151
|
Okazaki I, Suzuki N, Nishi N, Utani A, Matsuura H, Shinkai H, Yamashita H, Kitagawa Y, Nomizu M. Identification of biologically active sequences in the laminin alpha 4 chain G domain. J Biol Chem 2002; 277:37070-8. [PMID: 12130633 DOI: 10.1074/jbc.m201672200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Laminins are a family of trimeric extracellular matrix proteins consisting of alpha, beta, and gamma chains. So far five different laminin alpha chains have been identified. The laminin alpha 4 chain, which is present in laminin-8/9, is expressed in cells of mesenchymal origin, such as endothelial cells and adipocytes. Previously, we identified heparin-binding sites in the C-terminal globular domain (G domain) of the laminin alpha 4 chain. Here we have focused on the biological functions of the laminin alpha 4 chain G domain and screened active sites using a recombinant protein and synthetic peptides. The rec-alpha 4G protein, comprising the entire G domain, promoted cell attachment activity. The cell attachment activity of rec-alpha 4G was completely blocked by heparin and partially inhibited by EDTA. We synthesized 116 overlapping peptides covering the entire G domain and tested their cell attachment activity. Twenty peptides showed cell attachment activity, and 16 bound to heparin. We further tested the effect of the 20 active peptides in competition assays for cell attachment and heparin binding to rec-alpha 4G protein. A4G6 (LAIKNDNLVYVY), A4G20 (DVISLYNFKHIY), A4G82 (TLFLAHGRLVFM), and A4G83 (LVFMFNVGHKKL), which promoted cell attachment and heparin binding, significantly inhibited both cell attachment and heparin binding to rec-alpha 4G. These results suggest that the four active sites are involved in the biological functions of the laminin alpha 4 chain G domain. Furthermore, rec-alpha 4G, A4G6, and A4G20 were found to interact with syndecan-4. These active peptides may be useful for defining of the molecular mechanism laminin-receptor interactions and laminin-mediated cellular signaling pathways.
Collapse
Affiliation(s)
- Ikuko Okazaki
- Graduate School of Environmental Earth Science, Hokkaido University, Sapporo 060-0810, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
152
|
Kato K, Utani A, Suzuki N, Mochizuki M, Yamada M, Nishi N, Matsuura H, Shinkai H, Nomizu M. Identification of neurite outgrowth promoting sites on the laminin alpha 3 chain G domain. Biochemistry 2002; 41:10747-53. [PMID: 12196012 DOI: 10.1021/bi020180k] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Laminins are expressed in specific tissues and are involved in various biological activities including promoting cell adhesion, growth, migration, neurite outgrowth, and differentiation. The laminin alpha3 chain is mainly located in the skin and is also expressed in the floor plate of the developing neural tube. Previously, we showed that the human laminin alpha3 chain LG4 module binds to syndecan-2/4, a membrane-associated proteoglycan, and promotes human fibroblast adhesion. Here, we have evaluated the neurite outgrowth activity of the laminin alpha3 chain LG4 and LG5 modules. Three overlapping recombinant proteins, which contained LG4 and/or LG5 modules of the human laminin alpha3 chain, were prepared using a mammalian cell expression system. Two proteins, rec-alpha3LG4-5 and rec-alpha3LG4, promoted cell attachment and neurite outgrowth of rat pheochromocytoma PC12 cells, but rec-alpha3LG5 was inactive. Twenty-two peptides covering the entire LG4 module were synthesized and tested for cell attachment and neurite outgrowth activity to identify active sites of the LG4 module. A3G75 (KNSFMALYLSKG, alpha3 chain 1411-1422) and A3G83 (GNSTISIRAPVY, alpha3 chain 1476-1487) promoted PC12 cell attachment and neurite outgrowth. Additionally, A3G75 and A3G83 inhibited PC12 cell attachment to rec-alpha3LG4. These results suggest that the A3G75 and A3G83 sites are important for PC12 cell attachment and neurite outgrowth in the laminin alpha3 chain LG4 module. We also conjugated the A3G75 and A3G83 peptides on chitosan membranes to test their potential as bio-materials. These peptide-conjugated chitosan membranes were more active for neurite outgrowth than the peptide-coated plates. These results suggest that the A3G75- and A3G83-conjugated chitosan membranes are applicable as bio-medical materials for neural tissue repair and engineering.
Collapse
Affiliation(s)
- Kozue Kato
- Division of Bioscience, Graduate School of Environmental Earth Science, Hokkaido University, Sapporo 060-0810, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
153
|
Makino M, Okazaki I, Kasai S, Nishi N, Bougaeva M, Weeks BS, Otaka A, Nielsen PK, Yamada Y, Nomizu M. Identification of cell binding sites in the laminin alpha5-chain G domain. Exp Cell Res 2002; 277:95-106. [PMID: 12061820 DOI: 10.1006/excr.2002.5540] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The laminins consist of at least 11 polypeptides (5 alpha-chains, 3 beta-chains, and 3 gamma-chains) specific to basement membranes. Here we investigate the biological activity associated with the G domain of the newly identified laminin alpha5-chain using 113 overlapping synthetic peptides (positions 2679-3635). Using HT-1080 cells, 21 peptides showed attachment activity either on peptide-coated tissue culture plates or to peptide-conjugated Sepharose beads. Heparin inhibited cell attachment to 16 peptides, while ethylenediaminetetraacetic acid exhibited no inhibitory activity. Peptides A5G-27, A5G-65, and A5G-71 showed the strongest cell attachment, with the minimum active core sequences of the peptides being GIIFFL, HQNMGSVNVSV, and YLQFVG, respectively. Furthermore, these 16 peptides were tested for their ability to stimulate neurite outgrowth in the PC12 cells. A5G-3, A5G-33, A5G-71, A5G-73, A5G-81, and A5G-101 were the only peptides of the 16 that demonstrated the ability to promote neurite outgrowth. These results demonstrate that synthetic peptides with alpha5-chain G domain primary amino acid sequences possess some of the same biological activities attributable to the whole laminin and the alpha5-chain G domain. Therefore, these peptides may be useful in the investigation of laminin-receptor interactions and possibly mechanisms of laminin signal transduction.
Collapse
Affiliation(s)
- Masayoshi Makino
- Graduate School of Environmental Earth Science, Hokkaido University, Kita 10 Nishi 5, Kita-ku, Sapporo 060-0810, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
154
|
Faisal Khan KM, Laurie GW, McCaffrey TA, Falcone DJ. Exposure of cryptic domains in the alpha 1-chain of laminin-1 by elastase stimulates macrophages urokinase and matrix metalloproteinase-9 expression. J Biol Chem 2002; 277:13778-86. [PMID: 11827968 DOI: 10.1074/jbc.m111290200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Degradation of the extracellular matrix leads to the release of fragments, which elicit biological responses distinct from intact molecules. We have reported that alpha1:Ser(2091)-Arg(2108), a peptide derived from the alpha1-chain of laminin-1, triggers protein kinase C-dependent activation of MAPK(erk1/2), leading to the up-regulation of macrophage urokinase type plasminogen activator and matrix metalloproteinase (MMP)-9 expression. Since intact laminin-1 failed to trigger these events, we hypothesized that alpha1:Ser(2091)-Arg(2108) is cryptic or assumes a conformation not recognized by macrophages. Here we demonstrate that elastase cleavage of laminin-1 generates fragments, which stimulate proteinase expression by RAW264.7 macrophages and peritoneal macrophages. In contrast, fragments generated by MMP-2, MMP-7, or plasmin had no effect on macrophage proteinase expression. Elastase-generated laminin-1 fragments were fractionated by heparin-Sepharose chromatography. Heparin-binding fragments stimulated macrophages' proteinase expression severalfold greater than nonbinding fragments. The heparin binding fragments reacted with antibodies directed against regions of the alpha1-chain including alpha1:Ser(2091)-Arg(2108) and the globular domain. A peptide from the first loop of the globular domain (alpha1:Ser(2179)-Ser(2198)) triggered the phosphorylation of MAPK(erk1/2) and stimulated the expression of macrophage urokinase type plasminogen activator and MMP-9. Moreover, a heparin-binding fraction isolated from an aortic aneurysm contained fragments of alpha1-chain and stimulated macrophages' proteinase expression. Based on these data, we conclude that cryptic domains in the COOH-terminal portion of the alpha1-chain of laminin are exposed by proteolysis and stimulate macrophages' proteinase expression.
Collapse
Affiliation(s)
- K M Faisal Khan
- Department of Pathology, Joan and Sanford I. Weill Medical College of Cornell University, New York, New York 10021, USA
| | | | | | | |
Collapse
|
155
|
Kuratomi Y, Nomizu M, Tanaka K, Ponce ML, Komiyama S, Kleinman HK, Yamada Y. Laminin gamma 1 chain peptide, C-16 (KAFDITYVRLKF), promotes migration, MMP-9 secretion, and pulmonary metastasis of B16-F10 mouse melanoma cells. Br J Cancer 2002; 86:1169-73. [PMID: 11953867 PMCID: PMC2364181 DOI: 10.1038/sj.bjc.6600187] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2001] [Revised: 01/08/2002] [Accepted: 01/10/2002] [Indexed: 11/14/2022] Open
Abstract
Laminin-1, a heterotrimer of alpha 1, beta 1, and gamma 1 chains specific to basement membrane, promotes cell adhesion and migration, proteinase secretion and metastases of tumour cells. Several active sites on the alpha 1 chain have been found to promote B16-F10 melanoma lung colonisation and here we have determined whether additional tumour promoting sites exist on the beta 1 and gamma 1 chains. Recently, we have identified novel cell adhesive peptides derived from laminin beta 1 and gamma 1 chains by systematic screening of synthetic peptides. Nine beta 1 peptides and seven gamma 1 peptides active for cell adhesion were tested for their effects on experimental pulmonary metastases of B16-F10 mouse melanoma cells in vivo. The most active adhesive peptide derived from the gamma 1 chain globular domain, C-16 (KAFDITYVRLKF), significantly enhanced pulmonary metastases of B16-F10 cells, whereas no other peptides showed enhancement. C-16 also stimulated migration of B16-F10 cells in the Boyden chamber assay in vitro. Furthermore, C-16 significantly induced the production of MMP-9 from B16-F10 cells. These results suggest that this specific laminin gamma 1 chain peptide has a metastasis-promoting activity and might be a new molecular target of anti-cancer treatment.
