151
|
Zhu M, Hao S, Liu T, Yang L, Zheng P, Zhang L, Ji G. Lingguizhugan decoction improves non-alcoholic fatty liver disease by altering insulin resistance and lipid metabolism related genes: a whole trancriptome study by RNA-Seq. Oncotarget 2017; 8:82621-82631. [PMID: 29137289 PMCID: PMC5669915 DOI: 10.18632/oncotarget.19734] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 06/29/2017] [Indexed: 12/23/2022] Open
Abstract
Lingguizhugan decoction, a classic traditional Chinese medicine formula, has been used to treat non-alcoholic fatty liver disease (NAFLD), however, the underlying mechanisms remains unclear. In the present study, we compared the phenotype of the normal rats (fed with chow diet), high-fat-diet (HFD) induced NAFLD rats and Lingguizhugan decoction (LGZG, comprises four Chinese herbs: Poria, Ramulus Cinnamomi, Rhizoma Atractylodis Macrocephalae, and Radix Glycyrrhizae.) intervened rats, and detected whole genome gene expression by RNA-Seq. Our results demonstrated that LGZG decoction attenuated phenotypic characteristics of NAFLD rats. RNA-Seq data analysis revealed that gene expression profiles exerted differential patterns between different groups. 2690 (1445 up-regulated, 1245 down-regulated) genes in NAFLD versus (vs) normal group, 69 (16 up-regulated, 53 down-regulated) genes in LGZG vs NAFLD group, and 42 overlapped (12 up- regulated, 30 down-regulated) genes between NAFLDvs normal group and LGZG vs NAFLD group were identified as differentially expressed. GO, pathway enrichment and PPI networks analysis of the overlapped genes revealed that LGZG decoction might attenuate NAFLD possibly by affecting insulin resistance and lipid metabolism related pathways (e.g., PI3K-Akt, AMPK). Differentially expressed genes involved in these pathways such as Pik3r1, Foxo1, Foxo3, Scd1, Col3a1 and Fn1 might be candidate targets for treating NAFLD.
Collapse
Affiliation(s)
- Mingzhe Zhu
- Institute of Digestive Diseases, China-Canada Center of Research for Digestive Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Public Health College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shijun Hao
- Institute of Digestive Diseases, China-Canada Center of Research for Digestive Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tao Liu
- Institute of Digestive Diseases, China-Canada Center of Research for Digestive Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lili Yang
- Institute of Digestive Diseases, China-Canada Center of Research for Digestive Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Peiyong Zheng
- Institute of Digestive Diseases, China-Canada Center of Research for Digestive Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li Zhang
- Institute of Digestive Diseases, China-Canada Center of Research for Digestive Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guang Ji
- Institute of Digestive Diseases, China-Canada Center of Research for Digestive Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
152
|
Iruarrizaga-Lejarreta M, Varela-Rey M, Fernández-Ramos D, Martínez-Arranz I, Delgado TC, Simon J, Juan VGD, delaCruz-Villar L, Azkargorta M, Lavin JL, Mayo R, Van Liempd SM, Aurrekoetxea I, Buqué X, Cave DD, Peña A, Rodríguez-Cuesta J, Aransay AM, Elortza F, Falcón-Pérez JM, Aspichueta P, Hayardeny L, Noureddin M, Sanyal AJ, Alonso C, Anguita J, Martínez-Chantar ML, Lu SC, Mato JM. Role of Aramchol in steatohepatitis and fibrosis in mice. Hepatol Commun 2017; 1:911-927. [PMID: 29159325 PMCID: PMC5691602 DOI: 10.1002/hep4.1107] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is the advanced form of nonalcoholic fatty liver disease (NAFLD) that sets the stage for further liver damage. The mechanism for the progression of NASH involves multiple parallel hits, including oxidative stress, mitochondrial dysfunction, inflammation, and others. Manipulation of any of these pathways may be an approach to prevent NASH development and progression. Arachidyl‐amido cholanoic acid (Aramchol) is presently in a phase IIb NASH study. The aim of the present study was to investigate Aramchol's mechanism of action and its effect on fibrosis using the methionine‐ and choline‐deficient (MCD) diet model of NASH. We collected liver and serum from mice fed an MCD diet containing 0.1% methionine (0.1MCD) for 4 weeks; these mice developed steatohepatitis and fibrosis. We also collected liver and serum from mice receiving a control diet, and metabolomes and proteomes were determined for both groups. The 0.1MCD‐fed mice were given Aramchol (5 mg/kg/day for the last 2 weeks), and liver samples were analyzed histologically. Aramchol administration reduced features of steatohepatitis and fibrosis in 0.1MCD‐fed mice. Aramchol down‐regulated stearoyl‐coenyzme A desaturase 1, a key enzyme involved in triglyceride biosynthesis and the loss of which enhances fatty acid β‐oxidation. Aramchol increased the flux through the transsulfuration pathway, leading to a rise in glutathione (GSH) and the GSH/oxidized GSH ratio, the main cellular antioxidant that maintains intracellular redox status. Comparison of the serum metabolomic pattern between 0.1MCD‐fed mice and patients with NAFLD showed a substantial overlap. Conclusion: Aramchol treatment improved steatohepatitis and fibrosis by 1) decreasing stearoyl‐coenyzme A desaturase 1 and 2) increasing the flux through the transsulfuration pathway maintaining cellular redox homeostasis. We also demonstrated that the 0.1MCD model resembles the metabolic phenotype observed in about 50% of patients with NAFLD, which supports the potential use of Aramchol in NASH treatment. (Hepatology Communications 2017;1:911–927)
Collapse
Affiliation(s)
| | - Marta Varela-Rey
- CIC bioGUNE, CIBERehd, Parque Tecnológico de Bizkaia, Derio, Spain
| | | | | | - Teresa C Delgado
- CIC bioGUNE, CIBERehd, Parque Tecnológico de Bizkaia, Derio, Spain
| | - Jorge Simon
- CIC bioGUNE, CIBERehd, Parque Tecnológico de Bizkaia, Derio, Spain
| | | | | | - Mikel Azkargorta
- CIC bioGUNE, CIBERehd, Parque Tecnológico de Bizkaia, Derio, Spain
| | - José L Lavin
- CIC bioGUNE, CIBERehd, Parque Tecnológico de Bizkaia, Derio, Spain
| | - Rebeca Mayo
- OWL Metabolomics, Parque Tecnológico de Bizkaia, Derio, Spain
| | | | - Igor Aurrekoetxea
- Department of Physiology, University of the Basque Country, Biocruces Research Institute, Leioa, Spain
| | - Xabier Buqué
- Department of Physiology, University of the Basque Country, Biocruces Research Institute, Leioa, Spain
| | | | - Arantza Peña
- CIC bioGUNE, CIBERehd, Parque Tecnológico de Bizkaia, Derio, Spain
| | | | - Ana M Aransay
- CIC bioGUNE, CIBERehd, Parque Tecnológico de Bizkaia, Derio, Spain
| | - Felix Elortza
- CIC bioGUNE, CIBERehd, Parque Tecnológico de Bizkaia, Derio, Spain
| | - Juan M Falcón-Pérez
- CIC bioGUNE, CIBERehd, Parque Tecnológico de Bizkaia, Derio, Spain.,IKERBASQUE Basque Foundation for Science, Bilbao, Spain
| | - Patricia Aspichueta
- Department of Physiology, University of the Basque Country, Biocruces Research Institute, Leioa, Spain
| | | | - Mazen Noureddin
- Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Arun J Sanyal
- Division of Gastroenterology and Hepatology, Virginia Commonwealth University Medical Center, Richmond, USA
| | - Cristina Alonso
- OWL Metabolomics, Parque Tecnológico de Bizkaia, Derio, Spain
| | - Juan Anguita
- CIC bioGUNE, CIBERehd, Parque Tecnológico de Bizkaia, Derio, Spain.,IKERBASQUE Basque Foundation for Science, Bilbao, Spain
| | | | - Shelly C Lu
- Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - José M Mato
- CIC bioGUNE, CIBERehd, Parque Tecnológico de Bizkaia, Derio, Spain
| |
Collapse
|
153
|
Watts JL, Ristow M. Lipid and Carbohydrate Metabolism in Caenorhabditis elegans. Genetics 2017; 207:413-446. [PMID: 28978773 PMCID: PMC5629314 DOI: 10.1534/genetics.117.300106] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 08/02/2017] [Indexed: 12/14/2022] Open
Abstract
Lipid and carbohydrate metabolism are highly conserved processes that affect nearly all aspects of organismal biology. Caenorhabditis elegans eat bacteria, which consist of lipids, carbohydrates, and proteins that are broken down during digestion into fatty acids, simple sugars, and amino acid precursors. With these nutrients, C. elegans synthesizes a wide range of metabolites that are required for development and behavior. In this review, we outline lipid and carbohydrate structures as well as biosynthesis and breakdown pathways that have been characterized in C. elegans We bring attention to functional studies using mutant strains that reveal physiological roles for specific lipids and carbohydrates during development, aging, and adaptation to changing environmental conditions.
Collapse
Affiliation(s)
- Jennifer L Watts
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington 99164
| | - Michael Ristow
- Energy Metabolism Laboratory, Institute of Translational Medicine, Department of Health Sciences and Technology, Swiss Federal Institute of Technology Zurich, 8603 Schwerzenbach-Zurich, Switzerland
| |
Collapse
|
154
|
Dietary Fatty Acid Composition Modulates Obesity and Interacts with Obesity-Related Genes. Lipids 2017; 52:803-822. [DOI: 10.1007/s11745-017-4291-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/18/2017] [Indexed: 12/22/2022]
|
155
|
Chen X, Ding Y, Song J, Kan J. Hypolipidaemic effect and mechanism of paprika seed oil on Sprague-Dawley rats. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:4242-4249. [PMID: 28251657 DOI: 10.1002/jsfa.8300] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 02/24/2017] [Accepted: 02/27/2017] [Indexed: 06/06/2023]
Abstract
BACKGROUND Details regarding the functional properties of paprika seed oil are relatively scarce. In this study the hypolipidaemic effects and mechanisms of paprika seed oil on Sprague-Dawley rats are explored, which may improve the usage of paprika seed source and provide a theoretical basis of paprika seed oil for the alleviation of hyperlipidaemia. RESULTS In capsaicin and paprika seed oil (PSO) groups, total cholesterol (TC) and total triglyceride (TG) in serum and liver lipids of rats were significantly decreased (P < 0.05). The contents of serum HDL cholesterol were increased and the contents of serum LDL cholesterol were decreased (P < 0.05). Real-time PCR analyses revealed that the hepatic mRNA expression of fatty acid synthetase (FAS) is decreased and the expression levels of HSL is increased (P < 0.05). The mRNA expression of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) is decreased and the expression levels of low-density lipoprotein receptor (LDLR) is significantly improved (P < 0.05). The cholesterol 7-hydroxylase (CYP7A1) expression is regulated to control the cholesterol-to-bile acid transformation and cholesterol excretion is promoted. Capsaicin and unsaturated fatty acid PSO can activate and improve the mRNA expression of transient receptor potential vanilloid type-1 (TRPV1) and peroxisome proliferators-activated receptors (PPARα). CONCLUSION The hypolipidaemic effects of paprika seed oil (PSO) may be attributed to the inhibition of lipid synthesis via suppressing the expression of HMG-CoAR, CYP7A1 and FAS, meanwhile, promoting the metabolism and excretion of lipids via up-regulating the expression of LDLR, HSL, TRPV1 and PPARα. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xuhui Chen
- College of Food Science, Southwest University, Chongqing, China
- Laboratory of Quality 1 Safety Risk Assessment for Agro-products on Storage and Preservation, Chongqing, China
| | - Yongbo Ding
- College of Food Science, Southwest University, Chongqing, China
- Laboratory of Quality 1 Safety Risk Assessment for Agro-products on Storage and Preservation, Chongqing, China
| | - Jiaxin Song
- College of Food Science, Southwest University, Chongqing, China
- Laboratory of Quality 1 Safety Risk Assessment for Agro-products on Storage and Preservation, Chongqing, China
| | - Jianquan Kan
- College of Food Science, Southwest University, Chongqing, China
- Laboratory of Quality 1 Safety Risk Assessment for Agro-products on Storage and Preservation, Chongqing, China
| |
Collapse
|
156
|
Cardiac transcriptome profiling of diabetic Akita mice using microarray and next generation sequencing. PLoS One 2017; 12:e0182828. [PMID: 28837672 PMCID: PMC5570368 DOI: 10.1371/journal.pone.0182828] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 07/25/2017] [Indexed: 01/10/2023] Open
Abstract
Although diabetes mellitus (DM) causes cardiomyopathy and exacerbates heart failure, the underlying molecular mechanisms for diabetic cardiomyopathy/heart failure are poorly understood. Insulin2 mutant (Ins2+/-) Akita is a mouse model of T1DM, which manifests cardiac dysfunction. However, molecular changes at cardiac transcriptome level that lead to cardiomyopathy remain unclear. To understand the molecular changes in the heart of diabetic Akita mice, we profiled cardiac transcriptome of Ins2+/- Akita and Ins2+/+ control mice using next generation sequencing (NGS) and microarray, and determined the implications of differentially expressed genes on various heart failure signaling pathways using Ingenuity pathway (IPA) analysis. First, we validated hyperglycemia, increased cardiac fibrosis, and cardiac dysfunction in twelve-week male diabetic Akita. Then, we analyzed the transcriptome levels in the heart. NGS analyses on Akita heart revealed 137 differentially expressed transcripts, where Bone Morphogenic Protein-10 (BMP10) was the most upregulated and hairy and enhancer of split-related (HELT) was the most downregulated gene. Moreover, twelve long non-coding RNAs (lncRNAs) were upregulated. The microarray analyses on Akita heart showed 351 differentially expressed transcripts, where vomeronasal-1 receptor-180 (Vmn1r180) was the most upregulated and WD Repeat Domain 83 Opposite Strand (WDR83OS) was the most downregulated gene. Further, miR-101c and H19 lncRNA were upregulated but Neat1 lncRNA was downregulated in Akita heart. Eleven common genes were upregulated in Akita heart in both NGS and microarray analyses. IPA analyses revealed the role of these differentially expressed genes in key signaling pathways involved in diabetic cardiomyopathy. Our results provide a platform to initiate focused future studies by targeting these genes and/or non-coding RNAs, which are differentially expressed in Akita hearts and are involved in diabetic cardiomyopathy.
