151
|
Selvam K, Wyrick JJ, Parra MA. DNA Repair in Nucleosomes: Insights from Histone Modifications and Mutants. Int J Mol Sci 2024; 25:4393. [PMID: 38673978 PMCID: PMC11050016 DOI: 10.3390/ijms25084393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
DNA repair pathways play a critical role in genome stability, but in eukaryotic cells, they must operate to repair DNA lesions in the compact and tangled environment of chromatin. Previous studies have shown that the packaging of DNA into nucleosomes, which form the basic building block of chromatin, has a profound impact on DNA repair. In this review, we discuss the principles and mechanisms governing DNA repair in chromatin. We focus on the role of histone post-translational modifications (PTMs) in repair, as well as the molecular mechanisms by which histone mutants affect cellular sensitivity to DNA damage agents and repair activity in chromatin. Importantly, these mechanisms are thought to significantly impact somatic mutation rates in human cancers and potentially contribute to carcinogenesis and other human diseases. For example, a number of the histone mutants studied primarily in yeast have been identified as candidate oncohistone mutations in different cancers. This review highlights these connections and discusses the potential importance of DNA repair in chromatin to human health.
Collapse
Affiliation(s)
- Kathiresan Selvam
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA
| | - John J. Wyrick
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA
| | - Michael A. Parra
- Department of Chemistry, Susquehanna University, Selinsgrove, PA 17870, USA
| |
Collapse
|
152
|
Shen MZ, Zhang Y, Wu F, Shen MZ, Liang JL, Zhang XL, Liu XJ, Li XS, Wang RS. MicroRNA-298 determines the radio-resistance of colorectal cancer cells by directly targeting human dual-specificity tyrosine(Y)-regulated kinase 1A. World J Gastrointest Oncol 2024; 16:1453-1464. [PMID: 38660649 PMCID: PMC11037043 DOI: 10.4251/wjgo.v16.i4.1453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/31/2023] [Accepted: 02/02/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND Radiotherapy stands as a promising therapeutic modality for colorectal cancer (CRC); yet, the formidable challenge posed by radio-resistance significantly undermines its efficacy in achieving CRC remission. AIM To elucidate the role played by microRNA-298 (miR-298) in CRC radio-resistance. METHODS To establish a radio-resistant CRC cell line, HT-29 cells underwent exposure to 5 gray ionizing radiation that was followed by a 7-d recovery period. The quantification of miR-298 levels within CRC cells was conducted through quantitative RT-PCR, and protein expression determination was realized through Western blotting. Cell viability was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and proliferation by clonogenic assay. Radio-induced apoptosis was discerned through flow cytometry analysis. RESULTS We observed a marked upregulation of miR-298 in radio-resistant CRC cells. MiR-298 emerged as a key determinant of cell survival following radiation exposure, as its overexpression led to a notable reduction in radiation-induced apoptosis. Intriguingly, miR-298 expression exhibited a strong correlation with CRC cell viability. Further investigation unveiled human dual-specificity tyrosine(Y)-regulated kinase 1A (DYRK1A) as miR-298's direct target. CONCLUSION Taken together, our findings underline the role played by miR-298 in bolstering radio-resistance in CRC cells by means of DYRK1A downregulation, thereby positioning miR-298 as a promising candidate for mitigating radio-resistance in CRC.
Collapse
Affiliation(s)
- Mei-Zhu Shen
- Department of Radiotherapy, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Yong Zhang
- Department of Radiotherapy, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Fang Wu
- Department of Radiotherapy, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Mei-Zhen Shen
- Department of Radiotherapy, People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Jun-Lin Liang
- Department of Colorectal Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Xiao-Long Zhang
- Department of Colorectal Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Xiao-Jian Liu
- Department of Colorectal Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Xin-Shu Li
- Department of Clinical Medicine, Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Ren-Sheng Wang
- Department of Radiotherapy, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
153
|
Chen WA, Williams TG, So L, Drew N, Fang J, Ochoa P, Nguyen N, Jawhar Y, Otiji J, Duerksen-Hughes PJ, Reeves ME, Casiano CA, Jin H, Dovat S, Yang J, Boyle KE, Francis-Boyle OL. Duocarmycin SA Reduces Proliferation and Increases Apoptosis in Acute Myeloid Leukemia Cells In Vitro. Int J Mol Sci 2024; 25:4342. [PMID: 38673926 PMCID: PMC11050052 DOI: 10.3390/ijms25084342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Acute myeloid leukemia (AML) is a hematological malignancy that is characterized by an expansion of immature myeloid precursors. Despite therapeutic advances, the prognosis of AML patients remains poor and there is a need for the evaluation of promising therapeutic candidates to treat the disease. The objective of this study was to evaluate the efficacy of duocarmycin Stable A (DSA) in AML cells in vitro. We hypothesized that DSA would induce DNA damage in the form of DNA double-strand breaks (DSBs) and exert cytotoxic effects on AML cells within the picomolar range. Human AML cell lines Molm-14 and HL-60 were used to perform 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT), DNA DSBs, cell cycle, 5-ethynyl-2-deoxyuridine (EdU), colony formation unit (CFU), Annexin V, RNA sequencing and other assays described in this study. Our results showed that DSA induced DNA DSBs, induced cell cycle arrest at the G2M phase, reduced proliferation and increased apoptosis in AML cells. Additionally, RNA sequencing results showed that DSA regulates genes that are associated with cellular processes such as DNA repair, G2M checkpoint and apoptosis. These results suggest that DSA is efficacious in AML cells and is therefore a promising potential therapeutic candidate that can be further evaluated for the treatment of AML.
Collapse
Affiliation(s)
- William A. Chen
- Department of Pharmaceutical Sciences, School of Pharmacy, Loma Linda University, Shryock Hall 24745 Stewart Street, Loma Linda, CA 92350, USA
| | - Terry G. Williams
- Department of Pharmaceutical Sciences, School of Pharmacy, Loma Linda University, Shryock Hall 24745 Stewart Street, Loma Linda, CA 92350, USA
| | - Leena So
- Department of Pharmaceutical Sciences, School of Pharmacy, Loma Linda University, Shryock Hall 24745 Stewart Street, Loma Linda, CA 92350, USA
| | - Natalie Drew
- Department of Pharmaceutical Sciences, School of Pharmacy, Loma Linda University, Shryock Hall 24745 Stewart Street, Loma Linda, CA 92350, USA
| | - Jie Fang
- Department of Surgery, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Pedro Ochoa
- Department of Basic Sciences, School of Medicine, Loma Linda University, 11175 Campus Street, Loma Linda, CA 92350, USA
- Center for Health Disparities and Molecular Medicine, Loma Linda University, 11085 Campus Street, Loma Linda, CA 92350, USA
| | - Nhi Nguyen
- Department of Pharmaceutical Sciences, School of Pharmacy, Loma Linda University, Shryock Hall 24745 Stewart Street, Loma Linda, CA 92350, USA
| | - Yasmeen Jawhar
- Department of Pharmaceutical Sciences, School of Pharmacy, Loma Linda University, Shryock Hall 24745 Stewart Street, Loma Linda, CA 92350, USA
| | - Jide Otiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Loma Linda University, Shryock Hall 24745 Stewart Street, Loma Linda, CA 92350, USA
| | - Penelope J. Duerksen-Hughes
- Department of Basic Sciences, School of Medicine, Loma Linda University, 11175 Campus Street, Loma Linda, CA 92350, USA
| | - Mark E. Reeves
- Department of Basic Sciences, School of Medicine, Loma Linda University, 11175 Campus Street, Loma Linda, CA 92350, USA
- Department of Surgery, School of Medicine, Loma Linda University, 11234 Anderson Street, Loma Linda, CA 92354, USA
| | - Carlos A. Casiano
- Department of Basic Sciences, School of Medicine, Loma Linda University, 11175 Campus Street, Loma Linda, CA 92350, USA
- Center for Health Disparities and Molecular Medicine, Loma Linda University, 11085 Campus Street, Loma Linda, CA 92350, USA
| | - Hongjian Jin
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Sinisa Dovat
- Departments of Pediatrics, Biochemistry and Molecular Biology, and Pharmacology, Penn State Cancer Institute, 400 University Drive, Hershey, PA 17033, USA
| | - Jun Yang
- Department of Surgery, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Kristopher E. Boyle
- Department of Pharmaceutical Sciences, School of Pharmacy, Loma Linda University, Shryock Hall 24745 Stewart Street, Loma Linda, CA 92350, USA
| | - Olivia L. Francis-Boyle
- Department of Pharmaceutical Sciences, School of Pharmacy, Loma Linda University, Shryock Hall 24745 Stewart Street, Loma Linda, CA 92350, USA
- Department of Basic Sciences, School of Medicine, Loma Linda University, 11175 Campus Street, Loma Linda, CA 92350, USA
- Department of Pathology and Human Anatomy, Division of Anatomy, School of Medicine, Loma Linda University, 11175 Campus Street, Loma Linda, CA 92350, USA
| |
Collapse
|
154
|
Foster BM, Wang Z, Schmidt CK. DoUBLing up: ubiquitin and ubiquitin-like proteases in genome stability. Biochem J 2024; 481:515-545. [PMID: 38572758 PMCID: PMC11088880 DOI: 10.1042/bcj20230284] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/05/2024] [Accepted: 03/18/2024] [Indexed: 04/05/2024]
Abstract
Maintaining stability of the genome requires dedicated DNA repair and signalling processes that are essential for the faithful duplication and propagation of chromosomes. These DNA damage response (DDR) mechanisms counteract the potentially mutagenic impact of daily genotoxic stresses from both exogenous and endogenous sources. Inherent to these DNA repair pathways is the activity of protein factors that instigate repair processes in response to DNA lesions. The regulation, coordination, and orchestration of these DDR factors is carried out, in a large part, by post-translational modifications, such as phosphorylation, ubiquitylation, and modification with ubiquitin-like proteins (UBLs). The importance of ubiquitylation and UBLylation with SUMO in DNA repair is well established, with the modified targets and downstream signalling consequences relatively well characterised. However, the role of dedicated erasers for ubiquitin and UBLs, known as deubiquitylases (DUBs) and ubiquitin-like proteases (ULPs) respectively, in genome stability is less well established, particularly for emerging UBLs such as ISG15 and UFM1. In this review, we provide an overview of the known regulatory roles and mechanisms of DUBs and ULPs involved in genome stability pathways. Expanding our understanding of the molecular agents and mechanisms underlying the removal of ubiquitin and UBL modifications will be fundamental for progressing our knowledge of the DDR and likely provide new therapeutic avenues for relevant human diseases, such as cancer.
Collapse
Affiliation(s)
- Benjamin M. Foster
- Manchester Cancer Research Centre (MCRC), Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, 555 Wilmslow Road, Manchester M20 4GJ, U.K
| | - Zijuan Wang
- Manchester Cancer Research Centre (MCRC), Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, 555 Wilmslow Road, Manchester M20 4GJ, U.K
| | - Christine K. Schmidt
- Manchester Cancer Research Centre (MCRC), Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, 555 Wilmslow Road, Manchester M20 4GJ, U.K
| |
Collapse
|
155
|
Sun M, Moquet J, Barnard S, Mancey H, Burling D, Baldwin-Cleland R, Monahan K, Latchford A, Lloyd D, Bouffler S, Badie C, Anyamene NA, Ainsbury E. In vitro study of radiosensitivity in colorectal cancer cell lines associated with Lynch syndrome. Front Public Health 2024; 12:1369201. [PMID: 38638480 PMCID: PMC11024246 DOI: 10.3389/fpubh.2024.1369201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/18/2024] [Indexed: 04/20/2024] Open
Abstract
Introduction Lynch syndrome patients have an inherited predisposition to cancer due to a deficiency in DNA mismatch repair (MMR) genes which could lead to a higher risk of developing cancer if exposed to ionizing radiation. This pilot study aims to reveal the association between MMR deficiency and radiosensitivity at both a CT relevant low dose (20 mGy) and a therapeutic higher dose (2 Gy). Methods Human colorectal cancer cell lines with (dMMR) or without MMR deficiency (pMMR) were analyzed before and after exposure to radiation using cellular and cytogenetic analyses i.e., clonogenic assay to determine cell reproductive death; sister chromatid exchange (SCE) assay to detect the exchange of DNA between sister chromatids; γH2AX assay to analyze DNA damage repair; and apoptosis analysis to compare cell death response. The advantages and limitations of these assays were assessed in vitro, and their applicability and feasibility investigated for their potential to be used for further studies using clinical samples. Results Results from the clonogenic assay indicated that the pMMR cell line (HT29) was significantly more radio-resistant than the dMMR cell lines (HCT116, SW48, and LoVo) after 2 Gy X-irradiation. Both cell type and radiation dose had a significant effect on the yield of SCEs/chromosome. When the yield of SCEs/chromosome for the irradiated samples (2 Gy) was normalized against the controls, no significant difference was observed between the cell lines. For the γH2AX assay, 0, 20 mGy and 2 Gy were examined at post-exposure time points of 30 min (min), 4 and 24 h (h). Statistical analysis revealed that HT29 was only significantly more radio-resistant than the MLH1-deficient cells lines, but not the MSH2-deficient cell line. Apoptosis analysis (4 Gy) revealed that HT29 was significantly more radio-resistant than HCT116 albeit with very few apoptotic cells observed. Discussion Overall, this study showed radio-resistance of the MMR proficient cell line in some assays, but not in the others. All methods used within this study have been validated; however, due to the limitations associated with cancer cell lines, the next step will be to use these assays in clinical samples in an effort to understand the biological and mechanistic effects of radiation in Lynch patients as well as the health implications.
Collapse
Affiliation(s)
- Mingzhu Sun
- United Kingdom Health Security Agency, Department of Radiation Effects, Cytogenetics and Pathology Group, Radiation, Chemical and Environmental Hazards Directorate, Didcot, United Kingdom
| | - Jayne Moquet
- United Kingdom Health Security Agency, Department of Radiation Effects, Cytogenetics and Pathology Group, Radiation, Chemical and Environmental Hazards Directorate, Didcot, United Kingdom
| | - Stephen Barnard
- United Kingdom Health Security Agency, Department of Radiation Effects, Cytogenetics and Pathology Group, Radiation, Chemical and Environmental Hazards Directorate, Didcot, United Kingdom
| | - Hannah Mancey
- United Kingdom Health Security Agency, Department of Radiation Effects, Cytogenetics and Pathology Group, Radiation, Chemical and Environmental Hazards Directorate, Didcot, United Kingdom
| | - David Burling
- Intestinal Imaging Centre, St Mark's Hospital, London North West University Healthcare National Health Service Trust, Harrow, United Kingdom
| | - Rachel Baldwin-Cleland
- Intestinal Imaging Centre, St Mark's Hospital, London North West University Healthcare National Health Service Trust, Harrow, United Kingdom
| | - Kevin Monahan
- Lynch Syndrome Clinic, Centre for Familial Intestinal Cancer, St Mark's Hospital, London North West University Healthcare National Health Service Trust, Harrow, United Kingdom
| | - Andrew Latchford
- Lynch Syndrome Clinic, Centre for Familial Intestinal Cancer, St Mark's Hospital, London North West University Healthcare National Health Service Trust, Harrow, United Kingdom
| | - David Lloyd
- United Kingdom Health Security Agency, Department of Radiation Effects, Cytogenetics and Pathology Group, Radiation, Chemical and Environmental Hazards Directorate, Didcot, United Kingdom
| | - Simon Bouffler
- United Kingdom Health Security Agency, Department of Radiation Effects, Cytogenetics and Pathology Group, Radiation, Chemical and Environmental Hazards Directorate, Didcot, United Kingdom
| | - Christophe Badie
- United Kingdom Health Security Agency, Department of Radiation Effects, Cytogenetics and Pathology Group, Radiation, Chemical and Environmental Hazards Directorate, Didcot, United Kingdom
| | - Nicola A. Anyamene
- East and North Hertfordshire National Health Service Trust, Mount Vernon Cancer Centre, Northwood, United Kingdom
| | - Elizabeth Ainsbury
- United Kingdom Health Security Agency, Department of Radiation Effects, Cytogenetics and Pathology Group, Radiation, Chemical and Environmental Hazards Directorate, Didcot, United Kingdom
- Environmental Research Group Within the School of Public Health, Faculty of Medicine at Imperial College of Science, Technology and Medicine, London, United Kingdom
| |
Collapse
|
156
|
Padayachy L, Ntallis SG, Halazonetis TD. RECQL4 is not critical for firing of human DNA replication origins. Sci Rep 2024; 14:7708. [PMID: 38565932 PMCID: PMC10987555 DOI: 10.1038/s41598-024-58404-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/28/2024] [Indexed: 04/04/2024] Open
Abstract
Human RECQL4, a member of the RecQ helicase family, plays a role in maintaining genomic stability, but its precise function remains unclear. The N-terminus of RECQL4 has similarity to Sld2, a protein required for the firing of DNA replication origins in budding yeast. Consistent with this sequence similarity, the Xenopus laevis homolog of RECQL4 has been implicated in initiating DNA replication in egg extracts. To determine whether human RECQL4 is required for firing of DNA replication origins, we generated cells in which both RECQL4 alleles were targeted, resulting in either lack of protein expression (knock-out; KO) or expression of a full-length, mutant protein lacking helicase activity (helicase-dead; HD). Interestingly, both the RECQL4 KO and HD cells were viable and exhibited essentially identical origin firing profiles as the parental cells. Analysis of the rate of fork progression revealed increased rates in the RECQL4 KO cells, which might be indicative of decreased origin firing efficiency. Our results are consistent with human RECQL4 having a less critical role in firing of DNA replication origins, than its budding yeast homolog Sld2.
