151
|
Xu E, Schwab M, Marette A. Role of protein tyrosine phosphatases in the modulation of insulin signaling and their implication in the pathogenesis of obesity-linked insulin resistance. Rev Endocr Metab Disord 2014; 15:79-97. [PMID: 24264858 DOI: 10.1007/s11154-013-9282-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Insulin resistance is a major disorder that links obesity to type 2 diabetes mellitus (T2D). It involves defects in the insulin actions owing to a reduced ability of insulin to trigger key signaling pathways in major metabolic tissues. The pathogenesis of insulin resistance involves several inhibitory molecules that interfere with the tyrosine phosphorylation of the insulin receptor and its downstream effectors. Among those, growing interest has been developed toward the protein tyrosine phosphatases (PTPs), a large family of enzymes that can inactivate crucial signaling effectors in the insulin signaling cascade by dephosphorylating their tyrosine residues. Herein we briefly review the role of several PTPs that have been shown to be implicated in the regulation of insulin action, and then focus on the Src homology 2 (SH2) domain-containing SHP1 and SHP2 enzymes, since recent reports have indicated major roles for these PTPs in the control of insulin action and glucose metabolism. Finally, the therapeutic potential of targeting PTPs for combating insulin resistance and alleviating T2D will be discussed.
Collapse
Affiliation(s)
- Elaine Xu
- Department of Medicine, Cardiology Axis of the Institut Universitaire de Cardiologie et de Pneumologie de Québec (Hôpital Laval), Ste-Foy, Québec, Canada, G1V 4G2
| | | | | |
Collapse
|
152
|
Shi L, Zhang Q, Xu B, Jiang X, Dai Y, Zhang CY, Zen K. Sustained high protein-tyrosine phosphatase 1B activity in the sperm of obese males impairs the sperm acrosome reaction. J Biol Chem 2014; 289:8432-41. [PMID: 24519936 DOI: 10.1074/jbc.m113.517466] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Evidence of a causal link between male obesity and subfertility or infertility has been demonstrated previously. However, the mechanism underlying this link is incompletely understood. Here, we report that sustained high protein-tyrosine phosphatase 1B (PTP1B) activity in sperm of obese donors plays an essential role in coupling male obesity and subfertility or infertility. First, PTP1B level and activity were significantly higher in sperm from ob/ob mice than in wild-type littermates. High PTP1B level and activity in sperm was also observed in obese patients compared with non-obese donors. The enhanced sperm PTP1B level and activity in ob/ob mice and obese patients correlated with a defect of the sperm acrosome reaction (AR). Second, treating sperm from male ob/ob mice or obese men with a specific PTP1B inhibitor largely restored the sperm AR. Finally, blockade of sperm AR by enhanced PTP1B activity in male ob/ob mice or obese men was due to prolonged dephosphorylation of N-ethylmaleimide-sensitive factor by PTP1B, leading to the inability to reassemble the trans-SNARE complexes, which is a critical step in sperm acrosomal exocytosis. In summary, our study demonstrates for the first time that a sustained high PTP1B level or activity in the sperm of obese donors causes a defect of sperm AR and that PTP1B is a novel potential therapeutic target for male infertility treatment.
Collapse
Affiliation(s)
- Lei Shi
- From the Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, China and
| | | | | | | | | | | | | |
Collapse
|
153
|
Suski JM, Lebiedzinska M, Wojtala A, Duszynski J, Giorgi C, Pinton P, Wieckowski MR. Isolation of plasma membrane-associated membranes from rat liver. Nat Protoc 2014; 9:312-22. [PMID: 24434800 DOI: 10.1038/nprot.2014.016] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dynamic interplay between intracellular organelles requires a particular functional apposition of membrane structures. The organelles involved come into close contact, but do not fuse, thereby giving rise to notable microdomains; these microdomains allow rapid communication between the organelles. Plasma membrane-associated membranes (PAMs), which are microdomains of the plasma membrane (PM) interacting with the endoplasmic reticulum (ER) and mitochondria, are dynamic structures that mediate transport of proteins, lipids, ions and metabolites. These structures have gained much interest lately owing to their roles in many crucial cellular processes. Here we provide an optimized protocol for the isolation of PAM, PM and ER fractions from rat liver that is based on a series of differential centrifugations, followed by the fractionation of crude PM on a discontinuous sucrose gradient. The procedure requires ∼8-10 h, and it can be easily modified and adapted to other tissues and cell types.
Collapse
Affiliation(s)
- Jan M Suski
- 1] Nencki Institute of Experimental Biology, Department of Biochemistry, Warsaw, Poland. [2] Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI) and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Magdalena Lebiedzinska
- 1] Nencki Institute of Experimental Biology, Department of Biochemistry, Warsaw, Poland. [2] Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI) and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Aleksandra Wojtala
- Nencki Institute of Experimental Biology, Department of Biochemistry, Warsaw, Poland
| | - Jerzy Duszynski
- Nencki Institute of Experimental Biology, Department of Biochemistry, Warsaw, Poland
| | - Carlotta Giorgi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI) and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Paolo Pinton
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI) and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Mariusz R Wieckowski
- Nencki Institute of Experimental Biology, Department of Biochemistry, Warsaw, Poland
| |
Collapse
|
154
|
Noh HJ, Kim CS, Kang JH, Park JY, Choe SY, Hong SM, Yoo H, Park T, Yu R. Quercetin suppresses MIP-1α-induced adipose inflammation by downregulating its receptors CCR1/CCR5 and inhibiting inflammatory signaling. J Med Food 2013; 17:550-7. [PMID: 24325454 DOI: 10.1089/jmf.2013.2912] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Obesity-induced inflammation is characterized by recruitment of adipose tissue macrophages that release inflammatory cytokines and chemokines. MIP-1α (macrophage inflammatory protein 1α)/CCL3, a CC chemokine, induces monocyte/macrophage infiltration and thus is implicated in obesity-induced adipose inflammation. Quercetin has been shown to modulate obesity-induced inflammation, but the mechanism of its action remains unclear. Here we demonstrate that quercetin decreases MIP-1α release from adipocytes and macrophages and from cocultured adipocytes/macrophages; it also opposes MIP-1α-induced macrophage infiltration and activation. The inhibitory action of quercetin on the MIP-1α-induced inflammatory responses of macrophages is mediated by downregulation of CCR1/CCR5, and inhibition of activation of JNK, p38 mitogen-activated-protein kinase (MAPK), and IKK as well as IκBα degradation. These findings suggest that quercetin may be a useful agent against obesity-induced adipose tissue inflammation.
Collapse
Affiliation(s)
- Hye-Ji Noh
- 1 Department of Food Science and Nutrition, University of Ulsan , Ulsan, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
155
|
Chen YT, Tang CL, Ma WP, Gao LX, Wei Y, Zhang W, Li JY, Li J, Nan FJ. Design, synthesis, and biological evaluation of novel 2-ethyl-5-phenylthiazole-4-carboxamide derivatives as protein tyrosine phosphatase 1B inhibitors with improved cellular efficacy. Eur J Med Chem 2013; 69:399-412. [PMID: 24090912 DOI: 10.1016/j.ejmech.2013.09.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 08/06/2013] [Accepted: 09/10/2013] [Indexed: 12/13/2022]
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is implicated as a key negative regulator of the insulin and leptin signal-transduction pathways. PTP1B inhibitors have emerged as attractive and potent pharmaceutical agents for the treatment of type 2 diabetes and obesity. We identified a series of 2-ethyl-5-phenylthiazole-4-carboxamide (PTA) derivatives, inspired from the ACT scaffold of Scleritodermin A, as a novel class of PTP1B inhibitors. Structure-activity relationship (SAR) analysis and docking studies revealed the molecular basis of PTP1B inhibition by these compounds. PTA derivative 18g was capable of inhibiting intracellular PTP1B and subsequently activating the insulin signaling pathway. Treatment of cells with 18g markedly increased the phosphorylation levels of IRβ and Akt as well as the rate of glucose uptake.
Collapse
Affiliation(s)
- Yue-Ting Chen
- Chinese National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guoshoujing Road, Zhangjiang Hi-Tech Park, Shanghai 201203, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
156
|
Chiarreotto-Ropelle EC, Pauli LSS, Katashima CK, Pimentel GD, Picardi PK, Silva VRR, de Souza CT, Prada PO, Cintra DE, Carvalheira JBC, Ropelle ER, Pauli JR. Acute exercise suppresses hypothalamic PTP1B protein level and improves insulin and leptin signaling in obese rats. Am J Physiol Endocrinol Metab 2013; 305:E649-E659. [PMID: 23880311 DOI: 10.1152/ajpendo.00272.2013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hypothalamic inflammation is associated with insulin and leptin resistance, hyperphagia, and obesity. In this scenario, hypothalamic protein tyrosine phosphatase 1B (PTP1B) has emerged as the key phosphatase induced by inflammation that is responsible for the central insulin and leptin resistance. Here, we demonstrated that acute exercise reduced inflammation and PTP1B protein level/activity in the hypothalamus of obese rodents. Exercise disrupted the interaction between PTP1B with proteins involved in the early steps of insulin (IRβ and IRS-1) and leptin (JAK2) signaling, increased the tyrosine phosphorylation of these molecules, and restored the anorexigenic effects of insulin and leptin in obese rats. Interestingly, the anti-inflammatory action and the reduction of PTP1B activity mediated by exercise occurred in an interleukin-6 (IL-6)-dependent manner because exercise failed to reduce inflammation and PTP1B protein level after the disruption of hypothalamic-specific IL-6 action in obese rats. Conversely, intracerebroventricular administration of recombinant IL-6 reproduced the effects of exercise, improving hypothalamic insulin and leptin action by reducing the inflammatory signaling and PTP1B activity in obese rats at rest. Taken together, our study reports that physical exercise restores insulin and leptin signaling, at least in part, by reducing hypothalamic PTP1B protein level through the central anti-inflammatory response.
