151
|
Giltiay NV, Chappell CP, Clark EA. B-cell selection and the development of autoantibodies. Arthritis Res Ther 2012; 14 Suppl 4:S1. [PMID: 23281837 PMCID: PMC3535718 DOI: 10.1186/ar3918] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The clearest evidence that B cells play an important role in human autoimmunity is that immunotherapies that deplete B cells are very effective treatments for many autoimmune diseases. All people, healthy or ill, have autoreactive B cells, but not at the same frequency. A number of genes influence the level of these autoreactive B cells and whether they are eliminated or not during development at a central checkpoint in the bone marrow (BM) or at a later checkpoint in peripheral lymphoid tissues. These genes include those encoding proteins that regulate signaling through the B-cell receptor complex such as Btk and PTPN22, proteins that regulate innate signaling via Toll-like receptors (TLRs) such as MyD88 and interleukin-1 receptor-associated kinase 4, as well as the gene encoding the activation-induced deaminase (AID) essential for B cells to undergo class switch recombination and somatic hypermutation. Recent studies have revealed that TLR signaling elements and AID function not only in peripheral B cells to help mediate effective antibody responses to foreign antigens, but also in the BM to help remove autoreactive B-lineage cells at a very early point in B-cell development. Newly arising B cells that leave the BM and enter the blood and splenic red pulp can express both AID and TLR signaling elements like TLR7, and thus are fully equipped to respond rapidly to antigens (including autoantigens), to isotype class switch, and to undergo somatic hypermutation. These red pulp B cells may thus be an important source of autoantibody-producing cells arising particularly in extrafollicular sites, and indeed may be as significant a source of autoantibody-producing cells as B cells arising from germinal centers.
Collapse
Affiliation(s)
- Natalia V Giltiay
- Department of Immunology, 1959 NE Pacific Street, University of Washington, Seattle, WA 98195, USA
| | | | | |
Collapse
|
152
|
Salinas GF, Braza F, Brouard S, Tak PP, Baeten D. The role of B lymphocytes in the progression from autoimmunity to autoimmune disease. Clin Immunol 2012. [PMID: 23202542 DOI: 10.1016/j.clim.2012.10.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Autoimmunity, defined as the presence of autoreactive T and/or B lymphocytes in the periphery, is a frequent and probably even physiological condition. It is mainly caused by the fact that the central tolerance mechanisms, which are responsible for counter-selection of autoreactive lymphocytes, are not perfect and thus a limited number of these autoreactive cells can mature and enter the periphery. Nonetheless, autoreactive cells do not lead automatically to autoimmune disease as evidenced by a multitude of experimental and human data sets. Interestingly, the progression from autoimmunity to autoimmune disease is not only determined by the degree of central tolerance leakage and thus the amount of autoreactive lymphocytes in the periphery, but also by peripheral mechanism of activation and control of the autoreactive cells. In this review, we discuss the contribution of peripheral B lymphocytes in this process, ranging from activation of T cells and epitope spreading to control of the autoimmune process by regulatory mechanisms. We also discuss the parallels with the role of B cells in the induction and control of alloimmunity in the context of organ transplantation, as more precise knowledge of the pathogenic antigens and time of initiation of the immune response in allo- versus auto-immunity allows better dissection of the exact role of B cells. Since peripheral mechanisms may be easier to modulate than central tolerance, a more thorough understanding of the role of peripheral B cells in the progression from autoimmunity to autoimmune disease may open new avenues for treatment and prevention of autoimmune disorders.
Collapse
Affiliation(s)
- Gabriela Franco Salinas
- Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
153
|
Eilat D, Wabl M. B cell tolerance and positive selection in lupus. THE JOURNAL OF IMMUNOLOGY 2012; 189:503-9. [PMID: 22773662 DOI: 10.4049/jimmunol.1200848] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Systemic lupus erythematosus is considered a prototype of systemic autoimmune diseases; however, despite considerable advances in recent years in the understanding of basic mechanisms in immunology, little progress has been made in elucidating the etiology and pathogenesis of this disease. This even holds for inbred mice, such as the lupus-prone New Zealand Black/New Zealand White F(1) mice, which are all genetically programmed to develop lupus at a predetermined age. This frustrating state of affairs calls for a fundamental change in our scientific thinking and the opening of new directions in lupus research. In this study, we suggest that intrinsic B cell tolerance mechanisms are not grossly impaired in lupus-prone mice, but that an unusually strong positive selection event recruits a small number of autoreactive B cells to the germinal centers. This event could be facilitated by nucleic acid-protein complexes that are created by somatic changes in the susceptible animal.
Collapse
Affiliation(s)
- Dan Eilat
- Department of Medicine, Hadassah University Hospital, Hebrew University Faculty of Medicine, Jerusalem, Israel
| | | |
Collapse
|
154
|
The darker side of follicular helper T cells: from autoimmunity to immunodeficiency. Cell Mol Immunol 2012; 9:380-5. [PMID: 22885524 DOI: 10.1038/cmi.2012.26] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Follicular helper T (T(FH)) cells represent a distinct subset of CD4⁺ helper T (T(H)) cells specialized in providing help to B cells. They are characterized by their unique transcriptional profile (Bcl6), surface marker expression (CXCR5, PD-1, ICOS and CD40L) and cytokine production pattern (IL-21 and IL-6). T(FH) cells provide help to B cells both to form germinal centers (GCs) and to differentiate into memory B cells and plasma cells for generation of humoral responses. However, there is emerging evidence that implicates T(FH) cells in the development of various human pathologies, such as autoimmune diseases, immunodeficiency and lymphoma. This review focuses on the current progress in this area including mouse and human studies. A clearer understanding of the mechanisms of T(FH) cell-mediated immunity and pathology may be exploited for rational development of therapeutic strategies.
Collapse
|
155
|
Arentz G, Thurgood LA, Lindop R, Chataway TK, Gordon TP. Secreted human Ro52 autoantibody proteomes express a restricted set of public clonotypes. J Autoimmun 2012; 39:466-70. [PMID: 22871259 DOI: 10.1016/j.jaut.2012.07.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 07/10/2012] [Accepted: 07/11/2012] [Indexed: 11/26/2022]
Abstract
Long-lived secreted autoantibody responses in systemic autoimmunity are generally regarded to be polyclonal and to express a diverse B-cell repertoire. Here, we have used a proteomic approach based on de novo sequencing to determine the clonality and V region structures of human autoantibodies directed against a prototypic systemic autoantigen, Ro52 (TRIM21). Remarkably, anti-Ro52 autoantibodies from patients with primary Sjögren's syndrome, systemic lupus erythematosus, systemic sclerosis or polymyositis were restricted to two IgG1 kappa clonotypes that migrated as a single species on isoelectric focusing; shared a common light chain paired with one of two closely-related heavy chains; and were public in unrelated patients. Targeted mass spectrometry using these uniquely mutated V region peptides as surrogates detected anti-Ro52 autoantibodies in human sera with high sensitivity and specificity compared with traditional ELISA. Mass spectrometry-based detection of specific autoantibody motifs provides a powerful new tool for analysis of humoral autoimmunity.
Collapse
Affiliation(s)
- Georgia Arentz
- Department of Immunology, Flinders Medical Centre and Flinders University, SA Pathology, Flinders Drive, Bedford Park, 5042 South Australia, Australia
| | | | | | | | | |
Collapse
|
156
|
Abstract
Systemic lupus erythematosus is an autoimmune disease characterized by antibodies that bind target autoantigens in multiple organs in the body. In peripheral organs, immune complexes engage the complement cascade, recruiting blood-borne inflammatory cells and initiating tissue inflammation. Immune complex-mediated activation of Fc receptors on infiltrating blood-borne cells and tissue resident cells amplifies an inflammatory cascade with resulting damage to tissue function, ultimately leading to tissue destruction. This pathophysiology appears to explain tissue injury throughout the body, except in the central nervous system. This review addresses a paradigm we have developed for autoantibody-mediated brain damage. This paradigm suggests that antibody-mediated brain disease does not depend on immune complex formation but rather on antibody-mediated alterations in neuronal activation and survival. Moreover, antibodies only access brain tissue when blood-brain barrier integrity is impaired, leading to a lack of concurrence of brain disease and tissue injury in other organs. We discuss the implications of this model for lupus and for identifying other antibodies that may contribute to brain disease.