Collapse
Affiliation(s)
- Laura Padayachy
- Department of Molecular and Cellular Biology, University of Geneva, 1205, Geneva, Switzerland
| | - Sotirios G Ntallis
- Department of Molecular and Cellular Biology, University of Geneva, 1205, Geneva, Switzerland
| | - Thanos D Halazonetis
- Department of Molecular and Cellular Biology, University of Geneva, 1205, Geneva, Switzerland.
| |
Collapse
|
157
|
Kimura T, Okada K, Morohashi Y, Kato Y, Mori M, Kato H, Matsumoto T, Shimoyama S. Quantification of Unencapsulated Drug in Target Tissues Demonstrates Pharmacological Properties and Therapeutic Effects of Liposomal Topotecan (FF-10850). Pharm Res 2024; 41:795-806. [PMID: 38536615 PMCID: PMC11024016 DOI: 10.1007/s11095-023-03652-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/27/2023] [Indexed: 04/18/2024]
Abstract
PURPOSE Quantifying unencapsulated drug concentrations in tissues is crucial for understanding the mechanisms underlying the efficacy and safety of liposomal drugs; however, the methodology for this has not been fully established. Herein, we aimed to investigate the enhanced therapeutic potential of a pegylated liposomal formulation of topotecan (FF-10850) by analyzing the concentrations of the unencapsulated drug in target tissues, to guide the improvement of its dosing regimen. METHODS We developed a method for measuring unencapsulated topotecan concentrations in tumor and bone marrow interstitial fluid (BM-ISF) and applied this method to pharmacokinetic assessments. The ratios of the area under the concentration-time curves (AUCs) between tumor and BM-ISF were calculated for total and unencapsulated topotecan. DNA damage and antitumor effects of FF-10850 or non-liposomal topotecan (TPT) were evaluated in an ES-2 mice xenograft model. RESULTS FF-10850 exhibited a much larger AUC ratio between tumor and BM-ISF for unencapsulated topotecan (2.96), but not for total topotecan (0.752), than TPT (0.833). FF-10850 promoted milder DNA damage in the bone marrow than TPT; however, FF-10850 and TPT elicited comparable DNA damage in the tumor. These findings highlight the greater tumor exposure to unencapsulated topotecan and lower bone marrow exposure to FF-10850 than TPT. The dosing regimen was successfully improved based on the kinetics of unencapsulated topotecan and DNA damage. CONCLUSIONS Tissue pharmacokinetics of unencapsulated topotecan elucidated the favorable pharmacological properties of FF-10850. Evaluation of tissue exposure to an unencapsulated drug with appropriate pharmacodynamic markers can be valuable in optimizing liposomal drugs and dosing regimens.
Collapse
Affiliation(s)
- Toshifumi Kimura
- Bio Science & Engineering Laboratories, FUJIFILM Corporation, 577 Ushijima, Kaisei-Machi, Ashigarakami-Gun, Kanagawa, 258-8577, Japan.
| | - Ken Okada
- Bio Science & Engineering Laboratories, FUJIFILM Corporation, 577 Ushijima, Kaisei-Machi, Ashigarakami-Gun, Kanagawa, 258-8577, Japan
| | - Yasushi Morohashi
- Bio Science & Engineering Laboratories, FUJIFILM Corporation, 577 Ushijima, Kaisei-Machi, Ashigarakami-Gun, Kanagawa, 258-8577, Japan
| | - Yukio Kato
- Faculty of Pharmacy, Kanazawa University, Kakuma-Machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Mikinaga Mori
- Bio Science & Engineering Laboratories, FUJIFILM Corporation, 577 Ushijima, Kaisei-Machi, Ashigarakami-Gun, Kanagawa, 258-8577, Japan
| | - Hiroshi Kato
- Bio Science & Engineering Laboratories, FUJIFILM Corporation, 577 Ushijima, Kaisei-Machi, Ashigarakami-Gun, Kanagawa, 258-8577, Japan
| | - Takeshi Matsumoto
- Bio Science & Engineering Laboratories, FUJIFILM Corporation, 577 Ushijima, Kaisei-Machi, Ashigarakami-Gun, Kanagawa, 258-8577, Japan
| | - Susumu Shimoyama
- FUJIFILM Pharmaceuticals U.S.A., Inc, One Broadway, Cambridge, MA, 02142, USA
| |
Collapse
|
158
|
Abe M, Asada N, Kimura M, Fukui C, Yamada D, Wang Z, Miyake M, Takarada T, Ono M, Aoe M, Kitamura W, Matsuda M, Moriyama T, Matsumura A, Maeda Y. Antitumor activity of α-pinene in T-cell tumors. Cancer Sci 2024; 115:1317-1332. [PMID: 38279512 PMCID: PMC11007008 DOI: 10.1111/cas.16086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/20/2023] [Accepted: 12/21/2023] [Indexed: 01/28/2024] Open
Abstract
T-cell acute leukemia and lymphoma have a poor prognosis. Although new therapeutic agents have been developed, their therapeutic effects are suboptimal. α-Pinene, a monoterpene compound, has an antitumor effect on solid tumors; however, few comprehensive investigations have been conducted on its impact on hematologic malignancies. This report provides a comprehensive analysis of the potential benefits of using α-pinene as an antitumor agent for the treatment of T-cell tumors. We found that α-pinene inhibited the proliferation of hematologic malignancies, especially in T-cell tumor cell lines EL-4 and Molt-4, induced mitochondrial dysfunction and reactive oxygen species accumulation, and inhibited NF-κB p65 translocation into the nucleus, leading to robust apoptosis in EL-4 cells. Collectively, these findings suggest that α-pinene has potential as a therapeutic agent for T-cell malignancies, and further investigation is warranted.
Collapse
Affiliation(s)
- Masaya Abe
- Department of Hematology, Oncology and Respiratory MedicineOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Noboru Asada
- Department of Hematology and OncologyOkayama University HospitalOkayamaJapan
| | - Maiko Kimura
- Department of Hematology, Oncology and Respiratory MedicineOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Chie Fukui
- Division of Hematology, Department of MedicineKobe University HospitalKobeJapan
| | - Daisuke Yamada
- Department of Regenerative ScienceOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Ziyi Wang
- Department of Molecular Biology and BiochemistryOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Masayuki Miyake
- Division of Medical SupportOkayama University HospitalOkayamaJapan
| | - Takeshi Takarada
- Department of Regenerative ScienceOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Mitsuaki Ono
- Department of Molecular Biology and BiochemistryOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Michinori Aoe
- Division of Medical SupportOkayama University HospitalOkayamaJapan
| | - Wataru Kitamura
- Department of Hematology, Oncology and Respiratory MedicineOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Masayuki Matsuda
- Department of Hematology, Oncology and Respiratory MedicineOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Takashi Moriyama
- Department of Hematology, Oncology and Respiratory MedicineOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Akifumi Matsumura
- Department of Hematology, Oncology and Respiratory MedicineOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Yoshinobu Maeda
- Department of Hematology, Oncology and Respiratory MedicineOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| |
Collapse
|
159
|
Li QZ, Chen YY, Liu QP, Feng ZH, Zhang L, Zhang H. Cucurbitacin B suppresses hepatocellular carcinoma progression through inducing DNA damage-dependent cell cycle arrest. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155177. [PMID: 38412667 DOI: 10.1016/j.phymed.2023.155177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 10/15/2023] [Accepted: 10/31/2023] [Indexed: 02/29/2024]
Abstract
BACKGROUND The mortality rate of liver cancer ranks third in the world, and hepatocellular carcinoma (HCC) is a malignant tumor of the digestive tract. Cucurbitacin B (CuB), a natural compound extracted from Cucurbitaceae spp., is the main active component of Chinese patent medicine the Cucurbitacin Tablet, which has been widely used in the treatment of various malignant tumors in clinics, especially HCC. PURPOSE This study explored the role and mechanism of CuB in the suppression of liver cancer progression. METHODS Cell Counting Kit-8 (CCK-8) and colony formation assays were used to detect the inhibitory function of CuB in Huh7, Hep3B, and Hepa1/6 hepatoma cells. Calcein-AM/propidium iodide (PI) staining and lactate dehydrogenase (LDH) measurement assays were performed to determine cell death. Mitochondrial membrane potential (Δψm) was measured, and flow cytometry was performed to evaluate cell apoptosis and cell cycle. Several techniques, such as proteomics, Western blotting (WB), and ribonucleic acid (RNA) interference, were utilized to explore the potential mechanism. The animal experiment was performed to verify the results of in vitro experiments. RESULTS CuB significantly inhibited the growth of Huh7, Hep3B, and Hepa1/6 cells and triggered the cell cycle arrest in G2/M phage without leading to cell death, especially apoptosis. Knockdown of insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1), a target of CuB, did not reverse CuB elicited cell cycle arrest. CuB enhanced phosphorylated ataxia telangiectasia mutated (p-ATM) and phosphorylated H2A histone family member X (γ-H2AX) levels. Moreover, CuB increased p53 and p21 levels and decreased cyclin-dependent kinase 1 (CDK1) expression, accompanied by improving phosphorylated checkpoint kinase 1 (p-CHK1) level and suppressing cell division cycle 25C (CDC25C) protein level. Interestingly, these phenomena were partly abolished by a deoxyribonucleic acid (DNA) protector methylproamine (MPA). Animal studies showed that CuB also significantly suppressed tumor growth in BALB/c mice bearing Hepa1/6 cells. In tumor tissues, CuB reduced the expression levels of proliferating cell nuclear antigen (PCNA) and γ-H2AX but did not change the terminal deoxynucleotidyl transferase deoxyuridine triphosphate (dUTP) nick-end labeling (TUNEL) level. CONCLUSION This study demonstrated for the first time that CuB could effectively impede HCC progression by inducing DNA damage-dependent cell cycle arrest without directly triggering cell death, such as necrosis and apoptosis. The effect was achieved through ataxia telangiectasia mutated (ATM)-dependent p53-p21-CDK1 and checkpoint kinase 1 (CHK1)-CDC25C signaling pathways. These findings indicate that CuB may be used as an anti-HCC drug, when the current findings are confirmed by independent studies and after many more clinical phase 1, 2, 3, and 4 testings have been done.
Collapse
Affiliation(s)
- Qi-Zhang Li
- Innovative Drug R&D Center, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, China
| | - Yu-Ying Chen
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Qiu-Ping Liu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhi-Hui Feng
- Innovative Drug R&D Center, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, China
| | - Lei Zhang
- Innovative Drug R&D Center, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, China; Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai 200433, China.
| | - Hong Zhang
- Innovative Drug R&D Center, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, China.
| |
Collapse
|
160
|
Lorković ZJ, Klingenbrunner M, Cho CH, Berger F. Identification of plants' functional counterpart of the metazoan mediator of DNA Damage checkpoint 1. EMBO Rep 2024; 25:1936-1961. [PMID: 38438802 PMCID: PMC11014961 DOI: 10.1038/s44319-024-00107-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/13/2024] [Accepted: 02/19/2024] [Indexed: 03/06/2024] Open
Abstract
Induction of DNA damage triggers rapid phosphorylation of the histone H2A.X (γH2A.X). In animals, mediator of DNA damage checkpoint 1 (MDC1) binds γH2A.X through a tandem BRCA1 carboxyl-terminal (tBRCT) domain and mediates recruitment of downstream effectors of DNA damage response (DDR). However, readers of this modification in plants have remained elusive. We show that from the Arabidopsis BRCT domain proteome, BCP1-4 proteins with tBRCT domains are involved in DDR. Through its tBRCT domain BCP4 binds γH2A.X in vitro and localizes to DNA damage-induced foci in an H2A.X-dependent manner. BCP4 also contains a domain that interacts directly with NBS1 and thus acts as a functional counterpart of MDC1. We also show that BCP1, that contains two tBRCT domains, co-localizes with γH2A.X but it does not bind γH2A.X suggesting functional similarity with human PAXIP1. A phylogenetic analysis supports that PAXIP1 and MDC1 in metazoa and their plant counterparts evolved independently from common ancestors with tBRCT domains. Collectively, our study reveals missing components and provides mechanistic and evolutionary insights into plant DDR.
Collapse
Affiliation(s)
- Zdravko J Lorković
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria.
| | - Michael Klingenbrunner
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Chung Hyun Cho
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| | - Frédéric Berger
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria.
| |
Collapse
|
161
|
Wang P, Han Y, Pan W, Du J, Zuo D, Ba Y, Zhang H. Tyrosine phosphatase SHP2 aggravates tumor progression and glycolysis by dephosphorylating PKM2 in gastric cancer. MedComm (Beijing) 2024; 5:e527. [PMID: 38576457 PMCID: PMC10993348 DOI: 10.1002/mco2.527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 11/26/2023] [Accepted: 12/22/2023] [Indexed: 04/06/2024] Open
Abstract
Gastric cancer (GC) is among the most lethal human malignancies, yet it remains hampered by challenges in fronter of molecular-guided targeted therapy to direct clinical treatment strategies. The protein tyrosine phosphatase Src homology 2 domain-containing phosphatase 2 (SHP2) is involved in the malignant progression of GC. However, the detailed mechanisms of the posttranslational modifications of SHP2 remain poorly understood. Herein, we demonstrated that an allosteric SHP2 inhibitor, SHP099, was able to block tumor proliferation and migration of GC by dephosphorylating the pyruvate kinase M2 type (PKM2) protein. Mechanistically, we found that PKM2 is a bona fide target of SHP2. The dephosphorylation and activation of PKM2 by SHP2 are necessary to exacerbate tumor progression and GC glycolysis. Moreover, we demonstrated a strong correlation between the phosphorylation level of PKM2 and adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) in GC cells. Notably, the low phosphorylation expression of AMPK was negatively correlated with activated SHP2. Besides, we proved that cisplatin could activate SHP2 and SHP099 increased sensitivity to cisplatin in GC. Taken together, our results provide evidence that the SHP2/PKM2/AMPK axis exerts a key role in GC progression and glycolysis and could be a viable therapeutic approach for the therapy of GC.
Collapse
Affiliation(s)
- Peiyun Wang
- Tianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerTianjin's Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjin Medical UniversityTianjinChina
| | - Yueting Han
- Tianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerTianjin's Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjin Medical UniversityTianjinChina
| | - Wen Pan
- Tianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerTianjin's Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjin Medical UniversityTianjinChina
| | - Jian Du
- Tianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerTianjin's Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjin Medical UniversityTianjinChina
| | - Duo Zuo
- Tianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerTianjin's Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjin Medical UniversityTianjinChina
| | - Yi Ba
- Tianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerTianjin's Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjin Medical UniversityTianjinChina
| | - Haiyang Zhang
- Tianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerTianjin's Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjin Medical UniversityTianjinChina
- The Institute of Translational MedicineTianjin Union Medical Center of Nankai UniversityTianjinChina
| |
Collapse
|
162
|
Tong QY, Pang MJ, Hu XH, Huang XZ, Sun JX, Wang XY, Burclaff J, Mills JC, Wang ZN, Miao ZF. Gastric intestinal metaplasia: progress and remaining challenges. J Gastroenterol 2024; 59:285-301. [PMID: 38242996 DOI: 10.1007/s00535-023-02073-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/26/2023] [Indexed: 01/21/2024]
Abstract
Most gastric cancers arise in the setting of chronic inflammation which alters gland organization, such that acid-pumping parietal cells are lost, and remaining cells undergo metaplastic change in differentiation patterns. From a basic science perspective, recent progress has been made in understanding how atrophy and initial pyloric metaplasia occur. However, pathologists and cancer biologists have long been focused on the development of intestinal metaplasia patterns in this setting. Arguably, much less progress has been made in understanding the mechanisms that lead to the intestinalization seen in chronic atrophic gastritis and pyloric metaplasia. One plausible explanation for this disparity lies in the notable absence of reliable and reproducible small animal models within the field, which would facilitate the investigation of the mechanisms underlying the development of gastric intestinal metaplasia (GIM). This review offers an in-depth exploration of the current state of research in GIM, shedding light on its pivotal role in tumorigenesis. We delve into the histological subtypes of GIM and explore their respective associations with tumor formation. We present the current repertoire of biomarkers utilized to delineate the origins and progression of GIM and provide a comprehensive survey of the available, albeit limited, mouse lines employed for modeling GIM and engage in a discussion regarding potential cell lineages that serve as the origins of GIM. Finally, we expound upon the myriad signaling pathways recognized for their activity in GIM and posit on their potential overlap and interactions that contribute to the ultimate manifestation of the disease phenotype. Through our exhaustive review of the progression from gastric disease to GIM, we aim to establish the groundwork for future research endeavors dedicated to elucidating the etiology of GIM and developing strategies for its prevention and treatment, considering its potential precancerous nature.
