151
|
Katagiri H, Fagiolini M, Hensch TK. Optimization of Somatic Inhibition at Critical Period Onset in Mouse Visual Cortex. Neuron 2007; 53:805-12. [PMID: 17359916 DOI: 10.1016/j.neuron.2007.02.026] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2006] [Revised: 01/01/2007] [Accepted: 02/27/2007] [Indexed: 11/21/2022]
Abstract
Local GABAergic circuits trigger visual cortical plasticity in early postnatal life. How these diverse connections contribute to critical period onset was investigated by nonstationary fluctuation analysis following laser photo-uncaging of GABA onto discrete sites upon individual pyramidal cells in slices of mouse visual cortex. The GABA(A) receptor number decreased on the soma-proximal dendrite (SPD), but not at the axon initial segment, with age and sensory deprivation. Benzodiazepine sensitivity was also higher on the immature SPD. Too many or too few SPD receptors in immature or dark-reared mice, respectively, were adjusted to critical period levels by benzodiazepine treatment in vivo, which engages ocular dominance plasticity in these animal models. Combining GAD65 deletion with dark rearing from birth confirmed that an intermediate number of SPD receptors enable plasticity. Site-specific optimization of perisomatic GABA response may thus trigger experience-dependent development in visual cortex.
Collapse
Affiliation(s)
- Hiroyuki Katagiri
- Laboratory for Neuronal Circuit Development, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | | | | |
Collapse
|
152
|
Ujfalussy B, Kiss T, Orbán G, Hoffmann WE, Erdi P, Hajós M. Pharmacological and computational analysis of alpha-subunit preferential GABAA positive allosteric modulators on the rat septo-hippocampal activity. Neuropharmacology 2007; 52:733-43. [PMID: 17113111 DOI: 10.1016/j.neuropharm.2006.09.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Revised: 08/28/2006] [Accepted: 09/22/2006] [Indexed: 11/21/2022]
Abstract
Clinically most active anxiolytic drugs are positive allosteric modulators (PAMs) of GABA(A) receptors, represented by benzodiazepine compounds. Due to their non-selective profile, however, they potently modulate several sup-type specific GABA(A) receptors, contributing to their broad-range side effects. Based on observations in genetically altered mice, however, it has been proposed that anxiolytic action of benzodiazepines is predominantly mediated by GABA(A) alpha2/3 subunit-containing receptors. In the present study we analyzed the actions of the preferential GABA(A) alpha1 and alpha2/3 PAMs, zolpidem and L-838417, respectively on hippocampal EEG and medial septum neuronal activity in anesthetized rats. In parallel, a computational model was constructed to model pharmacological actions of these compounds on the septo-hippocampal circuitry. The present results demonstrated that zolpidem inhibited theta oscillation both in the hippocampus and septum, and profoundly inhibited firing activity of septal neurons. L-838417 also inhibited hippocampal and septal theta oscillation, however, it did not significantly alter firing rate activity of septal neurons. Our computational model showed that cessation of periodic firing of hippocampo-septal neurons, representing absence of hippocampal theta activity, disrupted oscillation of septal units, without altering their overall firing activity, similar to changes observed in our in vivo experiments following administration of L-838417. Understanding the correlation between changes in septo-hippocampal activity and actions of selective modulators of GABA(A) subtype receptor modulators would further advance design of anxiolytic drugs.
Collapse
Affiliation(s)
- Balázs Ujfalussy
- Department of Biophysics, KFKI Research Institute for Particle and Nuclear Physics of the Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
153
|
Kubota Y, Hatada S, Kondo S, Karube F, Kawaguchi Y. Neocortical inhibitory terminals innervate dendritic spines targeted by thalamocortical afferents. J Neurosci 2007; 27:1139-50. [PMID: 17267569 PMCID: PMC6673192 DOI: 10.1523/jneurosci.3846-06.2007] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Revised: 12/21/2006] [Accepted: 12/21/2006] [Indexed: 11/21/2022] Open
Abstract
Fast inhibition in the cortex is gated primarily at GABAergic synapses formed by local interneurons onto postsynaptic targets. Although GABAergic inputs to the somata and axon initial segments of neocortical pyramidal neurons are associated with direct inhibition of action potential generation, the role of GABAergic inputs to distal dendritic segments, including spines, is less well characterized. Because a significant proportion of inhibitory input occurs on distal dendrites and spines, it will be important to determine whether these GABAergic synapses are formed selectively by certain classes of presynaptic cells onto specific postsynaptic elements. By electron microscopic observations of synapses formed by different subtypes of nonpyramidal cells, we found that a surprisingly large fraction (33.4 +/- 9.3%) of terminals formed symmetrical synaptic junctions onto a subset of cortical spines that were mostly coinnervated by an asymmetrical terminal. Using VGLUT1 and VGLUT2 isoform of the glutamate vesicular transporter immunohistochemistry, we found that the double-innervated spines selectively received thalamocortical afferents expressing the VGLUT2 but almost never intracortical inputs expressing the VGLUT1. When comparing the volumes of differentially innervated spines and their synaptic junction areas, we found that spines innervated by VGLUT2-positive terminal were significantly larger than spines innervated by VGLUT1-positive terminal and that these spines had larger, and more often perforated, synapses than those of spines innervated by VGLUT1-positive afferent. These results demonstrate that inhibitory inputs to pyramidal cell spines may preferentially reduce thalamocortical rather than intracortical synaptic transmission and are therefore positioned to selectively gate extracortical information.
Collapse
Affiliation(s)
- Yoshiyuki Kubota
- Division of Cerebral Circuitry, National Institute for Physiological Sciences, Okazaki, Aichi 444-8787, Japan.
| | | | | | | | | |
Collapse
|
154
|
Lewis DA, Hashimoto T. Deciphering the Disease Process of Schizophrenia: The Contribution of Cortical Gaba Neurons. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2007; 78:109-31. [PMID: 17349859 DOI: 10.1016/s0074-7742(06)78004-7] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Schizophrenia is a devastating illness that is manifest through a variety of clinical signs and symptoms. Among these, impairments in certain critical cognitive functions, such as working memory, appear to represent the core features of the disorder. In this chapter, we review the evidence indicating that disturbances in neurotransmission by a subset of GABA neurons in the dorsolateral prefrontal cortex are commonly present in schizophrenia. Despite both pre- and postsynaptic compensatory responses, the resulting pathophysiological process, alterations in the perisomatic inhibitory regulation of pyramidal neurons, underlies a reduced capacity for the synchronization of neuronal activity at gamma frequencies that is required for working memory function. We also discuss several pathogenetic mechanisms that could rise to the alterations in GABA neurotransmission and consider the implication of these findings for therapeutic interventions to improve cognitive function in individuals with schizophrenia.
Collapse
Affiliation(s)
- David A Lewis
- Department of Psychiatry, University of Pittsburgh, Pennsylvania 15213, USA
| | | |
Collapse
|
155
|
Arancibia-Carcamo IL, Moss SJ. Molecular organization and assembly of the central inhibitory postsynapse. Results Probl Cell Differ 2006; 43:25-47. [PMID: 17068966 DOI: 10.1007/400_017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
gamma-Amino butyric acid type A (GABAA) receptors are the major sites of fast synaptic inhibition in the brain. GABAA receptors play an important role in regulating neuronal excitability and in addition have been implicated in numerous neurological disorders. In order to understand synaptic inhibition it is important to comprehend the cellular mechanisms, that neurons utilize to regulate the accumulation and regulation of GABAA receptors at postsynaptic inhibitory specializations. Over the past decade a number of GABAA receptor interacting proteins have been identified allowing us to further understand the trafficking, targeting and clustering of these receptors as well as the regulation of receptor stability. In the following review we examine the proteins identified as GABAA receptor binding partners and other components of the inhibitory postsynaptic scaffold, and how they contribute to the construction of inhibitory synapses and the dynamic modulation of synaptic inhibition.
Collapse
|
156
|
Serwanski DR, Miralles CP, Christie SB, Mehta AK, Li X, De Blas AL. Synaptic and nonsynaptic localization of GABAA receptors containing the alpha5 subunit in the rat brain. J Comp Neurol 2006; 499:458-70. [PMID: 16998906 PMCID: PMC2749292 DOI: 10.1002/cne.21115] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The alpha5 subunit of the GABA(A) receptors (GABA(A)Rs) has a restricted expression in the brain. Maximum expression of this subunit occurs in the hippocampus, cerebral cortex, and olfactory bulb. Hippocampal pyramidal cells show high expression of alpha5 subunit-containing GABA(A)Rs (alpha5-GABA(A)Rs) both in culture and in the intact brain. A large pool of alpha5-GABA(A)Rs is extrasynaptic and it has been proposed to be involved in the tonic GABAergic inhibition of the hippocampus. Nevertheless, there are no studies on the localization of the alpha5-GABA(A)Rs at the electron microscope (EM) level. By using both immunofluorescence of cultured hippocampal pyramidal cells and EM postembedding immunogold of the intact hippocampus we show that, in addition to the extrasynaptic pool, there is a pool of alpha5-GABA(A)Rs that concentrates at the GABAergic synapses in dendrites of hippocampal pyramidal cells. The results suggest that the synaptic alpha5-GABA(A)Rs might play a role in the phasic GABAergic inhibition of pyramidal neurons in hippocampus and cerebral cortex.
Collapse
Affiliation(s)
- David R. Serwanski
- Department of Physiology and Neurobiology, University of Connecticut, Storrs CT, 06269
| | - Celia P. Miralles
- Department of Physiology and Neurobiology, University of Connecticut, Storrs CT, 06269
| | - Sean B. Christie
- Department of Physiology and Neurobiology, University of Connecticut, Storrs CT, 06269
| | - Ashok K. Mehta
- Dept Pharmacology, University of Texas Health Science Center, San Antonio TX, 78229
| | - Xuejing Li
- Department of Physiology and Neurobiology, University of Connecticut, Storrs CT, 06269
| | - Angel L. De Blas
- Department of Physiology and Neurobiology, University of Connecticut, Storrs CT, 06269
| |
Collapse
|
157
|
Prenosil GA, Schneider Gasser EM, Rudolph U, Keist R, Fritschy JM, Vogt KE. Specific subtypes of GABAA receptors mediate phasic and tonic forms of inhibition in hippocampal pyramidal neurons. J Neurophysiol 2006; 96:846-57. [PMID: 16835366 DOI: 10.1152/jn.01199.2005] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The main inhibitory neurotransmitter in the mammalian brain, GABA, mediates multiple forms of inhibitory signals, such as fast and slow inhibitory postsynaptic currents and tonic inhibition, by activating a diverse family of ionotropic GABA(A) receptors (GABA(A)Rs). Here, we studied whether distinct GABA(A)R subtypes mediate these various forms of inhibition using as approach mice carrying a point mutation in the alpha-subunit rendering individual GABA(A)R subtypes insensitive to diazepam without altering their GABA sensitivity and expression of receptors. Whole cell patch-clamp recordings were performed in hippocampal pyramidal cells from single, double, and triple mutant mice. Comparing diazepam effects in knock-in and wild-type mice allowed determining the contribution of alpha1, alpha2, alpha3, and alpha5 subunits containing GABA(A)Rs to phasic and tonic forms of inhibition. Fast phasic currents were mediated by synaptic alpha2-GABA(A)Rs on the soma and by synaptic alpha1-GABA(A)Rs on the dendrites. No contribution of alpha3- or alpha5-GABA(A)Rs was detectable. Slow phasic currents were produced by both synaptic and perisynaptic GABA(A)Rs, judged by their strong sensitivity to blockade of GABA reuptake. In the CA1 area, but not in the subiculum, perisynaptic alpha5-GABA(A)Rs contributed to slow phasic currents. In the CA1 area, the diazepam-sensitive component of tonic inhibition also involved activation of alpha5-GABA(A)Rs and slow phasic and tonic signals shared overlapping pools of receptors. These results show that the major forms of inhibitory neurotransmission in hippocampal pyramidal cells are mediated by distinct GABA(A)Rs subtypes.
