151
|
Abstract
Viral exacerbations continue to represent the major burden in terms of morbidity, mortality and health care costs associated with asthma. Those at greatest risk for acute asthma are those with more severe airways disease and poor asthma control. It is this group with established asthma in whom acute exacerbations triggered by virus infections remain a serious cause of increased morbidity. A range of novel therapies are emerging to treat asthma and in particular target this group with poor disease control, and in most cases their efficacy is now being judged by their ability to reduce the frequency of acute exacerbations. Critical for the development of new treatment approaches is an improved understanding of virus-host interaction in the context of the asthmatic airway. This requires research into the virology of the disease in physiological models in conjunction with detailed phenotypic characterisation of asthma patients to identify targets amenable to therapeutic intervention.
Collapse
Affiliation(s)
- Hock Tay
- a Hunter Medical Research Institute , Newcastle , Australia.,b Priority Research Centre for Healthy Lungs , The University of Newcastle , Australia
| | - Peter A B Wark
- a Hunter Medical Research Institute , Newcastle , Australia.,b Priority Research Centre for Healthy Lungs , The University of Newcastle , Australia.,c Centre of Excellence in Severe Asthma , The University of Newcastle , Australia.,d Department of Respiratory and Sleep Medicine , John Hunter Hospital , Newcastle , Australia
| | - Nathan W Bartlett
- a Hunter Medical Research Institute , Newcastle , Australia.,b Priority Research Centre for Healthy Lungs , The University of Newcastle , Australia.,e National Heart and Lung Institute , Imperial College London , London , UK
| |
Collapse
|
152
|
Zhang L, Ogden A, Aneja R, Zhou J. Diverse roles of HDAC6 in viral infection: Implications for antiviral therapy. Pharmacol Ther 2016; 164:120-5. [PMID: 27118337 DOI: 10.1016/j.pharmthera.2016.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 04/08/2016] [Indexed: 01/16/2023]
Abstract
Histone deacetylase 6 (HDAC6), a cytoplasmic enzyme important for many biological processes, has recently emerged as a critical regulator of viral infection. HDAC6 exerts this function either directly, via orchestrating various stages of the viral life cycle, or indirectly via modulating cytokine production by host cells. The broad influence of HDAC6 on viral pathogenesis suggests that this protein may represent an antiviral target. However, the feasibility of targeting HDAC6 and the optimal strategy by which this could be accomplished cannot simply be concluded from individual studies. The primary challenge in developing HDAC6-targeted therapies is to understand how its antiviral effect can be selectively harnessed. As a springboard for future investigations, in this review we recapitulate recent findings on the diverse roles of HDAC6 in viral infection and discuss its alluring potential as a novel antiviral target.
Collapse
Affiliation(s)
- Linlin Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Angela Ogden
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Ritu Aneja
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Jun Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China; Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance of Shandong Province, Key Laboratory of Molecular and Nano Probes of the Ministry of Education, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
153
|
Activated human mesenchymal stem/stromal cells suppress metastatic features of MDA-MB-231 cells by secreting IFN-β. Cell Death Dis 2016; 7:e2191. [PMID: 27077807 PMCID: PMC4855669 DOI: 10.1038/cddis.2016.90] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 02/24/2016] [Accepted: 03/10/2016] [Indexed: 12/16/2022]
Abstract
Our recent study showed that human mesenchymal stem/stromal cells (hMSCs) are activated to express tumor necrosis factor (TNF)-α-related apoptosis-inducing ligand (TRAIL) by exposure to TNF-α and these activated hMSCs effectively induce apoptosis in triple-negative breast cancer MDA-MB-231 (MDA) cells in vitro and in vivo. Here, we further demonstrated that activated hMSCs not only induced apoptosis of MDA cells but also reduced metastatic features in MDA cells. These activated hMSC-exposed MDA cells showed reduced tumorigenicity and suppressed formation of lung metastasis when implanted in the mammary fat pad. Surprisingly, the activated hMSC-exposed MDA cells increased TRAIL expression, resulting in apoptosis in MDA cells. Interestingly, upregulation of TRAIL in MDA cells was mediated by interferon-beta (IFN-β) secreted from activated hMSCs. Furthermore, IFN-β in activated hMSCs was induced by RNA and DNA released from apoptotic MDA cells in absent in melanoma 2 (AIM2) and IFN induced with helicase C domain 1 (IFIH1)-dependent manners. These observations were only seen in the TRAIL-sensitive breast cancer cell lines but not in the TRAIL-resistant breast cancer cell lines. Consistent with these results, Kaplan-Meier survival analysis also showed that lack of innate sensors detecting DNA or RNA is strongly associated with poor survival in estrogen receptor-negative breast cancer patients. In addition, cancer-associated fibroblasts (CAF) isolated from a breast cancer patient were also able to express TRAIL and IFN-β upon DNA and RNA stimulation. Therefore, our results suggest that the crosstalk between TRAIL-sensitive cancer cells and stromal cells creates a tumor-suppressive microenvironment and further provide a novel therapeutic approach to target stromal cells within cancer microenvironment for TRAIL sensitive cancer treatment.
Collapse
|
154
|
Elisia I, Nakamura H, Lam V, Hofs E, Cederberg R, Cait J, Hughes MR, Lee L, Jia W, Adomat HH, Guns ES, McNagny KM, Samudio I, Krystal G. DMSO Represses Inflammatory Cytokine Production from Human Blood Cells and Reduces Autoimmune Arthritis. PLoS One 2016; 11:e0152538. [PMID: 27031833 PMCID: PMC4816398 DOI: 10.1371/journal.pone.0152538] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 03/15/2016] [Indexed: 01/03/2023] Open
Abstract
Dimethyl sulfoxide (DMSO) is currently used as an alternative treatment for various inflammatory conditions as well as for cancer. Despite its widespread use, there is a paucity of data regarding its safety and efficacy as well as its mechanism of action in human cells. Herein, we demonstrate that DMSO has ex-vivo anti-inflammatory activity using Escherichia coli- (E. coli) and herpes simplex virus-1 (HSV-1)-stimulated whole human blood. Specifically, we found that between 0.5%-2%, DMSO significantly suppressed the expression of many pro-inflammatory cytokines/chemokines and prostaglandin E2 (PGE2). However, a significant reduction in monocyte viability was also observed at 2% DMSO, suggesting a narrow window of efficacy. Anti-inflammatory concentrations of DMSO suppressed E. coli-induced ERK1/2, p38, JNK and Akt phosphorylation, suggesting DMSO acts on these signaling pathways to suppress inflammatory cytokine/chemokine production. Although DMSO induces the differentiation of B16/F10 melanoma cells in vitro, topical administration of DMSO to mice subcutaneously implanted with B16 melanoma cells was ineffective at reducing tumor growth, DMSO was also found to block mouse macrophages from polarizing to either an M1- or an M2-phenotype, which may contribute to its inability to slow tumor growth. Topical administration of DMSO, however, significantly mitigated K/BxN serum-induced arthritis in mice, and this was associated with reduced levels of pro-inflammatory cytokines in the joints and white blood cell levels in the blood. Thus, while we cannot confirm the efficacy of DMSO as an anti-cancer agent, the use of DMSO in arthritis warrants further investigation to ascertain its therapeutic potential.
Collapse
Affiliation(s)
- Ingrid Elisia
- The Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, B.C., Canada
| | - Hisae Nakamura
- The Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, B.C., Canada
| | - Vivian Lam
- The Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, B.C., Canada
| | - Elyse Hofs
- The Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, B.C., Canada
| | - Rachel Cederberg
- The Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, B.C., Canada
| | - Jessica Cait
- The Biomedical Research Centre, University of British Columbia, Vancouver, B.C., Canada
| | - Michael R. Hughes
- The Biomedical Research Centre, University of British Columbia, Vancouver, B.C., Canada
| | - Leora Lee
- The Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, B.C., Canada
| | - William Jia
- The Brain Research Centre, University of British Columbia, Vancouver, B.C., Canada
| | - Hans H. Adomat
- The Vancouver Prostate Centre at Vancouver General Hospital, Vancouver, B.C., Canada
| | - Emma S. Guns
- The Vancouver Prostate Centre at Vancouver General Hospital, Vancouver, B.C., Canada
| | - Kelly M. McNagny
- The Biomedical Research Centre, University of British Columbia, Vancouver, B.C., Canada
| | - Ismael Samudio
- The Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, B.C., Canada
| | - Gerald Krystal
- The Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, B.C., Canada
| |
Collapse
|
155
|
Tai N, Wong FS, Wen L. The role of the innate immune system in destruction of pancreatic beta cells in NOD mice and humans with type I diabetes. J Autoimmun 2016; 71:26-34. [PMID: 27021275 DOI: 10.1016/j.jaut.2016.03.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 03/12/2016] [Indexed: 02/08/2023]
Abstract
Type 1 diabetes (T1D) is an organ-specific autoimmune disease characterized by T cell-mediated destruction of the insulin-producing pancreatic β cells. A combination of genetic and environmental factors eventually leads to the loss of functional β cell mass and hyperglycemia. Both innate and adaptive immunity are involved in the development of T1D. In this review, we have highlighted the most recent findings on the role of innate immunity, especially the pattern recognition receptors (PRRs), in disease development. In murine models and human studies, different PRRs, such as toll-like receptors (TLRs) and nucleotide-binding domain, leucine-rich repeat-containing (or Nod-like) receptors (NLRs), have different roles in the pathogenesis of T1D. These PRRs play a critical role in defending against infection by sensing specific ligands derived from exogenous microorganisms to induce innate immune responses and shape adaptive immunity. Animal studies have shown that TLR7, TLR9, MyD88 and NLPR3 play a disease-predisposing role in T1D, while controversial results have been found with other PRRs, such as TLR2, TLR3, TLR4, TLR5 and others. Human studies also shown that TLR2, TLR3 and TLR4 are expressed in either islet β cells or infiltrated immune cells, indicating the innate immunity plays a role in β cell autoimmunity. Furthermore, some human genetic studies showed a possible association of TLR3, TLR7, TLR8 or NLRP3 genes, at single nucleotide polymorphism (SNP) level, with human T1D. Increasing evidence suggest that the innate immunity modulates β cell autoimmunity. Thus, targeting pathways of innate immunity may provide novel therapeutic strategies to fight this disease.
Collapse
Affiliation(s)
- Ningwen Tai
- Section of Endocrinology, Department of Internal Medicine, Yale School of Medicine, New Haven, USA
| | - F Susan Wong
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Li Wen
- Section of Endocrinology, Department of Internal Medicine, Yale School of Medicine, New Haven, USA.
| |
Collapse
|
156
|
Colletti NJ, Liu H, Gower AC, Alekseyev YO, Arendt CW, Shaw MH. TLR3 Signaling Promotes the Induction of Unique Human BDCA-3 Dendritic Cell Populations. Front Immunol 2016; 7:88. [PMID: 27014268 PMCID: PMC4789364 DOI: 10.3389/fimmu.2016.00088] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 02/22/2016] [Indexed: 01/13/2023] Open
Abstract
Conventional and plasmacytoid dendritic cells (cDCs and pDCs) are the two populations of DCs that can be readily identified in human blood. Conventional DCs have been subdivided into CD1c+, or blood dendritic cells antigen (BDCA) 1 and CD141+, or BDCA-3, DCs, each having both unique gene expression profiles and functions. BDCA-3 DCs express high levels of toll-like receptor 3 and upon stimulation with Poly I:C secrete IFN-β, CXCL10, and IL-12p70. In this article, we show that activation of human BDCA-3 DCs with Poly I:C induces the expression of activation markers (CD40, CD80, and CD86) and immunoglobulin-like transcript (ILT) 3 and 4. This Poly I:C stimulation results in four populations identifiable by flow cytometry based on their expression of ILT3 and ILT4. We focused our efforts on profiling the ILT4− and ILT4+ DCs. These ILT-expressing BDCA-3 populations exhibit similar levels of activation as measured by CD40, CD80, and CD86; however, they exhibit differential cytokine secretion profiles, unique gene signatures, and vary in their ability to prime allogenic naïve T cells. Taken together, these data illustrate that within a pool of BDCA-3 DCs, there are cells poised to respond differently to a given input stimulus with unique output of immune functions.
