It hydrolyzes acylglycerols, cholesteryl and retinyl esters among other substrates. A novel role of HSL, independent of its enzymatic function, has recently been described in adipocytes. Clinical studies revealed dysregulations of HSL expression and activity in disorders, such as lipodystrophy, obesity, type 2 diabetes and cancer-associated cachexia. Development of specific inhibitors positions HSL as a pharmacological target for the treatment of metabolic complications.
Collapse
Affiliation(s)
- Emeline Recazens
- Institute of Metabolic and Cardiovascular Diseases, Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1297, 31432 Toulouse, France; University of Toulouse, Paul Sabatier University, UMR1297, Toulouse, France
| | - Etienne Mouisel
- Institute of Metabolic and Cardiovascular Diseases, Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1297, 31432 Toulouse, France; University of Toulouse, Paul Sabatier University, UMR1297, Toulouse, France
| | - Dominique Langin
- Institute of Metabolic and Cardiovascular Diseases, Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1297, 31432 Toulouse, France; University of Toulouse, Paul Sabatier University, UMR1297, Toulouse, France; Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague and Paul Sabatier University, Toulouse, France; Toulouse University Hospitals, Laboratory of Clinical Biochemistry, Toulouse, France.
| |
Collapse
|
181
|
Poursharifi P, Attané C, Mugabo Y, Al-Mass A, Ghosh A, Schmitt C, Zhao S, Guida J, Lussier R, Erb H, Chenier I, Peyot ML, Joly E, Noll C, Carpentier AC, Madiraju SRM, Prentki M. Adipose ABHD6 regulates tolerance to cold and thermogenic programs. JCI Insight 2020; 5:140294. [PMID: 33201859 PMCID: PMC7819748 DOI: 10.1172/jci.insight.140294] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 11/11/2020] [Indexed: 12/31/2022] Open
Abstract
Enhanced energy expenditure in brown (BAT) and white adipose tissues (WAT) can be therapeutic against metabolic diseases. We examined the thermogenic role of adipose α/β-hydrolase domain 6 (ABHD6), which hydrolyzes monoacylglycerol (MAG), by employing adipose-specific ABHD6-KO mice. Control and KO mice showed similar phenotypes at room temperature and thermoneutral conditions. However, KO mice were resistant to hypothermia, which can be accounted for by the simultaneously increased lipolysis and lipogenesis of the thermogenic glycerolipid/free fatty acid (GL/FFA) cycle in visceral fat, despite unaltered uncoupling protein 1 expression. Upon cold stress, nuclear 2-MAG levels increased in visceral WAT of the KO mice. Evidence is provided that 2-MAG causes activation of PPARα in white adipocytes, leading to elevated expression and activity of GL/FFA cycle enzymes. In the ABHD6-ablated BAT, glucose and oxidative metabolism were elevated upon cold induction, without changes in GL/FFA cycle and lipid turnover. Moreover, response to in vivo β3-adrenergic stimulation was comparable between KO and control mice. Our data reveal a MAG/PPARα/GL/FFA cycling metabolic signaling network in visceral adipose tissue, which contributes to cold tolerance, and that adipose ABHD6 is a negative modulator of adaptive thermogenesis. Visceral adipose adipose α/β-hydrolase domain 6 regulates cold adaptation and acts as a brake for heat production via the regulation of thermogenic glycerolipid/free fatty acid cycling.
Collapse
Affiliation(s)
- Pegah Poursharifi
- Departments of Nutrition, Biochemistry, and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - Camille Attané
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Yves Mugabo
- Departments of Nutrition, Biochemistry, and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - Anfal Al-Mass
- Departments of Nutrition, Biochemistry, and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada.,Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Anindya Ghosh
- Departments of Nutrition, Biochemistry, and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - Clémence Schmitt
- Departments of Nutrition, Biochemistry, and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - Shangang Zhao
- Touchstone Diabetes Center, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Julian Guida
- Departments of Nutrition, Biochemistry, and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - Roxane Lussier
- Departments of Nutrition, Biochemistry, and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - Heidi Erb
- Departments of Nutrition, Biochemistry, and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - Isabelle Chenier
- Departments of Nutrition, Biochemistry, and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - Marie-Line Peyot
- Departments of Nutrition, Biochemistry, and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - Erik Joly
- Departments of Nutrition, Biochemistry, and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - Christophe Noll
- Division of Endocrinology, Department of Medicine, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - André C Carpentier
- Division of Endocrinology, Department of Medicine, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - S R Murthy Madiraju
- Departments of Nutrition, Biochemistry, and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - Marc Prentki
- Departments of Nutrition, Biochemistry, and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| |
Collapse
|
182
|
|
183
|
Abstract
Obesity has become a worldwide issue and is accompanied by serious complications. Western high energy diet has been identified to be a major factor contributing to the current obesity pandemic. Thus, it is important to optimize dietary composition, bioactive substances, and agents to prevent and treat obesity. To date, extracts from plants, such as vegetables, tea, fruits, and Chinese herbal medicine, have been showed to have the abilities of regulating adipogenesis and attenuating obesity. These plant extracts mainly contain polyphenols, alkaloids, and terpenoids, which could play a significant role in anti-obesity through various signaling pathways and gut microbiota. Those reported anti-obesity mechanisms mainly include inhibiting white adipose tissue growth and lipogenesis, promoting lipolysis, brown/beige adipose tissue development, and muscle thermogenesis. In this review, we summarize the plant extracts and their possible mechanisms responsible for their anti-obesity effects. Based on the current findings, dietary plant extracts and foods containing these bioactive compounds can be potential preventive or therapeutic agents for obesity and its related metabolic diseases.
