151
|
Fiorini A, Vermeltfoort R, Dulaurent E, Hove MG, Borsch M. Cross-National Strategic Aeromedical Evacuation at the European Air Transport Command. Aerosp Med Hum Perform 2024; 95:709-715. [PMID: 39169493 DOI: 10.3357/amhp.6280.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
INTRODUCTION: The European Air Transport Command (EATC) is a seven-nation integrated command. One of its core capabilities is strategic aeromedical evacuation (AE). During the global COVID-19 pandemic and Ukrainian crisis, EATC proved that acting in concert is a valuable, effective, and reliable option.METHODS: By pooling and sharing aircraft and personnel, EATC has privileged access to a diverse fleet and pool of experts. Cooperation is based on a common set of rules and regulations, which ensures that EATC can address any problem with expertise.RESULTS: During the COVID-19 pandemic, 1060 COVID-19-positive patients were transported in 198 missions, with neither death nor disease transmission reported during those strategic AE flights. EATC transferred 986 military cases, mostly routine priority (91.4%); the other 74 cases were civilians, who were transported in 17 missions, with 81.1% categorized as urgent. During the Ukrainian crisis, 251 patients were transported, 112 military and 139 civilians, including 30 children. Among the recorded injuries were cerebrocranial, abdominal, and chest injuries, as well as fractures (180) and amputations (48) of the extremities.DISCUSSION: EATC is recognized as a center of expertise within the AE community, where interoperability and harmonization of concepts are key to safety and success. Cross-national missions, where a patient is evacuated by an aircraft and medical crew provided by another nation, offer maximum flexibility. Complex situations, such as the COVID-19 pandemic and the Ukrainian crisis, have shown that multinational cooperation is not only achievable but also provides robust, effective, and reliable solutions for AE in particular.Fiorini A, Vermeltfoort R, Dulaurent E, Hove MG, Borsch M. Cross-national strategic aeromedical evacuation at the European Air Transport Command. Aerosp Med Hum Perform. 2024; 95(9):709-715.
Collapse
|
152
|
Sadki M, Allali K. Stochastic two-strain epidemic model with saturated incidence rates driven by Lévy noise. Math Biosci 2024; 375:109262. [PMID: 39038697 DOI: 10.1016/j.mbs.2024.109262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024]
Abstract
In this paper, we introduce a stochastic two-strain epidemic model driven by Lévy noise describing the interaction between four compartments; susceptible, infected individuals by the first strain, infected ones by the second strain and the recovered individuals. The forces of infection, for both strains, are represented by saturated incidence rates. Our study begins with the investigation of unique global solution of the suggested mathematical model. Then, it moves to the determination of sufficient conditions of extinction and persistence in mean of the two-strain disease. In order to illustrate the theoretical findings, we give some numerical simulations.
Collapse
Affiliation(s)
- Marya Sadki
- Laboratory of Mathematics, Computer Science and Applications, Faculty of Sciences and Technologies, University of Hassan II of Casablanca, PO Box 146, Mohammedia, Morocco.
| | - Karam Allali
- Laboratory of Mathematics, Computer Science and Applications, Faculty of Sciences and Technologies, University of Hassan II of Casablanca, PO Box 146, Mohammedia, Morocco
| |
Collapse
|
153
|
Al-Madhagi H, Muhammed MT. Targeting COVID-19 and varicocele by blocking inflammasome: Ligand-based virtual screening. Arch Biochem Biophys 2024; 759:110107. [PMID: 39074718 DOI: 10.1016/j.abb.2024.110107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 07/31/2024]
Abstract
COVID-19 is a new generation of outbreaks that invade not only local emerging region, continental but also the whole globe. Varicocele on the other hand, is a testicular vascular disease that underlies 40 % of male infertility cases. Fortunately, the two diseases can be blocked through targeting one common target, NLRP3 inflammasome. Upon searching for similar drugs that gained FDA-approval in ChEMBL library along with examining their potential blockade of the receptor through docking using CB-DOCK-2, three potential approved drugs can be repurposed, ChEMBL 4297185, ChEMBL 1201749, ChEMBL 1200545 which had binding energy of -9.8 and -9.7 kcal/mol (stronger than the reference inhibitor, -9.3 kcal/mol). Also, ADME profile of the top 3 drugs showed better attributes. Also, the simulated proteins exhibited stable pattern with strong free binding energies. Among the potential inhibitor drugs ChEMBL 4297185 was found to remain inside the binding site of the protein during the 200 ns simulation time. Hence, it is anticipated to have the highest binding and thus inhibition potential against the protein. The suggested drugs, especially ChEMBL 4297185, are potentially repurposable toward treating COVID-19 and varicocele which deserve further experimental validation.
Collapse
Affiliation(s)
| | - Muhammed Tilahun Muhammed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Suleyman Demirel University, Isparta, Turkiye.
| |
Collapse
|
154
|
Bolinger AA, Li J, Xie X, Li H, Zhou J. Lessons learnt from broad-spectrum coronavirus antiviral drug discovery. Expert Opin Drug Discov 2024; 19:1023-1041. [PMID: 39078037 PMCID: PMC11390334 DOI: 10.1080/17460441.2024.2385598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/24/2024] [Indexed: 07/31/2024]
Abstract
INTRODUCTION Highly pathogenic coronaviruses (CoVs), such as severe acute respiratory syndrome CoV (SARS-CoV), Middle East respiratory syndrome CoV (MERS-CoV), and the most recent SARS-CoV-2 responsible for the COVID-19 pandemic, pose significant threats to human populations over the past two decades. These CoVs have caused a broad spectrum of clinical manifestations ranging from asymptomatic to severe distress syndromes (ARDS), resulting in high morbidity and mortality. AREAS COVERED The accelerated advancements in antiviral drug discovery, spurred by the COVID-19 pandemic, have shed new light on the imperative to develop treatments effective against a broad spectrum of CoVs. This perspective discusses strategies and lessons learnt in targeting viral non-structural proteins, structural proteins, drug repurposing, and combinational approaches for the development of antivirals against CoVs. EXPERT OPINION Drawing lessons from the pandemic, it becomes evident that the absence of efficient broad-spectrum antiviral drugs increases the vulnerability of public health systems to the potential onslaught by highly pathogenic CoVs. The rapid and sustained spread of novel CoVs can have devastating consequences without effective and specifically targeted treatments. Prioritizing the effective development of broad-spectrum antivirals is imperative for bolstering the resilience of public health systems and mitigating the potential impact of future highly pathogenic CoVs.
Collapse
Affiliation(s)
- Andrew A. Bolinger
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jun Li
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Xuping Xie
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Institute for Drug Discovery, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Hongmin Li
- Department of Pharmacology and Toxicology, College of Pharmacy, The BIO5 Institute, The University of Arizona, Tucson, AZ 85721, USA
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Institute for Drug Discovery, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
155
|
Li B, Qiao L, Zhang J, Xiao Q, Liu J, Zhang B, Liu H. Natural 7,8-secolignans from Schisandra sphenanthera fruit potently inhibit SARS-CoV-2 3CL pro and inflammation. J Tradit Complement Med 2024; 14:501-509. [PMID: 39262656 PMCID: PMC11384954 DOI: 10.1016/j.jtcme.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 09/13/2024] Open
Abstract
The coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), turned into a global pandemic, and there remains an urgent demand for specific/targeted drugs for the disease. The 3C-like protease (3CLpro) is a promising target for developing anti-coronavirus drugs. Schisandra sphenanthera fruit is a well-known traditional Chinese medicine (TCM) with good antiviral activity. This study found that the ethanolic extract displayed a significant inhibitory effect against SARS-CoV-2 3CLpro. Forty-four compounds were identified in this extract using ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS). Combining molecular docking and in vitro experiments, we found that two epimeric 7,8-secolignans, rel-(1S,2R)-1-(3,4-dimethoxyphenyl)-2-methyl-3-oxobutyl-3,4-dimethoxybenzoate (2) and rel-(1S,2S)-1-(3,4-dimethoxyphenyl)-2-methyl-3-oxobutyl-3,4-dimethoxybenzoate (4), potently inhibited 3CLpro with IC50 values of 4.88 ± 0.60 μM and 4.75 ± 0.34 μM, respectively. Moreover, in vivo and in vitro experiments indicated that compounds 2 and 4 were potent in regulating the inflammatory response and preventing lung injury. Our findings indicate that compounds 2 and 4 may emerge as promising SARS-CoV-2 inhibitors via 3CLpro inhibition and anti-inflammatory mechanisms.
Collapse
Affiliation(s)
- Bin Li
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, 100193, Beijing, China
| | - Liansheng Qiao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 100029, Beijing, China
| | - Jianuo Zhang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, 100193, Beijing, China
| | - Qi Xiao
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, 100193, Beijing, China
| | - Jiushi Liu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, 100193, Beijing, China
| | - Bengang Zhang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, 100193, Beijing, China
| | - Haitao Liu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, 100193, Beijing, China
| |
Collapse
|
156
|
Huang L, Wang Y, He Y, Huang D, Wen T, Han Z. Association Between COVID-19 and Neurological Diseases: Evidence from Large-Scale Mendelian Randomization Analysis and Single-Cell RNA Sequencing Analysis. Mol Neurobiol 2024; 61:6354-6365. [PMID: 38300446 PMCID: PMC11339101 DOI: 10.1007/s12035-024-03975-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/18/2024] [Indexed: 02/02/2024]
Abstract
Observational studies have suggested that SARS-CoV-2 infection increases the risk of neurological diseases, but it remains unclear whether the association is causal. The present study aims to evaluate the causal relationships between SARS-CoV-2 infections and neurological diseases and analyzes the potential routes of SARS-CoV-2 entry at the cellular level. We performed Mendelian randomization (MR) analysis with CAUSE method to investigate causal relationship of SARS-CoV-2 infections with neurological diseases. Then, we conducted single-cell RNA sequencing (scRNA-seq) analysis to obtain evidence of potential neuroinvasion routes by measuring SARS-CoV-2 receptor expression in specific cell subtypes. Fast gene set enrichment analysis (fGSEA) was further performed to assess the pathogenesis of related diseases. The results showed that the COVID-19 is causally associated with manic (delta_elpd, - 0.1300, Z-score: - 2.4; P = 0.0082) and epilepsy (delta_elpd: - 2.20, Z-score: - 1.80; P = 0.038). However, no significant effects were observed for COVID-19 on other traits. Moreover, there are 23 cell subtypes identified through the scRNA-seq transcriptomics data of epilepsy, and SARS-CoV-2 receptor TTYH2 was found to be specifically expressed in oligodendrocyte and astrocyte cell subtypes. Furthermore, fGSEA analysis showed that the cell subtypes with receptor-specific expression was related to methylation of lysine 27 on histone H3 (H3K27ME3), neuronal system, aging brain, neurogenesis, and neuron projection. In summary, this study shows causal links between SARS-CoV-2 infections and neurological disorders such as epilepsy and manic, supported by MR and scRNA-seq analysis. These results should be considered in further studies and public health measures on COVID-19 and neurological diseases.
Collapse
Affiliation(s)
- Lin Huang
- Department of Bioinformatics, School of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Yongheng Wang
- Department of Bioinformatics, School of Basic Medicine, Chongqing Medical University, Chongqing, China
- International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Yijie He
- Department of Bioinformatics, School of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Dongyu Huang
- Department of Bioinformatics, School of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Tong Wen
- Department of Bioinformatics, School of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Zhijie Han
- Department of Bioinformatics, School of Basic Medicine, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
157
|
Kasle G, Das Sarma J. The Role of Coronavirus Spike Protein in Inducing Optic Neuritis in Mice: Parallels to the SARS-CoV-2 Virus. J Neuroophthalmol 2024; 44:319-329. [PMID: 39164897 DOI: 10.1097/wno.0000000000002234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
BACKGROUND Optic neuritis (ON), one of the clinical manifestations of the human neurological disease multiple sclerosis (MS), was also reported in patients with COVID-19 infection, highlighting one potential neurological manifestation of SARS-CoV-2. However, the mechanism of ON in these patients is poorly understood. EVIDENCE ACQUISITION Insight may be gained by studying the neurotropic mouse hepatitis virus (MHV-A59), a β-coronavirus that belongs to the same family as SARS-CoV-2. RESULTS Mouse hepatitis virus-A59, or its isogenic spike protein recombinant strains, inoculation in mice provides an important experimental model to understand underpinning mechanisms of neuroinflammatory demyelination in association with acute stage optic nerve inflammation and chronic stage optic nerve demyelination concurrent with axonal loss. Spike is a surface protein that mediates viral binding and entry into host cells, as well as cell-cell fusion and viral spread. Studies have implicated spike-mediated mechanisms of virus-induced neuroinflammatory demyelination by comparing naturally occurring demyelinating (DM) and nondemyelinating (NDM) MHV strains. CONCLUSIONS Here, we summarize findings in MHV-induced experimental ON and myelitis, using natural DM and NDM strains as well as engineered recombinant strains of MHV to understand the role of spike protein in inducing ON and demyelinating disease pathology. Potential parallels in human coronavirus-mediated ON and demyelination, and insight into potential therapeutic strategies, are discussed.
Collapse
Affiliation(s)
- Grishma Kasle
- Department of Biological Sciences (GK, JDS), Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India; and Department of Ophthalmology (JDS), University of Pennsylvania, Philadelphia, Pennsylvania
| | | |
Collapse
|
158
|
Eslami Z, Joshaghani H. Investigating the Role of Serotonin Levels in Cognitive Impairments Associated with Long COVID-19. Chonnam Med J 2024; 60:141-146. [PMID: 39381125 PMCID: PMC11458317 DOI: 10.4068/cmj.2024.60.3.141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/02/2024] [Accepted: 09/12/2024] [Indexed: 10/10/2024] Open
Abstract
This study aimed to investigate the activation of the inflammation process, triggered as an immune response to combat the invasion by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2 is a highly transmissible and pathogenic coronavirus that emerged in late 2019 and has caused a pandemic of acute respiratory disease, named 'coronavirus disease 2019' (COVID-19). Several mechanisms contribute to the reduction in serotonin levels, such as the impaired absorption of dietary tryptophan, hindered serotonin transport via platelets, and increased activity of an enzyme responsible for breaking down serotonin. Individuals seeking treatment for long COVID-19 had lower serotonin levels in their blood than those who had fully recovered from the infection. Furthermore, patients with long COVID-19 also had reduced tryptophan levels. The potential benefits of dietary supplementation with tryptophan or the use of selective serotonin reuptake inhibitors (SSRIs) to improve cognitive impairments and depressive and anxiety disorders in long-term COVID-19 patients. The findings support the immune response's pivotal role in modulating serotonin levels and further highlight the intricate connection between the immune system and neurotransmitter regulation.