Collapse
Affiliation(s)
- Qi-Yue Tong
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
| | - Min-Jiao Pang
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
| | - Xiao-Hai Hu
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
| | - Xuan-Zhang Huang
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
| | - Jing-Xu Sun
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
| | - Xin-Yu Wang
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
| | - Joseph Burclaff
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, USA
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, USA
| | - Jason C Mills
- Section of Gastroenterology and Hepatology, Department of Medicine, Departments of Pathology and Immunology, Molecular and Cellular Biology, Baylor College of Medicine, Houston, USA
| | - Zhen-Ning Wang
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China.
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China.
| | - Zhi-Feng Miao
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China.
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China.
| |
Collapse
|
163
|
Nichakawade TD, Ge J, Mog BJ, Lee BS, Pearlman AH, Hwang MS, DiNapoli SR, Wyhs N, Marcou N, Glavaris S, Konig MF, Gabelli SB, Watson E, Sterling C, Wagner-Johnston N, Rozati S, Swinnen L, Fuchs E, Pardoll DM, Gabrielson K, Papadopoulos N, Bettegowda C, Kinzler KW, Zhou S, Sur S, Vogelstein B, Paul S. TRBC1-targeting antibody-drug conjugates for the treatment of T cell cancers. Nature 2024; 628:416-423. [PMID: 38538786 PMCID: PMC11250631 DOI: 10.1038/s41586-024-07233-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 02/16/2024] [Indexed: 04/06/2024]
Abstract
Antibody and chimeric antigen receptor (CAR) T cell-mediated targeted therapies have improved survival in patients with solid and haematologic malignancies1-9. Adults with T cell leukaemias and lymphomas, collectively called T cell cancers, have short survival10,11 and lack such targeted therapies. Thus, T cell cancers particularly warrant the development of CAR T cells and antibodies to improve patient outcomes. Preclinical studies showed that targeting T cell receptor β-chain constant region 1 (TRBC1) can kill cancerous T cells while preserving sufficient healthy T cells to maintain immunity12, making TRBC1 an attractive target to treat T cell cancers. However, the first-in-human clinical trial of anti-TRBC1 CAR T cells reported a low response rate and unexplained loss of anti-TRBC1 CAR T cells13,14. Here we demonstrate that CAR T cells are lost due to killing by the patient's normal T cells, reducing their efficacy. To circumvent this issue, we developed an antibody-drug conjugate that could kill TRBC1+ cancer cells in vitro and cure human T cell cancers in mouse models. The anti-TRBC1 antibody-drug conjugate may provide an optimal format for TRBC1 targeting and produce superior responses in patients with T cell cancers.
Collapse
Affiliation(s)
- Tushar D Nichakawade
- Ludwig Center and Lustgarten Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Jiaxin Ge
- Ludwig Center and Lustgarten Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Brian J Mog
- Ludwig Center and Lustgarten Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Bum Seok Lee
- Ludwig Center and Lustgarten Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Alexander H Pearlman
- Ludwig Center and Lustgarten Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Michael S Hwang
- Ludwig Center and Lustgarten Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Genentech, San Francisco, CA, USA
| | - Sarah R DiNapoli
- Ludwig Center and Lustgarten Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Nicolas Wyhs
- Ludwig Center and Lustgarten Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Nikita Marcou
- Ludwig Center and Lustgarten Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Stephanie Glavaris
- Ludwig Center and Lustgarten Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Maximilian F Konig
- Ludwig Center and Lustgarten Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Division of Rheumatology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sandra B Gabelli
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Discovery Chemistry, Merck Research Laboratory, Merck and Co, West Point, PA, USA
| | - Evangeline Watson
- Ludwig Center and Lustgarten Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Cole Sterling
- Division of Hematologic Malignancies and Bone Marrow Transplantation, Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Nina Wagner-Johnston
- Division of Hematologic Malignancies and Bone Marrow Transplantation, Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Sima Rozati
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Lode Swinnen
- Division of Hematologic Malignancies and Bone Marrow Transplantation, Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Ephraim Fuchs
- Division of Hematologic Malignancies and Bone Marrow Transplantation, Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Drew M Pardoll
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Kathy Gabrielson
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Nickolas Papadopoulos
- Ludwig Center and Lustgarten Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Chetan Bettegowda
- Ludwig Center and Lustgarten Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kenneth W Kinzler
- Ludwig Center and Lustgarten Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Shibin Zhou
- Ludwig Center and Lustgarten Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Surojit Sur
- Ludwig Center and Lustgarten Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Bert Vogelstein
- Ludwig Center and Lustgarten Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Suman Paul
- Ludwig Center and Lustgarten Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Division of Hematologic Malignancies and Bone Marrow Transplantation, Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
164
|
Chapman TW, Kamen Y, Piedra ET, Hill RA. Oligodendrocyte Maturation Alters the Cell Death Mechanisms That Cause Demyelination. J Neurosci 2024; 44:e1794232024. [PMID: 38395617 PMCID: PMC10977033 DOI: 10.1523/jneurosci.1794-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Myelinating oligodendrocytes die in human disease and early in aging. Despite this, the mechanisms that underly oligodendrocyte death are not resolved and it is also not clear whether these mechanisms change as oligodendrocyte lineage cells are undergoing differentiation and maturation. Here, we used a combination of intravital imaging, single-cell ablation, and cuprizone-mediated demyelination, in both female and male mice, to discover that oligodendrocyte maturation dictates the dynamics and mechanisms of cell death. After single-cell phototoxic damage, oligodendrocyte precursor cells underwent programmed cell death within hours, differentiating oligodendrocytes died over several days, while mature oligodendrocytes took weeks to die. Importantly cells at each maturation stage all eventually died but did so with drastically different temporal dynamics and morphological features. Consistent with this, cuprizone treatment initiated a caspase-3-dependent form of rapid cell death in differentiating oligodendrocytes, while mature oligodendrocytes never activated this executioner caspase. Instead, mature oligodendrocytes exhibited delayed cell death which was marked by DNA damage and disruption in poly-ADP-ribose subcellular localization. Thus, oligodendrocyte maturation plays a key role in determining the mechanism of death a cell undergoes in response to the same insult. This means that oligodendrocyte maturation is important to consider when designing strategies for preventing cell death and preserving myelin while also enhancing the survival of new oligodendrocytes in demyelinating conditions.
Collapse
Affiliation(s)
- Timothy W Chapman
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755
| | - Yasmine Kamen
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755
| | - Enrique T Piedra
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755
| | - Robert A Hill
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755
| |
Collapse
|
165
|
Cao C, Wu R, Wang S, Zhuang L, Chen P, Li S, Zhu Q, Li H, Lin Y, Li M, Cao L, Chen J. Elucidating the changes in the heterogeneity and function of radiation-induced cardiac macrophages using single-cell RNA sequencing. Front Immunol 2024; 15:1363278. [PMID: 38601160 PMCID: PMC11004337 DOI: 10.3389/fimmu.2024.1363278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/08/2024] [Indexed: 04/12/2024] Open
Abstract
Purpose A mouse model of irradiation (IR)-induced heart injury was established to investigate the early changes in cardiac function after radiation and the role of cardiac macrophages in this process. Methods Cardiac function was evaluated by heart-to-tibia ratio, lung-to-heart ratio and echocardiography. Immunofluorescence staining and flow cytometry analysis were used to evaluate the changes of macrophages in the heart. Immune cells from heart tissues were sorted by magnetic beads for single-cell RNA sequencing, and the subsets of macrophages were identified and analyzed. Trajectory analysis was used to explore the differentiation relationship of each macrophage subset. The differentially expressed genes (DEGs) were compared, and the related enriched pathways were identified. Single-cell regulatory network inference and clustering (SCENIC) analysis was performed to identify the potential transcription factors (TFs) which participated in this process. Results Cardiac function temporarily decreased on Day 7 and returned to normal level on Day 35, accompanied by macrophages decreased and increased respectively. Then, we identified 7 clusters of macrophages by single-cell RNA sequencing and found two kinds of stage specific macrophages: senescence-associated macrophage (Cdkn1ahighC5ar1high) on Day 7 and interferon-associated macrophage (Ccr2highIsg15high) on Day 35. Moreover, we observed cardiac macrophages polarized over these two-time points based on M1/M2 and CCR2/major histocompatibility complex II (MHCII) expression. Finally, Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analyses suggested that macrophages on Day 7 were characterized by an inflammatory senescent phenotype with enhanced chemotaxis and inflammatory factors, while macrophages on Day 35 showed enhanced phagocytosis with reduced inflammation, which was associated with interferon-related pathways. SCENIC analysis showed AP-1 family members were associated with IR-induced macrophages changes. Conclusion We are the first study to characterize the diversity, features, and evolution of macrophages during the early stages in an IR-induced cardiac injury animal model.
Collapse
Affiliation(s)
- Chunxiang Cao
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Proton-therapy, Shanghai, China
| | - Ran Wu
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Proton-therapy, Shanghai, China
| | - Shubei Wang
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Proton-therapy, Shanghai, China
| | - Lingfang Zhuang
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peizhan Chen
- Clinical Research Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuyan Li
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Proton-therapy, Shanghai, China
| | - Qian Zhu
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Proton-therapy, Shanghai, China
| | - Huan Li
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Proton-therapy, Shanghai, China
| | - Yingying Lin
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Proton-therapy, Shanghai, China
| | - Min Li
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Proton-therapy, Shanghai, China
| | - Lu Cao
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Proton-therapy, Shanghai, China
| | - Jiayi Chen
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Proton-therapy, Shanghai, China
| |
Collapse
|
166
|
Zoch A, Konieczny G, Auchynnikava T, Stallmeyer B, Rotte N, Heep M, Berrens RV, Schito M, Kabayama Y, Schöpp T, Kliesch S, Houston B, Nagirnaja L, O'Bryan MK, Aston KI, Conrad DF, Rappsilber J, Allshire RC, Cook AG, Tüttelmann F, O'Carroll D. C19ORF84 connects piRNA and DNA methylation machineries to defend the mammalian germ line. Mol Cell 2024; 84:1021-1035.e11. [PMID: 38359823 PMCID: PMC10960678 DOI: 10.1016/j.molcel.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/01/2023] [Accepted: 01/17/2024] [Indexed: 02/17/2024]
Abstract
In the male mouse germ line, PIWI-interacting RNAs (piRNAs), bound by the PIWI protein MIWI2 (PIWIL4), guide DNA methylation of young active transposons through SPOCD1. However, the underlying mechanisms of SPOCD1-mediated piRNA-directed transposon methylation and whether this pathway functions to protect the human germ line remain unknown. We identified loss-of-function variants in human SPOCD1 that cause defective transposon silencing and male infertility. Through the analysis of these pathogenic alleles, we discovered that the uncharacterized protein C19ORF84 interacts with SPOCD1. DNMT3C, the DNA methyltransferase responsible for transposon methylation, associates with SPOCD1 and C19ORF84 in fetal gonocytes. Furthermore, C19ORF84 is essential for piRNA-directed DNA methylation and male mouse fertility. Finally, C19ORF84 mediates the in vivo association of SPOCD1 with the de novo methylation machinery. In summary, we have discovered a conserved role for the human piRNA pathway in transposon silencing and C19ORF84, an uncharacterized protein essential for orchestrating piRNA-directed DNA methylation.
Collapse
Affiliation(s)
- Ansgar Zoch
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, Institute for Stem Cell Research, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK; Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK.
| | - Gabriela Konieczny
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, Institute for Stem Cell Research, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK; Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Tania Auchynnikava
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Birgit Stallmeyer
- Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Nadja Rotte
- Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Madeleine Heep
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, Institute for Stem Cell Research, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK; Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Rebecca V Berrens
- Institute for Developmental and Regenerative Medicine, University of Oxford, IMS-Tetsuya Nakamura Building, Old Road Campus, Roosevelt Drive, Oxford OX37TY, UK
| | - Martina Schito
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, Institute for Stem Cell Research, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK; Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Yuka Kabayama
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, Institute for Stem Cell Research, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK; Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Theresa Schöpp
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, Institute for Stem Cell Research, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK; Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Sabine Kliesch
- Centre of Reproductive Medicine and Andrology, Department of Clinical and Surgical Andrology, University Hospital Münster, Münster, Germany
| | - Brendan Houston
- School of BioSciences and Bio21 Institute, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Liina Nagirnaja
- Division of Genetics, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| | - Moira K O'Bryan
- School of BioSciences and Bio21 Institute, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Kenneth I Aston
- Andrology and In Vitro Fertilization Laboratory, Department of Surgery (Urology), University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Donald F Conrad
- Division of Genetics, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA; Center for Embryonic Cell and Gene Therapy, Oregon Health and Science University, Portland, OR, USA
| | - Juri Rappsilber
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK; Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Robin C Allshire
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Atlanta G Cook
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Frank Tüttelmann
- Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Dónal O'Carroll
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, Institute for Stem Cell Research, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK; Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK.
| |
Collapse
|
167
|
Hill RJ, Bona N, Smink J, Webb HK, Crisp A, Garaycoechea JI, Crossan GP. p53 regulates diverse tissue-specific outcomes to endogenous DNA damage in mice. Nat Commun 2024; 15:2518. [PMID: 38514641 PMCID: PMC10957910 DOI: 10.1038/s41467-024-46844-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 03/08/2024] [Indexed: 03/23/2024] Open
Abstract
DNA repair deficiency can lead to segmental phenotypes in humans and mice, in which certain tissues lose homeostasis while others remain seemingly unaffected. This may be due to different tissues facing varying levels of damage or having different reliance on specific DNA repair pathways. However, we find that the cellular response to DNA damage determines different tissue-specific outcomes. Here, we use a mouse model of the human XPF-ERCC1 progeroid syndrome (XFE) caused by loss of DNA repair. We find that p53, a central regulator of the cellular response to DNA damage, regulates tissue dysfunction in Ercc1-/- mice in different ways. We show that ablation of p53 rescues the loss of hematopoietic stem cells, and has no effect on kidney, germ cell or brain dysfunction, but exacerbates liver pathology and polyploidisation. Mechanistically, we find that p53 ablation led to the loss of cell-cycle regulation in the liver, with reduced p21 expression. Eventually, p16/Cdkn2a expression is induced, serving as a fail-safe brake to proliferation in the absence of the p53-p21 axis. Taken together, our data show that distinct and tissue-specific functions of p53, in response to DNA damage, play a crucial role in regulating tissue-specific phenotypes.
Collapse
Affiliation(s)
- Ross J Hill
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, UK
| | - Nazareno Bona
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, UK
| | - Job Smink
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Utrecht, the Netherlands
| | - Hannah K Webb
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, UK
| | - Alastair Crisp
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, UK
| | - Juan I Garaycoechea
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Utrecht, the Netherlands.
| | - Gerry P Crossan
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, UK.
| |
Collapse
|
168
|
Knipper K, Hussein Y, Simon AG, Fretter C, Damanakis AI, Zhao Y, Bruns CJ, Schmidt T, Popp FC, Quaas A, Lyu SI. Upregulation of the histone γ-H2AX correlates with worse patient survival and basal-like subtype in pancreatic ductal adenocarcinoma. J Cancer Res Clin Oncol 2024; 150:137. [PMID: 38502354 PMCID: PMC10950965 DOI: 10.1007/s00432-024-05681-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 03/03/2024] [Indexed: 03/21/2024]
Abstract
PURPOSE Patients with pancreatic ductal adenocarcinoma (PDAC) have yet to experience significant benefits from targeted therapy. Olaparib is currently the only active substance in BRCA-mutated PDACs that successfully influences the DNA repair of carcinoma cells. H2AX belongs to the histone family and is known as a part of the DNA repair system. The inhibition of γ-H2AX could lead to the inhibition of mitotically active tumor cells. Therefore, we aimed to evaluate the predictive value of the γ-H2AX in patients with PDAC. METHODS All included patients (n = 311) received a pancreatic resection with curative intention in one of our PANCALYZE study centers. Subsequently, they were enrolled in a standardized follow-up protocol. Immunohistochemical stainings for γ-H2AX were conducted on tissue microarrays. RESULTS Patients exhibiting high levels of γ-H2AX expression experience more frequent R1 resections, indicating advanced tumor stages in this subgroup. Additionally, patients with high γ-H2AX expression demonstrated significantly poorer survival compared to those with low expression (median OS: 15 vs. 25 months, p < 0.001). In multivariate analyses, high γ-H2AX expression could be identified as an independent risk factor for worse patient survival. Moreover, high γ-H2AX expression could be more frequently observed in the more aggressive basal-like subtype. CONCLUSION γ-H2AX can be characterized as a predictive biomarker for poorer patient survival. Consequently, upcoming clinical trials focused on the efficacy of targeted therapies influencing the DNA repair system and radiotherapy should evaluate γ-H2AX as a potential biomarker for therapy response. Furthermore, γ-H2AX may serve as a viable target for treatment in the future.