Collapse
Affiliation(s)
- Y Kuratomi
- Craniofacial Developmental Biology and Regeneration Branch, National Institute of Dental and Craniofacial Research, NIH, Bethesda, Maryland, MD 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
156
|
Hayashi K, Mochizuki M, Nomizu M, Uchinuma E, Yamashina S, Kadoya Y. Inhibition of hair follicle growth by a laminin-1 G-domain peptide, RKRLQVQLSIRT, in an organ culture of isolated vibrissa rudiment. J Invest Dermatol 2002; 118:712-8. [PMID: 11918721 DOI: 10.1046/j.1523-1747.2002.01730.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We established a serum-free organ culture system of isolated single vibrissa rudiments taken from embryonic day 13 mice. This system allowed us to test more than 30 laminin-derived cell adhesive peptides to determine their roles on the growth and differentiation of vibrissa hair follicles. We found that the RKRLQVQLSIRT sequence (designated AG-73), which mapped to the LG-4 module of the laminin-alpha1 chain carboxyl-terminal G domain, perturbed the growth of hair follicles in vitro. AG-73 is one of the cell-binding peptides identified from more than 600 systematically synthesized 12 amino acid peptides covering the whole amino acid sequence of the laminin-alpha1, -beta1, and -gamma1 chains, by cell adhesion assay. Other cell-adhesive laminin peptides and a control scrambled peptide, LQQRRSVLRTKI, however, failed to show any significant effects on the growth of hair follicles. The AG-73 peptide binds to syndecan-1, a transmembrane heparan-sulfate proteoglycan. Syndecan-1 was expressed in both the mesenchymal condensation and the epithelial hair peg of developing vibrissa, suggesting that AG-73 binding to the cell surface syndecan-1 perturbed the epithelial-mesenchymal interactions of developing vibrissa. The formation of hair bulbs was aberrant in the explants treated with AG-73. In addition, impaired basement membrane formation, an abnormal cytoplasmic bleb formation, and an unusual basal formation of actin bundles were noted in the AG-73-treated-hair matrix epithelium, indicating that AG-73 binding perturbs various steps of epithelial morphogenesis, including the basement membrane remodeling. We also found a region-specific loss of the laminin-alpha1 chain in the basement membrane at the distal region of the invading hair follicle epithelium, indicating that laminins play a part in hair morphogenesis.
Collapse
Affiliation(s)
- Kazuhiro Hayashi
- Department of Plastic and Reconstructive Surgery, Kitasato University School of Medicine, Kitasato, Sagamihara, Japan
| | | | | | | | | | | |
Collapse
|
157
|
Nomizu M, Yokoyama F, Suzuki N, Okazaki I, Nishi N, Ponce ML, Kleinman HK, Yamamoto Y, Nakagawa S, Mayumi T. Identification of homologous biologically active sites on the N-terminal domain of laminin alpha chains. Biochemistry 2001; 40:15310-7. [PMID: 11735413 DOI: 10.1021/bi011552c] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Laminin, a multifunctional glycoprotein of the basement membrane, consists of three different subunits, alpha, beta, and gamma chains. To date, five different alpha chains have been identified. N-terminal domain VI in the alpha1 chain has various biological activities. Here we screened biologically active sequences on domain VI of the laminin alpha2, alpha3, and alpha5 chains using a large number of overlapping peptides. HT-1080 human fibrosarcoma cell attachment to the peptides was evaluated using peptide-coated plastic plates and peptide-conjugated Sepharose beads. We identified four cell adhesive sequences from laminin alpha2 chain domain VI, two sequences from the alpha3 chain, and two sequences from the laminin alpha5 chain. Sequences homologous to A13 (RQVFQVAYIIIKA, alpha1 chain 121-133) on all the alpha chains (FQIAYVIVKA, alpha2 chain 130-139; GQLFHVAYILIKF, alpha3 chain 96-108; FHVAYVLIKA, alpha5 chain 74-83) showed strong cell attachment activity. A5-16 (LENGEIVVSLVNGR, alpha5 chain 147-160) showed the strongest cell attachment activity in the plate assay, and the homologous peptide in the alpha3 chain promoted similar strong cell attachment activity. A5-16 and its homologous peptide in the alpha2 chain promoted moderate cell attachment, while the homologous peptide to A5-16 in the alpha1 chain did not show activity. A2-7 (SPSIKNGVEYHYV, alpha2 chain 108-120) showed cell attachment activity only in the plate assay, but homologous sequences in the alpha1, alpha3, and alpha5 chains did not promote activity. A2-7 promoted endothelial cell sprouting from aortic rings in vitro and melanoma colonization to murine lungs in vivo. However, none of the homologous peptides of A2-7 promoted experimental pulmonary metastasis by B16-BL6 melanoma cells. These results indicate that there are chain-specific active sites in domain VI of the laminin alpha chains, some of which contain conserved activities.
Collapse
Affiliation(s)
- M Nomizu
- Graduate School of Environmental Earth Science, Hokkaido University, Sapporo 060-0810, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
158
|
Liesi P, Laatikainen T, Wright JM. Biologically active sequence (KDI) mediates the neurite outgrowth function of the gamma-1 chain of laminin-1. J Neurosci Res 2001; 66:1047-53. [PMID: 11746436 DOI: 10.1002/jnr.1250] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A neurite outgrowth domain of the gamma1-chain of laminin-1 (RDIAEIIKDI) promotes axon guidance of rat hippocampal neurons, regulates the nuclear movement phase of neuronal migration, and binds to the cellular prion protein (Liesi et al. [1995] J. Neurosci. Res. 134:447-486; Matsuzawa et al. [1998] J. Neurosci. Res. 53:114-124; Graner et al. [2000] Brain Res. Mol. Brain Res. 76:85-92). Using electrophysiology and neuronal culture experiments, we show that this 10 amino acid peptide or its smaller domains induces potassium currents in primary central neurons. Both these currents and the neurotoxicity of high concentrations of the 10 amino acid peptide antigen are prevented by pertussis toxin. The smallest peptide domain capable of inducing both potassium currents and promoting neurite outgrowth of human spinal cord neurons is a tri-peptide KDI. Our results indicate that KDI may be the biologically active domain of the gamma1 laminin, capable of modulating electrical activity and survival of central neurons via a G-protein coupled mechanism. These results expand the wide variety of functions already reported for the members of the laminin-gene family. They suggest that biologically active peptide domains of the gamma1 laminin may provide tools to promote neuronal regeneration after injuries and to enhance neuronal survival during aging and neuronal degeneration.
Collapse
Affiliation(s)
- P Liesi
- The Brain Laboratory, Biomedicum Helsinki, Institute of Biomedicine (Anatomy), University of Helsinki, PO Box 63 (Haartmaninkatu 8), 00014 Helsinki, Finland.
| | | | | |
Collapse
|
159
|
Durbeej M, Talts JF, Henry MD, Yurchenco PD, Campbell KP, Ekblom P. Dystroglycan binding to laminin alpha1LG4 module influences epithelial morphogenesis of salivary gland and lung in vitro. Differentiation 2001; 69:121-34. [PMID: 11798066 DOI: 10.1046/j.1432-0436.2001.690206.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Dystroglycan is a receptor for the basement membrane components laminin-1, -2, perlecan, and agrin. Genetic studies have revealed a role for dystroglycan in basement membrane formation of the early embryo. Dystroglycan binding to the E3 fragment of laminin-1 is involved in kidney epithelial cell development, as revealed by antibody perturbation experiments. E3 is the most distal part of the carboxyterminus of laminin alpha1 chain, and is composed of two laminin globular (LG) domains (LG4 and LG5). Dystroglycan-E3 interactions are mediated solely by discrete domains within LG4. Here we examined the role of this interaction for the development of mouse embryonic salivary gland and lung. Dystroglycan mRNA was expressed in epithelium of developing salivary gland and lung. Immunofluorescence demonstrated dystroglycan on the basal side of epithelial cells in these tissues. Antibodies against dystroglycan that block binding of alpha-dystroglycan to laminin-1 perturbed epithelial branching morphogenesis in salivary gland and lung organ cultures. Inhibition of branching morphogenesis was also seen in cultures treated with polyclonal anti-E3 antibodies. One monoclonal antibody (mAb 200) against LG4 blocked interactions between a-dystroglycan and recombinant laminin alpha1LG4-5, and also inhibited salivary gland and lung branching morphogenesis. Three other mAbs, also specific for the alpha1 carboxyterminus and known not to block branching morphogenesis, failed to block binding of alpha-dystroglycan to recombinant laminin alpha1LG4-5. These findings clarify why mAbs against the carboxyterminus of laminin alpha1 differ in their capacity to block epithelial morphogenesis and suggest that dystroglycan binding to alpha1LG4 is important for epithelial morphogenesis of several organs.
Collapse
Affiliation(s)
- M Durbeej
- Department of Animal Physiology, Uppsala University, Sweden
| | | | | | | | | | | |
Collapse
|
160
|
|
161
|
Hoffman MP, Engbring JA, Nielsen PK, Vargas J, Steinberg Z, Karmand AJ, Nomizu M, Yamada Y, Kleinman HK. Cell type-specific differences in glycosaminoglycans modulate the biological activity of a heparin-binding peptide (RKRLQVQLSIRT) from the G domain of the laminin alpha1 chain. J Biol Chem 2001; 276:22077-85. [PMID: 11304538 DOI: 10.1074/jbc.m100774200] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
AG73 (RKRLQVQLSIRT), a peptide from the G domain of the laminin alpha1 chain, has diverse biological activities with different cell types. The heparan sulfate side chains of syndecan-1 on human salivary gland cells were previously identified as the cell surface ligand for AG73. We used homologous peptides from the other laminin alpha-chains (A2G73-A5G73) to determine whether the bioactivity of the AG73 sequence is conserved. Human salivary gland cells and a mouse melanoma cell line (B16F10) both bind to the peptides, but cell attachment was inhibited by glycosaminoglycans, modified heparin, and sized heparin fragments in a cell type-specific manner. In other assays, AG73, but not the homologous peptides, inhibited branching morphogenesis of salivary glands and B16F10 network formation on Matrigel. We identified residues critical for AG73 bioactivity using peptides with amino acid substitutions and truncations. Fewer residues were critical for inhibiting branching morphogenesis (XKXLXVXXXIRT) than those required to inhibit B16F10 network formation on Matrigel (N-terminal XXRLQVQLSIRT). In addition, surface plasmon resonance analysis identified the C-terminal IRT of the sequence to be important for heparin binding. Structure-based sequence alignment predicts AG73 in a beta-sheet with the N-terminal K (Lys(2)) and the C-terminal R (Arg(10)) on the surface of the G domain. In conclusion, we have determined that differences in cell surface glycosaminoglycans and differences in the amino acids in AG73 recognized by cells modulate the biological activity of the peptide and provide a mechanism to explain its cell-specific activities.
Collapse
Affiliation(s)
- M P Hoffman
- Craniofacial Developmental Biology and Regeneration Branch, NIDCR, National Institutes of Health, Bethesda, Maryland 20892-4370, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
162
|
Ponce ML, Nomizu M, Kleinman HK. An angiogenic laminin site and its antagonist bind through the alpha(v)beta3 and alpha5beta1 integrins. FASEB J 2001; 15:1389-97. [PMID: 11387236 DOI: 10.1096/fj.00-0736com] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Angiogenesis is important for wound healing, tumor growth, and metastasis. Endothelial cells differentiate into capillary-like structures on a laminin-1-rich matrix (Matrigel). We previously identified 20 angiogenic sites on laminin-1 (alpha1beta1gamma1) by screening 559 overlapping synthetic peptides. C16, the most potent gamma1 chain peptide, blocked laminin-1-mediated adhesion and was the only gamma1 chain peptide to block attachment to both collagen I and fibronectin. This suggested that C16 was acting via a receptor common to these substrates. We demonstrated that C16 is angiogenic in vivo. Affinity chromatography identified the integrins alpha5beta1 and alpha(v)beta3 as surface receptors. Blocking antibodies confirmed the role of these receptors in C16 adhesion. C16 does not contain an RGD sequence and, as expected, an RGD-containing peptide did not block C16 adhesion nor did C16 act via MAP kinase phosphorylation. Furthermore, we identified a C16 scrambled sequence, C16S, which antagonizes the angiogenic activity of bFGF and of C16 by binding to the same receptors. Because the laminin gamma1 chain is ubiquitous in most tissues, C16 is likely an important functional site. Since the biological activity of C16 is blocked by a scrambled peptide, C16S may serve as an anti-angiogenic therapeutic agent.