Collapse
Affiliation(s)
- Han-Ning Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Jin-Zhu Xiang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Zhi Qi
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Min Du
- Department of Animal Sciences, Washington State University, Pullman, Washington, USA
| |
Collapse
|
184
|
Wueest S, Lucchini FC, Haim Y, Rudich A, Konrad D. Depletion of ASK1 blunts stress-induced senescence in adipocytes. Adipocyte 2020; 9:535-541. [PMID: 32930631 PMCID: PMC7714422 DOI: 10.1080/21623945.2020.1815977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Increasing energy expenditure via induction of browning in white adipose tissue has emerged as a potential strategy to treat obesity and associated metabolic complications. We previously reported that ASK1 inhibition in adipocytes protected from high-fat diet (HFD) or lipopolysaccharide (LPS)-mediated downregulation of UCP1 both in vitro and in vivo. Conversely, adipocyte-specific ASK1 overexpression attenuated cold-induction of UCP-1 in inguinal fat. Herein, we provide evidence that both TNFα-mediated and HFD-induced activation of p38 MAPK in white adipocytes are ASK1-dependent. Moreover, expression of senescence markers was reduced in HFD-fed adipocyte-specific ASK1 knockout mice. Similarly, LPS-induced upregulation of senescence markers was blunted in ASK1-depleted adipocytes. Thus, our study identifies a previously unknown role for ASK1 in the induction of stress-induced senescence.
Collapse
Affiliation(s)
- Stephan Wueest
- Division of Pediatric Endocrinology and Diabetology, University Children’s Hospital, Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital, Zurich, Switzerland
| | - Fabrizio C. Lucchini
- Division of Pediatric Endocrinology and Diabetology, University Children’s Hospital, Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Yulia Haim
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- The National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Assaf Rudich
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- The National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Daniel Konrad
- Division of Pediatric Endocrinology and Diabetology, University Children’s Hospital, Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
185
|
Mahalingam S, Cheviron ZA, Storz JF, McClelland GB, Scott GR. Chronic cold exposure induces mitochondrial plasticity in deer mice native to high altitudes. J Physiol 2020; 598:5411-5426. [PMID: 32886797 PMCID: PMC8329962 DOI: 10.1113/jp280298] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/01/2020] [Indexed: 12/21/2022] Open
Abstract
KEY POINTS Small mammals native to high altitude must sustain high rates of thermogenesis to cope with cold. Skeletal muscle is a key site of shivering and non-shivering thermogenesis, but the importance of mitochondrial plasticity in cold hypoxic environments remains unresolved. We examined high-altitude deer mice, which have evolved a high capacity for aerobic thermogenesis, to determine the mechanisms of mitochondrial plasticity during chronic exposure to cold and hypoxia, alone and in combination. Cold exposure in normoxia or hypoxia increased mitochondrial leak respiration and decreased phosphorylation efficiency and OXPHOS coupling efficiency, which may serve to augment non-shivering thermogenesis. Cold also increased muscle oxidative capacity, but reduced the capacity for mitochondrial respiration via complex II relative to complexes I and II combined. High-altitude mice had a more oxidative muscle phenotype than low-altitude mice. Therefore, both plasticity and evolved changes in muscle mitochondria contribute to thermogenesis at high altitude. ABSTRACT Small mammals native to high altitude must sustain high rates of thermogenesis to cope with cold and hypoxic environments. Skeletal muscle is a key site of shivering and non-shivering thermogenesis, but the importance of mitochondrial plasticity in small mammals at high altitude remains unresolved. High-altitude deer mice (Peromyscus maniculatus) and low-altitude white-footed mice (P. leucopus) were born and raised in captivity, and chronically exposed as adults to warm (25°C) normoxia, warm hypoxia (12 kPa O2 ), cold (5°C) normoxia, or cold hypoxia. We then measured oxidative enzyme activities, oxidative fibre density and capillarity in the gastrocnemius, and used a comprehensive substrate titration protocol to examine the function of muscle mitochondria by high-resolution respirometry. Exposure to cold in both normoxia or hypoxia increased the activities of citrate synthase and cytochrome oxidase. In lowlanders, this was associated with increases in capillary density and the proportional abundance of oxidative muscle fibres, but in highlanders, these traits were unchanged at high levels across environments. Environment had some distinct effects on mitochondrial OXPHOS capacity between species, but the capacity of complex II relative to the combined capacity of complexes I and II was consistently reduced in both cold environments. Both cold environments also increased leak respiration and decreased phosphorylation efficiency and OXPHOS coupling efficiency in both species, which may serve to augment non-shivering thermogenesis. These cold-induced changes in mitochondrial function were overlaid upon the generally more oxidative phenotype of highlanders. Therefore, both plasticity and evolved changes in muscle mitochondria contribute to thermogenesis at high altitudes.
Collapse
Affiliation(s)
| | - Zachary A Cheviron
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Jay F Storz
- School of Biological Sciences, University of Nebraska, Lincoln, NE, USA
| | | | - Graham R Scott
- Department of Biology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
186
|
Oh C, Song IH, Lee W, Jeon M, Choi J, Baek S, Lee BC, Kim SE, Im HJ. Brown adipose tissue imaging using the TSPO tracer [ 18F]fluoromethyl-PBR28-d 2: A comparison with [ 18F]FDG. Nucl Med Biol 2020; 90-91:98-103. [PMID: 33189950 DOI: 10.1016/j.nucmedbio.2020.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 09/02/2020] [Accepted: 10/17/2020] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Currently, the reference method of brown adipose tissue (BAT) imaging is 18F-fluorodeoxyglucose positron emission tomography ([18F]FDG PET). BAT imaging by [18F]FDG PET requires additional stimulation process, which is inconvenient and hard to be standardized. The translocator protein 18 kDa (TSPO) PET has been found to be effective for visualization of BAT. Herein, we evaluated the feasibility of [18F]fluoromethyl-PBR28-d2 ([18F]fmPBR28-d2), a TSPO PET tracer, for interscapular BAT imaging in comparison with [18F]FDG PET. METHODS C57BL/6 mice were used for the [18F]fmPBR28-d2 and [18F]FDG PET imaging. [18F]fmPBR28-d2 PET was performed in the thermoneutral condition (n = 5) and after cold exposure (4 °C for 4 h) on the next day using the same mice. [18F]FDG PET was performed in the thermoneutral and cold exposure conditions with the same method with [18F]fmPBR28-d2 PET. Ex vivo biodistribution study of [18F]fmPBR28-d2 was performed in ten C57BL/6 mice (5: thermoneutral, 5: cold exposure). TSPO immunohistochemistry was done in interscapular BAT. RESULTS The [18F]fmPBR28-d2 PET images showed prominent interscapular BAT uptakes under both thermoneutral and cold exposure conditions. While, the BAT uptake was significantly higher under the cold exposure condition than the thermoneutral condition (12.83 ± 5.06 vs. 22.50 ± 6.03, P = 0.007). Also, [18F]FDG PET imaging showed higher BAT uptake under the cold exposure condition than thermoneutral condition (8.40 ± 0.63 vs. 21.41 ± 4.03, P = 0.001). The interscapular BAT to background (thigh muscle) ratio was higher in [18F]fmPBR28-d2 PET than [18F]FDG PET under both thermoneutral and cold exposure conditions. Ex vivo biodistribution study using [18F]fmPBR28-d2 also showed higher BAT uptake under cold exposure than the thermoneutral condition (8.86 ± 1.74 vs.16.93 ± 4.74, P = 0.036). Also, IHC demonstrated that TSPO expression was significantly increased in the cold exposure group. CONCLUSIONS [18F]FmPBR28-d2 PET demonstrated prominent interscapular BAT uptakes regardless of additional stimulation, and showed a higher BAT to background ratio than [18F]FDG PET. Also, we found that [18F]fmPBR28-d2 PET uptake and TSPO expression of BAT increased under cold exposure condition. Further works are warranted to assess the clinical significance of TSPO PET uptake in BAT.