Collapse
Affiliation(s)
- Nicholas J Colletti
- Sanofi Pharmaceuticals, Cambridge, MA, USA; Department of Biological Science, Seton Hall University, South Orange, NJ, USA
| | - Hong Liu
- Sanofi Pharmaceuticals , Cambridge, MA , USA
| | - Adam C Gower
- Clinical and Translational Science Institute, Boston University , Boston, MA , USA
| | - Yuriy O Alekseyev
- Department of Pathology and Laboratory Medicine, Boston University , Boston, MA , USA
| | | | | |
Collapse
|
157
|
Gyurkovska V, Ivanovska N. Distinct roles of TNF-related apoptosis-inducing ligand (TRAIL) in viral and bacterial infections: from pathogenesis to pathogen clearance. Inflamm Res 2016; 65:427-37. [PMID: 26943649 DOI: 10.1007/s00011-016-0934-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 02/03/2016] [Accepted: 02/24/2016] [Indexed: 02/02/2023] Open
Abstract
INTRODUCTION Apoptotic death of different cells observed during infection is thought to limit overwhelming inflammation in response to microbial challenge. However, the underlying apoptotic death mechanisms have not been well defined. Tumor necrosis factor (TNF) related apoptosis-inducing ligand (TRAIL) is a type II transmembrane protein belonging to the TNF superfamily, which is involved not only in tumor growth suppression but in infection control and also in the regulation of both innate and adaptive immune responses. FINDINGS In this review, we have summarized data of recent studies on the influence of the TRAIL/TRAIL receptor (TRAIL-R) system on the development of viral and bacterial infections. TRAIL may have a dual function in the immune system being able to kill infected cells and also to participate in the pathogenesis of multiple infections. Moreover, many pathogens have evolved mechanisms to manipulate TRAIL signaling thus increasing pathogen replication. CONCLUSION Present data highlight an essential role for the TRAIL/TRAIL-R system in the regulation and modulation of apoptosis and show that TRAIL has distinct roles in pathogenesis and pathogen elimination. Knowledge of the factors that determine whether TRAIL is helpful or harmful supposes its potential therapeutic implications that are only beginning to be explored.
Collapse
Affiliation(s)
- Valeriya Gyurkovska
- Institute of Microbiology, Department of Immunology, 26 G. Bonchev Str., 1113, Sofia, Bulgaria
| | - Nina Ivanovska
- Institute of Microbiology, Department of Immunology, 26 G. Bonchev Str., 1113, Sofia, Bulgaria.
| |
Collapse
|
158
|
Nocera DA, Roselli E, Araya P, Nuñez NG, Lienenklaus S, Jablonska J, Weiss S, Gatti G, Brinkmann MM, Kröger A, Morón G, Maccioni M. In Vivo Visualizing the IFN-β Response Required for Tumor Growth Control in a Therapeutic Model of Polyadenylic-Polyuridylic Acid Administration. THE JOURNAL OF IMMUNOLOGY 2016; 196:2860-9. [PMID: 26880763 DOI: 10.4049/jimmunol.1501044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 01/11/2016] [Indexed: 12/31/2022]
Abstract
The crucial role that endogenously produced IFN-β plays in eliciting an immune response against cancer has recently started to be elucidated. Endogenous IFN-β has an important role in immune surveillance and control of tumor development. Accordingly, the role of TLR agonists as cancer therapeutic agents is being revisited via the strategy of intra/peritumoral injection with the idea of stimulating the production of endogenous type I IFN inside the tumor. Polyadenylic-polyuridylic acid (poly A:U) is a dsRNA mimetic explored empirically in cancer immunotherapy a long time ago with little knowledge regarding its mechanisms of action. In this work, we have in vivo visualized the IFN-β required for the antitumor immune response elicited in a therapeutic model of poly A:U administration. In this study, we have identified the role of host type I IFNs, cell populations that are sources of IFN-β in the tumor microenvironment, and other host requirements for tumor control in this model. One single peritumoral dose of poly A:U was sufficient to induce IFN-β, readily visualized in vivo. IFN-β production relied mainly on the activation of the transcription factor IFN regulatory factor 3 and the molecule UNC93B1, indicating that TLR3 is required for recognizing poly A:U. CD11c(+) cells were an important, but not the only source of IFN-β. Host type I IFN signaling was absolutely required for the reduced tumor growth, prolonged mice survival, and the strong antitumor-specific immune response elicited upon poly A:U administration. These findings add new perspectives to the use of IFN-β-inducing compounds in tumor therapy.
Collapse
Affiliation(s)
- David Andrés Nocera
- Department of Clinical Biochemistry, Faculty of Chemical Sciences, Center for Research in Clinical Biochemistry and Immunology, National University of Cordoba, X5000HUA Córdoba, Argentina
| | - Emiliano Roselli
- Department of Clinical Biochemistry, Faculty of Chemical Sciences, Center for Research in Clinical Biochemistry and Immunology, National University of Cordoba, X5000HUA Córdoba, Argentina
| | - Paula Araya
- Department of Clinical Biochemistry, Faculty of Chemical Sciences, Center for Research in Clinical Biochemistry and Immunology, National University of Cordoba, X5000HUA Córdoba, Argentina
| | - Nicolás Gonzalo Nuñez
- Department of Clinical Biochemistry, Faculty of Chemical Sciences, Center for Research in Clinical Biochemistry and Immunology, National University of Cordoba, X5000HUA Córdoba, Argentina; INSERM U932, Institut Curie, 75005 Paris, France
| | - Stefan Lienenklaus
- Molecular Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Jadwiga Jablonska
- Molecular Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Siegfried Weiss
- Molecular Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Gerardo Gatti
- Department of Clinical Biochemistry, Faculty of Chemical Sciences, Center for Research in Clinical Biochemistry and Immunology, National University of Cordoba, X5000HUA Córdoba, Argentina; Fundación para el Progreso de la Medicina. X5000EMS Córdoba, Argentina
| | - Melanie M Brinkmann
- Viral Immune Modulation Research Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Andrea Kröger
- Institute of Medical Microbiology, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany; and Research Group on Innate Immunity and Infection, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Gabriel Morón
- Department of Clinical Biochemistry, Faculty of Chemical Sciences, Center for Research in Clinical Biochemistry and Immunology, National University of Cordoba, X5000HUA Córdoba, Argentina
| | - Mariana Maccioni
- Department of Clinical Biochemistry, Faculty of Chemical Sciences, Center for Research in Clinical Biochemistry and Immunology, National University of Cordoba, X5000HUA Córdoba, Argentina;
| |
Collapse
|
159
|
Abstract
Inflammasomes are multi-protein signaling platforms that upon activation trigger the maturation of the pro-inflammatory cytokines, interleukin-1β (IL-1β) and IL-18, and cell death. Inflammasome sensors detect microbial and host-derived molecules. Here, we review the mechanisms of inflammasome activation triggered by bacterial infection, primarily focusing on two model intracellular bacterial pathogens, Francisella novicida and Salmonella typhimurium. We discuss the complex relationship between bacterial recognition through direct and indirect detection by inflammasome sensors. We highlight regulation mechanisms that potentiate or limit inflammasome activation. We discuss the importance of caspase-1 and caspase-11 in host defense, and we examine the downstream consequences of inflammasome activation within the context of bacterial infections.
Collapse
Affiliation(s)
- Kelly M Storek
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | | |
Collapse
|
160
|
Zheng Z, Wei C, Guan K, Yuan Y, Zhang Y, Ma S, Cao Y, Wang F, Zhong H, He X. Bacterial E3 Ubiquitin Ligase IpaH4.5 ofShigella flexneriTargets TBK1 To Dampen the Host Antibacterial Response. THE JOURNAL OF IMMUNOLOGY 2015; 196:1199-208. [DOI: 10.4049/jimmunol.1501045] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 11/18/2015] [Indexed: 11/19/2022]
|
161
|
Increased expression of Toll-like receptors 7 and 9 in myasthenia gravis thymus characterized by active Epstein-Barr virus infection. Immunobiology 2015; 221:516-27. [PMID: 26723518 DOI: 10.1016/j.imbio.2015.12.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/10/2015] [Accepted: 12/10/2015] [Indexed: 11/24/2022]
Abstract
Considerable data implicate the thymus as the main site of autosensitization to the acetylcholine receptor in myasthenia gravis (MG), a B-cell-mediated autoimmune disease affecting the neuromuscular junction. We recently demonstrated an active Epstein-Barr virus (EBV) infection in the thymus of MG patients, suggesting that EBV might contribute to the onset or maintenance of the autoimmune response within MG thymus, because of its ability to activate and immortalize autoreactive B cells. EBV has been reported to elicit and modulate Toll-like receptor (TLR) 7- and TLR9-mediated innate immune responses, which are known to favor B-cell dysfunction and autoimmunity. Aim of this study was to investigate whether EBV infection is associated with altered expression of TLR7 and TLR9 in MG thymus. By real-time PCR, we found that TLR7 and TLR9 mRNA levels were significantly higher in EBV-positive MG compared to EBV-negative normal thymuses. By confocal microscopy, high expression levels of TLR7 and TLR9 proteins were observed in B cells and plasma cells of MG thymic germinal centers (GCs) and lymphoid infiltrates, where the two receptors co-localized with EBV antigens. An increased frequency of Ki67-positive proliferating B cells was found in MG thymuses, where we also detected proliferating cells expressing TLR7, TLR9 and EBV antigens, thus supporting the idea that EBV-associated TLR7/9 signaling may promote abnormal B-cell activation and proliferation. Along with B cells and plasma cells, thymic epithelium, plasmacytoid dendritic cells and macrophages exhibited enhanced TLR7 and TLR9 expression in MG thymus; TLR7 was also increased in thymic myeloid dendritic cells and its transcriptional levels positively correlated with those of interferon (IFN)-β. We suggested that TLR7/9 signaling may be involved in antiviral type I IFN production and long-term inflammation in EBV-infected MG thymuses. Our overall findings indicate that EBV-driven TLR7- and TLR9-mediated innate immune responses may participate in the intra-thymic pathogenesis of MG.
Collapse
|
162
|
Waffarn EE, Hastey CJ, Dixit N, Soo Choi Y, Cherry S, Kalinke U, Simon SI, Baumgarth N. Infection-induced type I interferons activate CD11b on B-1 cells for subsequent lymph node accumulation. Nat Commun 2015; 6:8991. [PMID: 26612263 DOI: 10.1038/ncomms9991] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 10/23/2015] [Indexed: 12/22/2022] Open
Abstract
Innate-like B-1a lymphocytes rapidly redistribute to regional mediastinal lymph nodes (MedLNs) during influenza infection to generate protective IgM. Here we demonstrate that influenza infection-induced type I interferons directly stimulate body cavity B-1 cells and are a necessary signal required for B-1 cell accumulation in MedLNs. Vascular mimetic flow chamber studies show that type I interferons increase ligand-mediated B-1 cell adhesion under shear stress by inducing high-affinity conformation shifts of surface-expressed integrins. In vivo trafficking experiments identify CD11b as the non-redundant, interferon-activated integrin required for B-1 cell accumulation in MedLNs. Thus, CD11b on B-1 cells senses infection-induced innate signals and facilitates their rapid sequester into secondary lymphoid tissues, thereby regulating the accumulation of polyreactive IgM producers at sites of infection.