Collapse
Affiliation(s)
- George A Prenosil
- University of Zurich, Institute of Pharmacology and Toxicology, Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
158
|
Galvan A, Kuwajima M, Smith Y. Glutamate and GABA receptors and transporters in the basal ganglia: what does their subsynaptic localization reveal about their function? Neuroscience 2006; 143:351-75. [PMID: 17059868 PMCID: PMC2039707 DOI: 10.1016/j.neuroscience.2006.09.019] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2006] [Revised: 09/10/2006] [Accepted: 09/13/2006] [Indexed: 01/29/2023]
Abstract
GABA and glutamate, the main transmitters in the basal ganglia, exert their effects through ionotropic and metabotropic receptors. The dynamic activation of these receptors in response to released neurotransmitter depends, among other factors, on their precise localization in relation to corresponding synapses. The use of high resolution quantitative electron microscope immunocytochemical techniques has provided in-depth description of the subcellular and subsynaptic localization of these receptors in the CNS. In this article, we review recent findings on the ultrastructural localization of GABA and glutamate receptors and transporters in monkey and rat basal ganglia, at synaptic, extrasynaptic and presynaptic sites. The anatomical evidence supports numerous potential locations for receptor-neurotransmitter interactions, and raises important questions regarding mechanisms of activation and function of synaptic versus extrasynaptic receptors in the basal ganglia.
Collapse
Affiliation(s)
- A Galvan
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA.
| | | | | |
Collapse
|
159
|
Werner DF, Blednov YA, Ariwodola OJ, Silberman Y, Logan E, Berry RB, Borghese CM, Matthews DB, Weiner JL, Harrison NL, Harris RA, Homanics GE. Knockin mice with ethanol-insensitive alpha1-containing gamma-aminobutyric acid type A receptors display selective alterations in behavioral responses to ethanol. J Pharmacol Exp Ther 2006; 319:219-27. [PMID: 16785315 DOI: 10.1124/jpet.106.106161] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Despite the pervasiveness of alcohol (ethanol) use, it is unclear how the multiple molecular targets for ethanol contribute to its many behavioral effects. The function of GABA type A receptors (GABA(A)-Rs) is altered by ethanol, but there are multiple subtypes of these receptors, and thus far, individual subunits have not been definitively linked with specific behavioral actions. The alpha1 subunit of the GABA(A)-R is the most abundant alpha subunit in the brain, and the goal of this study was to determine the role of receptors containing this subunit in alcohol action. We designed an alpha1 subunit with serine 270 to histidine and leucine 277 to alanine mutations that was insensitive to potentiation by ethanol yet retained normal GABA sensitivity and constructed knockin mice containing this mutant subunit. Hippocampal slice recordings from these mice indicated that the mutant receptors were less sensitive to ethanol's potentiating effects. Behaviorally, we observed that mutant mice recovered more quickly from the motor-impairing effects of ethanol and etomidate, but not pentobarbital, and showed increased anxiolytic effects of ethanol. No differences were observed in ethanol-induced hypnosis, locomotor stimulation, cognitive impairment, or in ethanol preference and consumption. Overall, these studies demonstrate that the postsynaptic effects of ethanol at GABAergic synapses containing the alpha1 subunit are important for specific ethanol-induced behavioral effects.
Collapse
Affiliation(s)
- David F Werner
- Department of Pharmacology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Di Lazzaro V, Pilato F, Dileone M, Ranieri F, Ricci V, Profice P, Bria P, Tonali PA, Ziemann U. GABAA receptor subtype specific enhancement of inhibition in human motor cortex. J Physiol 2006; 575:721-6. [PMID: 16809358 PMCID: PMC1995685 DOI: 10.1113/jphysiol.2006.114694] [Citation(s) in RCA: 171] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Inhibition is of fundamental importance to regulate activity in cortical circuits. Inhibition is mediated through a diversity of different interneurones and gamma-aminobutyric acid A receptor (GABA(A)R) subtypes. Here we employed paired-pulse transcranial magnetic stimulation (TMS) to measure short interval intracortical inhibition (SICI), a GABA(A)R-mediated inhibition in human motor cortex, to address the question of which GABA(A)R subtype is responsible for this form of inhibition. It has been shown that classical benzodiazepines (diazepam and lorazepam) have a non-selective affinity profile at different alpha-subunit-bearing subtypes of the GABA(A)R while zolpidem has a 10-fold greater affinity to the alpha1-subunit-bearing GABA(A)R compared with those bearing the alpha2- or alpha3-subunit. We found that, in seven healthy subjects, a single oral dose of 20 mg of diazepam or 2.5 mg of lorazepam significantly increased SICI, whereas 10 mg of zolpidem did not change SICI. This dissociation occurred despite equal sedation by all three drugs, an alpha1-subunit GABA(A)R-mediated effect. The findings strongly suggest that SICI is not mediated by the alpha1-subunit-bearing subtype of the GABA(A)R but by those bearing either the alpha2- or alpha3-subunit. This study represents an attempt by means of TMS to identify GABA(A)R subtype-specific action at the systems level of human cortex, a highly relevant issue because the different alpha-subunit-bearing subtypes of the GABA(A)R are differently involved in benzodiazepine-mediated effects such as sedation, amnesia or anxiolysis, in developmental cortical plasticity, and in neurological disorders such as epilepsy.
Collapse
Affiliation(s)
- Vincenzo Di Lazzaro
- Istituto di Neurologia, Università Cattolica, L.go A. Gemelli 8, 00168 Rome, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
161
|
Muller E, Le Corronc H, Triller A, Legendre P. Developmental dissociation of presynaptic inhibitory neurotransmitter and postsynaptic receptor clustering in the hypoglossal nucleus. Mol Cell Neurosci 2006; 32:254-73. [PMID: 16765056 DOI: 10.1016/j.mcn.2006.04.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Revised: 04/19/2006] [Accepted: 04/24/2006] [Indexed: 11/21/2022] Open
Abstract
At postsynaptic densities of mouse hypoglossal motoneurons, the proportion of glycine receptors co-clustered with GABAA receptors increases from neonatal to adult animals, suggesting that mixed synapses might play a greater role in adult synaptic inhibition. We visualized the presynaptic correlates of these developmental changes using immunocytochemistry. At P5, presynaptic terminals contained glycine and GlyT2 and/or GABA and GAD65, but at P15, the majority of inhibitory terminals contained glycine and GlyT2 only. The GABAergic component of evoked inhibitory postsynaptic currents in HMs decreased strongly between P5 and P15. Similarly, miniature inhibitory postsynaptic currents evolved from mainly glycinergic and mixed glycinergic/GABAergic events at P3-5 to predominantly glycinergic currents at P15. These results indicate that the decrease in the proportion of functional mixed inhibitory synapses with maturation results from a loss of the ability of presynaptic terminals to release both neurotransmitters during development while co-aggregation of GlyRs + GABAARs at postsynaptic loci remained.
Collapse
Affiliation(s)
- Emilie Muller
- UMR 7102-Neurobiologie des Processus Adaptatifs, Université Pierre et Marie Curie, Bat. B 6e étage, Case 1, 9, Quai Saint Bernard, 75252 Paris CEDEX 05, France
| | | | | | | |
Collapse
|
162
|
Sotiriou E, Papatheodoropoulos C, Angelatou F. Differential expression of gamma-aminobutyric acid--a receptor subunits in rat dorsal and ventral hippocampus. J Neurosci Res 2006; 82:690-700. [PMID: 16273537 DOI: 10.1002/jnr.20670] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Recent data demonstrate weaker gamma-aminobutyric acid (GABA)-ergic inhibition in ventral (VH) compared with dorsal (DH) hippocampus. Therefore, we examined possible differences regarding the GABAA receptors between VH and DH as follows: 1) the expression of the GABAA receptor subunits (alpha1/2/4/5, beta1/2/3, gamma2, delta) mRNA and protein and 2) the quantitative distribution and kinetic parameters of [3H] muscimol (GABAA receptor agonist) binding. VH compared with DH showed: 1) lower levels for alpha1, beta2, gamma2 but higher levels for alpha2 and beta1 subunits in CA1, CA2, and CA3, the differences being more pronounced in CA1 region; in the CA1 region, the mRNA levels of alpha5 were higher, whereas those of alpha4 subunit were slightly lower; in dentate gyrus, the mRNA levels of alpha4, beta3, and delta subunits were significantly lower, presumably suggesting a lower expression of the alpha4/beta3/delta receptor subtype; and 2) lower levels of [3H]muscimol binding, with the lowest value observed in CA1, apparently resulting from weaker binding affinity, insofar as the KD values were higher in VH, whereas the Bmax values were similar between DH and VH. The differences in the subunit expression and the lower affinity of GABAA receptor binding observed predominantly in the CA1 region of VH suggest that the alpha1/beta2/gamma2 GABAA receptor subtype dominates in DH, and the alpha2/beta1/gamma2 subtype prevails in VH. This could underlie the lower GABAA-mediated inhibition observed in VH and, to some extent, explain 1) the higher liability of VH for epileptic activity and 2) the differential involvement of DH and VH in cognitive and emotional processes.
Collapse
Affiliation(s)
- Evangelos Sotiriou
- Physiology Department, Medical School, University of Patras, Patras, Greece
| | | | | |
Collapse
|
163
|
Weiner JL, Valenzuela CF. Ethanol modulation of GABAergic transmission: the view from the slice. Pharmacol Ther 2006; 111:533-54. [PMID: 16427127 DOI: 10.1016/j.pharmthera.2005.11.002] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2005] [Accepted: 11/16/2005] [Indexed: 10/25/2022]
Abstract
For almost three decades now, the GABAergic synapse has been the focus of intense study for its putative role in mediating many of the behavioral consequences associated with acute and chronic ethanol exposure. Although it was initially thought that ethanol interacted solely with the postsynaptic GABAA receptors that mediate the majority of fast synaptic inhibition in the mammalian central nervous system (CNS), a number of recent studies have identified novel pre- and postsynaptic mechanisms that may contribute to the acute and long-term effects of ethanol on GABAergic synaptic inhibition. These mechanisms appear to differ in a brain region specific manner and may also be influenced by a variety of endogenous neuromodulatory factors. This article provides a focused review of recent evidence, primarily from in vitro brain slice electrophysiological studies, that offers new insight into the mechanisms through which acute and chronic ethanol exposures modulate the activity of GABAergic synapses. The implications of these new mechanistic insights to our understanding of the behavioral and cognitive effects of ethanol are also discussed.