Collapse
|
157
|
Liu L, Wang G, Xiao Y, Shipp SL, Siegel PB, Cline MA, Gilbert ER. Peripheral neuropeptide Y differentially influences adipogenesis and lipolysis in chicks from lines selected for low or high body weight. Comp Biochem Physiol A Mol Integr Physiol 2017; 213:1-10. [PMID: 28789975 DOI: 10.1016/j.cbpa.2017.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/01/2017] [Accepted: 08/02/2017] [Indexed: 12/29/2022]
Abstract
Neuropeptide Y (NPY) stimulates appetite and promotes lipid deposition. We demonstrated a differential sensitivity in the food intake response to central NPY in chicks from lines selected for low (LWS) or high (HWS) body weight, but have not reported whether such differences exist in the periphery. At 5days, LWS and HWS chicks were intraperitoneally injected with 0 (vehicle), 60, or 120μg/kg BW NPY and subcutaneous adipose tissue and plasma were collected at 1, 3, 6, 12, and 24h (n=12). NPY injection increased glycerol-3-phosphate dehydrogenase (G3PDH) activity at 1 and 3h and reduced plasma non-esterified fatty acids (NEFAs) at 1 and 12h. G3PDH activity was greater in HWS than LWS while NEFAs were greater in LWS. At 1h, peroxisome proliferator-activated receptor gamma (PPARγ), CCAAT/enhancer binding protein (C/EBP)α, and microsomal triglyceride transfer protein (MTTP) mRNAs were reduced in NPY-injected chicks whereas NPY receptor 1 (NPYR1) was increased. Expression of stearoyl-CoA desaturase (SCD1) was increased by NPY at 1h in HWS but not LWS. PPARγ (3 and 6h), C/EBPβ (3h), C/EBPα (6h) and NPYR1 and 2 (24h) mRNAs were greater in NPY- than vehicle-injected chicks. At several times, adipose triglyceride lipase, MTTP, perilipin 1, NPYR1, and NPYR2 mRNAs were greater in LWS than HWS, while expression of SCD1, glycerol-3-phosphate acyltransferase 3 and lipoprotein lipase was greater in HWS than LWS. Thus, NPY promotes fat deposition and inhibits lipolysis in chicks, with line differences indicative of greater rates of lipolysis in LWS and adipogenesis in HWS.
Collapse
Affiliation(s)
- Lingbin Liu
- Sichuan Agricultural University, Ya'an 625014, Sichuan, China
| | - Guoqing Wang
- Virginia Polytechnic Institute and State University, Department of Animal and Poultry Sciences, Blacksburg, Virginia 24061, United States
| | - Yang Xiao
- Virginia Polytechnic Institute and State University, Department of Animal and Poultry Sciences, Blacksburg, Virginia 24061, United States
| | - Steven L Shipp
- Virginia Polytechnic Institute and State University, Department of Animal and Poultry Sciences, Blacksburg, Virginia 24061, United States
| | - Paul B Siegel
- Virginia Polytechnic Institute and State University, Department of Animal and Poultry Sciences, Blacksburg, Virginia 24061, United States
| | - Mark A Cline
- Virginia Polytechnic Institute and State University, Department of Animal and Poultry Sciences, Blacksburg, Virginia 24061, United States
| | - Elizabeth R Gilbert
- Virginia Polytechnic Institute and State University, Department of Animal and Poultry Sciences, Blacksburg, Virginia 24061, United States.
| |
Collapse
|
158
|
Vairamani K, Wang HS, Medvedovic M, Lorenz JN, Shull GE. RNA SEQ Analysis Indicates that the AE3 Cl -/HCO 3- Exchanger Contributes to Active Transport-Mediated CO 2 Disposal in Heart. Sci Rep 2017; 7:7264. [PMID: 28779178 PMCID: PMC5544674 DOI: 10.1038/s41598-017-07585-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/29/2017] [Indexed: 02/06/2023] Open
Abstract
Loss of the AE3 Cl−/HCO3− exchanger (Slc4a3) in mice causes an impaired cardiac force-frequency response and heart failure under some conditions but the mechanisms are not known. To better understand the functions of AE3, we performed RNA Seq analysis of AE3-null and wild-type mouse hearts and evaluated the data with respect to three hypotheses (CO2 disposal, facilitation of Na+-loading, and recovery from an alkaline load) that have been proposed for its physiological functions. Gene Ontology and PubMatrix analyses of differentially expressed genes revealed a hypoxia response and changes in vasodilation and angiogenesis genes that strongly support the CO2 disposal hypothesis. Differential expression of energy metabolism genes, which indicated increased glucose utilization and decreased fatty acid utilization, were consistent with adaptive responses to perturbations of O2/CO2 balance in AE3-null myocytes. Given that the myocardium is an obligate aerobic tissue and consumes large amounts of O2, the data suggest that loss of AE3, which has the potential to extrude CO2 in the form of HCO3−, impairs O2/CO2 balance in cardiac myocytes. These results support a model in which the AE3 Cl−/HCO3− exchanger, coupled with parallel Cl− and H+-extrusion mechanisms and extracellular carbonic anhydrase, is responsible for active transport-mediated disposal of CO2.
Collapse
Affiliation(s)
- Kanimozhi Vairamani
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45267, USA
| | - Hong-Sheng Wang
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45267, USA
| | - Mario Medvedovic
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45267, USA
| | - John N Lorenz
- Department of Cellular and Molecular Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45267, USA
| | - Gary E Shull
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45267, USA.
| |
Collapse
|
159
|
Segovia SA, Vickers MH, Gray C, Zhang XD, Reynolds CM. Conjugated Linoleic Acid Supplementation Improves Maternal High Fat Diet-Induced Programming of Metabolic Dysfunction in Adult Male Rat Offspring. Sci Rep 2017; 7:6663. [PMID: 28751679 PMCID: PMC5532367 DOI: 10.1038/s41598-017-07108-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 06/23/2017] [Indexed: 12/13/2022] Open
Abstract
The developmental origins of health and disease hypothesis proposes that an adverse early life environment, including in utero exposure to a maternal obesogenic environment, can lead to an increased long-term risk of obesity and related metabolic complications in offspring. We assessed whether maternal supplementation with conjugated linoleic acid (CLA) could prevent some of these adverse effects in offspring exposed to a maternal high fat diet. Sprague-Dawley dams consumed either a: control (CD), control with CLA (CLA), high fat (HF) or high fat with CLA (HFCLA) diet 10 days prior to mating and throughout pregnancy/lactation. Male offspring were weaned onto a standard chow diet. Body composition was quantified by DXA and oral glucose tolerance tests conducted on adult offspring. Gene/protein expression and histological analysis were conducted in adipose tissue. Offspring from HF dams had increased body weight, body fat deposition, impaired insulin sensitivity and adipocyte hypertrophy; all of which were rescued in HFCLA offspring. Molecular and histological analyses of the adipose tissue suggest that disturbances in adipogenesis may mediate the metabolic dysfunction observed in HF offspring. Therefore, CLA supplementation to a maternal obesogenic diet may be a promising strategy to prevent adverse programming outcomes.
Collapse
Affiliation(s)
| | - Mark H Vickers
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Clint Gray
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Xiaoyuan D Zhang
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Clare M Reynolds
- Liggins Institute, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
160
|
Wang R, Gu X, Dai W, Ye J, Lu F, Chai Y, Fan G, Gonzalez FJ, Duan G, Qi Y. A lipidomics investigation into the intervention of celastrol in experimental colitis. MOLECULAR BIOSYSTEMS 2017; 12:1436-44. [PMID: 27021137 DOI: 10.1039/c5mb00864f] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Celastrol is well known for its anti-inflammatory and anti-cancer effects. In this study, the efficacy of celastrol against dextran sulfate sodium (DSS)-induced inflammatory bowel disease (IBD) in mice was established and the mechanism was investigated using lipidomics. Celastrol treatment significantly alleviated DSS-induced colitis in mice, as revealed by the body weight, colon length, scores of rectal bleeding and diarrhea, serum TNF-α level, and histological analysis results. Lipidomics analysis based on UPLC/MS revealed characteristic changes in the metabolic profiles of the colitis mice, with altered levels of lipid markers associated with IBD, including LPC18 : 0, LPC18 : 1, LPC18 : 2, sphingomyelin (SM), and increased LPC18 : 0/LPC18 : 1 and LPC18 : 0/LPC18 : 2 ratios. For the celastrol-treated colitis mice, however, levels of the above lipid markers were restored, together with recovered saturated LPC/unsaturated LPC ratios. Accordingly, using GC-MS analysis, increased stearic acid (C18 : 0)/oleic acid (C18 : 1) and stearic acid (C18 : 0)/linoleic acid (C18 : 2) ratios were observed in colitis mice, which were later recovered after celastrol treatment. Quantitative real-time PCR analysis revealed that the liver expression of stearoyl-coenzyme A desaturase 1 (SCD1), the key enzyme controlling the desaturation of saturated fatty acid, was dramatically inhibited in IBD mice, and was obviously recovered after celastrol treatment. These results suggest that the increased saturated LPC/unsaturated LPC (and saturated fatty acid/unsaturated fatty acid) ratios associated with SCD1 down-regulation could be regarded as biomarkers of colitis, and celastrol alleviates DSS-induced colitis partially via up-regulation of SCD1, restoring the altered balance between stearic acid- and oleic acid-derived lipid species, which plays an important role in alleviating colitis. In all, this study provided the scientific basis for further development of celastrol in treating IBD.
Collapse
Affiliation(s)
- Renping Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Xueqin Gu
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Weiquan Dai
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Jun Ye
- Shanghai Zhabei Institute for Food and Drug Control, Shanghai 200436, China
| | - Feng Lu
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Yifeng Chai
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Guorong Fan
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gengli Duan
- Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Yunpeng Qi
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai 200433, China. and Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai 201203, China.
| |
Collapse
|
161
|
Moyer BJ, Rojas IY, Kerley-Hamilton JS, Nemani KV, Trask HW, Ringelberg CS, Gimi B, Demidenko E, Tomlinson CR. Obesity and fatty liver are prevented by inhibition of the aryl hydrocarbon receptor in both female and male mice. Nutr Res 2017; 44:38-50. [PMID: 28821316 DOI: 10.1016/j.nutres.2017.06.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 05/16/2017] [Accepted: 06/23/2017] [Indexed: 12/15/2022]
Abstract
Inhibition of the aryl hydrocarbon receptor (AHR) prevents Western diet-induced obesity and fatty liver in C57Bl/6J (B6) male mice. The AHR is a ligand-activated nuclear receptor that regulates genes involved in xenobiotic metabolism and T-cell differentiation. Here, we tested the hypothesis that AHR antagonism would also prevent obesity and fatty liver in female mice and that B6 mice (higher-affinity AHR) and congenic B6.D2 mice (lower-affinity AHR) would differentially respond to AHR inhibition. Female and male adult B6 and B6.D2 mice were fed control and Western diets with and without α-naphthoflavone (NF), an AHR inhibitor. A nonlinear mixed-model analysis was developed to project asymptote body mass. We found that obesity, adiposity, and liver steatosis were reduced to near control levels in all female and male B6 and B6.D2 experimental groups fed Western diet with NF. However, differences were noted in that female B6.D2 vs B6 mice on Western diet became more obese; and in general, female mice compared with male mice had a greater fat mass to body mass ratio, were less responsive to NF, and had reduced liver steatosis and hepatomegaly. We report that male mice fed Western diet containing NF or CH-223191, another AHR inhibitor, caused reduced mRNA levels of several liver genes involved in metabolism, including Cyp1b1 and Scd1, offering evidence for a possible mechanism by which the AHR regulates obesity. In conclusion, although there are some sex- and Ahr allelic-dependent differences, AHR inhibition prevents obesity and liver steatosis in both males and females regardless of the ligand-binding capacity of the AHR. We also present evidence consistent with the notion that an AHR-CYP1B1-SCD1 axis is involved in obesity, providing potentially convenient and effective targets for treatment.