Collapse
Affiliation(s)
- Karl Knipper
- Faculty of Medicine and University Hospital of Cologne, Department of General, Visceral and Cancer Surgery, University of Cologne, Cologne, Germany.
| | - Yussra Hussein
- Faculty of Medicine and University Hospital of Cologne, Department of General, Visceral and Cancer Surgery, University of Cologne, Cologne, Germany
| | - Adrian Georg Simon
- Faculty of Medicine and University Hospital of Cologne, Institute of Pathology, University of Cologne, Cologne, Germany
| | - Caroline Fretter
- Faculty of Medicine and University Hospital of Cologne, Institute of Pathology, University of Cologne, Cologne, Germany
| | - Alexander I Damanakis
- Faculty of Medicine and University Hospital of Cologne, Department of General, Visceral and Cancer Surgery, University of Cologne, Cologne, Germany
| | - Yue Zhao
- Faculty of Medicine and University Hospital of Cologne, Department of General, Visceral and Cancer Surgery, University of Cologne, Cologne, Germany
| | - Christiane J Bruns
- Faculty of Medicine and University Hospital of Cologne, Department of General, Visceral and Cancer Surgery, University of Cologne, Cologne, Germany
| | - Thomas Schmidt
- Faculty of Medicine and University Hospital of Cologne, Department of General, Visceral and Cancer Surgery, University of Cologne, Cologne, Germany
| | - Felix C Popp
- Faculty of Medicine and University Hospital of Cologne, Department of General, Visceral and Cancer Surgery, University of Cologne, Cologne, Germany
| | - Alexander Quaas
- Faculty of Medicine and University Hospital of Cologne, Institute of Pathology, University of Cologne, Cologne, Germany
| | - Su Ir Lyu
- Faculty of Medicine and University Hospital of Cologne, Institute of Pathology, University of Cologne, Cologne, Germany
| |
Collapse
|
169
|
Deng X, Liang S, Tang Y, Li Y, Xu R, Luo L, Wang Q, Zhang X, Liu Y. Adverse effects of bisphenol A and its analogues on male fertility: An epigenetic perspective. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123393. [PMID: 38266695 DOI: 10.1016/j.envpol.2024.123393] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/11/2023] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
In recent years, there has been growing concern about the adverse effects of endocrine disrupting chemicals (EDCs) on male fertility. Epigenetic modification is critical for male germline development, and has been suggested as a potential mechanism for impaired fertility induced by EDCs. Bisphenol A (BPA) has been recognized as a typical EDC. BPA and its analogues, which are still widely used in various consumer products, have garnered increasing attention due to their reproductive toxicity and the potential to induce epigenetic alteration. This literature review provides an overview of studies investigating the adverse effects of bisphenol exposures on epigenetic modifications and male fertility. Existing studies provide evidence that exposure to bisphenols can lead to adverse effects on male fertility, including declined semen quality, altered reproductive hormone levels, and adverse reproductive outcomes. Epigenetic patterns, including DNA methylation, histone modification, and non-coding RNA expression, can be altered by bisphenol exposures. Transgenerational effects, which influence the fertility and epigenetic patterns of unexposed generations, have also been identified. However, the magnitude and direction of certain outcomes varied across different studies. Investigations into the dynamics of histopathological and epigenetic alterations associated with bisphenol exposures during developmental stages can enhance the understanding of the epigenetic effects of bisphenols, the implication of epigenetic alteration on male fertility, and the health of successive generation.
Collapse
Affiliation(s)
- Xinyi Deng
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Sihan Liang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yuqian Tang
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute, Guangdong Provincial Fertility Hospital, Guangzhou, China
| | - Yingxin Li
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ruijun Xu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Lu Luo
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Qiling Wang
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute, Guangdong Provincial Fertility Hospital, Guangzhou, China
| | - Xinzong Zhang
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute, Guangdong Provincial Fertility Hospital, Guangzhou, China
| | - Yuewei Liu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
170
|
Black EM, Ramírez Parrado CA, Trier I, Li W, Joo YK, Pichurin J, Liu Y, Kabeche L. Chk2 sustains PLK1 activity in mitosis to ensure proper chromosome segregation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.08.584115. [PMID: 38559033 PMCID: PMC10979866 DOI: 10.1101/2024.03.08.584115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Polo-like kinase 1 (PLK1) protects against genome instability by ensuring timely and accurate mitotic cell division. PLK1 activity is tightly regulated throughout the cell cycle. Although the pathways that initially activate PLK1 in G2 are well-characterized, the factors that directly regulate PLK1 in mitosis remain poorly understood. Here, we identify that human PLK1 activity is sustained by the DNA damage response kinase Checkpoint kinase 2 (Chk2) in mitosis. Chk2 directly phosphorylates PLK1 T210, a residue on its T-loop whose phosphorylation is essential for full PLK1 kinase activity. Loss of Chk2-dependent PLK1 activity causes increased mitotic errors, including chromosome misalignment, chromosome missegregation, and cytokinetic defects. Moreover, Chk2 deficiency increases sensitivity to PLK1 inhibitors, suggesting that Chk2 status may be an informative biomarker for PLK1 inhibitor efficacy. This work demonstrates that Chk2 sustains mitotic PLK1 activity and protects genome stability through discrete functions in interphase DNA damage repair and mitotic chromosome segregation.
Collapse
|
171
|
Wu L, Chen L, Li H, Wang Y, Xu K, Chen W, Zhang A, Wang Y, Shi C. Nocardia rubra cell-wall skeleton mitigates whole abdominal irradiation-induced intestinal injury via regulating macrophage function. BURNS & TRAUMA 2024; 12:tkad045. [PMID: 38444637 PMCID: PMC10914217 DOI: 10.1093/burnst/tkad045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/13/2023] [Accepted: 08/16/2023] [Indexed: 03/07/2024]
Abstract
Background Ionizing radiation (IR)-induced intestinal injury is a major side effect and dose-limiting toxicity in patients receiving radiotherapy. There is an urgent need to identify an effective and safe radioprotectant to reduce radiation-induced intestinal injury. Immunoregulation is considered an effective strategy against IR-induced injury. The purpose of this article was to investigate the protective effect of Nocardia rubra cell wall skeleton (Nr-CWS), an immunomodulator, on radiation-induced intestinal damage and to explore its potential mechanism. Methods C57BL/6 J male mice exposed to 12 Gy whole abdominal irradiation (WAI) were examined for survival rate, morphology and function of the intestine and spleen, as well as the gut microbiota, to comprehensively evaluate the therapeutic effects of Nr-CWS on radiation-induced intestinal and splenetic injury. To further elucidate the underlying mechanisms of Nr-CWS-mediated intestinal protection, macrophages were depleted by clodronate liposomes to determine whether Nr-CWS-induced radioprotection is macrophage dependent, and the function of peritoneal macrophages stimulated by Nr-CWS was detected in vitro. Results Our data showed that Nr-CWS promoted the recovery of intestinal barrier function, enhanced leucine-rich repeat-containing G protein-coupled receptor 5+ intestinal stem cell survival and the regeneration of intestinal epithelial cells, maintained intestinal flora homeostasis, protected spleen morphology and function, and improved the outcome of mice exposed to 12 Gy WAI. Mechanistic studies indicated that Nr-CWS recruited macrophages to reduce WAI-induced intestinal damage. Moreover, macrophage depletion by clodronate liposomes blocked Nr-CWS-induced radioprotection. In vitro, we found that Nr-CWS activated the nuclear factor kappa-B signaling pathway and promoted the phagocytosis and migration ability of peritoneal macrophages. Conclusions Our study suggests the therapeutic effect of Nr-CWS on radiation-induced intestinal injury, and provides possible therapeutic strategy and potential preventive and therapeutic drugs to alleviate it.
Collapse
Affiliation(s)
- Lingling Wu
- Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, China
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Long Chen
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Huijuan Li
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Yawei Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Kexin Xu
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), 400038, Chongqing, China
- College of Biological Engineering, Chongqing University 400044, Chongqing, China
| | - Wanchao Chen
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Aihua Zhang
- Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, China
| | - Yu Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Chunmeng Shi
- Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, China
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| |
Collapse
|
172
|
Ip K, Song G, Banov D, Bassani AS, Liu Y, Song H, Valdez BC. Evaluation of the in vitro human skin percutaneous absorption of ketoprofen in topical anhydrous and aqueous gels. Skin Res Technol 2024; 30:e13589. [PMID: 38396354 PMCID: PMC10891364 DOI: 10.1111/srt.13589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/02/2024] [Indexed: 02/25/2024]
Abstract
BACKGROUND Ketoprofen is a nonsteroidal anti-inflammatory drug used for the treatment of acute and chronic pain associated with inflammatory conditions. This study aims to evaluate the in vitro percutaneous absorption of ketoprofen 10% formulated in proprietary anhydrous and aqueous gels using the Franz skin finite dose model. MATERIALS AND METHODS The anhydrous gel was initially characterized for cytotoxicity using EpiDerm skin tissue model by cell proliferation assay and Western blot analysis. The Ultra Performance Liquid Chromatography method for measuring ketoprofen was validated and the stability of ketoprofen 10% in the anhydrous gel formulation was evaluated at 5°C and 25°C for 181 days. The percutaneous absorption of ketoprofen was determined using donated human skin. The tissue sections were mounted within Franz diffusion cells. A variable finite dose of each ketoprofen formulation in either anhydrous or aqueous gel was applied to the skin sections and receptor solutions were collected at various time points. RESULTS Cell proliferation assay showed minimal cell death when EpiDerm skin tissue was exposed to the anhydrous gel for 24 h; the levels of protein markers of cell proliferation were not affected after 17-h exposure. Ketoprofen was stable in the anhydrous gel when stored at 5°C and 25°C. When compounded in the anhydrous and aqueous gels, ketoprofen had mean flux rate of 2.22 and 2.50 μg/cm2 /h, respectively, after 48 h. The drug was distributed to the epidermis and dermis sections of the skin. Both the anhydrous and aqueous gels facilitated the percutaneous absorption of ketoprofen without statistically significant differences. CONCLUSION The anhydrous gel can be used as a base to facilitate the transdermal delivery of ketoprofen. Although the anhydrous and aqueous gels can deliver a similar amount of ketoprofen, the anhydrous gel (water activity below 0.6) allows for extended default beyond-use-date of compounding preparations.
Collapse
Affiliation(s)
- Kendice Ip
- Professional Compounding Centers of America (PCCA)HoustonTexasUSA
| | - Guiyun Song
- Professional Compounding Centers of America (PCCA)HoustonTexasUSA
| | - Daniel Banov
- Professional Compounding Centers of America (PCCA)HoustonTexasUSA
| | | | - Yi Liu
- Professional Compounding Centers of America (PCCA)HoustonTexasUSA
| | - Hui Song
- Professional Compounding Centers of America (PCCA)HoustonTexasUSA
| | - Benigno C. Valdez
- Department of Stem Cell Transplantation and Cellular TherapyThe University of Texas MD, Anderson Cancer CenterHoustonTexasUSA
| |
Collapse
|
173
|
Zhu XY, Wang TY, Jia HR, Wu SY, Gao CZ, Li YH, Zhang X, Shan BH, Wu FG. A ferroptosis-reinforced nanocatalyst enhances chemodynamic therapy through dual H 2O 2 production and oxidative stress amplification. J Control Release 2024; 367:892-904. [PMID: 38278369 DOI: 10.1016/j.jconrel.2024.01.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 01/28/2024]
Abstract
The existence of a delicate redox balance in tumors usually leads to cancer treatment failure. Breaking redox homeostasis by amplifying oxidative stress and reducing glutathione (GSH) can accelerate cancer cell death. Herein, we construct a ferroptosis-reinforced nanocatalyst (denoted as HBGL) to amplify intracellular oxidative stress via dual H2O2 production-assisted chemodynamic therapy (CDT). Specifically, a long-circulating liposome is employed to deliver hemin (a natural iron-containing substrate for Fenton reaction and ferroptosis), β-lapachone (a DNA topoisomerase inhibitor with H2O2 generation capacity for chemotherapy), and glucose oxidase (which can consume glucose for starvation therapy and generate H2O2). HBGL can achieve rapid, continuous, and massive H2O2 and •OH production and GSH depletion in cancer cells, resulting in increased intracellular oxidative stress. Additionally, hemin can reinforce the ferroptosis-inducing ability of HBGL, which is reflected in the downregulation of glutathione peroxidase-4 and the accumulation of lipid peroxide. Notably, HBGL can disrupt endo/lysosomes and impair mitochondrial function in cancer cells. HBGL exhibits effective tumor-killing ability without eliciting obvious side effects, indicating its clinical translation potential for synergistic starvation therapy, chemotherapy, ferroptosis therapy, and CDT. Overall, this nanocatalytic liposome may be a promising candidate for achieving potentiated cancer treatment.
Collapse
Affiliation(s)
- Xiao-Yu Zhu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing 211189, PR China
| | - Tian-Yu Wang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing 211189, PR China
| | - Hao-Ran Jia
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing 211189, PR China
| | - Shun-Yu Wu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing 211189, PR China
| | - Cheng-Zhe Gao
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing 211189, PR China
| | - Yan-Hong Li
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing 211189, PR China
| | - Xinping Zhang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing 211189, PR China
| | - Bai-Hui Shan
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing 211189, PR China
| | - Fu-Gen Wu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing 211189, PR China.
| |
Collapse
|
174
|
Karagiannis TC, Orlowski C, Ververis K, Pitsillou E, Sarila G, Keating ST, Foong LJ, Fabris S, Ngo-Nguyen C, Malik N, Okabe J, Hung A, Mantamadiotis T, El-Osta A. γH2AX in mouse embryonic stem cells: Distribution during differentiation and following γ-irradiation. Cells Dev 2024; 177:203882. [PMID: 37956740 DOI: 10.1016/j.cdev.2023.203882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/20/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023]
Abstract
Phosphorylated histone H2AX (γH2AX) represents a sensitive molecular marker of DNA double-strand breaks (DSBs) and is implicated in stem cell biology. We established a model of mouse embryonic stem cell (mESC) differentiation and examined the dynamics of γH2AX foci during the process. Our results revealed high numbers of γH2AX foci in undifferentiated mESCs, decreasing as the cells differentiated towards the endothelial cell lineage. Notably, we observed two distinct patterns of γH2AX foci: the typical discrete γH2AX foci, which colocalize with the transcriptionally permissive chromatin mark H3K4me3, and the less well-characterized clustered γH2AX regions, which were only observed in intermediate progenitor cells. Next, we explored responses of mESCs to γ-radiation (137Cs). Following exposure to γ-radiation, mESCs showed a reduction in cell viability and increased γH2AX foci, indicative of radiosensitivity. Despite irradiation, surviving mESCs retained their differentiation potential. To further exemplify our findings, we investigated neural stem progenitor cells (NSPCs). Similar to mESCs, NSPCs displayed clustered γH2AX foci associated with progenitor cells and discrete γH2AX foci indicative of embryonic stem cells or differentiated cells. In conclusion, our findings demonstrate that γH2AX serves as a versatile marker of DSBs and may have a role as a biomarker in stem cell differentiation. The distinct patterns of γH2AX foci in differentiating mESCs and NSPCs provide valuable insights into DNA repair dynamics during differentiation, shedding light on the intricate balance between genomic integrity and cellular plasticity in stem cells. Finally, the clustered γH2AX foci observed in intermediate progenitor cells is an intriguing feature, requiring further exploration.