Collapse
Affiliation(s)
- Elizabeth E Waffarn
- Center for Comparative Medicine, University of California Davis, One Shields Avenue, Davis, California 95616, USA.,The Graduate Group in Immunology, University of California Davis, One Shields Avenue, Davis, California 95616, USA
| | - Christine J Hastey
- Center for Comparative Medicine, University of California Davis, One Shields Avenue, Davis, California 95616, USA.,The Graduate Group in Microbiology, University of California Davis, One Shields Avenue, Davis, California 95616, USA
| | - Neha Dixit
- The Graduate Group in Immunology, University of California Davis, One Shields Avenue, Davis, California 95616, USA.,Department of Biomedical Engineering, University of California Davis, One Shields Avenue, Davis, California 95616, USA
| | - Youn Soo Choi
- Center for Comparative Medicine, University of California Davis, One Shields Avenue, Davis, California 95616, USA.,The Graduate Group in Immunology, University of California Davis, One Shields Avenue, Davis, California 95616, USA
| | - Simon Cherry
- Department of Biomedical Engineering, University of California Davis, One Shields Avenue, Davis, California 95616, USA
| | - Ulrich Kalinke
- TWINCORE, Centre for Experimental and Clinical Infection Research, Helmholtz-Centre for Infection Research, Hannover Medical School, 7 Feodor-Lynen Strasse, Hannover 30625, Germany
| | - Scott I Simon
- Department of Biomedical Engineering, University of California Davis, One Shields Avenue, Davis, California 95616, USA
| | - Nicole Baumgarth
- Center for Comparative Medicine, University of California Davis, One Shields Avenue, Davis, California 95616, USA.,Department of Pathology, Microbiology and Immunology, University of California Davis, One Shields Avenue, Davis, California 95616, USA
| |
Collapse
|
163
|
Zinc finger antiviral protein inhibits coxsackievirus B3 virus replication and protects against viral myocarditis. Antiviral Res 2015; 123:50-61. [DOI: 10.1016/j.antiviral.2015.09.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Revised: 08/11/2015] [Accepted: 09/01/2015] [Indexed: 11/20/2022]
|
164
|
The Role of Cytokines and Chemokines in Filovirus Infection. Viruses 2015; 7:5489-507. [PMID: 26512687 PMCID: PMC4632400 DOI: 10.3390/v7102892] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/09/2015] [Accepted: 10/14/2015] [Indexed: 01/11/2023] Open
Abstract
Ebola- and marburgviruses are highly pathogenic filoviruses and causative agents of viral hemorrhagic fever. Filovirus disease is characterized by a dysregulated immune response, severe organ damage, and coagulation abnormalities. This includes modulation of cytokines, signaling mediators that regulate various components of the immune system as well as other biological processes. Here we examine the role of cytokines in filovirus infection, with an emphasis on understanding how these molecules affect development of the antiviral immune response and influence pathology. These proteins may present targets for immune modulation by therapeutic agents and vaccines in an effort to boost the natural immune response to infection and/or reduce immunopathology.
Collapse
|
165
|
Li W, Xiao J, Zhou X, Xu M, Hu C, Xu X, Lu Y, Liu C, Xue S, Nie L, Zhang H, Li Z, Zhang Y, Ji F, Hui L, Tao W, Wei B, Wang H. STK4 regulates TLR pathways and protects against chronic inflammation-related hepatocellular carcinoma. J Clin Invest 2015; 125:4239-54. [PMID: 26457732 DOI: 10.1172/jci81203] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 08/28/2015] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is frequently associated with pathogen infection-induced chronic inflammation. Large numbers of innate immune cells are present in HCCs and can influence disease outcome. Here, we demonstrated that the tumor suppressor serine/threonine-protein kinase 4 (STK4) differentially regulates TLR3/4/9-mediated inflammatory responses in macrophages and thereby is protective against chronic inflammation-associated HCC. STK4 dampened TLR4/9-induced proinflammatory cytokine secretion but enhanced TLR3/4-triggered IFN-β production via binding to and phosphorylating IL-1 receptor-associated kinase 1 (IRAK1), leading to IRAK1 degradation. Notably, macrophage-specific Stk4 deletion resulted in chronic inflammation, liver fibrosis, and HCC in mice treated with a combination of diethylnitrosamine (DEN) and CCl4, along with either LPS or E. coli infection. STK4 expression was markedly reduced in macrophages isolated from human HCC patients and was inversely associated with the levels of IRAK1, IL-6, and phospho-p65 or phospho-STAT3. Moreover, serum STK4 levels were specifically decreased in HCC patients with high levels of IL-6. In STK4-deficient mice, treatment with an IRAK1/4 inhibitor after DEN administration reduced serum IL-6 levels and liver tumor numbers to levels similar to those observed in the control mice. Together, our results suggest that STK4 has potential as a diagnostic biomarker and therapeutic target for inflammation-induced HCC.
Collapse
MESH Headings
- Animals
- Carbon Tetrachloride/toxicity
- Carcinoma, Hepatocellular/chemistry
- Carcinoma, Hepatocellular/etiology
- Carcinoma, Hepatocellular/immunology
- Cytokines/metabolism
- Diethylnitrosamine
- Escherichia coli Infections/complications
- Female
- HEK293 Cells
- Hepatitis, Animal/chemically induced
- Hepatitis, Animal/immunology
- Humans
- Immunity, Innate
- Interferon-beta/biosynthesis
- Interferon-beta/genetics
- Interleukin-1 Receptor-Associated Kinases/physiology
- Interleukin-6/analysis
- Intracellular Signaling Peptides and Proteins
- Lipopolysaccharides/toxicity
- Liver Neoplasms/chemistry
- Liver Neoplasms/etiology
- Liver Neoplasms/immunology
- Liver Neoplasms, Experimental/etiology
- Liver Neoplasms, Experimental/genetics
- Liver Neoplasms, Experimental/immunology
- Liver Neoplasms, Experimental/prevention & control
- Lung/immunology
- Lung/pathology
- Macrophages/immunology
- Macrophages/metabolism
- Male
- Mice
- Neoplasm Proteins/analysis
- Phosphorylation
- Protein Processing, Post-Translational
- Protein Serine-Threonine Kinases/blood
- Protein Serine-Threonine Kinases/deficiency
- Protein Serine-Threonine Kinases/physiology
- STAT3 Transcription Factor/analysis
- Signal Transduction
- Specific Pathogen-Free Organisms
- Toll-Like Receptors/immunology
- Transcription Factor RelA/analysis
Collapse
|
166
|
Sehgal M, Zeremski M, Talal AH, Ginwala R, Elrod E, Grakoui A, Li QG, Philip R, Khan ZK, Jain P. IFN-α-Induced Downregulation of miR-221 in Dendritic Cells: Implications for HCV Pathogenesis and Treatment. J Interferon Cytokine Res 2015; 35:698-709. [PMID: 26090579 PMCID: PMC4560851 DOI: 10.1089/jir.2014.0211] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 03/19/2015] [Indexed: 12/19/2022] Open
Abstract
Although interferon (IFN)-α is known to exert immunomodulatory and antiproliferative effects on dendritic cells (DCs) through induction of protein-coding IFN-stimulated genes (ISGs), little is known about IFN-α-regulated miRNAs in DCs. Since several miRNAs are involved in regulating DC functions, it is important to investigate whether IFN-α's effects on DCs are mediated through miRNAs as well. In this study, we examined miRNA expression patterns in myeloid DCs (mDCs) and plasmacytoid DCs after exposing them to IFN-α. We report that IFN-α downregulates miR-221 in both DC subsets via inhibition of STAT3. We validated proapoptotic proteins BCL2L11 and CDKN1C as miR-221 targets suggesting that IFN-α can induce DC apoptosis via miR-221 downregulation. In addition, we validated another miR-221 target, SOCS1, which is known to be a negative regulator of JAK/STAT signaling. Consistent with this, miR-221 overexpression in mDCs enhanced the secretion of proinflammatory cytokines IL-6 and TNF-α. In peripheral blood mononuclear cells (PBMCs) of HIV-1/HCV co-infected individuals undergoing IFN-α-based treatment the baseline miR-221 expression was lower in non-responders compared with responders; and miR-221 expression directly correlated with DC frequency and IL-6/TNF-α secretion. In addition to PBMCs, we isolated total liver cells and kupffer cells from HCV-infected individuals and individuals with alcoholic cirrhosis. We found that both total liver cells and kupffer cells from HCV-infected individuals had significantly higher miR-221 levels compared with individuals with cirrhosis. Overall, we demonstrate that IFN-α exerts both antiproliferative and immunomodulatory effects on mDCs via miR-221 downregulation; and IFN-miR-221 axis can play important role in HCV pathogenesis and treatment.
Collapse
Affiliation(s)
- Mohit Sehgal
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | | | - Andrew H. Talal
- School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York
| | - Rashida Ginwala
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | | | | | - Qi-Ging Li
- Duke University Medical Center, Durham, North Carolina
| | - Ramila Philip
- Immunotope, Inc., Pennsylvania Biotechnology Center, Doylestown, Pennsylvania
| | - Zafar K. Khan
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Pooja Jain
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
167
|
Wiley CA, Bhardwaj N, Ross TM, Bissel SJ. Emerging Infections of CNS: Avian Influenza A Virus, Rift Valley Fever Virus and Human Parechovirus. Brain Pathol 2015; 25:634-50. [PMID: 26276027 PMCID: PMC4538697 DOI: 10.1111/bpa.12281] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 06/22/2015] [Indexed: 11/28/2022] Open
Abstract
History is replete with emergent pandemic infections that have decimated the human population. Given the shear mass of humans that now crowd the earth, there is every reason to suspect history will repeat itself. We describe three RNA viruses that have recently emerged in the human population to mediate severe neurological disease. These new diseases are results of new mutations in the infectious agents or new exposure pathways to the agents or both. To appreciate their pathogenesis, we summarize the essential virology and immune response to each agent. Infection is described in the context of known host defenses. Once the viruses evade immune defenses and enter central nervous system (CNS) cells, they rapidly co-opt host RNA processing to a cataclysmic extent. It is not clear why the brain is particularly susceptible to RNA viruses; but perhaps because of its tremendous dependence on RNA processing for physiological functioning, classical mechanisms of host defense (eg, interferon disruption of viral replication) are diminished or not available. Effectiveness of immunity, immunization and pharmacological therapies is reviewed to contextualize the scope of the public health challenge. Unfortunately, vaccines that confer protection from systemic disease do not necessarily confer protection for the brain after exposure through unconventional routes.