Collapse
Affiliation(s)
- Chiwoo Oh
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - In Ho Song
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Republic of Korea
| | - Wooseung Lee
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Miyeon Jeon
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Jinyeong Choi
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Seungki Baek
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Byung Chul Lee
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Republic of Korea; Center for Nanomolecular Imaging and Innovative Drug Development, Advanced Institutes of Convergence Technology, Suwon 16229, Republic of Korea. http://tmtl.snu.ac.kr
| | - Sang Eun Kim
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Republic of Korea; Center for Nanomolecular Imaging and Innovative Drug Development, Advanced Institutes of Convergence Technology, Suwon 16229, Republic of Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyung-Jun Im
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
187
|
Wallimann T, Tokarska-Schlattner M, Kay L, Schlattner U. Role of creatine and creatine kinase in UCP1-independent adipocyte thermogenesis. Am J Physiol Endocrinol Metab 2020; 319:E944-E946. [PMID: 32954822 DOI: 10.1152/ajpendo.00367.2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
| | - Malgorzata Tokarska-Schlattner
- University Grenoble Alpes and Inserm U1055, Laboratory of Fundamental and Applied Bioenergetics & SFR Environmental and Systems Biology, Grenoble, France
| | - Laurence Kay
- University Grenoble Alpes and Inserm U1055, Laboratory of Fundamental and Applied Bioenergetics & SFR Environmental and Systems Biology, Grenoble, France
| | - Uwe Schlattner
- University Grenoble Alpes and Inserm U1055, Laboratory of Fundamental and Applied Bioenergetics & SFR Environmental and Systems Biology, Grenoble, France
- Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
188
|
Hattori K, Wakatsuki H, Sakauchi C, Furutani S, Sugawara S, Hatta T, Natsume T, Ichijo H. β-adrenergic receptor signaling evokes the PKA-ASK axis in mature brown adipocytes. PLoS One 2020; 15:e0232645. [PMID: 33108364 PMCID: PMC7591029 DOI: 10.1371/journal.pone.0232645] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 09/03/2020] [Indexed: 12/31/2022] Open
Abstract
Boosting energy expenditure by harnessing the activity of brown adipocytes is a promising strategy for combatting the global epidemic of obesity. Many studies have revealed that the β3-adrenergic receptor agonist is a potent activator of brown adipocytes, even in humans, and PKA and p38 MAPK have been demonstrated for regulating the transcription of a wide range of critical genes such as Ucp1. We previously revealed that the PKA-ASK1-p38 axis is activated in immature brown adipocytes and contributes to functional maturation. However, the downstream mechanisms of PKA that initiate the p38 MAPK cascade are still mostly unknown in mature brown adipocytes. Here, we identified the ASK family as a crucial signaling molecule bridging PKA and MAPK in mature brown adipocytes. Mechanistically, the phosphorylation of ASK1 at threonine 99 and serine 993 is critical in PKA-dependent ASK1 activation. Additionally, PKA also activates ASK2, which contributes to MAPK regulation. These lines of evidence provide new details for tailoring a βAR-dependent brown adipocyte activation strategy.
Collapse
Affiliation(s)
- Kazuki Hattori
- The Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- * E-mail: (KH); (HI)
| | - Hiroaki Wakatsuki
- The Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Chihiro Sakauchi
- The Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Shotaro Furutani
- The Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Sho Sugawara
- The Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Tomohisa Hatta
- Molecular Profiling Research Center for Drug Discovery (molprof), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Tohru Natsume
- Molecular Profiling Research Center for Drug Discovery (molprof), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Hidenori Ichijo
- The Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- * E-mail: (KH); (HI)
| |
Collapse
|
189
|
Wang HJ, Lee CS, Yee RSZ, Groom L, Friedman I, Babcock L, Georgiou DK, Hong J, Hanna AD, Recio J, Choi JM, Chang T, Agha NH, Romero J, Sarkar P, Voermans N, Gaber MW, Jung SY, Baker ML, Pautler RG, Dirksen RT, Riazi S, Hamilton SL. Adaptive thermogenesis enhances the life-threatening response to heat in mice with an Ryr1 mutation. Nat Commun 2020; 11:5099. [PMID: 33037202 PMCID: PMC7547078 DOI: 10.1038/s41467-020-18865-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 09/18/2020] [Indexed: 11/17/2022] Open
Abstract
Mutations in the skeletal muscle Ca2+ release channel, the type 1 ryanodine receptor (RYR1), cause malignant hyperthermia susceptibility (MHS) and a life-threatening sensitivity to heat, which is most severe in children. Mice with an MHS-associated mutation in Ryr1 (Y524S, YS) display lethal muscle contractures in response to heat. Here we show that the heat response in the YS mice is exacerbated by brown fat adaptive thermogenesis. In addition, the YS mice have more brown adipose tissue thermogenic capacity than their littermate controls. Blood lactate levels are elevated in both heat-sensitive MHS patients with RYR1 mutations and YS mice due to Ca2+ driven increases in muscle metabolism. Lactate increases brown adipogenesis in both mouse and human brown preadipocytes. This study suggests that simple lifestyle modifications such as avoiding extreme temperatures and maintaining thermoneutrality could decrease the risk of life-threatening responses to heat and exercise in individuals with RYR1 pathogenic variants.