Collapse
Affiliation(s)
- J L Weiner
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1083, USA.
| | | |
Collapse
|
164
|
Zucker CL, Nilson JE, Ehinger B, Grzywacz NM. Compartmental localization of gamma-aminobutyric acid type B receptors in the cholinergic circuitry of the rabbit retina. J Comp Neurol 2005; 493:448-59. [PMID: 16261535 PMCID: PMC2849668 DOI: 10.1002/cne.20766] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Although many effects of gamma-aminobutyric acid (GABA) on retinal function have been attributed to GABA(A) and GABA(C) receptors, specific retinal functions have also been shown to be mediated by GABA(B) receptors, including facilitation of light-evoked acetylcholine release from the rabbit retina (Neal and Cunningham [1995] J. Physiol. 482:363-372). To explain the results of a rich set of experiments, Neal and Cunningham proposed a model for this facilitation. In this model, GABA(B) receptor-mediated inhibition of glycinergic cells would reduce their own inhibition of cholinergic cells. In turn, muscarinic input from the latter to the glycinergic cells would complete a negative-feedback circuitry. In this study, we have used immunohistochemical techniques to test elements of this model. We report that glycinergic amacrine cells are GABA(B) receptor negative. In contrast, our data reveal the localization of GABA(B) receptors on cholinergic/GABAergic starburst amacrine cells. High-resolution localization of GABA(B) receptors on starburst amacrine cells shows that they are discretely localized to a limited population of its varicosities, the majority of likely synaptic-release sites being devoid of detectable levels of GABA(B) receptors. Finally, we identify a glycinergic cell that is a potential muscarinic receptor-bearing target of GABA(B)-modulated acetylcholine release. This target is the DAPI-3 cell. We propose, based on these data, a modification of the Neal and Cunningham model in which GABA(B) receptors are on starburst, not glycinergic amacrine cells.
Collapse
Affiliation(s)
- Charles L Zucker
- Department Anatomy and Neurobiology, Boston University School of Medicine, 715 Albany Street, Massachusetts 02118, USA.
| | | | | | | |
Collapse
|
165
|
Abstract
Neuronal circuits in the brain are shaped by experience during 'critical periods' in early postnatal life. In the primary visual cortex, this activity-dependent development is triggered by the functional maturation of local inhibitory connections and driven by a specific, late-developing subset of interneurons. Ultimately, the structural consolidation of competing sensory inputs is mediated by a proteolytic reorganization of the extracellular matrix that occurs only during the critical period. The reactivation of this process, and subsequent recovery of function in conditions such as amblyopia, can now be studied with realistic circuit models that might generalize across systems.
Collapse
Affiliation(s)
- Takao K Hensch
- RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan.
| |
Collapse
|
166
|
Wu Y, Kawakami R, Shinohara Y, Fukaya M, Sakimura K, Mishina M, Watanabe M, Ito I, Shigemoto R. Target-cell-specific left-right asymmetry of NMDA receptor content in schaffer collateral synapses in epsilon1/NR2A knock-out mice. J Neurosci 2005; 25:9213-26. [PMID: 16207881 PMCID: PMC6725769 DOI: 10.1523/jneurosci.2134-05.2005] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Input-dependent left-right asymmetry of NMDA receptor epsilon2 (NR2B) subunit allocation was discovered in hippocampal Schaffer collateral (Sch) and commissural fiber pyramidal cell synapses (Kawakami et al., 2003). To investigate whether this asymmetrical epsilon2 allocation is also related to the types of the postsynaptic cells, we compared postembedding immunogold labeling for epsilon2 in left and right Sch synapses on pyramidal cells and interneurons. To facilitate the detection of epsilon2 density difference, we used epsilon1 (NR2A) knock-out (KO) mice, which have a simplified NMDA receptor subunit composition. The labeling density for epsilon2 but not zeta1 (NR1) and subtype 2/3 glutamate receptor (GluR2/3) in Sch-CA1 pyramidal cell synapses was significantly different between the left and right hippocampus with opposite directions in strata oriens and radiatum; the left to right ratio of epsilon2 labeling density was 1:1.50 in stratum oriens and 1.44:1 in stratum radiatum. No significant difference, however, was detected in CA1 stratum radiatum between the left and right Sch-GluR4-positive (mostly parvalbumin-positive) and Sch-GluR4-negative interneuron synapses. Consistent with the anatomical asymmetry, the amplitude ratio of NMDA EPSCs to non-NMDA EPSCs in pyramidal cells was approximately two times larger in right than left stratum radiatum and vice versa in stratum oriens of epsilon1 KO mice. Moreover, the amplitude of long-term potentiation in the Sch-CA1 synapses of left stratum radiatum was significantly larger than that in the right corresponding synapses. These results indicate that the asymmetry of epsilon2 distribution is target cell specific, resulting in the left-right difference in NMDA receptor content and plasticity in Sch-CA1 pyramidal cell synapses in epsilon1 KO mice.
Collapse
Affiliation(s)
- Yue Wu
- Department of Physiology, School of Life Science, Graduate University for Advanced Studies (Sokendai), Okazaki, Aichi 444-8787, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
167
|
Harms KJ, Craig AM. Synapse composition and organization following chronic activity blockade in cultured hippocampal neurons. J Comp Neurol 2005; 490:72-84. [PMID: 16041714 DOI: 10.1002/cne.20635] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Activity plays multiple roles in the expression of synaptic plasticity, and has been shown to regulate the localization of both neurotransmitter receptors and downstream signaling machinery. However, the role of activity in central synapse formation and organization is incompletely understood. Some studies indicate that synapse formation can occur in the absence of synaptic activity, while others indicate that activity is required for synapse maintenance and receptor recruitment. In addition, the effects of long-term blockade of transmission generally, rather than blockade of specific receptors, on postsynaptic protein complement has been poorly characterized. In order to address the role of activity in synapse formation and postsynaptic specialization, we used tetanus toxin to chronically cleave VAMP2 and inhibit SNARE-mediated neurotransmitter release in cultured hippocampal neurons. Although these neurons are deficient in synaptic release, they are of normal size and morphology. In addition, both excitatory and inhibitory synapses form along their processes with normal density. These synapses have a remarkably similar cellular and molecular organization compared to controls, and are capable of recruiting postsynaptic scaffolding proteins, GABA, and glutamate receptors. Subcellular enrichment of synaptic proteins into specialized domains also appears intact. These data indicate that global activity inhibition is insufficient to disrupt central synapse formation or organization.
Collapse
Affiliation(s)
- Kimberly J Harms
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
168
|
Patenaude C, Massicotte G, Lacaille JC. Cell-type specific GABA synaptic transmission and activity-dependent plasticity in rat hippocampal stratum radiatum interneurons. Eur J Neurosci 2005; 22:179-88. [PMID: 16029207 DOI: 10.1111/j.1460-9568.2005.04207.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Abstract In hippocampal pyramidal cells, the efficacy of synaptic transmission at gamma-aminobutyric acid (GABA)ergic synapses, is modulated by activity. However, whether such plasticity occurs at inhibitory synapses on interneurons remains largely unknown. Using whole-cell voltage-clamp recordings of inhibitory postsynaptic currents (IPSCs) in Sprague-Dawley rat hippocampal slices, we examined whether GABA synapses of stratum radiatum interneurons were affected by stimulation protocols known to alter efficacy at inhibitory synapses of CA1 pyramidal cells. Monosynaptically evoked IPSCs (eIPSCs) exhibited different properties with significantly faster kinetics, higher coefficients of variation, a current-voltage (I-V) relationship shifted to depolarized values and a smaller paired-pulse depression, in interneurons than in pyramidal cells. GABA synapses on interneurons also showed a different capacity for plasticity. Indeed, theta-burst stimulation induced a long-term potentiation of eIPSCs in both cell types, but the induction mechanisms differed in interneurons, as it was not affected by antagonists of GABAB receptors and group I/II metabotropic glutamate receptors (mGluRs). Furthermore, 100-Hz tetanization selectively elicited a short-term depression of eIPSCs in pyramidal cells. A postsynaptic depolarization produced a transient suppression of eIPSCs (depolarization-induced suppression of inhibition) in pyramidal cells but not in interneurons. Spontaneous IPSCs were similarly reduced following depolarization in pyramidal cells, but not in interneurons. These results indicate that GABA synapses of stratum radiatum interneurons exhibit different properties and capacity for activity-dependent plasticity than those of pyramidal cells. This cell-type specific mode of transmission and adaptive regulation of GABA synapses may contribute to hippocampal plasticity and functions.
Collapse
Affiliation(s)
- Christian Patenaude
- Centre de Recherche en Sciences Neurologiques et Département de Physiologie, Université de Montréal, C.P. 6128 Succ. Centre-ville, Montréal, Québec, Canada H3C 3J7
| | | | | |
Collapse
|
169
|
Cope DW, Halbsguth C, Karayannis T, Wulff P, Ferraguti F, Hoeger H, Leppä E, Linden AM, Oberto A, Ogris W, Korpi ER, Sieghart W, Somogyi P, Wisden W, Capogna M. Loss of zolpidem efficacy in the hippocampus of mice with the GABAA receptor gamma2 F77I point mutation. Eur J Neurosci 2005; 21:3002-16. [PMID: 15978011 DOI: 10.1111/j.1460-9568.2005.04127.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Zolpidem is a hypnotic benzodiazepine site agonist with some gamma-aminobutyric acid (GABA)(A) receptor subtype selectivity. Here, we have tested the effects of zolpidem on the hippocampus of gamma2 subunit (gamma2F77I) point mutant mice. Analysis of forebrain GABA(A) receptor expression with immunocytochemistry, quantitative [(3)H]muscimol and [(35)S] t-butylbicyclophosphorothionate (TBPS) autoradiography, membrane binding with [(3)H]flunitrazepam and [(3)H]muscimol, and comparison of miniature inhibitory postsynaptic current (mIPSC) parameters did not reveal any differences between homozygous gamma2I77/I77 and gamma2F77/F77 mice. However, quantitative immunoblot analysis of gamma2I77/I77 hippocampi showed some increased levels of gamma2, alpha1, alpha4 and delta subunits, suggesting that differences between strains may exist in unassembled subunit levels, but not in assembled receptors. Zolpidem (1 microm) enhanced the decay of mIPSCs in CA1 pyramidal cells of control (C57BL/6J, gamma2F77/F77) mice by approximately 60%, and peak amplitude by approximately 20% at 33-34 degrees C in vitro. The actions of zolpidem (100 nm or 1 microm) were substantially reduced in gamma2I77/I77 mice, although residual effects included a 9% increase in decay and 5% decrease in peak amplitude. Similar results were observed in CA1 stratum oriens/alveus interneurons. At network level, the effect of zolpidem (10 microm) on carbachol-induced oscillations in the CA3 area of gamma2I77/I77 mice was significantly different compared with controls. Thus, the gamma2F77I point mutation virtually abolished the actions of zolpidem on GABA(A) receptors in the hippocampus. However, some residual effects of zolpidem may involve receptors that do not contain the gamma2 subunit.