Collapse
Affiliation(s)
- M L Ponce
- Craniofacial Developmental Biology and Regeneration Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
163
|
Calaluce R, Kunkel MW, Watts GS, Schmelz M, Hao J, Barrera J, Gleason-Guzman M, Isett R, Fitchmun M, Bowden GT, Cress AE, Futscher BW, Nagle RB. Laminin-5-mediated gene expression in human prostate carcinoma cells. Mol Carcinog 2001; 30:119-29. [PMID: 11241759 DOI: 10.1002/1098-2744(200102)30:2<119::aid-mc1020>3.0.co;2-n] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Interactions between extracellular matrix (ECM) proteins and prostate carcinoma cells provide a dynamic model of prostate tumor progression. Previous work in our laboratory showed that laminin-5, an important member of a family of ECM glycoproteins expressed in the basal lamina, is lost in prostate carcinoma. Moreover, we showed that the receptor for laminin-5, the alpha6beta4 integrin, is altered in prostate tumors. However, the genes that laminin-5 potentially regulates and the significance of its loss of expression in prostate cancer are not known. We selected cDNA microarray as a comprehensive and systematic method for surveying and examining gene expression induced by laminin-5. To establish a definitive role for laminin-5 in prostate tumor progression and understand the significance of its loss of expression, we used a cDNA microarray containing 5289 human genes to detect perturbations of gene expression when DU145 prostate carcinoma cells interacted with purified laminin-5 after 0.5, 6, and 24 h. Triplicate experiments showed modulations of four, 61, and 14 genes at 0.5, 6, and 24 h, respectively. Genes associated with signal transduction, cell adhesion, the cell cycle, and cell structure were identified and validated by northern blot analysis. Protein expression was further assessed by immunohistochemistry. Mol. Carcinog. 30:119-129, 2001.
Collapse
Affiliation(s)
- R Calaluce
- Arizona Cancer Center, University of Arizona Health Sciences Center, Tucson, Arizona 85724-5043, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Rialas CM, Nomizu M, Patterson M, Kleinman HK, Weston CA, Weeks BS. Nitric oxide mediates laminin-induced neurite outgrowth in PC12 cells. Exp Cell Res 2000; 260:268-76. [PMID: 11035921 DOI: 10.1006/excr.2000.5017] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Laminin is a potent stimulator of neurite outgrowth in a variety of primary neurons and neuronal cell lines. Here, we investigate the role of nitric oxide in the signaling mechanism of laminin-mediated neurite outgrowth in the PC12 cell line. Within 8 s of exposure to laminin, PC12 cells produce nitric oxide. Peak laminin-induced nitric oxide levels reach 8 nM within 12 s of exposure to laminin and constitutive nitric oxide production is sustained for 1 min. A neurite outgrowth promoting synthetic peptide (AG73), derived from the laminin-1-alpha globular domain, also stimulated nitric oxide release. The nitric oxide synthase inhibitor, 1-NAME, prevents the formation of nitric oxide and here, 1-NAME inhibited both laminin-mediated and AG73-mediated neurite outgrowth by 88 and 95%, respectively. In contrast, C16, a synthetic peptide derived from the laminin-1-gamma chain, is shown here to promote PC12 cell attachment, but not neurite outgrowth. Interestingly, the C16 peptide did not activate nitric oxide release, suggesting that laminin-induced nitric oxide release in PC12 cells is associated only with neurite outgrowth promoting laminin domains and signals. In addition, the data here show that the nitric oxide released by PC12 cells in response to laminin is required as a part of the mechanism of laminin-mediated neurite outgrowth.
Collapse
Affiliation(s)
- C M Rialas
- Neuroscience Research Institute, State University of New York, Old Westbury, New York, 11568-0210, USA
| | | | | | | | | | | |
Collapse
|
165
|
Abstract
Laminins are a family of trimeric glycoproteins present in the extracellular matrix and the major constituents of basement membranes. Integrins are alpha beta transmembrane receptors that play critical roles in both cell-matrix and cell-cell adhesion. Several members of the integrin family, including alpha 1 beta 1, alpha 2 beta 1, alpha 3 beta 1, alpha 6 beta 1, alpha 7 beta 1 and alpha 6 beta 4 heterodimers serve as laminin receptors on a variety of cell types. This review summarizes recent advances in understanding the involvement of individual integrins in cell interactions with laminins and the roles of laminin-binding integrins in adhesion-mediated events in vertebrates, including embryonic development, cell migration and tumor cell invasiveness, cell proliferation and differentiation, as well as basement membrane assembly. We discuss the regulation of integrin function via alternative splicing of cytoplasmic domains of alpha and beta subunits of the integrin receptors for laminins and present examples of functional collaboration between laminin-binding integrins and non-integrin laminin receptors. Advances in our understanding of the laminin-binding integrins continue to demonstrate the essential roles these receptors play in maintaining cell polarity and tissue architecture.
Collapse
Affiliation(s)
- A M Belkin
- Department of Biochemistry, The Holland Laboratory, American Red Cross, Rockville, Maryland 20855, USA
| | | |
Collapse
|
166
|
Chen N, Chen CC, Lau LF. Adhesion of human skin fibroblasts to Cyr61 is mediated through integrin alpha 6beta 1 and cell surface heparan sulfate proteoglycans. J Biol Chem 2000; 275:24953-61. [PMID: 10821835 DOI: 10.1074/jbc.m003040200] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The angiogenic inducer Cyr61 is an extracellular matrix-associated heparin-binding protein that can mediate cell adhesion, stimulate cell migration, and enhance growth factor-stimulated DNA synthesis in both fibroblasts and endothelial cells in culture. In vivo, Cyr61 induces neovascularization and promotes tumor growth. Cyr61 is a prototypic member of a highly conserved family of secreted proteins that includes connective tissue growth factor, nephroblastoma overexpressed, Elm-1/WISP-1, Cop-1/WISP-2, and WISP-3. Encoded by an immediate early gene, Cyr61 synthesis is induced by serum growth factors in cultured fibroblasts and in dermal fibroblasts during cutaneous wound healing. We previously demonstrated that Cyr61 mediates adhesion of vascular endothelial cells and activation-dependent adhesion of blood platelets through direct interaction with integrins alpha(V)beta(3) and alpha(IIb)beta(3), respectively. In this study, we show that the adhesion of primary human skin fibroblasts to Cyr61 is mediated through integrin alpha(6)beta(1) and cell surface heparan sulfate proteoglycans (HSPGs), which most likely serve as co-receptors. Either destruction of cell surface HSPGs or prior occupancy of the Cyr61 heparin-binding site completely blocked cell adhesion to Cyr61. A heparin-binding defective mutant of Cyr61 was unable to mediate fibroblast adhesion through integrin alpha(6)beta(1) but still mediated endothelial cell adhesion through integrin alpha(V)beta(3), indicating that endothelial cell adhesion through integrin alpha(V)beta(3) is independent of the heparin-binding activity of Cyr61. These results identify Cyr61 as a novel adhesive substrate for integrin alpha(6)beta(1) and provide the first demonstration of the requirement for HSPGs in integrin-mediated cell attachment. In addition, these findings suggest that Cyr61 might elicit disparate biological effects in different cell types through interaction with distinct integrin receptors.
Collapse
Affiliation(s)
- N Chen
- Department of Molecular Genetics, University of Illinois at Chicago College of Medicine, Chicago, Illinois 60607-7170, USA
| | | | | |
Collapse
|
167
|
Powell SK, Rao J, Roque E, Nomizu M, Kuratomi Y, Yamada Y, Kleinman HK. Neural cell response to multiple novel sites on laminin-1. J Neurosci Res 2000; 61:302-12. [PMID: 10900077 DOI: 10.1002/1097-4547(20000801)61:3<302::aid-jnr8>3.0.co;2-g] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The basement membrane protein laminin-1 is a potent stimulator of neurite outgrowth for a variety of neuronal cell types. Previous studies have identified neurite outgrowth activity in several distinct regions of the laminin-1 molecule. In this study, 545 overlapping 12- to 14-mer synthetic peptides, corresponding to most of the amino acid sequence of the alpha1, beta1, and gamma1 chains of laminin-1, were screened for cell attachment and neurite outgrowth activity using primary cultures of mouse cerebellar granule neurons and two neuronal cell lines. We identified 48 peptides derived from novel regions of the laminin-1 molecule that were positive for neural cell adhesion activity. Only the cerebellar cells were found to have true neurite outgrowth activity with certain of the peptides, whereas some peptides induced short spike-like process with the cell lines. Although 23 of these peptides were active on all 3 cell types screened, 25 others showed cell-type specificity in their activity. These studies show that (1) there are multiple and distinct sites on laminin-1 for cell adhesion and neurite-like outgrowth and (2) that there are neural cell-type-specific active domains. The multiple active sites found explains, in part, the potent activity of laminin-1 on neurite outgrowth.
Collapse
Affiliation(s)
- S K Powell
- Craniofacial Developmental Biology and Regeneration Branch, National Institute for Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | | | | |
Collapse
|
168
|
Abstract
Laminin G domain-like (LG) modules of approximately 180-200 residues are found in a number of extracellular and receptor proteins and often are present in tandem arrays. LG modules are implicated in interactions with cellular receptors (integrins, alpha-dystroglycan), sulfated carbohydrates and other extracellular ligands. The recently determined crystal structures of LG modules of the laminin alpha2 chain reveal a compact beta sandwich fold and identify a novel calcium binding site. Binding epitopes for heparin, sulfatides and alpha-dystroglycan have been mapped by site-directed mutagenesis and show considerable overlap. The epitopes are located in surface loops around the calcium site, which in other proteins (agrin, neurexins) are modified by alternative splicing. Efficient ligand binding often requires LG modules to be present in tandem. The close proximity of the N- and C-termini in the LG module, as well as a unique link region between laminin LG3 and LG4, impose certain constraints on the arrangement of LG tandems. Further modifications may be introduced by proteolytic processing of laminin G domains, which is known to occur in the alpha2, alpha3 and alpha4 chains.