Collapse
Affiliation(s)
- Tom C Karagiannis
- Epigenetics in Human Health and Disease Program, Baker Heart and Diabetes Institute, 75 Commercial Road, Prahran, VIC 3004, Australia; Epigenomic Medicine Laboratory at prospED Training, Carlton, VIC 3053, Australia; Department of Clinical Pathology, The University of Melbourne, Parkville, VIC 3010, Australia; Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Christian Orlowski
- Epigenetics in Human Health and Disease Program, Baker Heart and Diabetes Institute, 75 Commercial Road, Prahran, VIC 3004, Australia
| | - Katherine Ververis
- Epigenomic Medicine Laboratory at prospED Training, Carlton, VIC 3053, Australia; Department of Clinical Pathology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Eleni Pitsillou
- Epigenomic Medicine Laboratory at prospED Training, Carlton, VIC 3053, Australia; School of Science, STEM College, RMIT University, VIC 3001, Australia
| | - Gulcan Sarila
- Epigenetics in Human Health and Disease Program, Baker Heart and Diabetes Institute, 75 Commercial Road, Prahran, VIC 3004, Australia
| | - Samuel T Keating
- Epigenetics in Human Health and Disease Program, Baker Heart and Diabetes Institute, 75 Commercial Road, Prahran, VIC 3004, Australia
| | - Laura J Foong
- Epigenomic Medicine Laboratory at prospED Training, Carlton, VIC 3053, Australia
| | - Stefanie Fabris
- Epigenomic Medicine Laboratory at prospED Training, Carlton, VIC 3053, Australia
| | - Christina Ngo-Nguyen
- Epigenomic Medicine Laboratory at prospED Training, Carlton, VIC 3053, Australia
| | - Neha Malik
- Epigenomic Medicine Laboratory at prospED Training, Carlton, VIC 3053, Australia
| | - Jun Okabe
- Epigenetics in Human Health and Disease Program, Baker Heart and Diabetes Institute, 75 Commercial Road, Prahran, VIC 3004, Australia
| | - Andrew Hung
- School of Science, STEM College, RMIT University, VIC 3001, Australia
| | - Theo Mantamadiotis
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC 3010, Australia; Department of Surgery (RMH), The University of Melbourne, Parkville, VIC 3010, Australia
| | - Assam El-Osta
- Epigenetics in Human Health and Disease Program, Baker Heart and Diabetes Institute, 75 Commercial Road, Prahran, VIC 3004, Australia; Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia; Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Sha Tin, Hong Kong; Hong Kong Institute of Diabetes and Obesity, Prince of Wales Hospital, The Chinese University of Hong Kong, 3/F Lui Che Woo Clinical Sciences Building, 30-32 Ngan Shing Street, Sha Tin, Hong Kong; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong; Biomedical Laboratory Science, Department of Technology, Faculty of Health, University College Copenhagen, Copenhagen, Denmark
| |
Collapse
|
175
|
Pagano S, Valenti C, Negri P, Billi M, Di Michele A, Bruscoli S, Febo M, Coniglio M, Marinucci L. Acute and chronic cannabidiol treatment: In vitro toxicological aspects on human oral cells. Food Chem Toxicol 2024; 185:114513. [PMID: 38342230 DOI: 10.1016/j.fct.2024.114513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/13/2024]
Abstract
Cannabidiol is gaining increasing interest for its potential anti-inflammatory, immunomodulatory, and antineoplastic effects. The purpose of this study is to investigate the biological effects of acute and chronic CBD administration on gingival fibroblasts and oral keratinocytes. Viability, morphology, migration, apoptosis and cell cycle, and expression of related genes (p53, BCL2, p21, and BAX) and of endocannabinoid system receptors (CB1, CB2 and GPR55) with real-time PCR and DNA damage with phospho-γ-H2AX immunofluorescence detection were analyzed. Concentrations between 100 μM and 0.001 μM were used: 50 μM (toxic dose), 25 μM (viability promoter), and 1 μM (nontoxic), were selected for subsequent chronic analysis. Acute treatment reveals significant effects than chronic, in particular in fibroblasts: concentrations ≥50 μM are highly cytotoxic, with increased apoptosis and reduced migration. Cell death correlates with increased p53 and BAX, followed by arrest in G0/G1 phase, with elevated p21 levels, suggesting a time- and dose-dependent damage. An increase in H2AX phosphorylation was observed with 25 μM and 50 μM, while 1 μM was biocompatible. Keratinocytes showed less cytotoxic effect than fibroblasts. Induced cell damage was dose- and time-related, with less damage after chronic treatment. Further investigations are needed with longer time frames to evaluate CBD dose- and time-dependent effects to identify an effective therapeutic dose.
Collapse
Affiliation(s)
- Stefano Pagano
- Department of Medicine and Surgery, Faculty of Dentistry, University of Perugia, S. Andrea delle Fratte, 06156, Perugia, Italy.
| | - Chiara Valenti
- Department of Medicine and Surgery, Faculty of Dentistry, University of Perugia, S. Andrea delle Fratte, 06156, Perugia, Italy; CISAS "Giuseppe Colombo", University of Padua, Via Venezia, 15, 35131, Padua, Italy.
| | - Paolo Negri
- Department of Medicine and Surgery, Faculty of Dentistry, University of Perugia, S. Andrea delle Fratte, 06156, Perugia, Italy.
| | - Monia Billi
- Department of Medicine and Surgery, Section of General Pathology, University of Perugia, S. Andrea delle Fratte, 06156, Perugia, Italy.
| | - Alessandro Di Michele
- Department of Physics and Geology, University of Perugia, Via Pascoli, 06123, Perugia, Italy.
| | - Stefano Bruscoli
- Department of Medicine and Surgery, Section of Pharmacology, University of Perugia, S. Andrea delle Fratte, 06156, Perugia, Italy.
| | - Marta Febo
- Department of Medicine and Surgery, Section of Pharmacology, University of Perugia, S. Andrea delle Fratte, 06156, Perugia, Italy.
| | - Maddalena Coniglio
- Department of Medicine and Surgery, Faculty of Dentistry, University of Perugia, S. Andrea delle Fratte, 06156, Perugia, Italy.
| | - Lorella Marinucci
- Department of Medicine and Surgery, Section of Biosciences and Medical Embryology, University of Perugia, S. Andrea delle Fratte, 06156, Perugia, Italy.
| |
Collapse
|
176
|
Reyes-Ábalos AL, Álvarez-Zabaleta M, Olivera-Bravo S, Di Tomaso MV. Acute Genetic Damage Induced by Ethanol and Corticosterone Seems to Modulate Hippocampal Astrocyte Signaling. Int J Cell Biol 2024; 2024:5524487. [PMID: 38439918 PMCID: PMC10911912 DOI: 10.1155/2024/5524487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 01/10/2024] [Accepted: 01/25/2024] [Indexed: 03/06/2024] Open
Abstract
Astrocytes maintain CNS homeostasis but also critically contribute to neurological and psychiatric disorders. Such functional diversity implies an extensive signaling repertoire including extracellular vesicles (EVs) and nanotubes (NTs) that could be involved in protection or damage, as widely shown in various experimental paradigms. However, there is no information associating primary damage to the astrocyte genome, the DNA damage response (DDR), and the EV and NT repertoire. Furthermore, similar studies were not performed on hippocampal astrocytes despite their involvement in memory and learning processes, as well as in the development and maintenance of alcohol addiction. By exposing murine hippocampal astrocytes to 400 mM ethanol (EtOH) and/or 1 μM corticosterone (CTS) for 1 h, we tested whether the induced DNA damage and DDR could elicit significant changes in NTs and surface-attached EVs. Genetic damage and initial DDR were assessed by immunolabeling against the phosphorylated histone variant H2AX (γH2AX), DDR-dependent apoptosis by BAX immunoreactivity, and astrocyte activation by the glial acidic fibrillary protein (GFAP) and phalloidin staining. Surface-attached EVs and NTs were examined via scanning electron microscopy, and labeled proteins were analyzed via confocal microscopy. Relative to controls, astrocytes exposed to EtOH, CTS, or EtOH+CTS showed significant increases in nuclear γlH2AX foci, nuclear and cytoplasmic BAX signals, and EV frequency at the expense of the NT amount, mainly upon EtOH, without detectable signs of morphological reactivity. Furthermore, the largest and most complex EVs originated only in DNA-damaged astrocytes. Obtained results revealed that astrocytes exposed to acute EtOH and/or CTS preserved their typical morphology but presented severe DNA damage, triggered canonical DDR pathways, and early changes in the cell signaling mediated by EVs and NTs. Further deepening of this initial morphological and quantitative analysis is necessary to identify the mechanistic links between genetic damage, DDR, cell-cell communication, and their possible impact on hippocampal neural cells.
Collapse
Affiliation(s)
- Ana Laura Reyes-Ábalos
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable-Ministerio de Educación y Cultura, Montevideo, Uruguay
- Unidad de Microscopía Electrónica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Magdalena Álvarez-Zabaleta
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable-Ministerio de Educación y Cultura, Montevideo, Uruguay
| | - Silvia Olivera-Bravo
- Departamento de Neurobiología y Neuropatología, Instituto de Investigaciones Biológicas Clemente Estable-Ministerio de Educación y Cultura, Montevideo, Uruguay
| | - María Vittoria Di Tomaso
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable-Ministerio de Educación y Cultura, Montevideo, Uruguay
| |
Collapse
|
177
|
Contreras L, García-Gaipo L, Casar B, Gandarillas A. DNA damage signalling histone H2AX is required for tumour growth. Cell Death Discov 2024; 10:99. [PMID: 38402225 PMCID: PMC10894207 DOI: 10.1038/s41420-024-01869-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 02/06/2024] [Accepted: 02/14/2024] [Indexed: 02/26/2024] Open
Abstract
Cancer most frequently develops in self-renewal tissues that are the target of genetic alterations due to mutagens or intrinsic DNA replication errors. Histone γH2AX has a critical role in the cellular DNA repair pathway cascade and contributes to genomic stability. However, the role of γH2AX in the ontology of cancer is unclear. We have investigated this issue in the epidermis, a self-renewal epithelium continuously exposed to genetic hazard and replication stress. Silencing H2AX caused cell cycle hyperactivation, impaired DNA repair and epidermal hyperplasia in the skin. However, mutagen-induced carcinogenesis was strikingly reduced in the absence of H2AX. KO tumours appeared significantly later than controls and were fewer, smaller and more benign. The stem cell marker Δp63 drastically diminished in the KO epidermis. We conclude that H2AX is required for tissue-making during both homoeostasis and tumourigenesis, possibly by contributing to the control and repair of stem cells. Therefore, although H2AX is thought to act as a tumour suppressor and our results show that it contributes to homeostasis, they also indicate that it is required for the development of cancer.
Collapse
Affiliation(s)
- Lizbeth Contreras
- Cell cycle, Stem Cell Fate and Cancer Laboratory, Institute for Research Marqués de Valdecilla (IDIVAL), 39011, Santander, Spain
| | - Lorena García-Gaipo
- Cell cycle, Stem Cell Fate and Cancer Laboratory, Institute for Research Marqués de Valdecilla (IDIVAL), 39011, Santander, Spain
| | - Berta Casar
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Cantabria (UC), 39011, Santander, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Alberto Gandarillas
- Cell cycle, Stem Cell Fate and Cancer Laboratory, Institute for Research Marqués de Valdecilla (IDIVAL), 39011, Santander, Spain.
- Institut National de la Santé et de la Recherche Médicale, (INSERM), Délégation Occitanie, 34394, Montpellier, France.
| |
Collapse
|
178
|
Chang YJ, Lin KT, Shih O, Yang CH, Chuang CY, Fang MH, Lai WB, Lee YC, Kuo HC, Hung SC, Yao CK, Jeng US, Chen YR. Sulfated disaccharide protects membrane and DNA damages from arginine-rich dipeptide repeats in ALS. SCIENCE ADVANCES 2024; 10:eadj0347. [PMID: 38394210 PMCID: PMC10889363 DOI: 10.1126/sciadv.adj0347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 01/22/2024] [Indexed: 02/25/2024]
Abstract
Hexanucleotide repeat expansion in C9ORF72 (C9) is the most prevalent mutation among amyotrophic lateral sclerosis (ALS) patients. The patients carry over ~30 to hundreds or thousands of repeats translated to dipeptide repeats (DPRs) where poly-glycine-arginine (GR) and poly-proline-arginine (PR) are most toxic. The structure-function relationship is still unknown. Here, we examined the minimal neurotoxic repeat number of poly-GR and found that extension of the repeat number led to a loose helical structure disrupting plasma and nuclear membrane. Poly-GR/PR bound to nucleotides and interfered with transcription. We screened and identified a sulfated disaccharide that bound to poly-GR/PR and rescued poly-GR/PR-induced toxicity in neuroblastoma and C9-ALS-iPSC-derived motor neurons. The compound rescued the shortened life span and defective locomotion in poly-GR/PR expressing Drosophila model and improved motor behavior in poly-GR-injected mouse model. Overall, our results reveal structural and toxicity mechanisms for poly-GR/PR and facilitate therapeutic development for C9-ALS.
Collapse
Affiliation(s)
- Yu-Jen Chang
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Taiwan University and Academia Sinica, Taipei 115, Taiwan
| | - Kai-Tai Lin
- National Synchrotron Radiation Research Center, Hsinchu 300, Taiwan
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Orion Shih
- National Synchrotron Radiation Research Center, Hsinchu 300, Taiwan
| | - Chi-Hua Yang
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Ching-Yu Chuang
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Ming-Han Fang
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Wei-Bin Lai
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Yi-Chung Lee
- Department of Neurology, Taipei Veterans General Hospital, Taipei 112, Taiwan
- Department of Neurology, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan
| | - Hung-Chih Kuo
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan
| | | | - Chi-Kuang Yao
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106, Taiwan
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - U-Ser Jeng
- National Synchrotron Radiation Research Center, Hsinchu 300, Taiwan
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Yun-Ru Chen
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Taiwan University and Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
179
|
Meng X, Fan H, Chen L, He J, Hong C, Xie J, Hou Y, Wang K, Gao X, Gao L, Yan X, Fan K. Ultrasmall metal alloy nanozymes mimicking neutrophil enzymatic cascades for tumor catalytic therapy. Nat Commun 2024; 15:1626. [PMID: 38388471 PMCID: PMC10884023 DOI: 10.1038/s41467-024-45668-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 01/31/2024] [Indexed: 02/24/2024] Open
Abstract
Developing strategies that emulate the killing mechanism of neutrophils, which involves the enzymatic cascade of superoxide dismutase (SOD) and myeloperoxidase (MPO), shows potential as a viable approach for cancer therapy. Nonetheless, utilizing natural enzymes as therapeutics is hindered by various challenges. While nanozymes have emerged for cancer treatment, developing SOD-MPO cascade in one nanozyme remains a challenge. Here, we develop nanozymes possessing both SOD- and MPO-like activities through alloying Au and Pd, which exhibits the highest cascade activity when the ratio of Au and Pd is 1:3, attributing to the high d-band center and adsorption energy for superoxide anions, as determined through theoretical calculations. The Au1Pd3 alloy nanozymes exhibit excellent tumor therapeutic performance and safety in female tumor-bearing mice, with safety attributed to their tumor-specific killing ability and renal clearance ability caused by ultrasmall size. Together, this work develops ultrasmall AuPd alloy nanozymes that mimic neutrophil enzymatic cascades for catalytic treatment of tumors.
Collapse
Affiliation(s)
- Xiangqin Meng
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Huizhen Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Lei Chen
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, PR China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China
| | - Jiuyang He
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Chaoyi Hong
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, PR China
- University of Chinese Academy of Sciences, Beijing, 101408, PR China
| | - Jiaying Xie
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, PR China
- University of Chinese Academy of Sciences, Beijing, 101408, PR China
| | - Yinyin Hou
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, PR China
- University of Chinese Academy of Sciences, Beijing, 101408, PR China
| | - Kaidi Wang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, PR China
- University of Chinese Academy of Sciences, Beijing, 101408, PR China
| | - Xingfa Gao
- National Center for Nanoscience and Technology, Beijing, 100190, PR China
| | - Lizeng Gao
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, PR China
- University of Chinese Academy of Sciences, Beijing, 101408, PR China
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, PR China
| | - Xiyun Yan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, PR China.
- University of Chinese Academy of Sciences, Beijing, 101408, PR China.
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, PR China.
- Nanozyme Laboratory in Zhongyuan, Zhengzhou, 451163, Henan, PR China.
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, PR China.
- University of Chinese Academy of Sciences, Beijing, 101408, PR China.
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, PR China.