Collapse
Affiliation(s)
- Hui J Wang
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
- Translational Biology and Molecular Medicine Graduate Program, Baylor College of Medicine, Houston, TX, USA
| | - Chang Seok Lee
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Rachel Sue Zhen Yee
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Linda Groom
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Inbar Friedman
- Department of Anesthesiology, University of Toronto, Toronto, ON, Canada
| | - Lyle Babcock
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Dimitra K Georgiou
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Jin Hong
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Amy D Hanna
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Joseph Recio
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Jong Min Choi
- Advance Technology Core, Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, TX, USA
| | - Ting Chang
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Nadia H Agha
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Jonathan Romero
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Poonam Sarkar
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Nicol Voermans
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Centre, Nijmegen, Netherlands
| | - M Waleed Gaber
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Sung Yun Jung
- Advance Technology Core, Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, TX, USA
| | - Matthew L Baker
- Advance Technology Core, Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, TX, USA
| | - Robia G Pautler
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Robert T Dirksen
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Sheila Riazi
- Department of Anesthesiology, University of Toronto, Toronto, ON, Canada
| | - Susan L Hamilton
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
190
|
Qiu Y, Yang Y, Wei Y, Liu X, Feng Z, Zeng X, Chen Y, Liu Y, Zhao Y, Chen L, Luo L, Ding Q. Glyburide Regulates UCP1 Expression in Adipocytes Independent of K ATP Channel Blockade. iScience 2020; 23:101446. [PMID: 32829287 PMCID: PMC7452185 DOI: 10.1016/j.isci.2020.101446] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/08/2020] [Accepted: 08/06/2020] [Indexed: 12/12/2022] Open
Abstract
Identification of safe and effective compounds to increase or activate UCP1 expression in brown or white adipocytes remains a potent therapeutic strategy to combat obesity. Here we reported that, glyburide, one of the FDA-approved drugs currently used to treat type 2 diabetes, can significantly enhance UCP1 expression in both brown and white adipocytes. Glyburide-fed mice exhibited a clear resistance to high-fat diet-induced obesity, reduced blood triglyceride level, and increased UCP1 expression in brown adipose tissue. Moreover, in situ injection of glyburide to inguinal white adipose tissue remarkably enhanced UCP1 expression and increased thermogenesis. Further mechanistic studies indicated that the glyburide effect in UCP1 expression in adipocytes was KATP channel independent but may involve the regulation of the Ca2+-Calcineurin-NFAT signal pathway. Overall, our findings revealed the significant effects of glyburide in regulating UCP1 expression and thermogenesis in adipocytes, which can be potentially repurposed to treat obesity.
Collapse
Affiliation(s)
- Yan Qiu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, P. R. China
| | - Yuanyuan Yang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, P. R. China
| | - Yuda Wei
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, P. R. China
| | - Xiaojian Liu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, P. R. China
| | - Zhuanghui Feng
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, P. R. China
| | - Xuwen Zeng
- The Affiliated Stomatology Hospital of Tongji University, 399 Yanchang Road, Shanghai 200072, P. R. China
| | - Yanhao Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, P. R. China
| | - Yan Liu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, P. R. China
| | - Yongxu Zhao
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, P. R. China
| | - Lanlan Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, P. R. China
| | - Lijun Luo
- The Affiliated Stomatology Hospital of Tongji University, 399 Yanchang Road, Shanghai 200072, P. R. China
| | - Qiurong Ding
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, P. R. China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, P. R. China
| |
Collapse
|
191
|
Li Y, Schwalie PC, Bast-Habersbrunner A, Mocek S, Russeil J, Fromme T, Deplancke B, Klingenspor M. Systems-Genetics-Based Inference of a Core Regulatory Network Underlying White Fat Browning. Cell Rep 2020; 29:4099-4113.e5. [PMID: 31851936 DOI: 10.1016/j.celrep.2019.11.053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/02/2019] [Accepted: 11/13/2019] [Indexed: 02/06/2023] Open
Abstract
Recruitment of brite/beige cells, known as browning of white adipose tissue (WAT), is an efficient way to turn an energy-storing organ into an energy-dissipating one and may therefore be of therapeutic value in combating obesity. However, a comprehensive understanding of the regulatory mechanisms mediating WAT browning is still lacking. Here, we exploit the large natural variation in WAT browning propensity between inbred mouse strains to gain an inclusive view of the core regulatory network coordinating this cellular process. Combining comparative transcriptomics, perturbation-based validations, and gene network analyses, we present a comprehensive gene regulatory network of inguinal WAT browning, revealing up to four distinct regulatory modules with key roles for uncovered transcriptional factors, while also providing deep insights into the genetic architecture of brite adipogenesis. The presented findings therefore greatly increase our understanding of the molecular drivers mediating the intriguing cellular heterogeneity and plasticity of adipose tissue.
Collapse
Affiliation(s)
- Yongguo Li
- Chair for Molecular Nutritional Medicine, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany; EKFZ-Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany
| | - Petra C Schwalie
- Institute of Bio-engineering, School of Life Sciences, EPFL and Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Andrea Bast-Habersbrunner
- Chair for Molecular Nutritional Medicine, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany; EKFZ-Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany
| | - Sabine Mocek
- Chair for Molecular Nutritional Medicine, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany; EKFZ-Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany
| | - Julie Russeil
- Institute of Bio-engineering, School of Life Sciences, EPFL and Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Tobias Fromme
- Chair for Molecular Nutritional Medicine, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany; EKFZ-Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany
| | - Bart Deplancke
- Institute of Bio-engineering, School of Life Sciences, EPFL and Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland.
| | - Martin Klingenspor
- Chair for Molecular Nutritional Medicine, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany; EKFZ-Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany.