Collapse
Affiliation(s)
- Zahra Eslami
- Department of Clinical Biochemistry, Hamadan University of Medical Science, Hamadan, Iran
| | - Hamidreza Joshaghani
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Golestan, Iran
| |
Collapse
|
159
|
Yeniocak AS, Tercan C, Dagdeviren E, Arabaci O, Arabaci EEG. Impact of SARS-CoV-2 infection and vaccination on cesarean section outcomes: a retrospective analysis. Ann Saudi Med 2024; 44:306-318. [PMID: 39368119 PMCID: PMC11454973 DOI: 10.5144/0256-4947.2024.306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/31/2024] [Indexed: 10/07/2024] Open
Abstract
BACKGROUND Pregnant individuals have faced unique challenges during the COVID-19 pandemic, necessitating a closer examination of maternal and fetal health outcomes. OBJECTIVES Investigate the morbidity and mortality associated with SARS-CoV-2 infection among pregnant individuals, considering vaccination status and variant strains. DESIGN Retrospective cohort. SETTING Tertiary state hospital. PATIENTS AND METHODS Patients who underwent cesarean sections were categorized into three periods: pre-vaccination (before 31 August 2021), early post-vaccination (from September 2021), and late post-vaccination (aligned with 70% immunization coverage by 2 September 2021). Data collected included demographic information (age, gravidity, parity count, gestational age, newborn APGAR scores), cesarean section indications, chronic diseases, vaccination status, vaccine type and doses, SARS-CoV-2 variant status, ICU admission, and mortality due to COVID-19. MAIN OUTCOME MEASURES ICU admission and mortality rates, focusing on the impact of SARS-CoV-2 infection and vaccination status. SAMPLE SIZE 297 COVID PCR-positive symptomatic patients who underwent cesarean sections. RESULTS In the pre-vaccination group, there were 13 mortalities (8.1%) compared to 9 (6.6%) post-vaccination (P=.610). Maternal ARDS was seen in 46.2% of pre-vaccination mortalities versus 11.1% post-vaccination (P=.045). COVID-19 delta variant patients had higher ICU admission (80%) and mortality rates (40%). Rates of COVID-19 PCR-positive cesarean sections, ICU admissions, and mortality declined significantly in early (P=.021, P=.004, P=.009), respectively and late post-vaccination periods (P<.001, P<.001, P=.0019), respectively. Vaccinated patients had no ICU admissions or mortality. CONCLUSIONS Vaccination against COVID-19 is crucial for pregnant individuals as it significantly reduces the risk of severe illness. While vaccines offer substantial protection, the pandemic's acute phase might be waning, yet COVID-19 remains a global threat, particularly in regions with limited vaccine access. Continued vigilance and proactive measures are essential to mitigate ongoing risks and the emergence of new variant strains. LIMITATIONS Retrospective observational design and the single-center setting, which may affect the generalizability of the findings.
Collapse
Affiliation(s)
- Ali Selcuk Yeniocak
- From the Department of Obstetrics and Gynecology, T.C. Sağlık Bakanlığı Başakşehir Çam ve Sakura Şehir Hastanesi, Basaksehir, Istanbul, Turkey
| | - Can Tercan
- From the Department of Obstetrics and Gynecology, T.C. Sağlık Bakanlığı Başakşehir Çam ve Sakura Şehir Hastanesi, Basaksehir, Istanbul, Turkey
| | - Emrah Dagdeviren
- From the Department of Obstetrics and Gynecology, T.C. Sağlık Bakanlığı Başakşehir Çam ve Sakura Şehir Hastanesi, Basaksehir, Istanbul, Turkey
| | - Onur Arabaci
- From the Department of Obstetrics and Gynecology, T.C. Sağlık Bakanlığı Başakşehir Çam ve Sakura Şehir Hastanesi, Basaksehir, Istanbul, Turkey
| | - Emine Elif Genc Arabaci
- From the Department of Obstetrics and Gynecology, T.C. Sağlık Bakanlığı Başakşehir Çam ve Sakura Şehir Hastanesi, Basaksehir, Istanbul, Turkey
| |
Collapse
|
160
|
Maestri R, Perez-Lamarque B, Zhukova A, Morlon H. Recent evolutionary origin and localized diversity hotspots of mammalian coronaviruses. eLife 2024; 13:RP91745. [PMID: 39196812 PMCID: PMC11357359 DOI: 10.7554/elife.91745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024] Open
Abstract
Several coronaviruses infect humans, with three, including the SARS-CoV2, causing diseases. While coronaviruses are especially prone to induce pandemics, we know little about their evolutionary history, host-to-host transmissions, and biogeography. One of the difficulties lies in dating the origination of the family, a particularly challenging task for RNA viruses in general. Previous cophylogenetic tests of virus-host associations, including in the Coronaviridae family, have suggested a virus-host codiversification history stretching many millions of years. Here, we establish a framework for robustly testing scenarios of ancient origination and codiversification versus recent origination and diversification by host switches. Applied to coronaviruses and their mammalian hosts, our results support a scenario of recent origination of coronaviruses in bats and diversification by host switches, with preferential host switches within mammalian orders. Hotspots of coronavirus diversity, concentrated in East Asia and Europe, are consistent with this scenario of relatively recent origination and localized host switches. Spillovers from bats to other species are rare, but have the highest probability to be towards humans than to any other mammal species, implicating humans as the evolutionary intermediate host. The high host-switching rates within orders, as well as between humans, domesticated mammals, and non-flying wild mammals, indicates the potential for rapid additional spreading of coronaviruses across the world. Our results suggest that the evolutionary history of extant mammalian coronaviruses is recent, and that cases of long-term virus-host codiversification have been largely over-estimated.
Collapse
Affiliation(s)
- Renan Maestri
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSLParisFrance
- Departamento de Ecologia, Instituto de Biociências, Universidade Federal do Rio Grande do SulPorto AlegreBrazil
| | - Benoît Perez-Lamarque
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSLParisFrance
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d’histoire naturelle, CNRS, Sorbonne Université, EPHE, UAParisFrance
| | - Anna Zhukova
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics HubParisFrance
| | - Hélène Morlon
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSLParisFrance
| |
Collapse
|
161
|
Atemin A, Ivanova A, Peppel W, Stamatov R, Gallegos R, Durden H, Uzunova S, Vershinin MD, Saffarian S, Stoynov SS. Kinetic Landscape of Single Virus-like Particles Highlights the Efficacy of SARS-CoV-2 Internalization. Viruses 2024; 16:1341. [PMID: 39205315 PMCID: PMC11359012 DOI: 10.3390/v16081341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/22/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
The efficiency of virus internalization into target cells is a major determinant of infectivity. SARS-CoV-2 internalization occurs via S-protein-mediated cell binding followed either by direct fusion with the plasma membrane or endocytosis and subsequent fusion with the endosomal membrane. Despite the crucial role of virus internalization, the precise kinetics of the processes involved remains elusive. We developed a pipeline, which combines live-cell microscopy and advanced image analysis, for measuring the rates of multiple internalization-associated molecular events of single SARS-CoV-2-virus-like particles (VLPs), including endosome ingression and pH change. Our live-cell imaging experiments demonstrate that only a few minutes after binding to the plasma membrane, VLPs ingress into RAP5-negative endosomes via dynamin-dependent scission. Less than two minutes later, VLP speed increases in parallel with a pH drop below 5, yet these two events are not interrelated. By co-imaging fluorescently labeled nucleocapsid proteins, we show that nucleocapsid release occurs with similar kinetics to VLP acidification. Neither Omicron mutations nor abrogation of the S protein polybasic cleavage site affected the rate of VLP internalization, indicating that they do not confer any significant advantages or disadvantages during this process. Finally, we observe that VLP internalization occurs two to three times faster in VeroE6 than in A549 cells, which may contribute to the greater susceptibility of the former cell line to SARS-CoV-2 infection. Taken together, our precise measurements of the kinetics of VLP internalization-associated processes shed light on their contribution to the effectiveness of SARS-CoV-2 propagation in cells.
Collapse
Affiliation(s)
- Aleksandar Atemin
- Institute of Molecular Biology, Bulgarian Academy of Sciences, 21, G. Bontchev Str., 1113 Sofia, Bulgaria; (A.A.); (A.I.); (R.S.); (S.U.)
| | - Aneliya Ivanova
- Institute of Molecular Biology, Bulgarian Academy of Sciences, 21, G. Bontchev Str., 1113 Sofia, Bulgaria; (A.A.); (A.I.); (R.S.); (S.U.)
| | - Wiley Peppel
- Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA; (W.P.); (R.G.); (H.D.)
- Center for Cell and Genome Science, University of Utah, Salt Lake City, UT 84112, USA
| | - Rumen Stamatov
- Institute of Molecular Biology, Bulgarian Academy of Sciences, 21, G. Bontchev Str., 1113 Sofia, Bulgaria; (A.A.); (A.I.); (R.S.); (S.U.)
| | - Rodrigo Gallegos
- Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA; (W.P.); (R.G.); (H.D.)
- Center for Cell and Genome Science, University of Utah, Salt Lake City, UT 84112, USA
| | - Haley Durden
- Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA; (W.P.); (R.G.); (H.D.)
- Center for Cell and Genome Science, University of Utah, Salt Lake City, UT 84112, USA
| | - Sonya Uzunova
- Institute of Molecular Biology, Bulgarian Academy of Sciences, 21, G. Bontchev Str., 1113 Sofia, Bulgaria; (A.A.); (A.I.); (R.S.); (S.U.)
| | - Michael D. Vershinin
- Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA; (W.P.); (R.G.); (H.D.)
- Center for Cell and Genome Science, University of Utah, Salt Lake City, UT 84112, USA
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | - Saveez Saffarian
- Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA; (W.P.); (R.G.); (H.D.)
- Center for Cell and Genome Science, University of Utah, Salt Lake City, UT 84112, USA
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | - Stoyno S. Stoynov
- Institute of Molecular Biology, Bulgarian Academy of Sciences, 21, G. Bontchev Str., 1113 Sofia, Bulgaria; (A.A.); (A.I.); (R.S.); (S.U.)
| |
Collapse
|
162
|
Madhlopa QK, Mtumbuka M, Kumwenda J, Illingworth TA, Van Hout MC, Mfutso-Bengo J, Mikeka C, Shawa IT. Factors affecting COVID-19 vaccine uptake in populations with higher education: insights from a cross-sectional study among university students in Malawi. BMC Infect Dis 2024; 24:848. [PMID: 39169315 PMCID: PMC11337745 DOI: 10.1186/s12879-024-09534-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 06/18/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND The Coronavirus disease-2019 (COVID-19) vaccines were rolled out in many countries; however, sub-optimal COVID-19 vaccine uptake remains a major public health concern globally. This study aimed at assessing the factors that affected the uptake, hesitancy, and resistance of the COVID-19 vaccine among university undergraduate students in Malawi, a least developed country in Africa. METHODS A descriptive cross-sectional study design was conducted using an online semi-structured questionnaire. A total of 343 University undergraduate students in Blantyre participated in this study after obtaining ethical clearance. Data was exported from Survey Monkey to Microsoft Excel version-21 for cleaning and was analysed using SPSS version-29. Descriptive statistics, including percentages, were performed to define the sample characteristics. Pearson Chi-square and Fisher's exact test were performed to identify significant relationships between vaccine uptake and demographics. A 95% confidence interval was set, and a p-value of < 0.05 was considered statistically significant. RESULTS Of the 343 participants, 43% were vaccinated. Among the vaccinated, the majority (47.3%, n = 69/146) received Johnson & Johnson vaccine followed by AstraZeneca (46.6%, n = 68/146). The commonly reported reason for vaccine acceptance was 'to protect me against getting COVID-19' (49%); whereas vaccine hesitancy was attributed to 'lack of knowledge (34%), and concerns about vaccine safety (25%). CONCLUSIONS This study found that adequate knowledge about benefits and safety of COVID-19 vaccine could potentially increase uptake. Lack of credible information or misinformation contributed to vaccine hesitancy. The findings provide insights for design of strategies to increase future vaccine uptake and reduce determinants of vaccine hesitancy. To reduce vaccination hesitancy in any population with or without higher education, we recommend that institutions entrusted with vaccine management must optimise health messaging, and reduce mis-information and dis-information.
Collapse
Affiliation(s)
| | - Matthews Mtumbuka
- UbuntuNet Alliance, Onions Office Complex, Off Mzimba Street, P.O. Box 2550, Lilongwe, Malawi
| | - Joel Kumwenda
- Kamuzu University of Health Sciences, P/Bag 360, Chichiri Blantyre 3, Blantyre, Malawi
| | | | - Marie-Claire Van Hout
- Research, Innovation and Impact, South East Technological University, Waterford, Cork Road Campus, X91 K0EK, Ireland
| | - Joseph Mfutso-Bengo
- Kamuzu University of Health Sciences, P/Bag 360, Chichiri Blantyre 3, Blantyre, Malawi
| | - Chomora Mikeka
- Faculty of Science, University of Malawi Chancellor College, P.O. Box 280, Zomba, Malawi
| | - Isaac Thom Shawa
- Kamuzu University of Health Sciences, P/Bag 360, Chichiri Blantyre 3, Blantyre, Malawi.
- School of Human Science, University of Derby, Kedleston Road, Derby, DE22 1GB, UK.
| |
Collapse
|
163
|
Qian J, Yang B, Wang S, Yuan S, Zhu W, Zhou Z, Zhang Y, Hu G. Drug Repurposing for COVID-19 by Constructing a Comorbidity Network with Central Nervous System Disorders. Int J Mol Sci 2024; 25:8917. [PMID: 39201608 PMCID: PMC11354300 DOI: 10.3390/ijms25168917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/06/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
In the post-COVID-19 era, treatment options for potential SARS-CoV-2 outbreaks remain limited. An increased incidence of central nervous system (CNS) disorders has been observed in long-term COVID-19 patients. Understanding the shared molecular mechanisms between these conditions may provide new insights for developing effective therapies. This study developed an integrative drug-repurposing framework for COVID-19, leveraging comorbidity data with CNS disorders, network-based modular analysis, and dynamic perturbation analysis to identify potential drug targets and candidates against SARS-CoV-2. We constructed a comorbidity network based on the literature and data collection, including COVID-19-related proteins and genes associated with Alzheimer's disease, Parkinson's disease, multiple sclerosis, and autism spectrum disorder. Functional module detection and annotation identified a module primarily involved in protein synthesis as a key target module, utilizing connectivity map drug perturbation data. Through the construction of a weighted drug-target network and dynamic network-based drug-repurposing analysis, ubiquitin-carboxy-terminal hydrolase L1 emerged as a potential drug target. Molecular dynamics simulations suggested pregnenolone and BRD-K87426499 as two drug candidates for COVID-19. This study introduces a dynamic-perturbation-network-based drug-repurposing approach to identify COVID-19 drug targets and candidates by incorporating the comorbidity conditions of CNS disorders.
Collapse
Affiliation(s)
- Jing Qian
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-Infective Medicine, Department of Bioinformatics, Center for Systems Biology, School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou 215213, China; (J.Q.); (S.W.)
| | - Bin Yang
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-Infective Medicine, Department of Bioinformatics, Center for Systems Biology, School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou 215213, China; (J.Q.); (S.W.)
| | - Shuo Wang
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-Infective Medicine, Department of Bioinformatics, Center for Systems Biology, School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou 215213, China; (J.Q.); (S.W.)
| | - Su Yuan
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-Infective Medicine, Department of Bioinformatics, Center for Systems Biology, School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou 215213, China; (J.Q.); (S.W.)
| | - Wenjing Zhu
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-Infective Medicine, Department of Bioinformatics, Center for Systems Biology, School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou 215213, China; (J.Q.); (S.W.)
| | - Ziyun Zhou
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-Infective Medicine, Department of Bioinformatics, Center for Systems Biology, School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou 215213, China; (J.Q.); (S.W.)
| | - Yujuan Zhang
- Experimental Center of Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Guang Hu
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-Infective Medicine, Department of Bioinformatics, Center for Systems Biology, School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou 215213, China; (J.Q.); (S.W.)