Collapse
Affiliation(s)
- Benjamin J Moyer
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, One Medical Center Dr, Lebanon, NH 03756
| | - Itzel Y Rojas
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, One Medical Center Dr, Lebanon, NH 03756; Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, One Medical Center D, Lebanon, NH 03756
| | - Joanna S Kerley-Hamilton
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, One Medical Center Dr, Lebanon, NH 03756
| | - Krishnamurthy V Nemani
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, One Medical Center Dr, Lebanon, NH 03756; Department of Radiology, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, One Medical Center Dr, Lebanon, NH 03756
| | - Heidi W Trask
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, One Medical Center Dr, Lebanon, NH 03756
| | - Carol S Ringelberg
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, One Medical Center D, Lebanon, NH 03756; Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, One Medical Center Dr, Lebanon, NH 03756
| | - Barjor Gimi
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, One Medical Center Dr, Lebanon, NH 03756; Department of Radiology, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, One Medical Center Dr, Lebanon, NH 03756
| | - Eugene Demidenko
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, One Medical Center Dr, Lebanon, NH 03756; Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, One Medical Center Dr, Lebanon, NH 03756.
| | - Craig R Tomlinson
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, One Medical Center Dr, Lebanon, NH 03756; Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, One Medical Center D, Lebanon, NH 03756.
| |
Collapse
|
162
|
Badoud F, Brewer D, Charchoglyan A, Cuthbertson DJ, Mutch DM. Multi-omics Integrative Investigation of Fatty Acid Metabolism in Obese and Lean Subcutaneous Tissue. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2017; 21:371-379. [PMID: 28618245 DOI: 10.1089/omi.2017.0049] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
White adipose tissue (WAT) plays a central role in whole-body energy homeostasis through storage and release of fatty acids. A deeper understanding of the complex and highly integrated pathways regulating WAT fatty acid metabolism, and how they are altered with obesity, is necessary for diagnostic and therapeutic innovations in nutritional disorders. In this multi-omics study, we investigated the influence of obesity on fatty acid metabolism in human subcutaneous adipose tissue (SAT) using an approach that integrated transcriptomic, peptidomic, and fatty acid analyses. Notably, all analyses were conducted in the same adipose tissue sample from each participant, thus minimizing the chance of spurious results. In a sample of SAT from the periumbilical abdominal region of obese (n = 11, mean body mass index [BMI] = 35.0 ± 1.2 kg/m2) and lean subjects (n = 9, mean BMI = 22.1 ± 0.5 kg/m2), we found that obese SAT tended to have higher relative amounts of specific monounsaturated fatty acids and n-6 polyunsaturated fatty acids, and lower amounts of saturated fatty acids (p < 0.05). These changes were associated with differential regulation of lipogenic and lipolytic pathways in obese SAT. Fatty acid analysis showed changes in estimated fatty acid desaturase and elongase activities between lean and obese SAT (p < 0.05). Biomarkers of lipogenesis (e.g., fatty acid synthase protein) were differentially regulated between lean and obese SAT. These changes were noted in conjunction with increases in extracellular matrix remodeling proteins. Transcriptomic data revealed that the key regulators of lipolysis were reduced in obese SAT. This integrative multi-omics analysis collectively shows that obese SAT has a distinct fatty acid signature compared to lean SAT and the pathways underlying fatty acid metabolism are broadly regulated at the level of gene expression and protein abundance.
Collapse
Affiliation(s)
- Flavia Badoud
- 1 Department of Human Health & Nutritional Sciences, University of Guelph , Guelph, Ontario, Canada
| | - Dyanne Brewer
- 2 Department of Molecular and Cellular Biology, University of Guelph , Guelph, Ontario, Canada
| | - Armen Charchoglyan
- 2 Department of Molecular and Cellular Biology, University of Guelph , Guelph, Ontario, Canada
| | | | - David M Mutch
- 1 Department of Human Health & Nutritional Sciences, University of Guelph , Guelph, Ontario, Canada
| |
Collapse
|
163
|
Zhao L, Ni Y, Yu H, Zhang P, Zhao A, Bao Y, Liu J, Chen T, Xie G, Panee J, Chen W, Rajani C, Wei R, Su M, Jia W, Jia W. Serum stearic acid/palmitic acid ratio as a potential predictor of diabetes remission after Roux-en-Y gastric bypass in obesity. FASEB J 2017; 31:1449-1460. [PMID: 28007782 PMCID: PMC6159710 DOI: 10.1096/fj.201600927r] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 12/12/2016] [Indexed: 12/18/2022]
Abstract
Endogenous fatty acid metabolism that results in elongation and desaturation lipid products is thought to play a role in the development of type 2 diabetes mellitus (T2DM). In this study, we evaluated the potential of estimated elongase and desaturase activities for use as predictive markers for T2DM remission after Roux-en-Y gastric bypass (RYGB). The results of a targeted metabolomics approach from 2 independent studies were used to calculate 24 serum FA concentration ratios (product/precursor). Gene expression data from an open public data set was also analyzed. In a longitudinal study of 38 obese diabetic patients with RYGB, we found higher baseline stearic acid/palmitic acid (S/P) ratio. This ratio reflects an elovl6-encoded elongase enzyme activity that has been found to be associated with greater possibility for diabetes remission after RYGB [odds ratio, 2.16 (95% CI 1.10-4.26)], after adjustment for age, gender, body mass index, diabetes duration, glycosylated hemoglobin A1c, and fasting C-peptide. Our results were validated by examination of postsurgical elovl6 gene expression in morbidly obese patients. The association of S/P with the metabolic status of obese individuals was further validated in a cross-sectional cohort of 381 participants. In summary, higher baseline S/P was associated with greater probability of diabetes remission after RYGB and may serve as a diagnostic marker in preoperative patient assessment. - Zhao, L., Ni, Y., Yu, H., Zhang, P., Zhao, A., Bao, Y., Liu, J., Chen, T., Xie, G., Panee, J., Chen, W., Rajani, C., Wei, R., Su, M., Jia, W., Jia, W. Serum stearic acid/palmitic acid ratio as a potential predictor of diabetes remission after Roux-en-Y gastric bypass in obesity.
Collapse
Affiliation(s)
- Linjing Zhao
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, China
| | - Yan Ni
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- University of Hawaii Cancer Center, Honolulu, Hawaii, USA
| | - Haoyong Yu
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Pin Zhang
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China; and
| | - Aihua Zhao
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yuqian Bao
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jiajian Liu
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Tianlu Chen
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Guoxiang Xie
- University of Hawaii Cancer Center, Honolulu, Hawaii, USA
| | - Jun Panee
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Manoa, Hawaii, USA
| | - Wenlian Chen
- University of Hawaii Cancer Center, Honolulu, Hawaii, USA
| | - Cynthia Rajani
- University of Hawaii Cancer Center, Honolulu, Hawaii, USA
| | - Runmin Wei
- University of Hawaii Cancer Center, Honolulu, Hawaii, USA
| | - Mingming Su
- University of Hawaii Cancer Center, Honolulu, Hawaii, USA
| | - Weiping Jia
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China;
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Wei Jia
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China;
- University of Hawaii Cancer Center, Honolulu, Hawaii, USA
| |
Collapse
|
164
|
Garba L, Ali MSM, Oslan SN, Rahman RNZRA. Heterologous Expression of PA8FAD9 and Functional Characterization of a Δ9-Fatty Acid Desaturase from a Cold-Tolerant Pseudomonas sp. A8. Mol Biotechnol 2017; 58:718-728. [PMID: 27629791 DOI: 10.1007/s12033-016-9971-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Fatty acid desaturase enzymes are capable of inserting double bonds between carbon atoms of saturated fatty acyl-chains to produce unsaturated fatty acids. A gene coding for a putative Δ9-fatty acid desaturase-like protein was isolated from a cold-tolerant Pseudomonas sp. A8, cloned and heterologously expressed in Escherichia coli. The gene named as PA8FAD9 has an open reading frame of 1185 bp and codes for 394 amino acids with a predicted molecular weight of 45 kDa. The enzyme showed high Δ9-fatty acid desaturase-like protein activity and increased overall levels of cellular unsaturated fatty acids in the recombinant E. coli cells upon expression at different temperatures. The results showed that the ratio of palmitoleic to palmitic acid in the recombinant E. coli cells increased by more than twice the amount observed in the control cells at 20 °C using 0.4 mM IPTG. GCMS analysis confirmed the ability of this enzyme to convert exogenous stearic acid to oleic acid incorporated into the recombinant E. coli membrane phospholipids. It may be concluded that the PA8FAD9 gene from Pseudomonas sp. A8 codes for a putative Δ9-fatty acid desaturase protein actively expressed in E. coli under the influence of temperature and an inducer.
Collapse
Affiliation(s)
- Lawal Garba
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, 43400, UPM Serdang, Selangor Darul Ehsan, Malaysia.,Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, 43400, UPM Serdang, Selangor Darul Ehsan, Malaysia.,Department of Microbiology, Faculty of Science, Gombe State University, Tudun Wada Gombe, P.M.B 127, Gombe State, Nigeria
| | - Mohd Shukuri Mohamad Ali
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, 43400, UPM Serdang, Selangor Darul Ehsan, Malaysia.,Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, 43400, UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Siti Nurbaya Oslan
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, 43400, UPM Serdang, Selangor Darul Ehsan, Malaysia.,Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, 43400, UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Raja Noor Zaliha Raja Abdul Rahman
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, 43400, UPM Serdang, Selangor Darul Ehsan, Malaysia. .,Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, 43400, UPM Serdang, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
165
|
Abstract
Cytochrome P450 1B1 (CYP1B1), a member of CYP superfamily, is expressed in liver and extrahepatic tissues carries out the metabolism of numerous xenobiotics, including metabolic activation of polycyclic aromatic hydrocarbons. Surprisingly, CYP1B1 was also shown to be important in regulating endogenous metabolic pathways, including the metabolism of steroid hormones, fatty acids, melatonin, and vitamins. CYP1B1 and nuclear receptors including peroxisome proliferator-activated receptors (PPARs), estrogen receptor (ER), and retinoic acid receptors (RAR) contribute to the maintenance of the homeostasis of these endogenous compounds. Many natural flavonoids and synthetic stilbenes show inhibitory activity toward CYP1B1 expression and function, notably isorhamnetin and 2,4,3',5'-tetramethoxystilbene. Accumulating evidence indicates that modulation of CYP1B1 can decrease adipogenesis and tumorigenesis, and prevent obesity, hypertension, atherosclerosis, and cancer. Therefore, it may be feasible to consider CYP1B1 as a therapeutic target for the treatment of metabolic diseases.
Collapse
|
166
|
Qiang J, Tao YF, He J, Sun YL, Xu P. miR-29a modulates SCD expression and is regulated in response to a saturated fatty acid diet in juvenile genetically improved farmed tilapia ( Oreochromis niloticus). ACTA ACUST UNITED AC 2017; 220:1481-1489. [PMID: 28167804 PMCID: PMC5413068 DOI: 10.1242/jeb.151506] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/30/2017] [Indexed: 12/29/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate target gene expression by binding to the 3′ untranslated region (3′ UTR) of the target mRNA. MiRNAs regulate a large variety of genes, including those involved in liver biology and disease. Here, we report for the first time that miR-29a post-transcriptionally regulates stearoyl-CoA desaturase (SCD) by binding to its 3′ UTR in genetically improved farmed tilapia (GIFT), Oreochromis niloticus, as shown by a 3′ UTR luciferase reporter assay. miR-29a antagomir treatment in vivo resulted in significant upregulation of SCD expression. We found that miR-29a expression was negatively correlated with SCD expression in GIFT liver. Inhibition of miR-29a led to a significant increase in SCD expression on day 60 induced by a saturated fatty acid diet, thereby increasing conversion of 16:0 and 18:0 to 16:1 and 18:1, respectively, and activating serum insulin, which would favor glucose and lipid uptake by the liver. These results indicate that miR-29a regulates SCD levels by binding to its 3′ UTR, and this interaction affects saturated fatty acid stress induction and insulin and lipid accumulation in serum. Our results suggest that miR-29a is critical in regulating lipid metabolism homeostasis in GIFT liver, and this might provide a basis for understanding the biological processes and therapeutic intervention encountered in fatty liver. Summary: miR-29a targets SCD 3′ UTR directly. Inhibition of miR-29a could mediate conversion of C16:0 and C18:0 to C16:1 and C18:1, respectively, and activate serum insulin and glucose uptake in GIFT by increasing SCD.
Collapse
Affiliation(s)
- Jun Qiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu 214081, China
| | - Yi Fan Tao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu 214081, China
| | - Jie He
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu 214081, China
| | - Yi Lan Sun
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu 214081, China
| | - Pao Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu 214081, China
| |
Collapse
|
167
|
Sinha RA, Singh BK, Zhou J, Xie S, Farah BL, Lesmana R, Ohba K, Tripathi M, Ghosh S, Hollenberg AN, Yen PM. Loss of ULK1 increases RPS6KB1-NCOR1 repression of NR1H/LXR-mediated Scd1 transcription and augments lipotoxicity in hepatic cells. Autophagy 2017; 13:169-186. [PMID: 27846372 PMCID: PMC5240836 DOI: 10.1080/15548627.2016.1235123] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 08/23/2016] [Accepted: 09/07/2016] [Indexed: 12/17/2022] Open
Abstract
Lipotoxicity caused by saturated fatty acids (SFAs) induces tissue damage and inflammation in metabolic disorders. SCD1 (stearoyl-coenzyme A desaturase 1) converts SFAs to mono-unsaturated fatty acids (MUFAs) that are incorporated into triglycerides and stored in lipid droplets. SCD1 thus helps protect hepatocytes from lipotoxicity and its reduced expression is associated with increased lipotoxic injury in cultured hepatic cells and mouse models. To further understand the role of SCD1 in lipotoxicity, we examined the regulation of Scd1 in hepatic cells treated with palmitate, and found that NR1H/LXR (nuclear receptor subfamily 1 group H) ligand, GW3965, induced Scd1 expression and lipid droplet formation to improve cell survival. Surprisingly, ULK1/ATG1 (unc-51 like kinase) played a critical role in protecting hepatic cells from SFA-induced lipotoxicity via a novel mechanism that did not involve macroautophagy/autophagy. Specific loss of Ulk1 blocked the induction of Scd1 gene transcription by GW3965, decreased lipid droplet formation, and increased apoptosis in hepatic cells exposed to palmitate. Knockdown of ULK1 increased RPS6KB1 (ribosomal protein S6 kinase, polypeptide 1) signaling that, in turn, induced NCOR1 (nuclear receptor co-repressor 1) nuclear uptake, interaction with NR1H/LXR, and recruitment to the Scd1 promoter. These events abrogated the stimulation of Scd1 gene expression by GW3965, and increased lipotoxicity in hepatic cells. In summary, we have identified a novel autophagy-independent role of ULK1 that regulates NR1H/LXR signaling, Scd1 expression, and intracellular lipid homeostasis in hepatic cells exposed to a lipotoxic environment.