Collapse
Affiliation(s)
| | - Nitin Bhardwaj
- Department of Infectious Diseases and MicrobiologyUniversity of PittsburghPittsburghPA
- Present address:
Sanofi Pasteur1755 Steeles Avenue WestTorontoOntarioCanadaM2R 3T4
| | - Ted M. Ross
- Center for Vaccine DevelopmentUniversity of GeorgiaAthensGA
- Department of Infectious DiseasesUniversity of GeorgiaAthensGA
| | | |
Collapse
|
168
|
Irudayam JI, Contreras D, Spurka L, Subramanian A, Allen J, Ren S, Kanagavel V, Nguyen Q, Ramaiah A, Ramamoorthy K, French SW, Klein AS, Funari V, Arumugaswami V. Characterization of type I interferon pathway during hepatic differentiation of human pluripotent stem cells and hepatitis C virus infection. Stem Cell Res 2015; 15:354-364. [PMID: 26313525 DOI: 10.1016/j.scr.2015.08.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 06/26/2015] [Accepted: 08/13/2015] [Indexed: 01/08/2023] Open
Abstract
Pluripotent stem cells are being actively studied as a cell source for regenerating damaged liver. For long-term survival of engrafting cells in the body, not only do the cells have to execute liver-specific function but also withstand the physical strains and invading pathogens. The cellular innate immune system orchestrated by the interferon (IFN) pathway provides the first line of defense against pathogens. The objective of this study is to assess the innate immune function as well as to systematically profile the IFN-induced genes during hepatic differentiation of pluripotent stem cells. To address this objective, we derived endodermal cells (day 5 post-differentiation), hepatoblast (day 15) and hepatocyte-like cells (day 21) from human embryonic stem cells (hESCs). Day 5, 15 and 21 cells were stimulated with IFN-α and subjected to IFN pathway analysis. Transcriptome analysis was carried out by RNA sequencing. The results showed that the IFN-α treatment activated STAT-JAK pathway in differentiating cells. Transcriptome analysis indicated stage specific expression of classical and non-classical IFN-stimulated genes (ISGs). Subsequent validation confirmed the expression of novel ISGs including RASGRP3, CLMP and TRANK1 by differentiated hepatic cells upon IFN treatment. Hepatitis C virus replication in hESC-derived hepatic cells induced the expression of ISGs--LAMP3, ETV7, RASGRP3, and TRANK1. The hESC-derived hepatic cells contain intact innate system and can recognize invading pathogens. Besides assessing the tissue-specific functions for cell therapy applications, it may also be important to test the innate immune function of engrafting cells to ensure adequate defense against infections and improve graft survival.
Collapse
Affiliation(s)
- Joseph Ignatius Irudayam
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Deisy Contreras
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Lindsay Spurka
- Cedars-Sinai Genomics Core, Medical Genetics Institute, Cedars-Sinai Medical Center Los Angeles, CA 90048, USA
| | - Aparna Subramanian
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jenieke Allen
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Songyang Ren
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Vidhya Kanagavel
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Quoclinh Nguyen
- Cedars-Sinai Genomics Core, Medical Genetics Institute, Cedars-Sinai Medical Center Los Angeles, CA 90048, USA
| | - Arunachalam Ramaiah
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, Karnataka 560012, India.,Hindustan Genomics Institute, SVA Medical Center, Kadayam, Tamil Nadu 627415, India
| | - Kalidas Ramamoorthy
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu 627012, India.,Hindustan Genomics Institute, SVA Medical Center, Kadayam, Tamil Nadu 627415, India
| | - Samuel W French
- Department of Pathology and Laboratory Medicine, University of California at Los Angeles, Los Angeles CA 90095, USA
| | - Andrew S Klein
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.,Department of Surgery, University of California at Los Angeles, Los Angeles CA 90095, USA
| | - Vincent Funari
- Cedars-Sinai Genomics Core, Medical Genetics Institute, Cedars-Sinai Medical Center Los Angeles, CA 90048, USA
| | - Vaithilingaraja Arumugaswami
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.,Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.,Department of Surgery, University of California at Los Angeles, Los Angeles CA 90095, USA
| |
Collapse
|
169
|
Kim SM, Mayassi T, Jabri B. Innate immunity: actuating the gears of celiac disease pathogenesis. Best Pract Res Clin Gastroenterol 2015; 29:425-35. [PMID: 26060107 PMCID: PMC4465077 DOI: 10.1016/j.bpg.2015.05.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 05/01/2015] [Accepted: 05/02/2015] [Indexed: 01/31/2023]
Abstract
Celiac disease is a T cell mediated immune disorder characterized by the loss of oral tolerance to dietary gluten and the licensing of intraepithelial lymphocytes to kill intestinal epithelial cells, leading to villous atrophy. Innate immunity plays a critical role in both of these processes and cytokines such as interleukin-15 and interferon-α can modulate innate processes such as polarization of dendritic cells as well as intraepithelial lymphocyte function. These cytokines can be modulated by host microbiota, which can also influence dendritic cell function and intraepithelial lymphocyte homeostasis. We will elaborate on the role of interleukin-15, interferon-α, and the microbiota in modulating the processes that lead to loss of tolerance to gluten and tissue destruction in celiac disease.
Collapse
Affiliation(s)
- Sangman Michael Kim
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA; Department of Medicine, University of Chicago, Chicago, IL 60637, USA.
| | - Toufic Mayassi
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA; Department of Medicine, University of Chicago, Chicago, IL 60637, USA.
| | - Bana Jabri
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA; Department of Medicine, University of Chicago, Chicago, IL 60637, USA; Department of Pathology, University of Chicago, Chicago, IL 60637, USA; Department of Pediatrics, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
170
|
The human P-glycoprotein transporter enhances the type I interferon response to Listeria monocytogenes infection. Infect Immun 2015; 83:2358-68. [PMID: 25824830 DOI: 10.1128/iai.00380-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 03/20/2015] [Indexed: 01/01/2023] Open
Abstract
Human multidrug efflux transporters are known for their ability to extrude antibiotics and toxic compounds out of cells, yet accumulating data indicate they have additional functions in diverse physiological processes not related to drug efflux. Here, we show that the human multidrug transporter P-glycoprotein (P-gp) (also named MDR1 and ABCB1) is transcriptionally induced in the monocytic cell line THP-1 upon infection with the human intracellular bacterial pathogen Listeria monocytogenes. Notably, we found that P-gp is important for full activation of the type I interferon response elicited against L. monocytogenes bacteria. Both inhibition of P-gp function by verapamil and inhibition of its transcription using mRNA silencing led to a reduction in the magnitude of the type I response in infected cells. This function of P-gp was specific to type I interferon cytokines elicited against cytosolic replicating bacteria and was not observed in response to cyclic di-AMP (c-di-AMP), a molecule that was shown to be secreted by L. monocytogenes during infection and to trigger type I interferons. Moreover, P-gp was not involved in activation of other proinflammatory cytokines, such as those triggered by vacuolar-restricted L. monocytogenes or lipopolysaccharide (LPS). Taken together, these findings demonstrate a role for P-gp in proper development of an innate immune response against intracellular pathogens, highlighting the complexity in employing therapeutic strategies that involve inhibition of multidrug resistance (MDR) efflux pumps.
Collapse
|
171
|
Shim DW, Shin HJ, Han JW, Shin WY, Sun X, Shim EJ, Kim TJ, Kang TB, Lee KH. Anti-inflammatory effect of Streptochlorin via TRIF-dependent signaling pathways in cellular and mouse models. Int J Mol Sci 2015; 16:6902-10. [PMID: 25822875 PMCID: PMC4424995 DOI: 10.3390/ijms16046902] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 03/07/2015] [Accepted: 03/16/2015] [Indexed: 01/06/2023] Open
Abstract
Streptochlorin, a small compound derived from marine actinomycete, has been shown to have anti-angiogenic, anti-tumor, and anti-allergic activities. However, the anti-inflammatory effects and underlying mechanisms have not yet been reported. In the present study, we investigated the effect of streptochlorin on lipopolysaccharide (LPS)-induced inflammatory responses in vitro and in vivo. Streptochlorin attenuated the production of proinflammatory mediators such as nitric oxide, cyclooxygenase-2, pro-interleukin (IL)-1β, and IL-6 in LPS-stimulated RAW264.7 cells through inhibition of the Toll/interleukin-1 receptor (TIR)-domain-containing adapter-inducing interferon-β (TRIF)-dependent signaling pathway. Furthermore, streptochlorin suppressed the infiltration of immune cells such as neutrophils into the lung and proinflammatory cytokine production such as IL-6 and TNF-α in broncho-alveolar lavage fluid (BALF) in the LPS-induced acute lung injury (ALI) mouse model. Streptochlorin has potent anti-inflammatory effects through regulating TRIF-dependent signaling pathways, suggesting that streptochlorin may provide a valuable therapeutic strategy in treating various inflammatory diseases.
Collapse
Affiliation(s)
- Do-Wan Shim
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju 380-150, Korea.
| | - Hee Jae Shin
- Marine Natural Products Chemistry Laboratory, Korea Institute of Ocean Science & Technology, 787 Haeanro, Ansan 426-744, Korea.
| | - Ji-Won Han
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju 380-150, Korea.
| | - Woo-Young Shin
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju 380-150, Korea.
| | - Xiao Sun
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju 380-150, Korea.
| | - Eun-Jeong Shim
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju 380-150, Korea.
| | - Tack-Joong Kim
- Division of Biological Science and Technology, Yonsei University, Wonju 222-710, Korea.
| | - Tae-Bong Kang
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju 380-150, Korea.
| | - Kwang-Ho Lee
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju 380-150, Korea.
| |
Collapse
|
172
|
Gardeux V, Bosco A, Li J, Halonen MJ, Jackson D, Martinez FD, Lussier YA. Towards a PBMC "virogram assay" for precision medicine: Concordance between ex vivo and in vivo viral infection transcriptomes. J Biomed Inform 2015; 55:94-103. [PMID: 25797143 DOI: 10.1016/j.jbi.2015.03.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 02/25/2015] [Accepted: 03/13/2015] [Indexed: 12/31/2022]
Abstract
BACKGROUND Understanding individual patient host-response to viruses is key to designing optimal personalized therapy. Unsurprisingly, in vivo human experimentation to understand individualized dynamic response of the transcriptome to viruses are rarely studied because of the obvious limitations stemming from ethical considerations of the clinical risk. OBJECTIVE In this rhinovirus study, we first hypothesized that ex vivo human cells response to virus can serve as a proxy for otherwise controversial in vivo human experimentation. We further hypothesized that the N-of-1-pathways framework, previously validated in cancer, can be effective in understanding the more subtle individual transcriptomic response to viral infection. METHOD N-of-1-pathways computes a significance score for a given list of gene sets at the patient level, using merely the 'omics profiles of two paired samples as input. We extracted the peripheral blood mononuclear cells (PBMC) of four human subjects, aliquoted in two paired samples, one subjected to ex vivo rhinovirus infection. Their dysregulated genes and pathways were then compared to those of 9 human subjects prior and after intranasal inoculation in vivo with rhinovirus. Additionally, we developed the Similarity Venn Diagram, a novel visualization method that goes beyond conventional overlap to show the similarity between two sets of qualitative measures. RESULTS We evaluated the individual N-of-1-pathways results using two established cohort-based methods: GSEA and enrichment of differentially expressed genes. Similarity Venn Diagrams and individual patient ROC curves illustrate and quantify that the in vivo dysregulation is recapitulated ex vivo both at the gene and pathway level (p-values⩽0.004). CONCLUSION We established the first evidence that an interpretable dynamic transcriptome metric, conducted as an ex vivo assays for a single subject, has the potential to predict individualized response to infectious disease without the clinical risks otherwise associated to in vivo challenges. These results serve as a foundational work for personalized "virograms".