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou 215123, China
- Key Laboratory of Alkene-Carbon Fibres-Based Technology & Application for Detection of Major Infectious Diseases, Soochow University, Suzhou 215123, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215123, China
| |
Collapse
|
164
|
Nicolai E, Tomassetti F, Pignalosa S, Redi S, Marino M, Basile U, Ciotti M. The Evolution of Serological Assays during Two Years of the COVID-19 Pandemic: From an Easy-to-Use Screening Tool for Identifying Current Infections to Laboratory Algorithms for Discovering Immune Protection and Optimizing Vaccine Administration. COVID 2024; 4:1272-1290. [DOI: 10.3390/covid4080091] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2025]
Abstract
The emergence of COVID-19 has evolved into a global pandemic, causing an unprecedented public health crisis marked by unprecedented levels of morbidity never seen in the recent past. Considerable research efforts have been made in the scientific community to establish an optimal method to identify severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections and to understand the induced immune response. This review examined the development of serological tests during the COVID-19 pandemic, considering the factors affecting sensitivity and specificity, which are key to promote an efficient vaccination strategy for public health. The market has witnessed the introduction of various serological tests for the detection of SARS-CoV-2, such as the chemiluminescence immunoassay (CLIA), which emerged as a powerful and rapid tool to monitor the antibody response before and after vaccination or infection. Therefore, developing serological tests by studying antibody trends and persistence is essential for creating long-term strategies. Our analysis underscores the multifaceted applications of serological tests in pandemic management with a focus on the critical insights they provide into antibody dynamics that help in managing the ongoing pandemic and shaping future public health initiatives, providing a basis for optimizing the future response to viral threats.
Collapse
Affiliation(s)
- Eleonora Nicolai
- Department of Experimental Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy
| | - Flaminia Tomassetti
- Department of Experimental Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy
| | - Stefano Pignalosa
- Department of Clinical Pathology, Santa Maria Goretti Hospital, A.U.S.L. Latina, 04100 Latina, Italy
| | - Serena Redi
- Department of Clinical Pathology, Santa Maria Goretti Hospital, A.U.S.L. Latina, 04100 Latina, Italy
| | - Mariapaola Marino
- Dipartimento di Medicina e Chirurgia Traslazionale, Sezione di Patologia Generale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario “A. Gemelli” I.R.C.C.S., 00168 Rome, Italy
| | - Umberto Basile
- Department of Clinical Pathology, Santa Maria Goretti Hospital, A.U.S.L. Latina, 04100 Latina, Italy
| | - Marco Ciotti
- Department of Laboratory Medicine, Virology Unit, Tor Vergata University Hospital, Viale Oxford 81, 00133 Rome, Italy
| |
Collapse
|
165
|
Ulzurrun E, Grande-Pérez A, del Hoyo D, Guevara C, Gil C, Sorzano CO, Campillo NE. Unlocking the puzzle: non-defining mutations in SARS-CoV-2 proteome may affect vaccine effectiveness. Front Public Health 2024; 12:1386596. [PMID: 39228849 PMCID: PMC11369981 DOI: 10.3389/fpubh.2024.1386596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 08/02/2024] [Indexed: 09/05/2024] Open
Abstract
Introduction SARS-CoV-2 variants are defined by specific genome-wide mutations compared to the Wuhan genome. However, non-clade-defining mutations may also impact protein structure and function, potentially leading to reduced vaccine effectiveness. Our objective is to identify mutations across the entire viral genome rather than focus on individual mutations that may be associated with vaccine failure and to examine the physicochemical properties of the resulting amino acid changes. Materials and methods Whole-genome consensus sequences of SARS-CoV-2 from COVID-19 patients were retrieved from the GISAID database. Analysis focused on Dataset_1 (7,154 genomes from Italy) and Dataset_2 (8,819 sequences from Spain). Bioinformatic tools identified amino acid changes resulting from codon mutations with frequencies of 10% or higher, and sequences were organized into sets based on identical amino acid combinations. Results Non-defining mutations in SARS-CoV-2 genomes belonging to clades 21 L (Omicron), 22B/22E (Omicron), 22F/23A (Omicron) and 21J (Delta) were associated with vaccine failure. Four sets of sequences from Dataset_1 were significantly linked to low vaccine coverage: one from clade 21L with mutations L3201F (ORF1a), A27- (S) and G30- (N); two sets shared by clades 22B and 22E with changes A27- (S), I68- (S), R346T (S) and G30- (N); and one set shared by clades 22F and 23A containing changes A27- (S), F486P (S) and G30- (N). Booster doses showed a slight improvement in protection against Omicron clades. Regarding 21J (Delta) two sets of sequences from Dataset_2 exhibited the combination of non-clade mutations P2046L (ORF1a), P2287S (ORF1a), L829I (ORF1b), T95I (S), Y145H (S), R158- (S) and Q9L (N), that was associated with vaccine failure. Discussion Vaccine coverage associations appear to be influenced by the mutations harbored by marketed vaccines. An analysis of the physicochemical properties of amino acid revealed that primarily hydrophobic and polar amino acid substitutions occurred. Our results suggest that non-defining mutations across the proteome of SARS-CoV-2 variants could affect the extent of protection of the COVID-19 vaccine. In addition, alteration of the physicochemical characteristics of viral amino acids could potentially disrupt protein structure or function or both.
Collapse
Affiliation(s)
- Eugenia Ulzurrun
- Center for Biological Research Margarita Salas, Spanish National Research Council (CSIC), Madrid, Spain
- National Center for Biotechnology, Spanish National Research Council (CSIC), Madrid, Spain
- Institute of Mathematical Sciences, Spanish National Research Council (CSIC), Madrid, Spain
| | - Ana Grande-Pérez
- Department of Cellular Biology, Genetics, and Physiology, University of Malaga, Málaga, Spain
| | - Daniel del Hoyo
- National Center for Biotechnology, Spanish National Research Council (CSIC), Madrid, Spain
| | - Cesar Guevara
- Mechatronics and Interactive Systems - MIST Research Center, Universidad Tecnológica Indoamérica, Quito, Ecuador
| | - Carmen Gil
- Center for Biological Research Margarita Salas, Spanish National Research Council (CSIC), Madrid, Spain
| | - Carlos Oscar Sorzano
- National Center for Biotechnology, Spanish National Research Council (CSIC), Madrid, Spain
| | - Nuria E. Campillo
- Center for Biological Research Margarita Salas, Spanish National Research Council (CSIC), Madrid, Spain
| |
Collapse
|
166
|
Yang Y, Luo YD, Zhang CB, Xiang Y, Bai XY, Zhang D, Fu ZY, Hao RB, Liu XL. Progress in Research on Inhibitors Targeting SARS-CoV-2 Main Protease (M pro). ACS OMEGA 2024; 9:34196-34219. [PMID: 39157135 PMCID: PMC11325518 DOI: 10.1021/acsomega.4c03023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/12/2024] [Accepted: 07/19/2024] [Indexed: 08/20/2024]
Abstract
Since 2019, the novel coronavirus (SARS-CoV-2) has caused significant morbidity and millions of deaths worldwide. The Coronavirus Disease 2019 (COVID-19), caused by SARS-CoV-2 and its variants, has further highlighted the urgent need for the development of effective therapeutic agents. Currently, the highly conserved and broad-spectrum nature of main proteases (Mpro) renders them of great importance in the field of inhibitor study. In this study, we categorize inhibitors targeting Mpro into three major groups: mimetic, nonmimetic, and natural inhibitors. We then present the research progress of these inhibitors in detail, including their mechanism of action, antiviral activity, pharmacokinetic properties, animal experiments, and clinical studies. This review aims to provide valuable insights and potential avenues for the development of more effective antiviral drugs against SARS-CoV-2.
Collapse
Affiliation(s)
- Yue Yang
- School
of Medicine, Yan’an University, Yan’an 716000, China
| | - Yi-Dan Luo
- School
of Medicine, Yan’an University, Yan’an 716000, China
| | - Chen-Bo Zhang
- School
of Medicine, Yan’an University, Yan’an 716000, China
| | - Yang Xiang
- School
of Medicine, Yan’an University, Yan’an 716000, China
- College
of Physical Education, Yan’an University, Yan’an 716000, China
| | - Xin-Yue Bai
- School
of Medicine, Yan’an University, Yan’an 716000, China
| | - Die Zhang
- School
of Medicine, Yan’an University, Yan’an 716000, China
| | - Zhao-Ying Fu
- School
of Medicine, Yan’an University, Yan’an 716000, China
| | - Ruo-Bing Hao
- School
of Medicine, Yan’an University, Yan’an 716000, China
| | - Xiao-Long Liu
- School
of Medicine, Yan’an University, Yan’an 716000, China
| |
Collapse
|
167
|
G Paremes Sivam H, Moudgil-Joshi J, Kaliaperumal C. Has COVID-19 affected the publication productivity of neurosurgeons in UK and Republic of Ireland? A bibliometric analysis. HEALTH OPEN RESEARCH 2024; 5:39. [PMID: 39822889 PMCID: PMC11736354 DOI: 10.12688/healthopenres.13445.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 08/08/2024] [Indexed: 01/19/2025]
Abstract
Background Our aim was to determine the impact of the COVID-19 pandemic on the publication productivity of neurosurgeons in the United Kingdom and Republic of Ireland. Methods Using bibliometric data we quantified and analysed the academic output of neurosurgeons in England, Scotland, Northern Ireland, Wales, and the Republic of Ireland, between two time periods i.e., January 2017 to December 2019 and January 2020 to March 2022, as a representative capture of the academic climate before and after the start of the COVID-19 pandemic. The consultant neurosurgeons were grouped according to their departments, title, sex, subspecialities and additional research qualifications. Using data charts on Scopus author directory, the total number of publications, citations and h-indices of each neurosurgeon were obtained over the two time periods. The median and mean of these 3 parameters were computed and the median values were analysed and tested for significance using a Mann Whitney-U test according to the groups. Results Our analysis conveyed a statistically significant increase (2440 publications and between January 2020 and March 2022 there were 2548 publications p<0.05) in the total number of publications after the start of the COVID-19 pandemic compared to before. There was a statistically significant decrease in the mean number of citations (mean 55.24 vs 57.01, p<0.05), after the start of the COVID-19 pandemic. This trend was observed in both sexes, in authors without an additional MD/PhD and in authors who sub-specialized in neuro-oncology. Overall, there was a significant decrease in H-index after the start of the pandemic compared to before (median h-index:1.00 and 2.00; mean h-index:1.8 and 3.4 respectively). Conclusions There appears to be an apparent increase in total number of publications after the start of the COVID-19 pandemic, most authors have registered a reduction in citations and h-indices, suggesting a lower impact and unequal distribution of the abovementioned increase.
Collapse
Affiliation(s)
| | - Jigi Moudgil-Joshi
- Oxford University Hospitals NHS Foundation Trust, University of Oxford, Oxford, England, UK
| | | |
Collapse
|
168
|
Wang C, Wang S, Ma X, Yao X, Zhan K, Wang Z, He D, Zuo W, Han S, Zhao G, Cao B, Zhao J, Bian X, Wang J. P-selectin Facilitates SARS-CoV-2 Spike 1 Subunit Attachment to Vesicular Endothelium and Platelets. ACS Infect Dis 2024; 10:2656-2667. [PMID: 38912949 DOI: 10.1021/acsinfecdis.3c00728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
SARS-CoV-2 infection starts from the association of its spike 1 (S1) subunit with sensitive cells. Vesicular endothelial cells and platelets are among the cell types that bind SARS-CoV-2, but the effectors that mediate viral attachment on the cell membrane have not been fully elucidated. Herein, we show that P-selectin (SELP), a biomarker for endothelial dysfunction and platelet activation, can facilitate the attachment of SARS-CoV-2 S1. Since we observe colocalization of SELP with S1 in the lung tissues of COVID-19 patients, we perform molecular biology experiments on human umbilical vein endothelial cells (HUVECs) to confirm the intermolecular interaction between SELP and S1. SELP overexpression increases S1 recruitment to HUVECs and enhances SARS-CoV-2 spike pseudovirion infection. The opposite results are determined after SELP downregulation. As S1 causes endothelial inflammatory responses in a dose-dependent manner, by activating the interleukin (IL)-17 signaling pathway, SELP-induced S1 recruitment may contribute to the development of a "cytokine storm" after viral infection. Furthermore, SELP also promotes the attachment of S1 to the platelet membrane. Employment of PSI-697, a small inhibitor of SELP, markedly decreases S1 adhesion to both HUVECs and platelets. In addition to the role of membrane SELP in facilitating S1 attachment, we also discover that soluble SELP is a prognostic factor for severe COVID-19 through a meta-analysis. In this study, we identify SELP as an adhesive site for the SARS-CoV-2 S1, thus providing a potential drug target for COVID-19 treatment.
Collapse
Affiliation(s)
- Cheng Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury of PLA, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Shaobo Wang
- Department of Nephrology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Xiangyu Ma
- Department of Epidemiology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Xiaohong Yao
- Institute of Pathology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Kegang Zhan
- Department of Epidemiology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Zai Wang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
| | - Di He
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100029, China
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Capital Medical University, Beijing 100069, China
| | - Wenting Zuo
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100029, China
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Songling Han
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury of PLA, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Gaomei Zhao
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury of PLA, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Bin Cao
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100029, China
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Capital Medical University, Beijing 100069, China
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
- Tsinghua University-Peking University Joint Center for Life Sciences, Beijing 100084, China
- Changping Laboratory, Beijing 102206, China
- New Cornerstone Science Laboratory, China-Japan Friendship Hospital, Beijing 100029, China
| | - Jinghong Zhao
- Department of Nephrology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Xiuwu Bian
- Institute of Pathology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Junping Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury of PLA, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| |
Collapse
|
169
|
Raczkiewicz I, Rivière C, Bouquet P, Desmarets L, Tarricone A, Camuzet C, François N, Lefèvre G, Silva Angulo F, Robil C, Trottein F, Sahpaz S, Dubuisson J, Belouzard S, Goffard A, Séron K. Hyperforin, the major metabolite of St. John's wort, exhibits pan-coronavirus antiviral activity. Front Microbiol 2024; 15:1443183. [PMID: 39176276 PMCID: PMC11339956 DOI: 10.3389/fmicb.2024.1443183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/29/2024] [Indexed: 08/24/2024] Open
Abstract
Introduction The COVID-19 pandemic caused by the SARS-CoV-2 virus has underscored the urgent necessity for the development of antiviral compounds that can effectively target coronaviruses. In this study, we present the first evidence of the antiviral efficacy of hyperforin, a major metabolite of St. John's wort, for which safety and bioavailability in humans have already been established. Methods Antiviral assays were conducted in cell culture with four human coronaviruses: three of high virulence, SARS-CoV-2, SARS-CoV, and MERS-CoV, and one causing mild symptoms, HCoV-229E. The antiviral activity was also evaluated in human primary airway epithelial cells. To ascertain the viral step inhibited by hyperforin, time-of-addition assays were conducted. Subsequently, a combination assay of hyperforin with remdesivir was performed. Results The results demonstrated that hyperforin exhibited notable antiviral activity against the four tested human coronaviruses, with IC50 values spanning from 0.24 to 2.55 µM. Kinetic studies indicated that the observed activity occur at a post-entry step, potentially during replication. The antiviral efficacy of hyperforin was additionally corroborated in human primary airway epithelial cells. The results demonstrated a reduction in both intracellular and extracellular SARS-CoV-2 viral RNA, confirming that hyperforin targeted the replication step. Finally, an additive antiviral effect on SARS-CoV-2 was observed when hyperforin was combined with remdesivir. Discussion In conclusion, hyperforin has been identified as a novel pan-coronavirus inhibitor with activity in human primary airway epithelial cells, a preclinical model for coronaviruses. These findings collectively suggest that hyperforin has potential as a candidate antiviral agent against current and future human coronaviruses.