Collapse
Affiliation(s)
- R Timpl
- Max-Planck-Institut für Biochemie, Am Klopferspitz 18a, D-82152, Martinsried, Germany.
| | | | | | | | | | | |
Collapse
|
169
|
Hirosaki T, Mizushima H, Tsubota Y, Moriyama K, Miyazaki K. Structural requirement of carboxyl-terminal globular domains of laminin alpha 3 chain for promotion of rapid cell adhesion and migration by laminin-5. J Biol Chem 2000; 275:22495-502. [PMID: 10801807 DOI: 10.1074/jbc.m001326200] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The basement membrane protein laminin-5, a heterotrimer of laminin alpha3, beta3, and gamma2 chains, potently promotes cellular adhesion and motility. It has been supposed that the carboxyl-terminal globular region of the alpha3 chain consisting of five distinct domains (G1 to G5) is important for its interaction with integrins. To clarify the function of each G domain, we transfected cDNAs for the full-length (wild type (WT)) and five deletion derivatives (DeltaGs) of the alpha3 chain into human fibrosarcoma cell line HT1080, which expressed and secreted the laminin beta3 and gamma2 chains but not the alpha3 chain. The transfectants with the alpha3 chain cDNAs lacking G5 (DeltaG(5)), G4-5 (DeltaG(4-5)), G3-5 (DeltaG(3-5)), and G2-5 (DeltaG(2-5)) secreted laminin-5 variants at levels comparable to that with WT cDNA. However, the transfectant with the cDNA without any G domains (DeltaG(1-5)) secreted little laminin-5, suggesting that the G domains are essential for the efficient assembly and secretion of the heterotrimer alpha3beta3gamma2. The transfectants with WT, DeltaG(5), and DeltaG(4-5) cDNAs survived in serum-free medium longer than those with DeltaG(3-5), DeltaG(2-5), and DeltaG(1-5) cDNAs. The transfectants with WT, DeltaG(5), and DeltaG(4-5) cDNAs secreted apparently the same size of laminin-5, which lacked G4 and G5 due to proteolytic cleavage between G3 and G4, and these laminin-5 forms potently promoted integrin alpha(3)beta(1)-dependent cell adhesion and migration. However, the laminin-5 forms of DeltaG(3-5) and DeltaG(2-5) hardly promoted the cell adhesion and motility. These findings demonstrate that the G3 domain, but not the G4 and G5 domains, of the alpha3 chain is essential for the potent promotion of cell adhesion and motility by laminin-5.
Collapse
Affiliation(s)
- T Hirosaki
- Division of Cell Biology, Kihara Institute for Biological Research and Graduate School of Integrated Sciences, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama 244-0813, Japan
| | | | | | | | | |
Collapse
|
170
|
Abstract
The laminins are a family of glycoproteins that provide an integral part of the structural scaffolding of basement membranes in almost every animal tissue. Each laminin is a heterotrimer assembled from alpha, beta, and gamma chain subunits, secreted and incorporated into cell-associated extracellular matrices. The laminins can self-assemble, bind to other matrix macromolecules, and have unique and shared cell interactions mediated by integrins, dystroglycan, and other receptors. Through these interactions, laminins critically contribute to cell differentiation, cell shape and movement, maintenance of tissue phenotypes, and promotion of tissue survival. Recent advances in the characterization of genetic disruptions in humans, mice, nematodes and flies have revealed developmental roles for the different laminin subunits in diverse cell types, affecting differentiation from blastocyst formation to the post-natal period. These genetic defects have challenged some of the previous concepts about basement membranes and have shed new light on the diversity and complexity of laminin functions as well as established the molecular basis of several human diseases.
Collapse
Affiliation(s)
- H Colognato
- Department of Pathology & Laboratory Medicine, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | |
Collapse
|
171
|
|
172
|
Nielsen PK, Gho YS, Hoffman MP, Watanabe H, Makino M, Nomizu M, Yamada Y. Identification of a major heparin and cell binding site in the LG4 module of the laminin alpha 5 chain. J Biol Chem 2000; 275:14517-23. [PMID: 10799535 DOI: 10.1074/jbc.275.19.14517] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The G domain of the laminin alpha chains consists of five homologous G modules (LG1-5) and has been implicated in various biological functions. In this study, we identified an active site for cell and heparin binding within the laminin alpha5 G domain using recombinant proteins and synthetic peptides. Recombinant LG4, LG5, and LG4-5 modules were generated using a mammalian expression system. The LG4 and LG4-5 modules were highly active for cell binding, whereas the LG5 module alone showed only weak binding. Heparin inhibited cell binding to the LG4-5 module, whereas no inhibition was observed with EDTA or antibodies against the integrin beta(1) subunit. These results suggest that the LG4-5 module interacts with a cell surface receptor containing heparan sulfate but not with integrins. Solid-phase assays and surface plasmon resonance measurements demonstrated strong binding of the LG4 and LG4-5 modules to heparin with K(D) values in the nanomolar range, whereas a 16-fold lower value was determined for the LG5 module. Treatment with glycosidases demonstrated that N-linked carbohydrates on the LG5 module are complex-type oligosaccharides. The LG4-5 module, devoid of N-linked carbohydrates, exhibited similar binding kinetics toward heparin. Furthermore, cell binding was unaffected by removal of N-linked glycosylation. To localize active sites on the LG4 module, various synthetic peptides were used to compete with binding of the tandem module to heparin and cells. Peptide F4 (AGQWHRVSVRWG) inhibited binding, whereas a scrambled peptide of F4 failed to compete binding. Alanine replacements demonstrated that one arginine residue within F4 was important for cell and heparin binding. Our results suggest a critical role of the LG4 module for heparan sulfate-containing receptor binding within the laminin alpha5 chain.
Collapse
Affiliation(s)
- P K Nielsen
- Molecular Biology Section, Craniofacial Developmental Biology and Regeneration Branch, NIDCR, National Institutes of Health, Bethesda, Maryland 20892-4370, USA
| | | | | | | | | | | | | |
Collapse
|
173
|
Redwine LS, Pert CB, Rone JD, Nixon R, Vance M, Sandler B, Lumpkin MD, Dieter DJ, Ruff MR. Peptide T blocks GP120/CCR5 chemokine receptor-mediated chemotaxis. Clin Immunol 1999; 93:124-31. [PMID: 10527688 DOI: 10.1006/clim.1999.4771] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We previously reported that certain short gp120 V2 region peptides homologous to vasaoactive intestinal peptide (VIP), such as "peptide T," were potent inhibitors of gp120 binding, infectivity, and neurotoxicity. The present study shows that synthetic V2-region-derived peptides have potent intrinsic chemotaxis agonist activity for human monocytes and also act as antagonists of high-affinity (0.1 pM) gp120-mediated monocyte chemotaxis. Selectivity is shown in that peptide T is more potent at suppressing M-tropic than T-tropic gp120 chemotaxis. Peptide T was also able to suppress monocyte chemotaxis to MIP-1beta, a chemokine with selectivity for CCR5 chemokine receptors, while chemotaxis of the more promiscuous ligand RANTES was not inhibited, nor was chemotaxis mediated by SDF-1alpha. In order to determine if peptide T mediated its gp120 antagonistic effects via modulation of CCR5 receptors, RANTES chemotaxis was studied using a CCR5 receptor-transfected HOS cell line. In this case, RANTES chemotaxis was potently inhibited by V2-region-derived short peptides. Peptide T also partially suppressed (125)I-MIP1-beta binding to human monocytes, suggesting action at a subset of MIP1-beta receptors. The V2 region of gp120 thus contains a potent receptor binding domain and synthetic peptides derived from this region modulate CCR5 chemokine receptor chemotactic signaling caused by either gp120 or chemokine ligands. The results have therapeutic implications and may explain recent clinical improvements, in that HIV/gp120 actions at CCR5 receptors, such as occur in the brain or early infection, would be susceptible to peptide T inhibition.
Collapse
Affiliation(s)
- L S Redwine
- Department of Physiology and Biophysics, Georgetown University School of Medicine, Washington, DC, 20007, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
174
|
Hohenester E, Tisi D, Talts JF, Timpl R. The crystal structure of a laminin G-like module reveals the molecular basis of alpha-dystroglycan binding to laminins, perlecan, and agrin. Mol Cell 1999; 4:783-92. [PMID: 10619025 DOI: 10.1016/s1097-2765(00)80388-3] [Citation(s) in RCA: 197] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Laminin G-like (LG) modules in the extracellular matrix glycoproteins laminin, perlecan, and agrin mediate the binding to heparin and the cell surface receptor alpha-dystroglycan (alpha-DG). These interactions are crucial to basement membrane assembly, as well as muscle and nerve cell function. The crystal structure of the laminin alpha 2 chain LG5 module reveals a 14-stranded beta sandwich. A calcium ion is bound to one edge of the sandwich by conserved acidic residues and is surrounded by residues implicated in heparin and alpha-DG binding. A calcium-coordinated sulfate ion is suggested to mimic the binding of anionic oligosaccharides. The structure demonstrates a conserved function of the LG module in calcium-dependent lectin-like alpha-DG binding.
Collapse
Affiliation(s)
- E Hohenester
- Biophysics Section, Blackett Laboratory, Imperial College, London, United Kingdom.
| | | | | | | |
Collapse
|
175
|
Kuratomi Y, Nomizu M, Nielsen PK, Tanaka K, Song SY, Kleinman HK, Yamada Y. Identification of metastasis-promoting sequences in the mouse laminin alpha 1 chain. Exp Cell Res 1999; 249:386-95. [PMID: 10366438 DOI: 10.1006/excr.1999.4497] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Laminin-1, a major basement membrane matrix glycoprotein, enhances adhesion, migration, and metastasis of tumor cells. We have screened 208 overlapping synthetic peptides covering the short and long arms of mouse laminin alpha1 chain for their adhesion activity with B16-F10 mouse melanoma cells. Cell adhesion activity was determined using various amounts of peptides coated on plastic dishes and by measuring cell adhesion on peptide-conjugated Sepharose beads. Nineteen peptides showed B16-F10 cell adhesion activity. Three peptides, designated A-13, -24, and -208, showed the strongest attachment activity in the plate assay, whereas 4 peptides, A-13, -51, -99, and -112, demonstrated the strongest cell adhesion when conjugated to beads. The 19 peptides were tested in vivo for their effect on experimental pulmonary metastasis by B16-F10 cells. Four peptides, A-13, -51, -64, and -119, significantly enhanced metastasis, with A-13 showing the strongest dramatic enhancement. The four metastasis-promoting peptides also stimulated migration of B16-F10 cells in the Boyden chamber assay in vitro with A-13 being the most potent stimulator. In addition, the 4 peptides inhibited laminin-induced cell attachment and migration, which indicates that these four sequences are possible functional B16-F10 cell binding sites in laminin-1. All the four sequences are located on the globular domains of the short arm. Other peptides, including strong adhesion-active peptides, A-24, -99, -112, and a scrambled A-13 peptide, did not stimulate either migration or metastasis. Thus, laminin-1 has multiple active sites in the globular domains of the short arm which promote migration and metastasis of B16-F10 cells.
Collapse
Affiliation(s)
- Y Kuratomi
- National Institute of Dental and Craniofacial Research, NIH, Bethesda, Maryland, 20892, USA
| | | | | | | | | | | | | |
Collapse
|
176
|
Ponce ML, Nomizu M, Delgado MC, Kuratomi Y, Hoffman MP, Powell S, Yamada Y, Kleinman HK, Malinda KM. Identification of endothelial cell binding sites on the laminin gamma 1 chain. Circ Res 1999; 84:688-94. [PMID: 10189356 DOI: 10.1161/01.res.84.6.688] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The laminins belong to a family of trimeric basement membrane glycoproteins with multiple domains, structures, and functions. Endothelial cells bind laminin-1 and form capillary-like structures when plated on a laminin-1-rich basement membrane matrix, Matrigel. Laminin-1 is composed of 3 chains, alpha1, beta1, and gamma1. Because laminin-1 is known to contain multiple biologically active sites, we have screened 156 synthetic overlapping peptides spanning the entire laminin gamma1 chain for potential angiogenic sequences. Only 7 of these peptides, designated as C16, C25, C30, C38, C64, C75, and C102, disrupted the formation of capillary-like structures by human umbilical vein endothelial cells on Matrigel. Dose-response experiments in the presence of 50 to 200 microg/mL showed that tube formation was prevented by most peptides at 150 and 200 microg/mL, except for C16, which showed strong activity at all concentrations. Active peptides promoted vessel sprouting from aorta rings and angiogenesis in the chick chorioallantoic membrane assay. In addition, the active peptides also promoted endothelial cell adhesion to dishes coated with 0.1 microg of peptide and inhibited attachment to laminin-1 but not to plastic or fibronectin. Four of the active peptides, C25, C38, C75, and C102, may have cell-type specificity with endothelial cells, since they did not promote PC12 neurite outgrowth or adhesion of B16-F10 melanoma and human submandibular gland cells. These results suggest that specific laminin gamma1-chain peptides have angiogenic activity with potential therapeutic applications.