- Nanozyme Laboratory in Zhongyuan, Zhengzhou, 451163, Henan, PR China.
| |
Collapse
|
180
|
Chen Z, Wakabayashi H, Kuroda R, Mori H, Hiromasa T, Kayano D, Kinuya S. Radiation exposure lymphocyte damage assessed by γ-H2AX level using flow cytometry. Sci Rep 2024; 14:4339. [PMID: 38383619 PMCID: PMC10881581 DOI: 10.1038/s41598-024-54986-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 02/19/2024] [Indexed: 02/23/2024] Open
Abstract
DNA double-strand breaks (DSBs) are considered the most relevant lesions to the DNA damage of ionizing radiation (IR), and γ-H2AX foci in peripheral blood lymphocytes are regarded as an adequate marker for DSB quantitative studies. This study aimed to investigate IR-induced DNA damage in mice through γ-H2AX fluorescence analyses by flow cytometry (FCM). The levels of γ-H2AX in CD4/CD8/B220-positive lymphocytes were quantified by FCM through mean fluorescence intensity (MFI) values. Peripheral venous blood samples were collected for evaluation, and all the control groups were restrained from irradiation. For external irradiation experiments, the dose-dependency of MFI values and temporal alternations were assessed both in vitro and in vivo. External radiation exposure damage was positively correlated with the absorbed radiation dose, and the lymphocyte recovered from damage within 3 days. I-131 sodium iodide solution (74 MBq) was injected into the mice intraperitoneally for internal irradiation experiments. Gamma counting and γH2AX foci analyses were performed at 1 h and 24 h by the group. The blood-to-blood S values (Sblood←blood) were applied for the blood-absorbed dose estimation. Internal low-dose-irradiation-induced damage was proved to recover within 24 h. The FCM method was found to be an effective way of quantitatively assessing IR-induced DNA damage.
Collapse
Affiliation(s)
- Zhuoqing Chen
- Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Hiroshi Wakabayashi
- Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan.
| | - Rie Kuroda
- Department of Pediatrics, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Hiroshi Mori
- Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Tomo Hiromasa
- Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Daiki Kayano
- Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Seigo Kinuya
- Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| |
Collapse
|
181
|
Randolph ME, Afifi M, Gorthi A, Weil R, Wilky BA, Weinreb J, Ciero P, Hoeve NT, van Diest PJ, Raman V, Bishop AJ, Loeb DM. RNA helicase DDX3 regulates RAD51 localization and DNA damage repair in Ewing sarcoma. iScience 2024; 27:108925. [PMID: 38323009 PMCID: PMC10844834 DOI: 10.1016/j.isci.2024.108925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 12/09/2023] [Accepted: 01/12/2024] [Indexed: 02/08/2024] Open
Abstract
We previously demonstrated that RNA helicase DDX3X (DDX3) can be a therapeutic target in Ewing sarcoma (EWS), but its role in EWS biology remains unclear. The present work demonstrates that DDX3 plays a unique role in DNA damage repair (DDR). We show that DDX3 interacts with several proteins involved in homologous recombination, including RAD51, RECQL1, RPA32, and XRCC2. In particular, DDX3 colocalizes with RAD51 and RNA:DNA hybrid structures in the cytoplasm of EWS cells. Inhibition of DDX3 RNA helicase activity increases cytoplasmic RNA:DNA hybrids, sequestering RAD51 in the cytoplasm, which impairs nuclear translocation of RAD51 to sites of double-stranded DNA breaks, thus increasing sensitivity of EWS to radiation treatment, both in vitro and in vivo. This discovery lays the foundation for exploring new therapeutic approaches directed at manipulating DDR protein localization in solid tumors.
Collapse
Affiliation(s)
- Matthew E. Randolph
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Marwa Afifi
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Aparna Gorthi
- Greehey Children’s Cancer Research Institute and Department of Cell Systems & Anatomy, UT Health San Antonio, San Antonio, TX, USA
| | - Rachel Weil
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Breelyn A. Wilky
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Joshua Weinreb
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Paul Ciero
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Natalie ter Hoeve
- Department of Pathology, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Paul J. van Diest
- Department of Pathology, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Venu Raman
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
- Department of Radiology, Johns Hopkins University, Baltimore, MD, USA
- Department of Pharmacology, Johns Hopkins University, Baltimore, MD, USA
| | - Alexander J.R. Bishop
- Greehey Children’s Cancer Research Institute and Department of Cell Systems & Anatomy, UT Health San Antonio, San Antonio, TX, USA
| | - David M. Loeb
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
182
|
Cozzolino M, Ergun Y, Ristori E, Garg A, Imamoglu G, Seli E. Disruption of mitochondrial unfolded protein response results in telomere shortening in mouse oocytes and somatic cells. Aging (Albany NY) 2024; 16:2047-2060. [PMID: 38349865 PMCID: PMC10911389 DOI: 10.18632/aging.205543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/01/2023] [Indexed: 02/15/2024]
Abstract
Caseinolytic peptidase P (CLPP) plays a central role in mitochondrial unfolded protein response (mtUPR) by promoting the breakdown of misfolded proteins and setting in motion a cascade of reactions to re-establish protein homeostasis. Global germline deletion of Clpp in mice results in female infertility and accelerated follicular depletion. Telomeres are tandem repeats of 5'-TTAGGG-3' sequences found at the ends of the chromosomes. Telomeres are essential for maintaining chromosome stability during somatic cell division and their shortening is associated with cellular senescence and aging. In this study, we asked whether the infertility and ovarian aging phenotype caused by global germline deletion of Clpp is associated with somatic aging, and tested telomere length in tissues of young and aging mice. We found that impaired mtUPR caused by the lack of CLPP is associated with accelerated telomere shortening in both oocytes and somatic cells of aging mice. In addition, expression of several genes that maintain telomere integrity was decreased, and double-strand DNA breaks were increased in telomeric regions. Our results highlight how impaired mtUPR can affect telomere integrity and demonstrate a link between loss of mitochondrial protein hemostasis, infertility, and somatic aging.
Collapse
Affiliation(s)
- Mauro Cozzolino
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT 06510, USA
- IVIRMA Global Research Alliance, IVIRMA Roma, Rome, Italy
- IVIRMA Global Research Alliance, Fundacion IVI-IIS la Fe, Valencia, Spain
| | - Yagmur Ergun
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT 06510, USA
- IVIRMA Global Research Alliance, IVIRMA New Jersey, Marlton, NJ 08053, USA
| | - Emma Ristori
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Akanksha Garg
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Gizem Imamoglu
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT 06510, USA
| | - Emre Seli
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT 06510, USA
- IVIRMA Global Research Alliance, IVIRMA New Jersey, Basking Ridge, NJ 07920, USA
| |
Collapse
|
183
|
Bodgi L, Bou-Gharios J, Azzi J, Challita R, Feghaly C, Baalbaki K, Kharroubi H, Chhade F, Geara F, Abou-Kheir W, Ayoub Z. Effect of bisphosphonates and statins on the in vitro radiosensitivity of breast cancer cell lines. Pharmacol Rep 2024; 76:171-184. [PMID: 38151641 DOI: 10.1007/s43440-023-00560-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND Early-stage breast cancer is usually treated with breast-conserving surgery followed by adjuvant radiation therapy. Acute skin toxicity is a common radiation-induced side effect experienced by many patients. Recently, a combination of bisphosphonates (zoledronic acid) and statins (pravastatin), or ZOPRA, was shown to radio-protect normal tissues by enhancing DNA double-strand breaks (DSB) repair mechanism. However, there are no studies assessing the effect of ZOPRA on cancerous cells. The purpose of this study is to characterize the in vitro effect of the zoledronic acid (ZO), pravastatin (PRA), and ZOPRA treatment on the molecular and cellular radiosensitivity of breast cancer cell lines. MATERIALS Two breast cancer cell lines, MDA MB 231 and MCF-7, were tested. Cells were treated with different concentrations of pravastatin (PRA), zoledronate (ZO), as well as their ZOPRA combination, before irradiation. Anti-γH2AX and anti-pATM immunofluorescence were performed to study DNA DSB repair kinetics. MTT assay was performed to assess cell proliferation and viability, and flow cytometry was performed to analyze the effect of the drugs on the cell cycle distribution. The clonogenic assay was used to assess cell survival. RESULTS ZO, PRA, and ZOPRA treatments were shown to increase the residual number of γH2AX foci for both cell lines. ZOPRA treatment was also shown to reduce the activity of the ATM kinase in MCF-7. ZOPRA induced a significant decrease in cell survival for both cell lines. CONCLUSIONS Our findings show that pretreatment with ZOPRA can decrease the radioresistance of breast cancer cells at the molecular and cellular levels. The fact that ZOPRA was previously shown to radioprotect normal tissues, makes it a good candidate to become a therapeutic window-widening drug.
Collapse
Affiliation(s)
- Larry Bodgi
- Department of Radiation Oncology, American University of Beirut Medical Center, Beirut, Lebanon
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Jolie Bou-Gharios
- Department of Radiation Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Joyce Azzi
- Department of Radiation Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Rafka Challita
- Department of Radiation Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Charbel Feghaly
- Department of Radiation Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Khanom Baalbaki
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Hussein Kharroubi
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Fatima Chhade
- Department of Radiation Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Fady Geara
- Department of Radiation Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| | - Zeina Ayoub
- Department of Radiation Oncology, American University of Beirut Medical Center, Beirut, Lebanon.
| |
Collapse
|
184
|
Sutcu HH, Rassinoux P, Donnio LM, Neuillet D, Vianna F, Gabillot O, Mari PO, Baldeyron C, Giglia-Mari G. Decline of DNA damage response along with myogenic differentiation. Life Sci Alliance 2024; 7:e202302279. [PMID: 37993260 PMCID: PMC10665522 DOI: 10.26508/lsa.202302279] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/24/2023] Open
Abstract
DNA integrity is incessantly confronted to agents inducing DNA lesions. All organisms are equipped with a network of DNA damage response mechanisms that will repair DNA lesions and restore proper cellular activities. Despite DNA repair mechanisms have been revealed in replicating cells, still little is known about how DNA lesions are repaired in postmitotic cells. Muscle fibers are highly specialized postmitotic cells organized in syncytia and they are vulnerable to age-related degeneration and atrophy after radiotherapy treatment. We have studied the DNA repair capacity of muscle fiber nuclei and compared it with the one measured in proliferative myoblasts here. We focused on the DNA repair mechanisms that correct ionizing radiation (IR)-induced lesions, namely the base excision repair, the nonhomologous end joining, and the homologous recombination (HR). We found that in the most differentiated myogenic cells, myotubes, these DNA repair mechanisms present weakened kinetics of recruitment of DNA repair proteins to IR-damaged DNA. For base excision repair and HR, this decline can be linked to reduced steady-state levels of key proteins involved in these processes.
Collapse
Affiliation(s)
- Haser H Sutcu
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SERAMED/LRAcc, Fontenay-aux-Roses, France
| | - Phoebe Rassinoux
- Pathophysiology and Genetics of Neuron and Muscle (INMG-PGNM) CNRS UMR 5261, INSERM U1315, Université Claude Bernard Lyon 1, Lyon, France
| | - Lise-Marie Donnio
- Pathophysiology and Genetics of Neuron and Muscle (INMG-PGNM) CNRS UMR 5261, INSERM U1315, Université Claude Bernard Lyon 1, Lyon, France
| | - Damien Neuillet
- Pathophysiology and Genetics of Neuron and Muscle (INMG-PGNM) CNRS UMR 5261, INSERM U1315, Université Claude Bernard Lyon 1, Lyon, France
| | - François Vianna
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SDOS/LMDN, Saint-Paul-Lez-Durance, France
| | - Olivier Gabillot
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SERAMED/LRAcc, Fontenay-aux-Roses, France
| | - Pierre-Olivier Mari
- Pathophysiology and Genetics of Neuron and Muscle (INMG-PGNM) CNRS UMR 5261, INSERM U1315, Université Claude Bernard Lyon 1, Lyon, France
| | - Céline Baldeyron
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SERAMED/LRAcc, Fontenay-aux-Roses, France
| | - Giuseppina Giglia-Mari
- Pathophysiology and Genetics of Neuron and Muscle (INMG-PGNM) CNRS UMR 5261, INSERM U1315, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
185
|
Vivek Hari Sundar G, Madhu A, Archana A, Shivaprasad PV. Plant histone variants at the nexus of chromatin readouts, stress and development. Biochim Biophys Acta Gen Subj 2024; 1868:130539. [PMID: 38072208 DOI: 10.1016/j.bbagen.2023.130539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 11/21/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
Histones are crucial proteins that are involved in packaging the DNA as condensed chromatin inside the eukaryotic cell nucleus. Rather than being static packaging units, these molecules undergo drastic variations spatially and temporally to facilitate accessibility of DNA to replication, transcription as well as wide range of gene regulatory machineries. In addition, incorporation of paralogous variants of canonical histones in the chromatin is ascribed to specific functions. Given the peculiar requirement of plants to rapidly modulate gene expression levels on account of their sessile nature, histones and their variants serve as additional layers of gene regulation. This review summarizes the mechanisms and implications of distribution, modifications and differential incorporation of histones and their variants across plant genomes, and outlines emerging themes.
Collapse
Affiliation(s)
- G Vivek Hari Sundar
- National Centre for Biological Sciences, TIFR, GKVK Campus, Bangalore, India
| | - Aravind Madhu
- National Centre for Biological Sciences, TIFR, GKVK Campus, Bangalore, India; SASTRA University, Thirumalaisamudram, Thanjavur 613 401, India
| | - A Archana
- National Centre for Biological Sciences, TIFR, GKVK Campus, Bangalore, India; SASTRA University, Thirumalaisamudram, Thanjavur 613 401, India
| | - P V Shivaprasad
- National Centre for Biological Sciences, TIFR, GKVK Campus, Bangalore, India.
| |
Collapse
|
186
|
Kim J, Yoo ID, Lim J, Moon JS. Pathological phenotypes of astrocytes in Alzheimer's disease. Exp Mol Med 2024; 56:95-99. [PMID: 38172603 PMCID: PMC10834520 DOI: 10.1038/s12276-023-01148-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 01/05/2024] Open
Abstract
Astrocytes are involved in various processes in the central nervous system (CNS). As the most abundant cell type in the CNS, astrocytes play an essential role in neuronal maintenance and support, synaptic activity, neuronal metabolism, and amyloid-beta (Aβ) clearance. Alzheimer's disease (AD) is a neurodegenerative disorder associated with cognitive and behavioral impairment. The transformation of astrocytes is involved in various neurodegenerative diseases, such as AD. Since astrocytes have functional diversity and morphological and physiological heterogeneity in the CNS, AD-related astrocytes might show various pathological phenotypes during AD. Astrocytes developing pathological phenotypes could contribute to AD progression. In this review, we provide an overview of the pathological phenotypes of astrocytes in the context of AD, highlighting recent findings in human and mouse AD.
Collapse
Affiliation(s)
- Junhyung Kim
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, 31151, Chungcheongnam-do, South Korea
| | - Ik Dong Yoo
- Department of Nuclear Medicine, Soonchunhyang University Hospital Cheonan, Cheonan, 31151, Chungcheongnam-do, South Korea
| | - Jaejoon Lim
- Department of Neurosurgery, Bundang CHA Medical Center, CHA University, Yatap-dong 59, Seongnam, 13496, South Korea.
| | - Jong-Seok Moon
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, 31151, Chungcheongnam-do, South Korea.
| |
Collapse
|
187
|
Ignatyeva M, Patel AKM, Ibrahim A, Albiheyri RS, Zari AT, Bahieldin A, Bronner C, Sabir JSM, Hamiche A. Identification and Characterization of HIRIP3 as a Histone H2A Chaperone. Cells 2024; 13:273. [PMID: 38334665 PMCID: PMC10854748 DOI: 10.3390/cells13030273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024] Open
Abstract
HIRIP3 is a mammalian protein homologous to the yeast H2A.Z deposition chaperone Chz1. However, the structural basis underlying Chz's binding preference for H2A.Z over H2A, as well as the mechanism through which Chz1 modulates histone deposition or replacement, remains enigmatic. In this study, we aimed to characterize the function of HIRIP3 and to identify its interacting partners in HeLa cells. Our findings reveal that HIRIP3 is specifically associated in vivo with H2A-H2B dimers and CK2 kinase. While bacterially expressed HIRIP3 exhibited a similar binding affinity towards H2A and H2A.Z, the associated CK2 kinase showed a notable preference for H2A phosphorylation at serine 1. The recombinant HIRIP3 physically interacted with the H2A αC helix through an extended CHZ domain and played a crucial role in depositing the canonical core histones onto naked DNA. Our results demonstrate that mammalian HIRIP3 acts as an H2A histone chaperone, assisting in its selective phosphorylation by Ck2 kinase at serine 1 and facilitating its deposition onto chromatin.
Collapse
Affiliation(s)
- Maria Ignatyeva
- Département de Génomique Fonctionnelle et Cancer, Institut de Génétique et Biologie Moléculaire et Cellulaire (IG-BMC), CNRS UMR7104, INSERM U964, Université de Strasbourg, 67404 Illkirch, France (A.I.); (C.B.)
| | - Abdul Kareem Mohideen Patel
- Département de Génomique Fonctionnelle et Cancer, Institut de Génétique et Biologie Moléculaire et Cellulaire (IG-BMC), CNRS UMR7104, INSERM U964, Université de Strasbourg, 67404 Illkirch, France (A.I.); (C.B.)
| | - Abdulkhaleg Ibrahim
- Département de Génomique Fonctionnelle et Cancer, Institut de Génétique et Biologie Moléculaire et Cellulaire (IG-BMC), CNRS UMR7104, INSERM U964, Université de Strasbourg, 67404 Illkirch, France (A.I.); (C.B.)
| | - Raed S. Albiheyri
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (R.S.A.); (A.T.Z.); (A.B.)