Collapse
Affiliation(s)
- Betty Diamond
- Center for Autoimmune and Musculoskeletal Diseases, The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030, USA.
| | | |
Collapse
|
157
|
Jones DD, DeIulio GA, Winslow GM. Antigen-driven induction of polyreactive IgM during intracellular bacterial infection. THE JOURNAL OF IMMUNOLOGY 2012; 189:1440-7. [PMID: 22730531 DOI: 10.4049/jimmunol.1200878] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Polyreactivity is well known as a property of natural IgM produced by B-1 cells. We demonstrate that polyreactive IgM is also generated during infection of mice with Ehrlichia muris, a tick-borne intracellular bacterial pathogen. The polyreactive IgM bound self and foreign Ags, including single-stranded and double-stranded DNA, insulin, thyroglobulin, LPS, influenza virus, and Borrelia burgdorferi. Production of polyreactive IgM during infection was Ag driven, not due to polyclonal B cell activation, as the majority of polyreactive IgM recognized ehrlichial Ag(s), including an immunodominant outer membrane protein. Monoclonal polyreactive IgM derived from T cell-independent spleen plasmablasts, which was germline-encoded, also bound cytoplasmic and nuclear Ags in HEp-2 cells. Polyreactive IgM protected immunocompromised mice against lethal bacterial challenge infection. Serum from human ehrlichiosis patients also contained polyreactive and self-reactive IgM. We propose that polyreactivity increases IgM efficacy during infection but may also exacerbate or mollify the response to foreign and self Ags.
Collapse
Affiliation(s)
- Derek D Jones
- Department of Biomedical Sciences, University at Albany, Albany, NY 12201, USA
| | | | | |
Collapse
|
158
|
Joo H, Coquery C, Xue Y, Gayet I, Dillon SR, Punaro M, Zurawski G, Banchereau J, Pascual V, Oh S. Serum from patients with SLE instructs monocytes to promote IgG and IgA plasmablast differentiation. ACTA ACUST UNITED AC 2012; 209:1335-48. [PMID: 22689824 PMCID: PMC3405503 DOI: 10.1084/jem.20111644] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Monocytes exposed to serum from SLE patients promote B cell differentiation to IgG and IgA plasmablasts dependent on BAFF and IL-10 or APRIL, respectively. The development of autoantibodies is a hallmark of systemic lupus erythematosus (SLE). SLE serum can induce monocyte differentiation into dendritic cells (DCs) in a type I IFN–dependent manner. Such SLE-DCs activate T cells, but whether they promote B cell responses is not known. In this study, we demonstrate that SLE-DCs can efficiently stimulate naive and memory B cells to differentiate into IgG- and IgA-plasmablasts (PBs) resembling those found in the blood of SLE patients. SLE-DC–mediated IgG-PB differentiation is dependent on B cell–activating factor (BAFF) and IL-10, whereas IgA-PB differentiation is dependent on a proliferation-inducing ligand (APRIL). Importantly, SLE-DCs express CD138 and trans-present CD138-bound APRIL to B cells, leading to the induction of IgA switching and PB differentiation in an IFN-α–independent manner. We further found that this mechanism of providing B cell help is relevant in vivo, as CD138-bound APRIL is expressed on blood monocytes from active SLE patients. Collectively, our study suggests that a direct myeloid DC–B cell interplay might contribute to the pathogenesis of SLE.
Collapse
Affiliation(s)
- Hyemee Joo
- Baylor Institute for Immunology Research, Dallas, TX 75204, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
159
|
B-cell-lineage immunogen design in vaccine development with HIV-1 as a case study. Nat Biotechnol 2012; 30:423-33. [PMID: 22565972 DOI: 10.1038/nbt.2197] [Citation(s) in RCA: 390] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Failure of immunization with the HIV-1 envelope to induce broadly neutralizing antibodies against conserved epitopes is a major barrier to producing a preventive HIV-1 vaccine. Broadly neutralizing monoclonal antibodies (BnAbs) from those subjects who do produce them after years of chronic HIV-1 infection have one or more unusual characteristics, including polyreactivity for host antigens, extensive somatic hypermutation and long, variable heavy-chain third complementarity-determining regions, factors that may limit their expression by host immunoregulatory mechanisms. The isolation of BnAbs from HIV-1-infected subjects and the use of computationally derived clonal lineages as templates provide a new path for HIV-1 vaccine immunogen design. This approach, which should be applicable to many infectious agents, holds promise for the construction of vaccines that can drive B cells along rare but desirable maturation pathways.
Collapse
|
160
|
HIV-1 gp120 vaccine induces affinity maturation in both new and persistent antibody clonal lineages. J Virol 2012; 86:7496-507. [PMID: 22553329 DOI: 10.1128/jvi.00426-12] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Most antibodies that broadly neutralize HIV-1 are highly somatically mutated in antibody clonal lineages that persist over time. Here, we describe the analysis of human antibodies induced during an HIV-1 vaccine trial (GSK PRO HIV-002) that used the clade B envelope (Env) gp120 of clone W6.1D (gp120(W6.1D)). Using dual-color antigen-specific sorting, we isolated Env-specific human monoclonal antibodies (MAbs) and studied the clonal persistence of antibodies in the setting of HIV-1 Env vaccination. We found evidence of V(H) somatic mutation induced by the vaccine but only to a modest level (3.8% ± 0.5%; range 0 to 8.2%). Analysis of 34 HIV-1-reactive MAbs recovered over four immunizations revealed evidence of both sequential recruitment of naïve B cells and restimulation of previously recruited memory B cells. These recombinant antibodies recapitulated the anti-HIV-1 activity of participant serum including pseudovirus neutralization and antibody-dependent cell-mediated cytotoxicity (ADCC). One antibody (3491) demonstrated a change in specificity following somatic mutation with binding of the inferred unmutated ancestor to a linear C2 peptide while the mutated antibody reacted only with a conformational epitope in gp120 Env. Thus, gp120(W6.1D) was strongly immunogenic but over four immunizations induced levels of affinity maturation below that of broadly neutralizing MAbs. Improved vaccination strategies will be needed to drive persistent stimulation of antibody clonal lineages to induce affinity maturation that results in highly mutated HIV-1 Env-reactive antibodies.
Collapse
|
161
|
Mouquet H, Nussenzweig MC. Polyreactive antibodies in adaptive immune responses to viruses. Cell Mol Life Sci 2012; 69:1435-45. [PMID: 22045557 PMCID: PMC11114792 DOI: 10.1007/s00018-011-0872-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2011] [Revised: 10/17/2011] [Accepted: 10/18/2011] [Indexed: 01/15/2023]
Abstract
B cells express immunoglobulins on their surface where they serve as antigen receptors. When secreted as antibodies, the same molecules are key elements of the humoral immune response against pathogens such as viruses. Although most antibodies are restricted to binding a specific antigen, some are polyreactive and have the ability to bind to several different ligands, usually with low affinity. Highly polyreactive antibodies are removed from the repertoire during B-cell development by physiologic tolerance mechanisms including deletion and receptor editing. However, a low level of antibody polyreactivity is tolerated and can confer additional binding properties to pathogen-specific antibodies. For example, high-affinity human antibodies to HIV are frequently polyreactive. Here we review the evidence suggesting that in the case of some pathogens like HIV, polyreactivity may confer a selective advantage to pathogen-specific antibodies.