Collapse
|
157
|
Lacroix IME, Li-Chan ECY. Overview of food products and dietary constituents with antidiabetic properties and their putative mechanisms of action: a natural approach to complement pharmacotherapy in the management of diabetes. Mol Nutr Food Res 2013; 58:61-78. [PMID: 23943383 DOI: 10.1002/mnfr.201300223] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 06/10/2013] [Accepted: 06/13/2013] [Indexed: 01/05/2023]
Abstract
Diabetes is one of the fastest growing chronic, noncommunicable diseases worldwide. Currently, 11 major classes of pharmacotherapy are available for the management of this metabolic disorder. However, the usage of these drugs is often associated with undesirable side effects, including weight gain and hypoglycemia. There is thus a need for new, safe and effective treatment strategies. Diet is known to play a major role in the prevention and management of diabetes. Numerous studies have reported the putative association of the consumption of specific food products, or their constituents, with the incidence of diabetes, and mounting evidence now suggests that some dietary factors can improve glycemic regulation. Foods and dietary constituents, similar to synthetic drugs, have been shown to modulate hormones, enzymes, and organ systems involved in carbohydrate metabolism. The present article reviews the major classes and modes of action of antidiabetic drugs, and examines the evidence on food products and dietary factors with antidiabetic properties as well as their plausible mechanisms of action. The findings suggest potential use of dietary constituents as a complementary approach to pharmacotherapy in the prevention and/or management of diabetes, but further research is necessary to identify the active components and evaluate their efficacy and safety.
Collapse
Affiliation(s)
- Isabelle M E Lacroix
- Faculty of Land & Food Systems, Food Nutrition & Health Program, The University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
158
|
Protein tyrosine phosphatase 1B deficiency ameliorates murine experimental colitis via the expansion of myeloid-derived suppressor cells. PLoS One 2013; 8:e70828. [PMID: 23951017 PMCID: PMC3739765 DOI: 10.1371/journal.pone.0070828] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 06/23/2013] [Indexed: 12/11/2022] Open
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is a key molecule in modulating low-degree inflammatory conditions such as diabetes. The role of PTP1B in other chronic inflammations, however, remains unknown. Here, we report that PTP1B deficiency ameliorates Dextran Sulfate Sodium (DSS)-induced murine experimental colitis via expanding CD11b+Gr-1+ myeloid-derived suppressor cells (MDSCs). Employing DSS-induced murine experimental colitis as inflammatory animal model, we found that, compared with wild-type littermates, PTP1B-null mice demonstrated greater resistance to DSS-induced colitis, as reflected by slower weight-loss, greater survival rates and decreased PMN and macrophage infiltration into the colon. The evidence collectively also demonstrated that the resistance of PTP1B-null mice to DSS-induced colitis is based on the expansion of MDSCs. First, PTP1B-null mice exhibited a greater frequency of MDSCs in the bone marrow (BM), peripheral blood and spleen when compared with wild-type littermates. Second, PTP1B levels in BM leukocytes were significantly decreased after cells were induced into MDSCs by IL-6 and GM-CSF, and the MDSC induction occurred more rapidly in PTP1B-null mice than in wild-type littermates, suggesting PTP1B as a negative regulator of MDSCs. Third, the adoptive transfer of MDSCs into mice with DSS-colitis significantly attenuated colitis, which accompanies with a decreased serum IL-17 level. Finally, PTP1B deficiency increased the frequency of MDSCs from BM cells likely through enhancing the activities of signal transducer and activator of transcription 3 (STAT3) and Janus kinase 2 (JAK2). In conclusion, our study provides the first evidences that PTP1B deficiency ameliorates murine experimental colitis via expanding MDSCs.
Collapse
|
159
|
Xue R, Hao DD, Sun JP, Li WW, Zhao MM, Li XH, Chen Y, Zhu JH, Ding YJ, Liu J, Zhu YC. Hydrogen sulfide treatment promotes glucose uptake by increasing insulin receptor sensitivity and ameliorates kidney lesions in type 2 diabetes. Antioxid Redox Signal 2013; 19:5-23. [PMID: 23293908 PMCID: PMC3676664 DOI: 10.1089/ars.2012.5024] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
AIMS To examine if hydrogen sulfide (H2S) can promote glucose uptake and provide amelioration in type 2 diabetes. RESULTS Treatment with sodium hydrosulfide (NaHS, an H2S donor) increased glucose uptake in both myotubes and adipocytes. The H2S gas solution showed similar effects. The NaHS effects were blocked by an siRNA-mediated knockdown of the insulin receptor (IR). NaHS also increased phosphorylation of the IR, PI3K, and Akt. In Goto-Kakizaki (GK) diabetic rats, chronic NaHS treatment (30 μmol·kg(-1)·day(-1)) decreased fasting blood glucose, increased insulin sensitivity, and increased glucose tolerance with increased phosphorylation of PI3K and Akt in muscles. Similar insulin-sensitizing effects of NaHS treatment were also observed in Wistar rats. Moreover, glucose uptake was reduced in the cells with siRNA-mediated knockdown of the H2S-generating enzyme cystathionine γ-lyase in the presence or absence of exogenous H2S. Moreover, chronic NaHS treatment reduced oxygen species and the number of crescentic glomeruli in the kidney of GK rats. INNOVATION AND CONCLUSION This study provides the first piece of evidence for the insulin-sensitizing effect of NaHS/H2S in the both in vitro and in vivo models of insulin resistance. REBOUND TRACK: This work was rejected during a standard peer review and rescued by the Rebound Peer Review (Antoxid Redox Signal 16: 293-296, 2012) with the following serving as open reviewers: Jin-Song Bian, Samuel Dudley, Hideo Kimura, and Xian Wang.
Collapse
Affiliation(s)
- Rong Xue
- Department of Physiology and Pathophysiology, Fudan University Shanghai Medical College, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Pomytkin IA. H2O2 Signalling Pathway: A Possible Bridge between Insulin Receptor and Mitochondria. Curr Neuropharmacol 2013; 10:311-20. [PMID: 23730255 PMCID: PMC3520041 DOI: 10.2174/157015912804143559] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Revised: 06/07/2012] [Accepted: 06/24/2012] [Indexed: 01/20/2023] Open
Abstract
This review is focused on the mechanistic aspects of the insulin-induced H2O2 signalling pathway in neurons and the molecules affecting it, which act as risk factors for developing central insulin resistance. Insulin-induced H2O2 promotes insulin receptor activation and the mitochondria act as the insulin-sensitive H2O2 source, providing a direct molecular link between mitochondrial dysfunction and irregular insulin receptor activation. In this view, the accumulation of dysfunctional mitochondria during chronological ageing and Alzheimer's disease (AD) is a risk factor that may contribute to the development of dysfunctional cerebral insulin receptor signalling and insulin resistance. Due to the high significance of insulin-induced H2O2 for insulin receptor activation, oxidative stress-induced upregulation of antioxidant enzymes, e.g., in AD brains, may represent another risk factor contributing to the development of insulin resistance. As insulin-induced H2O2 signalling requires fully functional mitochondria, pharmacological strategies based on activating mitochondria biogenesis in the brain are central to the treatment of diseases associated with dysfunctional insulin receptor signalling in this organ.
Collapse
|
161
|
Anuradha CV. Phytochemicals targeting genes relevant for type 2 diabetes. Can J Physiol Pharmacol 2013; 91:397-411. [PMID: 23745945 DOI: 10.1139/cjpp-2012-0350] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Nutrigenomic approaches based on ethnopharmacology and phytotherapy concepts have revealed that type 2 diabetes mellitus (T2DM) may be susceptible to dietary intervention. Interaction between bioactive food components and the genome may influence cell processes and modulate the onset and progression of the disease. T2DM, characterized by insulin resistance and beta cell dysfunction, is one of the leading causes of death and disability. Despite the great advances that have been made in the understanding and management of this complex, multifactorial disease, T2DM has become a worldwide epidemic in the 21st century. Population and family studies have revealed a strong genetic component of T2DM, and a number of candidate genes have been identified in humans. Variations in the gene sequences such as single nucleotide polymorphisms, explain the individual differences in traits like disease susceptibility and response to treatment. A clear understanding of how nutrients affect the expression of genes should facilitate the development of individualized intervention and, eventually, treatment strategies for T2DM. Review of the literature identified many phytochemicals/extracts from traditional medicinal plants that can target diabetogenic genes. This review focuses on the genetic aspects of T2DM, nutrient modification of genes relevant for diabetes, and future prospects of nutritional therapy of T2DM.
Collapse
Affiliation(s)
- Carani Venkatraman Anuradha
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalai Nagar - 608 002, Tamil Nadu, India.
| |
Collapse
|
162
|
Dali-Youcef N, Mecili M, Ricci R, Andrès E. Metabolic inflammation: connecting obesity and insulin resistance. Ann Med 2013; 45:242-53. [PMID: 22834949 DOI: 10.3109/07853890.2012.705015] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Insulin resistance is a pathological condition that arises when insulin signaling is impaired, forcing β-cells to produce more insulin in order to cope with body demands and to maintain glucose homeostasis. When the pancreas is no more able to support an appropriate insulin secretion, insulin resistance becomes decompensated and hyperglycemia is detected. One of the mechanisms leading to insulin resistance is low-grade inflammation that involves a number of protagonists such as inflammatory cytokines, lipids and their metabolites, reactive oxygen species (ROS), hypoxia and endoplasmic reticulum stress, and changes in gut microbiota profiles. We review here the molecular aspects of metabolic inflammation converging to insulin resistance and secondarily to type 2 diabetes. We also discuss the place of high-sensitivity C-reactive protein (hsCRP) in the assessment of metabolic inflammation and potential therapeutic interventions aimed to impede inflammation and therefore prevent insulin resistance.