Collapse
Affiliation(s)
- Rohit Anthony Sinha
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-NUS Graduate Medical School, Singapore
| | - Brijesh K. Singh
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-NUS Graduate Medical School, Singapore
| | - Jin Zhou
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-NUS Graduate Medical School, Singapore
| | - Sherwin Xie
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-NUS Graduate Medical School, Singapore
| | - Benjamin L. Farah
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-NUS Graduate Medical School, Singapore
| | - Ronny Lesmana
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-NUS Graduate Medical School, Singapore
- Department of Physiology, Universitas Padjadjaran, Bandung, Indonesia
| | - Kenji Ohba
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-NUS Graduate Medical School, Singapore
| | | | - Sujoy Ghosh
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-NUS Graduate Medical School, Singapore
| | - Anthony N. Hollenberg
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA USA
| | - Paul M. Yen
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-NUS Graduate Medical School, Singapore
| |
Collapse
|
168
|
Metabolic engineering of the oleaginous yeast Rhodosporidium toruloides IFO0880 for lipid overproduction during high-density fermentation. Appl Microbiol Biotechnol 2016; 100:9393-9405. [PMID: 27678117 DOI: 10.1007/s00253-016-7815-y] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/10/2016] [Accepted: 08/14/2016] [Indexed: 10/20/2022]
Abstract
Natural lipids can be used to make biodiesel and many other value-added compounds. In this work, we explored a number of different metabolic engineering strategies for increasing lipid production in the oleaginous yeast Rhodosporidium toruloides IFO0880. These included increasing the expression of enzymes involved in different aspects of lipid biosynthesis-malic enzyme (ME), pyruvate carboxylase (PYC1), glycerol-3-P dehydrogenase (GPD), and stearoyl-CoA desaturase (SCD)-and deleting the gene PEX10, required for peroxisome biogenesis. Only malic enzyme and stearoyl-CoA desaturase, when overexpressed, were found to significantly increase lipid production. Only stearoyl-CoA desaturase, when overexpressed, further increased lipid production in a strain previously engineered to overexpress acetyl-CoA carboxylase (ACC1) and diacylglycerol acyltransferase (DGA1). Our best strain produced 27.4 g/L lipid with an average productivity of 0.31 g/L/h during batch growth on glucose and 89.4 g/L lipid with an average productivity of 0.61 g/L/h during fed-batch growth on glucose. These results further establish R. toruloides as a platform organism for the production of lipids and potentially other lipid-derived compounds from sugars.
Collapse
|
169
|
Yamauchi I, Uemura M, Hosokawa M, Iwashima-Suzuki A, Shiota M, Miyashita K. The dietary effect of milk sphingomyelin on the lipid metabolism of obese/diabetic KK-A(y) mice and wild-type C57BL/6J mice. Food Funct 2016; 7:3854-67. [PMID: 27501823 DOI: 10.1039/c6fo00274a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Purified milk sphingomyelin (SM) was obtained from lipid concentrated butter serum (LC-BS) by successive separations involving solvent fractionation, selective saponification, and silicic acid column chromatography. The SM obtained was given to obese/diabetic KK-A(y) mice and wild-type C57BL/6J mice. SM supplementation significantly increased fecal lipids paralleled with a decrease in non-HDL cholesterol levels in the serum and neutral lipids and in cholesterol levels in the livers of KK-A(y) mice. The reduction of liver lipid levels also resulted in a decrease in the total fatty acid content of the KK-A(y) mice livers, while n-3 fatty acids derived from the conversion of α-linolenic acid (18:3n-3) increased due to SM supplementation. In contrast to the KK-A(y) mice, little change in the serum and liver lipids was observed in wild-type C57BL/6J mice. The present study suggests that SM may be effective only in subjects with metabolic disorders.
Collapse
Affiliation(s)
- Ippei Yamauchi
- Laboratory of Bio-functional Material Chemistry, Division of Marine Bioscience, Faculty of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Japan.
| | | | | | | | | | | |
Collapse
|
170
|
Niewiadomski J, Zhou JQ, Roman HB, Liu X, Hirschberger LL, Locasale JW, Stipanuk MH. Effects of a block in cysteine catabolism on energy balance and fat metabolism in mice. Ann N Y Acad Sci 2016; 1363:99-115. [PMID: 26995761 DOI: 10.1111/nyas.13021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 12/08/2015] [Accepted: 01/19/2016] [Indexed: 01/14/2023]
Abstract
To gain further insights into the effects of elevated cysteine levels on energy metabolism and the possible mechanisms underlying these effects, we conducted studies in cysteine dioxygenase (Cdo1)-null mice. Cysteine dioxygenase (CDO) catalyzes the first step of the major pathway for cysteine catabolism. When CDO is absent, tissue and plasma cysteine levels are elevated, resulting in enhanced flux of cysteine through desulfhydration reactions. When Cdo1-null mice were fed a high-fat diet, they gained more weight than their wild-type controls, regardless of whether the diet was supplemented with taurine. Cdo1-null mice had markedly lower leptin levels, higher feed intakes, and markedly higher abundance of hepatic stearoyl-CoA desaturase 1 (SCD1) compared to wild-type control mice, and these differences were not affected by the fat or taurine content of the diet. Thus, reported associations of elevated cysteine levels with greater weight gain and with elevated hepatic Scd1 expression are also seen in the Cdo1-null mouse model. Hepatic accumulation of acylcarnitines suggests impaired mitochondrial β-oxidation of fatty acids in Cdo1-null mice. The strong associations of elevated cysteine levels with excess H2 S production and impairments in energy metabolism suggest that H2 S signaling could be involved.
Collapse
Affiliation(s)
| | - James Q Zhou
- Division of Nutritional Sciences, Cornell University, Ithaca, New York
| | - Heather B Roman
- Division of Nutritional Sciences, Cornell University, Ithaca, New York
| | - Xiaojing Liu
- Division of Nutritional Sciences, Cornell University, Ithaca, New York
| | | | - Jason W Locasale
- Division of Nutritional Sciences, Cornell University, Ithaca, New York
| | - Martha H Stipanuk
- Division of Nutritional Sciences, Cornell University, Ithaca, New York
| |
Collapse
|
171
|
Lin J, Lu M, Shao WQ, Chen ZY, Zhu WW, Lu L, Jia HL, Cai D, Qin LX, Chen JH. Osteopontin Deficiency Alters Biliary Homeostasis and Protects against Gallstone Formation. Sci Rep 2016; 6:30215. [PMID: 27484115 PMCID: PMC4971489 DOI: 10.1038/srep30215] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 06/30/2016] [Indexed: 01/04/2023] Open
Abstract
The precipitation of excess biliary cholesterol as solid crystals is a prerequisite for cholesterol gallstone formation, which occurs due to disturbed biliary homeostasis. Biliary homeostasis is regulated by an elaborate network of genes in hepatocytes. If unmanaged, the cholesterol crystals will aggregate, fuse and form gallstones. We have previously observed that the levels of osteopontin (OPN) in bile and gallbladder were reduced in gallstone patients. However, the role and mechanism for hepatic OPN in cholesterol gallstone formation is undetermined. In this study, we found that the expression of hepatic OPN was increased in gallstone patients compared with gallstone-free counterparts. Then, we observed that OPN-deficient mice were less vulnerable to cholesterol gallstone formation than wild type mice. Further mechanistic studies revealed that this protective effect was associated with alterations of bile composition and was caused by the increased hepatic CYP7A1 expression and the reduced expression of hepatic SHP, ATP8B1, SR-B1 and SREBP-2. Finally, the correlations between the expression of hepatic OPN and the expression of these hepatic genes were validated in gallstone patients. Taken together, our findings reveal that hepatic OPN contributes to cholesterol gallstone formation by regulating biliary metabolism and might be developed as a therapeutic target for gallstone treatments.
Collapse
Affiliation(s)
- Jing Lin
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Ming Lu
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Wei-Qing Shao
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Zong-You Chen
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Wen-Wei Zhu
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Lu Lu
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Hu-Liang Jia
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Duan Cai
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Lun-Xiu Qin
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Jin-Hong Chen
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| |
Collapse
|
172
|
Huang Y, Cheng Q, Ji JL, Zheng S, Du L, Meng L, Wu Y, Zhao D, Wang X, Lai L, Cao H, Xiao K, Gao S, Liang Z. Pharmacokinetic Behaviors of Intravenously Administered siRNA in Glandular Tissues. Am J Cancer Res 2016; 6:1528-41. [PMID: 27446488 PMCID: PMC4955053 DOI: 10.7150/thno.15246] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 05/18/2016] [Indexed: 02/05/2023] Open
Abstract
The pharmacokinetics of small interfering RNAs (siRNAs) is a pivotal issue for siRNA-based drug development. In this study, we comprehensively investigated the behavior of siRNAs in vivo in various tissues and demonstrated that intravenously-injected naked siRNA accumulated remarkably in the submandibular gland, bulbourethral gland, and pancreas, with a respective half-life of ~22.7, ~45.6, and ~30.3 h. This was further confirmed by gel separation of tissue homogenates and/or supernatants. In vivo imaging and cryosectioning suggested that delivery carriers significantly influence the distribution and elimination profiles of siRNA. Gene-silencing assays revealed that neither naked nor liposome-formulated siRNA resulted in gene knockdown in the submandibular and bulbourethral glands after systemic administration, suggesting that these glands function as drug reservoirs that enable slow siRNA release into the circulation. But robust gene-silencing was achieved by local injection of liposome-encapsulated siRNA into the submandibular gland. Our results enhance understanding of the pharmacokinetic properties of siRNAs and we believe that they will facilitate the development of siRNA therapy, especially for the submandibular gland.
Collapse
|
173
|
Ladeira MM, Schoonmaker JP, Gionbelli MP, Dias JCO, Gionbelli TRS, Carvalho JRR, Teixeira PD. Nutrigenomics and Beef Quality: A Review about Lipogenesis. Int J Mol Sci 2016; 17:ijms17060918. [PMID: 27294923 PMCID: PMC4926451 DOI: 10.3390/ijms17060918] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 05/06/2016] [Accepted: 05/17/2016] [Indexed: 01/07/2023] Open
Abstract
The objective of the present review is to discuss the results of published studies that show how nutrition affects the expression of genes involved in lipid metabolism and how diet manipulation might change marbling and composition of fat in beef. Several key points in the synthesis of fat in cattle take place at the molecular level, and the association of nutritional factors with the modulation of this metabolism is one of the recent targets of nutrigenomic research. Within this context, special attention has been paid to the study of nuclear receptors associated with fatty acid metabolism. Among the transcription factors involved in lipid metabolism, the peroxisome proliferator-activated receptors (PPARs) and sterol regulatory element-binding proteins (SREBPs) stand out. The mRNA synthesis of these transcription factors is regulated by nutrients, and their metabolic action might be potentiated by diet components and change lipogenesis in muscle. Among the options for dietary manipulation with the objective to modulate lipogenesis, the use of different sources of polyunsaturated fatty acids, starch concentrations, forage ratios and vitamins stand out. Therefore, special care must be exercised in feedlot feed management, mainly when the goal is to produce high marbling beef.
Collapse
Affiliation(s)
- Marcio M Ladeira
- Department of Animal Science, Universidade Federal de Lavras, Lavras 37200-000, Brazil.
| | - Jon P Schoonmaker
- Department of Animal Science, Purdue University, West Lafayette, IN 47906, USA.
| | - Mateus P Gionbelli
- Department of Animal Science, Universidade Federal de Lavras, Lavras 37200-000, Brazil.
| | - Júlio C O Dias
- Department of Animal Science, Universidade Federal de Lavras, Lavras 37200-000, Brazil.
| | | | | | - Priscilla D Teixeira
- Department of Animal Science, Universidade Federal de Lavras, Lavras 37200-000, Brazil.
| |
Collapse
|
174
|
Abstract
The endoplasmic reticulum is the port of entry for proteins into the secretory pathway and the site of synthesis for several important lipids, including cholesterol, triacylglycerol, and phospholipids. Protein production within the endoplasmic reticulum is tightly regulated by a cohort of resident machinery that coordinates the folding, modification, and deployment of secreted and integral membrane proteins. Proteins failing to attain their native conformation are degraded through the endoplasmic reticulum-associated degradation (ERAD) pathway via a series of tightly coupled steps: substrate recognition, dislocation, and ubiquitin-dependent proteasomal destruction. The same ERAD machinery also controls the flux through various metabolic pathways by coupling the turnover of metabolic enzymes to the levels of key metabolites. We review the current understanding and biological significance of ERAD-mediated regulation of lipid metabolism in mammalian cells.