| |
Collapse
|
192
|
Vergnes L, Lin JY, Davies GR, Church CD, Reue K. Induction of UCP1 and thermogenesis by a small molecule via AKAP1/PKA modulation. J Biol Chem 2020; 295:15054-15069. [PMID: 32855239 DOI: 10.1074/jbc.ra120.013322] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/24/2020] [Indexed: 01/09/2023] Open
Abstract
Strategies to increase energy expenditure are an attractive approach to reduce excess fat storage and body weight to improve metabolic health. In mammals, uncoupling protein-1 (UCP1) in brown and beige adipocytes uncouples fatty acid oxidation from ATP generation in mitochondria and promotes energy dissipation as heat. We set out to identify small molecules that enhance UCP1 levels and activity using a high-throughput screen of nearly 12,000 compounds in mouse brown adipocytes. We identified a family of compounds that increase Ucp1 expression and mitochondrial activity (including un-coupled respiration) in mouse brown adipocytes and human brown and white adipocytes. The mechanism of action may be through compound binding to A kinase anchoring protein (AKAP) 1, modulating its localization to mitochondria and its interaction with protein kinase A (PKA), a known node in the β-adrenergic signaling pathway. In mice, the hit compound increased body temperature, UCP1 protein levels, and thermogenic gene expression. Some of the compound effects on mitochondrial function were UCP1- or AKAP1-independent, suggesting compound effects on multiple nodes of energy regulation. Overall, our results highlight a role for AKAP1 in thermogenesis, uncoupled respiration, and regulation energy balance.
Collapse
Affiliation(s)
- Laurent Vergnes
- Department of Human Genetics, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California USA.
| | - Jason Y Lin
- Department of Human Genetics, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California USA
| | - Graeme R Davies
- Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Christopher D Church
- Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Karen Reue
- Department of Human Genetics, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California USA; Department of Medicine, and Molecular Biology Institute, University of California-Los Angeles, Los Angeles, California USA
| |
Collapse
|
193
|
Mendez-Gutierrez A, Osuna-Prieto FJ, Aguilera CM, Ruiz JR, Sanchez-Delgado G. Endocrine Mechanisms Connecting Exercise to Brown Adipose Tissue Metabolism: a Human Perspective. Curr Diab Rep 2020; 20:40. [PMID: 32725289 DOI: 10.1007/s11892-020-01319-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW To summarize the state-of-the-art regarding the exercise-regulated endocrine signals that might modulate brown adipose tissue (BAT) activity and/or white adipose tissue (WAT) browning, or through which BAT communicates with other tissues, in humans. RECENT FINDINGS Exercise induces WAT browning in rodents by means of a variety of physiological mechanism. However, whether exercise induces WAT browning in humans is still unknown. Nonetheless, a number of protein hormones and metabolites, whose signaling can influence thermogenic adipocyte's metabolism, are secreted during and/or after exercise in humans from a variety of tissues and organs, such as the skeletal muscle, the adipose tissue, the liver, the adrenal glands, or the cardiac muscle. Overall, it seems plausible to hypothesize that, in humans, exercise secretes an endocrine cocktail that is likely to induce WAT browning, as it does in rodents. However, even if exercise elicits a pro-browning endocrine response, this might result in a negligible effect if blood flow is restricted in thermogenic adipocyte-rich areas during exercise, which is still to be determined. Future studies are needed to fully characterize the exercise-induced secretion (i.e., to determine the effect of the different exercise frequency, intensity, type, time, and volume) of endocrine signaling molecules that might modulate BAT activity and/or WAT browning or through which BAT communicates with other tissues, during exercise. The exercise effect on BAT metabolism and/or WAT browning could be one of the still unknown mechanisms by which exercise exerts beneficial health effects, and it might be pharmacologically mimicked.
Collapse
Affiliation(s)
- Andrea Mendez-Gutierrez
- Department of Biochemistry and Molecular Biology II, "José Mataix Verdú" Institute of Nutrition and Food Technology (INYTA), Biomedical Research Centre (CIBM), University of Granada, Granada, Spain
- Biohealth Research Institute in Granada (ibs.GRANADA), Granada, Spain
- CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Madrid, Spain
| | - Francisco J Osuna-Prieto
- Department of Analytical Chemistry, Technology Centre for Functional Food Research and Development (CIDAF), University of Granada, Granada, Spain
- PROFITH "PROmoting FITness and Health through Physical Activity" Research Group, Sport and Health University Research Institute (iMUDS), Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Concepcion M Aguilera
- Department of Biochemistry and Molecular Biology II, "José Mataix Verdú" Institute of Nutrition and Food Technology (INYTA), Biomedical Research Centre (CIBM), University of Granada, Granada, Spain
- Biohealth Research Institute in Granada (ibs.GRANADA), Granada, Spain
- CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Madrid, Spain
| | - Jonatan R Ruiz
- PROFITH "PROmoting FITness and Health through Physical Activity" Research Group, Sport and Health University Research Institute (iMUDS), Faculty of Sport Sciences, University of Granada, Granada, Spain.
- Department of Physical Education and Sports, University of Granada, Granada, Spain.
| | - Guillermo Sanchez-Delgado
- PROFITH "PROmoting FITness and Health through Physical Activity" Research Group, Sport and Health University Research Institute (iMUDS), Faculty of Sport Sciences, University of Granada, Granada, Spain.
- Department of Physical Education and Sports, University of Granada, Granada, Spain.
- Pennington Biomedical Research Center, Baton Rouge, LA, USA.