Collapse
Affiliation(s)
- Imelda Raczkiewicz
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR9017 – Center for Infection and Immunity of Lille (CIIL), Lille, France
| | - Céline Rivière
- BioEcoAgro, Joint Research Unit 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV – Institut Charles Viollette, Lille, France
| | - Peggy Bouquet
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR9017 – Center for Infection and Immunity of Lille (CIIL), Lille, France
| | - Lowiese Desmarets
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR9017 – Center for Infection and Immunity of Lille (CIIL), Lille, France
| | - Audrey Tarricone
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR9017 – Center for Infection and Immunity of Lille (CIIL), Lille, France
| | - Charline Camuzet
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR9017 – Center for Infection and Immunity of Lille (CIIL), Lille, France
| | - Nathan François
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR9017 – Center for Infection and Immunity of Lille (CIIL), Lille, France
| | - Gabriel Lefèvre
- BioEcoAgro, Joint Research Unit 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV – Institut Charles Viollette, Lille, France
| | - Fabiola Silva Angulo
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR9017 – Center for Infection and Immunity of Lille (CIIL), Lille, France
| | - Cyril Robil
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR9017 – Center for Infection and Immunity of Lille (CIIL), Lille, France
| | - François Trottein
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR9017 – Center for Infection and Immunity of Lille (CIIL), Lille, France
| | - Sevser Sahpaz
- BioEcoAgro, Joint Research Unit 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV – Institut Charles Viollette, Lille, France
| | - Jean Dubuisson
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR9017 – Center for Infection and Immunity of Lille (CIIL), Lille, France
| | - Sandrine Belouzard
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR9017 – Center for Infection and Immunity of Lille (CIIL), Lille, France
| | - Anne Goffard
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR9017 – Center for Infection and Immunity of Lille (CIIL), Lille, France
| | - Karin Séron
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR9017 – Center for Infection and Immunity of Lille (CIIL), Lille, France
| |
Collapse
|
170
|
Macharia Z, Ogoti B, Otieno M, Gitonga P, Bosco-Lauth A, Maritim M, Lemarkoko E, Keya A, Sankok J, Gitao G, Onono J, Oyugi J, Bowen RA. Transmission of SARS-CoV-2 among underserved pastoralist communities in Kajiado County, Kenya: 2020-2022. PLoS One 2024; 19:e0308318. [PMID: 39116080 PMCID: PMC11309416 DOI: 10.1371/journal.pone.0308318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024] Open
Abstract
Initial transmission of severe acute respiratory syndrome virus-2 (SARS-CoV-2) was highest in densely populated regions of Kenya. Transmission gradually trickled down to the less densely populated, remote and underserved regions such as the pastoral regions of Kajiado County which are characterized by poor healthcare systems. Molecular assays that were pivotal for COVID-19 diagnosis were not available in these regions. Serology is an alternative method for retrospectively tracking the transmission of SARS-CoV-2 in such populations. Dry blood spots (DBS) were prepared from consenting patients attending six health facilities in Kajiado County from March 2020 to March 2022. Upon elution, we conducted an enzyme-linked immunosorbent assay (ELISA) for the detection of SARS-Cov-2 IgG antibodies. Of the 908 DBSs we analyzed, 706 (78%) were from female participants. The overall seropositivity to SARS-Cov-2 antibodies was 7.3% (95% CI 5.7-9.1). The elderly (over 60 years) and male participants had a high likelihood of testing positive for SAR-CoV-2 infections. Mashuru (15.6%, 14/90) and Meto (15%, 19/127) health facilities registered the highest proportion of seropositive participants. Evidence of SARS-CoV-2 transmission among pastoralists in the remote and underserved regions of Kajiado County was established by DBS sampling and serologic testing.
Collapse
Affiliation(s)
- Zipporah Macharia
- Institute of Tropical and Infectious Diseases (UNITID), University of Nairobi, Nairobi, Kenya
- Department of Medical Microbiology and Immunology, University of Nairobi, Nairobi, Kenya
| | - Brian Ogoti
- Department of Medical Microbiology and Immunology, University of Nairobi, Nairobi, Kenya
- Center of Epidemiological Modelling and Analysis, University of Nairobi, Nairobi, Kenya
| | - Magdaline Otieno
- Institute of Tropical and Infectious Diseases (UNITID), University of Nairobi, Nairobi, Kenya
| | - Pauline Gitonga
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Angela Bosco-Lauth
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Marybeth Maritim
- Department of Clinical Medicine and Therapeutics, University of Nairobi, Nairobi, Kenya
| | | | - Aggrey Keya
- Kajiado County Referral Hospital, Kajiado Town, Kajiado, Kenya
| | - Joseph Sankok
- Kajiado County Referral Hospital, Kajiado Town, Kajiado, Kenya
| | - George Gitao
- Department of Pathology, Microbiology and Parasitology, University of Nairobi, Nairobi, Kenya
| | - Joshua Onono
- Department of Public Health Pharmacology and Toxicology, University of Nairobi, Nairobi, Kenya
| | - Julius Oyugi
- Institute of Tropical and Infectious Diseases (UNITID), University of Nairobi, Nairobi, Kenya
- Department of Medical Microbiology and Immunology, University of Nairobi, Nairobi, Kenya
| | - Richard A. Bowen
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| |
Collapse
|
171
|
Qian FH, Cao Y, Liu YX, Huang J, Zhu RH. A predictive model to explore risk factors for severe COVID-19. Sci Rep 2024; 14:18197. [PMID: 39107340 PMCID: PMC11303808 DOI: 10.1038/s41598-024-68946-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024] Open
Abstract
With the rapid spread of the novel coronavirus (COVID-19), a sustained global pandemic has emerged. Globally, the cumulative death toll is in the millions. The rising number of COVID-19 infections and deaths has severely impacted the lives of people worldwide, healthcare systems, and economic development. We conducted a retrospective analysis of the characteristics of COVID-19 patients. This analysis includes clinical features upon initial hospital admission, relevant laboratory test results, and imaging findings. We aimed to identify risk factors for severe illness and to construct a predictive model for assessing the risk of severe COVID-19. We collected and analyzed electronic medical records of confirmed COVID-19 patients admitted to the Affiliated Hospital of Jiangsu University (Zhenjiang, China) between December 18, 2022, and February 28, 2023. According to the WHO diagnostic criteria for the novel coronavirus, we divided the patients into two groups: severe and non-severe, and compared their clinical, laboratory, and imaging data. Logistic regression analysis, the least absolute shrinkage and selection operator (LASSO) regression, and receiver operating characteristic (ROC) curve analysis were used to identify the relevant risk factors for severe COVID-19 patients. Patients were divided into a training cohort and a validation cohort. A nomogram model was constructed using the "rms" package in R software. Among the 346 patients, the severe group exhibited significantly higher respiratory rates, breathlessness, altered consciousness, neutrophil-to-lymphocyte ratio (NLR), and lactate dehydrogenase (LDH) levels compared to the non-severe group. Imaging findings indicated that the severe group had a higher proportion of bilateral pulmonary inflammation and ground-glass opacities compared to the non-severe group. NLR and LDH were identified as independent risk factors for severe patients. The diagnostic performance was maximized when NLR, respiratory rate (RR), and LDH were combined. Based on the statistical analysis results, we developed a COVID-19 severity risk prediction model. The total score is calculated by adding up the scores for each of the twelve independent variables. By mapping the total score to the lowest scale, we can estimate the risk of COVID-19 severity. In addition, the calibration plots and DCA analysis showed that the nomogram had better discrimination power for predicting the severity of COVID-19. Our results showed that the development and validation of the predictive nomogram had good predictive value for severe COVID-19.
Collapse
Affiliation(s)
- Fen-Hong Qian
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Jiangsu University, No.438, Jiefang Road, Jingkou District, Zhenjiang, Jiangsu, China.
| | - Yu Cao
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Jiangsu University, No.438, Jiefang Road, Jingkou District, Zhenjiang, Jiangsu, China
| | - Yu-Xue Liu
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Jiangsu University, No.438, Jiefang Road, Jingkou District, Zhenjiang, Jiangsu, China
| | - Jing Huang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Jiangsu University, No.438, Jiefang Road, Jingkou District, Zhenjiang, Jiangsu, China
| | - Rong-Hao Zhu
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Jiangsu University, No.438, Jiefang Road, Jingkou District, Zhenjiang, Jiangsu, China
| |
Collapse
|
172
|
Beckman CKDC, Luppieri V, Pereira LM, Silva CR, Castelo PM, Cadenaro M, Rontani RMP, Castilho ARFD. Impact of COVID-19 on pediatric dental care in two epicenters: Italy and Brazil. Braz Oral Res 2024; 38:e068. [PMID: 39109765 PMCID: PMC11376669 DOI: 10.1590/1807-3107bor-2024.vol38.0068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 03/06/2024] [Indexed: 09/20/2024] Open
Abstract
The study aimed to compare the adherence of Brazilian and Italian pediatric dentists to the biosafety measures and operative protocols recommended by the health authorities during COVID-19 pandemic and to classify the participants according to their risk of infection. An online questionnaire with 34 questions about sociodemographic and occupational data, dental practice organization, biological risk management, and clinical operative protocols was sent to Brazilian and Italian pediatric dentists using a convenience sampling strategy. Chi-square test and multivariate analysis (two-step cluster) were performed (α = 5%). Of 641 respondents (377 Brazilians and 264 Italians), most were female (94% and 70%, respectively), aged 20-39 years (63%), with over 10 years of professional experience (58% and 49%, respectively). Based on adherence to recommended biosafety measures, participants were classified as "safer" (n = 219) or "less safe" (n = 422). Adherence to recommended protocols by the majority of participants resulted in low contagion rates (Brazilians = 5%; Italians = 12.5%). Participants with extensive professional experience in the dental setting exhibited a greater tendency to implement multiple adaptations (three or more) in their practice. Most participants (Brazilians = 92%; Italians = 80.7%) adopted the recommended minimal intervention dentistry approaches, with the use of fissure sealants and the use of non-rotary instruments for caries removal the most frequently techniques used among Brazilians (36%) and Italians (66%), respectively. Two different profiles of pediatric dentists were identified based on the biosafety protocols adopted during the pandemic. In addition, changes were implemented in the dental care provided to children, with focus on the minimal intervention dentistry.
Collapse
Affiliation(s)
- Camilla Karoline de Carvalho Beckman
- Universidade Estadual de Campinas - Unicamp, Faculdade de Odontologia de Piracicaba, Departamento de Ciências da Saúde e Odontologia Infantil, Piracicaba, SP, Brazil
| | - Valentina Luppieri
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", Trieste, Italy
| | - Letícia Martins Pereira
- Universidade Estadual de Campinas - Unicamp, Faculdade de Odontologia de Piracicaba, Departamento de Ciências da Saúde e Odontologia Infantil, Piracicaba, SP, Brazil
| | - Camila Ribeiro Silva
- Universidade Estadual de Campinas - Unicamp, Faculdade de Odontologia de Piracicaba, Departamento de Odontologia Restauradora, Piracicaba, SP, Brazil
| | - Paula Midori Castelo
- Universidade Federal de São Paulo, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Departamento de Ciências Farmacêuticas, Diadema, SP, Brazil
| | - Milena Cadenaro
- University of Trieste, Department of Medicine, Surgery and Health Sciences, Trieste, Italy
| | - Regina Maria Puppin Rontani
- Universidade Estadual de Campinas - Unicamp, Faculdade de Odontologia de Piracicaba, Departamento de Ciências da Saúde e Odontologia Infantil, Piracicaba, SP, Brazil
| | | |
Collapse
|
173
|
Tatsing Foka FE, Tumelo Mufhandu H. Predictive Assessment of the Antiviral Properties of Imperata cylindrica against SARS-CoV-2. Adv Virol 2024; 2024:8598708. [PMID: 39135917 PMCID: PMC11317227 DOI: 10.1155/2024/8598708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 06/26/2024] [Accepted: 07/16/2024] [Indexed: 08/15/2024] Open
Abstract
The omicron variant and its sublineages are highly contagious, and they still constitute a global source of concern despite vaccinations. Hospitalizations and mortality rates resulting from infections by these variants of concern are still common. The existing therapeutic alternatives have presented various setbacks such as low potency, poor pharmacokinetic profiles, and drug resistance. The need for alternative therapeutic options cannot be overemphasized. Plants and their phytochemicals present interesting characteristics that make them suitable candidates for the development of antiviral therapeutic agents. This study aimed to investigate the antiviral potential of Imperata cylindrica (I. cylindrica). Specifically, the objective of this study was to identify I. cylindrica phytochemicals that display inhibitory effects against SARS-CoV-2 main protease (Mpro), a highly conserved protein among coronaviruses. Molecular docking and in silico pharmacokinetic assays were used to assess 72 phytocompounds that are found in I. cylindrica as ligands and Mpro (6LU7) as the target. Only eight phytochemicals (bifendate, cylindrene, tabanone, siderin, 5-hydroxy-2-[2-(2-hydroxyphenyl)ethyl]-4H-1-benzopyran-4-one, maritimin, 5-methoxyflavone, and flavone) displayed high binding affinities with Mpro with docking scores ranging from -5.6 kcal/mol to -9.1 kcal/mol. The in silico pharmacokinetic and toxicological assays revealed that tabanone was the best and safest phytochemical for the development of an inhibitory agent against coronavirus main protease. Thus, the study served as a baseline for further in vitro and in vivo assessment of this phytochemical against Mpro of SARS-CoV-2 variants of concern to validate these in silico findings.
Collapse
Affiliation(s)
- Frank Eric Tatsing Foka
- Department of MicrobiologyVirology LaboratorySchool of Biological SciencesFaculty of Natural and Agricultural SciencesNorth West University, Mafikeng, Private Bag X2046, Mmabatho, South Africa
| | - Hazel Tumelo Mufhandu
- Department of MicrobiologyVirology LaboratorySchool of Biological SciencesFaculty of Natural and Agricultural SciencesNorth West University, Mafikeng, Private Bag X2046, Mmabatho, South Africa
| |
Collapse
|
174
|
Grimes SL, Denison MR. The Coronavirus helicase in replication. Virus Res 2024; 346:199401. [PMID: 38796132 PMCID: PMC11177069 DOI: 10.1016/j.virusres.2024.199401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/16/2024] [Accepted: 05/17/2024] [Indexed: 05/28/2024]
Abstract
The coronavirus nonstructural protein (nsp) 13 encodes an RNA helicase (nsp13-HEL) with multiple enzymatic functions, including unwinding and nucleoside phosphatase (NTPase) activities. Attempts for enzymatic inactivation have defined the nsp13-HEL as a critical enzyme for viral replication and a high-priority target for antiviral development. Helicases have been shown to play numerous roles beyond their canonical ATPase and unwinding activities, though these functions are just beginning to be explored in coronavirus biology. Recent genetic and biochemical studies, as well as work in structurally-related helicases, have provided evidence that supports new hypotheses for the helicase's potential role in coronavirus replication. Here, we review several aspects of the coronavirus nsp13-HEL, including its reported and proposed functions in viral replication and highlight fundamental areas of research that may aid the development of helicase inhibitors.
Collapse
Affiliation(s)
- Samantha L Grimes
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Mark R Denison
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
175
|
Fošum M, Štěpánek L, Ivanová K, Nakládalová M. Medical occupational check-ups during the COVID-19 pandemic in the European Union. Eur J Public Health 2024; 34:753-759. [PMID: 38894505 PMCID: PMC11293833 DOI: 10.1093/eurpub/ckae103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
Given the enormous scale of the COVID-19 pandemic affecting the healthcare sector, limited human resource capacity, and efforts to prevent the spread of COVID-19, occupational health protection could not escape changes. The aim was to identify and compare the regulations regarding the provision of medical occupational check-ups (MOCs) during the pandemic in all European Union member states (EU MS). The study employed the Delphi method, involving experts from EU MS to assess MOC regulations between January 2020 and May 2021. Experts were queried regarding the existence and specifics of MOC regulations, particularly for entrance and periodic MOCs at hazardous and non-hazardous workplaces. Out of the 27 EU MS surveyed, 13 EU MS did not regulate MOCs, while 14 EU MS (51.6%) regulated the provision of MOCs. The regulations were changes in the way MOCs were provided, modifications (postponement in time, alternative provision, e.g. using telemedicine or online connection, or replacing the medical certificate of fitness to work based on the MOC with a declaration by the worker), or interruption without compensation, even for hazardous works. The regulations were in effect for different lengths of time and varied in some countries during the study period. The cumulative duration of MOC interruptions in all EU MS during the study period was 137 months (7.5% of the cumulative study period of 1836 months). Given the different approaches to the provision of MOCs in EU MS, it has proved appropriate to develop an optimal unified framework plan for future similar situations.