Collapse
Affiliation(s)
- Julian Stevenson
- Program in Metabolic Biology, Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California 94720;
| | - Edmond Y Huang
- Program in Metabolic Biology, Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California 94720;
| | - James A Olzmann
- Program in Metabolic Biology, Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California 94720;
| |
Collapse
|
175
|
Xiao F, Deng J, Guo Y, Niu Y, Yuan F, Yu J, Chen S, Guo F. BTG1 ameliorates liver steatosis by decreasing stearoyl-CoA desaturase 1 (SCD1) abundance and altering hepatic lipid metabolism. Sci Signal 2016; 9:ra50. [PMID: 27188441 DOI: 10.1126/scisignal.aad8581] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Liver steatosis, a condition in which lipid accumulates in liver cells, is a leading cause of many liver diseases. The livers of patients with hepatocellular carcinoma, a cancer characterized by liver steatosis, have decreased abundance of the transcription cofactor BTG1 (B cell translocation gene 1). We showed that the livers of db/db mice, which are a genetic model of obesity, had decreased BTG1 mRNA and protein abundance. BTG1 overexpression ameliorated liver steatosis in db/db mice, whereas knockdown of BTG1 induced liver steatosis in wild-type mice. Consistent with these changes, we found that BTG1 decreased triglyceride accumulation in cultured hepatocytes. BTG1 overexpression inhibited the expression of the gene encoding stearoyl-CoA desaturase 1 (SCD1), an enzyme involved in the synthesis of fatty acids, by suppressing the activity of activating transcription factor 4 (ATF4). Knockdown of SCD1 prevented liver steatosis in wild-type mice induced by knockdown of BTG1. Conversely, the ability of BTG1 overexpression to ameliorate liver steatosis in db/db mice was negated by ATF4 overexpression. Moreover, BTG1 transgenic mice were resistant to liver steatosis induced by a high-carbohydrate diet. BTG1 abundance was decreased by this diet through a pathway that involved mammalian target of rapamycin (mTOR), ribosomal protein S6 kinase 1 (S6K1), and cAMP response element-binding protein (CREB). Together, our study identifies a role of BTG1 in regulating hepatic lipid metabolism and specifically in preventing ATF4 and SCD1 from inducing liver steatosis.
Collapse
Affiliation(s)
- Fei Xiao
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jiali Deng
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yajie Guo
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuguo Niu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Feixiang Yuan
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Junjie Yu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shanghai Chen
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Feifan Guo
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
176
|
Uto Y. Recent progress in the discovery and development of stearoyl CoA desaturase inhibitors. Chem Phys Lipids 2016; 197:3-12. [DOI: 10.1016/j.chemphyslip.2015.08.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 08/27/2015] [Accepted: 08/31/2015] [Indexed: 01/07/2023]
|
177
|
Anti-Obesity and Hypoglycemic Effects of Poncirus trifoliata L. Extracts in High-Fat Diet C57BL/6 Mice. Molecules 2016; 21:453. [PMID: 27058520 PMCID: PMC6273343 DOI: 10.3390/molecules21040453] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 03/23/2016] [Accepted: 03/30/2016] [Indexed: 01/04/2023] Open
Abstract
The present study investigated the possible anti-obesity and hypoglycemic effects of Poncirus trifoliata L. extracts. Mature fruit were divided into flavedo (PF) and juice sacs (PJ), and extracts from them were tested on C57BL/6 mice fed a high-fat diet (HFD) for thirteen weeks. Both fruit extracts (40 mg/kg body weight, respectively) showed anti-obesity and hypoglycemic effects. Consumption of PF and PJ extracts reduced body weight by 9.21% and 20.27%, respectively. Liver and adipose weights, fasting glucose, serum triglyceride (TG), and low density lipoprotein cholesterol (LDL-c) levels decreased significantly, while serum high density lipoprotein cholesterol (HDL-c) and oral glucose tolerance levels increased significantly in response to two fruit extracts. These effects were due in part to the modulation of serum insulin, leptin, and adiponectin. Furthermore, transcript levels of fatty acid synthase (FAS) and stearoyl-CoA desaturase 1 (SCD1) were reduced while those of carnitine palmitoyltransferase 1α (CPT1α) and insulin receptor substrate 2 (IRS2) were increased in the liver of C57BL/6 mice, which might be an important mechanism affecting lipid and glucose metabolism. Taken together, P. trifoliata fruit can be potentially used to prevent or treat obesity and associated metabolic disorders.
Collapse
|
178
|
Strandvik B, Ntoumani E, Lundqvist-Persson C, Sabel KG. Long-chain saturated and monounsaturated fatty acids associate with development of premature infants up to 18 months of age. Prostaglandins Leukot Essent Fatty Acids 2016; 107:43-9. [PMID: 26858144 DOI: 10.1016/j.plefa.2016.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 12/18/2015] [Accepted: 01/12/2016] [Indexed: 10/22/2022]
Abstract
Myelination is important perinatally and highly dependent on long-chain saturated and monounsaturated fatty acids. Long-chain polyunsaturated fatty acids, nowadays often supplemented, inhibit oleic acid synthesis. Using data from a premature cohort, we studied if nervonic, lignoceric and oleic acids correlated to growth and early development up to 18 months corrected age. Small for gestational age infants had lower concentrations than infants appropriate for gestational age. Only oleic acid was negatively correlated to long-chain polyunsaturated fatty acids. Oleic and lignoceric acids correlated to social interaction at one month, and nervonic acid to mental, psychomotor and behavioral development at 6, 10 and 18 months, also when adjusted for several confounders. Negative association between oleic acid and long-chain polyunsaturated fatty acids suggests inhibition of delta-9 desaturase, and nervonic acid´s divergent correlation to lignoceric and oleic acids suggests different metabolism in neonatal period. Our results may have implications for the supplementation of premature infants.
Collapse
Affiliation(s)
- Birgitta Strandvik
- Dept. of Biosciences and Nutrition, Karolinska Institutet, NOVUM, Hälsovägen 7-9, 14183 Huddinge, Stockholm, Sweden.
| | - Eleni Ntoumani
- Dept. of Neonatology, Borås Children׳s Hospital, South Älvsborg׳s Hospital, Borås, Sweden
| | - Cristina Lundqvist-Persson
- Skaraborg Institute for Research and Development, Skövde, Sweden; Dept. of Psychology, Lund University, Lund, Sweden
| | - Karl-Göran Sabel
- Dept. of Neonatology, Borås Children׳s Hospital, South Älvsborg׳s Hospital, Borås, Sweden
| |
Collapse
|
179
|
Abstract
The influence of genotype (lean v. fatty) and dietary protein level (normal v. reduced) on plasma metabolites, hepatic fatty acid composition and mRNA levels of lipid-sensitive factors is reported for the first time, using the pig as an experimental model. The experiment was conducted on forty entire male pigs (twenty lean pigs of Large White×Landrace×Pietrain cross-breed and twenty fatty pigs of Alentejana purebreed) from 60 to 93 kg of live weight. Each pig genotype was divided into two subgroups, which were fed the following diets: a normal protein diet (NPD) equilibrated for lysine (17·5 % crude protein and 0·7 % lysine) and a reduced protein diet (RPD) not equilibrated for lysine (13·1 % crude protein and 0·4 % lysine). The majority of plasma metabolites were affected by genotype, with lean pigs having higher contents of lipids, whereas fatty pigs presented higher insulin, leptin and urea levels. RPD increased plasma TAG, free fatty acids and VLDL-cholesterol compared with NPD. Hepatic total lipids were higher in fatty pigs than in the lean genotype. RPD affected hepatic fatty acid composition but had a slight influence on gene expression levels in the liver. Sterol regulatory element-binding factor 1 was down-regulated by RPD, and fatty acid desaturase 1 (FADS1) and fatty acid binding protein 4 (FABP4) were affected by the interaction between genotype and diet. In pigs fed RPD, FADS1 was up-regulated in the lean genotype, whereas FABP4 increased in the fatty genotype. Although there is a genotype-specific effect of dietary protein restriction on hepatic lipid metabolism, lipogenesis is not promoted in the liver of lean or fatty pigs.
Collapse
|
180
|
Akagi S, Kono N, Ariyama H, Shindou H, Shimizu T, Arai H. Lysophosphatidylcholine acyltransferase 1 protects against cytotoxicity induced by polyunsaturated fatty acids. FASEB J 2016; 30:2027-39. [DOI: 10.1096/fj.201500149] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 01/27/2016] [Indexed: 12/28/2022]
Affiliation(s)
- Sosuke Akagi
- Department of Health ChemistryGraduate School of Pharmaceutical SciencesThe University of TokyoTokyoJapan
| | - Nozomu Kono
- Department of Health ChemistryGraduate School of Pharmaceutical SciencesThe University of TokyoTokyoJapan
| | - Hiroyuki Ariyama
- Department of Health ChemistryGraduate School of Pharmaceutical SciencesThe University of TokyoTokyoJapan
| | - Hideo Shindou
- Department of Lipid SignalingResearch InstituteNational Center for Global Health and MedicineTokyoJapan
- Japan Agency for Medical Research and Development‐Core Research for Evolutionary Science and Technology (AMED‐CREST)TokyoJapan
| | - Takao Shimizu
- Department of Lipid SignalingResearch InstituteNational Center for Global Health and MedicineTokyoJapan
- Department of LipidomicsGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Hiroyuki Arai
- Department of Health ChemistryGraduate School of Pharmaceutical SciencesThe University of TokyoTokyoJapan
- Japan Agency for Medical Research and Development‐Core Research for Evolutionary Science and Technology (AMED‐CREST)TokyoJapan
| |
Collapse
|
181
|
McRae S, Iqbal J, Sarkar-Dutta M, Lane S, Nagaraj A, Ali N, Waris G. The Hepatitis C Virus-induced NLRP3 Inflammasome Activates the Sterol Regulatory Element-binding Protein (SREBP) and Regulates Lipid Metabolism. J Biol Chem 2016; 291:3254-67. [PMID: 26698881 PMCID: PMC4751372 DOI: 10.1074/jbc.m115.694059] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 12/18/2015] [Indexed: 01/01/2023] Open
Abstract
Hepatitis C virus (HCV) relies on host lipids and lipid droplets for replication and morphogenesis. The accumulation of lipid droplets in infected hepatocytes manifests as hepatosteatosis, a common pathology observed in chronic hepatitis C patients. One way by which HCV promotes the accumulation of intracellular lipids is through enhancing de novo lipogenesis by activating the sterol regulatory element-binding proteins (SREBPs). In general, activation of SREBPs occurs during cholesterol depletion. Interestingly, during HCV infection, the activation of SREBPs occurs under normal cholesterol levels, but the underlying mechanisms are still elusive. Our previous study has demonstrated the activation of the inflammasome complex in HCV-infected human hepatoma cells. In this study, we elucidate the potential link between chronic hepatitis C-associated inflammation and alteration of lipid homeostasis in infected cells. Our results reveal that the HCV-activated NLRP3 inflammasome is required for the up-regulation of lipogenic genes such as 3-hydroxy-3-methylglutaryl-coenzyme A synthase, fatty acid synthase, and stearoyl-CoA desaturase. Using pharmacological inhibitors and siRNA against the inflammasome components (NLRP3, apoptosis-associated speck-like protein containing a CARD, and caspase-1), we further show that the activation of the NLRP3 inflammasome plays a critical role in lipid droplet formation. NLRP3 inflammasome activation in HCV-infected cells enables caspase-1-mediated degradation of insulin-induced gene proteins. This subsequently leads to the transport of the SREBP cleavage-activating protein·SREBP complex from the endoplasmic reticulum to the Golgi, followed by proteolytic activation of SREBPs by S1P and S2P in the Golgi. Typically, inflammasome activation leads to viral clearance. Paradoxically, here we demonstrate how HCV exploits the NLRP3 inflammasome to activate SREBPs and host lipid metabolism, leading to liver disease pathogenesis associated with chronic HCV.