Collapse
Affiliation(s)
- Vincent Gardeux
- Department of Medicine, University of Arizona, Tucson, AZ, USA
| | - Anthony Bosco
- Telethon Institute for Child Health Research, Perth, Australia
| | - Jianrong Li
- Department of Medicine, University of Arizona, Tucson, AZ, USA
| | | | - Daniel Jackson
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA; The Childhood Asthma Research and Education Network (CARE)
| | - Fernando D Martinez
- The Childhood Asthma Research and Education Network (CARE); Department of Pediatrics, University of Arizona, Tucson, AZ, USA; BIO5 Institute, University of Arizona, Tucson, AZ, USA.
| | - Yves A Lussier
- Department of Medicine, University of Arizona, Tucson, AZ, USA; BIO5 Institute, University of Arizona, Tucson, AZ, USA; UA Cancer Center, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
173
|
Ma DY, Suthar MS. Mechanisms of innate immune evasion in re-emerging RNA viruses. Curr Opin Virol 2015; 12:26-37. [PMID: 25765605 PMCID: PMC4470747 DOI: 10.1016/j.coviro.2015.02.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/18/2015] [Accepted: 02/19/2015] [Indexed: 01/10/2023]
Abstract
RNA viruses passively evade host detection by masking viral PAMPs and replicating within vesicles. Many emerging viruses harbor multiple strategies for innate immune evasion. Viral antagonists have been found to target the pattern recognition receptor and interferon signaling pathways. Knowledge of host–pathogen interactions is essential for vaccine/therapeutic development and understanding innate immunity.
Recent outbreaks of Ebola, West Nile, Chikungunya, Middle Eastern Respiratory and other emerging/re-emerging RNA viruses continue to highlight the need to further understand the virus–host interactions that govern disease severity and infection outcome. As part of the early host antiviral defense, the innate immune system mediates pathogen recognition and initiation of potent antiviral programs that serve to limit virus replication, limit virus spread and activate adaptive immune responses. Concordantly, viral pathogens have evolved several strategies to counteract pathogen recognition and cell-intrinsic antiviral responses. In this review, we highlight the major mechanisms of innate immune evasion by emerging and re-emerging RNA viruses, focusing on pathogens that pose significant risk to public health.
Collapse
Affiliation(s)
- Daphne Y Ma
- Department of Pediatrics and Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA 30329, USA; Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA 30329, USA
| | - Mehul S Suthar
- Department of Pediatrics and Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA 30329, USA; Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA 30329, USA.
| |
Collapse
|
174
|
Hoffmann HH, Schneider WM, Rice CM. Interferons and viruses: an evolutionary arms race of molecular interactions. Trends Immunol 2015; 36:124-38. [PMID: 25704559 DOI: 10.1016/j.it.2015.01.004] [Citation(s) in RCA: 308] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 01/16/2015] [Accepted: 01/16/2015] [Indexed: 12/24/2022]
Abstract
Over half a century has passed since interferons (IFNs) were discovered and shown to inhibit virus infection in cultured cells. Since then, researchers have steadily brought to light the molecular details of IFN signaling, catalogued their pleiotropic effects on cells, and harnessed their therapeutic potential for a variety of maladies. While advances have been plentiful, several fundamental questions have yet to be answered and much complexity remains to be unraveled. We explore the current knowledge surrounding four main questions: are type I IFN subtypes differentially produced in response to distinct pathogens? How are IFN subtypes distinguished by cells? What are the mechanisms and consequences of viral antagonism? Lastly, how can the IFN response be harnessed to improve vaccine efficacy?
Collapse
Affiliation(s)
- Hans-Heinrich Hoffmann
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - William M Schneider
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
175
|
Storek KM, Gertsvolf NA, Ohlson MB, Monack DM. cGAS and Ifi204 cooperate to produce type I IFNs in response to Francisella infection. THE JOURNAL OF IMMUNOLOGY 2015; 194:3236-45. [PMID: 25710914 DOI: 10.4049/jimmunol.1402764] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Type I IFN production is an important host immune response against viral and bacterial infections. However, little is known about the ligands and corresponding host receptors that trigger type I IFN production during bacterial infections. We used a model intracellular pathogen, Francisella novicida, to begin characterizing the type I IFN response to bacterial pathogens. F. novicida replicates in the cytosol of host cells and elicits a robust type I IFN response that is largely TLR independent, but is dependent on the adapter molecule STING, suggesting that the type I IFN stimulus during F. novicida infection is cytosolic. In this study, we report that the cytosolic DNA sensors, cyclic GMP-AMP synthase (cGAS) and Ifi204, are both required for the STING-dependent type I IFN response to F. novicida infection in both primary and immortalized murine macrophages. We created cGAS, Ifi204, and Sting functional knockouts in RAW264.7 macrophages and demonstrated that cGAS and Ifi204 cooperate to sense dsDNA and activate the STING-dependent type I IFN pathway. In addition, we show that dsDNA from F. novicida is an important type I IFN stimulating ligand. One outcome of cGAS-STING signaling is the activation of the absent in melanoma 2 inflammasome in response to F. novicida infection. Whereas the absent in melanoma 2 inflammasome is beneficial to the host during F. novicida infection, type I IFN signaling by STING and IFN regulatory factor 3 is detrimental to the host during F. novicida infection. Collectively, our studies indicate that cGAS and Ifi204 cooperate to sense cytosolic dsDNA and F. novicida infection to produce a strong type I IFN response.
Collapse
Affiliation(s)
- Kelly M Storek
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305; and
| | - Nina A Gertsvolf
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305; and
| | | | - Denise M Monack
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305; and
| |
Collapse
|
176
|
Petnicki-Ocwieja T, Kern A. Mechanisms of Borrelia burgdorferi internalization and intracellular innate immune signaling. Front Cell Infect Microbiol 2014; 4:175. [PMID: 25566512 PMCID: PMC4266086 DOI: 10.3389/fcimb.2014.00175] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 11/27/2014] [Indexed: 01/12/2023] Open
Abstract
Lyme disease is a long-term infection whose most severe pathology is characterized by inflammatory arthritis of the lower bearing joints, carditis, and neuropathy. The inflammatory cascades are initiated through the early recognition of invading Borrelia burgdorferi spirochetes by cells of the innate immune response, such as neutrophils and macrophage. B. burgdorferi does not have an intracellular niche and thus much research has focused on immune pathways activated by pathogen recognition molecules at the cell surface, such as the Toll-like receptors (TLRs). However, in recent years, studies have shown that internalization of the bacterium by host cells is an important component of the defense machinery in response to B. burgdorferi. Upon internalization, B. burgdorferi is trafficked through an endo/lysosomal pathway resulting in the activation of a number of intracellular pathogen recognition receptors including TLRs and Nod-like receptors (NLRs). Here we will review the innate immune molecules that participate in both cell surface and intracellular immune activation by B. burgdorferi.
Collapse
Affiliation(s)
- Tanja Petnicki-Ocwieja
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center Boston, MA, USA
| | - Aurelie Kern
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center Boston, MA, USA
| |
Collapse
|
177
|
Abstract
Toll-like receptors (TLRs) have generated an extraordinary amount of interest in cancer research since the last decade. TLRs are a family of pattern recognition receptors that is involved in the host defense against microbial infections. It is well known that the activation of TLRs leads to the production of biological factors that drive inflammatory responses and activate the adaptive immune system. More recently, TLR-mediated signaling pathways have been shown to support tumor cell growth in vitro and in vivo. In this review, we describe recently emerged links between TLR4 and breast cancer oncogenesis, and future perspectives for the targeting of TLR4 in breast cancer therapy.
Collapse
Affiliation(s)
- Abubakr Ahmed
- Department of Academic Surgery; University College Cork (UCC); Cork University Hospital; Cork, Ireland
| | | | | |
Collapse
|
178
|
Raeven RHM, Brummelman J, Pennings JLA, Nijst OEM, Kuipers B, Blok LER, Helm K, van Riet E, Jiskoot W, van Els CACM, Han WGH, Kersten GFA, Metz B. Molecular signatures of the evolving immune response in mice following a Bordetella pertussis infection. PLoS One 2014; 9:e104548. [PMID: 25137043 PMCID: PMC4138111 DOI: 10.1371/journal.pone.0104548] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 07/14/2014] [Indexed: 12/21/2022] Open
Abstract
Worldwide resurgence of pertussis necessitates the need for improvement of pertussis vaccines and vaccination strategies. Since natural infections induce a longer-lasting immunity than vaccinations, detailed knowledge of the immune responses following natural infection can provide important clues for such improvement. The purpose was to elucidate the kinetics of the protective immune response evolving after experimental Bordetella pertussis (B. pertussis) infection in mice. Data were collected from (i) individual analyses, i.e. microarray, flow cytometry, multiplex immunoassays, and bacterial clearance; (ii) twelve time points during the infection; and (iii) different tissues involved in the immune responses, i.e. lungs, spleen and blood. Combined data revealed detailed insight in molecular and cellular sequence of events connecting different phases (innate, bridging and adaptive) of the immune response following the infection. We detected a prolonged acute phase response, broad pathogen recognition, and early gene signatures of subsequent T-cell recruitment in the lungs. Activation of particular transcription factors and specific cell markers provided insight into the time course of the transition from innate towards adaptive immune responses, which resulted in a broad spectrum of systemic antibody subclasses and splenic Th1/Th17 memory cells against B. pertussis. In addition, signatures preceding the local generation of Th1 and Th17 cells as well as IgA in the lungs, considered key elements in protection against B. pertussis, were established. In conclusion, molecular and cellular immunological processes in response to live B. pertussis infection were unraveled, which may provide guidance in selecting new vaccine candidates that should evoke local and prolonged protective immune responses.
Collapse
Affiliation(s)
- René H. M. Raeven
- Intravacc, Bilthoven, The Netherlands
- Division of Drug Delivery Technology, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| | - Jolanda Brummelman
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Jeroen L. A. Pennings
- Centre for Health Protection (GZB), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | | | - Betsy Kuipers
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | | | - Kina Helm
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | | | - Wim Jiskoot
- Division of Drug Delivery Technology, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| | - Cecile A. C. M. van Els
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Wanda G. H. Han
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Gideon F. A. Kersten
- Intravacc, Bilthoven, The Netherlands
- Division of Drug Delivery Technology, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| | | |
Collapse
|
179
|
Gun SY, Claser C, Tan KSW, Rénia L. Interferons and interferon regulatory factors in malaria. Mediators Inflamm 2014; 2014:243713. [PMID: 25157202 PMCID: PMC4124246 DOI: 10.1155/2014/243713] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Accepted: 06/18/2014] [Indexed: 12/29/2022] Open
Abstract
Malaria is one of the most serious infectious diseases in humans and responsible for approximately 500 million clinical cases and 500 thousand deaths annually. Acquired adaptive immune responses control parasite replication and infection-induced pathologies. Most infections are clinically silent which reflects on the ability of adaptive immune mechanisms to prevent the disease. However, a minority of these can become severe and life-threatening, manifesting a range of overlapping syndromes of complex origins which could be induced by uncontrolled immune responses. Major players of the innate and adaptive responses are interferons. Here, we review their roles and the signaling pathways involved in their production and protection against infection and induced immunopathologies.