Collapse
Affiliation(s)
- Hugo Mouquet
- Laboratory of Molecular Immunology, The Rockefeller University, New York City, NY 10021, USA.
| | | |
Collapse
|
162
|
Affiliation(s)
- Gabriel D. Victora
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142;
| | - Michel C. Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065
| |
Collapse
|
163
|
Lindop R, Arentz G, Thurgood LA, Reed JH, Jackson MW, Gordon TP. Pathogenicity and proteomic signatures of autoantibodies to Ro and La. Immunol Cell Biol 2012; 90:304-9. [PMID: 22249199 DOI: 10.1038/icb.2011.108] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Ro/SSA and La/SSB comprise a linked set of autoantigens that are clinically important members of the extractable nuclear antigen family and key translational biomarkers for lupus and primary Sjögren's syndrome. Autoantibodies directed against the Ro60 and La polypeptide components of the Ro/La ribonucleoprotein complex, and the structurally unrelated Ro52 protein, mediate tissue damage in the neonatal lupus syndrome, a model of passively acquired autoimmunity in humans in which the most serious manifestation is congenital heart block (CHB). Recent studies have concentrated on two distinct pathogenic mechanisms by which maternal anti-Ro/La autoantibodies can cause CHB: by forming immune complexes with apoptotic cells in developing fetal heart; and/or by acting as functional autoantibodies that cross-react with and inhibit calcium channels. Although the precise role of the individual autoantibodies is yet to be settled, maternal anti-Ro60 and anti-Ro52 remain the most likely culprits. This article will discuss the molecular pathways that culminate in the development of CHB, including the recent discovery of β2 glycoprotein I as a protective factor, and present a proteomic approach based on direct mass spectrometric sequencing, which may give a more representative snapshot of the idiotype repertoire of these autoantibodies than genomic-based technologies.
Collapse
Affiliation(s)
- Rhianna Lindop
- Department of Immunology, Flinders Medical Centre and Flinders University, Bedford Park, South Australia, Australia
| | | | | | | | | | | |
Collapse
|
164
|
Kaminski DA, Wei C, Rosenberg AF, Lee FEH, Sanz I. Multiparameter flow cytometry and bioanalytics for B cell profiling in systemic lupus erythematosus. Methods Mol Biol 2012; 900:109-34. [PMID: 22933067 PMCID: PMC3927893 DOI: 10.1007/978-1-60761-720-4_6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
B lymphocyte involvement in systemic lupus erythematosus has been recognized for several decades, mainly in the context of autoantibody production. Both mouse and human studies reveal that different types of antibody responses, as well as antibody-independent effector functions can be ascribed to distinct subpopulations (subsets) of circulating B cells. Characterizing human B cell subsets can advance the field of autoimmunity even further by establishing B cell signatures associated with disease severity, progression, and response-to-treatment. For this purpose, we have developed specialized B cell reagent panels for multiparameter flow cytometry, and combine their use with advanced bioinformatics strategies that together will likely be advantageous for improving the characterization, prognosis, and for possibly improving treatment regimens of chronic inflammatory diseases such as lupus.
Collapse
Affiliation(s)
- Denise A Kaminski
- Division of Allergy, Immunology, and Rheumatology, Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | | | | | | | | |
Collapse
|
165
|
Huang W, Moisini I, Bethunaickan R, Sahu R, Akerman M, Eilat D, Lesser M, Davidson A. BAFF/APRIL inhibition decreases selection of naive but not antigen-induced autoreactive B cells in murine systemic lupus erythematosus. THE JOURNAL OF IMMUNOLOGY 2011; 187:6571-80. [PMID: 22102726 DOI: 10.4049/jimmunol.1101784] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BAFF inhibition is a new B cell-directed therapeutic strategy for autoimmune disease. Our purpose was to analyze the effect of BAFF/APRIL availability on the naive and Ag-activated B cell repertoires in systemic lupus erythematosus, using the autoreactive germline D42 H chain (glD42H) site-directed transgenic NZB/W mouse. In this article, we show that the naive Vκ repertoire in both young and diseased glD42H NZB/W mice is dominated by five L chains that confer no or low-affinity polyreactivity. In contrast, glD42H B cells expressing L chains that confer high-affinity autoreactivity are mostly deleted before the mature B cell stage, but are positively selected and expanded in the germinal centers (GCs) as the mice age. Of these, the most abundant is VκRF (Vκ16-104*01), which is expressed by almost all IgG anti-DNA hybridomas derived from the glD42H mouse. Competition with nonautoreactive B cells or BAFF/APRIL inhibition significantly inhibited selection of glD42H B cells at the late transitional stage, with only subtle effects on the glD42H-associated L chain repertoire. However, glD42H/VκRF-encoded B cells were still vastly overrepresented in the GC, and serum IgG anti-DNA Abs arose with only a slight delay. Thus, although BAFF/APRIL inhibition increases the stringency of negative selection of the naive autoreactive B cell repertoire in NZB/W mice, it does not correct the major breach in B cell tolerance that occurs at the GC checkpoint.
Collapse
Affiliation(s)
- Weiqing Huang
- Center for Autoimmunity and Musculoskeletal Diseases, Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | | | | | | | | | | | | | | |
Collapse
|
166
|
Lindop R, Arentz G, Chataway TK, Thurgood LA, Jackson MW, Reed JH, McCluskey J, Gordon TP. Molecular signature of a public clonotypic autoantibody in primary Sjögren's syndrome: A “forbidden” clone in systemic autoimmunity. ACTA ACUST UNITED AC 2011; 63:3477-86. [DOI: 10.1002/art.30566] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
167
|
Dörner T, Giesecke C, Lipsky PE. Mechanisms of B cell autoimmunity in SLE. Arthritis Res Ther 2011; 13:243. [PMID: 22078750 PMCID: PMC3308063 DOI: 10.1186/ar3433] [Citation(s) in RCA: 211] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a systemic autoimmune disease that is known to be associated with polyclonal B-cell hyperreactivity. The underlying causes of the diffuse B-cell over-reactivity are unclear, but potential candidates include (a) intrinsic hyper-reactivity leading to polyclonal B-cell activation with disturbed activation thresholds and ineffective negative selection; (b) lack of immunoregulatory functions; (c) secondary effects of an overactive inflammatory environment, such as overactive germinal center and ectopic follicular activity; and/or (d) disturbed cytokine production by non-B immune cells. These mechanisms are not mutually exclusive and may operate to varying extents and at varying times in SLE. Phenotypic and molecular studies as well as the results of recent clinical trials have begun to provide new insights to address these possibilities. Of importance, new information has made it possible to distinguish between the contribution played by abnormalities in central checkpoints that could lead to a pre-immune repertoire enriched in autoreactive B cells, on the one hand, and the possibility that autoimmunity arises in the periphery from somatic hypermutation and abnormal selection during T cell-dependent B-cell responses on the other. There is an intriguing possibility that apoptotic material bound to the surface of follicular dendritic cells positively selects autoreactive B cells that arise from non-autoreactive B-cell precursors as a result of somatic hypermutation and thereby promotes the peripheral emergence of autoimmunity.