Collapse
Affiliation(s)
- Nassim Dali-Youcef
- Laboratoire de Biochimie et de Biologie Moléculaire, Hôpitaux universitaires de Strasbourg, 1 place de l'hôpital 67091 Strasbourg Cedex, France.
| | | | | | | |
Collapse
|
163
|
Obanda DN, Cefalu WT. Modulation of cellular insulin signaling and PTP1B effects by lipid metabolites in skeletal muscle cells. J Nutr Biochem 2013; 24:1529-37. [PMID: 23481236 DOI: 10.1016/j.jnutbio.2012.12.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 11/07/2012] [Accepted: 12/21/2012] [Indexed: 12/22/2022]
Abstract
Normal glucose regulation is achieved by having adequate insulin secretion and effective glucose uptake/disposal. Excess lipids in peripheral tissues - skeletal muscle, liver and adipose tissue - may attenuate insulin signaling through the protein kinase B (AKt) pathway and up-regulate protein tyrosine phosphatase 1B (PTP1B), a negative regulator of insulin signaling. We studied accumulation of lipid metabolites [triglycerides (TAGs), diglycerides (DAGs)] and ceramides in relation to insulin signaling and expression and phosphorylation of PTP1B by preincubating rat skeletal muscle cells (L6 myotubes) with three saturated and three unsaturated free fatty acids (FFAs) (200 μM). Cells were also evaluated in the presence of wortmannin, an inhibitor of phosphatidylinositol 3-kinases and thus AKt (0-100 nM). Unsaturated FFAs increased DAGs, TAGs and PTP1B expression significantly, but cells remained insulin sensitive as assessed by robust AKt and PTP1B phosphorylation at serine (Ser) 50, Ser 398 and tyrosine 152. Saturated palmitic and stearic acids increased ceramides, up-regulated PTP1B, and had AKt and PTP1B phosphorylation at Ser 50 impaired. We show a significant correlation between phosphorylation levels of AKt and of PTP1B at Ser 50 (R(2)=0.84, P<.05). The same was observed with increasing wortmannin dose (R(2)=0.73, P<.05). Only FFAs that increased ceramides caused impairment of AKt and PTP1B phosphorylation at Ser 50. PTP1B overexpression in the presence of excess lipids may not directly cause insulin resistance unless it is accompanied by decreased PTP1B phosphorylation. A clear relationship between PTP1B phosphorylation levels at Ser 50 and its negative effect on insulin signaling is shown.
Collapse
Affiliation(s)
- Diana N Obanda
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | | |
Collapse
|
164
|
Feeding a DHA-enriched diet increases skeletal muscle protein synthesis in growing pigs: association with increased skeletal muscle insulin action and local mRNA expression of insulin-like growth factor 1. Br J Nutr 2013; 110:671-80. [PMID: 23433177 DOI: 10.1017/s0007114512005740] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Dietary n-3 PUFA have been demonstrated to promote muscle growth in growing animals. In the present study, fractional protein synthesis rates (FSR) in the skeletal muscle of growing pigs fed a DHA-enriched (DE) diet (DE treatment) or a soyabean oil (SO) diet (SO treatment) were evaluated in the fed and feed-deprived states. Feeding-induced increases in muscle FSR, as well as the activation of the mammalian target of rapamycin and protein kinase B, were higher in the DE treatment as indicated by the positive interaction between diet and feeding. In the fed state, the activation of eIF4E-binding protein 1 in the skeletal muscle of pigs on the DE diet was higher than that in pigs on the SO diet (P<0·05). Feeding the DE diet increased muscle insulin-like growth factor 1 (IGF-1) expression (P<0·05) and insulin action (as demonstrated by increased insulin receptor (IR) phosphorylation, P<0·05), resulting in increased IR substrate 1 activation in the fed state. However, no difference in plasma IGF-1 concentration or hepatic IGF-1 expression between the two treatments was associated. The increased IGF-1 expression in the DE treatment was associated with increased mRNA expression of the signal transducer and activator of transcription 5A and decreased mRNA expression of protein tyrosine phosphatase, non-receptor type 3 in skeletal muscle. Moreover, mRNA expression of protein tyrosine phosphatase, non-receptor type 1 (PTPN1), the activation of PTPN1 and the activation of NF-κB in muscle were significantly lower in the DE treatment (P<0·05). The results of the present study suggest that feeding a DE diet increased feeding-induced muscle protein synthesis in growing pigs, and muscle IGF-1 expression and insulin action were involved in this action.
Collapse
|
165
|
de Moura LP, Souza Pauli LS, Cintra DE, de Souza CT, da Silva ASR, Marinho R, de Melo MAR, Ropelle ER, Pauli JR. Acute exercise decreases PTP-1B protein level and improves insulin signaling in the liver of old rats. IMMUNITY & AGEING 2013; 10:8. [PMID: 23442260 PMCID: PMC3599175 DOI: 10.1186/1742-4933-10-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 02/20/2013] [Indexed: 11/17/2022]
Abstract
It is now commonly accepted that chronic inflammation associated with obesity during aging induces insulin resistance in the liver. In the present study, we investigated whether the improvement in insulin sensitivity and insulin signaling, mediated by acute exercise, could be associated with modulation of protein-tyrosine phosphatase 1B (PTP-1B) in the liver of old rats. Aging rats were subjected to swimming for two 1.5-h long bouts, separated by a 45 min rest period. Sixteen hours after the exercise, the rats were sacrificed and proteins from the insulin signaling pathway were analyzed by immunoblotting. Our results show that the fat mass was increased in old rats. The reduction in glucose disappearance rate (Kitt) observed in aged rats was restored 16 h after exercise. Aging increased the content of PTP-1B and attenuated insulin signaling in the liver of rats, a phenomenon that was reversed by exercise. Aging rats also increased the IRβ/PTP-1B and IRS-1/PTP-1B association in the liver when compared with young rats. Conversely, in the liver of exercised old rats, IRβ/PTP-1B and IRS-1/PTP-1B association was markedly decreased. Moreover, in the hepatic tissue of old rats, the insulin signalling was decreased and PEPCK and G6Pase levels were increased when compared with young rats. Interestingly, 16 h after acute exercise, the PEPCK and G6Pase protein level were decreased in the old exercised group. These results provide new insights into the mechanisms by which exercise restores insulin signalling in liver during aging.
Collapse
Affiliation(s)
- Leandro Pereira de Moura
- Universidade Estadual Paulista, UNESP, Curso de Pós-Graduação em Ciências da Motricidade Humana, Rio Claro, SP, Brazil
| | - Luciana Santos Souza Pauli
- Faculdade de Ciências Aplicadas, Universidade Estadual de Campinas, Curso de Pós-Graduação em Nutrição, Esporte e Metabolismo. UNICAMP, Limeira, SP, Brazil
| | - Dennys Esper Cintra
- Faculdade de Ciências Aplicadas, Universidade Estadual de Campinas, Curso de Pós-Graduação em Nutrição, Esporte e Metabolismo. UNICAMP, Limeira, SP, Brazil
| | | | | | - Rodolfo Marinho
- Faculdade de Ciências Aplicadas, Universidade Estadual de Campinas, Curso de Pós-Graduação em Nutrição, Esporte e Metabolismo. UNICAMP, Limeira, SP, Brazil
| | - Maria Alice Rostom de Melo
- Universidade Estadual Paulista, UNESP, Curso de Pós-Graduação em Ciências da Motricidade Humana, Rio Claro, SP, Brazil
| | - Eduardo Rochete Ropelle
- Faculdade de Ciências Aplicadas, Universidade Estadual de Campinas, Curso de Pós-Graduação em Nutrição, Esporte e Metabolismo. UNICAMP, Limeira, SP, Brazil
| | - José Rodrigo Pauli
- Universidade Estadual Paulista, UNESP, Curso de Pós-Graduação em Ciências da Motricidade Humana, Rio Claro, SP, Brazil.,Faculdade de Ciências Aplicadas, Universidade Estadual de Campinas, Curso de Pós-Graduação em Nutrição, Esporte e Metabolismo. UNICAMP, Limeira, SP, Brazil.,Curso de Ciências do Esporte, FCA-UNICAMP, Rua Pedro Zaccaria, 1300, Jardim Santa Luzia, Limeira, SP, Brazil
| |
Collapse
|
166
|
Tsou RC, Bence KK. Central regulation of metabolism by protein tyrosine phosphatases. Front Neurosci 2013; 6:192. [PMID: 23308070 PMCID: PMC3538333 DOI: 10.3389/fnins.2012.00192] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 12/17/2012] [Indexed: 11/13/2022] Open
Abstract
Protein tyrosine phosphatases (PTPs) are important regulators of intracellular signaling pathways via the dephosphorylation of phosphotyrosyl residues on various receptor and non-receptor substrates. The phosphorylation state of central nervous system (CNS) signaling components underlies the molecular mechanisms of a variety of physiological functions including the control of energy balance and glucose homeostasis. In this review, we summarize the current evidence implicating PTPs as central regulators of metabolism, specifically highlighting their interactions with the neuronal leptin and insulin signaling pathways. We discuss the role of a number of PTPs (PTP1B, SHP2, TCPTP, RPTPe, and PTEN), reviewing the findings from genetic mouse models and in vitro studies which highlight these phosphatases as key central regulators of energy homeostasis.
Collapse
Affiliation(s)
- Ryan C Tsou
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania Philadelphia, PA, USA
| | | |
Collapse
|
167
|
Barone I, Giordano C, Malivindi R, Lanzino M, Rizza P, Casaburi I, Bonofiglio D, Catalano S, Andò S. Estrogens and PTP1B function in a novel pathway to regulate aromatase enzymatic activity in breast cancer cells. Endocrinology 2012; 153:5157-66. [PMID: 22962253 DOI: 10.1210/en.2012-1561] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Local estrogen production by aromatase is an important mechanism of autocrine stimulation in hormone-dependent breast cancer. We have previously shown that 17-β estradiol (E(2)) rapidly enhances aromatase enzymatic activity through an increase of tyrosine protein phosphorylation controlled by the activity of the c-Src kinase in breast cancer cells. Here, we investigated the protein tyrosine phosphatase PTP1B (protein tyrosine phosphatase 1B) as a potential regulator of aromatase activity. We demonstrated a specific association between PTP1B and aromatase at protein-protein level and a reduction of aromatase activity in basal and E(2)-treated MCF-7 and ZR75 breast cancer cells when PTP1B was overexpressed. Indeed, a specific tyrosine phosphatase inhibitor increased basal and E(2)-induced enzymatic activity as well as tyrosine phosphorylation status of the purified aromatase protein. Moreover, E(2) through phosphatidylinositol 3 kinase/Akt activation caused a significant decrease of PTP1B catalytic activity along with an increase in its serine phosphorylation. Concomitantly, the phosphatidylinositol 3 kinase inhibitor LY294002 or a dominant negative of Akt was able to reduce the E(2) stimulatory effects on activity and tyrosine phosphorylation levels of aromatase. Taken together, our results suggest that E(2) can impair PTP1B ability to dephosphorylate aromatase, and thus it increases its enzymatic activity, creating a positive feedback mechanism for estradiol signaling in breast cancer.