Collapse
Affiliation(s)
- M L Ponce
- Craniofacial Developmental Biology and Regeneration Branch, National Institute of Dental Research, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
177
|
Hosokawa Y, Takahashi Y, Kadoya Y, Yamashina S, Nomizu M, Yamada Y, Nogawa H. Significant role of laminin-1 in branching morphogenesis of mouse salivary epithelium cultured in basement membrane matrix. Dev Growth Differ 1999; 41:207-16. [PMID: 10223717 DOI: 10.1046/j.1440-169x.1999.00419.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mouse submandibular epithelium shows branching morphogenesis in mesenchyme-free conditions when covered with a basement membrane matrix (Matrigel) in medium supplemented with epidermal growth factor. In the present study, the role of laminin-1 (LN1), a major glycoprotein of Matrigel, in this culture system was defined. When the epithelium was cultured in a LN1-nidogen gel, the epithelium showed much branching, comparable to that observed with Matrigel. By electron microscopy, only a felt-like matrix was formed on the epithelial surface in the LN1-nidogen gel cultures, while an organized basal lamina structure was formed on the epithelial surface in direct or transfilter recombination cultures with mesenchyme. Next, the epithelium covered with Matrigel was cultured in medium containing either biologically active peptides from LN1, IKVAV-including peptide (2097-2108), AG10 (2183-2194), AG32 (2370-2381) or AG73 (2719-2730) from the alpha1 chain, or YIGSR-including peptide (926-933) from the beta1 chain. Only AG73 (RKRLQVQLSIRT from the alpha1 chain carboxyl-terminal globular domain) inhibited the epithelial branching in Matrigel. These results suggest that LN1-nidogen can support the branching morphogenesis of submandibular epithelium even if LN1-nidogen is not assembled into an intact basal lamina, and that the AG73 sequence is an important site on LN1, which interacts with submandibular epithelial cells.
Collapse
Affiliation(s)
- Y Hosokawa
- Department of Biology, Faculty of Science, Chiba University, Yayoicho, Japan
| | | | | | | | | | | | | |
Collapse
|
178
|
Yoshida I, Tashiro K, Monji A, Nagata I, Hayashi Y, Mitsuyama Y, Tashiro N. Identification of a heparin binding site and the biological activities of the laminin alpha1 chain carboxy-terminal globular domain. J Cell Physiol 1999; 179:18-28. [PMID: 10082128 DOI: 10.1002/(sici)1097-4652(199904)179:1<18::aid-jcp3>3.0.co;2-k] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The carboxy-terminal globular domain (G-domain) of the laminin alpha1 chain has been shown to promote heparin binding, cell adhesion, and neurite outgrowth. In this study, we defined the potential sequences originating from the G-domain of laminin alpha1 chain which possess these functional activities. A series of peptides were synthesized from the G-domain, termed LG peptides (LG-1 to LG-6) and were tested for their various biological activities. In the direct [3H] heparin binding assays, LG-6 (residues 2,335-2,348: KDFLSIELVRGRVK) mediated high levels of [3H]heparin binding, and this peptide also directly promoted cell adhesion and spreading, including B16F10, M2, HT1080, and PC12 cells. The peptide LG-6 also promoted the neurite outgrowth of PC12 cells, mouse granule cells, and chick telencephalic cells. An anti-peptide LG-6 antibody inhibited laminin-1 and peptide LG-6-mediated cell adhesion and neurite outgrowth. Furthermore, an anti-integrin alpha2 antibody also inhibited the cell adhesion activity. These results suggest that peptide LG-6 plays a functional role as a heparin binding site in the G-domain of the laminin alpha1 chain, and this sequence was thus concluded to play a crucial role in regulating cell adhesion and spreading and neurite out-growth which is related to integrin alpha2.
Collapse
Affiliation(s)
- I Yoshida
- Department of Neuro-Psychiatry, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | |
Collapse
|
179
|
Benson S, Page L, Ingersoll E, Rosenthal E, Dungca K, Signor D. Developmental characterization of the gene for laminin alpha-chain in sea urchin embryos. Mech Dev 1999; 81:37-49. [PMID: 10330483 DOI: 10.1016/s0925-4773(98)00222-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We describe the isolation and characterization of a cDNA clone encoding a region of the carboxy terminal globular domain (G domain) of the alpha-1 chain of laminin from the sea urchin, Strongylocentrotus purpuratus. Sequence analysis indicates that the 1.3 kb cDNA (spLAM-alpha) encodes the complete G2 and G3 subdomains of sea urchin a-laminin. The 11 kb spLAM-alpha mRNA is present in the egg and declines slightly in abundance during development to the pluteus larva. The spLAM-alpha gene is also expressed in a variety of adult tissues. Whole mount in situ hybridization of gastrula stage embryos indicates that ectodermal and endodermal epithelia and mesenchyme cells contain the spLAM-alpha mRNA. Immunoprecipitation experiments using an antibody made to a recombinant fusion protein indicates spLAM-alpha protein is synthesized continuously from fertilization as a 420 kDa protein which accumulates from low levels in the egg to elevated levels in the pluteus larva. Light and electron microscopy identify spLAM-alpha as a component of the basal lamina. Blastocoelic microinjection of an antibody to recombinant spLAM-alpha perturbs gastrulation and skeleton formation by primary mesenchyme cells suggesting an important role for laminin in endodermal and mesodermal morphogenesis.
Collapse
Affiliation(s)
- S Benson
- Department of Biological Sciences, California State University, Hayward, CA 94542, USA.
| | | | | | | | | | | |
Collapse
|
180
|
MALINDA KATHERINEM, NOMIZU MOTOYOSHI, CHUNG MELISSA, DELGADO MUCIO, KURATOMI YUCHIRO, YAMADA YOSHIHIKO, KLEINMAN HYNDAK, PONCE MLOURDES. Identification of laminin α1 and β1 chain peptides active for endothelial cell adhesion, tube formation, and aortic sprouting. FASEB J 1999. [DOI: 10.1096/fasebj.13.1.53] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- KATHERINE M. MALINDA
- Craniofacial Developmental Biology and Regeneration BranchNational Institute of Dental ResearchNIH Bethesda Maryland 20892‐4370 USA
| | - MOTOYOSHI NOMIZU
- National Research Council CanadaBiotechnology Research Institute Montreal Quebec H4P 2R2 Canada
- Craniofacial Developmental Biology and Regeneration BranchNational Institute of Dental ResearchNIH Bethesda Maryland 20892‐4370 USA
| | - MELISSA CHUNG
- Craniofacial Developmental Biology and Regeneration BranchNational Institute of Dental ResearchNIH Bethesda Maryland 20892‐4370 USA
| | - MUCIO DELGADO
- Craniofacial Developmental Biology and Regeneration BranchNational Institute of Dental ResearchNIH Bethesda Maryland 20892‐4370 USA
| | - YUCHIRO KURATOMI
- Craniofacial Developmental Biology and Regeneration BranchNational Institute of Dental ResearchNIH Bethesda Maryland 20892‐4370 USA
| | - YOSHIHIKO YAMADA
- Craniofacial Developmental Biology and Regeneration BranchNational Institute of Dental ResearchNIH Bethesda Maryland 20892‐4370 USA
| | - HYNDA K. KLEINMAN
- Craniofacial Developmental Biology and Regeneration BranchNational Institute of Dental ResearchNIH Bethesda Maryland 20892‐4370 USA
| | - M. LOURDES PONCE
- Craniofacial Developmental Biology and Regeneration BranchNational Institute of Dental ResearchNIH Bethesda Maryland 20892‐4370 USA
| |
Collapse
|
181
|
Nomizu M, Kuratomi Y, Malinda KM, Song SY, Miyoshi K, Otaka A, Powell SK, Hoffman MP, Kleinman HK, Yamada Y. Cell binding sequences in mouse laminin alpha1 chain. J Biol Chem 1998; 273:32491-9. [PMID: 9829982 DOI: 10.1074/jbc.273.49.32491] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Laminin-1, a multifunctional glycoprotein of the basement membrane, consists of three different subunits, alpha1, beta1, and gamma1 chains. Previously, we used synthetic peptides to screen for biologically active sequences in the laminin alpha1 chain C-terminal globular domain (G domain) and identified several cell binding sequences (Nomizu, M., Kim, W. H., Yamamura, K., Utani, A., Song, S. Y., Otaka, A., Roller, P. P., Kleinman, H. K., and Yamada, Y. (1995) J. Biol. Chem. 270, 20583-20590). Here, we identify new cell binding sequences on the remainder of the laminin alpha1 chain by systematic peptide screening, using 208 overlapping synthetic peptides encompassing the central and N-terminal portions of the alpha1 chain. HT-1080 cell attachment activity to the peptides was evaluated using peptide-coated plastic substrates and peptide-conjugated Sepharose beads. Twenty five peptides showed cell attachment activities on either the peptide-coated plastic substrates and/or the peptide-conjugated Sepharose beads. A-13 (RQVFQVAYIIIKA) showed strongest cell attachment activity in both the assays. Cell attachment to 14 of the peptides was inhibited by heparin. EDTA and integrin antibodies inhibited cell adhesion to two of the peptides, A-13 and A-25, suggesting that these sites likely bind to integrins. These peptides inhibited cell attachment to laminin-1 but not to collagen I, suggesting these active sites are available on the intact molecule. Most of active sequences were localized on globular domains suggesting that these structures play a critical role in binding to cell-surface receptors.
Collapse
Affiliation(s)
- M Nomizu
- Craniofacial Developmental Biology and Regeneration Branch, NIDR, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
182
|
Hoffman MP, Nomizu M, Roque E, Lee S, Jung DW, Yamada Y, Kleinman HK. Laminin-1 and laminin-2 G-domain synthetic peptides bind syndecan-1 and are involved in acinar formation of a human submandibular gland cell line. J Biol Chem 1998; 273:28633-41. [PMID: 9786856 DOI: 10.1074/jbc.273.44.28633] [Citation(s) in RCA: 158] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The culture of human submandibular gland (HSG) cells on laminin-1 induces acinar differentiation. We identified a site on laminin involved in acinar differentiation using synthetic peptides derived from the C-terminal G-domain of the laminin alpha1 and alpha2 chains. The alpha1 chain peptide AG73 (RKRLQVQLSIRT) decreases the size of acini formed on laminin-1. Cells cultured with either AG73 or the homologous alpha2 chain peptide MG73 (KNRLTIELEVRT) form structures that appear acinar-like, but the cell nuclei are not polarized to the basal surface and no lumen formation occurs, indicating that additional sites on laminin are required for complete differentiation. The G-domain of laminin-1 contains both integrin and heparin binding sites, and anti-beta1-integrin antibodies disrupt acinar formation. Cell adhesion to the peptides and to E3, an elastase digest fragment of laminin-1 containing AG73, is specific, since other laminin peptides or EDTA do not compete the binding. Heparin and heparan sulfate decrease cell adhesion to AG73 and MG73 but anti-beta1-integrin antibodies have no effect. Treating the cell surface with heparitinase inhibits adhesion to both AG73 and MG73. We isolated cell surface ligands using both peptide affinity chromatography and laminin-1 affinity chromatography. Treating the material bound to the affinity columns with heparitinase and chondroitinase enriches for a core protein identified as syndecan-1 by Western blot analysis, thus identifying a syndecan-1 binding site in the globular domain of laminin-1 and laminin-2. In summary, multiple interactions between laminin and HSG cells contribute to acinar differentiation, involving both beta1-integrins and syndecan-1.