Collapse
Affiliation(s)
- Steven McRae
- From the Department of Microbiology and Immunology, H. M. Bligh Cancer Research Laboratories, Rosalind Franklin University of Medicine and Science, Chicago Medical School, North Chicago, Illinois 60064 and
| | - Jawed Iqbal
- From the Department of Microbiology and Immunology, H. M. Bligh Cancer Research Laboratories, Rosalind Franklin University of Medicine and Science, Chicago Medical School, North Chicago, Illinois 60064 and
| | - Mehuli Sarkar-Dutta
- From the Department of Microbiology and Immunology, H. M. Bligh Cancer Research Laboratories, Rosalind Franklin University of Medicine and Science, Chicago Medical School, North Chicago, Illinois 60064 and
| | - Samantha Lane
- From the Department of Microbiology and Immunology, H. M. Bligh Cancer Research Laboratories, Rosalind Franklin University of Medicine and Science, Chicago Medical School, North Chicago, Illinois 60064 and
| | - Abhiram Nagaraj
- From the Department of Microbiology and Immunology, H. M. Bligh Cancer Research Laboratories, Rosalind Franklin University of Medicine and Science, Chicago Medical School, North Chicago, Illinois 60064 and
| | - Naushad Ali
- the Department of Medicine, Section of Digestive Diseases and Nutrition, University of Oklahoma, Oklahoma City, Oklahoma 73104
| | - Gulam Waris
- From the Department of Microbiology and Immunology, H. M. Bligh Cancer Research Laboratories, Rosalind Franklin University of Medicine and Science, Chicago Medical School, North Chicago, Illinois 60064 and
| |
Collapse
|
182
|
Masur F, Benesch F, Pfannkuche H, Fuhrmann H, Gäbel G. Conjugated linoleic acids influence fatty acid metabolism in ovine ruminal epithelial cells. J Dairy Sci 2016; 99:3081-3095. [PMID: 26830749 DOI: 10.3168/jds.2015-10042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 12/11/2015] [Indexed: 12/31/2022]
Abstract
Conjugated linoleic acids (CLA), particularly cis-9,trans-11 (c9t11) and trans-10,cis-12 (t10c12), are used as feed additives to adapt to constantly increasing demands on the performance of lactating cows. Under these feeding conditions, the rumen wall, and the rumen epithelial cells (REC) in particular, are directly exposed to high amounts of CLA. This study determined the effect of CLA on the fatty acid (FA) metabolism of REC and expression of genes known to be modulated by FA. Cultured REC were incubated with c9t11, t10c12, and the structurally similar FA linoleic acid (LA), oleic acid (OA), and trans-vaccenic acid (TVA) for 48 h at a concentration of 100 µM. Cellular FA levels were determined by gas chromatography. Messenger RNA expression levels of stearoyl-CoA desaturase (SCD) and monocarboxylate transporter (MCT) 1 and 4 were quantified by reverse transcription-quantitative PCR. Fatty acid evaluation revealed significant effects of CLA, LA, OA, and TVA on the amount of FA metabolites of β-oxidation and elongation and of metabolites related to desaturation by SCD. The observed changes in FA content point (among others) to the ability of REC to synthesize c9t11 from TVA endogenously. The mRNA expression levels of SCD identified a decrease after CLA, LA, OA, or TVA treatment. In line with the changes in mRNA expression, we found reduced amounts of C16:1n-7 cis-9 and C18:1n-9 cis-9, the main products of SCD. The expression of MCT1 mRNA increased after c9t11 and t10c12 treatment, and CLA c9t11 induced an upregulation of MCT4. Application of peroxisome proliferator-activated receptor (PPAR) α antagonist suggested that activation of PPARα is involved in the changes of MCT1, MCT4, and SCD mRNA expression induced by c9t11. Participation of PPARγ in the changes of MCT1 and SCD mRNA expression was shown by the application of the respective antagonist. The study demonstrates that exposure to CLA affects both FA metabolism and regulatory pathways within REC.
Collapse
Affiliation(s)
- F Masur
- Institute of Veterinary Physiology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, 04103, Germany.
| | - F Benesch
- Institute of Veterinary Physiology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, 04103, Germany
| | - H Pfannkuche
- Institute of Veterinary Physiology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, 04103, Germany
| | - H Fuhrmann
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, 04103, Germany
| | - G Gäbel
- Institute of Veterinary Physiology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, 04103, Germany
| |
Collapse
|
183
|
Ralston JC, Metherel AH, Stark KD, Mutch DM. SCD1 mediates the influence of exogenous saturated and monounsaturated fatty acids in adipocytes: Effects on cellular stress, inflammatory markers and fatty acid elongation. J Nutr Biochem 2016; 27:241-8. [DOI: 10.1016/j.jnutbio.2015.09.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 09/04/2015] [Accepted: 09/09/2015] [Indexed: 01/12/2023]
|
184
|
Integrated analysis of microRNA and mRNA expression profiles in abdominal adipose tissues in chickens. Sci Rep 2015; 5:16132. [PMID: 26531148 PMCID: PMC4632014 DOI: 10.1038/srep16132] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 10/09/2015] [Indexed: 01/22/2023] Open
Abstract
Excessive fat accretion is a crucial problem during broiler production. Abdominal fat weight (AbFW) and abdominal fat percentage (AbFP) are major phenotypic indices of fat traits. The present study used F2 females derived from a cross between Beijing-You and Cobb-Vantress chickens. Cohorts with extreme AbFP and AbFW phenotypes were chosen to construct high- and low-abdominal fat libraries (HAbF and LAbF, respectively) to investigate the expression profiles by RNA-sequencing and microRNA (miRNA)-sequencing. Compared with the LAbF library, 62 differentially expressed miRNAs (DEMs) and 303 differentially expressed genes (DEGs) were identified in the HAbF birds. Integrated analysis of DEMs and DEGs showed that a total of 106 DEGs were identified as target genes for the 62 DEMs. These genes were designated as intersection genes, and 11 of these genes are involved in lipid metabolism pathways. The miRNA gga-miR-19b-3p accelerated the proliferation of preadipocytes, as well as adipocyte differentiation, by down- regulating ACSL1. These findings suggest that some strong candidate miRNAs and genes, important in relation to abdominal adipose deposition, were identified by the integrated analysis of DEMs and DEGs. These findings add to our current understanding of the molecular genetic controls underlying abdominal adipose accumulation in chickens.
Collapse
|
185
|
Kind KL, Tam KKY, Banwell KM, Gauld AD, Russell DL, Macpherson AM, Brown HM, Frank LA, Peet DJ, Thompson JG. Oxygen-regulated gene expression in murine cumulus cells. Reprod Fertil Dev 2015; 27:407-18. [PMID: 24388334 DOI: 10.1071/rd13249] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 11/15/2013] [Indexed: 12/19/2022] Open
Abstract
Oxygen is an important component of the environment of the cumulus-oocyte complex (COC), both in vivo within the ovarian follicle and during in vitro oocyte maturation (IVM). Cumulus cells have a key role in supporting oocyte development, and cumulus cell function and gene expression are known to be altered when the environment of the COC is perturbed. Oxygen-regulated gene expression is mediated through the actions of the transcription factors, the hypoxia-inducible factors (HIFs). In the present study, the effect of oxygen on cumulus cell gene expression was examined following in vitro maturation of the murine COC at 2%, 5% or 20% oxygen. Increased expression of HIF-responsive genes, including glucose transporter-1, lactate dehydrogenase A and BCL2/adenovirus E1B interacting protein 3, was observed in cumulus cells matured at 2% or 5%, compared with 20% oxygen. Stabilisation of HIF1α protein in cumulus cells exposed to low oxygen was confirmed by western blot and HIF-mediated transcriptional activity was demonstrated using a transgenic mouse expressing green fluorescent protein under the control of a promoter containing hypoxia response elements. These results indicate that oxygen concentration influences cumulus cell gene expression and support a role for HIF1α in mediating the cumulus cell response to varying oxygen.
Collapse
Affiliation(s)
- Karen L Kind
- The Robinson Institute, Research Centre for Reproductive Health, University of Adelaide, Adelaide, SA 5005, Australia
| | - Kimberley K Y Tam
- The Robinson Institute, Research Centre for Reproductive Health, University of Adelaide, Adelaide, SA 5005, Australia
| | - Kelly M Banwell
- The Robinson Institute, Research Centre for Reproductive Health, University of Adelaide, Adelaide, SA 5005, Australia
| | - Ashley D Gauld
- The Robinson Institute, Research Centre for Reproductive Health, University of Adelaide, Adelaide, SA 5005, Australia
| | - Darryl L Russell
- The Robinson Institute, Research Centre for Reproductive Health, University of Adelaide, Adelaide, SA 5005, Australia
| | - Anne M Macpherson
- The Robinson Institute, Research Centre for Reproductive Health, University of Adelaide, Adelaide, SA 5005, Australia
| | - Hannah M Brown
- The Robinson Institute, Research Centre for Reproductive Health, University of Adelaide, Adelaide, SA 5005, Australia
| | - Laura A Frank
- The Robinson Institute, Research Centre for Reproductive Health, University of Adelaide, Adelaide, SA 5005, Australia
| | - Daniel J Peet
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia
| | - Jeremy G Thompson
- The Robinson Institute, Research Centre for Reproductive Health, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
186
|
Ding J, Reynolds LM, Zeller T, Müller C, Lohman K, Nicklas BJ, Kritchevsky SB, Huang Z, de la Fuente A, Soranzo N, Settlage RE, Chuang CC, Howard T, Xu N, Goodarzi MO, Chen YDI, Rotter JI, Siscovick DS, Parks JS, Murphy S, Jacobs DR, Post W, Tracy RP, Wild PS, Blankenberg S, Hoeschele I, Herrington D, McCall CE, Liu Y. Alterations of a Cellular Cholesterol Metabolism Network Are a Molecular Feature of Obesity-Related Type 2 Diabetes and Cardiovascular Disease. Diabetes 2015; 64:3464-74. [PMID: 26153245 PMCID: PMC4587646 DOI: 10.2337/db14-1314] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 05/28/2015] [Indexed: 12/20/2022]
Abstract
Obesity is linked to type 2 diabetes (T2D) and cardiovascular diseases; however, the underlying molecular mechanisms remain unclear. We aimed to identify obesity-associated molecular features that may contribute to obesity-related diseases. Using circulating monocytes from 1,264 Multi-Ethnic Study of Atherosclerosis (MESA) participants, we quantified the transcriptome and epigenome. We discovered that alterations in a network of coexpressed cholesterol metabolism genes are a signature feature of obesity and inflammatory stress. This network included 11 BMI-associated genes related to sterol uptake (↑LDLR, ↓MYLIP), synthesis (↑SCD, FADS1, HMGCS1, FDFT1, SQLE, CYP51A1, SC4MOL), and efflux (↓ABCA1, ABCG1), producing a molecular profile expected to increase intracellular cholesterol. Importantly, these alterations were associated with T2D and coronary artery calcium (CAC), independent from cardiometabolic factors, including serum lipid profiles. This network mediated the associations between obesity and T2D/CAC. Several genes in the network harbored C-phosphorus-G dinucleotides (e.g., ABCG1/cg06500161), which overlapped Encyclopedia of DNA Elements (ENCODE)-annotated regulatory regions and had methylation profiles that mediated the associations between BMI/inflammation and expression of their cognate genes. Taken together with several lines of previous experimental evidence, these data suggest that alterations of the cholesterol metabolism gene network represent a molecular link between obesity/inflammation and T2D/CAC.
Collapse
Affiliation(s)
- Jingzhong Ding
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC
| | - Lindsay M Reynolds
- Department of Epidemiology & Prevention, Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC
| | - Tanja Zeller
- University Heart Center Hamburg, Clinic for General and Interventional Cardiology, and DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Christian Müller
- University Heart Center Hamburg, Clinic for General and Interventional Cardiology, and DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Kurt Lohman
- Department of Epidemiology & Prevention, Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC
| | - Barbara J Nicklas
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC
| | | | | | - Alberto de la Fuente
- Department of Biomathematics and Bioinformatics, Institute of Genetics and Biometry, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| | | | | | - Chia-Chi Chuang
- Section on Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC
| | - Timothy Howard
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC
| | - Ning Xu
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Mark O Goodarzi
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Y-D Ida Chen
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA
| | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA
| | | | - John S Parks
- Section on Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC
| | | | - David R Jacobs
- School of Public Health, University of Minnesota, Minneapolis, MN
| | | | | | - Philipp S Wild
- Center for Thrombosis and Hemostasis and Department of Medicine 2, University Medical Center of the Johannes Gutenberg University Mainz, and DZHK (German Centre for Cardiovascular Research), Partner Site Rhine-Main, Mainz, Germany
| | - Stefan Blankenberg
- University Heart Center Hamburg, Clinic for General and Interventional Cardiology, and DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Ina Hoeschele
- Virginia Bioinformatics Institute at Virginia Tech, Blacksburg, VA
| | - David Herrington
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC
| | - Charles E McCall
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC
| | - Yongmei Liu
- Department of Epidemiology & Prevention, Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC
| |
Collapse
|
187
|
Tintle NL, Newman JW, Shearer GC. A novel approach to identify optimal metabotypes of elongase and desaturase activities in prevention of acute coronary syndrome. Metabolomics 2015; 11:1327-1337. [PMID: 39777108 PMCID: PMC11706515 DOI: 10.1007/s11306-015-0787-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Both metabolomic and genomic approaches are valuable for risk analysis, however typical approaches evaluating differences in means do not model the changes well. Gene polymorphisms that alter function would appear as distinct populations, or metabotypes, from the predominant one, in which case risk is revealed as changed mixing proportions between control and case samples. Here we validate a model accounting for mixed populations using biomarkers of fatty acid metabolism derived from a case/control study of acute coronary syndrome subjects in which both metabolomic and genomic approaches have been used previously. We first used simulated data to show improved power and sensitivity in the approach compared to classic approaches. We then used the metabolic biomarkers to test for evidence of distinct metabotypes and different proportions among cases and controls. In simulation, our model outperformed all other approaches including Mann-Whitney, t-tests, and χ2. Using real data, we found distinct metabotypes of six of the seven activities tested, and different mixing proportions in five of the six activity biomarkers: D9D, ELOVL6, ELOVL5, FADS1, and Sprecher pathway chain shortening (SCS). High activity metabotypes of non-essential fatty acids and SCS decreased odds for acute coronary syndrome (ACS), however high activity metabotypes of 20-carbon fatty acid synthesis increased odds. Our study validates an approach that accounts for both metabolomic and genomic theory by demonstrating improved sensitivity and specificity, better performance in real world data, and more straightforward interpretability.