Collapse
Affiliation(s)
- Thomas Dörner
- Charite Center 12, Department of Medicine/Rheumatology and Clinical Immunology, Charite Universitätsmedizin Berlin and Deutsches Rheumaforschungszentrum, Chariteplatz 01, 10117 Berlin, Germany.
| | | | | |
Collapse
|
168
|
Differential regulation of self-reactivity discriminates between IgG+ human circulating memory B cells and bone marrow plasma cells. Proc Natl Acad Sci U S A 2011; 108:18044-8. [PMID: 22025722 DOI: 10.1073/pnas.1113395108] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Long-term humoral immunity is maintained by the formation of high-affinity class-switched memory B cells and long-lived antibody-secreting plasma cells. In healthy humans, a substantial fraction of IgG-positive memory B cells express self-reactive and polyreactive IgG antibodies that frequently develop by somatic mutations. Whether self- and polyreactive IgG-secreting B cells are also tolerated in the long-lived plasma cell pool is not known. To address this question, we cloned and expressed the Ig genes from 177 IgG-producing bone marrow plasma cells of four healthy donors. All antibodies were highly mutated but the frequency of self- and polyreactive IgG antibodies was significantly lower than that found in circulating memory B cells. The data suggest that in contrast to the development of memory B cells, entry into the bone marrow plasma cell compartment requires previously unappreciated selective regulation by mechanisms that limit the production of self- and polyreactive serum IgG antibodies.
Collapse
|
169
|
Brennan KM, Galban-Horcajo F, Rinaldi S, O'Leary CP, Goodyear CS, Kalna G, Arthur A, Elliot C, Barnett S, Linington C, Bennett JL, Owens GP, Willison HJ. Lipid arrays identify myelin-derived lipids and lipid complexes as prominent targets for oligoclonal band antibodies in multiple sclerosis. J Neuroimmunol 2011; 238:87-95. [PMID: 21872346 DOI: 10.1016/j.jneuroim.2011.08.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 07/12/2011] [Accepted: 08/01/2011] [Indexed: 01/21/2023]
Abstract
The presence of oligoclonal bands of IgG (OCB) in cerebrospinal fluid (CSF) is used to establish a diagnosis of multiple sclerosis (MS), but their specificity has remained an enigma since its first description over forty years ago. We now report that the use of lipid arrays identifies heteromeric complexes of myelin derived lipids as a prominent target for this intrathecal B cell response.
Collapse
Affiliation(s)
- Kathryn M Brennan
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, G12 8TA, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
170
|
Liu Z, Davidson A. BAFF and selection of autoreactive B cells. Trends Immunol 2011; 32:388-94. [PMID: 21752714 PMCID: PMC3151317 DOI: 10.1016/j.it.2011.06.004] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 05/24/2011] [Accepted: 06/06/2011] [Indexed: 11/21/2022]
Abstract
B cell activating factor (BAFF) is a crucial survival factor for transitional and mature B cells, and is a promising therapeutic target for systemic lupus erythematosus (SLE). A BAFF inhibitor, belimumab, is the first new drug in 50 years to be approved for the treatment of SLE. However, the mechanism of action of this drug is not entirely clear. In this review we will focus on the role of the BAFF-APRIL signaling pathway in the selection of autoreactive B cells, and discuss whether altered selection is the mechanism for the therapeutic efficacy of BAFF inhibition in SLE.
Collapse
Affiliation(s)
- Zheng Liu
- Center for Autoimmunity and Musculoskeletal Diseases, Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, New York, NY 11030, USA
| | | |
Collapse
|
171
|
Bostrom J, Haber L, Koenig P, Kelley RF, Fuh G. High affinity antigen recognition of the dual specific variants of herceptin is entropy-driven in spite of structural plasticity. PLoS One 2011; 6:e17887. [PMID: 21526167 PMCID: PMC3081289 DOI: 10.1371/journal.pone.0017887] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 02/16/2011] [Indexed: 12/25/2022] Open
Abstract
The antigen-binding site of Herceptin, an anti-human Epidermal Growth Factor Receptor 2 (HER2) antibody, was engineered to add a second specificity toward Vascular Endothelial Growth Factor (VEGF) to create a high affinity two-in-one antibody bH1. Crystal structures of bH1 in complex with either antigen showed that, in comparison to Herceptin, this antibody exhibited greater conformational variability, also called "structural plasticity". Here, we analyzed the biophysical and thermodynamic properties of the dual specific variants of Herceptin to understand how a single antibody binds two unrelated protein antigens. We showed that while bH1 and the affinity-improved bH1-44, in particular, maintained many properties of Herceptin including binding affinity, kinetics and the use of residues for antigen recognition, they differed in the binding thermodynamics. The interactions of bH1 and its variants with both antigens were characterized by large favorable entropy changes whereas the Herceptin/HER2 interaction involved a large favorable enthalpy change. By dissecting the total entropy change and the energy barrier for dual interaction, we determined that the significant structural plasticity of the bH1 antibodies demanded by the dual specificity did not translate into the expected increase of entropic penalty relative to Herceptin. Clearly, dual antigen recognition of the Herceptin variants involves divergent antibody conformations of nearly equivalent energetic states. Hence, increasing the structural plasticity of an antigen-binding site without increasing the entropic cost may play a role for antibodies to evolve multi-specificity. Our report represents the first comprehensive biophysical analysis of a high affinity dual specific antibody binding two unrelated protein antigens, furthering our understanding of the thermodynamics that drive the vast antigen recognition capacity of the antibody repertoire.
Collapse
Affiliation(s)
- Jenny Bostrom
- Department of Antibody Engineering, Genentech Inc., South San Francisco, California, United States of America
- Department of Protein Engineering, Genentech, Inc., South San Francisco, California, United States of America
| | - Lauric Haber
- Department of Antibody Engineering, Genentech Inc., South San Francisco, California, United States of America
- Department of Protein Engineering, Genentech, Inc., South San Francisco, California, United States of America
| | - Patrick Koenig
- Department of Antibody Engineering, Genentech Inc., South San Francisco, California, United States of America
- Department of Protein Engineering, Genentech, Inc., South San Francisco, California, United States of America
| | - Robert F. Kelley
- Department of Antibody Engineering, Genentech Inc., South San Francisco, California, United States of America
- Department of Protein Engineering, Genentech, Inc., South San Francisco, California, United States of America
| | - Germaine Fuh
- Department of Antibody Engineering, Genentech Inc., South San Francisco, California, United States of America
- Department of Protein Engineering, Genentech, Inc., South San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
172
|
Abstract
Monoclonal antibodies (mAbs) are arguably the most significant class of biologics for use as pharmaceuticals and diagnostics. Many technological concepts exist for the generation and identification of therapeutically relevant mAbs, including the isolation and cloning of immunoglobulin (Ig) encoding genes from single B-lineage cells. This review summarizes various single B cell approaches and describes their use for the discovery of mAbs with potential therapeutic values or in basic research.
Collapse
Affiliation(s)
- Thomas Tiller
- Max Planck Institute for Infection Biology, D-10117 Berlin, Germany.
| |
Collapse
|
173
|
Jiang C, Zhao ML, Scearce RM, Diaz M. Activation-induced deaminase-deficient MRL/lpr mice secrete high levels of protective antibodies against lupus nephritis. ARTHRITIS AND RHEUMATISM 2011; 63:1086-96. [PMID: 21225690 PMCID: PMC3079514 DOI: 10.1002/art.30230] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVE We previously generated MRL/lpr mice deficient in activation-induced deaminase (AID) that lack isotype switching and immunoglobulin hypermutation. These mice have high levels of unmutated (germline) autoreactive IgM, yet they experienced an increase in survival and an improvement in lupus nephritis that exceeded that of MRL/lpr mice lacking IgG. The purpose of the present study was to test the hypothesis that high levels of germline autoreactive IgM in these mice confer protection against lupus nephritis. METHODS Autoreactive IgM antibodies of various specificities, including antibodies against double-stranded DNA (dsDNA), from AID-deficient MRL/lpr mice were given to asymptomatic MRL/lpr mice, and the levels of cytokines, proteinuria, immune complex deposition in the kidneys, and glomerulonephritis were examined. Novel AID-deficient MRL/lpr mice that lack any antibodies were generated for comparison to AID-deficient MRL/lpr mice that secrete only IgM. RESULTS Treatment with IgM anti-dsDNA resulted in a dramatic improvement in lupus nephritis. Other autoreactive IgM antibodies, such as antiphospholipid and anti-Sm, did not alter the pathologic changes. Secretion of proinflammatory cytokines by macrophages and the levels of inflammatory cells and apoptotic debris in the kidneys were lower in mice receiving IgM anti-dsDNA. Protective IgM derived from AID-deficient MRL/lpr mice displayed a distinct B cell repertoire, with a bias toward members of the V(H) 7183 family. CONCLUSION IgM anti-dsDNA protected MRL/lpr mice from lupus nephritis, likely by stopping the inflammatory cascade leading to kidney damage. A distinct repertoire of V(H) usage in IgM anti-dsDNA hybridomas from AID-deficient mice suggests that there is enrichment of a dedicated B cell population that secretes unmutated protective IgM in these mice.