Collapse
Affiliation(s)
- M P Hoffman
- Craniofacial Developmental Biology and Regeneration Branch, NIDR, National Institutes of Health, Bethesda, Maryland 20892-4370, USA
| | | | | | | | | | | | | |
Collapse
|
183
|
Powell SK, Williams CC, Nomizu M, Yamada Y, Kleinman HK. Laminin-like proteins are differentially regulated during cerebellar development and stimulate granule cell neurite outgrowth in vitro. J Neurosci Res 1998; 54:233-47. [PMID: 9788282 DOI: 10.1002/(sici)1097-4547(19981015)54:2<233::aid-jnr11>3.0.co;2-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The basement membrane glycoprotein laminin-1 is a potent stimulator of neurite outgrowth. Although a variety of laminin isoforms have been described in recent years, the role of alternative laminin isoforms in neural development remains largely uncharacterized. We found that a polyclonal antibody raised against the alpha1, beta1, and gamma1 chains of laminin-1 and a monoclonal antibody raised against the alpha2 chain of laminin-2 detect immunoreactive material in neuronal cell bodies in the developing mouse cerebellum. In addition, laminin-1-like immunoreactivity was found in cell types throughout the cerebellum, but laminin-alpha2-like immunoreactivity was restricted to the Purkinje cells. Purified laminin-1 and laminin-2 stimulated neurite outgrowth in primary cultures of mouse cerebellar granule neurons to a similar extent, whereas the synthetic peptides tested appeared to be active only for cell adhesion and not for stimulation of neurite outgrowth. The E8 proteolytic fragment of laminin-1 contained full neurite outgrowth activity. The identity of laminins expressed in granule neurons was also examined by Western blotting; laminin-like complexes were associated with the cell and appeared to have novel compositions. These results suggest that laminin-like complexes play important roles in cerebellar development.
Collapse
Affiliation(s)
- S K Powell
- Laboratory of Developmental Biology, National Institute for Dental Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
184
|
Weeks BS, Nomizu M, Ramchandran RS, Yamada Y, Kleinman HK. Laminin-1 and the RKRLQVQLSIRT laminin-1 alpha1 globular domain peptide stimulate matrix metalloproteinase secretion by PC12 cells. Exp Cell Res 1998; 243:375-82. [PMID: 9743597 DOI: 10.1006/excr.1998.4157] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Here we have investigated the ability of laminin-1 and specific laminin-1-derived synthetic peptides to stimulate neuronal cell matrix metalloproteinase secretion. Zymographic analysis of conditioned media from laminin-1-treated PC12 and NG108-15 cells revealed a 72-kDa matrix metalloproteinase which was not secreted by untreated cells. Laminin-1 alpha1 chain-derived synthetic peptides, AASIKVAVSADR (LAM-L) and RKRLQVQLSIRT (AG-73), also stimulated PC12 cell secretion of a 72-kDa matrix metalloproteinase. We further investigated the structural requirements of AG-73 for cell attachment, neurite outgrowth, and matrix metalloproteinase secretion using a series of AG-73 analogs that had single amino acids substituted with alanine. At the substrate levels tested, the AG-73 peptide promoted the adhesion of 67% of the PC12 cells and neurite outgrowth in 71% of the PC12 cells. Substitutions in any one of the amino acids within the central LQVQ sequence resulted in a large reduction in cell attachment whereas substitution in the carboxyl terminal proximal amino acids L, S, and R had little effect on attachment. Alanine substitution of any of the amino terminal proximal LQV amino acids and the carboxyl terminal L, I, and R residues resulted in a 65-91% reduction in neurite outgrowth. These data demonstrate that the sequence requirements for cell attachment and neurite outgrowth were not necessarily coupled but that the sequence requirements for neurite outgrowth and matrix metalloproteinase secretion were identical. We conclude that laminin-1 is able to stimulate neuronal cells to secrete a matrix metalloproteinase. Further, this study identifies the LQVXLXIR laminin-1 alpha1 globular domain peptide to be capable of stimulating both neurite outgrowth and matrix metalloproteinase secretion.
Collapse
Affiliation(s)
- B S Weeks
- Department of Biology, Adelphi University, Garden City, New York 11530, USA.
| | | | | | | | | |
Collapse
|
185
|
Kim WH, Nomizu M, Song SY, Tanaka K, Kuratomi Y, Kleinman HK, Yamada Y. Laminin-alpha1-chain sequence Leu-Gln-Val-Gln-Leu-Ser-Ile-Arg (LQVQLSIR) enhances murine melanoma cell metastases. Int J Cancer 1998; 77:632-9. [PMID: 9679769 DOI: 10.1002/(sici)1097-0215(19980812)77:4<632::aid-ijc25>3.0.co;2-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We earlier screened overlapping synthetic peptides from the globular domain of the laminin alpha1 chain to identify active sites for cell attachment. We report here that one of the active cell-adhesion peptides, AG-73 (Arg-Lys-Arg-Leu-Gln-Val-Gln-Leu-Ser-Ile-Arg-Thr; RKRLQVQLSIRT) causes B16F10 murine melanoma cells to metastasize to the liver, a site not normally colonized by these cells. Increases in liver metastases and in lung colonization are observed in immune-deficient beige/nude/xid and in C57Bl/6 mice with this peptide. This metastatic activity was observed with i.v. and with i.p. peptide injections, regardless of tumor cell or of peptide-injection times. In vitro, the AG-73 peptide enhances tumor cell adhesion, migration, invasion, and gelatinase production, and blocks laminin-1-mediated cell migration. AG-73 was found to significantly inhibit cell adhesion to a proteolytic laminin-1 fragment, E3, containing the AG-73 sequence. Cell attachment to AG-73, the E3 fragment, and laminin-1 involved cation-dependent receptors. We report that a laminin peptide has the novel and unexpected activity of causing B16F10 melanoma cells, a lung selected cell line, to metastasize to the liver. The minimal active sequence of AG-73, LQVQLSIR, could be one of the most important biologically active sites of laminin-1, especially in promotion of the malignant phenotype. Activation of the malignant phenotype by this peptide provides a significant new model for understanding metastatic mechanisms.
Collapse
Affiliation(s)
- W H Kim
- National Institute of Dental Research, National Institutes of Health, Bethesda, MD 20892-4370, USA
| | | | | | | | | | | | | |
Collapse
|
186
|
Abstract
Neuronal cells are unique within the organism. In addition to forming long-distance connections with other nerve cells and non-neuronal targets, they lose the ability to regenerate their neurites and to divide during maturation. Consequently, external violations like trauma or disease frequently lead to their disappearance and replacement by non-neuronal, and thus not properly functioning cells. The advent of microtechnology and construction of artificial implants prompted to create particular devices for specialised regions of the nervous system, in order to compensate for the loss of function. The scope of the present work is to review the current devices in connection with their applicability and functional perspectives. (1) Successful implants like the cochlea implant and peripherally implantable stimulators are discussed. (2) Less developed and not yet applicable devices like retinal or cortical implants are introduced, with particular emphasis given to the reasons for their failure to replace very complex functions like vision. (3) Material research is presented both from the technological aspect and from their biocompatibility as prerequisite of any implantation. (4) Finally, basic studies are presented, which deal with methods of shaping the implants, procedures of testing biocompatibility and modification of improving the interfaces between a technical device and the biological environment. The review ends by pointing to future perspectives in neuroimplantation and restoration of interrupted neuronal pathways.
Collapse
Affiliation(s)
- P Heiduschka
- University Eye Hospital Münster, Experimental Ophthalmology, Germany
| | | |
Collapse
|
187
|
Fleischmajer R, Utani A, MacDonald ED, Perlish JS, Pan TC, Chu ML, Nomizu M, Ninomiya Y, Yamada Y. Initiation of skin basement membrane formation at the epidermo-dermal interface involves assembly of laminins through binding to cell membrane receptors. J Cell Sci 1998; 111 ( Pt 14):1929-40. [PMID: 9645941 DOI: 10.1242/jcs.111.14.1929] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To study the mechanism of basement membrane formation, we determined by immunochemistry temporal and spatial expression of laminin-5 (Ln-5), laminin-1 (Ln-1) and their integrin receptors during early skin morphogenesis. A 3-dimensional skin culture was used that allows the study of the sequential molecular events of basement membrane formation at the epidermodermal interface. During early anchorage of keratinocytes to the extracellular matrix there is expression of Ln-5, BP-230 antigen and alpha3, beta1 integrin subunits. During epidermal stratification and prior to the formation of the lamina densa there is assembly of Ln-5, Ln-1, collagen IV and nidogen accompanied by keratinocyte basal clustering of alpha2, alpha3, alpha6, beta1, and beta4+ integrin subunits. The assembly pattern of Ln-1 and Ln-5 can be disturbed with functional antibodies against the beta1 (AIIB2) and alpha6 (GoH3) integrin subunits. Ln-1 assembly can also be disturbed with antibodies against its E8 domain and by competitive inhibition with a synthetic peptide (AG-73) derived from its G-4 domain. Quantitative RT-PCR showed that the dermis contributes about 80% of the laminin gamma)1 chain mRNA while 20% is produced by the epidermis which emphasizes its dual tissue origin and the major contribution of the mesenchyma in laminin production. The laminin gamma2 chain mRNA, present in Ln-5, was mostly of epidermal origin. This study presents evidence that during the initiation of basement membrane formation, laminins bind to keratinocyte plasma membrane receptors and thus may serve as nucleation sites for further polymerization of these compounds by a self-assembly process.