| |
Collapse
|
194
|
Fischer JGW, Maushart CI, Becker AS, Müller J, Madoerin P, Chirindel A, Wild D, Ter Voert EEGW, Bieri O, Burger I, Betz MJ. Comparison of [ 18F]FDG PET/CT with magnetic resonance imaging for the assessment of human brown adipose tissue activity. EJNMMI Res 2020; 10:85. [PMID: 32699996 PMCID: PMC7376767 DOI: 10.1186/s13550-020-00665-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 06/25/2020] [Indexed: 12/26/2022] Open
Abstract
Background Brown adipose tissue (BAT) is a thermogenic tissue which can generate heat in response to mild cold exposure. As it constitutes a promising target in the fight against obesity, we need reliable techniques to quantify its activity in response to therapeutic interventions. The current standard for the quantification of BAT activity is [18F]FDG PET/CT. Various sequences in magnetic resonance imaging (MRI), including those measuring its relative fat content (fat fraction), have been proposed and evaluated in small proof-of-principle studies, showing diverging results. Here, we systematically compare the predictive value of adipose tissue fat fraction measured by MRI to the results of [18F]FDG PET/CT. Methods We analyzed the diagnostic reliability of MRI measured fat fraction (FF) for the estimation of human BAT activity in two cohorts of healthy volunteers participating in two prospective clinical trials (NCT03189511, NCT03269747). In both cohorts, BAT activity was stimulated by mild cold exposure. In cohort 1, we performed [18F]FDG PET/MRI; in cohort 2, we used [18F]FDG PET/CT followed by MRI. Fat fraction was determined by 2-point Dixon and 6-point Dixon measurement, respectively. Fat fraction values were compared to SUVmean in the corresponding tissue depot by simple linear regression. Results In total, 33 male participants with a mean age of 23.9 years and a mean BMI of 22.8 kg/m2 were recruited. In 32 participants, active BAT was visible. On an intra-individual level, FF was significantly lower in high-SUV areas compared to low-SUV areas (cohort 1: p < 0.0001 and cohort 2: p = 0.0002). The FF of the supraclavicular adipose tissue depot was inversely related to its metabolic activity (SUVmean) in both cohorts (cohort 1: R2 = 0.18, p = 0.09 and cohort 2: R2 = 0.42, p = 0.009). Conclusion MRI FF explains only about 40% of the variation in BAT glucose uptake. Thus, it can currently not be used to substitute [18F] FDG PET-based imaging for quantification of BAT activity. Trial registration ClinicalTrials.gov. NCT03189511, registered on June 17, 2017, actual study start date was on May 31, 2017, retrospectively registered. NCT03269747, registered on September 01, 2017.
Collapse
Affiliation(s)
- Jonas Gabriel William Fischer
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland, and University of Basel, Basel, Switzerland
| | - Claudia Irene Maushart
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland, and University of Basel, Basel, Switzerland
| | - Anton S Becker
- Institute of Diagnostic and Interventional Radiology, University Hospital Zürich, Rämistrasse 100, 8091, Zürich, Switzerland
| | - Julian Müller
- Department of Nuclear Medicine, University Hospital Zürich, Rämistrasse 100, Zürich, 8091, Switzerland
| | - Philipp Madoerin
- Department of Radiology, Division of Radiological Physics, University Hospital Basel, Basel, Switzerland
| | - Alin Chirindel
- Division of Nuclear Medicine, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - Damian Wild
- Division of Nuclear Medicine, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - Edwin E G W Ter Voert
- Department of Nuclear Medicine, University Hospital Zürich, Rämistrasse 100, Zürich, 8091, Switzerland
| | - Oliver Bieri
- Department of Radiology, University Hospital of Basel and University of Basel, Basel, Switzerland
| | - Irene Burger
- Department of Nuclear Medicine, University Hospital Zürich, Rämistrasse 100, Zürich, 8091, Switzerland
| | - Matthias Johannes Betz
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland, and University of Basel, Basel, Switzerland.
| |
Collapse
|
195
|
Kovaničová Z, Kurdiová T, Baláž M, Štefanička P, Varga L, Kulterer OC, Betz MJ, Haug AR, Burger IA, Kiefer FW, Wolfrum C, Ukropcová B, Ukropec J. Cold Exposure Distinctively Modulates Parathyroid and Thyroid Hormones in Cold-Acclimatized and Non-Acclimatized Humans. Endocrinology 2020; 161:bqaa051. [PMID: 32242612 DOI: 10.1210/endocr/bqaa051] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 04/01/2020] [Indexed: 02/06/2023]
Abstract
Cold-induced activation of thermogenesis modulates energy metabolism, but the role of humoral mediators is not completely understood. We aimed to investigate the role of parathyroid and thyroid hormones in acute and adaptive response to cold in humans. Examinations were performed before/after 15 minutes of ice-water swimming (n = 15) or 120 to 150 minutes of cold-induced nonshivering thermogenesis (NST) applied to cold-acclimatized (n = 6) or non-acclimatized (n = 11) individuals. Deep-neck brown adipose tissue (BAT) was collected from non-acclimatized patients undergoing elective neck surgery (n = 36). Seasonal variations in metabolic/hormonal parameters of ice-water swimmers were evaluated. We found that in ice-water swimmers, PTH and TSH increased and free T3, T4 decreased after a 15-minute winter swim, whereas NST-inducing cold exposure failed to regulate PTH and free T4 and lowered TSH and free T3. Ice-water swimming-induced increase in PTH correlated negatively with systemic calcium and positively with phosphorus. In non-acclimatized men, NST-inducing cold decreased PTH and TSH. Positive correlation between systemic levels of PTH and whole-body metabolic preference for lipids as well as BAT volume was found across the 2 populations. Moreover, NST-cooling protocol-induced changes in metabolic preference for lipids correlated positively with changes in PTH. Finally, variability in circulating PTH correlated positively with UCP1/UCP1, PPARGC1A, and DIO2 in BAT from neck surgery patients. Our data suggest that regulation of PTH and thyroid hormones during cold exposure in humans varies by cold acclimatization level and/or cold stimulus intensity. Possible role of PTH in NST is indicated by its positive relationships with whole-body metabolic preference for lipids, BAT volume, and UCP1 content.