Collapse
Affiliation(s)
- Chuancang Jiang
- Laboratory of Molecular Genetics, D3-01, National Institute of Environmental Health Sciences, 111 TW Alexander Drive, Research Triangle Park, NC, 27709
| | - Ming-Lang Zhao
- Laboratory of Molecular Genetics, D3-01, National Institute of Environmental Health Sciences, 111 TW Alexander Drive, Research Triangle Park, NC, 27709
| | - Richard M. Scearce
- Duke Human Vaccine Institute, 2 Genome Court, MSRBII 4102B, DUMC 103020, Durham, NC 27710
| | - Marilyn Diaz
- Laboratory of Molecular Genetics, D3-01, National Institute of Environmental Health Sciences, 111 TW Alexander Drive, Research Triangle Park, NC, 27709
| |
Collapse
|
174
|
Morita R, Schmitt N, Bentebibel SE, Ranganathan R, Bourdery L, Zurawski G, Foucat E, Dullaers M, Oh S, Sabzghabaei N, Lavecchio EM, Punaro M, Pascual V, Banchereau J, Ueno H. Human blood CXCR5(+)CD4(+) T cells are counterparts of T follicular cells and contain specific subsets that differentially support antibody secretion. Immunity 2011; 34:108-21. [PMID: 21215658 PMCID: PMC3046815 DOI: 10.1016/j.immuni.2010.12.012] [Citation(s) in RCA: 1281] [Impact Index Per Article: 91.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 09/30/2010] [Accepted: 11/10/2010] [Indexed: 12/11/2022]
Abstract
Although a fraction of human blood memory CD4(+) T cells expresses chemokine (C-X-C motif) receptor 5 (CXCR5), their relationship to T follicular helper (Tfh) cells is not well established. Here we show that human blood CXCR5(+)CD4(+) T cells share functional properties with Tfh cells and appear to represent their circulating memory compartment. Blood CXCR5(+)CD4(+) T cells comprised three subsets: T helper 1 (Th1), Th2, and Th17 cells. Th2 and Th17 cells within CXCR5(+), but not within CXCR5(-), compartment efficiently induced naive B cells to produce immunoglobulins via interleukin-21 (IL-21). In contrast, Th1 cells from both CXCR5(+) and CXCR5(-) compartments lacked the capacity to help B cells. Patients with juvenile dermatomyositis, a systemic autoimmune disease, displayed a profound skewing of blood CXCR5(+) Th cell subsets toward Th2 and Th17 cells. Importantly, the skewing of subsets correlated with disease activity and frequency of blood plasmablasts. Collectively, our study suggests that an altered balance of Tfh cell subsets contributes to human autoimmunity.
Collapse
Affiliation(s)
- Rimpei Morita
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, TX, 75204
| | - Nathalie Schmitt
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, TX, 75204
| | | | - Rajaram Ranganathan
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, TX, 75204
| | - Laure Bourdery
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, TX, 75204
| | - Gerard Zurawski
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, TX, 75204
- INSERM U899, Dallas, TX, 75204
| | - Emile Foucat
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, TX, 75204
| | - Melissa Dullaers
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, TX, 75204
| | - SangKon Oh
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, TX, 75204
- INSERM U899, Dallas, TX, 75204
| | - Natalie Sabzghabaei
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, TX, 75204
| | - Elizabeth M Lavecchio
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, TX, 75204
| | - Marilynn Punaro
- Texas Scottish Rite Hospital for Children, Dallas, TX, 75219
- UT Southwestern Medical Center and Children’s Medical Center, Dallas, TX 75235
| | - Virginia Pascual
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, TX, 75204
- Texas Scottish Rite Hospital for Children, Dallas, TX, 75219
| | - Jacques Banchereau
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, TX, 75204
- INSERM U899, Dallas, TX, 75204
- Department of Gene and Cell Medicine and Department of Medicine, Immunology Institute, Mount Sinai School of Medicine, New York, NY, 10029
| | - Hideki Ueno
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, TX, 75204
- INSERM U899, Dallas, TX, 75204
| |
Collapse
|
175
|
Radic M, Herrmann M, van der Vlag J, Rekvig OP. Regulatory and pathogenetic mechanisms of autoantibodies in SLE. Autoimmunity 2011; 44:349-56. [PMID: 21231891 DOI: 10.3109/08916934.2010.536794] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In the 53 years since the discovery of anti-DNA autoantibodies in lupus [1, 2, 3] , recalcitrant questions have been pondered and possible answers have been debated. The discovery of anti-DNA autoantibodies presented many puzzles: How is immunological tolerance to native B-form DNA broken? What elicits characteristic systemic lupus erythematosus (SLE) autoantibodies? Which of the diverse anti-nuclear reactivities are pathogenic? What is the role of autoantibodies in the clinical presentation of disease? How do genetic predisposition and environmental triggers contribute to SLE? These questions were brought into focus by Professor David Stollar in an introductory presentation to an intense, three-day meeting set among the rugged and inspiring scenery of the Norwegian arctic coastline (the Scientific Program is included as supplemental File 1). Other participants presented and discussed topics directed to understanding the origin and clinico-pathological impact of autoantibodies to chromatin and phospholipid antigens. In the following, several aspects of the workshop are discussed.
Collapse
Affiliation(s)
- Marko Radic
- Department of Molecular Sciences, University of Tennessee Health Science Center , Memphis, TN 38163, USA.
| | | | | | | |
Collapse
|
176
|
Batten M, Ramamoorthi N, Kljavin NM, Ma CS, Cox JH, Dengler HS, Danilenko DM, Caplazi P, Wong M, Fulcher DA, Cook MC, King C, Tangye SG, de Sauvage FJ, Ghilardi N. IL-27 supports germinal center function by enhancing IL-21 production and the function of T follicular helper cells. ACTA ACUST UNITED AC 2010; 207:2895-906. [PMID: 21098093 PMCID: PMC3005229 DOI: 10.1084/jem.20100064] [Citation(s) in RCA: 171] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
IL-27 signaling directly into T cells is needed for follicular T helper cell survival, germinal center formation, and the production of T cell–dependent high-affinity antibodies in mice. Maturation and selection of high-affinity B cell clones in the germinal center (GC) relies on support from T follicular helper (TFH) cells. TFH cells are characterized by their localization to the B cell follicle and their high expression of the costimulatory molecules ICOS and PD1 and the cytokine IL-21, which promotes immunoglobulin (Ig) class switching and production by B cells. We show that the heterodimeric cytokine IL-27 is critical for the function of TFH cells and for normal and pathogenic GC responses. IL-27 signaling to T cells results in the production of IL-21, a known autocrine factor for the maintenance of TFH cells, in a STAT3-dependent manner. IL-27 also enhances the survival of activated CD4+ T cells and the expression of TFH cell phenotypic markers. In vivo, expression of the IL-27Rα chain is required to support IL-21 production and TFH cell survival in a T cell–intrinsic manner. The production of high-affinity antibodies is reduced, and pristane-elicited autoantibodies and glomerulonephritis are significantly diminished, in Il27ra−/− mice. Together, our data show a nonredundant role for IL-27 in the development of T cell–dependent antibody responses.