Collapse
Affiliation(s)
- Matyáš Fošum
- Department of Occupational Medicine, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czech Republic
- Department of Public Health Protection, Ministry of Health of the Czech Republic, Prague, Czech Republic
| | - Ladislav Štěpánek
- Department of Occupational Medicine, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czech Republic
- Department of Public Health, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czech Republic
| | - Kateřina Ivanová
- Department of Public Health, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czech Republic
| | - Marie Nakládalová
- Department of Occupational Medicine, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czech Republic
| |
Collapse
|
176
|
Jiao Y, Zhao P, Xu LD, Yu JQ, Cai HL, Zhang C, Tong C, Yang YL, Xu P, Sun Q, Chen N, Wang B, Huang YW. Enteric coronavirus nsp2 is a virulence determinant that recruits NBR1 for autophagic targeting of TBK1 to diminish the innate immune response. Autophagy 2024; 20:1762-1779. [PMID: 38597182 PMCID: PMC11262224 DOI: 10.1080/15548627.2024.2340420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 03/30/2024] [Accepted: 04/04/2024] [Indexed: 04/11/2024] Open
Abstract
Non-structural protein 2 (nsp2) exists in all coronaviruses (CoVs), while its primary function in viral pathogenicity, is largely unclear. One such enteric CoV, porcine epidemic diarrhea virus (PEDV), causes high mortality in neonatal piglets worldwide. To determine the biological role of nsp2, we generated a PEDV mutant containing a complete nsp2 deletion (rPEDV-Δnsp2) from a highly pathogenic strain by reverse genetics, showing that nsp2 was dispensable for PEDV infection, while its deficiency reduced viral replication in vitro. Intriguingly, rPEDV-Δnsp2 was entirely avirulent in vivo, with significantly increased productions of IFNB (interferon beta) and IFN-stimulated genes (ISGs) in various intestinal tissues of challenged newborn piglets. Notably, nsp2 targets and degrades TBK1 (TANK binding kinase 1), the critical kinase in the innate immune response. Mechanistically, nsp2 induced the macroautophagy/autophagy process and recruited a selective autophagic receptor, NBR1 (NBR1 autophagy cargo receptor). NBR1 subsequently facilitated the K48-linked ubiquitination of TBK1 and delivered it for autophagosome-mediated degradation. Accordingly, the replication of rPEDV-Δnsp2 CoV was restrained by reduced autophagy and excess productions of type I IFNs and ISGs. Our data collectively define enteric CoV nsp2 as a novel virulence determinant, propose a crucial role of nsp2 in diminishing innate antiviral immunity by targeting TBK1 for NBR1-mediated selective autophagy, and pave the way to develop a new type of nsp2-based attenuated PEDV vaccine. The study also provides new insights into the prevention and treatment of other pathogenic CoVs.Abbreviations: 3-MA: 3-methyladenine; Baf A1: bafilomycin A1; CoV: coronavirus; CQ: chloroquine; dpi: days post-inoculation; DMVs: double-membrane vesicles; GABARAP: GABA type A receptor-associated protein; GFP: green fluorescent protein; GIGYF2: GRB10 interacting GYF protein 2; hpi: hours post-infection; IFA: immunofluorescence assay; IFIH1: interferon induced with helicase C domain 1; IFIT2: interferon induced protein with tetratricopeptide repeats 2; IFITM1: interferon induced transmembrane protein 1; IFNB: interferon beta; IRF3: interferon regulatory factor 3; ISGs: interferon-stimulated genes; mAb: monoclonal antibody; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAVS: mitochondrial antiviral signaling protein; NBR1: NBR1 autophagy cargo receptor; nsp2: non-structural protein 2; OAS1: 2'-5'-oligoadenylate synthetase 1; PEDV: porcine epidemic diarrhea virus; PRRs: pattern recognition receptors; RIGI: RNA sensor RIG-I; RT-qPCR: reverse transcription quantitative polymerase chain reaction; SQSTM1: sequestosome 1; TBK1: TANK binding kinase 1; TCID50: 50% tissue culture infectious doses; VSV: vesicular stomatitis virus.
Collapse
Affiliation(s)
- Yajuan Jiao
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Pengwei Zhao
- Department of Biochemistry and Department of Cardiology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ling-Dong Xu
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, China
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Jia-Qi Yu
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Hou-Li Cai
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Chong Zhang
- Boehringer Ingelheim Vetmedica (China) Co. Ltd, Taizhou, China
| | - Chao Tong
- Boehringer Ingelheim Vetmedica (China) Co. Ltd, Taizhou, China
| | - Yong-Le Yang
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Pinglong Xu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Qiming Sun
- Department of Biochemistry and Department of Cardiology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ning Chen
- Boehringer Ingelheim Vetmedica (China) Co. Ltd, Taizhou, China
| | - Bin Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yao-Wei Huang
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
| |
Collapse
|
177
|
Xu C, Wang Z, Yu B, Pan Z, Ni J, Feng Y, Huang S, Wu M, Zhou J, Fang L, Wu Z. Simultaneous and ultrafast detection of pan-SARS-coronaviruses and influenza A/B viruses by a novel multiplex real-time RT-PCR assay. Virus Res 2024; 346:199410. [PMID: 38815870 PMCID: PMC11177080 DOI: 10.1016/j.virusres.2024.199410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
Here we report an ultrafast quadruplex RT-qPCR assay with robust diagnostic ability to detect and distinguish pan-SARS-CoVs and influenza A/B viruses within 35 min. This quadruplex RT-qPCR assay comprised of one novel RNA-based internal control targeting human β2-microglobulin (B2M) for process accuracy and three newly-designed primers-probe sets targeting the envelope protein (E) of pan-SARS-CoV, matrix protein (MP) of influenza A virus and non-structural (NS) region of influenza B virus. This quadruplex assay exhibited a sensitivity comparable to its singleplex counterparts and a slightly higher to that of the Centers for Disease Control and Prevention-recommended SARS-CoV-2 and influenza A/B assays. The novel assay showed no false-positive amplifications with other common respiratory viruses, and its 95 % limits of detection for pan-SARS-CoV and influenza A/B virus was 4.26-4.52 copies/reaction. Moreover, the assay was reproducible with less than 1 % coefficient of variation and adaptable testing different clinical and environmental samples. Our ultrafast quadruplex RT-qPCR assay can serve as an attractive tool for effective differentiation of influenza A/B virus and SARS-CoV-2, but more importantly prognose the reemergence/emergence of SARS and novel coronaviruses or influenza viruses from animal spillover.
Collapse
Affiliation(s)
- Changping Xu
- Center for Public Health Research, Medical School of Nanjing University, Nanjing, China; Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Zhengyang Wang
- Department of Pulmonary and Critical Care Medicine, Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University College of Medicine, Hangzhou, China
| | - Beibei Yu
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University College of Medicine, Hangzhou, China
| | - Zhenhuang Pan
- Yiwu Center for Disease Control and Prevention, Yiwu, China
| | - Jun Ni
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University College of Medicine, Hangzhou, China
| | - Yan Feng
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Shiwang Huang
- Shangcheng District Center for Disease Control and Prevention, Hangzhou, China
| | - Maomao Wu
- Wenzhou Center for Disease Control and Prevention, Wenzhou, China
| | - Jiancang Zhou
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University College of Medicine, Hangzhou, China
| | - Lei Fang
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University College of Medicine, Hangzhou, China.
| | - Zhiwei Wu
- Center for Public Health Research, Medical School of Nanjing University, Nanjing, China.
| |
Collapse
|
178
|
Roohi A, Gharagozlou S. Vitamin D supplementation and calcium: Many-faced gods or nobody in fighting against Corona Virus Disease 2019. Clin Nutr ESPEN 2024; 62:172-184. [PMID: 38901939 DOI: 10.1016/j.clnesp.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/07/2024] [Accepted: 05/22/2024] [Indexed: 06/22/2024]
Abstract
In December 2019, Corona Virus Disease 2019 (COVID-19) was first identified and designated as a pandemic in March 2020 due to rapid spread of the virus globally. At the beginning of the pandemic, only a few treatment options, mainly focused on supportive care and repurposing medications, were available. Due to its effects on immune system, vitamin D was a topic of interest during the pandemic, and researchers investigated its potential impact on COVID-19 outcomes. However, the results of studies about the impact of vitamin D on the disease are inconclusive. In the present narrative review, different roles of vitamin D regarding the COVID-19 have been discussed to show that vitamin D supplementation should be recommended carefully.
Collapse
Affiliation(s)
- Azam Roohi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | | |
Collapse
|
179
|
Fomina AD, Uvarova VI, Kozlovskaya LI, Palyulin VA, Osolodkin DI, Ishmukhametov AA. Ensemble docking based virtual screening of SARS-CoV-2 main protease inhibitors. Mol Inform 2024; 43:e202300279. [PMID: 38973780 DOI: 10.1002/minf.202300279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/21/2024] [Accepted: 03/03/2024] [Indexed: 07/09/2024]
Abstract
During the first years of COVID-19 pandemic, X-ray structures of the coronavirus drug targets were acquired at an unprecedented rate, giving hundreds of PDB depositions in less than a year. The main protease (Mpro) of severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) is the primary validated target of direct-acting antivirals. The selection of the optimal ensemble of structures of Mpro for the docking-driven virtual screening campaign was thus non-trivial and required a systematic and automated approach. Here we report a semi-automated active site RMSD based procedure of ensemble selection from the SARS-CoV-2 Mpro crystallographic data and virtual screening of its inhibitors. The procedure was compared with other approaches to ensemble selection and validated with the help of hand-picked and peer-reviewed activity-annotated libraries. Prospective virtual screening of non-covalent Mpro inhibitors resulted in a new chemotype of thienopyrimidinone derivatives with experimentally confirmed enzyme inhibition.
Collapse
Affiliation(s)
- Anastasia D Fomina
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), 108819, Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Victoria I Uvarova
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), 108819, Moscow, Russia
| | - Liubov I Kozlovskaya
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), 108819, Moscow, Russia
- Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, 119991, Moscow, Russia
| | - Vladimir A Palyulin
- Department of Chemistry, Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Dmitry I Osolodkin
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), 108819, Moscow, Russia
- Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, 119991, Moscow, Russia
| | - Aydar A Ishmukhametov
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), 108819, Moscow, Russia
- Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, 119991, Moscow, Russia
| |
Collapse
|
180
|
Liew YY, Dong Q, Lakshman N, Khajuria A. The 100 most-cited articles in COVID-19: a bibliometric analysis. Eur J Public Health 2024; 34:744-752. [PMID: 38970903 PMCID: PMC11293834 DOI: 10.1093/eurpub/ckae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2024] Open
Abstract
Corona virus disease 2019 (COVID-19) pandemic, sparked by the emergence of a novel coronavirus in early 2020, has prompted a surge in published articles. This study aims to systematically analyse the characteristics and trends of impactful research in the field. The 100 most-cited publications associated with COVID-19 were identified by two independent reviewers using the 'Web of Science' database across all available journals up to the year 2023. Data collected include country, citation count, subject, level of evidence (using Oxford Centre for Evidence-Based Medicine System 2011), impact factor, funding, and study design. We identified 394 038 publications, and the 100 most-cited publications were ranked. These were cited by a total of 283 034 articles (median citation = 767), median impact factor of 66.9 and 72 articles with fundings. China (n = 44), USA (n = 19), and UK (n = 13) were the three highest contributors (n = 220 505). Most articles were level 5 evidence (n = 48), followed by level 3 (n = 28), 4 (n = 14), 2 (n = 7), and 1 (n = 3). The main subjects were mechanism of action and structures of SARS-CoV-2 virus (n = 18) and impact of COVID-19 on public health (n = 18). Publications in 2022 and 2023 predominantly focused on the impact of COVID-19. Majority of the highly cited studies were of low-to-moderate quality, with only 10 consisting of randomized controlled trials or systematic reviews with or without meta-analysis. These findings reflect a growing interest in understanding the impact of COVID-19 pandemic on public and mental health. This analysis found the potential for future double-blinded randomized controlled trials to validate existing findings.
Collapse
Affiliation(s)
- Yong Y Liew
- Nuffield Department of Surgical Sciences, Kellogg College, University of Oxford, Oxford, United Kingdom
| | - Qiming Dong
- Department of Internal Medicine, Greater Baltimore Medical Center, Towson, MD, United States
| | | | - Ankur Khajuria
- Nuffield Department of Surgical Sciences, Kellogg College, University of Oxford, Oxford, United Kingdom
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| |
Collapse
|
181
|
Van Loy B, Stevaert A, Naesens L. The coronavirus nsp15 endoribonuclease: A puzzling protein and pertinent antiviral drug target. Antiviral Res 2024; 228:105921. [PMID: 38825019 DOI: 10.1016/j.antiviral.2024.105921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/04/2024]
Abstract
The SARS-CoV-2 pandemic has bolstered unprecedented research efforts to better understand the pathogenesis of coronavirus (CoV) infections and develop effective therapeutics. We here focus on non-structural protein nsp15, a hexameric component of the viral replication-transcription complex (RTC). Nsp15 possesses uridine-specific endoribonuclease (EndoU) activity for which some specific cleavage sites were recently identified in viral RNA. By preventing accumulation of viral dsRNA, EndoU helps the virus to evade RNA sensors of the innate immune response. The immune-evading property of nsp15 was firmly established in several CoV animal models and makes it a pertinent target for antiviral therapy. The search for nsp15 inhibitors typically proceeds via compound screenings and is aided by the rapidly evolving insight in the protein structure of nsp15. In this overview, we broadly cover this fascinating protein, starting with its structure, biochemical properties and functions in CoV immune evasion. Next, we summarize the reported studies in which compound screening or a more rational method was used to identify suitable leads for nsp15 inhibitor development. In this way, we hope to raise awareness on the relevance and druggability of this unique CoV protein.
Collapse
Affiliation(s)
- Benjamin Van Loy
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Leuven, Belgium
| | - Annelies Stevaert
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Leuven, Belgium
| | - Lieve Naesens
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Leuven, Belgium.
| |
Collapse
|
182
|
Ahn SH, Seo SH, Jung CY, Yu DH, Kim Y, Cho Y, Seo DH, Kim SH, Yoo JI, Hong S. Clinical outcomes of COVID-19 infection in patients with osteoporosis: a nationwide cohort study in Korea using the common data model. Sci Rep 2024; 14:17738. [PMID: 39085367 PMCID: PMC11291711 DOI: 10.1038/s41598-024-68356-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024] Open
Abstract
Many older patients with COVID-19 likely have co-morbid osteoporosis. We investigated the clinical outcomes of COVID-19 patients with osteoporosis. This was a retrospective cohort study using national claims data from Korea encoded in the common data model. Patients aged ≥ 50 years diagnosed with COVID-19 infection between January 2020 and April 2022 were included and stratified into two groups according to a history of osteoporosis. Clinical outcomes of COVID-19 infection were analyzed using logistic regression analysis after large-scale propensity score stratification. Of the 597,011 patients with COVID-19 included in the study, 105,172 had a history of osteoporosis. In patients with a history of osteoporosis, the odds of mortality decreased (odds ratio [OR] 0.82, P < 0.002), whereas most clinical outcomes of COVID-19 did not exhibit differences compared to those without such a history. Osteoporosis patients with a history of fractures showed increased odds of pneumonia, hospitalization, major adverse cardiac events, venous thromboembolism, and mortality, compared to patients without osteoporosis (ORs 1.34-1.58, P < 0.001 to P = 0.001). Our study suggests that patients with severe osteoporosis who have experienced fractures have an elevated risk of severe complications with COVID-19, while osteoporosis patients without fractures who have sought medical attention have a lower risk of mortality.