Collapse
Affiliation(s)
- R Fleischmajer
- Department of Dermatology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
188
|
Kadoya Y, Nomizu M, Sorokin LM, Yamashina S, Yamada Y. Laminin alpha1 chain G domain peptide, RKRLQVQLSIRT, inhibits epithelial branching morphogenesis of cultured embryonic mouse submandibular gland. Dev Dyn 1998; 212:394-402. [PMID: 9671943 DOI: 10.1002/(sici)1097-0177(199807)212:3<394::aid-aja7>3.0.co;2-c] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Active sequences from the laminin alpha1 and alpha2 chain carboxyl-terminal globular domains (G domain) have been identified by screening overlapping synthetic peptides in a number of biological assays (Nomizu et al. [1995] J. Biol. Chem. 270:20583-20590; Nomizu et al. [1996] FEBS Lett. 396:37-42). We have tested the activity of these peptides in submandibular gland explants of embryonic day 13 mice to determine the functional sites involved in organ development. The laminin alpha1 chain peptide, RKRLQVQLSIRT (residues 2719-2730 and designated AG-73), significantly inhibited epithelial branching morphogenesis. In contrast, other cell adhesive laminin alpha1 chain peptides including the AASIKVAVSADR and NRWHSIYITRFG failed to inhibit the branching. MG-73, a homologue of AG-73 from the laminin alpha2 chain, did not inhibit the branching. The alpha2 chain peptide had no effect, which may be due to the low levels of this laminin chain in day 13 mice. Laminin alpha2 chain-specific monoclonal antibodies strongly reacted with the basement membranes of developed acini but only weakly stained embryonic day 13 submandibular epithelium. The expression of E-cadherin and alpha6 integrin, as detected by immunofluorescence, were unchanged in both AG-73 and control scramble peptide-treated epithelial cells of the explants. In contrast, immunostaining of nidogen/entactin showed that explants treated with AG-73 for 3 days had a discontinuous basement membrane. Explants treated for 3 days with control peptide showed a normal basement membrane. These results suggest that the region containing the AG-73 sequence of the laminin alpha1 chain is crucial for development of submandibular gland at early embryonic stages. The discontinuous basement membrane in AG-73-treated explants may indicate an important role for this region in basement membrane assembly.
Collapse
Affiliation(s)
- Y Kadoya
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Japan.
| | | | | | | | | |
Collapse
|
189
|
Chen L, Glass JD, Walton SC, Laurie GW. Role of laminin-1, collagen IV, and an autocrine factor(s) in regulated secretion by lacrimal acinar cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:C278-84. [PMID: 9688859 DOI: 10.1152/ajpcell.1998.275.1.c278] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Adhesion to novel basement membrane component BM180 in the presence of laminin-1 promotes stimulus-secretion coupling in lacrimal acinar cells [G. W. Laurie, J. D. Glass, R. A. Ogle, C. M. Stone, J. R. Sluss, and L. Chen. Am. J. Physiol. 270 (Cell Physiol. 39): C1743-C1750, 1996]. The identity of the active laminin-1 site and the possibility that other promoters of coupling are present in the acinar cell microenvironment were probed by use of different substrates, media, neutralizing antibodies and cell numbers. Regulated peroxidase secretion was unaffected by basement membrane coat concentration and was detectable at reduced levels in serum-free medium. Anti-laminin-1 antibodies, particularly against sites in the beta1 and gamma1 chains, but not alpha1 chains, partially suppressed regulated secretion, as did an anti-collagen IV antibody. Without effect were RGD peptide and antibodies against entactin, the beta1-integrin subunit, and several growth factors. Increasing cell number in serum-free medium revealed an unknown, serum-maskable, secretion-enhancing activity with a remarkable specificity for regulated secretion. Stimulus-secretion coupling, therefore, appears to be modulated by several extracellular factors whose relative contributions remain to be determined.
Collapse
Affiliation(s)
- L Chen
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | | | |
Collapse
|
190
|
Hern DL, Hubbell JA. Incorporation of adhesion peptides into nonadhesive hydrogels useful for tissue resurfacing. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH 1998; 39:266-76. [PMID: 9457557 DOI: 10.1002/(sici)1097-4636(199802)39:2<266::aid-jbm14>3.0.co;2-b] [Citation(s) in RCA: 599] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Photopolymerized crosslinked networks of poly(ethylene glycol; PEG) diacrylate (MW 8000) were derivitized throughout their bulk with Arg-Gly-Asp (RGD)-containing peptide sequences. Incorporation was achieved by functionalizing the amine terminus of the peptide with an acrylate moiety, thereby enabling the adhesion peptide to copolymerize rapidly with the PEG diacrylate upon photoinitiation. PEG diacrylate hydrogels derivitized with RGD peptide at surface concentrations ranging from 0.001 to 1 pmol/cm2 were studied in vitro for their ability to promote spreading of human foreskin fibroblasts over 24 h. Hydrogels not derivitized with peptides were poor substrates for adhesion, permitting spreading of only 5% of the seeded cells. When immobilized with no spacer arm, both RGD and RDG (inactive control) supported spreading of approximately 50% and approximately 15% of cells at 1 and 0.1 pmol/cm2 surface concentrations respectively; lower concentrations did not promote spreading. When a MW 3400 PEG spacer arm was incorporated between the hydrogel and the peptide linkage, incorporation of 1 pmol/cm2 RGD promoted 70% spreading whereas RDG at the same concentration did not promote spreading. In addition, when cells were seeded in serum-free medium, only RGD peptides incorporated with a spacer arm were able to promote spreading. Thus peptide incorporated into PEG 8000 diacrylate hydrogels without a spacer arm nonspecifically mediated cell spreading whereas incorporation via a MW 3400 PEG spacer arm was required to permit cell spreading to be specifically mediated.
Collapse
Affiliation(s)
- D L Hern
- Department of Chemical Engineering, University of Texas, Austin, USA
| | | |
Collapse
|
191
|
Nakahara H, Mueller SC, Nomizu M, Yamada Y, Yeh Y, Chen WT. Activation of beta1 integrin signaling stimulates tyrosine phosphorylation of p190RhoGAP and membrane-protrusive activities at invadopodia. J Biol Chem 1998; 273:9-12. [PMID: 9417037 DOI: 10.1074/jbc.273.1.9] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The ligation of available alpha6beta1 integrin in adherent LOX melanoma cells by laminin G peptides and integrin stimulatory antibodies induced cell invasiveness, independent of adhesion activity of integrins that were pre-bound to extracellular matrix (Nakahara, H., Nomizu, M., Akiyama, S. K., Yamada, Y., Yeh, Y., and Chen, W.-T. (1996) J. Biol. Chem. 271, 27221-27224). Here, we show that this induced invasion involves an increase in tyrosine phosphorylation of a 190-kDa GTPase-activating protein for Rho family members (p190(RhoGAP); p190) and membrane-protrusive activities at invadopodia. This tyrosine phosphorylation does not occur when the adherent cells are treated with non-activating antibody against beta1 integrin, control laminin peptides, or tyrosine kinase inhibitors genistein and herbimycin A. Although p190 and F-actin co-distribute in all cell cortex extensions, tyrosine-phosphorylated proteins including p190 appear to associate with F-actin specifically in invadopodia. In addition, the localized matrix degradation and membrane-protrusive activities were blocked by treatment of LOX cells with tyrosine kinase inhibitors as well as microinjection of antibodies directed against p190 but not by non-perturbing antibodies or control buffers. We suggest that activation of the alpha6beta1 integrin signaling regulates the tyrosine phosphorylation state of p190 which in turn connects downstream signaling pathways through Rho family GTPases to actin cytoskeleton in invadopodia, thus promoting membrane-protrusive and degradative activities necessary for cell invasion.
Collapse
Affiliation(s)
- H Nakahara
- Lombardi Cancer Center & Department of Cell Biology, Georgetown University Medical Center, Washington, D. C. 20007, USA
| | | | | | | | | | | |
Collapse
|
192
|
Nomizu M, Kuratomi Y, Song SY, Ponce ML, Hoffman MP, Powell SK, Miyoshi K, Otaka A, Kleinman HK, Yamada Y. Identification of cell binding sequences in mouse laminin gamma1 chain by systematic peptide screening. J Biol Chem 1997; 272:32198-205. [PMID: 9405421 DOI: 10.1074/jbc.272.51.32198] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Laminin-1, a major component of basement membranes, consists of three different chains designated alpha1, beta1, and gamma1 and has diverse biological functions. We have identified cell binding sites on the mouse laminin gamma1 chain, using systematic screening of 165 overlapping synthetic peptides covering the entire chain. We identified 12 cell binding sequences using HT-1080 human fibrosarcoma and B16-F10 mouse melanoma cells in two independent assays employing peptide-conjugated Sepharose beads and peptide-coated dishes. Four peptides (C-16, C-28, C-64, and C-68) located on the globular domains of the gamma1 chain were the most active and showed dose-dependent cell attachment. Cell attachment to C-68 was inhibited by EDTA and by anti-alpha2beta1 integrin antibodies. Cell attachment to C-16 and C-64 was partially inhibited by EDTA but was not inhibited by anti-integrin antibodies. EDTA and anti-integrin antibodies did not affect cell attachment to C-28. The four peptides were tested in adhesion and differentiation assays with endothelial, neuronal, and human salivary gland cells. C-16 was the most active for all of the cells, whereas the other three peptides showed cell type specificity in their activities. The active core sequences of C-16, C-28, C-64, and C-68 are YVRL, IRVTLN, TTVKYIFR, and SIKIRGTY, respectively. These sequences are highly conserved among the different species and in the laminin gamma2 chain. These results suggest that the specific sequences on the laminin gamma1 chain are biologically active and interact with distinct cell surface receptors.
Collapse
Affiliation(s)
- M Nomizu
- Craniofacial Developmental Biology and Regeneration Branch, NIDR, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
193
|
Saito F, Yamada H, Sunada Y, Hori H, Shimizu T, Matsumura K. Characterization of a 30-kDa peripheral nerve glycoprotein that binds laminin and heparin. J Biol Chem 1997; 272:26708-13. [PMID: 9334255 DOI: 10.1074/jbc.272.42.26708] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have shown previously that a bovine peripheral nerve protein with a molecular mass of about 30 kDa binds laminin in blot overlay assay. In this paper, we have characterized this 30-kDa laminin-binding protein (LBP30). LBP30 was extracted from the crude bovine peripheral nerve membranes at pH 12 or by 0.5 M NaCl but not by 2% Triton X-100. LBP30 bound to heparin-Sepharose in the presence of 0.5 M NaCl. The results of lectin staining indicated that LBP30 contained both terminally sialylated and nonsialylated Ser/Thr-linked oligosaccharides. LBP30 bound laminin-2 as well as laminin-1 but not fibronectin or collagen type IV. When immobilized LBP30 was incubated with the crude peripheral nerve membrane extracts, all of the endogenous peripheral nerve laminin chain isoforms, the alpha1, alpha2, beta1, beta2, and gamma1 chains, were detected bound to LBP30. The binding of LBP30 to laminin was inhibited by heparin, heparan sulfate, dextran sulfate, or NaCl but was not affected significantly by chondroitin sulfate, dextran, or EDTA. Although LBP30 bound to laminin-1 denatured with SDS in a nonreducing condition, the binding was reduced drastically when laminin-1 was denatured with SDS in a reducing condition, suggesting that the binding of LBP30 is somewhat dependent on the high order structure of laminin-1. Immunohistochemical analysis demonstrated the broad distribution of LBP30 in the perineurium and endoneurium of bovine peripheral nerve. These results indicate that LBP30 is a laminin- and heparin-binding glycoprotein localized in the perineurium and endoneurium of bovine peripheral nerve.