Collapse
Affiliation(s)
- Marcel Batten
- Garvan Institute of Medical Research, Darlinghurst, Sydney NSW 2010, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
177
|
Tiller T, Kofer J, Kreschel C, Busse CE, Riebel S, Wickert S, Oden F, Mertes MMM, Ehlers M, Wardemann H. Development of self-reactive germinal center B cells and plasma cells in autoimmune Fc gammaRIIB-deficient mice. ACTA ACUST UNITED AC 2010; 207:2767-78. [PMID: 21078890 PMCID: PMC2989760 DOI: 10.1084/jem.20100171] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The leukemogenic effects of Myc drive recurrent trisomy in a mouse model of acute myeloid leukemia. Abnormalities in expression levels of the IgG inhibitory Fc gamma receptor IIB (FcγRIIB) are associated with the development of immunoglobulin (Ig) G serum autoantibodies and systemic autoimmunity in mice and humans. We used Ig gene cloning from single isolated B cells to examine the checkpoints that regulate development of autoreactive germinal center (GC) B cells and plasma cells in FcγRIIB-deficient mice. We found that loss of FcγRIIB was associated with an increase in poly- and autoreactive IgG+ GC B cells, including hallmark anti-nuclear antibody–expressing cells that possess characteristic Ig gene features and cells producing kidney-reactive autoantibodies. In the absence of FcγRIIB, autoreactive B cells actively participated in GC reactions and somatic mutations contributed to the generation of highly autoreactive IgG antibodies. In contrast, the frequency of autoreactive IgG+ B cells was much lower in spleen and bone marrow plasma cells, suggesting the existence of an FcγRIIB-independent checkpoint for autoreactivity between the GC and the plasma cell compartment.
Collapse
Affiliation(s)
- Thomas Tiller
- Max Planck Molecular Immunology Research Group, Max Planck Institute for Infection Biology, 10117 Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
178
|
Taher TE, Parikh K, Flores-Borja F, Mletzko S, Isenberg DA, Peppelenbosch MP, Mageed RA. Protein phosphorylation and kinome profiling reveal altered regulation of multiple signaling pathways in B lymphocytes from patients with systemic lupus erythematosus. ACTA ACUST UNITED AC 2010; 62:2412-23. [PMID: 20506108 DOI: 10.1002/art.27505] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE The cause of B lymphocyte hyperactivity and autoantibody production in systemic lupus erythematosus (SLE) remains unclear. Previously, we identified abnormalities in the level and translocation of signaling molecules in B cells in SLE patients. The present study was undertaken to examine the extent of signaling abnormalities that relate to altered B cell responses in SLE. METHODS B lymphocytes from 88 SLE patients and 72 healthy controls were isolated from blood by negative selection. Protein tyrosine phosphorylation and cellular kinase levels were analyzed by Western blotting, flow cytometry, and a kinome array protocol. Changes in protein phosphorylation were determined in ex vivo B cells and following B cell receptor engagement. RESULTS Differences in tyrosine phosphorylation in B cells from patients with SLE, compared with matched controls, were demonstrated. Further, the kinome array analysis identified changes in the activation of key kinases, i.e., the activity of phosphatidylinositol 3-kinase, which regulates survival and differentiation, was up-regulated and the activity of Rac and Rho kinases, which regulate the cytoskeleton and migration, was increased. In contrast, the activity of ATR, which regulates the cell cycle, was down-regulated in SLE patients compared with controls. Differences in signaling pathways were seen in all SLE B lymphocyte subsets that manifested phenotypic features of immature, mature, and memory cells. CONCLUSION This study revealed dysregulation in multiple signaling pathways that control key responses in B cells of SLE patients. Data generated in this study provide a molecular basis for further analysis of the altered B lymphocyte responses in SLE.
Collapse
Affiliation(s)
- Taher E Taher
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | | | | | | | | | | | | |
Collapse
|
179
|
Guo W, Smith D, Aviszus K, Detanico T, Heiser RA, Wysocki LJ. Somatic hypermutation as a generator of antinuclear antibodies in a murine model of systemic autoimmunity. ACTA ACUST UNITED AC 2010; 207:2225-37. [PMID: 20805563 PMCID: PMC2947070 DOI: 10.1084/jem.20092712] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Systemic lupus erythematosus (SLE) is characterized by high-avidity IgG antinuclear antibodies (ANAs) that are almost certainly products of T cell–dependent immune responses. Whether critical amino acids in the third complementarity-determining region (CDR3) of the ANA originate from V(D)J recombination or somatic hypermutation (SHM) is not known. We studied a mouse model of SLE in which all somatic mutations within ANA V regions, including those in CDR3, could be unequivocally identified. Mutation reversion analyses revealed that ANA arose predominantly from nonautoreactive B cells that diversified immunoglobulin genes via SHM. The resolution afforded by this model allowed us to demonstrate that one ANA clone was generated by SHM after a VH gene replacement event. Mutations producing arginine substitutions were frequent and arose largely (66%) from base changes in just two codons: AGC and AGT. These codons are abundant in the repertoires of mouse and human V genes. Our findings reveal the predominant role of SHM in the development of ANA and underscore the importance of self-tolerance checkpoints at the postmutational stage of B cell differentiation.
Collapse
Affiliation(s)
- Wenzhong Guo
- Integrated Department of Immunology, National Jewish Health and 2 University of Colorado, Denver, CO 80206, USA
| | | | | | | | | | | |
Collapse
|
180
|
Capolunghi F, Rosado MM, Cascioli S, Girolami E, Bordasco S, Vivarelli M, Ruggiero B, Cortis E, Insalaco A, Fantò N, Gallo G, Nucera E, Loiarro M, Sette C, De Santis R, Carsetti R, Ruggiero V. Pharmacological inhibition of TLR9 activation blocks autoantibody production in human B cells from SLE patients. Rheumatology (Oxford) 2010; 49:2281-9. [PMID: 20739362 DOI: 10.1093/rheumatology/keq226] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Toll-like receptor 9 (TLR9), which recognizes hypomethylated DNA [cytosine-phosphate-guanine (CpG)], plays a role in the maintenance of serological memory and has been recently implicated in the pathogenesis of SLE. We previously reported that in vitro TLR9 triggers memory B-cell differentiation into antibody-producing cells, and that the MyD88-inhibitor ST2825 blocks TLR9-induced plasma cell (PC) generation. Here, we investigated whether memory B cells produce autoantibodies in SLE patients with active disease or in clinical remission, and whether ST2825 could inhibit PC generation in SLE patients. METHODS Peripheral blood mononuclear cells from 10 SLE patients in clinical remission and 2 with active SLE were cultured in the presence of CpG with or without ST2825. Phenotypical analysis of CpG-stimulated cells was performed by flow cytometry. Supernatants were collected to measure antibody production by ELISA and to detect autoantibodies by IF. RESULTS CpG-induced TLR9 stimulation caused autoantibody secretion in patients with active disease and in the majority of patients in clinical remission. Inhibition of MyD88 completely blocked the de novo generation of PCs and the secretion of autoantibodies. CONCLUSIONS Autoreactive B cells persist in SLE patients during disease remission in the circulating B-cell memory pool. TLR9-dependent activation of memory B cells by pathogens could be one of the mechanisms triggering relapses in SLE. Compounds targeting the TLR/MyD88 pathway may be used as novel therapeutic tools to treat acute disease and to prevent relapses in SLE patients.