Collapse
Affiliation(s)
- D W Cope
- MRC Anatomical Neuropharmacology Unit, Department of Pharmacology, Oxford University, Mansfield Road, Oxford OX1 3TH, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
170
|
Howard A, Tamas G, Soltesz I. Lighting the chandelier: new vistas for axo-axonic cells. Trends Neurosci 2005; 28:310-6. [PMID: 15927687 DOI: 10.1016/j.tins.2005.04.004] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2005] [Revised: 02/25/2005] [Accepted: 04/15/2005] [Indexed: 01/06/2023]
Abstract
Chandelier or axo-axonic cells are the most selective of all cortical GABAergic interneurons, because they exclusively contact axon initial segments of cortical glutamatergic neurons. Owing to their privileged location on initial segments, axo-axonic cells have often been assumed to have the ultimate control of pyramidal cell output. Recently, key molecules expressed at the initial-segment synapses have been identified, and novel in vitro and in vivo electrophysiological studies have revealed unexpectedly versatile functional effects exerted by axo-axonic cells on their postsynaptic targets. In addition, there is also emerging recognition of the mechanistic involvement of these unique cells in several neurological diseases, including epilepsy and schizophrenia.
Collapse
Affiliation(s)
- Allyson Howard
- Department of Anatomy and Neurobiology, University of California, Irvine, CA 92697, USA.
| | | | | |
Collapse
|
171
|
Guidotti A, Auta J, Davis JM, Dong E, Grayson DR, Veldic M, Zhang X, Costa E. GABAergic dysfunction in schizophrenia: new treatment strategies on the horizon. Psychopharmacology (Berl) 2005; 180:191-205. [PMID: 15864560 DOI: 10.1007/s00213-005-2212-8] [Citation(s) in RCA: 216] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2004] [Accepted: 02/11/2005] [Indexed: 01/15/2023]
Abstract
RATIONALE Cortical gamma-aminobutyric acid (GABA)ergic neurons contribute to the orchestration of pyramidal neuron population firing as follows: (1) by releasing GABA on GABA(A) and GABA(B) receptors, (2) by releasing reelin in the proximity of integrin receptors located on cortical pyramidal neuron dendritic spines, and (3) through reelin contributing to the regulation of dendritic spine plasticity by modulating dendritic resident mRNA translation. In schizophrenia (SZ) and bipolar (BP) postmortem brains, the downregulation of mRNAs encoding glutamic acid decarboxylase 67 (GAD(67)) and reelin decreases the cognate proteins coexpressed in prefrontal cortex (PFC) GABAergic neurons. This finding has been replicated in several laboratories. Such downregulation suggests that the neuropil hypoplasticity found in the PFC of SZ and BP disorder patients may depend on a downregulation of GABAergic function, which is associated with a decrease in reelin secretion from GABAergic neuron axon terminals on dendrites, somata, or axon initial segments of pyramidal neurons. Indirectly, this GABAergic neuron downregulation may play a key role in the expression of positive and negative symptoms of SZ and BP disorders. OBJECTIVES The above described GABAergic dysfunction may be addressed by pharmacological interventions to treat SZ and BP disorders using specific benzodiazepines (BZs), which are devoid of intrinsic activity at GABA(A) receptors including alpha(1) subunits but that act as full positive allosteric modulators of GABA action at GABA(A) receptors containing alpha(2), alpha(3), or alpha(5) subunits. These drugs are expected to enhance GABAergic signal transduction without eliciting sedation, amnesia, and tolerance or dependence liabilities. RESULTS AND CONCLUSIONS BZs, such as diazepam, although they are efficient in equilibrating GABA(A) receptor signal transduction in a manner beneficial in the treatment of positive and negative symptoms of SZ, may not be ideal drugs, because by mediating a full positive allosteric modulation of GABA(A) receptors containing the alpha(1) subunit, they contribute to sedation and to the development of tolerance after even a brief period of treatment. In contrast, other BZ-binding site ligands, such as 6-(2bromophenyl)-8-fluoro-4H-imidazo [1,5-a][1,4] benzodiazepine-3-carboxamide (imidazenil), which fail to allosterically and positively modulate the action of GABA at GABA(A) receptors with alpha(1) subunits but that selectively allosterically modulate cortical GABA(A) receptors containing alpha(5) subunits, contribute to the anxiolytic, antipanic, and anticonvulsant actions of these ligands without producing sedation, amnesia, or tolerance. Strong support for the use of imidazenil in psychosis emerges from experiments with reeler mice or with methionine-treated mice, which express a pronounced reelin and GAD(67) downregulation that is also operative in SZ and BP disorders. In mice that model SZ symptoms, imidazenil increases signal transduction at GABA(A) receptors containing alpha(5) subunits and contributes to the reduction of behavioral deficits without producing sedation or tolerance liability. Hence, we suggest that imidazenil may be considered a prototype for a new generation of positive allosteric modulators of GABA(A) receptors, which, either alone or in combination with neuroleptics, should be evaluated in GABAergic dysfunction operative in the treatment of SZ and BP disorders with psychosis.
Collapse
Affiliation(s)
- Alessandro Guidotti
- Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago, 1601 Taylor St, Chicago, IL 60612, USA
| | | | | | | | | | | | | | | |
Collapse
|
172
|
Thomas P, Mortensen M, Hosie AM, Smart TG. Dynamic mobility of functional GABAA receptors at inhibitory synapses. Nat Neurosci 2005; 8:889-97. [PMID: 15951809 DOI: 10.1038/nn1483] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2005] [Accepted: 05/17/2005] [Indexed: 02/06/2023]
Abstract
Importing functional GABAA receptors into synapses is fundamental for establishing and maintaining inhibitory transmission and for controlling neuronal excitability. By introducing a binding site for an irreversible inhibitor into the GABAA receptor alpha1 subunit channel lining region that can be accessed only when the receptor is activated, we have determined the dynamics of receptor mobility between synaptic and extrasynaptic locations in hippocampal pyramidal neurons. We demonstrate that the cell surface GABAA receptor population shows no fast recovery after irreversible inhibition. In contrast, after selective inhibition, the synaptic receptor population rapidly recovers by the import of new functional entities within minutes. The trafficking pathways that promote rapid importation of synaptic receptors do not involve insertion from intracellular pools, but reflect receptor diffusion within the plane of the membrane. This process offers the synapse a rapid mechanism to replenish functional GABAA receptors at inhibitory synapses and a means to control synaptic efficacy.
Collapse
Affiliation(s)
- Philip Thomas
- Department of Pharmacology, University College London, Gower Street, London WC1 E 6BT, UK
| | | | | | | |
Collapse
|
173
|
Koksma JJ, Fritschy JM, Mack V, Van Kesteren RE, Brussaard AB. Differential GABAA receptor clustering determines GABA synapse plasticity in rat oxytocin neurons around parturition and the onset of lactation. Mol Cell Neurosci 2005; 28:128-40. [PMID: 15607948 DOI: 10.1016/j.mcn.2004.09.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2004] [Revised: 09/03/2004] [Accepted: 09/07/2004] [Indexed: 02/02/2023] Open
Abstract
Expression, functional properties, and clustering of alpha 1-, alpha 2-, and alpha 3-subunit containing GABA(A) receptors (GABA(A)Rs) were studied in dorsomedial SON neurons of the adult female rat supraoptic nucleus (SON) around parturition. We show that, although the decay time constant (tau(decay)) of GABAergic postsynaptic currents between and within individual recordings was very diverse, ranging from fast (i.e., alpha 1-like) to significantly slower (i.e., non-alpha 1-like), there was an overall shift towards slower decaying synaptic currents during the onset of lactation. This shift is not due to changes in mRNA expression levels, because real-time quantitative PCR assays indicated that the relative contribution of alpha 1, alpha 2, and alpha 3 remained the same before and after parturition. Also, changes in phosphorylation levels are not likely to affect the tau(decay) of postsynaptic currents. In alpha-latrotoxin (alpha-LTX)-induced bursts of synaptic currents from individual synapses, the tau(decay) of consecutive synaptic events within bursts was very similar, but between bursts there were large differences in tau(decay). This suggested that different synapses within individual SON neurons contain distinct GABA(A)R subtypes. Using multilabeling confocal microscopy, we examined the distribution of postsynaptic alpha 1-, alpha 2-, and alpha 3-GABA(A)Rs, based on colocalization with gephyrin. We show that the three GABA(A)R subtypes occurred either in segregated clusters of one subtype as well as in mixed clusters of two or possibly even three receptor subtypes. After parturition, the density and proportion of clusters containing alpha 2- (or alpha 3-), but not alpha1-GABA(A)Rs, was significantly increased. Thus, the functional synaptic diversity at the postsynaptic level in dorsomedial SON neurons is correlated with a differential clustering of distinct GABA(A)R subtypes at individual synapses.
Collapse
Affiliation(s)
- Jan-Jurjen Koksma
- Department of Experimental Neurophysiology, Centre for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
174
|
Charara A, Pare JF, Levey AI, Smith Y. Synaptic and extrasynaptic GABA-A and GABA-B receptors in the globus pallidus: an electron microscopic immunogold analysis in monkeys. Neuroscience 2005; 131:917-33. [PMID: 15749345 DOI: 10.1016/j.neuroscience.2004.12.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2004] [Indexed: 10/25/2022]
Abstract
GABA-A and GABA-B receptors mediate differential effects in the CNS. To better understand the role of these receptors in regulating pallidal functions, we compared their subcellular and subsynaptic localization in the external and internal segments of the globus pallidus (GPe and GPi) in monkeys, using pre- and post-embedding immunocytochemistry with antibodies against GABA-A (alpha1, beta2/3 subunits) and GABA-BR1 receptor subtype. Our results demonstrate that GABA-A and GABA-B receptors display a differential pattern of subcellular and subsynaptic localization in both segments of the globus pallidus. The majority of GABA-BR1 immunolabeling is intracellular, whereas immunoreactivity for GABA-A receptor subunits is mostly bound to the plasma membrane. A significant proportion of both GABA-BR1 and GABA-A receptor immunolabeling is extrasynaptic, but GABA-A receptor subunits also aggregate in the main body of putative GABAergic symmetric synapses established by striatal- and pallidal-like terminals. GABA-BR1 immunoreactivity is expressed presynaptically in putative glutamatergic terminals, while GABA-A alpha1 and beta2/3 receptor subunits are exclusively post-synaptic and often coexist at individual symmetric synapses in both GPe and GPi. In conclusion, our findings corroborate the concept that ionotropic and metabotropic GABA receptors are located to subserve different effects in pallidal neurons. Although the aggregation of GABA-A receptors at symmetric synapses is consistent with their role in fast inhibitory synaptic transmission, the extrasynaptic distribution of both GABA-A and GABA-B receptors provides a substrate for complex modulatory functions that rely predominantly on the spillover of GABA.