Collapse
Affiliation(s)
- Ines Barone
- Departments of Cell Biology, University of Calabria, Cosenza, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
168
|
Gorgani-Firuzjaee S, Bakhtiyari S, Golestani A, Meshkani R. Leukocyte antigen-related inhibition attenuates palmitate-induced insulin resistance in muscle cells. J Endocrinol 2012; 215:71-7. [PMID: 22899729 DOI: 10.1530/joe-12-0160] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Palmitate has been shown to induce insulin resistance in skeletal muscle cells. The aim of this study was to investigate the role of the leukocyte common antigen-related (LAR) gene in palmitate-induced insulin resistance in C2C12 cells. A stable C2C12 cell line was generated using LAR short hairpin RNA. The levels of LAR protein and phosphorylation of insulin receptor substrate-1 (IRS1) and Akt were detected by western blot analysis. 2-Deoxyglucose uptake was measured in LAR knockdown and control cells using d-[2-(3)H]glucose. LAR protein level was decreased by 65% in the stable cell line compared with the control cells. Palmitate (0.5 mM) significantly induced LAR mRNA (65%) and protein levels (40%) in myotubes compared with untreated cells. Palmitate significantly reduced insulin-stimulated glucose uptake in both the control and LAR knockdown cells by 33 and 51% respectively. However, LAR depletion improved insulin-stimulated glucose uptake in myotubes treated with palmitate. Furthermore, the inhibition of LAR prevented palmitate-induced decreases in phosphorylation of IRS1(Tyr632) and Akt(Ser473) in C2C12 cells. In conclusion, these results reveal that palmitate induces LAR expression in C2C12 cells. We also provided evidence that the inhibition of LAR attenuates palmitate-induced insulin resistance in myotubes.
Collapse
Affiliation(s)
- Sattar Gorgani-Firuzjaee
- Department of Biochemistry, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | | | | | | |
Collapse
|
169
|
Tsou RC, Zimmer DJ, De Jonghe BC, Bence KK. Deficiency of PTP1B in leptin receptor-expressing neurons leads to decreased body weight and adiposity in mice. Endocrinology 2012; 153:4227-37. [PMID: 22802463 PMCID: PMC3423620 DOI: 10.1210/en.2012-1548] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 07/02/2012] [Indexed: 01/19/2023]
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is a ubiquitously expressed tyrosine phosphatase implicated in the negative regulation of leptin and insulin receptor signaling. PTP1B(-/-) mice possess a lean metabolic phenotype attributed at least partially to improved hypothalamic leptin sensitivity. Interestingly, mice lacking both leptin and PTP1B (ob/ob:PTP1B(-/-)) have reduced body weight compared with mice lacking leptin only, suggesting that PTP1B may have important leptin-independent metabolic effects. We generated mice with PTP1B deficiency specifically in leptin receptor (LepRb)-expressing neurons (LepRb-PTP1B(-/-)) and compared them with LepRb-Cre-only wild-type (WT) controls and global PTP1B(-/-) mice. Consistent with PTP1B's role as a negative regulator of leptin signaling, our results show that LepRb-PTP1B(-/-) mice are leptin hypersensitive and have significantly reduced body weight when maintained on chow or high-fat diet (HFD) compared with WT controls. LepRb-PTP1B(-/-) mice have a significant decrease in adiposity on HFD compared with controls. Notably, the extent of attenuated body weight gain on HFD, as well as the extent of leptin hypersensitivity, is similar between LepRb-PTP1B(-/-) mice and global PTP1B(-/-) mice. Overall, these results demonstrate that PTP1B deficiency in LepRb-expressing neurons results in reduced body weight and adiposity compared with WT controls and likely underlies the improved metabolic phenotype of global and brain-specific PTP1B-deficient models. Subtle phenotypic differences between LepRb-PTP1B(-/-) and global PTP1B(-/-) mice, however, suggest that PTP1B independent of leptin signaling may also contribute to energy balance in mice.
Collapse
Affiliation(s)
- Ryan C Tsou
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6046, USA
| | | | | | | |
Collapse
|
170
|
Prudente S, Sesti G, Pandolfi A, Andreozzi F, Consoli A, Trischitta V. The mammalian tribbles homolog TRIB3, glucose homeostasis, and cardiovascular diseases. Endocr Rev 2012; 33:526-46. [PMID: 22577090 PMCID: PMC3410226 DOI: 10.1210/er.2011-1042] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Insulin signaling plays a physiological role in traditional insulin target tissues controlling glucose homeostasis as well as in pancreatic β-cells and in the endothelium. Insulin signaling abnormalities may, therefore, be pathogenic for insulin resistance, impaired insulin secretion, endothelial dysfunction, and eventually, type 2 diabetes mellitus (T2DM) and cardiovascular disease. Tribbles homolog 3 (TRIB3) is a 45-kDa pseudokinase binding to and inhibiting Akt, a key mediator of insulin signaling. Akt-mediated effects of TRIB3 in the liver, pancreatic β-cells, and skeletal muscle result in impaired glucose homeostasis. TRIB3 effects are also modulated by its direct interaction with other signaling molecules. In humans, TRIB3 overactivity, due to TRIB3 overexpression or to Q84R genetic polymorphism, with R84 being a gain-of-function variant, may be involved in shaping the risk of insulin resistance, T2DM, and cardiovascular disease. TRIB3 overexpression has been observed in the liver, adipose tissue, skeletal muscle, and pancreatic β-cells of individuals with insulin resistance and/or T2DM. The R84 variant has also proved to be associated with insulin resistance, T2DM, and cardiovascular disease. TRIB3 direct effects on the endothelium might also play a role in increasing the risk of atherosclerosis, as indicated by studies on human endothelial cells carrying the R84 variant that are dysfunctional in terms of Akt activation, NO production, and other proatherogenic changes. In conclusion, studies on TRIB3 have unraveled new molecular mechanisms underlying metabolic and cardiovascular abnormalities. Additional investigations are needed to verify whether such acquired knowledge will be relevant for improving care delivery to patients with metabolic and cardiovascular alterations.
Collapse
Affiliation(s)
- Sabrina Prudente
- Instituto di Ricovero e Cura a Carattere Scientifico Casa Sollievo della Sofferenza, Mendel Laboratory, Italy
| | | | | | | | | | | |
Collapse
|
171
|
Isolation of Antidiabetic Principle from Fruit Rinds of Punica granatum. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:147202. [PMID: 22919408 PMCID: PMC3419443 DOI: 10.1155/2012/147202] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Accepted: 04/26/2012] [Indexed: 11/28/2022]
Abstract
Present study was aimed to isolate and evaluate the antidiabetic activity of phytoconstituents from fruit rinds of Punica granatum. With the above objectives Valoneic acid dilactone (VAD) was isolated from methanolic fruit rind extracts of Punica granatum (MEPG) and confirmed by 1H-NMR, 13C-NMR, and mass spectral data. Antidiabetic activity was evaluated by Aldose reductase, α-amylase and PTP1B inhibition assays in in vitro and Alloxan-induced diabetes in rats was used as an in vivo model. In bioactivity studies, MEPG and VAD have showed potent antidiabetic activity in α-amylase, aldose reductase, and PTP1B inhibition assays with IC50 values of 1.02, 2.050, 26.25 μg/mL and 0.284, 0.788, 12.41 μg/mL, respectively. Furthermore, in alloxan-induced diabetes model MEPG (200 and 400 mg/kg, p.o.) and VAD (10, 25, and 50 mg/kg, p.o.) have showed significant and dose dependent antidiabetic activity by maintaining the blood glucose levels within the normal limits. Inline with the biochemical findings histopathology of MEPG (200 and 400 mg/kg, p.o.), VAD (10, 25, and 50 mg/kg, p.o.), and glibenclamide (10 mg/kg, p.o.) treated animals showed significant protection against alloxan-induced pancreatic tissue damage. These findings suggest that MEPG and VAD possess significant antidiabetic activity in both in vitro and in vivo models.
Collapse
|
172
|
Sun LP, Gao LX, Ma WP, Nan FJ, Li J, Piao HR. Synthesis and Biological Evaluation of 2,4,6-Trihydroxychalcone Derivatives as Novel Protein Tyrosine Phosphatase 1B Inhibitors. Chem Biol Drug Des 2012; 80:584-90. [DOI: 10.1111/j.1747-0285.2012.01431.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
173
|
Lubben T, Clampit J, Stashko M, Trevillyan J, Jirousek MR. In vitro enzymatic assays of protein tyrosine phosphatase 1B. ACTA ACUST UNITED AC 2012; Chapter 3:Unit3.8. [PMID: 21959757 DOI: 10.1002/0471141755.ph0308s13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Many hormone or growth factor receptors signal via the activation of protein-tyrosine kinases and phosphatases. Alteration of the phosphorylation state of tyrosine residues in certain proteins can directly regulate enzyme activity or cause formation of protein complexes necessary for transducing intracellular signals. Genetic and biochemical evidence also implicates protein-tyrosine phosphatases in several disease processes, including negative regulation of insulin receptor signaling at the level of the insulin receptor and perhaps in signaling at the IRS-1 level. The expression of protein tyrosine phosphatase-1B (PTP1B) is elevated in muscle and adipose tissue in insulin-resistant states both in man and rodents suggesting that PTP1B may play a role in the insulin-resistant state associated with diabetes and obesity. As described in this unit, PTP1B activity can be determined with the small molecule substrate, p-nitrophenyl phosphate (pNPP), in which the cleavage of the phosphate results in production of p-nitrophenol (pNP) and an increase in absorbance at 405 nm. Alternatively, PTP1B activity can be measured as described using model phosphotyrosyl-containing peptide substrates in which the release of free phosphate from the peptide is determined using a malachite green colorimetric assay.