Collapse
Affiliation(s)
| | - John W. Newman
- Western Human Nutrition Research Center, United States Department of Agriculture
- Department of Nutrition, UC Davis, University of California, Davis CA 95616
| | | |
Collapse
|
188
|
Bennett DC, Leung G, Wang E, Ma S, Lo BKK, McElwee KJ, Cheng KM. Ratite oils promote keratinocyte cell growth and inhibit leukocyte activation. Poult Sci 2015. [PMID: 26217022 DOI: 10.3382/ps/pev204] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Traditionally, native Australian aborigines have used emu oil for the treatment of inflammation and to accelerate wound healing. Studies on mice suggest that topically applied emu oil may have anti-inflammatory properties and may promote wound healing. We investigated the effects of ratite oils (6 emu, 3 ostrich, 1 rhea) on immortalized human keratinocytes (HaCaT cells) in vitro by culturing the cells in media with oil concentrations of 0%, 0.5%, and 1.0%. Peking duck, tea tree, and olive oils were used as comparative controls. The same oils at 0.5% concentration were evaluated for their influence on peripheral blood mononuclear cell (PBMC) survival over 48 hr and their ability to inhibit IFNγ production in PBMCs activated by phytohemagglutinin (PHA) in ELISpot assays. Compared to no oil control, significantly shorter population doubling time durations were observed for HaCaT cells cultured in emu oil (1.51×faster), ostrich oil (1.46×faster), and rhea oil (1.64×faster). Tea tree oil demonstrated significant antiproliferative activity and olive oil significantly prolonged (1.35×slower) cell population doubling time. In contrast, almost all oils, particularly tea tree oil, significantly reduced PBMC viability. Different oils had different levels of inhibitory effect on IFNγ production with individual emu, ostrich, rhea, and duck oil samples conferring full inhibition. This preliminary investigation suggests that emu oil might promote wound healing by accelerating the growth rate of keratinocytes. Combined with anti-inflammatory properties, ratite oil may serve as a useful component in bandages and ointments for the treatment of wounds and inflammatory skin conditions.
Collapse
Affiliation(s)
| | - Gigi Leung
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, British Columbia, Canada Vancouver Coastal Health Research Institute, Vancouver, British Columbia V5Z 1M9, Canada
| | - Eddy Wang
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, British Columbia, Canada Vancouver Coastal Health Research Institute, Vancouver, British Columbia V5Z 1M9, Canada
| | - Sam Ma
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, British Columbia, Canada
| | - Blanche K K Lo
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, British Columbia, Canada Vancouver Coastal Health Research Institute, Vancouver, British Columbia V5Z 1M9, Canada
| | - Kevin J McElwee
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, British Columbia, Canada Vancouver Coastal Health Research Institute, Vancouver, British Columbia V5Z 1M9, Canada
| | | |
Collapse
|
189
|
Thakoersing VS, van Smeden J, Boiten WA, Gooris GS, Mulder AA, Vreeken RJ, El Ghalbzouri A, Bouwstra JA. Modulation of stratum corneum lipid composition and organization of human skin equivalents by specific medium supplements. Exp Dermatol 2015; 24:669-74. [PMID: 25939986 DOI: 10.1111/exd.12740] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2015] [Indexed: 12/22/2022]
Abstract
Our in-house human skin equivalents contain all stratum corneum (SC) barrier lipid classes, but have a reduced level of free fatty acids (FAs), of which a part is mono-unsaturated. These differences lead to an altered SC lipid organization and thereby a reduced barrier function compared to human skin. In this study, we aimed to improve the SC FA composition and, consequently, the SC lipid organization of the Leiden epidermal model (LEM) by specific medium supplements. The standard FA mixture (consisting of palmitic, linoleic and arachidonic acids) supplemented to the medium was modified, by replacing protonated palmitic acid with deuterated palmitic acid or by the addition of deuterated arachidic acid to the mixture, to determine whether FAs are taken up from the medium and are incorporated into SC of LEM. Furthermore, supplementation of the total FA mixture or that of palmitic acid alone was increased four times to examine whether this improves the SC FA composition and lipid organization of LEM. The results demonstrate that the deuterated FAs are taken up into LEMs and are subsequently elongated and incorporated in their SC. However, a fourfold increase in palmitic acid supplementation does not change the SC FA composition or lipid organization of LEM. Increasing the concentration of the total FA mixture in the medium resulted in a decreased level of very long chain FAs and an increased level of mono-unsaturated FAs, which lead to deteriorated SC lipid properties. These results indicate that SC lipid properties can be modulated by specific medium supplements.
Collapse
Affiliation(s)
- Varsha S Thakoersing
- Department of Drug Delivery Technology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Jeroen van Smeden
- Department of Drug Delivery Technology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Walter A Boiten
- Department of Drug Delivery Technology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Gert S Gooris
- Department of Drug Delivery Technology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Aat A Mulder
- Department of Drug Delivery Technology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Rob J Vreeken
- Department of Analytical Biosciences, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.,Netherlands Metabolomics Centre, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | | | - Joke A Bouwstra
- Department of Drug Delivery Technology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| |
Collapse
|
190
|
Effect of Roux-en-Y gastric bypass-induced weight loss on the transcriptomic profiling of subcutaneous adipose tissue. Surg Obes Relat Dis 2015; 12:257-63. [PMID: 26615868 DOI: 10.1016/j.soard.2015.07.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 07/03/2015] [Accepted: 07/07/2015] [Indexed: 01/01/2023]
Abstract
BACKGROUND The changes in the transcriptomic profiling of subcutaneous adipose tissue (SAT) when weight loss stabilizes after a Roux-en-Y gastric bypass (RYGB) are still largely unknown. OBJECTIVES To investigate the changes produced in SAT gene expression of morbidly obese women when their weight loss stabilizes 2 years after RYGB. SETTING University hospital. METHODS SAT biopsies of the periumbilical area were taken before and 2 years after RYGB. Gene expression levels were assessed by microarray analysis and significant differences in gene expression were validated by real-time quantitative polymerase chain reaction. The findings were also confirmed in an independent population of morbidly obese women. RESULTS Microarray analysis revealed that the overexpressed differentially expressed genes have a prominent role in the pathways involved in biosynthetic processes, especially lipid or carboxylic ones (stearoyl-Coenzyme A desaturase-1, fatty acid desaturase-1, fatty acid elongase-6, ATP citrate lyase, fatty acid synthase, lipin-1, monoacylglycerol O-acyltransferase, patatin-like phospholipase domain containing-3, phosphate cytidylyltransferase-2, cholesteryl ester transfer protein, transmembrane 7 superfamily member 2, pyruvate carboxylase, and glycogen synthase 2). Most of the underexpressed differentially expressed genes are related with immune system and inflammation processes (immune responses, response to stress, cell death, regulation of biological quality, immune effector process, the response to endogenous stimulus, and the response to other types of stimulus). CONCLUSION An improvement of the SAT inflammatory and immune profile and an induction of genes involved in the regulation of lipid metabolism are shown when weight loss stabilizes 2 years after RYGB. Most of the genes shown are clearly linked to obesity and other metabolic disorders.
Collapse
|
191
|
Ralston JC, Mutch DM. SCD1 inhibition during 3T3-L1 adipocyte differentiation remodels triacylglycerol, diacylglycerol and phospholipid fatty acid composition. Prostaglandins Leukot Essent Fatty Acids 2015; 98:29-37. [PMID: 25959085 DOI: 10.1016/j.plefa.2015.04.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 04/16/2015] [Accepted: 04/17/2015] [Indexed: 01/06/2023]
Abstract
The conversion of saturated fatty acids (FAs) palmitate (16:0) and stearate (18:0) into monounsaturated FAs palmitoleate (16:1n-7) and oleate (18:1n-9) is catalyzed by stearoyl-CoA desaturase 1 (SCD1). These FAs represent the dominant constituents of adipocyte triacylglycerols (TAGs) and phospholipids (PLs). Given the critical role of SCD1 in lipid metabolism and the notable increase in its expression during adipogenesis, reductions in SCD1 activity have the potential to compromise the adipocyte's ability to accumulate lipid. The current study used thin-layer and gas chromatography to examine the content and FA composition of TAGs, PLs, cholesteryl esters, diacylglycerols and free fatty acids in SCD1-inhibited differentiating 3T3-L1 adipocyte cells. SCD1 inhibition reduced total cellular PL and TAG content concurrent with the down-regulation of genes involved in TAG and PL biosynthesis; however, the relative amount of PL was unaltered. While total DAG levels were increased ~2.7-fold in SCD1-inhibited adipocytes, this did not induce JNK activation; however, phosphorylated (Ser473) AKT was significantly reduced. As expected, total SFA and MUFA content were increased (~1.3-fold) and decreased (~4.0-fold). Further, SCD1 inhibition caused a ~2.2-fold increase and a ~8.3-fold decrease in total cellular 18:0 and 16:1n-7 levels, respectively. Similar changes were also seen in other lipid fractions. The levels of other FAs, including polyunsaturated FAs, were also changed in SCD1-inhibited adipocytes. Together, these results add to the existing body of knowledge regarding SCD1 function in adipocytes and highlight its important role in regulating global adipocyte lipid composition.
Collapse
Affiliation(s)
- Jessica C Ralston
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada N1G 2W1.
| | - David M Mutch
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada N1G 2W1.
| |
Collapse
|
192
|
Kim GY, Lee YM, Cho JH, Pan CJ, Jun HS, Springer DA, Mansfield BC, Chou JY. Mice expressing reduced levels of hepatic glucose-6-phosphatase-α activity do not develop age-related insulin resistance or obesity. Hum Mol Genet 2015; 24:5115-25. [PMID: 26089201 DOI: 10.1093/hmg/ddv230] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 06/15/2015] [Indexed: 12/26/2022] Open
Abstract
Glycogen storage disease type-Ia (GSD-Ia) is caused by a lack of glucose-6-phosphatase-α (G6Pase-α or G6PC) activity. We have shown that gene therapy mediated by a recombinant adeno-associated virus (rAAV) vector expressing human G6Pase-α normalizes blood glucose homeostasis in the global G6pc knockout (G6pc(-/-)) mice for 70-90 weeks. The treated G6pc(-/-) mice expressing 3-63% of normal hepatic G6Pase-α activity (AAV mice) produce endogenous hepatic glucose levels 61-68% of wild-type littermates, have a leaner phenotype and exhibit fasting blood insulin levels more typical of young adult mice. We now show that unlike wild-type mice, the lean AAV mice have increased caloric intake and do not develop age-related obesity or insulin resistance. Pathway analysis shows that signaling by hepatic carbohydrate response element binding protein that improves glucose tolerance and insulin signaling is activated in AAV mice. In addition, several longevity factors in the calorie restriction pathway, including the NADH shuttle systems, NAD(+) concentrations and the AMP-activated protein kinase/sirtuin 1/peroxisome proliferator-activated receptor-γ coactivator 1α pathway are upregulated in the livers of AAV mice. The finding that partial restoration of hepatic G6Pase-α activity in GSD-Ia mice not only attenuates the phenotype of hepatic G6Pase-α deficiency but also prevents the development of age-related obesity and insulin resistance seen in wild-type mice may suggest relevance of the G6Pase-α enzyme to obesity and diabetes.
Collapse
Affiliation(s)
- Goo-Young Kim
- Section on Cellular Differentiation, Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development and
| | - Young Mok Lee
- Section on Cellular Differentiation, Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development and
| | - Jun-Ho Cho
- Section on Cellular Differentiation, Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development and
| | - Chi-Jiunn Pan
- Section on Cellular Differentiation, Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development and
| | - Hyun Sik Jun
- Section on Cellular Differentiation, Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development and
| | - Danielle A Springer
- Mouse Phenotyping Core Facility, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA and
| | - Brian C Mansfield
- Section on Cellular Differentiation, Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development and Foundation Fighting Blindness, Columbia, MD 21046, USA
| | - Janice Y Chou
- Section on Cellular Differentiation, Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development and
| |
Collapse
|
193
|
Li X, Ning X, Dou J, Yu Q, Wang S, Zhang L, Wang S, Hu X, Bao Z. An SCD gene from the Mollusca and its upregulation in carotenoid-enriched scallops. Gene 2015; 564:101-8. [DOI: 10.1016/j.gene.2015.02.071] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 02/10/2015] [Accepted: 02/26/2015] [Indexed: 01/06/2023]
|
194
|
Belkaid A, Duguay SR, Ouellette RJ, Surette ME. 17β-estradiol induces stearoyl-CoA desaturase-1 expression in estrogen receptor-positive breast cancer cells. BMC Cancer 2015; 15:440. [PMID: 26022099 PMCID: PMC4446951 DOI: 10.1186/s12885-015-1452-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 05/19/2015] [Indexed: 12/16/2022] Open
Abstract
Background To sustain cell growth, cancer cells exhibit an altered metabolism characterized by increased lipogenesis. Stearoyl-CoA desaturase-1 (SCD-1) catalyzes the production of monounsaturated fatty acids that are essential for membrane biogenesis, and is required for cell proliferation in many cancer cell types. Although estrogen is required for the proliferation of many estrogen-sensitive breast carcinoma cells, it is also a repressor of SCD-1 expression in liver and adipose. The current study addresses this apparent paradox by investigating the impact of estrogen on SCD-1 expression in estrogen receptor-α-positive breast carcinoma cell lines. Methods MCF-7 and T47D mammary carcinomas cells and immortalized MCF-10A mammary epithelial cells were hormone-starved then treated or not with 17β-estradiol. SCD-1 activity was assessed by measuring cellular monounsaturated/saturated fatty acid (MUFA/SFA) ratios, and SCD-1 expression was measured by qPCR, immunoblot, and immunofluorescence analyses. The role of SCD-1 in cell proliferation was measured following treatment with the SCD-1 inhibitor A959372 and following SCD-1 silencing using siRNA. The involvement of IGF-1R on SCD-1 expression was measured using the IGF-1R antagonist AG1024. The expression of SREBP-1c, a transcription factor that regulates SCD-1, was measured by qPCR, and by immunoblot analyses. Results 17β-estradiol significantly induced cell proliferation and SCD-1 activity in MCF-7 and T47D cells but not MCF-10A cells. Accordingly, 17β-estradiol significantly increased SCD-1 mRNA and protein expression in MCF-7 and T47D cells compared to untreated cells. Treatment of MCF-7 cells with 4-OH tamoxifen or siRNA silencing of estrogen receptor-α largely prevented 17β-estradiol-induced SCD-1 expression. 17β-estradiol increased SREBP-1c expression and induced the mature active 60 kDa form of SREBP-1. The selective SCD-1 inhibitor or siRNA silencing of SCD-1 blocked the 17β-estradiol-induced cell proliferation and increase in cellular MUFA/SFA ratios. IGF-1 also induced SCD-1 expression, but to a lesser extent than 17β-estradiol. The IGF-1R antagonist partially blocked 17β-estradiol-induced cell proliferation and SCD-1 expression, suggesting the impact of 17β-estradiol on SCD-1 expression is partially mediated though IGF-1R signaling. Conclusions This study illustrates for the first time that, in contrast to hepatic and adipose tissue, estrogen induces SCD-1 expression and activity in breast carcinoma cells. These results support SCD-1 as a therapeutic target in estrogen-sensitive breast cancer.