Collapse
Affiliation(s)
- A Charara
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | |
Collapse
|
175
|
Woodhall GL, Bailey SJ, Thompson SE, Evans DIP, Jones RSG. Fundamental differences in spontaneous synaptic inhibition between deep and superficial layers of the rat entorhinal cortex. Hippocampus 2005; 15:232-45. [PMID: 15386594 DOI: 10.1002/hipo.20047] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We have previously shown that there are clear differences between spontaneous excitatory synaptic currents recorded in layers V and II of the rat entorhinal cortex (EC) in vitro, and have suggested that these might contribute to a more pronounced susceptibility of the deeper layer to epileptogenesis. In the present study, we have made a detailed comparison of spontaneous synaptic inhibition between the two layers by recording spontaneous inhibitory synaptic currents (sIPSCs) using whole-cell patch-clamp techniques in EC slices. Pharmacological studies indicated that sIPSCs were mediated exclusively by gamma-aminobutyric acid (GABA)(A) receptors. There was little difference in average amplitudes, rise or decay times of sIPSCs in layer II compared with layer V. However, in the former, events occurred at 4-5 times the frequency seen in the latter, and frequencies of </=40 Hz were not uncommon. When activity-independent, miniature IPSCs were isolated in tetrodotoxin (TTX), the frequency in layer V was more than halved, but in layer II only a small reduction was seen, and the frequency remained very high. In terms of kinetics, while averaged sIPSCs in each layer were very similar, detailed comparison of individual sIPSCs within layers revealed distinct differences, possibly reflecting inputs from different subtypes of interneurons or inputs at different somatodendritic locations. In layer V, sIPSCs could be divided into three groups, one with slow rise and decay kinetics and a second with fast rise kinetics, further distinguished into two groups by either fast or slow decay kinetics. The distinction between events in layer II was simpler, one group having both fast rise and decay times and the second with both parameters much slower. Finally, IPSCs could occur in high-frequency bursts in both layers, although these were much more prevalent in layer II. The results are discussed in terms of the overall level of background inhibition in the two layers, as well as how this might relate to their susceptibilities to epileptogenesis.
Collapse
Affiliation(s)
- Gavin L Woodhall
- Department of Physiology and MRC Centre for Synaptic Plasticity, School of Medical Sciences, University of Bristol, Bristol, United Kingdom
| | | | | | | | | |
Collapse
|
176
|
van Rijnsoever C, Sidler C, Fritschy JM. Internalized GABA-receptor subunits are transferred to an intracellular pool associated with the postsynaptic density. Eur J Neurosci 2005; 21:327-38. [PMID: 15673433 DOI: 10.1111/j.1460-9568.2005.03884.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Endocytosis represents an important mechanism regulating cell-surface expression of neurotransmitter receptors, including GABAA receptors, in neurons. Little is known, however, about trafficking of internalized receptors. Here, we used antibody tagging in living rat hippocampal neurons in culture to monitor GABAA receptor internalization. We show that cell-surface receptors have a homogeneous distribution reflecting their mobility in the membrane. Unexpectedly, internalized GABAA receptors were detected mainly in a subsynaptic pool associated with gephyrin at postsynaptic sites, whereas AMPA-type glutamate receptors were accumulated in the soma. This process was time-dependent and could be prevented by blocking clathrin-coated vesicle endocytosis. In control experiments, the existence of an intracellular pool of GABAA receptors associated with gephyrin was confirmed independently of internalization of surface receptors, and constitutive endocytosis, unrelated to antibody-tagging, could be demonstrated for both AMPA and GABAA receptors using a biotinylation assay. These results suggest that cycling of GABAA receptors between the cell surface and the subsynaptic pool provides a mechanism for the short-term regulation of GABAergic neurotransmission. Furthermore, the close association of gephyrin with internalized GABAA receptors suggests a role in intracellular receptor trafficking.
Collapse
Affiliation(s)
- Carolien van Rijnsoever
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | | | |
Collapse
|
177
|
Smith SS, Gong QH. Neurosteroid administration and withdrawal alter GABAA receptor kinetics in CA1 hippocampus of female rats. J Physiol 2005; 564:421-36. [PMID: 15705652 PMCID: PMC1464432 DOI: 10.1113/jphysiol.2004.077297] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2004] [Accepted: 02/07/2005] [Indexed: 12/20/2022] Open
Abstract
Withdrawal from the GABA-modulatory steroid 3alpha-OH-5alpha-pregnan-20-one (3alpha,5alpha-THP) following exposure of female rats to the parent compound progesterone (P) produces a syndrome characterized by behavioural excitability in association with up-regulation of the alpha4 subunit of the GABA(A) receptor (GABAR) in the hippocampus. Similar changes are seen after 48 h exposure to its stereoisomer, 3alpha,5beta-THP. Here, we further characterize the effects of P withdrawal on GABAR kinetics, using brief (1 ms) application of 5-10 mm GABA to outside-out patches from acutely isolated CA1 hippocampal pyramidal cells. Under control conditions, GABA-gated current deactivated biexponentially, with tau(fast) = 12-19 ms (45-60% of the current), and tau(slow) = 80-140 ms. P withdrawal resulted in marked acceleration of deactivation (tau(fast) = 3-7 ms and tau(slow) = 30-100 ms), as did 48 h exposure to 3alpha,5beta-THP (tau(fast) = 5-8 ms; tau(slow) = 40-120 ms). When recombinant receptors were tested in HEK-293 cells, a similar acceleration in tau(fast) was observed for alpha4beta2delta and alpha4beta2gamma2 GABARs, compared to alpha1beta2gamma2 and alpha5beta2gamma2 receptors. In addition, tau(slow) was also accelerated for alpha4beta2delta receptors, which are increased following steroid withdrawal. As predicted by the Jones-Westbrook model, this change was accompanied by reduced receptor desensitization as well as an acceleration of the rate of recovery from rapid desensitization. A theoretical analysis of the data suggested that steroid treatment leads to receptors with a greater stability of the bound, activatable state. This was achieved by altering multiple parameters, including desensitization and gating rates, within the model. These results suggest that fluctuations in endogenous steroids result in altered GABAR kinetics which may regulate neuronal excitability.
Collapse
Affiliation(s)
- Sheryl S Smith
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Ave., Brooklyn, NY 11203, USA.
| | | |
Collapse
|
178
|
Abstract
Impairments in certain cognitive functions, such as working memory, are core features of schizophrenia. Convergent findings indicate that a deficiency in signalling through the TrkB neurotrophin receptor leads to reduced GABA (gamma-aminobutyric acid) synthesis in the parvalbumin-containing subpopulation of inhibitory GABA neurons in the dorsolateral prefrontal cortex of individuals with schizophrenia. Despite both pre- and postsynaptic compensatory responses, the resulting alteration in perisomatic inhibition of pyramidal neurons contributes to a diminished capacity for the gamma-frequency synchronized neuronal activity that is required for working memory function. These findings reveal specific targets for therapeutic interventions to improve cognitive function in individuals with schizophrenia.
Collapse
Affiliation(s)
- David A Lewis
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| | | | | |
Collapse
|
179
|
Danglot L, Rostaing P, Triller A, Bessis A. Morphologically identified glycinergic synapses in the hippocampus. Mol Cell Neurosci 2005; 27:394-403. [PMID: 15555918 DOI: 10.1016/j.mcn.2004.05.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2004] [Revised: 05/11/2004] [Accepted: 05/24/2004] [Indexed: 11/26/2022] Open
Abstract
Inhibitory transmission in the hippocampus is predominantly GABAergic, but electrophysiological data evidenced strychnine-sensitive glycine-induced currents. However, synaptic currents have not been reported. Here, we describe, for the first time, the presence of GlyR clusters in several areas of the hippocampus as well as in cultured hippocampal neurons. In contrast with spinal cord, hippocampal GlyRs contain alpha2 but no alpha1 subunit. Optical and electron microscopy indicates that GlyRs can be synaptic as well as extrasynaptic. Synaptic GlyRs were apposed to glycinergic boutons characterized by the expression of the vesicular and the plasma membrane transporters of glycine (VIAAT and GlyT2, respectively). Double labeling with calcium-binding proteins showed that GlyT2 could be detected in boutons innervating both excitatory cells (soma and dendrites) and interneurons. Finally, GlyR clusters could be detected at synaptic sites with the GABAA receptor gamma2 subunit and gephyrin, suggesting that mixed GABA/glycine synapses might exist in the hippocampus.
Collapse
Affiliation(s)
- Lydia Danglot
- Laboratoire de Biologie Cellulaire de la Synapse N&P, Institut National de la Santé et de la Recherche Médicale U497, Ecole Normale Supérieure, 75005 Paris, France
| | | | | | | |
Collapse
|
180
|
Nakamura NH, Rosell DR, Akama KT, McEwen BS. Estrogen and ovariectomy regulate mRNA and protein of glutamic acid decarboxylases and cation-chloride cotransporters in the adult rat hippocampus. Neuroendocrinology 2005; 80:308-23. [PMID: 15677881 DOI: 10.1159/000083657] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2004] [Accepted: 10/28/2004] [Indexed: 12/22/2022]
Abstract
17beta-Estradiol spatiotemporally regulates the gamma-aminobutyric acid (GABAergic) tone in the adult hippocampus. However, the complex estrogenic effect on the GABAergic system is still unclear. In adult central nervous system (CNS) neurons, GABA can induce both inhibitory and excitatory actions, which are predominantly controlled by the cation-chloride cotransporters NKCC1 and KCC2. We therefore studied the estrogenic regulation of two glutamate decarboxylase (GAD) isoforms, GAD65 and GAD67, as well as NKCC1 and KCC2 in the adult female rat hippocampus by immunohistochemistry and in situ hybridization. First, we focused on the duration after ovariectomy (OVX) and its effects on GAD65 protein levels. The basal number of GAD65-immunoreactive cells decreased after long-term (10 days) OVX compared to short-term (3 days) OVX. We found that, only after long-term OVX but not after short-term OVX, estradiol increased the number of GAD65-immunoreactive cells in the CA1 pyramidal cell layer. Furthermore, estradiol did not alter the GAD65-immunoreactive cell population in any other CA1 subregion. Second, we therefore focused on long-term OVX and the estrogenic regulation of GAD and cation-chloride cotransporter mRNA levels. In the pyramidal cell layer, estradiol affected GAD65, GAD67 and NKCC1 mRNA levels, but not KCC2 mRNA levels. Both GAD65 and NKCC1 mRNA levels increased within 24 h after estradiol treatment, followed by a subsequent increase in GAD67 mRNA levels. These findings suggest that basal levels of estrogen might contribute to a balance between the excitatory and inhibitory synaptic transmission onto CA1 pyramidal cells by regulating perisomatic GAD and NKCC1 expression in the adult hippocampus.
Collapse
Affiliation(s)
- Nozomu H Nakamura
- Laboratory of Neuroendocrinology, Rockefeller University, 1230 York Avenue, New York, NY 10021, USA.
| | | | | | | |
Collapse
|
181
|
Swanson CJ, Bures M, Johnson MP, Linden AM, Monn JA, Schoepp DD. Metabotropic glutamate receptors as novel targets for anxiety and stress disorders. Nat Rev Drug Discov 2005; 4:131-44. [PMID: 15665858 DOI: 10.1038/nrd1630] [Citation(s) in RCA: 459] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Anxiety and stress disorders are the most commonly occurring of all mental illnesses, and current treatments are less than satisfactory. So, the discovery of novel approaches to treat anxiety disorders remains an important area of neuroscience research. Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system, and G-protein-coupled metabotropic glutamate (mGlu) receptors function to regulate excitability via pre- and postsynaptic mechanisms. Various mGlu receptor subtypes, including group I (mGlu(1) and mGlu(5)), group II (mGlu(2) and mGlu(3)), and group III (mGlu(4), mGlu(7) and mGlu(8)) receptors, specifically modulate excitability within crucial brain structures involved in anxiety states. In addition, agonists for group II (mGlu(2/3)) receptors and antagonists for group I (in particular mGlu(5)) receptors have shown activity in animal and/or human conditions of fear, anxiety or stress. These studies indicate that metabotropic glutamate receptors are interesting new targets to treat anxiety disorders in humans.