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ali T. Zari
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (R.S.A.); (A.T.Z.); (A.B.)
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ahmed Bahieldin
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (R.S.A.); (A.T.Z.); (A.B.)
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Christian Bronner
- Département de Génomique Fonctionnelle et Cancer, Institut de Génétique et Biologie Moléculaire et Cellulaire (IG-BMC), CNRS UMR7104, INSERM U964, Université de Strasbourg, 67404 Illkirch, France (A.I.); (C.B.)
| | - Jamal S. M. Sabir
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (R.S.A.); (A.T.Z.); (A.B.)
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ali Hamiche
- Département de Génomique Fonctionnelle et Cancer, Institut de Génétique et Biologie Moléculaire et Cellulaire (IG-BMC), CNRS UMR7104, INSERM U964, Université de Strasbourg, 67404 Illkirch, France (A.I.); (C.B.)
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (R.S.A.); (A.T.Z.); (A.B.)
| |
Collapse
|
188
|
Yu Y, Jia H, Zhang T, Zhang W. Advances in DNA damage response inhibitors in colorectal cancer therapy. Acta Biochim Biophys Sin (Shanghai) 2024; 56:15-22. [PMID: 38115743 PMCID: PMC10875349 DOI: 10.3724/abbs.2023278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 08/23/2023] [Indexed: 12/21/2023] Open
Abstract
One potential cause of cancer is genomic instability that arises in normal cells due to years of DNA damage in the body. The clinical application of radiotherapy and cytotoxic drugs to treat cancer is based on the principle of damaging the DNA of cancer cells. However, the benefits of these treatments also have negative effects on normal tissue. While there have been notable advancements in molecular-driven therapy and immunotherapy for colorectal cancer (CRC), a considerable portion of patients with advanced CRC do not experience any benefits from these treatments, leading to a poor prognosis. In recent years, targeted therapy aimed at suppressing the DNA damage response (DDR) in cancer cells has emerged as a potential treatment option for CRC patients, offering them more choices for treatment. Currently, the integration of DDR and clinical intervention remains in the exploratory phase. This review primarily elucidates the fundamental principles of DDR inhibitors, provides an overview of their current clinical application status in CRC, and discusses the advancements as well as limitations observed in relevant studies.
Collapse
Affiliation(s)
- Yue Yu
- />Department of Colorectal Surgerythe First Affiliated HospitalNaval Medical UniversityShanghai200433China
| | - Hang Jia
- />Department of Colorectal Surgerythe First Affiliated HospitalNaval Medical UniversityShanghai200433China
| | - Tianshuai Zhang
- />Department of Colorectal Surgerythe First Affiliated HospitalNaval Medical UniversityShanghai200433China
| | - Wei Zhang
- />Department of Colorectal Surgerythe First Affiliated HospitalNaval Medical UniversityShanghai200433China
| |
Collapse
|
189
|
Kines KJ, Sokolowski M, DeFreece C, Shareef A, deHaro DL, Belancio VP. Large Deletions, Cleavage of the Telomeric Repeat Sequence, and Reverse Transcriptase-Mediated DNA Damage Response Associated with Long Interspersed Element-1 ORF2p Enzymatic Activities. Genes (Basel) 2024; 15:143. [PMID: 38397133 PMCID: PMC10887698 DOI: 10.3390/genes15020143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/25/2024] Open
Abstract
L1 elements can cause DNA damage and genomic variation via retrotransposition and the generation of endonuclease-dependent DNA breaks. These processes require L1 ORF2p protein that contains an endonuclease domain, which cuts genomic DNA, and a reverse transcriptase domain, which synthesizes cDNA. The complete impact of L1 enzymatic activities on genome stability and cellular function remains understudied, and the spectrum of L1-induced mutations, other than L1 insertions, is mostly unknown. Using an inducible system, we demonstrate that an ORF2p containing functional reverse transcriptase is sufficient to elicit DNA damage response even in the absence of the functional endonuclease. Using a TK/Neo reporter system that captures misrepaired DNA breaks, we demonstrate that L1 expression results in large genomic deletions that lack any signatures of L1 involvement. Using an in vitro cleavage assay, we demonstrate that L1 endonuclease efficiently cuts telomeric repeat sequences. These findings support that L1 could be an unrecognized source of disease-promoting genomic deletions, telomere dysfunction, and an underappreciated source of chronic RT-mediated DNA damage response in mammalian cells. Our findings expand the spectrum of biological processes that can be triggered by functional and nonfunctional L1s, which have impactful evolutionary- and health-relevant consequences.
Collapse
Affiliation(s)
- Kristine J. Kines
- Department of Structural and Cellular Biology, Tulane School of Medicine, Tulane Cancer Center, New Orleans, LA 70112, USA
| | - Mark Sokolowski
- Department of Structural and Cellular Biology, Tulane School of Medicine, Tulane Cancer Center, New Orleans, LA 70112, USA
| | - Cecily DeFreece
- Department of Biology, Xavier University of Louisiana, New Orleans, LA 70125, USA
| | - Afzaal Shareef
- Department of Structural and Cellular Biology, Tulane School of Medicine, Tulane Cancer Center, New Orleans, LA 70112, USA
| | - Dawn L. deHaro
- Department of Structural and Cellular Biology, Tulane School of Medicine, Tulane Cancer Center, New Orleans, LA 70112, USA
| | - Victoria P. Belancio
- Department of Structural and Cellular Biology, Tulane School of Medicine, Tulane Cancer Center, New Orleans, LA 70112, USA
| |
Collapse
|
190
|
Bailey SM, Cross EM, Kinner-Bibeau L, Sebesta HC, Bedford JS, Tompkins CJ. Monitoring Genomic Structural Rearrangements Resulting from Gene Editing. J Pers Med 2024; 14:110. [PMID: 38276232 PMCID: PMC10817574 DOI: 10.3390/jpm14010110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/04/2024] [Accepted: 01/13/2024] [Indexed: 01/27/2024] Open
Abstract
The cytogenomics-based methodology of directional genomic hybridization (dGH) enables the detection and quantification of a more comprehensive spectrum of genomic structural variants than any other approach currently available, and importantly, does so on a single-cell basis. Thus, dGH is well-suited for testing and/or validating new advancements in CRISPR-Cas9 gene editing systems. In addition to aberrations detected by traditional cytogenetic approaches, the strand specificity of dGH facilitates detection of otherwise cryptic intra-chromosomal rearrangements, specifically small inversions. As such, dGH represents a powerful, high-resolution approach for the quantitative monitoring of potentially detrimental genomic structural rearrangements resulting from exposure to agents that induce DNA double-strand breaks (DSBs), including restriction endonucleases and ionizing radiations. For intentional genome editing strategies, it is critical that any undesired effects of DSBs induced either by the editing system itself or by mis-repair with other endogenous DSBs are recognized and minimized. In this paper, we discuss the application of dGH for assessing gene editing-associated structural variants and the potential heterogeneity of such rearrangements among cells within an edited population, highlighting its relevance to personalized medicine strategies.
Collapse
Affiliation(s)
- Susan M. Bailey
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA;
- KromaTiD, Inc., Longmont, CO 80501, USA; (E.M.C.); (L.K.-B.); (H.C.S.)
| | - Erin M. Cross
- KromaTiD, Inc., Longmont, CO 80501, USA; (E.M.C.); (L.K.-B.); (H.C.S.)
| | | | - Henry C. Sebesta
- KromaTiD, Inc., Longmont, CO 80501, USA; (E.M.C.); (L.K.-B.); (H.C.S.)
| | - Joel S. Bedford
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA;
- KromaTiD, Inc., Longmont, CO 80501, USA; (E.M.C.); (L.K.-B.); (H.C.S.)
| | | |
Collapse
|
191
|
Schmidt A, Zhang H, Schmitt S, Rausch C, Popp O, Chen J, Cmarko D, Butter F, Dittmar G, Lermyte F, Cardoso MC. The Proteomic Composition and Organization of Constitutive Heterochromatin in Mouse Tissues. Cells 2024; 13:139. [PMID: 38247831 PMCID: PMC10814525 DOI: 10.3390/cells13020139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/13/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
Pericentric heterochromatin (PCH) forms spatio-temporarily distinct compartments and affects chromosome organization and stability. Albeit some of its components are known, an elucidation of its proteome and how it differs between tissues in vivo is lacking. Here, we find that PCH compartments are dynamically organized in a tissue-specific manner, possibly reflecting compositional differences. As the mouse brain and liver exhibit very different PCH architecture, we isolated native PCH fractions from these tissues, analyzed their protein compositions using quantitative mass spectrometry, and compared them to identify common and tissue-specific PCH proteins. In addition to heterochromatin-enriched proteins, the PCH proteome includes RNA/transcription and membrane-related proteins, which showed lower abundance than PCH-enriched proteins. Thus, we applied a cut-off of PCH-unspecific candidates based on their abundance and validated PCH-enriched proteins. Amongst the hits, MeCP2 was classified into brain PCH-enriched proteins, while linker histone H1 was not. We found that H1 and MeCP2 compete to bind to PCH and regulate PCH organization in opposite ways. Altogether, our workflow of unbiased PCH isolation, quantitative mass spectrometry, and validation-based analysis allowed the identification of proteins that are common and tissue-specifically enriched at PCH. Further investigation of selected hits revealed their opposing role in heterochromatin higher-order architecture in vivo.
Collapse
Affiliation(s)
- Annika Schmidt
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany (S.S.)
| | - Hui Zhang
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany (S.S.)
| | - Stephanie Schmitt
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany (S.S.)
| | - Cathia Rausch
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany (S.S.)
| | - Oliver Popp
- Proteomics Platform, Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Jiaxuan Chen
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Dusan Cmarko
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 00 Prague, Czech Republic
| | - Falk Butter
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Gunnar Dittmar
- Proteomics Platform, Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Frederik Lermyte
- Clemens-Schöpf Institute of Organic Chemistry and Biochemistry, Department of Chemistry, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - M. Cristina Cardoso
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany (S.S.)
| |
Collapse
|
192
|
Reyes-Ábalos AL, Álvarez-Zabaleta M, Olivera-Bravo S, Di Tomaso MV. Astrocyte DNA damage and response upon acute exposure to ethanol and corticosterone. FRONTIERS IN TOXICOLOGY 2024; 5:1277047. [PMID: 38259729 PMCID: PMC10800529 DOI: 10.3389/ftox.2023.1277047] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction: Astrocytes are the glial cells responsible for brain homeostasis, but if injured, they could damage neural cells even deadly. Genetic damage, DNA damage response (DDR), and its downstream cascades are dramatic events poorly studied in astrocytes. Hypothesis and methods: We propose that 1 h of 400 mmol/L ethanol and/or 1 μmol/L corticosterone exposure of cultured hippocampal astrocytes damages DNA, activating the DDR and eliciting functional changes. Immunolabeling against γH2AX (chromatin DNA damage sites), cyclin D1 (cell cycle control), nuclear (base excision repair, BER), and cytoplasmic (anti-inflammatory functions) APE1, ribosomal nucleolus proteins together with GFAP and S100β plus scanning electron microscopy studies of the astrocyte surface were carried out. Results: Data obtained indicate significant DNA damage, immediate cell cycle arrest, and BER activation. Changes in the cytoplasmic signals of cyclin D1 and APE1, nucleolus number, and membrane-attached vesicles strongly suggest a reactivity like astrocyte response without significant morphological changes. Discussion: Obtained results uncover astrocyte genome immediate vulnerability and DDR activation, plus a functional response that might in part, be signaled through extracellular vesicles, evidencing the complex influence that astrocytes may have on the CNS even upon short-term aggressions.
Collapse
Affiliation(s)
- Ana Laura Reyes-Ábalos
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Magdalena Álvarez-Zabaleta
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | | | - María Vittoria Di Tomaso
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| |
Collapse
|
193
|
Xie Q, Liao Q, Wang L, Zhang Y, Chen J, Bai H, Li K, Ai J. The Dominant Mechanism of Cyclophosphamide-Induced Damage to Ovarian Reserve: Premature Activation or Apoptosis of Primordial Follicles? Reprod Sci 2024; 31:30-44. [PMID: 37486531 DOI: 10.1007/s43032-023-01294-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 06/30/2023] [Indexed: 07/25/2023]
Abstract
Cyclophosphamide (CPM), a part of most cancer treatment regimens, has demonstrated high gonadal toxicity in females. Initially, CPM is believed to damage the ovarian reserve by premature activation of primordial follicles, for the fact that facing CPM damage, primordial oocytes show the activation of PTEN/PI3K/AKT pathways, accompanied by accelerated activation of follicle developmental waves. Meanwhile, primordial follicles are dormant and not considered the target of CPM. However, many researchers have found DNA DSBs and apoptosis within primordial oocytes under CPM-induced ovarian damage instead of premature accelerated activation. A stricter surveillance system of DNA damage is also thought to be in primordial oocytes. So far, the apoptotic death mechanism is considered well-proved, but the premature activation theory is controversial and unacceptable. The connection between the upregulation of PTEN/PI3K/AKT pathways and DNA DSBs and apoptosis within primordial oocytes is also unclear. This review aims to highlight the flaw and/or support of the disputed premature activation theory and the apoptosis mechanism to identify the underlying mechanism of CPM's injury on ovarian reserve, which is crucial to facilitate the discovery and development of effective ovarian protectants. Ultimately, this review finds no good evidence for follicle activation and strong consistent evidence for apoptosis.
Collapse
Affiliation(s)
- Qin Xie
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Reproductive Medicine Center, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No.136, Jingzhou Road, Xiangcheng District, Xiangyang, 441021, Hubei Province, People's Republic of China
| | - Qiuyue Liao
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lingjuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yan Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jing Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hualin Bai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Kezhen Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Jihui Ai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
194
|
Uno K, Rastegar B, Jansson C, Durand G, Valind A, Chattopadhyay S, Bertolotti A, Ciceri S, Spreafico F, Collini P, Perotti D, Mengelbier LH, Gisselsson D. A Gradual Transition Toward Anaplasia in Wilms Tumor Through Tolerance to Genetic Damage. Mod Pathol 2024; 37:100382. [PMID: 37951357 DOI: 10.1016/j.modpat.2023.100382] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/23/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
Patients with Wilms tumor (WT) in general have excellent survival, but the prognosis of patients belonging to the subgroup of WT with diffuse anaplasia (DA) is poor due to frequent resistance to chemotherapy. We hypothesized that DA WT cells might undergo changes, such as acquiring a persistent tolerance to DNA damage and copy number aberrations (CNAs), which could eventually lead to their resistance to chemotherapy treatment. Tissue sections from chemotherapy-treated DA WTs (n = 12) were compared with chemotherapy-treated nonanaplastic WTs (n = 15) in a tissue microarray system, enabling analysis of 769 tumor regions. All regions were scored for anaplastic features and immunohistochemistry was used to quantify p53 expression, proliferation index (Ki67), and DNA double-strand breaks (γH2AX). CNAs were assessed by array-based genotyping and TP53 mutations using targeted sequencing. Proliferation index and the frequency of DNA double-strand breaks (γH2AX dot expression) increased with higher anaplasia scores. Almost all (95.6%) areas with full-scale anaplasia had TP53 mutations or loss of heterozygosity, along with an increased amount of CNAs. Interestingly, areas with wild-type TP53 with loss of heterozygosity and only one feature of anaplasia (anaplasia score 1) also had significantly higher proliferation indices, more DNA double-strand breaks, and more CNAs than regions without any anaplastic features (score 0); such areas may be preanaplastic cell populations under selective pressure for TP53 mutations. In conclusion, we suggest that chemoresistance of DA WTs may be partly explained by a high proliferative capability of anaplastic cells, which also have a high burden of double-stranded DNA breaks and CNAs, and that there is a gradual emergence of anaplasia in WT.