Collapse
Affiliation(s)
- Zuzana Kovaničová
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Tímea Kurdiová
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Miroslav Baláž
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Health Sciences and Technology, Institute of Food, Nutrition and Health ETH Zürich, Schwerzenbach, Switzerland
| | - Patrik Štefanička
- Department of Otorhinolaryngology - Head and Neck Surgery, Faculty of Medicine Comenius University and University Hospital Bratislava, Bratislava, Slovakia
| | - Lukáš Varga
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Otorhinolaryngology - Head and Neck Surgery, Faculty of Medicine Comenius University and University Hospital Bratislava, Bratislava, Slovakia
| | - Oana C Kulterer
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Matthias J Betz
- Department of Endocrinology, Diabetes & Metabolism, University Hospital of Basel, Basel, Switzerland
| | - Alexander R Haug
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Irene A Burger
- Department of Nuclear Medicine, University Hospital Zürich, Zürich, Switzerland
| | - Florian W Kiefer
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Christian Wolfrum
- Department of Health Sciences and Technology, Institute of Food, Nutrition and Health ETH Zürich, Schwerzenbach, Switzerland
| | - Barbara Ukropcová
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
- Faculty of Physical Education and Sports, Comenius University, Bratislava, Slovakia
| | - Jozef Ukropec
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
196
|
Zhang F, Liu B, Deng Q, Sheng D, Xu J, He X, Zhang L, Liu S. UCP1 regulates ALDH-positive breast cancer stem cells through releasing the suppression of Snail on FBP1. Cell Biol Toxicol 2020; 37:277-291. [PMID: 32472219 DOI: 10.1007/s10565-020-09533-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/18/2020] [Indexed: 12/22/2022]
Abstract
Uncoupling protein 1 (UCP1) has been implicated in ameliorating metabolic related disorders, of which most symptoms are risk factors for breast cancer. Here, we found that UCP1 was obviously downregulated in basal-like breast cancer (BLBC) and was positively correlated with improved survival. However, the underlying regulatory mechanisms remain largely unknown. Our studies showed that UCP1 inhibited tumor progression via suppressing aldehyde dehydrogenase (ALDH)-positive breast cancer stem cell (BCSC) population in BLBC. Furthermore, we found that UCP1 induced the upregulation of fructose bisphosphatase 1 (FBP1) which was previously blocked by Snail overexpression, and UCP1 decreased ALDH-positive BCSCs via FBP1-dependent metabolic rewiring, which could be reversed by Snail overexpression. In addition, breast cancer cells co-cultured with UCP1-deficient adipocytes had increased proportion of ALDH-positive BCSCs, indicating a potential protection role of UCP1 in tumor microenvironment. These results suggested that UCP1 suppressed BCSCs through inhibiting Snail-mediated repression of FBP1, and that upregulation of UCP1 might be a previously undescribed therapeutic strategy for combating breast cancer. Graphical abstract.
Collapse
Affiliation(s)
- Fuchuang Zhang
- Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Key Laboratory of Medical Epigenetics and Metabolism, Shanghai Medical College, Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Fudan University, Shanghai, 200032, China
| | - Bingjie Liu
- Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Key Laboratory of Medical Epigenetics and Metabolism, Shanghai Medical College, Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Fudan University, Shanghai, 200032, China
| | - Qiaodan Deng
- Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Key Laboratory of Medical Epigenetics and Metabolism, Shanghai Medical College, Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Fudan University, Shanghai, 200032, China
| | - Dandan Sheng
- Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Key Laboratory of Medical Epigenetics and Metabolism, Shanghai Medical College, Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Fudan University, Shanghai, 200032, China
| | - Jiahui Xu
- Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Key Laboratory of Medical Epigenetics and Metabolism, Shanghai Medical College, Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Fudan University, Shanghai, 200032, China
| | - Xueyan He
- Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Key Laboratory of Medical Epigenetics and Metabolism, Shanghai Medical College, Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Fudan University, Shanghai, 200032, China
| | - Lixing Zhang
- Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Key Laboratory of Medical Epigenetics and Metabolism, Shanghai Medical College, Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Fudan University, Shanghai, 200032, China.
| | - Suling Liu
- Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Key Laboratory of Medical Epigenetics and Metabolism, Shanghai Medical College, Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
197
|
Polymethoxyselenoflavones exert anti-obesity effects through activation of lipolysis and brown adipocyte metabolism. Int J Obes (Lond) 2020; 45:122-129. [PMID: 32467614 DOI: 10.1038/s41366-020-0606-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/17/2020] [Accepted: 05/14/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND/OBJECTIVES Polymethoxyselenoflavone (PMSF) is a compound that substitutes the oxygen atom in a flavonoid with selenium. This study aimed to investigate the effects of PMSFs on lipid metabolism in adipocytes and their anti-obesity potential. SUBJECTS/METHODS To test lipolytic and thermogenic effects of the compounds in vitro, adipocytes differentiated from immortalized pre-brown adipocyte progenitors and pre-white adipocyte cell lines were treated with 19 PMSFs. The expression levels of brown adipocyte markers and genes related to mitochondrial metabolism were analyzed by qPCR and western blot. In vivo anti-obesity effect was investigated using diet-induced obesity mouse models and adipocyte-specific ATGL knockout mice. RESULTS The qPCR analysis identified 2-(3,4-dimethoxyphenyl)-4H-selenochromen-4-one (DMPSC) as the most potent brown adipogenic candidate among the 19 compounds tested in this study. DMPSC treatment significantly increased the mitochondrial content and oxidative metabolism in adipocytes in vitro. Mechanistically, DMPSC treatment increased lipolysis through activation of PKA downstream signaling. Consistently, the in vivo treatment of DMPSC increased energy consumption, reduced body weight, and improved glucose tolerance in mice fed with high-fat diets. Moreover, DMPSC treatment increased brown adipocyte marker expression and mitochondrial content in adipose tissue of mice. The anti-obesity effects were absent in adipocyte-specific ATGL knockout mice, indicating that the DMPSC effect is mediated by cytosolic lipase-dependent mechanisms. CONCLUSIONS Collectively, our results indicated that DMPSC exerted anti-obesity effects partially through the PKA signaling-mediated activation of lipolysis and brown adipose tissue metabolism.
Collapse
|
198
|
Liu T, Mi L, Xiong J, Orchard P, Yu Q, Yu L, Zhao XY, Meng ZX, Parker SCJ, Lin JD, Li S. BAF60a deficiency uncouples chromatin accessibility and cold sensitivity from white fat browning. Nat Commun 2020; 11:2379. [PMID: 32404872 PMCID: PMC7221096 DOI: 10.1038/s41467-020-16148-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 03/19/2020] [Indexed: 02/08/2023] Open
Abstract
Brown and beige fat share a remarkably similar transcriptional program that supports fuel oxidation and thermogenesis. The chromatin-remodeling machinery that governs genome accessibility and renders adipocytes poised for thermogenic activation remains elusive. Here we show that BAF60a, a subunit of the SWI/SNF chromatin-remodeling complexes, serves an indispensable role in cold-induced thermogenesis in brown fat. BAF60a maintains chromatin accessibility at PPARγ and EBF2 binding sites for key thermogenic genes. Surprisingly, fat-specific BAF60a inactivation triggers more pronounced cold-induced browning of inguinal white adipose tissue that is linked to induction of MC2R, a receptor for the pituitary hormone ACTH. Elevated MC2R expression sensitizes adipocytes and BAF60a-deficient adipose tissue to thermogenic activation in response to ACTH stimulation. These observations reveal an unexpected dichotomous role of BAF60a-mediated chromatin remodeling in transcriptional control of brown and beige gene programs and illustrate a pituitary-adipose signaling axis in the control of thermogenesis.