Collapse
Affiliation(s)
- Chad J Swanson
- Eli Lilly and Company, Neuroscience Division, Lilly Corporate Center DC 0510, Indianapolis, Indiana 46285, USA
| | | | | | | | | | | |
Collapse
|
182
|
Möhler H, Fritschy JM, Vogt K, Crestani F, Rudolph U. Pathophysiology and pharmacology of GABA(A) receptors. Handb Exp Pharmacol 2005:225-47. [PMID: 16594261 DOI: 10.1007/3-540-28082-0_9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
By controlling spike timing and sculpting neuronal rhythms, inhibitory interneurons play a key role in brain function. GABAergic interneurons are highly diverse. The respective GABA(A) receptor subtypes, therefore, provide new opportunities not only for understanding GABA-dependent pathophysiologies but also for targeting of selective neuronal circuits by drugs. The pharmacological relevance of GABA(A) receptor subtypes is increasingly being recognized. A new central nervous system pharmacology is on the horizon. The development of anxiolytic drugs devoid of sedation and of agents that enhance hippocampus-dependent learning and memory has become a novel and highly selective therapeutic opportunity.
Collapse
Affiliation(s)
- H Möhler
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstr. 190, 8057 Zurich, Switzerland.
| | | | | | | | | |
Collapse
|
183
|
Volk DW, Lewis DA. GABA Targets for the Treatment of Cognitive Dysfunction in Schizophrenia. Curr Neuropharmacol 2005; 3:45-62. [PMID: 22545031 DOI: 10.2174/1570159052773396] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cognitive deficits, including impairments in working memory that have been linked to the prefrontal cortex, are among the most debilitating and difficult to treat features of schizophrenia. Consequently, the identification of potential targets informed by the pathophysiology of the illness is needed to develop novel pharmacological approaches for ameliorating these deficits. Postmortem studies of the prefrontal cortex in schizophrenia subjects have revealed disturbances restricted to a subpopulation of inhibitory neurons that includes chandelier neurons, whose axon terminals synapse on the axon initial segment of pyramidal neurons. Chandelier neurons play an important role in synchronizing pyramidal neuron activity and appear to be a critical component of the prefrontal cortical circuitry that subserves working memory function. Therefore, in this paper we review evidence suggesting that drugs which selectively enhance chandelier neuron-mediated inhibition of prefrontal pyramidal neurons may improve working memory dysfunction in schizophrenia. Potential novel targets for such agents include GABA(A) receptors that contain the α(2) subunit. In addition, we discuss potential complementary mechanisms for enhancing inhibitory input to pyramidal cell bodies, including drugs with activity at the CB1 receptor of the endocannabinoid system. The development of pathophysiologically-based treatments that selectively remediate disturbances in specific neural circuits underlying working memory may provide an effective approach to improving cognitive deficits in schizophrenia.
Collapse
Affiliation(s)
- David W Volk
- Departments of Psychiatry and Neuroscience, University of Pittsburgh, PA 15260
| | | |
Collapse
|
184
|
Mitchell CP, Grayson DR, Goldman MB. Neonatal lesions of the ventral hippocampal formation alter GABA-A receptor subunit mRNA expression in adult rat frontal pole. Biol Psychiatry 2005; 57:49-55. [PMID: 15607300 DOI: 10.1016/j.biopsych.2004.09.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2004] [Revised: 08/04/2004] [Accepted: 09/24/2004] [Indexed: 12/15/2022]
Abstract
BACKGROUND Gamma-aminobutyric acid (GABA)-ergic function is altered in schizophrenia. Of particular interest is the altered central nervous system expression of GABA-A receptor subunits, as changes in subunit expression account for recognized differences in mammalian brain function making them inviting targets for novel psychotropic agents. Excitotoxic neonatal lesions of the ventral hippocampal formation (NVHL) in rats reproduce numerous aspects of schizophrenia, including decreased mRNA expression of the GABA synthesizing enzyme glutamic acid decarboxylase-67, though their impact on subunit expression is unknown. METHODS We utilized quantitative reverse transcription polymerase chain reaction to investigate mRNA expression of the alpha1, alpha5, and gamma2s GABA-A receptor subunits in the frontal pole of water-deprived adult NVHL and SHAM-lesioned animals. RESULTS Messenger RNA expression for all three GABA-A subunits (alpha1-NVHL: 18.5 +/- 1.6 pg/mug total pooled RNA, SHAM: 11.3 +/- .4; alpha5-NVHL: 5.1 +/- .6; SHAM: 3.5 +/- .7; and gamma2s-NVHL: 10.8 +/- 1.7; SHAM: 7.2 +/- 1.5) was higher in NVHL, though only levels of alpha1 differed significantly after correction for multiple comparisons. Levels of a control mRNA, neuronal specific enolase, were similar in the two groups. CONCLUSIONS These data indicate that NVHL reproduce changes in cortical GABA-A receptor subunit expression seen in schizophrenia, suggesting this animal model may facilitate efforts to clarify the physiologic significance of altered GABA function and to develop novel targets for therapeutic interventions.
Collapse
Affiliation(s)
- Colin P Mitchell
- Psychiatric Institute, University of Illinois at Chicago in affiliation with University of Chicago, 1601 W. Taylor, Chicago, IL 60612, USA
| | | | | |
Collapse
|
185
|
Bailey SJ, Toth M. Variability in the benzodiazepine response of serotonin 5-HT1A receptor null mice displaying anxiety-like phenotype: evidence for genetic modifiers in the 5-HT-mediated regulation of GABA(A) receptors. J Neurosci 2004; 24:6343-51. [PMID: 15254090 PMCID: PMC6729545 DOI: 10.1523/jneurosci.0563-04.2004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Benzodiazepines (BZs) acting as modulators of GABA(A) receptors (GABA(A)Rs) are an important group of drugs for the treatment of anxiety disorders. However, a large inter-individual variation in BZ sensitivity occurs in the human population with some anxiety disorder patients exhibiting diminished sensitivity to BZ and reduced density of GABA(A)Rs. The mechanism underlying BZ treatment resistance is not known, and it is not possible to predict whether an anxiety patient will respond to BZ. 5-hydroxytryptamine1A receptor (5-HT1AR) null mice (R-/-) on the Swiss-Webster (SW) background reproduce several features of BZ-resistant anxiety; they exhibit anxiety-related behaviors, do not respond to BZ, have reduced BZ binding, and have decreased expression of the major GABA(A)R subunits alpha1 and alpha2. Here, we show that R-/- mice on the C57Bl6 (B6) background also have anxiety phenotype, but they respond to BZ and have normal GABA(A)R subunit expression. This indicates that the 5-HT1AR-mediated regulation of GABA(A)R alpha subunit expression is subject to genetic modification. Hybrid SW/B6-R-/- mice also exhibit BZ-resistant anxiety, suggesting that SW mice carry a genetic modifier, which mediates the effect of the 5-HT1AR on the expression of GABA(A)Ralpha subunits. In addition, we show that this genetic interaction in SW mice operates early in postnatal life to influence the expression of GABA(A)R alpha subunits at the transcriptional level. These data indicate that BZ-resistant anxiety results from a developmental arrest of GABA(A)R expression in SW-R-/- mice, and a similar mechanism may be responsible for the BZ insensitivity of some anxiety patients.
Collapse
MESH Headings
- Amygdala/growth & development
- Amygdala/metabolism
- Animals
- Anti-Anxiety Agents/pharmacology
- Anti-Anxiety Agents/therapeutic use
- Anxiety Disorders/drug therapy
- Anxiety Disorders/genetics
- Crosses, Genetic
- Diazepam/pharmacology
- Drug Resistance/genetics
- Epistasis, Genetic
- Frontal Lobe/growth & development
- Frontal Lobe/metabolism
- Gene Expression Regulation
- Gene Expression Regulation, Developmental
- Maze Learning
- Mice
- Mice, Inbred C57BL
- Protein Interaction Mapping
- Protein Subunits/biosynthesis
- Protein Subunits/chemistry
- Protein Subunits/deficiency
- Protein Subunits/genetics
- RNA, Messenger/biosynthesis
- Receptor, Serotonin, 5-HT1A/deficiency
- Receptor, Serotonin, 5-HT1A/genetics
- Receptor, Serotonin, 5-HT1A/physiology
- Receptors, GABA-A/biosynthesis
- Receptors, GABA-A/chemistry
- Receptors, GABA-A/deficiency
- Receptors, GABA-A/genetics
Collapse
Affiliation(s)
- Sarah J Bailey
- Department of Pharmacology, Weill Medical College of Cornell University, New York, New York 10021, USA.
| | | |
Collapse
|
186
|
Van Sickle BJ, Xiang K, Tietz EI. Transient plasticity of hippocampal CA1 neuron glutamate receptors contributes to benzodiazepine withdrawal-anxiety. Neuropsychopharmacology 2004; 29:1994-2006. [PMID: 15266351 DOI: 10.1038/sj.npp.1300531] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Withdrawal from 1-week oral administration of the benzodiazepine (BZ), flurazepam (FZP) is associated with enhanced AMPA receptor (AMPAR)-mediated and reduced NMDA receptor (NMDAR)-mediated excitation in CA1 pyramidal neurons 2-days after cessation of FZP administration. The present study examined temporal regulation of glutamate receptor-mediated whole-cell currents in CA1 neurons from hippocampal slices prepared from 0-, 1-, 2-, and 4-day FZP-withdrawn rats in relation to expression of anxiety-like behavior during BZ withdrawal. AMPAR-mediated miniature excitatory postsynaptic current (mEPSC) amplitude was significantly increased in CA1 neurons from 1- and 2-day FZP-withdrawn rats, while evoked NMDAR EPSC amplitude was reduced only in neurons from 2-day FZP-withdrawn rats. Withdrawal-anxiety, measured in the elevated plus-maze, was observed 1 day, but not 0, 2, or 4 days, after FZP treatment with 1-day withdrawn rats spending significantly reduced time in open arms compared to controls. CA1 neuron hyperexcitability was evident from the significant increase in the frequency of extracellular, 4-AP-induced spike discharges in slices from 1-day FZP-withdrawn rats. Systemic injection of the NMDAR antagonist MK-801 (0.25 mg/kg) on day 1 of withdrawal prevented reduced NMDAR-mediated currents in CA1 neurons from 2-day FZP-withdrawn rats, whereas AMPAR-mediated currents remained upregulated. Furthermore, MK-801 'unmasked' withdrawal-anxiety in the same 2-day FZP-withdrawn rats. Systemic injection of the AMPAR antagonist GYKI-52466 (0.5 mg/kg) at the onset of withdrawal blocked increased AMPAR-mediated currents and withdrawal-anxiety in 1-day FZP-withdrawn rats. These findings suggest that increased CA1 neuron AMPAR-mediated excitation may contribute to hippocampal hyperexcitability and expression of withdrawal-anxiety after prolonged BZ exposure via NMDAR-mediated neural circuits.