Collapse
Affiliation(s)
- Sin Yee Gun
- Singapore Immunology Network, Agency for Science, Technology and Research (ASTAR), Singapore 138648
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228
| | - Carla Claser
- Singapore Immunology Network, Agency for Science, Technology and Research (ASTAR), Singapore 138648
| | - Kevin Shyong Wei Tan
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228
| | - Laurent Rénia
- Singapore Immunology Network, Agency for Science, Technology and Research (ASTAR), Singapore 138648
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228
| |
Collapse
|
180
|
Baumann A, Démoulins T, Python S, Summerfield A. Porcine Cathelicidins Efficiently Complex and Deliver Nucleic Acids to Plasmacytoid Dendritic Cells and Can Thereby Mediate Bacteria-Induced IFN-α Responses. THE JOURNAL OF IMMUNOLOGY 2014; 193:364-71. [DOI: 10.4049/jimmunol.1303219] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
181
|
Warren CJ, Griffin LM, Little AS, Huang IC, Farzan M, Pyeon D. The antiviral restriction factors IFITM1, 2 and 3 do not inhibit infection of human papillomavirus, cytomegalovirus and adenovirus. PLoS One 2014; 9:e96579. [PMID: 24827144 PMCID: PMC4020762 DOI: 10.1371/journal.pone.0096579] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 04/07/2014] [Indexed: 11/18/2022] Open
Abstract
Type I interferons (IFN-α and β) induce dynamic host defense mechanisms to inhibit viral infections. It has been recently recognized that the interferon-inducible transmembrane proteins (IFITM) 1, 2 and 3 can block entry of a broad spectrum of RNA viruses. However, no study to date has focused on the role of IFITM proteins in DNA virus restriction. Here, we demonstrate that IFN-α or -β treatment of keratinocytes substantially decreases human papillomavirus 16 (HPV16) infection while robustly inducing IFITM1, 2 and 3 expression. However, IFITM1, 2 and 3 overexpression did not inhibit HPV16 infection; rather, IFITM1 and IFITM3 modestly enhanced HPV16 infection in various cell types including primary keratinocytes. Moreover, IFITM1, 2 and 3 did not inhibit infection by two other DNA viruses, human cytomegalovirus (HCMV) and adenovirus type 5 (Ad5). Taken together, we reveal that the entry of several DNA viruses, including HPV, HCMV, and Ad5 is not affected by IFITM1, 2 and 3 expression. These results imply that HPV, and other DNA viruses, may bypass IFITM restriction during intracellular trafficking.
Collapse
Affiliation(s)
- Cody J. Warren
- Department of Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Laura M. Griffin
- Department of Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Alexander S. Little
- Department of Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - I-Chueh Huang
- Department of Cell Biology and Neuroscience, University of California Riverside, Riverside, California, United States of America
| | - Michael Farzan
- Department of Infectious Diseases, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Dohun Pyeon
- Department of Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
182
|
Tadmor K, Pozniak Y, Burg Golani T, Lobel L, Brenner M, Sigal N, Herskovits AA. Listeria monocytogenes MDR transporters are involved in LTA synthesis and triggering of innate immunity during infection. Front Cell Infect Microbiol 2014; 4:16. [PMID: 24611134 PMCID: PMC3933815 DOI: 10.3389/fcimb.2014.00016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 01/29/2014] [Indexed: 11/29/2022] Open
Abstract
Multi-drug resistance (MDR) transporters are known eponymously for their ability to confer resistance to various antimicrobial drugs. However, it is likely that this is not their primary function and that MDR transporters evolved originally to play additional roles in bacterial physiology. In Listeria monocytogenes a set of MDR transporters was identified to mediate activation of innate immune responses during mammalian cell infection. This phenotype was shown to be dependent on c-di-AMP secretion, but the physiological processes underlying this phenomenon were not completely resolved. Here we describe a genetic approach taken to screen for L. monocytogenes genes or physiological pathways involved in MDR transporter-dependent triggering of the type I interferon response. We found that disruption of L. monocytogenes lipoteichoic acid (LTA) synthesis results in enhanced triggering of type I interferon responses in infected macrophage cells yet does not impact bacterial intracellular growth. This innate immune response required the MDR transporters and could be recapitulated by exposing macrophage cells to culture supernatants derived from LTA mutant bacteria. Notably, we found that the MDR transporters themselves are required for full production of LTA, an observation that links MDR transporters to LTA synthesis for the first time. In light of our findings, we propose that the MDR transporters play a role in regulating LTA synthesis, possibly via c-di-AMP efflux, a physiological function in cell wall maintenance that triggers the host innate immune system.
Collapse
Affiliation(s)
- Keren Tadmor
- The Department of Molecular Microbiology and Biotechnology, The George S. Wise Life Sciences Faculty, Tel Aviv University Tel Aviv, Israel
| | - Yair Pozniak
- The Department of Molecular Microbiology and Biotechnology, The George S. Wise Life Sciences Faculty, Tel Aviv University Tel Aviv, Israel
| | - Tamar Burg Golani
- The Department of Molecular Microbiology and Biotechnology, The George S. Wise Life Sciences Faculty, Tel Aviv University Tel Aviv, Israel
| | - Lior Lobel
- The Department of Molecular Microbiology and Biotechnology, The George S. Wise Life Sciences Faculty, Tel Aviv University Tel Aviv, Israel
| | - Moran Brenner
- The Department of Molecular Microbiology and Biotechnology, The George S. Wise Life Sciences Faculty, Tel Aviv University Tel Aviv, Israel
| | - Nadejda Sigal
- The Department of Molecular Microbiology and Biotechnology, The George S. Wise Life Sciences Faculty, Tel Aviv University Tel Aviv, Israel
| | - Anat A Herskovits
- The Department of Molecular Microbiology and Biotechnology, The George S. Wise Life Sciences Faculty, Tel Aviv University Tel Aviv, Israel
| |
Collapse
|
183
|
Qin HJ, Feng QM, Fang Y, Shen L. Type-I interferon secretion in the acute phase promotes Cryptococcus neoformans infection-induced Th17 cell polarization in vitro.. Exp Ther Med 2014; 7:869-872. [PMID: 24660033 PMCID: PMC3961126 DOI: 10.3892/etm.2014.1517] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 12/20/2013] [Indexed: 12/15/2022] Open
Abstract
Cryptococcosis is a potentially fatal fungal disease commonly identified in patients with acquired immunodeficiency syndrome. Cryptococcus infection induces strong pro-inflammatory cytokine secretion, i.e. type-I interferon (IFN-I) via the Toll-like receptor signaling pathway. However, innate immune responses are insufficient in host defense against fungi infection and the clearance of Cryptococcus is dependent on the T helper (Th)17 cell-mediated mucosal immune response. In this study, IFN-I was identified as the early response cytokine to Cryptococcus neoformans infection via quantitative PCR (qPCR) and IFN-I was demonstrated to be crucial for interleukin (IL)-17A secretion in T cells, but not in innate immune cells. In addition, blockade of IFN-I reduced the protein expression levels of IL-22 and IL-23 in Th17 cells in vitro. These results suggest additional functions of IFN-I in immune regulation, which may be pivotal for the development of clinical immune therapy.
Collapse
Affiliation(s)
- Hai-Jun Qin
- Department of Emergency, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Qi-Ming Feng
- Department of Emergency, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Yong Fang
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Lei Shen
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| |
Collapse
|
184
|
Ahmed EB, Alegre ML, Chong AS. Role of bacterial infections in allograft rejection. Expert Rev Clin Immunol 2014; 4:281-93. [DOI: 10.1586/1744666x.4.2.281] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
185
|
Hartung HP, Aktas O, Menge T, Kieseier BC. Immune regulation of multiple sclerosis. HANDBOOK OF CLINICAL NEUROLOGY 2014; 122:3-14. [PMID: 24507511 DOI: 10.1016/b978-0-444-52001-2.00001-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Multiple sclerosis (MS) is considered a prototype inflammatory autoimmune disorder of the central nervous system (CNS). The etiology of this disease remains unknown, but an interplay between as yet unidentified environmental factors and susceptibility genes appears most likely. In consequence, these factors trigger a cascade, involving an inflammatory response within the CNS that results in demyelination, oligodendrocyte death, axonal damage, gliosis, and neurodegeneration. How these complex traits translate into the clinical presentation of the disease is a focus of ongoing research. The central hypothesis is that T lymphocytes with receptors for CNS myelin components are driving the disease. The initial activation of autoreactive lymphocytes is thought to take place in the systemic lymphoid organs, most likely through molecular mimickry or nonspecifically through bystander activation. These autoreactive lymphocytes can migrate to the CNS where they become reactivated upon encountering their target antigen, initiating an autoimmune inflammatory attack. This ultimately leads to demyelination and axonal damage. This chapter focuses on the role of T and B lymphocytes in the immunopathogenesis of MS.
Collapse
Affiliation(s)
- Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany.
| | - Orhan Aktas
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Til Menge
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Bernd C Kieseier
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|
186
|
Shim DW, Han JW, Sun X, Jang CH, Koppula S, Kim TJ, Kang TB, Lee KH. Lysimachia clethroides Duby extract attenuates inflammatory response in Raw 264.7 macrophages stimulated with lipopolysaccharide and in acute lung injury mouse model. JOURNAL OF ETHNOPHARMACOLOGY 2013; 150:1007-1015. [PMID: 24145006 DOI: 10.1016/j.jep.2013.09.056] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 09/13/2013] [Accepted: 09/24/2013] [Indexed: 06/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Lysimachia clethroides Duby (LC) is a traditional medicinal herb used to treat edema, hepatitis and inflammatory diseases in China and other Asian countries. In this study, the anti-inflammatory effects of LC extract and the mechanisms underlying were explored in both in vitro cell lines and acute lung injury (ALI) animal model of inflammation in vivo. MATERIALS AND METHODS Lipopolysaccharide (LPS)-stimulated Raw 264.7 murine macrophages were used to study the regulatory effects of LC extract on inflammatory mediators such as nitric oxide (NO) and proinflammatory cytokine expression. Western blotting or ELISA techniques were employed to estimate protein levels. RT-PCR was used for analyzing the interferon (IFN)-β production. LPS-induced ALI mouse model in vivo was employed to study the effect of LC extract. Further high-performance liquid chromatography (HPLC) fingerprinting technique was used to evaluate the active constituents present in LC extract, compared with reference standards. RESULTS Pre-treatment with LC extract inhibited the LPS-stimulated NO release, interleukin (IL)-1β and IL-6 production in Raw 264.7 cells dose dependently. LC extract inhibited the LPS-stimulated IRF3 and STAT1 phosphorylation. Further, in vivo experiments revealed that LC extract suppressed the infiltration of immune cells into the lung and proinflammatory cytokine production in broncho-alveolar lavage fluid (BALF) in the LPS-induced ALI mouse model. CONCLUSIONS Our results indicate that LC extract attenuates LPS-stimulated inflammatory responses in macrophages via regulating the key inflammatory mechanisms, providing a scientific support for its traditional use in treating various inflammatory diseases.
Collapse
Affiliation(s)
- Do-Wan Shim
- Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Diseases, Konkuk University, Chungju 380-701, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
187
|
Listeria monocytogenes multidrug resistance transporters and cyclic di-AMP, which contribute to type I interferon induction, play a role in cell wall stress. J Bacteriol 2013; 195:5250-61. [PMID: 24056102 DOI: 10.1128/jb.00794-13] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The intracellular bacterial pathogen Listeria monocytogenes activates a robust type I interferon response upon infection. This response is partially dependent on the multidrug resistance (MDR) transporter MdrM and relies on cyclic-di-AMP (c-di-AMP) secretion, yet the functions of MdrM and cyclic-di-AMP that lead to this response are unknown. Here we report that it is not MdrM alone but a cohort of MDR transporters that together contribute to type I interferon induction during infection. In a search for a physiological function of these transporters, we revealed that they play a role in cell wall stress responses. A mutant with deletion of four transporter genes (ΔmdrMTAC) was found to be sensitive to sublethal concentrations of vancomycin due to an inability to produce and shed peptidoglycan under this stress. Remarkably, c-di-AMP is involved in this phenotype, as overexpression of the c-di-AMP phosphodiesterase (PdeA) resulted in increased susceptibility of the ΔmdrMTAC mutant to vancomycin, whereas overexpression of the c-di-AMP diadenylate cyclase (DacA) reduced susceptibility to this drug. These observations suggest a physiological association between c-di-AMP and the MDR transporters and support the model that MDR transporters mediate c-di-AMP secretion to regulate peptidoglycan synthesis in response to cell wall stress.