Collapse
Affiliation(s)
- Kaname Uno
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden; Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Bahar Rastegar
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Caroline Jansson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Geoffroy Durand
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Anders Valind
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden; Now with Childhood Cancer Center, Skåne University Hospital, Lund, Sweden
| | - Subhayan Chattopadhyay
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Alessia Bertolotti
- Diagnostic and Molecular Research Lab, Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Sara Ciceri
- Molecular Bases of Genetic Risk and Genetic Testing Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; Now with Predictive Medicine: Molecular Bases of Genetic Risk, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Filippo Spreafico
- Pediatric Oncology Unit, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Paola Collini
- Soft Tissue Tumor Pathology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Daniela Perotti
- Molecular Bases of Genetic Risk and Genetic Testing Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; Now with Predictive Medicine: Molecular Bases of Genetic Risk, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | - David Gisselsson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden; Division of Oncology-Pathology, Department of Clinical Science, Lund University, Lund, Sweden; Division of Clinical Genetics and Pathology, Department of Laboratory Medicine, Lund University Hospital, Skåne Healthcare Region, Lund, Sweden
| |
Collapse
|
195
|
Sera Y, Yamamoto S, Mutou A, Koba S, Kurokawa Y, Imanaka T, Yamaguchi M. SBDS Gene Mutation Increases ROS Production and Causes DNA Damage as Well as Oxidation of Mitochondrial Membranes in the Murine Myeloid Cell Line 32Dcl3. Biol Pharm Bull 2024; 47:1376-1382. [PMID: 39085077 DOI: 10.1248/bpb.b24-00088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Shwachman-Diamond syndrome (SDS) is an autosomal recessive disease caused by mutation in the Shwachman-Bodian-Diamond syndrome (SBDS) gene. SDS has a variety of clinical features, including exocrine pancreatic insufficiency and hematological dysfunction. Neutropenia is the most common symptom in patients with SDS. SDS is also associated with an elevated risk of developing myelodysplastic syndromes and acute myeloid leukemia. The SBDS protein is involved in ribosome biogenesis, ribosomal RNA metabolism, stabilization of mitotic spindles and cellular stress responses, yet the function of SBDS in detail is still incompletely understood. Considering the diverse function of SBDS, the effect of SBDS seems to be different in different cells and tissues. In this study, we established myeloid cell line 32Dcl3 with a common pathogenic SBDS variant on both alleles in intron 2, 258 + 2T > C, and examined the cellular damage that resulted. We found that the protein synthesis was markedly decreased in the mutant cells. Furthermore, reactive oxygen species (ROS) production was increased, and oxidation of the mitochondrial membrane lipids and DNA damage were induced. These findings provide new insights into the cellular and molecular pathology caused by SBDS deficiency in myeloid cells.
Collapse
Affiliation(s)
- Yukihiro Sera
- Laboratory of Physiological Chemistry, Faculty of Pharmaceutical Sciences, Hiroshima International University
| | - Sakura Yamamoto
- Laboratory of Physiological Chemistry, Faculty of Pharmaceutical Sciences, Hiroshima International University
| | - Akane Mutou
- Laboratory of Physiological Chemistry, Faculty of Pharmaceutical Sciences, Hiroshima International University
| | - Shuta Koba
- Laboratory of Physiological Chemistry, Faculty of Pharmaceutical Sciences, Hiroshima International University
| | - Yuki Kurokawa
- Laboratory of Physiological Chemistry, Faculty of Pharmaceutical Sciences, Hiroshima International University
| | - Tsuneo Imanaka
- Laboratory of Physiological Chemistry, Faculty of Pharmaceutical Sciences, Hiroshima International University
| | - Masafumi Yamaguchi
- Laboratory of Physiological Chemistry, Faculty of Pharmaceutical Sciences, Hiroshima International University
| |
Collapse
|
196
|
van Bueren MAE, Janssen A. The impact of chromatin on double-strand break repair: Imaging tools and discoveries. DNA Repair (Amst) 2024; 133:103592. [PMID: 37976899 DOI: 10.1016/j.dnarep.2023.103592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/16/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
Eukaryotic nuclei are constantly being exposed to factors that break or chemically modify the DNA. Accurate repair of this DNA damage is crucial to prevent DNA mutations and maintain optimal cell function. To overcome the detrimental effects of DNA damage, a multitude of repair pathways has evolved. These pathways need to function properly within the different chromatin domains present in the nucleus. Each of these domains exhibit distinct molecular- and bio-physical characteristics that can influence the response to DNA damage. In particular, chromatin domains highly enriched for repetitive DNA sequences, such as nucleoli, centromeres and pericentromeric heterochromatin require tailored repair mechanisms to safeguard genome stability. Work from the past decades has led to the development of innovative imaging tools as well as inducible DNA damage techniques to gain new insights into the impact of these repetitive chromatin domains on the DNA repair process. Here we summarize these tools with a particular focus on Double-Strand Break (DSB) repair, and discuss the insights gained into our understanding of the influence of chromatin domains on DSB -dynamics and -repair pathway choice.
Collapse
Affiliation(s)
- Marit A E van Bueren
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Aniek Janssen
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands.
| |
Collapse
|
197
|
Havas AP, Tula-Sanchez AA, Steenhoek HM, Bhakta A, Wingfield T, Huntley MJ, Nofal AS, Ahmed T, Jaime-Frias R, Smith CL. Defining cellular responses to HDAC-selective inhibitors reveals that efficient targeting of HDAC3 is required to elicit cytotoxicity and overcome naïve resistance to pan-HDACi in diffuse large B cell lymphoma. Transl Oncol 2024; 39:101779. [PMID: 37865047 PMCID: PMC10597794 DOI: 10.1016/j.tranon.2023.101779] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/12/2023] [Accepted: 08/30/2023] [Indexed: 10/23/2023] Open
Abstract
Approved histone deacetylase (HDAC) inhibitors have low efficacy against the most commonly-diagnosed non-Hodgkin lymphoma, diffuse large B cell lymphoma (DLBCL), but the mechanisms underlying clinical resistance are poorly understood. Using a DLBCL cell-based model, we previously demonstrated that resistance to pan-HDAC inhibitors (HDACi) is characterized by reversible growth arrest and sensitivity by mitotic arrest and apoptosis. The goal of the current study is to better define mechanisms of sensitivity and resistance to the cytotoxic effects of HDACi by using HDAC-selective inhibitors to determine which HDACs need to be targeted to achieve the sensitive and resistant phenotypes. We find that an inhibitor selective for HDACs 1 and 2 induces G1 arrest across DLBCL cell lines used, which is consistent with the resistant phenotype. In contrast an HDAC3-selective inhibitor induces DNA damage and cytotoxicity in a cell line that is sensitive to pan-HDACi but has no effect on resistant cell lines. RNAi-mediated depletion of HDAC3 indicate the presence of a long-lived population of HDAC3 in DLBCL cell lines. Finally, doses of pan-HDACi 3-5 times higher than the IC50 established for reversible growth inhibition induce the sensitive phenotype in resistant cell lines, suggesting that resistance may be associated with failure to efficiently inhibit HDAC3. Our findings indicate that selective inhibition of HDACs 1 and 2 is associated with G1 arrest and resistance to pan-HDACi while efficient targeting of HDAC3 could be key to achieving a cytotoxic response. Thus, our work reveals a potential novel mechanism of resistance to pan-HDACi.
Collapse
Affiliation(s)
- Aaron P Havas
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721-0207, USA
| | - Ana A Tula-Sanchez
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721-0207, USA
| | - Hailey M Steenhoek
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721-0207, USA
| | - Anvi Bhakta
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721-0207, USA
| | - Taylor Wingfield
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721-0207, USA
| | - Matthew J Huntley
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721-0207, USA
| | - Angela S Nofal
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721-0207, USA
| | - Tasmia Ahmed
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721-0207, USA
| | - Rosa Jaime-Frias
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721-0207, USA
| | - Catharine L Smith
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721-0207, USA.
| |
Collapse
|
198
|
Kamakura M, Uehara T, Muraki T, Iwaya M, Asaka S, Nakajima T, Iwaya Y, Nagaya T, Yoshizawa T, Shimizu A, Kuraishi Y, Ota H, Umemura T. Mucosal damage in pancreaticobiliary maljunction is stronger in the gallbladder than in the bile duct. Pathol Res Pract 2024; 253:155011. [PMID: 38103363 DOI: 10.1016/j.prp.2023.155011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/02/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND The frequency of gallbladder carcinoma is high in pancreaticobiliary maljunction (PBM), and the mechanism of carcinogenesis is not well understood. METHODS The expression of γH2AX, the most sensitive marker for detecting DNA damage, was analyzed using immunohistochemistry in patients with PBM, in which the gallbladder and bile duct were simultaneously resected. Gallbladder and bile ducts were evaluated in non-neoplastic regions in 13 cases of PBM without cancer in the gallbladder and bile ducts. RESULTS The median frequencies of γH2AX expression in the bile duct and gallbladder within the same case were 5.9% (range 1.7-12.05%) and 9.9% (range 2.8-25%), respectively, and were significantly higher in the gallbladder mucosa (P < 0.0004). γH2AX expression strongly correlated in the bile duct and gallbladder (r = 0.9436, P < 0.0001). PBM caused marked mucosal damage to the gallbladder. CONCLUSIONS Mucosal damage may be involved in carcinogenesis, which may be useful for predicting malignant transformation.
Collapse
Affiliation(s)
- Masato Kamakura
- Division of Gastroenterology and Hepatology, Department of Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Takeshi Uehara
- Department of Laboratory Medicine, Shinshu University School of Medicine, Matsumoto, Japan.
| | - Takashi Muraki
- Department of Gastroenterology, North Alps Medical Center Azumi Hospital, Ikeda, Japan
| | - Mai Iwaya
- Department of Laboratory Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Shiho Asaka
- Department of Laboratory Medicine, Shinshu University School of Medicine, Matsumoto, Japan; Department of Laboratory Medicine, Nagano Children's Hospital, Azumino, Japan
| | - Tomoyuki Nakajima
- Department of Laboratory Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yugo Iwaya
- Division of Gastroenterology and Hepatology, Department of Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Tadanobu Nagaya
- Division of Gastroenterology and Hepatology, Department of Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Takahiro Yoshizawa
- Division of Gastroenterological, Hepato-Biliary-Pancreatic, Transplantation and Pediatric Surgery, Department of Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Akira Shimizu
- Division of Gastroenterological, Hepato-Biliary-Pancreatic, Transplantation and Pediatric Surgery, Department of Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yasuhiro Kuraishi
- Division of Gastroenterology and Hepatology, Department of Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Hiroyoshi Ota
- Department of Laboratory Medicine, Shinshu University School of Medicine, Matsumoto, Japan; Department of Biomedical Laboratory Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Takeji Umemura
- Division of Gastroenterology and Hepatology, Department of Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
199
|
Robeska E, Lalanne K, Vianna F, Sutcu HH, Khobta A, Busso D, Radicella JP, Campalans A, Baldeyron C. Targeted nuclear irradiation with a proton microbeam induces oxidative DNA base damage and triggers the recruitment of DNA glycosylases OGG1 and NTH1. DNA Repair (Amst) 2024; 133:103610. [PMID: 38101146 DOI: 10.1016/j.dnarep.2023.103610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 11/10/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023]
Abstract
DNA is the major target of radiation therapy of malignant tumors. Ionizing radiation (IR) induces a variety of DNA lesions, including chemically modified bases and strand breaks. The use of proton beam therapy for cancer treatment is ramping up, as it is expected to reduce normal tissue damage. Thus, it is important to understand the molecular mechanisms of recognition, signaling, and repair of DNA damage induced by protons in the perspective of assessing not only the risk associated with human exposure to IR but also the possibility to improve the efficacy of therapy. Here, we used targeted irradiation of nuclear regions of living cells with controlled number of protons at a high spatio-temporal resolution to detect the induced base lesions and characterize the recruitment kinetics of the specific DNA glycosylases to DNA damage sites. We show that localized irradiation with 4 MeV protons induces, in addition to DNA double strand breaks (DSBs), the oxidized bases 7,8-dihydro-8-oxoguanine (8-oxoG) and thymine glycol (TG) at the site of irradiation. Consistently, the DNA glycosylases OGG1 and NTH1, capable of excising 8-oxoG and TG, respectively, and initiating the base excision repair (BER) pathway, are recruited to the site of damage. To our knowledge, this is the first direct evidence indicating that proton microbeams induce oxidative base damage, and thus implicating BER in the repair of DNA lesions induced by protons.
Collapse
Affiliation(s)
- Elena Robeska
- Université Paris-Saclay, iRCM/IBFJ, CEA, Genetic Stability, Stem Cells and Radiation, F-92260 Fontenay-aux-Roses, France; Université Paris Cité, iRCM/IBFJ, CEA, Genetic Stability, Stem Cells and Radiation, F-92260 Fontenay-aux-Roses, France
| | - Kévin Lalanne
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SDOS/LMDN, Cadarache, F-13115 Saint-Paul-Lez-Durance, France
| | - François Vianna
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SDOS/LMDN, Cadarache, F-13115 Saint-Paul-Lez-Durance, France
| | - Haser Hasan Sutcu
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SERAMED/LRAcc, F-92262 Fontenay aux Roses, France
| | - Andriy Khobta
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Didier Busso
- Université Paris Cité et Université Paris-Saclay, INSERM, CEA, iRCM/IBFJ, Genetic Stability, Stem Cells and Radiation, F-92260 Fontenay-aux-Roses, France
| | - J Pablo Radicella
- Université Paris-Saclay, iRCM/IBFJ, CEA, Genetic Stability, Stem Cells and Radiation, F-92260 Fontenay-aux-Roses, France; Université Paris Cité, iRCM/IBFJ, CEA, Genetic Stability, Stem Cells and Radiation, F-92260 Fontenay-aux-Roses, France
| | - Anna Campalans
- Université Paris-Saclay, iRCM/IBFJ, CEA, Genetic Stability, Stem Cells and Radiation, F-92260 Fontenay-aux-Roses, France; Université Paris Cité, iRCM/IBFJ, CEA, Genetic Stability, Stem Cells and Radiation, F-92260 Fontenay-aux-Roses, France.
| | - Céline Baldeyron
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SERAMED/LRAcc, F-92262 Fontenay aux Roses, France.
| |
Collapse
|
200
|
Matsuda S, Ikura T, Matsuda T. Absolute quantification of DNA damage response proteins. Genes Environ 2023; 45:37. [PMID: 38111058 PMCID: PMC10726557 DOI: 10.1186/s41021-023-00295-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 12/11/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND DNA damage response (DDR) and repair are vital for safeguarding genetic information and ensuring the survival and accurate transmission of genetic material. DNA damage, such as DNA double-strand breaks (DSBs), triggers a response where sensor proteins recognize DSBs. Information is transmitted to kinases, initiating a sequence resulting in the activation of the DNA damage response and recruitment of other DDR and repair proteins to the DSB site in a highly orderly sequence. Research has traditionally focused on individual protein functions and their order, with limited quantitative analysis, prompting this study's attempt at absolute quantification of DNA damage response and repair proteins and capturing changes in protein chromatin affinity after DNA damage through biochemical fractionation methods. RESULTS To assess the intracellular levels of proteins involved in DDR and repair, multiple proteins associated with different functions were quantified in EPC2-hTERT cells. H2AX had the highest intracellular abundance (1.93 × 106 molecules/cell). The components of the MRN complex were present at the comparable levels: 6.89 × 104 (MRE11), 2.17 × 104 (RAD50), and 2.35 × 104 (NBS1) molecules/cell. MDC1 was present at 1.27 × 104 molecules/cell. The intracellular levels of ATM and ATR kinases were relatively low: 555 and 4860 molecules/cell, respectively. The levels of cellular proteins involved in NHEJ (53BP1: 3.03 × 104; XRCC5: 2.62 × 104; XRCC6: 5.05 × 105 molecules/cell) were more than an order of magnitude higher than that involved in HR (RAD51: 2500 molecules/cell). Furthermore, we analyzed the dynamics of MDC1 and γH2AX proteins in response to DNA damage induced by the unstable agent neocarzinostatin (NCS). Using cell biochemical fractionation, cells were collected and analyzed at different time points after NCS exposure. Results showed that γH2AX in chromatin fraction peaked at 1 h post-exposure and gradually decreased, while MDC1 translocated from the isotonic to the hypertonic fraction, peaking at 1 hour as well. The study suggests increased MDC1 affinity for chromatin through binding to γH2AX induced by DNA damage. The γH2AX-bound MDC1 (in the hypertonic fraction) to γH2AX ratio at 1 h post-exposure was 1:56.4, with lower MDC1 levels which may attributed to competition with other proteins. CONCLUSIONS The approach provided quantitative insights into protein dynamics in DNA damage response.
Collapse
Affiliation(s)
- Shun Matsuda
- Research Center for Environmental Quality Management, Kyoto University, 1-2, Yumihama, Otsu, Shiga, 5200811, Japan
| | - Tsuyoshi Ikura
- Laboratory of Chromatin Regulatory Network, Department of Mutagenesis, Radiation Biology Center, Kyoto University, Yoshidakonoecho, Kyoto Sakyo-ku, Kyoto, 606-8501, Japan
| | - Tomonari Matsuda
- Research Center for Environmental Quality Management, Kyoto University, 1-2, Yumihama, Otsu, Shiga, 5200811, Japan.
- Laboratories for Environmental Health, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto daigaku-katsura, Nishikyo-ku, Kyoto, 615-8530, Japan.
| |
Collapse
|