Collapse
Affiliation(s)
- Bradley J Van Sickle
- Department of Pharmacology and the Cellular and Molecular Neurobiology Program, Medical College of Ohio, Toledo, OH, USA
| | | | | |
Collapse
|
187
|
Feigenspan A, Weiler R. Electrophysiological Properties of Mouse Horizontal Cell GABAAReceptors. J Neurophysiol 2004; 92:2789-801. [PMID: 15240758 DOI: 10.1152/jn.00284.2004] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
GABA-induced currents have been characterized in isolated horizontal cells from lower vertebrates but not in mammalian horizontal cells. Therefore horizontal cells were isolated after enzymatical and mechanical dissociation of the adult mouse retina and visually identified. We recorded from horizontal cell bodies using the whole cell and outside-out configuration of the patch-clamp technique. Extracellular application of GABA induced inward currents carried by chloride ions. GABA-evoked currents were completely and reversibly blocked by the competitive GABAAreceptor antagonist bicuculline (IC50= 1.7 μM), indicating expression of GABAAbut not GABACreceptors. Their affinity for GABA was moderate (EC50= 30 μM), and the Hill coefficient was 1.3, corresponding to two GABA binding sites. GABA responses were partially reduced by picrotoxin with differential effects on peak and steady-state current values. Zinc blocked the GABA response with an IC50value of 7.3 μM in a noncompetitive manner. Furthermore, GABA receptors of horizontal cells were modulated by extracellular application of diazepam, zolpidem, methyl 6,7-dimethoxy-4-ethyl-β-carboxylate, pentobarbital, and alphaxalone, thus showing typical pharmacological properties of CNS GABAAreceptors. GABA-evoked single-channel currents were characterized by a main conductance state of 29.8 pS and two subconductance states (20.2 and 10.8 pS, respectively). Kinetic analysis of single-channel events within bursts revealed similar mean open and closed times for the main conductance and the 20.2-pS subconductance state, resulting in open probabilities of 44.6 and 42.7%, respectively. The ratio of open to closed times, however, was significantly different for the 10.8-pS subconductance state with an open probability of 57.2%.
Collapse
Affiliation(s)
- Andreas Feigenspan
- Institute of Biology, University of Oldenburg, D-26111 Oldenburg, Germany.
| | | |
Collapse
|
188
|
Aradi I, Maccaferri G. Cell type-specific synaptic dynamics of synchronized bursting in the juvenile CA3 rat hippocampus. J Neurosci 2004; 24:9681-92. [PMID: 15509756 PMCID: PMC6730161 DOI: 10.1523/jneurosci.2800-04.2004] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2004] [Revised: 08/27/2004] [Accepted: 09/21/2004] [Indexed: 11/21/2022] Open
Abstract
Spontaneous synchronous bursting of the CA3 hippocampus in vitro is a widely studied model of physiological and pathological network synchronization. The role of inhibitory conductances during network bursting is not understood in detail, despite the fact that several antiepileptic drugs target GABA(A) receptors. Here, we show that the first manifestation of a burst event is a cell type-specific flurry of GABA(A) receptor-mediated inhibitory input to pyramidal cells, but not to stratum oriens horizontal interneurons. Moreover, GABA(A) receptor-mediated synaptic input is proportionally smaller in these interneurons compared with pyramidal cells. Computational models and dynamic-clamp studies using experimentally derived conductance waveforms indicate that both these factors modulate spike timing during synchronized activity. In particular, the different kinetics and the larger strength of GABAergic input to pyramidal cells defer action potential initiation and contribute to the observed delay of firing, so that the interneuronal activity leads the burst cycle. In contrast, excitatory inputs to both neuronal populations during a burst are kinetically similar, as required to maintain synchronicity. We also show that the natural pattern of activation of inhibitory and excitatory conductances during a synchronized burst cycle is different within the same neuronal population. In particular, GABA(A) receptor-mediated currents activate earlier and outlast the excitatory components driving the bursts. Thus, cell type-specific balance and timing of GABA(A) receptor-mediated input are critical to set the appropriate spike timing in pyramidal cells and interneurons and coordinate additional neurotransmitter release modulating burst strength and network frequency.
Collapse
Affiliation(s)
- Ildiko Aradi
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | |
Collapse
|
189
|
Galvan A, Charara A, Pare JF, Levey AI, Smith Y. Differential subcellular and subsynaptic distribution of GABA(A) and GABA(B) receptors in the monkey subthalamic nucleus. Neuroscience 2004; 127:709-21. [PMID: 15283969 DOI: 10.1016/j.neuroscience.2004.05.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2004] [Indexed: 11/25/2022]
Abstract
The activation of GABA receptor subtype A (GABA(A)) and GABA receptor subtype B (GABA(B)) receptors mediates differential effects on GABAergic and non-GABAergic transmission in the basal ganglia. To further characterize the anatomical substrate that underlies these functions, we used immunogold labeling to compare the subcellular and subsynaptic localization of GABA(A) and GABA(B) receptors in the subthalamic nucleus (STN). Our findings demonstrate major differences and some similarities in the distribution of GABA(A) and GABA(B) receptors in the monkey STN. The immunoreactivity for GABA(A) receptor alpha1 subunits is mostly bound to the plasma membrane, whereas GABA(B) R1 subunit alpha1 immunoreactivity is largely expressed intracellularly. Plasma membrane-bound GABA(A) alpha1 subunit aggregate in the main body of putative GABAergic synapses, while GABA(B) R1 receptors are found at the edges of putative glutamatergic or GABAergic synapses. A large pool of plasma membrane-bound GABA(A) and GABA(B) receptors is extrasynaptic. In conclusion, these findings demonstrate a significant degree of heterogeneity between the distributions of the two major GABA receptor subtypes in the monkey STN. Their pattern of synaptic localization puts forward interesting questions regarding their mechanisms of activation and functions at GABAergic and non-GABAergic synapses.
Collapse
Affiliation(s)
- A Galvan
- Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | | | | | | | |
Collapse
|
190
|
Liang J, Cagetti E, Olsen RW, Spigelman I. Altered pharmacology of synaptic and extrasynaptic GABAA receptors on CA1 hippocampal neurons is consistent with subunit changes in a model of alcohol withdrawal and dependence. J Pharmacol Exp Ther 2004; 310:1234-45. [PMID: 15126642 DOI: 10.1124/jpet.104.067983] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previously, we reported (Cagetti, Liang, Spigelman, and Olsen, 2003) that chronic intermittent ethanol (CIE) treatment leads to signs of alcohol dependence, including anxiety and hyperactivity, accompanied by reduced synaptic gamma-aminobutyric acid (A) receptor (GABAAR) function and altered sensitivity to its allosteric modulators consistent with a measured switch in subunit composition. In this study, we separated the synaptic and extrasynaptic components of GABAAR activation in recordings from pyramidal CA1 cells of hippocampal slices and demonstrated marked differences in the responsiveness of synaptic and extrasynaptic GABAARs to agonists and allosteric modulators in control rats, and in the way they are altered following CIE treatment. Notably, tonic inhibition mediated by extrasynaptic GABAARs was differentially sensitive to the partial agonist gaboxadol (4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol; THIP) and the allosteric modulator zolpidem, compared with the miniature inhibitory synaptic currents (mIPSCs) in the same cells from saline-treated rats. After CIE treatment, potentiation of tonic currents by diazepam and zolpidem was lost, whereas potentiation by the alpha4 subunit-preferring benzodiazepine Ro15-4513 (ethyl 8-azido-6-dihydro-5-methyl-6-oxo-4H-imidazo[1,5-a]-[1,4]benzodiazepine-3-carboxylate) and THIP was only partially reduced. Potentiation of synaptic GABAAR currents by zolpidem was eliminated after CIE, whereas THIP slightly inhibited mIPSCs from control rats and greatly enhanced them after CIE treatment. These results are consistent with alpha1 subunit decreases at synaptic and extrasynaptic GABAARs, whereas alpha4 subunits are increased at synaptic and decreased at extrasynaptic GABAARs. Behaviorally, THIP was active as a hypnotic and anxiolytic but not as an anti-convulsant against pentylenetetrazol seizures in control rats. Only slight tolerance was observed to the sleep time, but not to the anxiolytic, effect of THIP after CIE. Thus, differential alterations in synaptic and extrasynaptic GABAARs appear to play an important role in the brain plasticity of alcohol dependence, and withdrawal signs may be profitably treated with GABAergic drugs such as THIP, which does not show cross-tolerance with ethanol.
Collapse
Affiliation(s)
- Jing Liang
- Division of Oral Biology and Medicine, School of Dentistry, UCLA, Los Angeles, CA 90095-1668, USA
| | | | | | | |
Collapse
|
191
|
Abstract
The physiological significance of the large diversity of GABA A receptors is poorly understood. Using mice, which carry a point mutation that renders specific subtypes of GABA A receptors diazepam insensitive, it was recently discovered that particular types of GABA A receptors are involved in specific, behaviorally relevant signaling pathways. We have used these mice to study inhibitory synaptic transmission in the amygdala. GABA A receptor-mediated inhibitory postsynaptic currents (IPSCs) per se were not affected by the point mutations. Their modulation by diazepam, however, was altered depending on the genotype of the mice studied. Based on the different responses to diazepam, we found that IPSCs in the lateral/basolateral amygdala were mediated by both alpha2- and alpha1-subunit-containing GABA A receptors whereas those in the central amygdala were mediated only by alpha2-subunit-containing GABA A receptors. Immunohistochemical staining corroborated these findings at a morphological level. To investigate a possible link between interneuron and receptor diversity, we selectively depressed release from the subset of GABAergic terminals carrying type 1 cannabinoid receptors. These receptors are known to modulate amygdala-mediated behavior. Application of a type 1 cannabinoid receptor agonist resulted in a selective reduction of inhibitory current mediated by alpha1-subunit-containing GABA A receptors. Mice with specific diazepam-insensitive GABA A receptor subtypes therefore provide a novel tool to investigate GABA A receptor distribution and the organization of inhibitory circuits at a functional level. The crucial role of the amygdala for the mediation of anxiety is in agreement with the part that alpha2-subunit-containing GABA A receptors play in anxiolysis and their important function in this area of the brain.
Collapse
Affiliation(s)
- Anne Marowsky
- Institute of Pharmacology and Toxicology, University of Zürich, Winterthurerstrasse 190, CH-8057, Switzerland
| | | | | |
Collapse
|
192
|
Abstract
In the brain, highly connected and heterogeneous GABAergic cells are crucial in controling the activity of neuronal networks. They accomplish this task by communicating through remarkably diverse sets of inhibitory processes, the complexity of which is reflected by the variety of interneuron classification schemes proposed in recent years. It is now becoming clear that the subcellular localization and intrinsic properties of heteropentameric GABA(A) receptors themselves also constitute major sources of diversity in GABA-mediated signaling. This review summarizes some of the factors underlying this diversity, including GABA(A) receptor subunit composition, localization, activation, number and phosphorylation states, variance of GABA concentration in the synaptic cleft, and some of the presynaptic factors regulating GABA release.
Collapse
Affiliation(s)
- Istvan Mody
- Departments of Neurology and Physiology, The David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| | | |
Collapse
|
193
|
Lewis DA, Cruz D, Eggan S, Erickson S. Postnatal development of prefrontal inhibitory circuits and the pathophysiology of cognitive dysfunction in schizophrenia. Ann N Y Acad Sci 2004; 1021:64-76. [PMID: 15251876 DOI: 10.1196/annals.1308.008] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The typical appearance of the clinical features of schizophrenia during late adolescence or early adulthood suggests that adolescence-related neurodevelopmental events may contribute to the pathophysiology of this disorder. Here the role that GABA-mediated inhibition in the dorsal lateral prefrontal cortex (DLPFC) plays in regulating working memory, a core cognitive process that matures late and that is disturbed in schizophrenia, is reviewed. Recent studies are summarized that demonstrate (1) that certain pre- and postsynaptic markers of GABA neurotransmission in the monkey DLPFC exhibit striking changes during adolescence, and (2) that these same markers are markedly altered in the DLPFC of subjects with schizophrenia. The implications of these findings for treatment and prevention strategies are discussed.