Collapse
|
188
|
Yu Z, Predina JD, Cheng G. Refractoriness of interferon-beta signaling through NOD1 pathway in mouse respiratory epithelial cells using the anticancer xanthone compound. World J Biol Chem 2013; 4:18-29. [PMID: 23710296 PMCID: PMC3652647 DOI: 10.4331/wjbc.v4.i2.18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 03/19/2013] [Accepted: 04/29/2013] [Indexed: 02/05/2023] Open
Abstract
AIM: To explore the possibility that nucleotide oligomerization domain 1 (NOD1) pathway involved in refractoriness of interferon-β signaling in mouse respiratory epithelial cells induced by the anticancer xanthone compound, 5,6-dimethylxanthenone-4-acetic acid (DMXAA).
METHODS: C10 mouse bronchial epithelial cells were grown in Dulbecco’s modified Eagle’s medium supplemented with 10% fetal bovine serum, 2 mmol/L glutamine, 100 units/mL penicillin, 100 g/mL streptomycin. Pathogen-free female BALB/c mice were used to explore the mechanisms of refractoriness of interferon-signaling. Mouse thioglycollate-elicited peritoneal macrophages, bone marrow derived macrophages and bone marrow derived dendritic cells were collected and cultured. The amount of interferon (IFN)-inducible protein-10 (IP10/CXCL10), macrophage chemotactic protein (MCP1/CCL2) and interleukin (IL)-6 secreted by cells activated by DMXAA was quantified using enzyme-linked immunosorbent assay kits according to the instructions of the manufacturers. Total RNA was isolated from cells or nasal epithelium with RNeasy Plus Mini Kit, and cDNA was synthesized. Gene expression was checked using Applied Biosystems StepOne Real-Time Polymerase Chain Reaction System. Transfection of small interfering RNA (siRNA) control, NOD1 duplexed RNA oligonucleotides, and high-mobility group box 1/2/3 (HMGB1/2/3) siRNA was performed using siRNA transfection reagent.
RESULTS: DMXAA activates IFN-β pathway with high level of IFN-β dependent antiviral genes including 2’, 5’-oligoadenylate synthetase 1 and myxovirus resistance 1 in mouse thioglycollate-elicited peritoneal macrophages, bone marrow derived macrophages and bone marrow derived dendritic cells. Activation of IFN-β by DMXAA involved in NOD1, but not HMGB1/2/3 signal pathway demonstrated by siRNA. NOD1 pathway plays an important role in refractoriness of IFN-β signaling induced by DMXAA in mouse C10 respiratory epithelial cells and BALB/c mice nasal epithelia. These data indicate that DMXAA is not well adapted to the intrinsic properties of IFN-β signaling. Approaches to restore sensitivity of IFN-β signaling by find other xanthone compounds may function similarly, could enhance the efficacy of protection from influenza pneumonia and potentially in other respiratory viral infections.
CONCLUSION: NOD1 pathway may play an important role in refractoriness of IFN-β signaling in mouse respiratory epithelial cells induced by DMXAA.
Collapse
|
189
|
Eloranta ML, Alm GV, Rönnblom L. Disease mechanisms in rheumatology--tools and pathways: plasmacytoid dendritic cells and their role in autoimmune rheumatic diseases. ACTA ACUST UNITED AC 2013; 65:853-63. [PMID: 23280551 DOI: 10.1002/art.37821] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 12/04/2012] [Indexed: 12/19/2022]
Affiliation(s)
- Maija-Leena Eloranta
- Department of Medical Sciences, Rheumatology, Uppsala University, Uppsala, Sweden
| | | | | |
Collapse
|
190
|
Kachroo P, Ivanov I, Seabury AG, Liu M, Chowdhary BP, Cohen ND. Age-related changes following in vitro stimulation with Rhodococcus equi of peripheral blood leukocytes from neonatal foals. PLoS One 2013; 8:e62879. [PMID: 23690962 PMCID: PMC3656898 DOI: 10.1371/journal.pone.0062879] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 03/25/2013] [Indexed: 01/10/2023] Open
Abstract
Rhodococcus equi is an intracellular bacterium primarily known as an equine pathogen that infects young foals causing a pyogranulomatuous pneumonia. The molecular mechanisms mediating the immune response of foals to R. equi are not fully elucidated. Hence, global genomic high-throughput tools like gene expression microarrays might identify age-related gene expression signatures and molecular pathways that contribute to the immune mechanisms underlying the inherent susceptibility of foals to disease caused by R. equi. The objectives of this study were 2-fold: 1) to compare the expression profiles at specific ages of blood leukocytes from foals stimulated with virulent R. equi with those of unstimulated leukocytes; and, 2) to characterize the age-related changes in the gene expression profile associated with blood leukocytes in response to stimulation with virulent R. equi. Peripheral blood leukocytes were obtained from 6 foals within 24 hours (h) of birth (day 1) and 2, 4, and 8 weeks after birth. The samples were split, such that half were stimulated with live virulent R. equi, and the other half served as unstimulated control. RNA was extracted and the generated cDNA was labeled with fluorescent dyes for microarray hybridizations using an equine microarray. Our findings suggest that there is age-related differential expression of genes involved in host immune response and immunity. We found induction of genes critical for host immunity against pathogens (MHC class II) only at the later time-points (compared to birth). While it appears that foals up to 8-weeks of age are able to initiate a protective inflammatory response against the bacteria, relatively decreased expression of various other immune-related genes points toward inherent diminished immune responses closer to birth. These genes and pathways may contribute to disease susceptibility in foals if infected early in life, and might thus be targeted for developing preventative or therapeutic strategies.
Collapse
Affiliation(s)
- Priyanka Kachroo
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Ivan Ivanov
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Ashley G. Seabury
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Mei Liu
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Texas A&M University, College Station, United States of America
| | - Bhanu P. Chowdhary
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Noah D. Cohen
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Texas A&M University, College Station, United States of America
- * E-mail:
| |
Collapse
|
191
|
Baumann A, Mateu E, Murtaugh MP, Summerfield A. Impact of genotype 1 and 2 of porcine reproductive and respiratory syndrome viruses on interferon-α responses by plasmacytoid dendritic cells. Vet Res 2013; 44:33. [PMID: 23675981 PMCID: PMC3672080 DOI: 10.1186/1297-9716-44-33] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 04/18/2013] [Indexed: 12/31/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) virus (PRRSV) infections are characterized by prolonged viremia and viral shedding consistent with incomplete immunity. Type I interferons (IFN) are essential for mounting efficient antiviral innate and adaptive immune responses, but in a recent study, North American PRRSV genotype 2 isolates did not induce, or even strongly inhibited, IFN-α in plasmacytoid dendritic cells (pDC), representing “professional IFN-α-producing cells”. Since inhibition of IFN-α expression might initiate PRRSV pathogenesis, we further characterized PRRSV effects and host modifying factors on IFN-α responses of pDC. Surprisingly, a variety of type 1 and type 2 PRRSV directly stimulated IFN-α secretion by pDC. The effect did not require live virus and was mediated through the TLR7 pathway. Furthermore, both IFN-γ and IL-4 significantly enhanced the pDC production of IFN-α in response to PRRSV exposure. PRRSV inhibition of IFN-α responses from enriched pDC stimulated by CpG oligodeoxynucleotides was weak or absent. VR-2332, the prototype genotype 2 PRRSV, only suppressed the responses by 34%, and the highest level of suppression (51%) was induced by a Chinese highly pathogenic PRRSV isolate. Taken together, these findings demonstrate that pDC respond to PRRSV and suggest that suppressive activities on pDC, if any, are moderate and strain-dependent. Thus, pDC may be a source of systemic IFN-α responses reported in PRRSV-infected animals, further contributing to the puzzling immunopathogenesis of PRRS.
Collapse
Affiliation(s)
- Arnaud Baumann
- Institute of Virology and Immunoprophylaxis (IVI), Sensemattstrasse 293, Mittelhäusern, 3147, Switzerland.
| | | | | | | |
Collapse
|
192
|
Hussmann KL, Samuel MA, Kim KS, Diamond MS, Fredericksen BL. Differential replication of pathogenic and nonpathogenic strains of West Nile virus within astrocytes. J Virol 2013; 87:2814-22. [PMID: 23269784 PMCID: PMC3571364 DOI: 10.1128/jvi.02577-12] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 12/15/2012] [Indexed: 12/13/2022] Open
Abstract
The severity of West Nile virus (WNV) infection in immunocompetent animals is highly strain dependent, ranging from avirulent to highly neuropathogenic. Here, we investigate the nature of this strain-specific restriction by analyzing the replication of avirulent (WNV-MAD78) and highly virulent (WNV-NY) strains in neurons, astrocytes, and microvascular endothelial cells, which comprise the neurovascular unit within the central nervous system (CNS). We demonstrate that WNV-MAD78 replicated in and traversed brain microvascular endothelial cells as efficiently as WNV-NY. Likewise, similar levels of replication were detected in neurons. Thus, WNV-MAD78's nonneuropathogenic phenotype is not due to an intrinsic inability to replicate in key target cells within the CNS. In contrast, replication of WNV-MAD78 was delayed and reduced compared to that of WNV-NY in astrocytes. The reduced susceptibility of astrocytes to WNV-MAD78 was due to a delay in viral genome replication and an interferon-independent reduction in cell-to-cell spread. Together, our data suggest that astrocytes regulate WNV spread within the CNS and therefore are an attractive target for ameliorating WNV-induced neuropathology.
Collapse
Affiliation(s)
- Katherine L. Hussmann
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, Maryland, USA
| | - Melanie A. Samuel
- Departments of Medicine, Molecular Microbiology, and Pathology & Immunology, Washington University, St. Louis, Missouri, USA
| | - Kwang S. Kim
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael S. Diamond
- Departments of Medicine, Molecular Microbiology, and Pathology & Immunology, Washington University, St. Louis, Missouri, USA
| | - Brenda L. Fredericksen
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, Maryland, USA
| |
Collapse
|
193
|
Hibma MH. The immune response to papillomavirus during infection persistence and regression. Open Virol J 2012; 6:241-8. [PMID: 23341859 PMCID: PMC3547310 DOI: 10.2174/1874357901206010241] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 08/29/2012] [Accepted: 09/03/2012] [Indexed: 02/07/2023] Open
Abstract
Human papillomavirus (HPV) infections cause a significant global health burden, predominantly due to HPV-associated cancers. HPV infects only the epidermal cells of cutaneous and mucosal skin, without penetration into the dermal tissues. Infections may persist for months or years, contributed by an array of viral immune evasion mechanisms. However in the majority of cases immunity-based regression of HPV lesions does eventually occur. The role of the innate immune response to HPV in persistence and regression of HPV infection is not well understood. Although an initial inflammatory infiltrate may contribute to disease regression, sustained inflammation at the HPV-induced lesions, characterized by macrophage and neutrophil infiltration, has been observed in persistence. Pathogen-associated molecular patterns (PAMPs) are important in innate recognition. The double stranded DNA and an L1 and L2 capsid components of the HPV virion are potential PAMPs that can trigger signaling through cellular pattern recognition receptors, including toll-like receptors (TLR). TLR expression is increased in regressing HPV disease but is reduced in persistent lesions, suggesting a role for TLR in HPV regression. With regard to the adaptive immune response, a key indicator of regression in humans is infiltration of the lesion with both CD4 and CD8 T cells. In individuals with persistent lesions, CD8 T cell and immune suppressive regulatory T cells (Tregs) infiltrate the infection site. There is no association between persistence or regression and the presence of serum antibodies to the viral capsid antigens of HPV. There is still much to be learned about the immunological events that trigger regression of HPV disease. Understanding the viral and host factors that influence persistence and regression is important for the development of better immunotherapeutic treatments for HPV-associated disease.