Collapse
Affiliation(s)
- T Lubben
- Abbott Laboratories, Abbott Park, IL, USA
| | | | | | | | | |
Collapse
|
174
|
Stull AJ, Wang ZQ, Zhang XH, Yu Y, Johnson WD, Cefalu WT. Skeletal muscle protein tyrosine phosphatase 1B regulates insulin sensitivity in African Americans. Diabetes 2012; 61:1415-22. [PMID: 22474028 PMCID: PMC3357297 DOI: 10.2337/db11-0744] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is postulated to modulate insulin action by dephosphorylating the insulin receptor signaling proteins and attenuating insulin signaling. We sought to determine the relationship of skeletal muscle PTP1B to whole-body insulin sensitivity. We studied 17 African Americans with type 2 diabetes mellitus (T2DM) and 16 without diabetes. PTP1B gene expression and protein abundance were determined in the biopsied skeletal muscles at the baseline of a hyperinsulinemic-euglycemic clamp. PTP1B gene expression was significantly higher in subjects with T2DM versus control (P < 0.0001) and remained significantly different after adjusting for age and insulin sensitivity (P = 0.05). PTP1B gene expression was positively related to protein abundance (r(s) = 0.39; P = 0.03; adjusted for age and insulin sensitivity) and negatively related to insulin sensitivity (r(s) = -0.52; P = 0.002; adjusted for age). Overexpression and interference RNA of PTP1B were performed in primary human skeletal muscle culture. PTP1B overexpression resulted in reduction of Akt phosphorylation in the control subjects. Moreover, interference RNA transfection downregulated PTP1B expression and enhanced Akt phosphorylation in subjects with T2DM. These data show that skeletal muscle PTP1B gene expression is increased in African American subjects with T2DM, is negatively associated with whole-body insulin sensitivity, and contributes to modulation of insulin signaling.
Collapse
Affiliation(s)
- April J Stull
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA.
| | | | | | | | | | | |
Collapse
|
175
|
Chen ZH, Sun LP, Zhang W, Shen Q, Gao LX, Li J, Piao HR. Synthesis and Biological Evaluation of Heterocyclic Ring-substituted Chalcone Derivatives as Novel Inhibitors of Protein Tyrosine Phosphatase 1B. B KOREAN CHEM SOC 2012. [DOI: 10.5012/bkcs.2012.33.5.1505] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
176
|
Abstract
The huge increase in type 2 diabetes is a burden worldwide. Many marketed compounds do not address relevant aspects of the disease; they may already compensate for defects in insulin secretion and insulin action, but loss of secreting cells (β-cell destruction), hyperglucagonemia, gastric emptying, enzyme activation/inhibition in insulin-sensitive cells, substitution or antagonizing of physiological hormones and pathways, finally leading to secondary complications of diabetes, are not sufficiently addressed. In addition, side effects for established therapies such as hypoglycemias and weight gain have to be diminished. At present, nearly 1000 compounds have been described, and approximately 180 of these are going to be developed (already in clinical studies), some of them directly influencing enzyme activity, influencing pathophysiological pathways, and some using G-protein-coupled receptors. In addition, immunological approaches and antisense strategies are going to be developed. Many compounds are derived from physiological compounds (hormones) aiming at improving their kinetics and selectivity, and others are chemical compounds that were obtained by screening for a newly identified target in the physiological or pathophysiological machinery. In some areas, great progress is observed (e.g., incretin area); in others, no great progress is obvious (e.g., glucokinase activators), and other areas are not recommended for further research. For all scientific areas, conclusions with respect to their impact on diabetes are given. Potential targets for which no chemical compound has yet been identified as a ligand (agonist or antagonist) are also described.
Collapse
Affiliation(s)
- E J Verspohl
- Department of Pharmacology, Institute of Medicinal Chemistry, University of Muenster, Hittorfstr. 58-62, 48149 Muenster, Germany.
| |
Collapse
|
177
|
Li J, Qiu WW, Li H, Zou H, Gao LX, Liu T, Yang F, Li JY, Tang J. Synthesis and Biological Evaluation of Oleanolic Acid Derivatives as Novel Inhibitors of Protein Tyrosine Phosphatase 1B. HETEROCYCLES 2012. [DOI: 10.3987/com-12-12445] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
178
|
Wu J, Yang LJ, Zou DJ. Rosiglitazone attenuates tumor necrosis factor-α-induced protein-tyrosine phosphatase-1B production in HepG2 cells. J Endocrinol Invest 2012; 35:28-34. [PMID: 21483233 DOI: 10.3275/7629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Tumor necrosis factor (TNF)-α impairs insulin signaling and plays an important role in the development of insulin resistance. The underlying molecular mechanism by which TNF-α regulates hepatic protein-tyrosine phosphatase (PTP)-1B expression is not well understood. Rosiglitazone is used as a drug to improve insulin sensitivity in vivo. However, its effect on TNF-α-induced PTP-1B expression remains to be explored. In the present study, we sought to identify the mechanism of TNF-α-regulated hepatic PTP-1B expression and evaluate the effect of rosiglitazone on TNF-α-induced hepatic PTP-1B upregulation. TNF-α up-regulates PTP- 1B expression in a dose-dependent manner and decreases insulin-stimulated phosphorylation of IR and insulin receptor substrate-1 in HepG2 cells. TNF-α increases p65 protein level and nuclear factor κB (NF-κB) activity. Inhibition of NF-κB activation by pyrrolidine dithiocarbamate impairs TNF-α-induced PTP-1B upregulation. Rosiglitazone significantly blocks TNF-α-induced PTP-1B upregulation and NF-κB activation. Our data strongly suggest that TNF-α-induced PTP-1B overexpression may contribute to hepatic IR in obesity and diabetes, and NF-κB is involved in rosiglitazone attenuated PTP- 1B upregulation by TNF-α.
Collapse
Affiliation(s)
- J Wu
- Department of Endocrinology, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | | | | |
Collapse
|
179
|
Tang J, Li J, Wang JP, Yang F, Liu T, Qiu WW, Li JY, Li H. Design, Synthesis and Biological Activity Evaluation of 2-Mercapto-4(3H)-quinazolinone Derivatives as Novel Inhibitors of Protein Tyrosine Phosphatase 1B. HETEROCYCLES 2012. [DOI: 10.3987/com-12-12477] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
180
|
LeCapitaine NJ, Wang ZQ, Dufour JP, Potter BJ, Bagby GJ, Nelson S, Cefalu WT, Molina PE. Disrupted anabolic and catabolic processes may contribute to alcohol-accentuated SAIDS-associated wasting. J Infect Dis 2011; 204:1246-55. [PMID: 21917898 DOI: 10.1093/infdis/jir508] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Alcohol abuse is a comorbid factor in many human immunodeficiency virus (HIV)-infected patients. Previously, we demonstrated that chronic binge alcohol accentuates loss of body mass at terminal stage of simian immunodeficiency virus (SIV) infection. The purpose of this study was to investigate changes in pathways that may contribute to muscle wasting in chronic binge alcohol-fed SIV-infected macaques. METHODS The impact of chronic binge alcohol during SIV infection on insulin signaling and the ubiquitin (Ub)-proteasome system-regulators of protein synthesis and degradation-was examined in SIV-infected macaques. RESULTS SIV infection induced an inflammatory and pro-oxidative milieu in skeletal muscle, which was associated with decreased insulin-stimulated phosphatidylinositol 3-kinase (PI-3k) activity and upregulated gene expression of mTOR and atrogin-1, and protein expression of Ub-proteasome system 19S base. Chronic binge alcohol accentuated the skeletal muscle pro-oxidative milieu and 19S base expression. Additionally, chronic binge alcohol increased skeletal muscle protein expression of protein-tyrosine phosphatase 1B (a negative regulator of insulin signaling) and 19S proteasome regulator non-ATPase (Rpn) 6 subunit and Rpn12, and suppressed PI-3K activity. Animals that were alcohol-fed and SIV-infected for >15 months had increased Ub-proteasome system activity. CONCLUSIONS These data suggest negative modulation of insulin signaling coupled with enhanced Ub-proteasome system activity may be central mechanisms underlying chronic binge alcohol-induced accentuation of SIV-associated muscle wasting.
Collapse
Affiliation(s)
- Nicole J LeCapitaine
- Department of Physiology, Louisiana State University, Health Sciences Center, New Orleans, LA 70112, USA
| | | | | | | | | | | | | | | |
Collapse
|
181
|
Gomez-Cambronero J. The exquisite regulation of PLD2 by a wealth of interacting proteins: S6K, Grb2, Sos, WASp and Rac2 (and a surprise discovery: PLD2 is a GEF). Cell Signal 2011; 23:1885-95. [PMID: 21740967 PMCID: PMC3204931 DOI: 10.1016/j.cellsig.2011.06.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 06/21/2011] [Indexed: 11/28/2022]
Abstract
Phospholipase D (PLD) catalyzes the conversion of the membrane phospholipid phosphatidylcholine to choline and phosphatidic acid (PA). PLD's mission in the cell is two-fold: phospholipid turnover with maintenance of the structural integrity of cellular/intracellular membranes and cell signaling through PA and its metabolites. Precisely, through its product of the reaction, PA, PLD has been implicated in a variety of physiological cellular functions, such as intracellular protein trafficking, cytoskeletal dynamics, chemotaxis of leukocytes and cell proliferation. The catalytic (HKD) and regulatory (PH and PX) domains were studied in detail in the PLD1 isoform, but PLD2 was traditionally studied in lesser detail and much less was known about its regulation. Our laboratory has been focusing on the study of PLD2 regulation in mammalian cells. Over the past few years, we have reported, in regards to the catalytic action of PLD, that PA is a chemoattractant agent that binds to and signals inside the cell through the ribosomal S6 kinases (S6K). Regarding the regulatory domains of PLD2, we have reported the discovery of the PLD2 interaction with Grb2 via Y169 in the PX domain, and further association to Sos, which results in an increase of de novo DNA synthesis and an interaction (also with Grb2) via the adjacent residue Y179, leading to the regulation of cell ruffling, chemotaxis and phagocytosis of leukocytes. We also present the complex regulation by tyrosine phosphorylation by epidermal growth factor receptor (EGF-R), Janus Kinase 3 (JAK3) and Src and the role of phosphatases. Recently, there is evidence supporting a new level of regulation of PLD2 at the PH domain, by the discovery of CRIB domains and a Rac2-PLD2 interaction that leads to a dual (positive and negative) effect on its enzymatic activity. Lastly, we review the surprising finding of PLD2 acting as a GEF. A phospholipase such as PLD that exists already in the cell membrane that acts directly on Rac allows a quick response of the cell without intermediary signaling molecules. This provides only the latest level of PLD2 regulation in a field that promises newer and exciting advances in the next few years.