Collapse
Affiliation(s)
- David A Lewis
- Department of Psychiatry, University of Pittsburgh, 3811 O'Hara Street, W1651 BST, Pittsburgh, PA 15213, USA.
| | | | | | | |
Collapse
|
194
|
Abstract
Anxiety and its disorders have long been known to be familial. Recently, genetic approaches have been used to clarify the role of heredity in the development of anxiety and to probe its neurobiological underpinnings. Twin studies have shown that a significant proportion of the liability to develop any given anxiety disorder is due to genetic factors. Ongoing efforts to map anxiety-related loci in both animals and humans are underway with limited success to date. Animal models have played a large role in furthering our understanding of the genetic basis of anxiety, demonstrating that the genetic factors underlying anxiety are complex and varied. Recent advances in molecular genetic techniques have allowed increasing specificity in the manipulation of gene expression within the central nervous system of the mouse. With this increasing specificity has come the ability to ask and answer precise questions about the mechanisms of anxiety and its treatment.
Collapse
Affiliation(s)
- Joshua A Gordon
- Center for Neurobiology and Behavior, Department of Psychiatry, Columbia University, New York State Psychiatric Institute, New York, NY 10032, USA.
| | | |
Collapse
|
195
|
Dalby NO. Inhibition of gamma-aminobutyric acid uptake: anatomy, physiology and effects against epileptic seizures. Eur J Pharmacol 2004; 479:127-37. [PMID: 14612144 DOI: 10.1016/j.ejphar.2003.08.063] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The transport of gamma-aminobutyric (GABA) limits the overspill from the synaptic cleft and serves to maintain a constant extracellular level of GABA. Two transporters, GABA transporter-1 (GAT-1) and GAT-3, are the most likely candidates for regulating GABA transport in the brain. Drugs acting either selectively or nonselectively at GATs exert distinct anticonvulsant effects, presumably because of distinct regions of action. Here I shall give a brief review of the localization and physiology of GATs and describe effects of selective and nonselective inhibitors thereof in different animal models of epilepsy.
Collapse
|
196
|
Marty S, Wehrlé R, Fritschy JM, Sotelo C. Quantitative effects produced by modifications of neuronal activity on the size of GABAA receptor clusters in hippocampal slice cultures. Eur J Neurosci 2004; 20:427-40. [PMID: 15233752 DOI: 10.1111/j.1460-9568.2004.03491.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The number and strength of GABAergic synapses needs to be precisely adjusted for adequate control of excitatory activity. We investigated to what extent the size of GABA(A) receptor clusters at inhibitory synapses is under the regulation of neuronal activity. Slices from P7 rat hippocampus were cultured for 13 days in the presence of bicuculline or 4-aminopyridine (4-AP) to increase neuronal activity, or DNQX to decrease activity. The changes provoked by these treatments on clusters immunoreactive for the alpha1 and alpha2 subunits of the GABA(A) receptor or gephyrin were quantitatively evaluated. While an increase in activity augmented the density of these clusters, a decrease in activity provoked, in contrast, a decrease in their density. An inverse regulation was observed for the size of individual clusters. Bicuculline and 4-AP decreased whilst DNQX increased the mean size of the clusters. When the pharmacological treatments were applied for 2 days instead of 2 weeks, no effects on the size of the clusters were observed. The variations in the mean size of individual clusters were mainly due to changes in the number of small clusters. Finally, a regulation of the size of GABA(A) receptor clusters occurred during development in vivo, with a decrease of the mean size of the clusters between P7 and P21. This physiological change was also the result of an increase in the number of small clusters. These results indicate that neuronal activity regulates the mean size of GABA(A) receptor- and gephyrin-immunoreactive clusters by modifying specifically the number of synapses with small clusters of receptors.
Collapse
Affiliation(s)
- Serge Marty
- INSERM U106-616, Hôpital de la Salpêtrière, Paris, France.
| | | | | | | |
Collapse
|
197
|
Böhme I, Rabe H, Lüddens H. Four amino acids in the alpha subunits determine the gamma-aminobutyric acid sensitivities of GABAA receptor subtypes. J Biol Chem 2004; 279:35193-200. [PMID: 15199051 DOI: 10.1074/jbc.m405653200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
GABA(A) receptors, mediators of fast inhibitory neurotransmission, are heteropentameric assemblies from a large array of subunits. Differences in the sensitivity of receptor subtypes to endogenous GABA may permit subunit-dependent finely tuned responsiveness to the same GABAergic inputs. Using both radioligand binding and electrophysiology combined with mutagenesis, we identified a domain of four amino acids within the alpha subunits that mediates the distinct sensitivities to GABA allowing their selective switch between alphabeta3gamma2 combinations. Replacing this domain in alpha3 by the corresponding segments of alpha1-alpha5 resulted in mutant receptors displaying the GABA EC(50) values of the respective wild-type receptors. Vice versa, the alpha3 motif forced the low sensitivity to GABA of alpha3 upon alpha1beta3gamma2, alpha4beta3gamma2, and alpha5beta3gamma2. Binding of the GABA agonist [(3)H]muscimol was not affected by the exchange of the motif between alpha1 and alpha3 subunits. Thus, the equilibrium binding pocket is maintained upon replacement of the four amino acids. Taken together our data suggest that the identified motifs contribute to a structure involved in the transduction of the binding signal rather than to the binding itself.
Collapse
Affiliation(s)
- Ingo Böhme
- Laboratory of Molecular Biology, Department of Psychiatry, University of Mainz, Untere Zahlbacher Strasse 8, 55131 Mainz, Germany
| | | | | |
Collapse
|
198
|
Lewis DA, Volk DW, Hashimoto T. Selective alterations in prefrontal cortical GABA neurotransmission in schizophrenia: a novel target for the treatment of working memory dysfunction. Psychopharmacology (Berl) 2004; 174:143-50. [PMID: 15205885 DOI: 10.1007/s00213-003-1673-x] [Citation(s) in RCA: 204] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2003] [Accepted: 09/30/2003] [Indexed: 12/24/2022]
Abstract
RATIONALE Disturbances in critical cognitive processes, such as working memory, are now regarded as core features of schizophrenia, but available pharmacological treatments produce little or no improvement in these cognitive deficits. Although other explanations are possible, these cognitive deficits appear to reflect a disturbance in executive control, the processes that facilitate complex information processing and behavior and that include context representation and maintenance, functions dependent on the dorsolateral prefrontal cortex (DLPFC). Studies in non-human primates indicate that normal working memory function depends upon appropriate GABA neurotransmission in the DLPFC, and alterations in markers of GABA neurotransmission are well documented in the DLPFC of subjects with schizophrenia. OBJECTIVES Thus, the purpose of this paper is to review the nature of the altered GABA neurotransmission in the DLPFC in schizophrenia, and to consider how these findings might inform the search for new treatments for cognitive dysfunction in this illness. RESULTS AND CONCLUSIONS Postmortem studies suggest that markers of reduced GABA neurotransmission in schizophrenia may be selective for, or at least particularly prominent in, the subclass of GABA neurons, chandelier cells, that provide inhibitory input to the axon initial segment of populations of pyramidal neurons. Given the critical role that chandelier cells play in synchronizing the activity of pyramidal neurons, the pharmacological amelioration of this deficit may be particularly effective in normalizing the neural network activity required for working memory function. Because GABA(A) receptors containing the a(2) subunit are selectively localized to the axon initial segment of pyramidal cells, and appear to be markedly up-regulated in schizophrenia, treatment with novel benzodiazepine-like agents with selective activity at GABA(A) receptors containing the a(2) subunit may be effective adjuvant agents for improving working memory function in schizophrenia.
Collapse
Affiliation(s)
- David A Lewis
- Department of Psychiatry, University of Pittsburgh, 3811 O'Hara Street, W1651 BST, Pittsburgh, PA 15213, USA.
| | | | | |
Collapse
|
199
|
Lüscher B, Keller CA. Regulation of GABAA receptor trafficking, channel activity, and functional plasticity of inhibitory synapses. Pharmacol Ther 2004; 102:195-221. [PMID: 15246246 DOI: 10.1016/j.pharmthera.2004.04.003] [Citation(s) in RCA: 201] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Neural inhibition in the brain is mainly mediated by ionotropic gamma-aminobutyric acid type A (GABA(A)) receptors. Different subtypes of these receptors, distinguished by their subunit composition, are either concentrated at postsynaptic sites where they mediate phasic inhibition or found at perisynaptic and extrasynaptic locations where they prolong phasic inhibition and mediate tonic inhibition, respectively. Of special interest are mechanisms that modulate the stability and function of postsynaptic GABA(A) receptor subtypes and that are implicated in functional plasticity of inhibitory transmission in the brain. We will summarize recent progress on the classification of synaptic versus extrasynaptic receptors, the molecular composition of the postsynaptic cytoskeleton, the function of receptor-associated proteins in trafficking of GABA(A) receptors to and from synapses, and their role in post-translational signaling mechanisms that modulate the stability, density, and function of GABA(A) receptors in the postsynaptic membrane.
Collapse
Affiliation(s)
- Bernhard Lüscher
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA.
| | | |
Collapse
|
200
|
Heinen K, Bosman LWJ, Spijker S, van Pelt J, Smit AB, Voorn P, Baker RE, Brussaard AB. GABAA receptor maturation in relation to eye opening in the rat visual cortex. Neuroscience 2004; 124:161-71. [PMID: 14960348 DOI: 10.1016/j.neuroscience.2003.11.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2003] [Indexed: 01/22/2023]
Abstract
Changes in subunit composition of N-methyl-D-aspartate (NMDA) receptors have been reported to be affected by visual experience and may therefore form a major aspect of neuronal plasticity in the CNS during development. In contrast, putative alterations in the expression and functioning of the inhibitory GABAA receptor around eye opening have not been well defined yet. Here we describe the timing of changes in GABAA receptor subunit expression and the related synaptic functioning in the neonatal rat visual cortex and the influence of visual experience on this process. Quantitative analysis of all GABAA receptor subunit transcripts revealed a marked alpha3 to alpha1 subunit switch, in addition to a change in alpha4 and alpha5 expression. The changes were correlated with an acceleration of the decay of spontaneous inhibitory postsynaptic currents (sIPSCs). Both changes in receptor expression and synaptic functioning were initiated well before eye opening. Moreover, dark rearing could not prevent the robust upregulation of alpha1 or the change in sIPSC kinetics, indicating that this is not dependent of sensory (visual) input. Upon eye opening a positive correlation was observed between a faster decay of the sIPSCs and an increase in sIPSC frequency, which was absent in dark-reared animals. Thus, lack of extrinsic input to the cortex does not affect overall developmental regulation of synaptic functioning of GABAA receptors. However, we cannot exclude the possibility that visual experience is involved in proper shaping of the inhibitory network of the primary visual cortex.
Collapse
Affiliation(s)
- K Heinen
- Department of Experimental Neurophysiology, Research Institute Neurosciences, Centre for Neurogenomics and Cognitive Research, Vrije Universiteit, Faculty of Earth and Life Sciences, De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|