Collapse
Affiliation(s)
- Federica Capolunghi
- Cytometry and B-cell Development Unit, Research Center, Department of Nephrology and Urology, Children Hospital Bambino Gesù, and Department of Public Health and Cell Biology, University of Rome Tor Vergata, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
181
|
Abstract
Human monoclonal antibodies (mAbs) have become drugs of choice for the management of an increasing number of human diseases. Human antibody repertoires provide a rich source for human mAbs. Here we review the characteristics of natural and non-natural human antibody repertoires and their mining with non-combinatorial and combinatorial strategies. In particular, we discuss the selection of human mAbs from naïve, immune, transgenic, and synthetic human antibody repertoires using methods based on hybridoma technology, clonal expansion of peripheral B cells, single-cell PCR, phage display, yeast display, and mammalian cell display. Our reliance on different strategies is shifting as we gain experience and refine methods to the efficient generation of human mAbs with superior pharmacokinetic and pharmacodynamic properties.
Collapse
Affiliation(s)
| | - Christoph Rader
- 2Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute
| |
Collapse
|
182
|
Abstract
Human monoclonal antibodies (mAbs) have become drugs of choice for the management of an increasing number of human diseases. Human antibody repertoires provide a rich source for human mAbs. Here we review the characteristics of natural and non-natural human antibody repertoires and their mining with non-combinatorial and combinatorial strategies. In particular, we discuss the selection of human mAbs from naïve, immune, transgenic, and synthetic human antibody repertoires using methods based on hybridoma technology, clonal expansion of peripheral B cells, single-cell PCR, phage display, yeast display, and mammalian cell display. Our reliance on different strategies is shifting as we gain experience and refine methods to the efficient generation of human mAbs with superior pharmacokinetic and pharmacodynamic properties.
Collapse
Affiliation(s)
| | - Christoph Rader
- 2Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute
| |
Collapse
|
183
|
Simpson N, Gatenby PA, Wilson A, Malik S, Fulcher DA, Tangye SG, Manku H, Vyse TJ, Roncador G, Huttley GA, Goodnow CC, Vinuesa CG, Cook MC. Expansion of circulating T cells resembling follicular helper T cells is a fixed phenotype that identifies a subset of severe systemic lupus erythematosus. ACTA ACUST UNITED AC 2010; 62:234-44. [PMID: 20039395 DOI: 10.1002/art.25032] [Citation(s) in RCA: 541] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE In the sanroque mouse model of lupus, pathologic germinal centers (GCs) arise due to increased numbers of follicular helper T (Tfh) cells, resulting in high-affinity anti-double-stranded DNA antibodies that cause end-organ inflammation, such as glomerulonephritis. The purpose of this study was to examine the hypothesis that this pathway could account for a subset of patients with systemic lupus erythematosus (SLE). METHODS An expansion of Tfh cells is a causal, and therefore consistent, component of the sanroque mouse phenotype. We validated the enumeration of circulating T cells resembling Tfh cells as a biomarker of this expansion in sanroque mice, and we performed a comprehensive comparison of the surface phenotype of circulating and tonsillar Tfh cells in humans. This circulating biomarker was enumerated in SLE patients (n = 46), Sjögren's syndrome patients (n = 17), and healthy controls (n = 48) and was correlated with disease activity and end-organ involvement. RESULTS In sanroque mice, circulating Tfh cells increased in proportion to their GC counterparts, making circulating Tfh cells a feasible human biomarker of this novel mechanism of breakdown in GC tolerance. In a subset of SLE patients (14 of 46), but in none of the controls, the levels of circulating Tfh cells (defined as circulating CXCR5+CD4+ cells with high expression of Tfh-associated molecules, such as inducible T cell costimulator or programmed death 1) were increased. This cellular phenotype did not vary with time, disease activity, or treatment, but it did correlate with the diversity and titers of autoantibodies and with the severity of end-organ involvement. CONCLUSION These findings in SLE patients are consistent with the autoimmune mechanism in sanroque mice and identify Tfh effector molecules as possible therapeutic targets in a recognizable subset of patients with SLE.
Collapse
|
184
|
Abstract
Antibodies to DNA (anti-DNA) are the serological hallmark of systemic lupus erythematosus (SLE) and unique markers of the immunological disturbances critical to disease pathogenesis. In the form of immune complexes, anti-DNA autoantibodies can deposit in the tissue to incite inflammation and damage; in addition, these complexes can induce cytokine production, most prominently, type 1 interferon. Studies in both patients and animal models have implicated genetic as well as environmental factors in the aetiology of the anti-DNA response. Because bacterial DNA is a potent stimulant of innate immunity by both toll-like receptor (TLR) and non-TLR signalling pathways, foreign DNA introduced during the course of bacterial or viral infection could have a dual role in antibody induction. This DNA could serve as an adjuvant to activate innate immunity as well as an immunogen to drive an antigen-specific antibody response. In this scenario, the generation of cross-reactive autoantibodies, in contrast to highly specific antibodies to bacterial DNA, most likely depends on genetically determined abnormalities in the B-cell repertoire in patients with SLE. Given the universal expression of DNA, this model suggests that many different kinds of infections could trigger pathogenic autoantibody responses in SLE, as well as induce flare.
Collapse
Affiliation(s)
- D S Pisetsky
- Division of Rheumatology and Immunology, Duke University Medical Center, Durham, North Carolina 27705, USA.
| | | |
Collapse
|
185
|
Vinuesa CG, Sanz I, Cook MC. Dysregulation of germinal centres in autoimmune disease. Nat Rev Immunol 2009; 9:845-57. [PMID: 19935804 DOI: 10.1038/nri2637] [Citation(s) in RCA: 353] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In germinal centres, somatic hypermutation and B cell selection increase antibody affinity and specificity for the immunizing antigen, but the generation of autoreactive B cells is an inevitable by-product of this process. Here, we review the evidence that aberrant selection of these autoreactive B cells can arise from abnormalities in each of the germinal centre cellular constituents--B cells, T follicular helper cells, follicular dendritic cells and tingible body macrophages--or in the supply of antigen. As the progeny of germinal centre B cells includes long-lived plasma cells, selection of autoreactive B cells can propagate long-lived autoantibody responses and cause autoimmune diseases. Elucidation of crucial molecular signals in germinal centres has led to the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Carola G Vinuesa
- John Curtin School of Medical Research, Australian National University, GPO Box 334, Canberra, ACT 2601, Australia.
| | | | | |
Collapse
|
186
|
Lineage specification and heterogeneity of T follicular helper cells. Curr Opin Immunol 2009; 21:619-25. [PMID: 19896816 DOI: 10.1016/j.coi.2009.09.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 09/08/2009] [Accepted: 09/23/2009] [Indexed: 12/13/2022]
Abstract
T follicular helper (Tfh) cells were originally described as a non-polarized CD4(+) T cell subset with follicular homing capacity and a potent ability to induce antibody production from B cells. However, a number of studies published in the past year have revealed a degree of heterogeneity within the germinal center CD4(+) T cell population, which suggests additional complexity. The overzealous activities of Tfh cells, or inappropriate expression of certain cytokines, represent new pathways for the development of autoimmune diseases. This review focuses on current progress in unraveling the biology of Tfh cells in health and disease, and understanding the relationship of Tfh cells to other CD4(+) T cell lineages.
Collapse
|
187
|
Zhang J, Jacobi AM, Wang T, Berlin R, Volpe BT, Diamond B. Polyreactive autoantibodies in systemic lupus erythematosus have pathogenic potential. J Autoimmun 2009; 33:270-4. [PMID: 19398190 PMCID: PMC2783480 DOI: 10.1016/j.jaut.2009.03.011] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 03/19/2009] [Accepted: 03/25/2009] [Indexed: 12/26/2022]
Abstract
The present study was undertaken to determine whether germline encoded and polyreactive antibodies might be pathogenic and whether the breach of early tolerance checkpoints in systemic lupus erythematosus (SLE) might lead to a population of B cells expressing germline encoded antibodies that become pathogenic merely by class switching to IgG in a pro-inflammatory milieu. We demonstrate here that IgM, DNA-reactive antibodies obtained from lupus patients that are unmutated and display polyreactivity can bind to isolated glomeruli and exhibit neurotoxic potential. Thus, the IgM polyreactive repertoire in SLE includes antibodies that may acquire pathogenic function merely by undergoing class-switch recombination to become IgG antibodies.