Collapse
Affiliation(s)
- Seong Hee Ahn
- Department of Endocrinology and Metabolism, Inha University Hospital, Inha University School of Medicine, Incheon, Republic of Korea
| | - Sung-Hyo Seo
- Department of Research Planning, Gyeongsang National University Hospital, Jinju, Republic of Korea
| | - Chai Young Jung
- Biomedical Research Institute, Inha University Hospital, Incheon, Republic of Korea
| | - Dong Han Yu
- Big Data Department, Health Insurance Review and Assessment Service, Wonju, Republic of Korea
| | - Youngjoon Kim
- Department of Endocrinology and Metabolism, Inha University Hospital, Inha University School of Medicine, Incheon, Republic of Korea
| | - Yongin Cho
- Department of Endocrinology and Metabolism, Inha University Hospital, Inha University School of Medicine, Incheon, Republic of Korea
| | - Da Hea Seo
- Department of Endocrinology and Metabolism, Inha University Hospital, Inha University School of Medicine, Incheon, Republic of Korea
| | - So Hun Kim
- Department of Endocrinology and Metabolism, Inha University Hospital, Inha University School of Medicine, Incheon, Republic of Korea
| | - Jun-Il Yoo
- Department of Orthopedic Surgery, Inha University Hospital, Inha University School of Medicine, Incheon, Republic of Korea.
| | - Seongbin Hong
- Department of Endocrinology and Metabolism, Inha University Hospital, Inha University School of Medicine, Incheon, Republic of Korea.
| |
Collapse
|
183
|
Yunus A, Zhou L, Addai-Dansoh S, Tackie EA, Agyeiwaa OE, Gbolo SS. Effects of COVID-19 safety protocols on health workers' quality of life; the mediating role of mental health and physical health; a retrospective study. Heliyon 2024; 10:e34861. [PMID: 39149051 PMCID: PMC11325387 DOI: 10.1016/j.heliyon.2024.e34861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 06/30/2024] [Accepted: 07/17/2024] [Indexed: 08/17/2024] Open
Abstract
This study conducts an empirical retrospective examination of the effect of COVID-19 protocols on Health workers' quality of life during the pandemic. Data from a survey respondent of 330 health workers were analyzed through structural equation modeling. Results indicated COVID-19 protocols specifically hand hygiene, personal protective equipments, and physical distancing had a significant effect on the quality of life of health workers during the COVID-19 era. However, the results did not follow the expected literature trend. Analysis indicated a direct significant positive relationship between hand hygiene and quality of life and also highlighted a negative relationship between physical distancing and protective equipments and quality of life. Detailed analysis in an attempt to explain this development highlighted the significant role physical and mental health play in the relationship between COVID-19 safety protocols and quality of life. The findings of the study suggest implications and suggestions for future research.
Collapse
Affiliation(s)
- Adams Yunus
- School of Management, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province, 212013, China
| | - Lulin Zhou
- School of Management, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province, 212013, China
| | - Stephen Addai-Dansoh
- Department of Health Policy and Management, School of Management, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province, 212013, China
| | - Evelyn Agba Tackie
- School of Management, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province, 212013, China
| | - Owusu Esther Agyeiwaa
- School of Management, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province, 212013, China
| | - Sufyan Sannah Gbolo
- School of Finance and Economics, Jiangsu University, Xuefu Road 301, Zhenjiang, 212012, Jiangsu, China
| |
Collapse
|
184
|
Li P, Liu M, He WM. Integrated Transcriptomic Analysis Reveals Reciprocal Interactions between SARS-CoV-2 Infection and Multi-Organ Dysfunction, Especially the Correlation of Renal Failure and COVID-19. Life (Basel) 2024; 14:960. [PMID: 39202702 PMCID: PMC11355357 DOI: 10.3390/life14080960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/22/2024] [Accepted: 07/29/2024] [Indexed: 09/03/2024] Open
Abstract
The COVID-19 pandemic, which is caused by the SARS-CoV-2 virus, has resulted in extensive health challenges globally. While SARS-CoV-2 primarily targets the respiratory system, clinical studies have revealed that it could also affect multiple organs, including the heart, kidneys, liver, and brain, leading to severe complications. To unravel the intricate molecular interactions between the virus and host tissues, we performed an integrated transcriptomic analysis to investigate the effects of SARS-CoV-2 on various organs, with a particular focus on the relationship between renal failure and COVID-19. A comparative analysis showed that SARS-CoV-2 triggers a systemic immune response in the brain, heart, and kidney tissues, characterized by significant upregulation of cytokine and chemokine secretion, along with enhanced migration of lymphocytes and leukocytes. A weighted gene co-expression network analysis demonstrated that SARS-CoV-2 could also induce tissue-specific transcriptional profiling. More importantly, single-cell sequencing revealed that COVID-19 patients with renal failure exhibited lower metabolic activity in lung epithelial and B cells, with reduced ligand-receptor interactions, especially CD226 and ICAM, suggesting a compromised immune response. A trajectory analysis revealed that COVID-19 patients with renal failure exhibited less mature alveolar type 1 cells. Furthermore, these patients showed potential fibrosis in the hearts, liver, and lung increased extracellular matrix remodeling activities. However, there was no significant metabolic dysregulation in the liver of COVID-19 patients with renal failure. Candidate drugs prediction by Drug Signatures database and LINCS L1000 Antibody Perturbations Database underscored the importance of considering multi-organ effects in COVID-19 management and highlight potential therapeutic strategies, including targeting viral entry and replication, controlling tissue fibrosis, and alleviating inflammation.
Collapse
Affiliation(s)
- Pai Li
- Capricorn Partner, 3000 Leuven, Belgium
| | - Meng Liu
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Wei-Ming He
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| |
Collapse
|
185
|
Honrubia JM, Valverde JR, Muñoz-Santos D, Ripoll-Gómez J, de la Blanca N, Izquierdo J, Villarejo-Torres M, Marchena-Pasero A, Rueda-Huélamo M, Nombela I, Ruiz-Yuste M, Zuñiga S, Sola I, Enjuanes L. Interaction between SARS-CoV PBM and Cellular PDZ Domains Leading to Virus Virulence. Viruses 2024; 16:1214. [PMID: 39205188 PMCID: PMC11359647 DOI: 10.3390/v16081214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/19/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
The interaction between SARS-CoV PDZ-binding motifs (PBMs) and cellular PDZs is responsible for virus virulence. The PBM sequence present in the 3a and envelope (E) proteins of SARS-CoV can potentially bind to over 400 cellular proteins containing PDZ domains. The role of SARS-CoV 3a and E proteins was studied. SARS-CoVs, in which 3a-PBM and E-PMB have been deleted (3a-PBM-/E-PBM-), reduced their titer around one logarithmic unit but still were viable. In addition, the absence of the E-PBM and the replacement of 3a-PBM with that of E did not allow the rescue of SARS-CoV. E protein PBM was necessary for virulence, activating p38-MAPK through the interaction with Syntenin-1 PDZ domain. However, the presence or absence of the homologous motif in the 3a protein, which does not bind to Syntenin-1, did not affect virus pathogenicity. Mutagenesis analysis and in silico modeling were performed to study the extension of the PBM of the SARS-CoV E protein. Alanine and glycine scanning was performed revealing a pair of amino acids necessary for optimum virus replication. The binding of E protein with the PDZ2 domain of the Syntenin-1 homodimer induced conformational changes in both PDZ domains 1 and 2 of the dimer.
Collapse
Affiliation(s)
- Jose M. Honrubia
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Jose R. Valverde
- Scientific Computing Service, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Diego Muñoz-Santos
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Jorge Ripoll-Gómez
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Nuria de la Blanca
- Scientific Computing Service, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Jorge Izquierdo
- Scientific Computing Service, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Marta Villarejo-Torres
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Ana Marchena-Pasero
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - María Rueda-Huélamo
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Ivan Nombela
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Mercedes Ruiz-Yuste
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Sonia Zuñiga
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Isabel Sola
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Luis Enjuanes
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
186
|
Jiang Z, Feng B, Chen L, Nie T, Chen S, Wang L, Liu H, Yu T, Zhang Y, Zheng M, Xu Y, Liu H, Zang Y, Su H, Zhang L, Li J, Zhou Y. Discovery of Novel Nonpeptidic and Noncovalent Small Molecule 3CL pro Inhibitors as anti-SARS-CoV-2 Drug Candidate. J Med Chem 2024. [PMID: 39072488 DOI: 10.1021/acs.jmedchem.4c00739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
SARS-CoV-2 has still been threatening global public health with its emerging variants. Our previous work reported lead compound JZD-07 that displayed good 3CLpro inhibitory activity. Here, an in-depth structural optimization for JZD-07 was launched to obtain more desirable drug candidates for the therapy of SARS-CoV-2 infection, in which 54 novel derivatives were designed and synthesized by a structure-based drug design strategy. Among them, 24 compounds show significantly enhanced 3CLpro inhibitory potencies with IC50 values less than 100 nM, and 11 compounds dose-dependently inhibit the replication of the SARS-CoV-2 delta variant. In particular, compound 49 has the most desirable antiviral activity with EC50 of 0.272 ± 0.013 μM against the delta variant, which was more than 20 times stronger than JZD-07. Oral administration of 49 could significantly reduce the lung viral copies of mice, exhibiting a more favorable therapeutic potential. Overall, this investigation presents a promising drug candidate for further development to treat SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Zhidong Jiang
- Lingang Laboratory, Shanghai 200031, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Feng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lu Chen
- College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei 443002, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Tianqing Nie
- Lingang Laboratory, Shanghai 200031, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Shizhao Chen
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Li Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Hui Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Pharmaceutical College of Henan University, Kaifeng 475004, China
| | - Ting Yu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yumin Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Miao Zheng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yechun Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Hong Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Zang
- Lingang Laboratory, Shanghai 200031, China
| | - Haixia Su
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Leike Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
- Hubei Jiangxia Laboratory, Wuhan 430200, China
| | - Jia Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shenyang Pharmaceutical University, Shenyang 110016, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Yu Zhou
- Lingang Laboratory, Shanghai 200031, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shenyang Pharmaceutical University, Shenyang 110016, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
187
|
Chung YS, Lam CY, Tan PH, Tsang HF, Wong SCC. Comprehensive Review of COVID-19: Epidemiology, Pathogenesis, Advancement in Diagnostic and Detection Techniques, and Post-Pandemic Treatment Strategies. Int J Mol Sci 2024; 25:8155. [PMID: 39125722 PMCID: PMC11312261 DOI: 10.3390/ijms25158155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
At present, COVID-19 remains a public health concern due to the ongoing evolution of SARS-CoV-2 and its prevalence in particular countries. This paper provides an updated overview of the epidemiology and pathogenesis of COVID-19, with a focus on the emergence of SARS-CoV-2 variants and the phenomenon known as 'long COVID'. Meanwhile, diagnostic and detection advances will be mentioned. Though many inventions have been made to combat the COVID-19 pandemic, some outstanding ones include multiplex RT-PCR, which can be used for accurate diagnosis of SARS-CoV-2 infection. ELISA-based antigen tests also appear to be potential diagnostic tools to be available in the future. This paper also discusses current treatments, vaccination strategies, as well as emerging cell-based therapies for SARS-CoV-2 infection. The ongoing evolution of SARS-CoV-2 underscores the necessity for us to continuously update scientific understanding and treatments for it.
Collapse
Affiliation(s)
| | | | | | | | - Sze-Chuen Cesar Wong
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China; (Y.-S.C.); (C.-Y.L.); (P.-H.T.); (H.-F.T.)
| |
Collapse
|
188
|
Nguyen H, Nguyen HL, Li MS. Binding of SARS-CoV-2 Nonstructural Protein 1 to 40S Ribosome Inhibits mRNA Translation. J Phys Chem B 2024; 128:7033-7042. [PMID: 39007765 DOI: 10.1021/acs.jpcb.4c01391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Experimental evidence has established that SARS-CoV-2 NSP1 acts as a factor that restricts cellular gene expression and impedes mRNA translation within the ribosome's 40S subunit. However, the precise molecular mechanisms underlying this phenomenon have remained elusive. To elucidate this issue, we employed a combination of all-atom steered molecular dynamics and coarse-grained alchemical simulations to explore the binding affinity of mRNA to the 40S ribosome, both in the presence and absence of SARS-CoV-2 NSP1. Our investigations revealed that the binding of SARS-CoV-2 NSP1 to the 40S ribosome leads to a significant enhancement in the binding affinity of mRNA. This observation, which aligns with experimental findings, strongly suggests that SARS-CoV-2 NSP1 has the capability to inhibit mRNA translation. Furthermore, we identified electrostatic interactions between mRNA and the 40S ribosome as the primary driving force behind mRNA translation. Notably, water molecules were found to play a pivotal role in stabilizing the mRNA-40S ribosome complex, underscoring their significance in this process. We successfully pinpointed the specific SARS-CoV-2 NSP1 residues that play a critical role in triggering the translation arrest.
Collapse
Affiliation(s)
- Hung Nguyen
- Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, 02-668 Warsaw, Poland
| | - Hoang Linh Nguyen
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City 700000, Vietnam
- Faculty of Environmental and Natural Sciences, Duy Tan University, Da Nang City 550000, Vietnam
| | - Mai Suan Li
- Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, 02-668 Warsaw, Poland
- Quang Trung Software City, Life Science Lab, Institute for Computational Science and Technology, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City 729110, Vietnam
| |
Collapse
|
189
|
Parmar UPS, Surico PL, Singh RB, Musa M, Scarabosio A, Surico G, Maniaci A, Lavalle S, D’Esposito F, Longo A, Russo A, Gagliano C, Zeppieri M. Ocular Implications of COVID-19 Infection and Vaccine-Related Adverse Events. J Pers Med 2024; 14:780. [PMID: 39201972 PMCID: PMC11355216 DOI: 10.3390/jpm14080780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 09/03/2024] Open
Abstract
The COVID-19 pandemic, caused by SARS-CoV-2, has significantly impacted various organ systems, including the eyes. Initially considered a primarily respiratory disease, it is now evident that COVID-19 can induce a range of ocular symptoms. Recognizing these ocular manifestations is crucial for eye care practitioners as they can serve as early indicators of the disease. This review consolidates current evidence on the ocular effects of COVID-19, identifying manifestations such as conjunctivitis, scleritis, uveitis, and retinopathy. The increasing prevalence of these symptoms highlights the importance of thorough eye examinations and detailed patient histories in COVID-19 cases. Potential routes of viral entry into ocular tissues and the underlying mechanisms, including direct infection, immune responses, and vascular involvement, are explored. Additionally, this review addresses ocular side effects associated with COVID-19 vaccines, such as corneal graft rejection, uveitis, and retinal issues. These findings emphasize the need for ongoing surveillance and research to ensure vaccine safety.