Collapse
MESH Headings
- Adipocytes, Brown/drug effects
- Adipocytes, Brown/metabolism
- Adipocytes, Brown/ultrastructure
- Adipose Tissue, Beige/metabolism
- Adipose Tissue, Brown/drug effects
- Adipose Tissue, Brown/metabolism
- Adipose Tissue, White/drug effects
- Adipose Tissue, White/metabolism
- Adrenocorticotropic Hormone/pharmacology
- Animals
- Basic Helix-Loop-Helix Transcription Factors/metabolism
- Binding Sites/genetics
- Cells, Cultured
- Chromatin/genetics
- Chromatin/metabolism
- Chromosomal Proteins, Non-Histone/deficiency
- Chromosomal Proteins, Non-Histone/genetics
- Cold Temperature
- Gene Expression/drug effects
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism
- Thermogenesis/drug effects
- Thermogenesis/genetics
Collapse
Affiliation(s)
- Tongyu Liu
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Lin Mi
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jing Xiong
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Peter Orchard
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Qi Yu
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Lei Yu
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Xu-Yun Zhao
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Zhuo-Xian Meng
- Department of Pathology and Pathophysiology, Key Laboratory of Disease Proteomics of Zhejiang Province, Hangzhou, Zhejiang, 310058, China
- Chronic Disease Research Institute of School of Public Health, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Stephen C J Parker
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jiandie D Lin
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Siming Li
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
199
|
Fang Y, McFadden S, Darcy J, Hascup ER, Hascup KN, Bartke A. Lifespan of long-lived growth hormone receptor knockout mice was not normalized by housing at 30°C since weaning. Aging Cell 2020; 19:e13123. [PMID: 32110850 PMCID: PMC7253058 DOI: 10.1111/acel.13123] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/22/2020] [Accepted: 01/30/2020] [Indexed: 12/18/2022] Open
Abstract
Growth hormone receptor knockout (GHRKO) mice are remarkably long-lived and have improved glucose homeostasis along with altered energy metabolism which manifests through decreased respiratory quotient (RQ) and increased oxygen consumption (VO2 ). Short-term exposure of these animals to increased environmental temperature (eT) at 30°C can normalize their VO2 and RQ. We hypothesized that increased heat loss in the diminutive GHRKO mice housed at 23°C and the consequent metabolic adjustments to meet the increased energy demand for thermogenesis may promote extension of longevity, and preventing these adjustments by chronic exposure to increased eT will reduce or eliminate their longevity advantage. To test these hypotheses, GHRKO mice were housed at increased eT (30°C) since weaning. Here, we report that contrasting with the effects of short-term exposure of adult GHRKO mice to 30°C, transferring juvenile GHRKO mice to chronic housing at 30°C did not normalize the examined parameters of energy metabolism and glucose homeostasis. Moreover, despite decreased expression levels of thermogenic genes in brown adipose tissue (BAT) and elevated core body temperature, the lifespan of male GHRKO mice was not reduced, while the lifespan of female GHRKO mice was increased, along with improved glucose homeostasis. The results indicate that GHRKO mice have intrinsic features that help maintain their delayed, healthy aging, and extended longevity at both 23°C and 30°C.
Collapse
Affiliation(s)
- Yimin Fang
- Department of NeurologySouthern Illinois University School of MedicineSpringfieldILUSA
| | - Samuel McFadden
- Department of NeurologySouthern Illinois University School of MedicineSpringfieldILUSA
| | - Justin Darcy
- Department of Internal MedicineSouthern Illinois University School of MedicineSpringfieldILUSA
- Present address:
Section on Integrative Physiology and MetabolismJoslin Diabetes CenterHarvard Medical SchoolBostonMAUSA
| | - Erin R. Hascup
- Department of NeurologySouthern Illinois University School of MedicineSpringfieldILUSA
- Department of PharmacologySouthern Illinois University School of MedicineSpringfieldILUSA
| | - Kevin N. Hascup
- Department of NeurologySouthern Illinois University School of MedicineSpringfieldILUSA
- Department of PharmacologySouthern Illinois University School of MedicineSpringfieldILUSA
- Department of Molecular Biology, Microbiology and BiochemistrySouthern Illinois University School of MedicineSpringfieldILUSA
| | - Andrzej Bartke
- Department of Internal MedicineSouthern Illinois University School of MedicineSpringfieldILUSA
| |
Collapse
|
200
|
McInnis K, Haman F, Doucet É. Humans in the cold: Regulating energy balance. Obes Rev 2020; 21:e12978. [PMID: 31863637 DOI: 10.1111/obr.12978] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/25/2019] [Accepted: 10/25/2019] [Indexed: 12/31/2022]
Abstract
For humans to maintain a stable core temperature in cold environments, an increase in energy expenditure (EE) is required. However, little is known about how cold stimulus impacts energy balance as a whole, as energy intake (EI) has been largely overlooked. This review focuses on the current state of knowledge regarding how cold exposure (CE) impacts both EE and EI, while highlighting key gaps and shortcomings in the literature. Animal models clearly reveal that CE produces large increases in EE, while decreasing environmental temperatures results in a significant negative dose-response effect in EI (r=-.787, P<.001), meaning animals eat more as temperature decreases. In humans, multiple methods are used to administer cold stimuli, which result in consistent yet quantitatively small increases in EE. However, only two studies have measured ad libitum food intake in combination with acute CE in humans. Chronic CE (i.e., cold acclimation) studies have been shown to produce minimal changes in body weight, with an average compensation of ~126%. Although more studies are required to investigate how cold impacts EI in humans, results presented in this review warrant caution before presenting or considering CE as a potential adjunct to weight loss strategies.
Collapse
Affiliation(s)
- Kurt McInnis
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
| | - François Haman
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
| | - Éric Doucet
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
| |
Collapse
|