Collapse
Affiliation(s)
- F Saito
- Department of Neurology and Neuroscience, Teikyo University School of Medicine, Tokyo 173, Japan
| | | | | | | | | | | |
Collapse
|
194
|
Mokotoff M, Swanson DP, Jonnalagadda SS, Epperly MW, Brown ML. Evaluation of laminin peptide fragments labeled with indium-111 for the potential imaging of malignant tumors. THE JOURNAL OF PEPTIDE RESEARCH : OFFICIAL JOURNAL OF THE AMERICAN PEPTIDE SOCIETY 1997; 49:510-6. [PMID: 9266478 DOI: 10.1111/j.1399-3011.1997.tb01158.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The laminin peptide fragments GYIGSR-NH2 and CDPGYIGSR-NH2 are known to bind to a 67-kDa laminin receptor. This receptors is understood to be expressed at higher than normal levels in malignant tumor cells, particularly those of breast and colon carcinomas. Peptides DTPA-GYIGSR-NH2 (1), DTPA-(GYIGSR-NH2)2 (2), DTPA-CDPGYIGSR-NH2 (3), DTPA-(CDPGYIGSR-NH2)2 (4), and negative control DTPA-GAGAGA-NH2 (5) were prepared by solid-phase peptide synthesis. All five DTPA-conjugated peptides were subsequently radiolabeled with 111In and their tissue distribution evaluated in mice bearing C3H tumors. 111In-3 and 111In-4 showed the highest specific tumor localization. These preliminary data support further study of radiolabeled petide fragments for the potential detection of malignant tumors of the breast and other organs.
Collapse
Affiliation(s)
- M Mokotoff
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pennsylvania, USA.
| | | | | | | | | |
Collapse
|
195
|
Song SY, Nomizu M, Yamada Y, Kleinman HK. Liver metastasis formation by laminin-1 peptide (LQVQLSIR)-adhesion selected B16-F10 melanoma cells. Int J Cancer 1997; 71:436-41. [PMID: 9139881 DOI: 10.1002/(sici)1097-0215(19970502)71:3<436::aid-ijc22>3.0.co;2-c] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Laminin-1, a major basement membrane glycoprotein, promotes tumor cell malignancy. Incubation of B16-F10 melanoma cells with a peptide containing an active sequence in laminin-1, designated AG-73 (leu-glu-val-glu-leu-ser-ile-arg; LQVQLSIR), enhances in vitro adhesion, migration, invasion and gelatinase production and in vivo lung colonization and metastases to the liver. In the current study, we have tried to define the mechanism of enhancement of liver metastases induced by AG-73 using B16-F10 murine melanoma cells selected for adhesion on AG-73-coated dishes. Cells were sequentially selected for adhesion more than 30 times and then characterized. AG-73 selected cells had much longer cytoplasmic processes and occasionally formed nodular aggregates. AG-73 selected cells attached 1.2- to 1.5-fold better to both AG-73 and laminin-1, were able to invade through the Matrigel-coated filter up to 6-fold more, grew s.c. 1.5-2 times faster, produced twice the number of lung colonies, and showed more liver nodules (12 of 28 vs. 1 of 27) than parental cells. Our data demonstrate that the enhanced malignant phenotype of B16-F10 cells can be observed in the absence of added peptide with the adhesion-selected cells.
Collapse
Affiliation(s)
- S Y Song
- National Institute of Dental Research, National Institutes of Health, Bethesda, MD 20892-4370, USA
| | | | | | | |
Collapse
|
196
|
Utani A, Nomizu M, Yamada Y. Fibulin-2 binds to the short arms of laminin-5 and laminin-1 via conserved amino acid sequences. J Biol Chem 1997; 272:2814-20. [PMID: 9006922 DOI: 10.1074/jbc.272.5.2814] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Epithelial cell-specific laminin-5, consisting of three chains, alpha3, beta3, and gamma2, is a component of the anchoring filament that traverses the lamina lucida beneath the hemidesmosomes of epidermal cells and functions to link these cells to the basement membrane. We have studied the molecular interaction between laminin-5 and extracellular matrix proteins using recombinant proteins and synthetic peptides. Affinity chromatography assays with recombinant fragments of the laminin gamma2 short arm identified a 195-kDa binding protein in the conditioned media from the mouse epidermal cell line Pam 212 and from primary dermal fibroblasts. This molecule was identified by Western blotting as fibulin-2, a recently identified extracellular matrix protein. Using deletion mutants and various synthetic peptides in competition assays, the 9-amino acid sequence SADFSVHKI (residues 199-207) in domain IV of the gamma2 chain was defined as a critical site for fibulin-2 binding. An anti-gamma2 antibody co-immunoprecipitated fibulin-2 from the conditioned media, further confirming the interaction of fibulin-2 with laminin-5. Fibulin-2 was also found to interact with laminin-1 (alpha1beta1gamma1) through a region (residues 654-665) of the alpha1 chain short arm whose sequence is similar to that of the fibulin-2 binding site of the gamma2 chain. Together these results suggest that fibulin-2 functions to bridge laminin-1 and laminin-5 with other extracellular matrix proteins, providing a linkage between the cell surface and the basement membrane.
Collapse
Affiliation(s)
- A Utani
- Laboratory of Developmental Biology, NIDR, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
197
|
Nakahara H, Nomizu M, Akiyama SK, Yamada Y, Yeh Y, Chen WT. A mechanism for regulation of melanoma invasion. Ligation of alpha6beta1 integrin by laminin G peptides. J Biol Chem 1996; 271:27221-4. [PMID: 8910291 DOI: 10.1074/jbc.271.44.27221] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Invasion of LOX human melanoma cells involves extracellular matrix (ECM) degradation and formation of cell surface invadopodia. Here we show that the ligation of alpha6beta1 by two peptides derived from the COOH-terminal globular domain of laminin-1 alpha1 chain (laminin G peptides), designated AG-10 (NPWHSIYITRFG) and AG-32 (TWYKIAFQRNRK), and antibodies against alpha6 and beta1 integrins promoted invasiveness. AG-10 and AG-32 inhibited cell adhesion on laminin, and the antibodies blocked cell adhesion on immobilized AG-10 and AG-32, suggesting that the peptides interact primarily with alpha6beta1 integrin. These soluble peptides and integrin antibodies induced invasiveness by causing an 2-3-fold increase in ECM degradation and invadopodial activity independently of adhesion activity of integrins that were prebound to ECM. The induced ECM degradation and invasion was associated with an increased surface expression of the 170-kDa membrane-bound gelatinase, seprase, as well as its intense localization at invadopodia but not at focal adhesions. However, the total expression levels of seprase, gelatinase A and beta1 integrins were not altered. We suggest that laminin G peptides act on the alpha6beta1 integrin signaling of invasion by stimulating invadopodial activities, which is distinct from their direct effects on cell adhesion on immobilized ECM.
Collapse
Affiliation(s)
- H Nakahara
- Lombardi Cancer Center and Department of Cell Biology, Georgetown University Medical Center, Washington, D. C. 20007, USA.
| | | | | | | | | | | |
Collapse
|
198
|
Nomizu M, Song SY, Kuratomi Y, Tanaka M, Kim WH, Kleinman HK, Yamada Y. Active peptides from the carboxyl-terminal globular domain of laminin alpha2 and Drosophila alpha chains. FEBS Lett 1996; 396:37-42. [PMID: 8906862 DOI: 10.1016/0014-5793(96)01060-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The laminin alpha1 chain carboxyl-terminal globular domain (G domain) contains multiple biological activities. Recently, we identified five cell binding sequences from the G domain by screening with overlapping 12-mer peptides encompassing the entire domain. The structures of these five sequences in the alpha1 chain are conserved in the corresponding regions of the different laminin alpha chains. Here we characterize the adhesion activities of the corresponding peptide segments from both the mouse laminin alpha2 chain and Drosophila laminin alpha chain using peptide-coated plastic plates and peptide-conjugated Sepharose beads. Using several cell lines, the laminin alpha2 chain peptides showed cell attachment and/or spreading activities with cell type specificities. Cell spreading on MG-10 was inhibited by integrin antibodies. Four of the Drosophila laminin peptides showed cell attachment activities. These results suggest that biologically active regions in the G domain are conserved in the laminin alpha1 and alpha2 chains, and that these regions in laminin play an important role in cell surface receptor interactions.
Collapse
Affiliation(s)
- M Nomizu
- Laboratory of Developmental Biology, National Institute of Dental Research, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
199
|
Pennington ME, Lam KS, Cress AE. The use of a combinatorial library method to isolate human tumor cell adhesion peptides. Mol Divers 1996; 2:19-28. [PMID: 9238629 DOI: 10.1007/bf01718696] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Tumor cell progression is dependent in part on the successful adhesive interactions of the cells with the extracellular matrix. In this study, a new approach is described to isolate linear peptide ligand candidates involved in cellular adhesion. A synthetic combinatorial peptide library based on the 'one-bead-one-peptide' concept was incubated with live human prostate cancer cells for 90 min at 37 degrees C. The peptide bead coated with a monolayer of cells was then isolated for microsequencing. The DU145 (DU-H) cells were chosen since they have been previously characterized as containing elevated levels of a laminin receptor for cell adhesion, the alpha 6 beta 1 integrin on the cell surface. The use of a function-blocking antibody (GoH3) allows for the detection of peptides which are alpha 6-specific ligand candidates. From two different libraries (linear 9-mer and 11-mer) of a total of 1,500,000 beads, 68 peptide beads containing attached cells were isolated. These positive beads were then retested to determine the ability of the GoH3 antibody to block binding of the cells to the peptide beads. The alpha 6 integrin candidate peptide beads (five in total) were recovered and two of the beads were microsequenced. These two peptides, RU-1 (LNIVS-VNGRHX) and RX-1 (DNRIRLQAKXX), resemble the previously reported active peptide sequences (GD-2 and AG-73) from native laminin. The RU-1, RX-1 and AG-73 peptides were tested for their ability to support cell attachment and to bind the cell surface of DU-H prostate carcinoma cells in suspension using fluorescence-activated cell-sorting (FACS) analysis. Both RU-1 and AG-73 peptides supported cellular attachment within 1 h. In contrast, after 1 h, EHS laminin supported both cellular attachment and spreading. The RX-1 peptide exhibited only weak binding to the DU-H prostate carcinoma cells. FACS analysis indicated that AG-73 peptide attached to tumor cell surfaces over a range of concentrations, whereas the RU-1 peptide showed a homogeneous concentration required for attachment. The described strategy for screening a random peptide library offers three advantages: (i) ligands for conformationally sensitive receptors of adhesion can be isolated using live cells; (ii) specific binding can be selected for using function-blocking antibodies; and (iii) peptides supporting adhesion independent of spreading properties can be distinguished. In principle, specific adhesive peptides without prior knowledge of the sequence could be isolated for any epithelial cell surface receptor for which a function-blocking reagent is available.
Collapse
Affiliation(s)
- M E Pennington
- Department of Radiation Oncology, University of Arizona, Tucson 85824, USA
| | | | | |
Collapse
|
200
|
Abstract
A considerable variety of basement membrane components, including in particular more than ten laminin isoforms and their novel alpha chains (alpha3, alpha4 and alpha5), has been characterized in recent studies. The functional properties of these components are increasingly being analyzed by recombinant technologies and by structural studies at atomic resolution, techniques which led to the elucidation of the nidogen-binding epitope on the laminin gamma1 chain. Novel insights into functions of basement membrane components have been obtained from gene-targeting experiments and studies of mutated genes identified in inherited disorders.
Collapse
Affiliation(s)
- R Timpl
- Department of Protein Chemistry, Max-Planck-Institut für Biochemie, 82152 Martinsried, Germany.
| |
Collapse
|