Collapse
Affiliation(s)
- Julian Gomez-Cambronero
- Department of Biochemistry and Molecular Biology, Wright State University School of Medicine, Dayton, OH 45435, USA.
| |
Collapse
|
182
|
Haque A, Andersen JN, Salmeen A, Barford D, Tonks NK. Conformation-sensing antibodies stabilize the oxidized form of PTP1B and inhibit its phosphatase activity. Cell 2011; 147:185-98. [PMID: 21962515 DOI: 10.1016/j.cell.2011.08.036] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 06/30/2011] [Accepted: 08/15/2011] [Indexed: 01/10/2023]
Abstract
Protein tyrosine phosphatase 1B (PTP1B) plays important roles in downregulation of insulin and leptin signaling and is an established therapeutic target for diabetes and obesity. PTP1B is regulated by reactive oxygen species (ROS) produced in response to various stimuli, including insulin. The reversibly oxidized form of the enzyme (PTP1B-OX) is inactive and undergoes profound conformational changes at the active site. We generated conformation-sensor antibodies, in the form of single-chain variable fragments (scFvs), that stabilize PTP1B-OX and thereby inhibit its phosphatase function. Expression of conformation-sensor scFvs as intracellular antibodies (intrabodies) enhanced insulin-induced tyrosyl phosphorylation of the β subunit of the insulin receptor and its substrate IRS-1 and increased insulin-induced phosphorylation of PKB/AKT. Our data suggest that stabilization of the oxidized, inactive form of PTP1B with appropriate therapeutic molecules may offer a paradigm for phosphatase drug development.
Collapse
Affiliation(s)
- Aftabul Haque
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | | | | | | |
Collapse
|
183
|
Abstract
Insulin resistance is the most important pathophysiological feature in many pre-diabetic states. Type 2 diabetes mellitus is a complex metabolic disease and its pathogenesis involves abnormalities in both peripheral insulin action and insulin secretion by pancreatic beta cells. The creation of monogenic or polygenic genetically manipulated mice models in a tissue-specific manner was of great help to elucidate the tissue-specificity of insulin action and its contribution to the overall insulin resistance. However, complete understanding of the molecular bases of the insulin action and resistance requires the identification of the intracellular pathways that regulate insulin-stimulated proliferation, differentiation and metabolism. Accordingly, cell lines derived from insulin target tissues such as brown adipose tissue, liver and beta islets lacking insulin receptors or sensitive candidate genes such as IRS-1, IRS-2, IRS-3, IR and PTP1B were developed. Indeed, these cell lines have been also very useful to understand the tissue-specificity of insulin action and inaction.
Collapse
Affiliation(s)
- Manuel Benito
- Departamento de Bioquímica y Biología Molecular II, Facultad de Farmacia, Universidad Complutense, Madrid, Spain.
| |
Collapse
|
184
|
Williams KW, Scott MM, Elmquist JK. Modulation of the central melanocortin system by leptin, insulin, and serotonin: co-ordinated actions in a dispersed neuronal network. Eur J Pharmacol 2011; 660:2-12. [PMID: 21211525 PMCID: PMC3085544 DOI: 10.1016/j.ejphar.2010.11.042] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 10/08/2010] [Accepted: 11/02/2010] [Indexed: 10/18/2022]
Abstract
Over the past century, prevalent models of energy and glucose homeostasis have been developed from a better understanding of the neural circuits underlying obesity and diabetes. From the early hypothalamic lesion reports to the more recent pharmacological and molecular/genetic studies, the hypothalamic melanocortin system has been shown to play a critical role in the regulation of metabolism. This review attempts to highlight contributions to our current understanding of how numerous neuromodulators (leptin, insulin, and serotonin) integrate with the central melanocortin system to coordinate alterations in energy and glucose balance.
Collapse
Affiliation(s)
- Kevin W. Williams
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Michael M. Scott
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Joel K. Elmquist
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| |
Collapse
|
185
|
Zhou X, Xu W, Chen J. The 981C>T polymorphism in protein tyrosine phosphatase 1B is associated with decreased risk of coronary artery disease in Chinese Han population. Atherosclerosis 2011; 218:147-50. [PMID: 21676396 DOI: 10.1016/j.atherosclerosis.2011.05.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 05/17/2011] [Accepted: 05/17/2011] [Indexed: 01/12/2023]
Abstract
OBJECTIVE The present study was designed to investigate the potential association between the 981C>T polymorphism in protein tyrosine phosphatase 1B (PTP-1B) and coronary artery disease (CAD). METHODS We conducted a hospital-based case-control study with 864 CAD patients and 1008 controls to explore the association between the PTP-1B 981C>T polymorphism and risk of CAD in Chinese Han population. RESULTS Subjects with the variant genotypes (CT+TT) had a 52% decreased risk of CAD relative to CC carriers (adjusted odds ratio, 0.48; 95% confidence interval, 0.39-0.60). The 981C>T polymorphism was associated with a higher body mass index and serum triglyceride levels in both CAD patients and controls. Moreover, this polymorphism was found to be associated with a lower serum glucose levels in cases, but not in controls. CONCLUSION Our study demonstrates that the PTP-1B 981C>T polymorphism is associated with decreased risk of CAD in Chinese Han population.
Collapse
Affiliation(s)
- Xiang Zhou
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, People's Republic of China
| | | | | |
Collapse
|
186
|
Alonso-Chamorro M, Nieto-Vazquez I, Montori-Grau M, Gomez-Foix AM, Fernandez-Veledo S, Lorenzo M. New emerging role of protein-tyrosine phosphatase 1B in the regulation of glycogen metabolism in basal and TNF-α-induced insulin-resistant conditions in an immortalised muscle cell line isolated from mice. Diabetologia 2011; 54:1157-68. [PMID: 21311858 DOI: 10.1007/s00125-011-2057-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 12/22/2010] [Indexed: 10/18/2022]
Abstract
AIMS/HYPOTHESIS Protein-tyrosine phosphatase 1B (PTP1B) negatively regulates insulin action, promoting attenuation of the insulin signalling pathway. The production of this phosphatase is enhanced in insulin-resistant states, such as obesity and type 2 diabetes, where high levels of proinflammatory cytokines (TNF-α, IL-6) are found. In these metabolic conditions, insulin action on glycogen metabolism in skeletal muscle is greatly impaired. We addressed the role of PTP1B on glycogen metabolism in basal and insulin-resistant conditions promoted by TNF-α. METHODS We studied the effect of TNF-α in the presence and absence of insulin on glycogen content and synthesis, glycogen synthase (GS) and glycogen phosphorylase (GP) activities and on glycogen synthesis and degradation signalling pathways. For this purpose we used immortalised cell lines isolated from skeletal muscle from mice lacking PTP1B. RESULTS Absence of PTP1B caused activation of GS and GP with a net glycogenolytic effect, reflected in lower amounts of glycogen and activation of the glycogenolytic signalling pathway, with higher rates of phosphorylation of cyclic adenosine monophosphate-dependent kinase (PKA), phosphorylase kinase (PhK) and GP phosphorylation. Nevertheless, insulin action was strongly enhanced in Ptp1b (also known as Ptpn1)(-/-) cells in terms of glycogen content, synthesis, GS activation rates and GS Ser641 dephosphorylation. Treatment with TNF-α augmented the activity ratios of both GS and GP, and impaired insulin stimulation of glycogen synthesis in wild-type myocytes, whereas Ptp1b (-/-) myocytes restored this inhibitory effect. We report a glycogenolytic effect of TNF-α, as demonstrated by greater activation of the degradation signalling cascade PKA/PhK/GP. In our model, this effect is mediated by the activation of PKA. CONCLUSIONS/INTERPRETATION We provide new data about the role of PTP1B in glycogen metabolism and confirm the beneficial effect that absence of the phosphatase confers against an insulin-resistant condition.
Collapse
Affiliation(s)
- M Alonso-Chamorro
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
187
|
Ma J, Li Z, Xing S, Ho WT, Fu X, Zhao ZJ. Tea contains potent inhibitors of tyrosine phosphatase PTP1B. Biochem Biophys Res Commun 2011; 407:98-102. [PMID: 21371422 PMCID: PMC3070786 DOI: 10.1016/j.bbrc.2011.02.116] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 02/24/2011] [Indexed: 12/27/2022]
Abstract
Tea is widely consumed all over the world. Studies have demonstrated the role of tea in prevention and treatment of various chronic diseases including diabetes and obesity, but the underlying mechanism is unclear. PTP1B is a widely expressed tyrosine phosphatase which has been defined as a target for therapeutic drug development to treat diabetes and obesity. In screening for inhibitors of PTP1B, we found that aqueous extracts of teas exhibited potent PTP1B inhibitory effects with an IC50 value of 0.4-4 g dry tea leaves per liter of water. Black tea shows the strongest inhibition activities, followed by oolong and then by green tea. Biochemical fractionations demonstrated that the major effective components in tea corresponded to oxidized polyphenolic compounds. This was further verified by the fact that tea catechins became potent inhibitors of PTP1B upon oxidation catalyzed by tyrosinases. When applied to cultured cells, tea extracts induced tyrosine phosphorylation of cellular proteins. Our study suggests that some beneficial effects of tea may be attributed to the inhibition of PTP1B.
Collapse
Affiliation(s)
- Junfeng Ma
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
- Edmond H. Fischer Signal Transduction Laboratory, College of Life Sciences, Jilin University, Changchun, 130012, China
| | - Zhe Li
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Shu Xing
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
- Edmond H. Fischer Signal Transduction Laboratory, College of Life Sciences, Jilin University, Changchun, 130012, China
| | - Wanting Tina Ho
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Xueqi Fu
- Edmond H. Fischer Signal Transduction Laboratory, College of Life Sciences, Jilin University, Changchun, 130012, China
| | - Zhizhuang Joe Zhao
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
- Edmond H. Fischer Signal Transduction Laboratory, College of Life Sciences, Jilin University, Changchun, 130012, China
| |
Collapse
|
188
|
Abstract
Insulin resistance is the most important pathophysiological feature in many pre-diabetic states. Type 2 diabetes mellitus is a complex metabolic disease and its pathogenesis involves abnormalities in both peripheral insulin action and insulin secretion by pancreatic β-cells. The creation of monogenic or polygenic genetically manipulated mice models in a tissue-specific manner was of great help to elucidate the tissue specificity of insulin action and its contribution to the overall insulin resistance. However, a complete understanding of the molecular bases of insulin action and resistance requires the identification of intracellular pathways that regulate insulin-stimulated proliferation, differentiation and metabolism. Accordingly, cell lines derived from insulin target tissues such as brown adipose tissue, liver and beta islets lacking insulin resistance or sensitive candidate genes such as IRS-1, IRS-2, IRS-3, IR and PTP1B have been developed. Indeed, these cell lines have also been very useful to understand the tissue specificity of insulin action and inaction. Obesity is a risk factor for several components of the metabolic syndromes such as type 2 diabetes, dyslipidaemia and systolic hypertension, because white and brown adipose tissues as endocrine organs express and secrete a variety of adipocytokines that can act at both local and systemic levels, modulating the insulin sensitivity. Recent studies revealed that the subjects with the highest transcription rates of genes encoding TNF-α and IL-6 were prone to develop obesity, insulin resistance and type 2 diabetes. Accordingly, we specifically focus in this review on the impact of those adipocytokines on the modulation of insulin action in skeletal muscle.