Collapse
Affiliation(s)
- Uday Pratap Singh Parmar
- Department of Ophthalmology, Government Medical College and Hospital, Chandigarh 160047, India;
- Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Pier Luigi Surico
- Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
- Department of Ophthalmology, Campus Bio-Medico University, 00128 Rome, Italy
| | - Rohan Bir Singh
- Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Mutali Musa
- Department of Optometry, University of Benin, Benin City 300238, Nigeria
| | - Anna Scarabosio
- Department of Plastic Surgery, University Hospital of Udine, 33100 Udine, Italy
| | - Giorgio Surico
- Medicine and Surgery Department, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Antonino Maniaci
- Department of Medicine and Surgery, University of Enna “Kore”, Piazza dell’Università, 94100 Enna, Italy
| | - Salvatore Lavalle
- Department of Medicine and Surgery, University of Enna “Kore”, Piazza dell’Università, 94100 Enna, Italy
| | - Fabiana D’Esposito
- Imperial College Ophthalmic Research Group (ICORG) Unit, Imperial College, 153-173 Marylebone Rd., London NW1 5QH, UK
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples Federico II, Via Pansini 5, 80131 Napoli, Italy
| | - Antonio Longo
- Faculty of Medicine, University of Catania, Piazza Università, 95123 Catania, Italy
| | - Andrea Russo
- Faculty of Medicine, University of Catania, Piazza Università, 95123 Catania, Italy
| | - Caterina Gagliano
- Department of Medicine and Surgery, University of Enna “Kore”, Piazza dell’Università, 94100 Enna, Italy
- Eye Clinic Catania University San Marco Hospital, Viale Carlo Azeglio Ciampi, 95121 Catania, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| |
Collapse
|
190
|
Zhang Q, Jiao L, Chen Q, Bulstra CA, Geldsetzer P, de Oliveira T, Yang J, Wang C, Bärnighausen T, Chen S. COVID-19 antibody responses in individuals with natural immunity and with vaccination-induced immunity: a systematic review and meta-analysis. Syst Rev 2024; 13:189. [PMID: 39030630 PMCID: PMC11264703 DOI: 10.1186/s13643-024-02597-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/26/2024] [Indexed: 07/21/2024] Open
Abstract
BACKGROUND The COVID-19 pandemic has caused a large mortality and morbidity burden globally. For individuals, a strong immune response is the most effective means to block SARS-CoV-2 infection. To inform clinical case management of COVID-19, development of improved vaccines, and public health policy, a better understanding of antibody response dynamics and duration following SARS-CoV-2 infection and after vaccination is imperatively needed. METHODS We systematically analyzed antibody response rates in naturally infected COVID-19 patients and vaccinated individuals. Specifically, we searched all published and pre-published literature between 1 December 2019 and 31 July 2023 using MeSH terms and "all field" terms comprising "COVID-19" or "SARS-CoV-2," and "antibody response" or "immunity response" or "humoral immune." We included experimental and observational studies that provided antibody positivity rates following natural COVID-19 infection or vaccination. A total of 44 studies reporting antibody positivity rate changes over time were included. RESULTS The meta-analysis showed that within the first week after COVID-19 symptom onset/diagnosis or vaccination, antibody response rates in vaccinated individuals were lower than those in infected patients (p < 0.01), but no significant difference was observed from the second week to the sixth month. IgG, IgA, and IgM positivity rates increased during the first 3 weeks; thereafter, IgG positivity rates were maintained at a relatively high level, while the IgM seroconversion rate dropped. CONCLUSIONS Antibody production following vaccination might not occur as quickly or strongly as after natural infection, and the IgM antibody response was less persistent than the IgG response.
Collapse
Affiliation(s)
- Qiuying Zhang
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lirui Jiao
- Department of Health Policy and Management, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Qiushi Chen
- The Harold and Inge Marcus Department of Industrial and Manufacturing Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Caroline A Bulstra
- Heidelberg Institute of Global Health, Faculty of Medicine and University Hospital, Heidelberg University, Im Neuenheimer Feld 130/3, Heidelberg, 69120, Germany
- Department of Public Health, Erasmus University Medical Center, Rotterdam, Netherlands
- Health Systems Innovation Lab, Harvard T.H. Chan School of Public Health, Harvard University, Cambridge, USA
| | - Pascal Geldsetzer
- Division of Primary Care and Population Health, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Tulio de Oliveira
- KwaZulu-Natal Research Innovation and Sequencing Platform, University of KwaZulu-Natal, Durban, South Africa
- Center for the AIDS Program of Research in South Africa (CAPRISA), Durban, South Africa
| | - Juntao Yang
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chen Wang
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Till Bärnighausen
- Heidelberg Institute of Global Health, Faculty of Medicine and University Hospital, Heidelberg University, Im Neuenheimer Feld 130/3, Heidelberg, 69120, Germany
| | - Simiao Chen
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Heidelberg Institute of Global Health, Faculty of Medicine and University Hospital, Heidelberg University, Im Neuenheimer Feld 130/3, Heidelberg, 69120, Germany.
| |
Collapse
|
191
|
Fernandez SA, Pelaez-Prestel HF, Fiyouzi T, Gomez-Perosanz M, Reiné J, Reche PA. Tetanus-diphtheria vaccine can prime SARS-CoV-2 cross-reactive T cells. Front Immunol 2024; 15:1425374. [PMID: 39091504 PMCID: PMC11291333 DOI: 10.3389/fimmu.2024.1425374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/02/2024] [Indexed: 08/04/2024] Open
Abstract
Vaccines containing tetanus-diphtheria antigens have been postulated to induce cross-reactive immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which could protect against coronavirus disease (COVID-19). In this work, we investigated the capacity of Tetanus-diphtheria (Td) vaccine to prime existing T cell immunity to SARS-CoV-2. To that end, we first collected known SARS-CoV-2 specific CD8+ T cell epitopes targeted during the course of SARS-CoV-2 infection in humans and identified as potentially cross-reactive with Td vaccine those sharing similarity with tetanus-diphtheria vaccine antigens, as judged by Levenshtein edit distances (≤ 20% edits per epitope sequence). As a result, we selected 25 potentially cross-reactive SARS-CoV-2 specific CD8+ T cell epitopes with high population coverage that were assembled into a synthetic peptide pool (TDX pool). Using peripheral blood mononuclear cells, we first determined by intracellular IFNγ staining assays existing CD8+ T cell recall responses to the TDX pool and to other peptide pools, including overlapping peptide pools covering SARS-CoV-2 Spike protein and Nucleocapsid phosphoprotein (NP). In the studied subjects, CD8+ T cell recall responses to Spike and TDX peptide pools were dominant and comparable, while recall responses to NP peptide pool were less frequent and weaker. Subsequently, we studied responses to the same peptides using antigen-inexperienced naive T cells primed/stimulated in vitro with Td vaccine. Priming stimulations were carried out by co-culturing naive T cells with autologous irradiated peripheral mononuclear cells in the presence of Td vaccine, IL-2, IL-7 and IL-15. Interestingly, naive CD8+ T cells stimulated/primed with Td vaccine responded strongly and specifically to the TDX pool, not to other SARS-CoV-2 peptide pools. Finally, we show that Td-immunization of C57BL/6J mice elicited T cells cross-reactive with the TDX pool. Collectively, our findings support that tetanus-diphtheria vaccines can prime SARS-CoV-2 cross-reactive T cells and likely contribute to shape the T cell responses to the virus.
Collapse
Affiliation(s)
- Sara Alonso Fernandez
- Department of Immunology & O2, Faculty of Medicine, Complutense University of Madrid, Ciudad Universitaria, Madrid, Spain
| | - Hector F. Pelaez-Prestel
- Department of Immunology & O2, Faculty of Medicine, Complutense University of Madrid, Ciudad Universitaria, Madrid, Spain
| | - Tara Fiyouzi
- Department of Immunology & O2, Faculty of Medicine, Complutense University of Madrid, Ciudad Universitaria, Madrid, Spain
| | - Marta Gomez-Perosanz
- Department of Immunology & O2, Faculty of Medicine, Complutense University of Madrid, Ciudad Universitaria, Madrid, Spain
| | - Jesús Reiné
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Oxford Vaccine Group, University of Oxford, Oxford, United Kingdom
| | - Pedro A. Reche
- Department of Immunology & O2, Faculty of Medicine, Complutense University of Madrid, Ciudad Universitaria, Madrid, Spain
| |
Collapse
|
192
|
Allam VSRR, Patel VK, De Rubis G, Paudel KR, Gupta G, Chellappan DK, Singh SK, Hansbro PM, Oliver BGG, Dua K. Exploring the role of the ocular surface in the lung-eye axis: Insights into respiratory disease pathogenesis. Life Sci 2024; 349:122730. [PMID: 38768774 DOI: 10.1016/j.lfs.2024.122730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/22/2024]
Abstract
Chronic respiratory diseases (CRDs) represent a significant proportion of global health burden, with a wide spectrum of varying, heterogenic conditions largely affecting the pulmonary system. Recent advances in immunology and respiratory biology have highlighted the systemic impact of these diseases, notably through the elucidation of the lung-eye axis. The current review focusses on understanding the pivotal role of the lung-eye axis in the pathogenesis and progression of chronic respiratory infections and diseases. Existing literature published on the immunological crosstalk between the eye and the lung has been reviewed. The various roles of the ocular microbiome in lung health are also explored, examining the eye as a gateway for respiratory virus transmission, and assessing the impact of environmental irritants on both ocular and respiratory systems. This novel concept emphasizes a bidirectional relationship between respiratory and ocular health, suggesting that respiratory diseases may influence ocular conditions and vice versa, whereby this conception provides a comprehensive framework for understanding the intricate axis connecting both respiratory and ocular health. These aspects underscore the need for an integrative approach in the management of chronic respiratory diseases. Future research should further elucidate the in-depth molecular mechanisms affecting this axis which would pave the path for novel diagnostics and effective therapeutic strategies.
Collapse
Affiliation(s)
- Venkata Sita Rama Raju Allam
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden; Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Vyoma K Patel
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, P.O. Box 123, Broadway, Ultimo, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Gabriele De Rubis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, P.O. Box 123, Broadway, Ultimo, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, NSW 2007, Australia
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India; School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Jaipur, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Sachin Kumar Singh
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, NSW 2007, Australia
| | - Brian Gregory George Oliver
- Woolcock Institute of Medical Research, Macquarie University, Sydney, New South Wales, Australia; School of Life Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, P.O. Box 123, Broadway, Ultimo, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| |
Collapse
|
193
|
Fajar S, Dwi SP, Nur IS, Wahyu AP, Sukamto S M, Winda AR, Nastiti W, Andri F, Firzan N. Zebrafish as a model organism for virus disease research: Current status and future directions. Heliyon 2024; 10:e33865. [PMID: 39071624 PMCID: PMC11282986 DOI: 10.1016/j.heliyon.2024.e33865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 06/22/2024] [Accepted: 06/28/2024] [Indexed: 07/30/2024] Open
Abstract
Zebrafish (Danio rerio) have emerged as valuable models for investigating viral infections, providing insights into viral pathogenesis, host responses, and potential therapeutic interventions. This review offers a comprehensive synthesis of research on viral infections using zebrafish models, focusing on the molecular mechanisms of viral action and host-virus interactions. Zebrafish models have been instrumental in elucidating the replication dynamics, tissue tropism, and immune evasion strategies of various viruses, including Chikungunya virus, Dengue virus, Herpes Simplex Virus type 1, and Influenza A virus. Additionally, studies utilizing zebrafish have evaluated the efficacy of antiviral compounds and natural agents against emerging viruses such as SARS-CoV-2, Zika virus, and Dengue virus. The optical transparency and genetic tractability of zebrafish embryos enable real-time visualization of viral infections, facilitating the study of viral spread and immune responses. Despite challenges such as temperature compatibility and differences in host receptors, zebrafish models offer unique advantages, including cost-effectiveness, high-throughput screening capabilities, and conservation of key immune pathways. Importantly, zebrafish models complement existing animal models, providing a platform for rapid evaluation of potential therapeutics and a deeper understanding of viral pathogenesis. This review underscores the significance of zebrafish research in advancing our understanding of viral diseases and highlights future research directions to combat infectious diseases effectively.
Collapse
Affiliation(s)
- Sofyantoro Fajar
- Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Sendi Priyono Dwi
- Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | | | | | - Mamada Sukamto S
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, 90245, Indonesia
| | | | - Wijayanti Nastiti
- Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Frediansyah Andri
- Research Center for Food Technology and Processing (PRTPP), National Research and Innovation Agency (BRIN), Yogyakarta 55861, Indonesia
| | - Nainu Firzan
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, 90245, Indonesia
| |
Collapse
|
194
|
Yang JH, Oh Y, Moon SH, Lee GH, Kim JY, Shin YK, Tark D, Cho HS. Suspected Human-to-Cat Spillover of SARS-CoV-2 Omicron Variant in South Korea. Viruses 2024; 16:1113. [PMID: 39066274 PMCID: PMC11281702 DOI: 10.3390/v16071113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
This retrospective study reports the isolation and characterization of Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) from a household cat in South Korea. The cat, which was presented with respiratory symptoms, was identified during a retrospective analysis of samples collected between April 2021 and March 2022. Genomic sequencing revealed that the isolated virus belonged to the Omicron variant (BA.1), coinciding with its global emergence in early 2022. This case study provides evidence for the potential of direct human-to-cat transmission of the Omicron variant in South Korea during its period of widespread circulation. Our findings underscore the importance of continuous monitoring of SARS-CoV-2 in both human and animal populations to track viral evolution and potential spillover events.
Collapse
Affiliation(s)
- Ju-Hee Yang
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 545431, Republic of Korea; (J.-H.Y.); (G.-H.L.)
| | - Yeonsu Oh
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Republic of Korea;
| | - Sung-Hyun Moon
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan 54596, Republic of Korea;
| | - Gun-Hee Lee
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 545431, Republic of Korea; (J.-H.Y.); (G.-H.L.)
| | - Jae-Young Kim
- Tae Neung Animal Hospital, Seoul 02033, Republic of Korea;
| | - Yeon-Kyung Shin
- Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea;
| | - Dongseob Tark
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 545431, Republic of Korea; (J.-H.Y.); (G.-H.L.)
| | - Ho-Seong Cho
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan 54596, Republic of Korea;
| |
Collapse
|
195
|
Liu Y, Zhu Z, Du J, Zhu X, Pan C, Yin C, Sun W. Development of multiplex real-time PCR for simultaneous detection of SARS-CoV-2, CCoV, and FIPV. Front Vet Sci 2024; 11:1337690. [PMID: 39051010 PMCID: PMC11266814 DOI: 10.3389/fvets.2024.1337690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 05/29/2024] [Indexed: 07/27/2024] Open
Abstract
Introduction Coronaviruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), canine coronavirus (CCoV), and feline infectious peritonitis virus (FIPV), have the potential for interspecies transmission. These viruses can be present in complex environments where humans, dogs, and cats coexist, posing a significant threat to both human and animal safety. Methods and results In this study, we developed a novel multiplex TaqMan-probe-based real-time PCR assay for the simultaneous detection and differentiation of SARS-CoV-2, CCoV, and FIPV. Specific primers and TaqMan fluorescent probes were designed based on the N region of SARS-CoV-2 and FIPV, as well as the S region of CCoV, which demonstrated a remarkable sensitivity and specificity toward the targeted viruses, as few as 21.83, 17.25 and 9.25 copies/μL for SARS-CoV-2, CCoV and FIPV, respectively. The standard curve constructed by the optimized method in our present study showed a high amplification efficiency within or near the optimal range of 91% to 116% and R(2) values were at least 0.95 for the abovementioned coronaviruses. A total of 91 samples, including six plasmid mixed mock samples, four virus fluid mixing simulated samples, and 81 clinical samples, were analyzed using this method. Results demonstrated strong agreement with conventional approaches. Discussion By enabling the simultaneous detection of three viruses, this method enhances testing efficiency while decreasing costs. Importantly, it provides a valuable tool for the prevalence and geographical distribution of suspected and co-infected animals, ultimately contributing to the advancement of both animal and public health.