Collapse
Affiliation(s)
- Jie Zhang
- The Center for Autoimmune and Musculoskeletal Disease, Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, 350 Community Drive, Manhasset, NY 11030, USA
| | | | | | | | | | | |
Collapse
|
188
|
Nashi E, Wang Y, Diamond B. The role of B cells in lupus pathogenesis. Int J Biochem Cell Biol 2009; 42:543-50. [PMID: 19850148 DOI: 10.1016/j.biocel.2009.10.011] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 10/13/2009] [Indexed: 12/18/2022]
Abstract
Autoantibodies clearly contribute to tissue inflammation in systemic lupus erythematosus. In order to therapeutically target B cells making pathogenic autoantibodies, it is necessary to identify their phenotype. It is also important to understand the defects in B cell repertoire selection that permit pathogenic autoreactive B cells to enter the immunocompetent B cell repertoire. We present the data that both marginal zone and follicular B cells can produce pathogenic autoantibodies. Moreover, we discuss how B cell survival and maturation are regulated centrally prior to antigen activation and in the periphery after antigen activation to form the repertoire that generates the spectrum of circulating antibodies.
Collapse
Affiliation(s)
- Emil Nashi
- The Center for Autoimmune and Musculoskeletal Disease, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030, United States
| | | | | |
Collapse
|
189
|
Yuvaraj S, Dijkstra G, Burgerhof JGM, Dammers PM, Stoel M, Visser A, Kroese FGM, Bos NA. Evidence for local expansion of IgA plasma cell precursors in human ileum. THE JOURNAL OF IMMUNOLOGY 2009; 183:4871-8. [PMID: 19786537 DOI: 10.4049/jimmunol.0901315] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
IgA plays a crucial role in establishment and maintenance of mucosal homeostasis between host cells and commensal bacteria. To this end, numerous IgA plasma cells are located in the intestinal lamina propria. Whether the (immediate) precursor cells for these plasma cells can expand locally is not completely known and was studied here. The total number of IgA plasma cells in human ileal biopsies was counted. Sequence analysis of IgA V(H) genes from human ileal biopsies revealed the occurrence of many clonally related sequences within a biopsy, but not between different biopsies. This observation strongly argues for local expansion of IgA precursor cells. By comparing the number of unique sequences with the number of clonally related sequences within a biopsy, we estimated that approximately 100-300 precursors were responsible for the 75,000 IgA-producing cells that were present per biopsy. These precursor cells must therefore have divided locally 9-10 times. Since all sequences contained mutations and most of the mutations present in clonally related sequences were shared, the IgA precursor cells must have arrived initially as mutated cells in the lamina propria. Our data show evidence for the existence of two waves of expansion for IgA-producing cells in human ileum. The first wave occurs during initial stimulation in germinal centers as evidenced by somatic hypermutations. A second wave of expansion of IgA-committed cells occurs locally within the lamina propria as evidenced by the high frequency of clonally related cells.
Collapse
Affiliation(s)
- Saravanan Yuvaraj
- Department of Cell Biology, Section Immunology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
190
|
Abstract
PURPOSE OF REVIEW A combination of systemic autoimmunity and tissue response to immune injury underlie renal involvement in lupus erythematosus. In this review, we discuss recent literature investigating pathogenetic mechanisms of lupus glomerulonephritis. RECENT FINDINGS In lupus glomerulonephritis, glomerular immune complexes were believed to be the primary mediators of renal disease. Recent studies make it apparent that autoantibodies of multiple specificities participate in the formation of immune complexes, deposited in the kidneys. Renal infiltration by T cells, macrophages, and dendritic cells have a dominant role in the progression of lupus glomerulonephritis leading to renal failure. Activation of Toll-like receptors modulates autoantibody production and systemic interferon responses. However, glomerular cell responses to immune injury influence disease outcome. In addition, new insights on the genetics of susceptibility to end-organ damage in lupus glomerulonephritis have been discovered. Differential glomerular responses reflected in gene expression profiles during disease progression provide potential markers for diagnosis of lupus glomerulonephritis progression and flares. In addition, studies of end-organ responses provide new targets for therapeutic interventions. SUMMARY Lupus glomerulonephritis is a prototype of immune complex disease mediated by autoantibodies of multiple specificities, one of which is anti-DNA. Murine models of spontaneous systemic lupus erythematosus have been critical for understanding the underlying disease. Recent studies demonstrate that in addition to systemic autoimmunity, end-organ responses, and end-organ resistance to damage are also critical in determining disease outcome. This understanding should influence design of novel therapeutic approaches in systemic lupus erythematosus.
Collapse
Affiliation(s)
- Harini Bagavant
- Division of Nephrology, Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia, School of Medicine, Charlottesville, Virginia, USA
| | - Shu Man Fu
- Division of Nephrology, Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia, School of Medicine, Charlottesville, Virginia, USA
- Microbiology, Department of Medicine, University of Virginia, School of Medicine, Charlottesville, Virginia, USA
| |
Collapse
|
191
|
Broad diversity of neutralizing antibodies isolated from memory B cells in HIV-infected individuals. Nature 2009; 458:636-40. [PMID: 19287373 DOI: 10.1038/nature07930] [Citation(s) in RCA: 711] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2009] [Accepted: 02/27/2009] [Indexed: 11/08/2022]
Abstract
Antibodies to conserved epitopes on the human immunodeficiency virus (HIV) surface protein gp140 can protect against infection in non-human primates, and some infected individuals show high titres of broadly neutralizing immunoglobulin (Ig)G antibodies in their serum. However, little is known about the specificity and activity of these antibodies. To characterize the memory antibody responses to HIV, we cloned 502 antibodies from HIV envelope-binding memory B cells from six HIV-infected patients with broadly neutralizing antibodies and low to intermediate viral loads. We show that in these patients, the B-cell memory response to gp140 is composed of up to 50 independent clones expressing high affinity neutralizing antibodies to the gp120 variable loops, the CD4-binding site, the co-receptor-binding site, and to a new neutralizing epitope that is in the same region of gp120 as the CD4-binding site. Thus, the IgG memory B-cell compartment in the selected group of patients with broad serum neutralizing activity to HIV is comprised of multiple clonal responses with neutralizing activity directed against several epitopes on gp120.
Collapse
|
192
|
Hackney JA, Misaghi S, Senger K, Garris C, Sun Y, Lorenzo MN, Zarrin AA. DNA targets of AID evolutionary link between antibody somatic hypermutation and class switch recombination. Adv Immunol 2009; 101:163-89. [PMID: 19231595 DOI: 10.1016/s0065-2776(08)01005-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
As part of the adaptive immune response, B cells alter their functional immunoglobulin (Ig) receptor genes through somatic hypermutation (SHM) and/or class switch recombination (CSR) via processes that are initiated by activation induced cytidine deaminase (AID). These genetic modifications are targeted at specific sequences known as Variable (V) and Switch (S) regions. Here, we analyze and review the properties and function of AID target sequences across species and compare them with non-Ig sequences, including known translocation hotspots. We describe properties of the S sequences, and discuss species and isotypic differences among S regions. Common properties of SHM and CSR target sequences suggest that evolution of S regions might involve the duplication and selection of SHM hotspots.
Collapse
Affiliation(s)
- Jason A Hackney
- Genentech, Immunology Discovery Group, South San Francisco, California 94080, USA
| | | | | | | | | | | | | |
Collapse
|
193
|
B-cell tolerance checkpoints in health and autoimmunity. Curr Opin Immunol 2008; 20:632-8. [DOI: 10.1016/j.coi.2008.09.001] [Citation(s) in RCA: 223] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Accepted: 09/10/2008] [Indexed: 11/22/2022]
|