Collapse
Affiliation(s)
- M Benito
- Departamento de Bioquímica y Biología Molecular II, Facultad de Farmacia, Universidad Complutense, Madrid, Spain.
| |
Collapse
|
189
|
Ferrari E, Tinti M, Costa S, Corallino S, Nardozza AP, Chatraryamontri A, Ceol A, Cesareni G, Castagnoli L. Identification of new substrates of the protein-tyrosine phosphatase PTP1B by Bayesian integration of proteome evidence. J Biol Chem 2011; 286:4173-85. [PMID: 21123182 PMCID: PMC3039405 DOI: 10.1074/jbc.m110.157420] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 11/30/2010] [Indexed: 11/10/2022] Open
Abstract
There is growing evidence that tyrosine phosphatases display an intrinsic enzymatic preference for the sequence context flanking the target phosphotyrosines. On the other hand, substrate selection in vivo is decisively guided by the enzyme-substrate connectivity in the protein interaction network. We describe here a system wide strategy to infer physiological substrates of protein-tyrosine phosphatases. Here we integrate, by a Bayesian model, proteome wide evidence about in vitro substrate preference, as determined by a novel high-density peptide chip technology, and "closeness" in the protein interaction network. This allows to rank candidate substrates of the human PTP1B phosphatase. Ultimately a variety of in vitro and in vivo approaches were used to verify the prediction that the tyrosine phosphorylation levels of five high-ranking substrates, PLC-γ1, Gab1, SHP2, EGFR, and SHP1, are indeed specifically modulated by PTP1B. In addition, we demonstrate that the PTP1B-mediated dephosphorylation of Gab1 negatively affects its EGF-induced association with the phosphatase SHP2. The dissociation of this signaling complex is accompanied by a decrease of ERK MAP kinase phosphorylation and activation.
Collapse
Affiliation(s)
- Emanuela Ferrari
- From the Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00144 Rome, Italy and
| | - Michele Tinti
- From the Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00144 Rome, Italy and
| | - Stefano Costa
- From the Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00144 Rome, Italy and
| | - Salvatore Corallino
- From the Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00144 Rome, Italy and
| | - Aurelio Pio Nardozza
- From the Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00144 Rome, Italy and
| | - Andrew Chatraryamontri
- From the Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00144 Rome, Italy and
| | - Arnaud Ceol
- From the Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00144 Rome, Italy and
| | - Gianni Cesareni
- From the Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00144 Rome, Italy and
- IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
| | - Luisa Castagnoli
- From the Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00144 Rome, Italy and
| |
Collapse
|
190
|
Matsuo K, Bettaieb A, Nagata N, Matsuo I, Keilhack H, Haj FG. Regulation of brown fat adipogenesis by protein tyrosine phosphatase 1B. PLoS One 2011; 6:e16446. [PMID: 21305007 PMCID: PMC3031545 DOI: 10.1371/journal.pone.0016446] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 12/20/2010] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Protein-tyrosine phosphatase 1B (PTP1B) is a physiological regulator of insulin signaling and energy balance, but its role in brown fat adipogenesis requires additional investigation. METHODOLOGY/PRINCIPAL FINDINGS To precisely determine the role of PTP1B in adipogenesis, we established preadipocyte cell lines from wild type and PTP1B knockout (KO) mice. In addition, we reconstituted KO cells with wild type, substrate-trapping (D/A) and sumoylation-resistant (K/R) PTP1B mutants, then characterized differentiation and signaling in these cells. KO, D/A- and WT-reconstituted cells fully differentiated into mature adipocytes with KO and D/A cells exhibiting a trend for enhanced differentiation. In contrast, K/R cells exhibited marked attenuation in differentiation and lipid accumulation compared with WT cells. Expression of adipogenic markers PPARγ, C/EBPα, C/EBPδ, and PGC1α mirrored the differentiation pattern. In addition, the differentiation deficit in K/R cells could be reversed completely by the PPARγ activator troglitazone. PTP1B deficiency enhanced insulin receptor (IR) and insulin receptor substrate 1 (IRS1) tyrosyl phosphorylation, while K/R cells exhibited attenuated insulin-induced IR and IRS1 phosphorylation and glucose uptake compared with WT cells. In addition, substrate-trapping studies revealed that IRS1 is a substrate for PTP1B in brown adipocytes. Moreover, KO, D/A and K/R cells exhibited elevated AMPK and ACC phosphorylation compared with WT cells. CONCLUSIONS These data indicate that PTP1B is a modulator of brown fat adipogenesis and suggest that adipocyte differentiation requires regulated expression of PTP1B.
Collapse
Affiliation(s)
- Kosuke Matsuo
- Nutrition Department, University of California Davis, Davis, California, United States of America
| | - Ahmed Bettaieb
- Nutrition Department, University of California Davis, Davis, California, United States of America
| | - Naoto Nagata
- Nutrition Department, University of California Davis, Davis, California, United States of America
| | - Izumi Matsuo
- Nutrition Department, University of California Davis, Davis, California, United States of America
| | - Heike Keilhack
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Fawaz G. Haj
- Nutrition Department, University of California Davis, Davis, California, United States of America
| |
Collapse
|
191
|
Bobrich M, Brobeil A, Mooren FC, Krüger K, Steger K, Tag C, Wimmer M. PTPIP51 interaction with PTP1B and 14-3-3β in adipose tissue of insulin-resistant mice. Int J Obes (Lond) 2011; 35:1385-94. [PMID: 21266951 DOI: 10.1038/ijo.2010.283] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE We investigated the expression of protein tyrosine phosphatase-interacting protein 51 (PTPIP51) and its interaction with protein tyrosine phosphatase 1B (PTP1B) and 14-3-3β in mice exhibiting insulin resistance and obesity. DESIGN A total of 20 mice were included in the study. Eight control animals were fed a normal standard diet, six animals were fed a high-fat diet and six animals were submitted to a treadmill training parallel to the feeding of a high-fat diet. After 10 weeks, a glucose tolerance test was performed and abdominal adipose tissue samples of the animals were collected. RESULTS PTPIP51 protein was identified in the adipocytes of all samples. PTPIP51 interacted with PTP1B and with 14-3-3β protein. Compared with untrained mice fed a standard diet, the interaction of PTPIP51 with PTP1B was reduced in high-fat diet-fed animals. The highest interaction of PTPIP51 with 14-3-3β was seen in trained animals on high-fat diet, whereas untrained animals on high-fat diet displayed lowest values. CONCLUSION PTPIP51 is expressed in adipose tissue of humans, rats and mice. Obesity with enhanced insulin resistance resulted in a reduction of PTPIP51 levels in adipocytes and influenced the interactions with PTP1B and 14-3-3β. The interaction of PTPIP51 with PTP1B suggests a regulatory function of PTPIP51 in insulin receptor signal transduction. The interaction of PTPIP51 with 14-3-3β, especially in trained individuals, hints to an involvement of PTPIP51 in the downstream regulation of insulin action.
Collapse
Affiliation(s)
- M Bobrich
- Institute of Anatomy and Cell Biology, Justus-Liebig-University, Giessen, Germany.
| | | | | | | | | | | | | |
Collapse
|
192
|
Wei Y, Chen YT, Shi L, Gao LX, Liu S, Cui YM, Zhang W, Shen Q, Li J, Nan FJ. Discovery and structural modification of novel inhibitors of PTP1B inspired by the ACT fragment of scleritodermin A. MEDCHEMCOMM 2011. [DOI: 10.1039/c1md00153a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
193
|
Sheng H, Sun H. Synthesis, biology and clinical significance of pentacyclic triterpenes: a multi-target approach to prevention and treatment of metabolic and vascular diseases. Nat Prod Rep 2011; 28:543-93. [DOI: 10.1039/c0np00059k] [Citation(s) in RCA: 211] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
194
|
Sampson SR, Bucris E, Horovitz-Fried M, Parnas A, Kahana S, Abitbol G, Chetboun M, Rosenzweig T, Brodie C, Frankel S. Insulin increases H2O2-induced pancreatic beta cell death. Apoptosis 2010; 15:1165-76. [PMID: 20544287 DOI: 10.1007/s10495-010-0517-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Insulin resistance results, in part, from impaired insulin signaling in insulin target tissues. Consequently, increased levels of insulin are necessary to control plasma glucose levels. The effects of elevated insulin levels on pancreatic beta (β) cell function, however, are unclear. In this study, we investigated the possibility that insulin may influence survival of pancreatic β cells. Studies were conducted on RINm, RINm5F and Min-6 pancreatic β-cells. Cell death was induced by treatment with H(2)O(2), and was estimated by measurements of LDH levels, viability assay (Cell-Titer Blue), propidium iodide staining and FACS analysis, and mitochondrial membrane potential (JC-1). In addition, levels of cleaved caspase-3 and caspase activity were determined. Treatment with H(2)O(2) increased cell death; this effect was increased by simultaneous treatment of cells with insulin. Insulin treatment alone caused a slight increase in cell death. Inhibition of caspase-3 reduced the effect of insulin to increase H(2)O(2)-induced cell death. Insulin increased ROS production by pancreatic β cells and increased the effect of H(2)O(2). These effects were increased by inhibition of IR signaling, indicative of an effect independent of the IR cascade. We conclude that elevated levels of insulin may act to exacerbate cell death induced by H(2)O(2) and, perhaps, other inducers of apoptosis.