Collapse
Affiliation(s)
- Merilyn H Hibma
- Department of Microbiology and Immunology, University of Otago, P.O. Box 56, Dunedin, New Zealand
| |
Collapse
|
194
|
Hwang CK, Wagley Y, Law PY, Wei LN, Loh HH. MicroRNAs in opioid pharmacology. J Neuroimmune Pharmacol 2012; 7:808-19. [PMID: 22068836 PMCID: PMC3295898 DOI: 10.1007/s11481-011-9323-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 10/24/2011] [Indexed: 01/20/2023]
Abstract
MicroRNAs (miRNA), a class of ~22-nucleotide RNA molecules, are important gene regulators that bind to the target sites of mRNAs to inhibit the gene expressions either through translational inhibition or mRNA destabilization. There are growing evidences that miRNAs have played several regulatory roles in opioid pharmacology. Like other research fields such as cancer biology, the area where numerous miRNAs are found to be involved in gene regulation, we assume that in opioid studies including research fields of drug additions and opioid receptor regulation, there may be more miRNAs waiting to be discovered. This review will summarize our current knowledge of miRNA functions on opioids biology and briefly describe future research directions of miRNAs related to opioids.
Collapse
Affiliation(s)
- Cheol Kyu Hwang
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
| | | | | | | | | |
Collapse
|
195
|
Sin WX, Li P, Yeong JPS, Chin KC. Activation and regulation of interferon-β in immune responses. Immunol Res 2012; 53:25-40. [PMID: 22411096 DOI: 10.1007/s12026-012-8293-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Interferons (IFNs) were discovered more than half a century ago, and extensive research has since identified multifarious roles for type I IFN in human immune responses. Here, we review the functions of IFN-β in innate and adaptive immunity. We also discuss the activation and influence of IFN-β on myeloid cell types, including monocytes and dendritic cells, as well as address the effects of IFN-β on T cells and B cells. Findings from our own laboratory, which explores the molecular mechanisms of IFN-β activation by LPS and viruses, as well as from other groups investigating the regulation of IFN-β by viral proteins and endogenous factors are described. The effects of post-translational modifications of the interferon regulatory factor (IRF)-3 on IFN-β induction are also highlighted. Many unanswered questions remain concerning the regulation of the type I IFN response in inflammation, especially the role of transcription factors in the modulation of inflammatory gene expression, and these questions will form the basis for exciting avenues of future research.
Collapse
Affiliation(s)
- Wei-Xiang Sin
- Laboratory of Gene Regulation and Inflammation, Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #04 Immunos, Biopolis, Singapore
| | | | | | | |
Collapse
|
196
|
The helicase DDX41 recognizes the bacterial secondary messengers cyclic di-GMP and cyclic di-AMP to activate a type I interferon immune response. Nat Immunol 2012; 13:1155-61. [PMID: 23142775 PMCID: PMC3501571 DOI: 10.1038/ni.2460] [Citation(s) in RCA: 326] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 09/26/2012] [Indexed: 12/13/2022]
Abstract
The induction of type I interferons by the bacterial secondary messengers cyclic di-GMP (c-di-GMP) or cyclic di-AMP (c-di-AMP) is dependent on a signaling axis that involves the adaptor STING, the kinase TBK1 and the transcription factor IRF3. Here we identified the heliase DDX41 as a pattern-recognition receptor (PRR) that sensed both c-di-GMP and c-di-AMP. DDX41 specifically and directly interacted with c-di-GMP. Knockdown of DDX41 via short hairpin RNA in mouse or human cells inhibited the induction of genes encoding molecules involved in the innate immune response and resulted in defective activation of STING, TBK1 and IRF3 in response to c-di-GMP or c-di-AMP. Our results suggest a mechanism whereby c-di-GMP and c-di-AMP are detected by DDX41, which forms a complex with STING to signal to TBK1-IRF3 and activate the interferon response.
Collapse
|
197
|
CD200R1 supports HSV-1 viral replication and licenses pro-inflammatory signaling functions of TLR2. PLoS One 2012; 7:e47740. [PMID: 23082204 PMCID: PMC3474780 DOI: 10.1371/journal.pone.0047740] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 09/14/2012] [Indexed: 12/03/2022] Open
Abstract
The CD200R1:CD200 axis is traditionally considered to limit tissue inflammation by down-regulating pro-inflammatory signaling in myeloid cells bearing the receptor. We generated CD200R1−/− mice and employed them to explore both the role of CD200R1 in regulating macrophage signaling via TLR2 as well as the host response to an in vivo, TLR2-dependent model, herpes simplex virus 1 (HSV-1) infection. CD200R1−/− peritoneal macrophages demonstrated a 70–75% decrease in the generation of IL-6 and CCL5 (Rantes) in response to the TLR2 agonist Pam2CSK4 and to HSV-1. CD200R1−/− macrophages could neither up-regulate the expression of TLR2, nor assemble a functional inflammasome in response to HSV-1. CD200R1−/− mice were protected from HSV-1 infection and exhibited dysfunctional TLR2 signaling. Finally, both CD200R1−/− mice and CD200R1−/− fibroblasts and macrophages showed a markedly reduced ability to support HSV-1 replication. In summary, our data demonstrate an unanticipated and novel requirement for CD200R1 in “licensing” pro-inflammatory functions of TLR2 and in limiting viral replication that are supported by ex vivo and in vivo evidence.
Collapse
|
198
|
Toll/interleukin-1 receptor domain-containing adapter inducing interferon-β mediates microglial phagocytosis of degenerating axons. J Neurosci 2012; 32:7745-57. [PMID: 22649252 DOI: 10.1523/jneurosci.0203-12.2012] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Following CNS injury, microglial phagocytosis of damaged endogenous tissue is thought to play an important role in recovery and regeneration. Previous work has focused on delineating mechanisms of clearance of neurons and myelin. Little, however, is known of the mechanisms underlying phagocytosis of axon debris. We have developed a novel microfluidic platform that enables coculture of microglia with bundles of CNS axons to investigate mechanisms of microglial phagocytosis of axons. Using this platform, we find that axon degeneration results in the induction of type-1 interferon genes within microglia. Pharmacologic and genetic disruption of Toll/interleukin-1 receptor domain-containing adapter inducing interferon-β (TRIF), a Toll-like receptor adapter protein, blocks induction of the interferon response and inhibits microglial phagocytosis of axon debris in vitro. In vivo, microglial phagocytosis of axons following dorsal root axotomy is impaired in mice in which TRIF has been genetically deleted. Furthermore, we identify the p38 mitogen-activated protein kinase (MAPK) cascade as a signaling pathway downstream of TRIF following axon degeneration and find that inhibition of p38 MAPK by SB203580 (4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)-1H-imidazole) also blocked clearance of axon debris. Finally, we find that TRIF-dependent microglial clearance of unmyelinated axon debris facilitates axon outgrowth. Overall, we provide evidence that TRIF-mediated signaling plays an unexpected role in axonal debris clearance by microglia, thereby facilitating a more permissive environment for axonal outgrowth. Our study has significant implications for the development of novel regenerative and restorative strategies for the many traumatic, neuroinflammatory, and neurodegenerative conditions characterized by CNS axon degeneration.
Collapse
|
199
|
Expression sequence tag library derived from peripheral blood mononuclear cells of the chlorocebus sabaeus. BMC Genomics 2012; 13:279. [PMID: 22726727 PMCID: PMC3539953 DOI: 10.1186/1471-2164-13-279] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 06/11/2012] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND African Green Monkeys (AGM) are amongst the most frequently used nonhuman primate models in clinical and biomedical research, nevertheless only few genomic resources exist for this species. Such information would be essential for the development of dedicated new generation technologies in fundamental and pre-clinical research using this model, and would deliver new insights into primate evolution. RESULTS We have exhaustively sequenced an Expression Sequence Tag (EST) library made from a pool of Peripheral Blood Mononuclear Cells from sixteen Chlorocebus sabaeus monkeys. Twelve of them were infected with the Simian Immunodeficiency Virus. The mononuclear cells were or not stimulated in vitro with Concanavalin A, with lipopolysacharrides, or through mixed lymphocyte reaction in order to generate a representative and broad library of expressed sequences in immune cells. We report here 37,787 sequences, which were assembled into 14,410 contigs representing an estimated 12% of the C. sabaeus transcriptome. Using data from primate genome databases, 9,029 assembled sequences from C. sabaeus could be annotated. Sequences have been systematically aligned with ten cDNA references of primate species including Homo sapiens, Pan troglodytes, and Macaca mulatta to identify ortholog transcripts. For 506 transcripts, sequences were quasi-complete. In addition, 6,576 transcript fragments are potentially specific to the C. sabaeus or corresponding to not yet described primate genes. CONCLUSIONS The EST library we provide here will prove useful in gene annotation efforts for future sequencing of the African Green Monkey genomes. Furthermore, this library, which particularly well represents immunological and hematological gene expression, will be an important resource for the comparative analysis of gene expression in clinically relevant nonhuman primate and human research.
Collapse
|
200
|
de Freitas A, Banerjee S, Xie N, Cui H, Davis KI, Friggeri A, Fu M, Abraham E, Liu G. Identification of TLT2 as an engulfment receptor for apoptotic cells. THE JOURNAL OF IMMUNOLOGY 2012; 188:6381-8. [PMID: 22573805 DOI: 10.4049/jimmunol.1200020] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Clearance of apoptotic cells (efferocytosis) is critical to the homeostasis of the immune system by restraining inflammation and autoimmune response to intracellular Ags released from dying cells. TLRs-mediated innate immunity plays an important role in pathogen clearance and in regulation of the adaptive immune response. However, the regulation of efferocytosis by activation of TLRs has not been well characterized. In this study, we found that activation of TLR3 or TLR9, but not of TLR2, enhances engulfment of apoptotic cells by macrophages. We found that the activation of TLR3 upregulates the expression of triggering receptor expressed on myeloid cells (TREM)-like protein 2 (TLT2), a member of the TREM receptor family, on the surface of macrophages. Blocking TLT2 on the macrophage surface by either specific anti-TLT2 Ab or soluble TLT2 extracellular domain attenuated the enhanced ability of macrophages with TLR3 activation to engulf apoptotic cells. To the contrary, overexpression of TLT2 increased the phagocytosis of apoptotic cells. We found that TLT2 specifically binds to phosphatidylserine, a major "eat me" signal that is exposed on the surface of apoptotic cells. Furthermore, we found that TLT2 mediates phagocytosis of apoptotic cells in vivo. Thus, our studies identified TLT2 as an engulfment receptor for apoptotic cells. Our data also suggest a novel mechanism by which TREM receptors regulate inflammation and autoimmune response.
Collapse
Affiliation(s)
- Andressa de Freitas
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | | | | | | | |
Collapse
|