Collapse
Affiliation(s)
- Yan Liu
- Animal Laboratory, China Institute of Veterinary Drug Control, Beijing, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zhen Zhu
- Animal Laboratory, China Institute of Veterinary Drug Control, Beijing, China
| | - Jige Du
- Animal Laboratory, China Institute of Veterinary Drug Control, Beijing, China
| | - Xiaojie Zhu
- Animal Laboratory, China Institute of Veterinary Drug Control, Beijing, China
| | - Chenfan Pan
- Animal Laboratory, China Institute of Veterinary Drug Control, Beijing, China
| | - Chunsheng Yin
- Animal Laboratory, China Institute of Veterinary Drug Control, Beijing, China
| | - Weidong Sun
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
196
|
Cereghino C, Michalak K, DiGiuseppe S, Guerra J, Yu D, Faraji A, Sharp AK, Brown AM, Kang L, Weger-Lucarelli J, Michalak P. Evolution at Spike protein position 519 in SARS-CoV-2 facilitated adaptation to humans. NPJ VIRUSES 2024; 2:29. [PMID: 40295673 PMCID: PMC11721114 DOI: 10.1038/s44298-024-00036-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/25/2024] [Indexed: 04/30/2025]
Abstract
As the COVID-19 pandemic enters its fourth year, the pursuit of identifying a progenitor virus to SARS-CoV-2 and understanding the mechanism of its emergence persists, albeit against the backdrop of intensified efforts to monitor the ongoing evolution of the virus and the influx of new mutations. Surprisingly, few residues hypothesized to be essential for SARS-CoV-2 emergence and adaptation to humans have been validated experimentally, despite the importance that these mutations could contribute to the development of effective antivirals. To remedy this, we searched for genomic regions in the SARS-CoV-2 genome that show evidence of past selection around residues unique to SARS-CoV-2 compared with closely related coronaviruses. In doing so, we identified a residue at position 519 in Spike within the receptor binding domain that holds a static histidine in human-derived SARS-CoV-2 sequences but an asparagine in SARS-related coronaviruses from bats and pangolins. In experimental validation, the SARS-CoV-2 Spike protein mutant carrying the putatively ancestral H519N substitution showed reduced replication in human lung cells, suggesting that the histidine residue contributes to viral fitness in the human host. Structural analyses revealed a potential role of Spike residue 519 in mediating conformational transitions necessary for Spike prior to binding with ACE2. Pseudotyped viruses bearing the putatively ancestral N519 also demonstrated significantly reduced infectivity in cells expressing the human ACE2 receptor compared to H519. ELISA data corroborated that H519 enhances Spike binding affinity to the human ACE2 receptor compared to the putatively ancestral N519. Collectively, these findings suggest that the evolutionary transition at position 519 of the Spike protein played a critical role in SARS-CoV-2 emergence and adaptation to the human host. Additionally, this residue presents as a potential drug target for designing small molecule inhibitors tailored to this site.
Collapse
Affiliation(s)
- C Cereghino
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, USA
- Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA, USA
| | - K Michalak
- Department of Biomedical Research, Edward Via College of Osteopathic Medicine, Monroe, LA, USA
| | - S DiGiuseppe
- Department of Biomedical Research, Edward Via College of Osteopathic Medicine, Monroe, LA, USA
| | - J Guerra
- Department of Biomedical Research, Edward Via College of Osteopathic Medicine, Monroe, LA, USA
| | - D Yu
- Department of Biomedical Research, Edward Via College of Osteopathic Medicine, Monroe, LA, USA
| | - A Faraji
- Department of Biomedical Research, Edward Via College of Osteopathic Medicine, Monroe, LA, USA
| | - A K Sharp
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, USA
| | - A M Brown
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, USA
- Research and Informatics, University Libraries, Virginia Tech, Blacksburg, VA, USA
| | - L Kang
- Department of Biomedical Research, Edward Via College of Osteopathic Medicine, Monroe, LA, USA
- College of Pharmacy, University of Louisiana Monroe, Monroe, LA, USA
- Center for One Health Research, VA-MD College of Veterinary Medicine, Blacksburg, VA, USA
| | - J Weger-Lucarelli
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, USA.
- Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA, USA.
| | - P Michalak
- Department of Biomedical Research, Edward Via College of Osteopathic Medicine, Monroe, LA, USA.
- Center for One Health Research, VA-MD College of Veterinary Medicine, Blacksburg, VA, USA.
- Institute of Evolution, University of Haifa, Haifa, Israel.
| |
Collapse
|
197
|
Murthy SC, Gordon SM, Lowry AM, Blackstone EH. Evolution of serious and life-threatening COVID-19 pneumonia as the SARS-CoV-2 pandemic progressed: an observational study of mortality to 60 days after admission to a 15-hospital US health system. BMJ Open 2024; 14:e075028. [PMID: 38977360 PMCID: PMC11256047 DOI: 10.1136/bmjopen-2023-075028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 05/13/2024] [Indexed: 07/10/2024] Open
Abstract
OBJECTIVE In order to predict at hospital admission the prognosis of patients with serious and life-threatening COVID-19 pneumonia, we sought to understand the clinical characteristics of hospitalised patients at admission as the SARS-CoV-2 pandemic progressed, document their changing response to the virus and its variants over time, and identify factors most importantly associated with mortality after hospital admission. DESIGN Observational study using a prospective hospital systemwide COVID-19 database. SETTING 15-hospital US health system. PARTICIPANTS 26 872 patients admitted with COVID-19 to our Northeast Ohio and Florida hospitals from 1 March 2020 to 1 June 2022. MAIN OUTCOME MEASURES 60-day mortality (highest risk period) after hospital admission analysed by random survival forests machine learning using demographics, medical history, and COVID-19 vaccination status, and viral variant, symptoms, and routine laboratory test results obtained at hospital admission. RESULTS Hospital mortality fell from 11% in March 2020 to 3.7% in March 2022, a 66% decrease (p<0.0001); 60-day mortality fell from 17% in May 2020 to 4.7% in May 2022, a 72% decrease (p<0.0001). Advanced age was the strongest predictor of 60-day mortality, followed by admission laboratory test results. Risk-adjusted 60-day mortality had all patients been admitted in March 2020 was 15% (CI 3.0% to 28%), and had they all been admitted in May 2022, 12% (CI 2.2% to 23%), a 20% decrease (p<0.0001). Dissociation between observed and predicted decrease in mortality was related to temporal change in admission patient profile, particularly in laboratory test results, but not vaccination status or viral variant. CONCLUSIONS Hospital mortality from COVID-19 decreased substantially as the pandemic evolved but persisted after hospital discharge, eclipsing hospital mortality by 50% or more. However, after accounting for the many, even subtle, changes across the pandemic in patients' demographics, medical history and particularly admission laboratory results, a patient admitted early in the pandemic and predicted to be at high risk would remain at high risk of mortality if admitted tomorrow.
Collapse
Affiliation(s)
- Sudish C Murthy
- Thoracic and Cardiovascular Surgery, Cleveland Clinic, Cleveland, Ohio, USA
| | | | - Ashley M Lowry
- Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio, USA
| | | |
Collapse
|
198
|
Sk Abd Razak R, Ismail A, Abdul Aziz AF, Suddin LS, Azzeri A, Sha'ari NI. Post-COVID syndrome prevalence: a systematic review and meta-analysis. BMC Public Health 2024; 24:1785. [PMID: 38965510 PMCID: PMC11223303 DOI: 10.1186/s12889-024-19264-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 06/25/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Since the Coronavirus disease 2019 (COVID-19) pandemic began, the number of individuals recovering from COVID-19 infection have increased. Post-COVID Syndrome, or PCS, which is defined as signs and symptoms that develop during or after infection in line with COVID-19, continue beyond 12 weeks, and are not explained by an alternative diagnosis, has also gained attention. We systematically reviewed and determined the pooled prevalence estimate of PCS worldwide based on published literature. METHODS Relevant articles from the Web of Science, Scopus, PubMed, Cochrane Library, and Ovid MEDLINE databases were screened using a Preferred Reporting Items for Systematic Reviews and Meta-Analyses-guided systematic search process. The included studies were in English, published from January 2020 to April 2024, had overall PCS prevalence as one of the outcomes studied, involved a human population with confirmed COVID-19 diagnosis and undergone assessment at 12 weeks post-COVID infection or beyond. As the primary outcome measured, the pooled prevalence of PCS was estimated from a meta-analysis of the PCS prevalence data extracted from individual studies, which was conducted via the random-effects model. This study has been registered on PROSPERO (CRD42023435280). RESULTS Forty eight studies met the eligibility criteria and were included in this review. 16 were accepted for meta-analysis to estimate the pooled prevalence for PCS worldwide, which was 41.79% (95% confidence interval [CI] 39.70-43.88%, I2 = 51%, p = 0.03). Based on different assessment or follow-up timepoints after acute COVID-19 infection, PCS prevalence estimated at ≥ 3rd, ≥ 6th, and ≥ 12th months timepoints were each 45.06% (95% CI: 41.25-48.87%), 41.30% (95% CI: 34.37-48.24%), and 41.32% (95% CI: 39.27-43.37%), respectively. Sex-stratified PCS prevalence was estimated at 47.23% (95% CI: 44.03-50.42%) in male and 52.77% (95% CI: 49.58-55.97%) in female. Based on continental regions, pooled PCS prevalence was estimated at 46.28% (95% CI: 39.53%-53.03%) in Europe, 46.29% (95% CI: 35.82%-56.77%) in America, 49.79% (95% CI: 30.05%-69.54%) in Asia, and 42.41% (95% CI: 0.00%-90.06%) in Australia. CONCLUSION The prevalence estimates in this meta-analysis could be used in further comprehensive studies on PCS, which might enable the development of better PCS management plans to reduce the effect of PCS on population health and the related economic burden.
Collapse
Affiliation(s)
- Ruhana Sk Abd Razak
- Department of Public Health Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Cheras, Kuala Lumpur, 56000, Malaysia
| | - Aniza Ismail
- Department of Public Health Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Cheras, Kuala Lumpur, 56000, Malaysia.
- Faculty of Public Health, Universitas Sumatera Utara, Jalan Universitas No. 21 Kampus USU, Medan, North Sumatra, 20155, Indonesia.
| | - Aznida Firzah Abdul Aziz
- Department of Family Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Cheras, Kuala Lumpur, 56000, Malaysia
| | - Leny Suzana Suddin
- Department of Public Health Medicine, Faculty of Medicine, Universiti Teknologi (UiTM) MARA, Sungai Buloh, Selangor, Malaysia
| | - Amirah Azzeri
- Department of Primary Care, Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia (USIM), Persiaran Ilmu, Putra Nilai, Nilai, Negeri Sembilan, 71800, Malaysia
| | - Nur Insyirah Sha'ari
- Department of Public Health Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Cheras, Kuala Lumpur, 56000, Malaysia
| |
Collapse
|
199
|
Haile TG, Getachew T, Negash AI. The burden and impact of COVID-19 among newborns in African countries: a study protocol for a systematic review and meta-analysis. Int Health 2024; 16:380-386. [PMID: 38078740 PMCID: PMC11218874 DOI: 10.1093/inthealth/ihad112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 10/29/2023] [Accepted: 11/23/2023] [Indexed: 07/04/2024] Open
Abstract
The WHO, on 30 January 2020, declared the Chinese outbreak of coronavirus disease 2019 (COVID-19) a global community health emergency that poses a serious threat to vulnerable healthcare systems. This review protocol will be conducted to systematically review and to perform a meta-analysis on the impact of COVID-19 among newborns in Africa. All observational studies on the impact of COVID-19 among newborns in Africa will be included. A standard quest strategy to retrieve studies was conducted on several databases (Google Scholar, PubMed/MEDLINE, EMBASE, HINARI, Cochrane Library, WHO COVID-19 database, Africa Wide Knowledge and Web of Science). Two independent authors were tasked to extract key data and to assess the risk of bias. To assess possible publication bias, funnel plot test and Egger's test methods will be used. The description will be used to show the COVID-19 distribution data by interest variables such as residence, setting and person-level characteristics. The findings of this review will notify healthcare professionals about the burden and impact of COVID-19 and provide evidence to bring about the requisite improvements in clinical practice.
Collapse
Affiliation(s)
- Teklehaimanot Gereziher Haile
- Department of Maternity and Neonatal Nursing, School of Nursing, College of Health Sciences and Comprehensive Specialized Hospital, Aksum University, Aksum, Tigray, Ethiopia
| | - Tamirat Getachew
- School of Nursing and Midwifery, College of Health and Medical Sciences, Haramaya University, Harar, Ethiopia
| | - Assefa Iyasu Negash
- Department of Adult Health Nursing, School of Nursing, College of Health Sciences and Comprehensive Specialized Hospital, Aksum University, Aksum, Tigray, Ethiopia
| |
Collapse
|
200
|
Larsen DN, Kaczmarek JZ, Palarasah Y, Graversen JH, Højrup P. Epitope mapping of SARS-CoV-2 RBDs by hydroxyl radical protein footprinting reveals the importance of including negative antibody controls. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2024; 1872:141011. [PMID: 38499233 DOI: 10.1016/j.bbapap.2024.141011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/01/2024] [Accepted: 03/11/2024] [Indexed: 03/20/2024]
Abstract
Understanding protein-protein interactions is crucial for drug design and investigating biological processes. Various techniques, such as CryoEM, X-ray spectroscopy, linear epitope mapping, and mass spectrometry-based methods, can be employed to map binding regions on proteins. Commonly used mass spectrometry-based techniques are cross-linking and hydrogen‑deuterium exchange (HDX). Another approach, hydroxyl radical protein footprinting (HRPF), identifies binding residues on proteins but faces challenges due to high initial costs and complex setups. This study introduces a generally applicable method using Fenton chemistry for epitope mapping in a standard mass spectrometry laboratory. It emphasizes the importance of controls, particularly the inclusion of a negative antibody control, not widely utilized in HRPF epitope mapping. Quantification by TMT labelling is introduced to reduce false positives, enabling direct comparison between sample conditions and biological triplicates. Additionally, six technical replicates were incorporated to enhance the depth of analysis. Observations on the receptor-binding domain (RBD) of SARS-CoV-2 Spike Protein, Alpha and Delta variants, revealed both binding and opening regions. Significantly changed peptides upon mixing with a negative control antibody suggested structural alterations or nonspecific binding induced by the antibody alone. Integration of negative control antibody experiments and high overlap between biological triplicates led to the exclusion of 40% of significantly changed regions. The final identified binding region correlated with existing literature on neutralizing antibodies against RBD. The presented method offers a straightforward implementation for HRPF analysis in a generic mass spectrometry-based laboratory. Enhanced data reliability was achieved through increased technical and biological replicates alongside negative antibody controls.
Collapse
Affiliation(s)
- Daniel Nyberg Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark; Ovodan Biotech A/S, Havnegade 36, DK-5000 Odense, Denmark
| | | | - Yaseelan Palarasah
- Department of Inflammation, Institute of Molecular Medicine, Faculty of Health and Medical Sciences, University of Southern Denmark, Odense, Denmark
| | - Jonas Heilskov Graversen
- Department of Inflammation, Institute of Molecular Medicine, Faculty of Health and Medical Sciences, University of Southern Denmark, Odense, Denmark
| | - Peter Højrup
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark; Ovodan Biotech A/S, Havnegade 36, DK-5000 Odense, Denmark.
| |
Collapse
|