Collapse
Affiliation(s)
- S R Sampson
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
195
|
Chuang CC, Martinez K, Xie G, Kennedy A, Bumrungpert A, Overman A, Jia W, McIntosh MK. Quercetin is equally or more effective than resveratrol in attenuating tumor necrosis factor-{alpha}-mediated inflammation and insulin resistance in primary human adipocytes. Am J Clin Nutr 2010; 92:1511-1521. [PMID: 20943792 DOI: 10.3945/ajcn.2010.29807] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Quercetin and trans-resveratrol (trans-RSV) are plant polyphenols reported to reduce inflammation or insulin resistance associated with obesity. Recently, we showed that grape powder extract, which contains quercetin and trans-RSV, attenuates markers of inflammation in human adipocytes and macrophages and insulin resistance in human adipocytes. However, we do not know how quercetin and trans-RSV individually affected these outcomes. OBJECTIVE The aim of this study was to examine the extent to which quercetin and trans-RSV prevented inflammation or insulin resistance in primary cultures of human adipocytes treated with tumor necrosis factor-α (TNF-α)-an inflammatory cytokine elevated in the plasma and adipose tissue of obese, diabetic individuals. DESIGN Cultures of human adipocytes were pretreated with quercetin and trans-RSV followed by treatment with TNF-α. Subsequently, gene and protein markers of inflammation and insulin resistance were measured. RESULTS Quercetin, and to a lesser extent trans-RSV, attenuated the TNF-α-induced expression of inflammatory genes such as interleukin (IL)-6, IL-1β, IL-8, and monocyte chemoattractant protein-1 (MCP-1) and the secretion of IL-6, IL-8, and MCP-1. Quercetin attenuated TNF-α-mediated phosphorylation of extracellular signal-related kinase and c-Jun-NH₂ terminal kinase, whereas trans-RSV attenuated only c-Jun-NH₂ terminal kinase phosphorylation. Quercetin and trans-RSV attenuated TNF-α-mediated phosphorylation of c-Jun and degradation of inhibitory κB protein. Quercetin, but not trans-RSV, decreased TNF-α-induced nuclear factor-κB transcriptional activity. Quercetin and trans-RSV attenuated the TNF-α-mediated suppression of peroxisome proliferator-activated receptor γ (PPARγ) and PPARγ target genes and of PPARγ protein concentrations and transcriptional activity. Quercetin prevented the TNF-α-mediated serine phosphorylation of insulin receptor substrate-1 and protein tyrosine phosphatase-1B gene expression and the suppression of insulin-stimulated glucose uptake, whereas trans-RSV prevented only the TNF-α-mediated serine phosphorylation of insulin receptor substrate-1. CONCLUSION These data suggest that quercetin is equally or more effective than trans-RSV in attenuating TNF-α-mediated inflammation and insulin resistance in primary human adipocytes.
Collapse
Affiliation(s)
- Chia-Chi Chuang
- Department of Nutrition, University of North Carolina-Greensboro, Greensboro, NC, USA
| | | | | | | | | | | | | | | |
Collapse
|
196
|
Dedoni S, Olianas MC, Onali P. Interferon-β induces apoptosis in human SH-SY5Y neuroblastoma cells through activation of JAK-STAT signaling and down-regulation of PI3K/Akt pathway. J Neurochem 2010; 115:1421-33. [PMID: 21044071 DOI: 10.1111/j.1471-4159.2010.07046.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Type I interferons (IFNs) are known to cause neuropsychiatric side effects, which have been proposed to be mediated by either peripheral actions or activation of glial cells. In the present study, we have investigated whether these cytokines could act directly on neuronal cells and regulate signaling pathways involved in cell death. In human SH-SY5Y neuroblastoma cells, type I IFNs rapidly stimulated tyrosine phosphorylation of Janus kinase and signal transducer and activator of transcription (STAT) through type I IFN receptor. Prolonged exposure to IFN-β induced apoptotic cell death accompanied by cytochrome C release, cleavage of caspases 9, 7, 3 and poly-(ADP ribose) polymerase and DNA fragmentation. Janus kinase inhibition reduced IFN-β-stimulated TyK2 and STAT1 phosphorylation, STAT1 transcriptional activity, induction of double-stranded RNA-activated protein kinase (PKR) and caspase cleavage. PKR induction was associated with enhanced PKR activity and chemical inhibition of PKR reduced IFN-stimulated caspase activation. Moreover, long-term IFN-β treatment led to down-regulation of phosphatidylinositol 3-kinase/Akt signaling and IFN-β-induced apoptosis was attenuated in cells expressing constitutively active Akt. Similarly, in mouse primary neurons IFN-β induced STAT phosphorylation, caspase 3 cleavage and inhibition of Akt signaling. Thus, type I IFNs can directly impair neuronal survival by regulating multiple signaling molecules promoting the intrinsic apoptotic pathway. This effect may contribute to the cytokine neurotoxicity.
Collapse
Affiliation(s)
- Simona Dedoni
- Department of Neuroscience, Section of Biochemical Pharmacology, University of Cagliari, Cagliari, Italy
| | | | | |
Collapse
|
197
|
Gupta S, Pandey G, Rahuja N, Srivastava AK, Saxena AK. Design, synthesis and docking studies on phenoxy-3-piperazin-1-yl-propan-2-ol derivatives as protein tyrosine phosphatase 1B inhibitors. Bioorg Med Chem Lett 2010; 20:5732-4. [DOI: 10.1016/j.bmcl.2010.08.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 08/02/2010] [Accepted: 08/03/2010] [Indexed: 11/16/2022]
|
198
|
Cheng Z, Tseng Y, White MF. Insulin signaling meets mitochondria in metabolism. Trends Endocrinol Metab 2010; 21:589-98. [PMID: 20638297 PMCID: PMC3994704 DOI: 10.1016/j.tem.2010.06.005] [Citation(s) in RCA: 350] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 06/04/2010] [Accepted: 06/04/2010] [Indexed: 12/11/2022]
Abstract
Insulin controls nutrient and metabolic homeostasis via the IRS-PI3K-AKT signaling cascade that targets FOXO1 and mTOR. Mitochondria, as the prime metabolic platform, malfunction during insulin resistance in metabolic diseases. However, the molecular link between insulin resistance and mitochondrial dysfunction remains undefined. Here we review recent studies on insulin action and the mechanistic association with mitochondrial metabolism. These studies suggest that insulin signaling underpins mitochondrial electron transport chain integrity and activity by suppressing FOXO1/HMOX1 and maintaining the NAD(+)/NADH ratio, the mediator of the SIRT1/PGC1α pathway for mitochondrial biogenesis and function. Mitochondria generate moderately reactive oxygen species (ROS) and enhance insulin sensitivity upon redox regulation of protein tyrosine phosphatase and insulin receptor. However, chronic exposure to high ROS levels could alter mitochondrial function and thereby cause insulin resistance.
Collapse
Affiliation(s)
- Zhiyong Cheng
- Howard Hughes Medical Institute, Division of Endocrinology, Children's Hospital Boston, Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
199
|
Berberine Moderates Glucose and Lipid Metabolism through Multipathway Mechanism. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2010; 2011. [PMID: 20953398 PMCID: PMC2952334 DOI: 10.1155/2011/924851] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Accepted: 08/21/2010] [Indexed: 01/31/2023]
Abstract
Berberine is known to improve glucose and lipid metabolism disorders,
but the mechanism is still under investigation. In this paper, we explored the effects of berberine
on the weight, glucose levels, lipid metabolism, and serum insulin of KKAy mice and investigated
its possible glucose and lipid-regulating mechanism. We randomly divided KKAy mice into two groups: berberine
group (treated with 250 mg/kg/d berberine) and control group. Fasting blood glucose (FBG), weight,
total cholesterol (TC), triglyceride (TG), high-density lipoprotein-cholesterol (HDL-c), low-density
lipoprotein-cholesterol (LDL-c), and fasting serum insulin were measured in both groups. The oral glucose
tolerance test (OGTT) was performed. RT2 PCR array gene expression analysis was performed using skeletal
muscle of KKAy mice. Our data demonstrated that berberine significantly decreased FBG, area under the
curve (AUC), fasting serum insulin (FINS), homeostasis model assessment insulin resistance (HOMA-IR) index,
TC, and TG, compared with those of control group. RT2 profiler PCR array analysis showed that berberine
upregulated the expression of glucose transporter 4 (GLUT4), mitogen-activated protein kinase 14 (MAPK14),
MAPK8(c-jun N-terminal kinase, JNK), peroxisome proliferator-activated receptor α (PPARα), uncoupling
protein 2 (UCP2), and hepatic nuclear factor 4α(HNF4α), whereas it downregulated the expression of PPARγ,
CCAAT/enhancer-binding protein (CEBP), PPARγ coactivator 1α(PGC 1α), and resistin. These results suggest
that berberine moderates glucose and lipid metabolism through a multipathway mechanism that includes
AMP-activated protein kinase-(AMPK-) p38 MAPK-GLUT4, JNK pathway, and PPARα pathway.
Collapse
|
200
|
Lantz KA, Hart SGE, Planey SL, Roitman MF, Ruiz-White IA, Wolfe HR, McLane MP. Inhibition of PTP1B by trodusquemine (MSI-1436) causes fat-specific weight loss in diet-induced obese mice. Obesity (Silver Spring) 2010; 18:1516-23. [PMID: 20075852 DOI: 10.1038/oby.2009.444] [Citation(s) in RCA: 189] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Trodusquemine (MSI-1436) causes rapid and reversible weight loss in genetic models of obesity. To better predict the potential effects of trodusquemine in the clinic, we investigated the effects of trodusquemine treatment in a murine model of diet-induced obesity (DIO). Trodusquemine suppressed appetite, reduced body weight (BW) in a fat-specific manner, and improved plasma insulin and leptin levels in mice. Screening assays revealed that trodusquemine selectively inhibited protein-tyrosine phosphatase 1B (PTP1B), a key enzyme regulating insulin and leptin signaling. Trodusquemine significantly enhanced insulin-stimulated tyrosine phosphorylation of insulin receptor (IR) beta and STAT3, direct targets of PTP1B, in HepG2 cells in vitro and/or hypothalamic tissue in vivo. These data establish trodusquemine as an effective central and peripheral PTP1B inhibitor with the potential to elicit noncachectic fat-specific weight loss and improve insulin and leptin levels.
Collapse
Affiliation(s)
- Kristen A Lantz
- Department of Preclinical Research, Genaera Corporation, Plymouth Meeting, Pennsylvania, USA
| | | | | | | | | | | | | |
Collapse
|