Collapse
Affiliation(s)
- Anissa Belkaid
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine Maillet Ave, Moncton, NB, E1A 3E9, Canada. .,Atlantic Cancer Research Institute, Moncton, NB, Canada.
| | - Sabrina R Duguay
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine Maillet Ave, Moncton, NB, E1A 3E9, Canada.
| | | | - Marc E Surette
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine Maillet Ave, Moncton, NB, E1A 3E9, Canada.
| |
Collapse
|
195
|
Ma DK, Li Z, Lu AY, Sun F, Chen S, Rothe M, Menzel R, Sun F, Horvitz HR. Acyl-CoA Dehydrogenase Drives Heat Adaptation by Sequestering Fatty Acids. Cell 2015; 161:1152-1163. [PMID: 25981666 PMCID: PMC4441829 DOI: 10.1016/j.cell.2015.04.026] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 02/26/2015] [Accepted: 03/13/2015] [Indexed: 12/11/2022]
Abstract
Cells adapt to temperature shifts by adjusting levels of lipid desaturation and membrane fluidity. This fundamental process occurs in nearly all forms of life, but its mechanism in eukaryotes is unknown. We discovered that the evolutionarily conserved Caenorhabditis elegans gene acdh-11 (acyl-CoA dehydrogenase [ACDH]) facilitates heat adaptation by regulating the lipid desaturase FAT-7. Human ACDH deficiency causes the most common inherited disorders of fatty acid oxidation, with syndromes that are exacerbated by hyperthermia. Heat upregulates acdh-11 expression to decrease fat-7 expression. We solved the high-resolution crystal structure of ACDH-11 and established the molecular basis of its selective and high-affinity binding to C11/C12-chain fatty acids. ACDH-11 sequesters C11/C12-chain fatty acids and prevents these fatty acids from activating nuclear hormone receptors and driving fat-7 expression. Thus, the ACDH-11 pathway drives heat adaptation by linking temperature shifts to regulation of lipid desaturase levels and membrane fluidity via an unprecedented mode of fatty acid signaling.
Collapse
Affiliation(s)
- Dengke K Ma
- Department of Biology, Howard Hughes Medical Institute, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Zhijie Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Alice Y Lu
- Department of Biology, Howard Hughes Medical Institute, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Fang Sun
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Sidi Chen
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Michael Rothe
- Lipidomix GmbH, Robert-Roessle-Strasse 10, 13125 Berlin, Germany
| | - Ralph Menzel
- Department of Biology, Freshwater and Stress Ecology, Humboldt-Universität zu Berlin, Spaethstrasse 80/81, 12437 Berlin, Germany
| | - Fei Sun
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - H Robert Horvitz
- Department of Biology, Howard Hughes Medical Institute, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
196
|
Engineering lipid overproduction in the oleaginous yeast Yarrowia lipolytica. Metab Eng 2015; 29:56-65. [DOI: 10.1016/j.ymben.2015.02.005] [Citation(s) in RCA: 241] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 02/16/2015] [Indexed: 12/20/2022]
|
197
|
Xing K, Zhu F, Zhai L, Liu H, Wang Y, Wang Z, Chen S, Hou Z, Wang C. Integration of transcriptome and whole genomic resequencing data to identify key genes affecting swine fat deposition. PLoS One 2015; 10:e0122396. [PMID: 25849573 PMCID: PMC4388518 DOI: 10.1371/journal.pone.0122396] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 02/21/2015] [Indexed: 12/17/2022] Open
Abstract
Fat deposition is highly correlated with the growth, meat quality, reproductive performance and immunity of pigs. Fatty acid synthesis takes place mainly in the adipose tissue of pigs; therefore, in this study, a high-throughput massively parallel sequencing approach was used to generate adipose tissue transcriptomes from two groups of Songliao black pigs that had opposite backfat thickness phenotypes. The total number of paired-end reads produced for each sample was in the range of 39.29-49.36 millions. Approximately 188 genes were differentially expressed in adipose tissue and were enriched for metabolic processes, such as fatty acid biosynthesis, lipid synthesis, metabolism of fatty acids, etinol, caffeine and arachidonic acid and immunity. Additionally, many genetic variations were detected between the two groups through pooled whole-genome resequencing. Integration of transcriptome and whole-genome resequencing data revealed important genomic variations among the differentially expressed genes for fat deposition, for example, the lipogenic genes. Further studies are required to investigate the roles of candidate genes in fat deposition to improve pig breeding programs.
Collapse
Affiliation(s)
- Kai Xing
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Feng Zhu
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Liwei Zhai
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Huijie Liu
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Yuan Wang
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Zhijun Wang
- Tianjin Ninghe primary pig breeding farm, Ninghe, 301500, Tianjin, China
| | - Shaokang Chen
- Animal husbandry and veterinary station of Beijing, Beijing, 100125, Beijing, China
| | - Zhuocheng Hou
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Chuduan Wang
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
198
|
Shomonov-Wagner L, Raz A, Leikin-Frenkel A. Alpha linolenic acid in maternal diet halts the lipid disarray due to saturated fatty acids in the liver of mice offspring at weaning. Lipids Health Dis 2015; 14:14. [PMID: 25889505 PMCID: PMC4344992 DOI: 10.1186/s12944-015-0012-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 02/13/2015] [Indexed: 01/16/2023] Open
Abstract
Background Alpha linolenic acid (ALA, 18:3) in maternal diets has been shown to attenuate obesity associated insulin resistance (IR) in adult offspring in mice. The objective in the present study was to detect the early effects of maternal dietary saturated fatty acids (SFA) and their partial substitution with ω-3 ALA, docosa hexenoic acid (DHA,22:6) and eicosapentenoic acid 20:5 (EPA,20:5) on the HOMA index, liver lipids and fatty acid desaturases in the offspring at weaning. Methods 3 month old C57Bl6/J female mice were fed diets containing normal amount of calories but rich in SFA alone or partially replaced with ALA, DHA or EPA before mating, during pregnancy and lactation. Results Pregnant mice fed SFA produced offspring with the highest HOMA index, liver lipids and desaturase activities. ALA prevented SFA induced lipid increase but DHA and EPA only reduced it by 42% and 31% respectively. ALA, DHA and EPA decreased HOMA index by 84%, 75% and 83% respectively. ALA, DHA and EPA decreased Δ6 and SCD1 desaturase activities about 30%. Conclusions SFA feeding to mothers predisposes their offspring to develop IR and liver lipid accumulation already at weaning. ω3 fatty acids reduce IR, ALA halts lipid accumulation whereas DHA and EPA only blunt it.ALA and DHA restore the increased SCD1 to normal. These studies suggest that ω-3 fatty acids have different potencies to preclude lipid accumulation in the offspring partially by affecting pathways associated to SCD1 modulation.
Collapse
Affiliation(s)
- Limor Shomonov-Wagner
- Laboratory for Lipid Metabolism in the Liver, Sackler School of Medicine, Tel Aviv, 69978, Israel. .,G.S.W. Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel.
| | - Amiram Raz
- G.S.W. Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel.
| | - Alicia Leikin-Frenkel
- Laboratory for Lipid Metabolism in the Liver, Sackler School of Medicine, Tel Aviv, 69978, Israel. .,Bert W. Strassburger Lipid Center, Sheba Medical Center, Tel-Hashomer, Israel.
| |
Collapse
|
199
|
Jia S, Hu Y, Zhang W, Zhao X, Chen Y, Sun C, Li X, Chen K. Hypoglycemic and hypolipidemic effects of neohesperidin derived from Citrus aurantium L. in diabetic KK-Aymice. Food Funct 2015; 6:878-86. [DOI: 10.1039/c4fo00993b] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The present study is to investigate the possible hypoglycemic and hypolipidemic effects of neohesperidin (NHP) derived fromCitrus aurantiumL.in vivo.
Collapse
Affiliation(s)
- Sheng Jia
- Laboratory of Fruit Quality Biology
- Zhejiang University
- Hangzhou
- China
| | - Ying Hu
- Department of Ultrasonography
- The First Affiliated Hospital
- College of Medicine
- Zhejiang University
- Hangzhou
| | - Wenna Zhang
- Laboratory of Fruit Quality Biology
- Zhejiang University
- Hangzhou
- China
| | - Xiaoyong Zhao
- Laboratory of Fruit Quality Biology
- Zhejiang University
- Hangzhou
- China
| | - Yanhong Chen
- Laboratory Animal Centre of Zhejiang University
- Hangzhou
- China
| | - Chongde Sun
- Laboratory of Fruit Quality Biology
- Zhejiang University
- Hangzhou
- China
- Agricultural Products Processing Technology Key Laboratory of Zhejiang Province
| | - Xian Li
- Laboratory of Fruit Quality Biology
- Zhejiang University
- Hangzhou
- China
- Agricultural Products Processing Technology Key Laboratory of Zhejiang Province
| | - Kunsong Chen
- Laboratory of Fruit Quality Biology
- Zhejiang University
- Hangzhou
- China
- Agricultural Products Processing Technology Key Laboratory of Zhejiang Province
| |
Collapse
|
200
|
Oliveira DM, Chalfun-Junior A, Chizzotti ML, Barreto HG, Coelho TC, Paiva LV, Coelho CP, Teixeira PD, Schoonmaker JP, Ladeira MM. Expression of genes involved in lipid metabolism in the muscle of beef cattle fed soybean or rumen-protected fat, with or without monensin supplementation. J Anim Sci 2014; 92:5426-36. [PMID: 25403202 DOI: 10.2527/jas.2014-7855] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Degree of unsaturation of fatty acids, which is influenced by lipid source and level of metabolism in the rumen, is a major determinant in how dietary lipids affect genes that regulate beef marbling. A total of 28 Red Norte bulls with an initial live weight of 361±32 kg (P>0.05) were used in a completely randomized experimental design to analyze the expression of genes that are involved in lipid metabolism in the longissimus dorsi (LD) when diets contained soybean grain or rumen-protected fat, with or without monensin. Treatments were arranged as a 2×2 factorial, with 4 treatments and 7 replicates per treatment. Half of the animals that received soybean or rumen-protected fat were supplemented with 230 mg head(-1) d(-1) of monensin. Gene expression was analyzed by reverse-transcription quantitative PCR (RT-qPCR). Expression of sterol regulatory element-binding protein-1c (SREBP-1c) in the LD muscle was not affected by lipid source or monensin (P>0.05). There was an interaction effect (P<0.05) between lipid source and monensin for peroxisome proliferator-activated receptor α (PPAR-α) and stearoyl-CoA desaturase (SCD) expression, where greater gene expression was found in animals fed soybean plus monensin and the lower gene expression was found in animals fed rumen-protected fat plus monensin. Expression of lipoprotein lipase (LPL) and fatty acid-binding protein 4 (FABP4) were greater (P<0.05) in the LD muscle of animals fed soybean. Monensin had no effect on LPL and FABP4 expression when soybean without monensin was fed, but when rumen-protected fat was fed, monensin increased LPL expression and decreased FABP4 expression (P<0.05). Linoleic and arachidonic acids had negative correlations (P<0.05) with the expression of PPAR-α, SCD, FABP4, and LPL genes. PPAR-α gene expression was not correlated with SREBP-1c but was positively correlated with SCD, FABP4, LPL, and glutathione peroxidase (GPX1) gene expression (P<0.001). Lipid sources and monensin interact and alter the expression of PPAR-α, SCD, acetyl CoA carboxylase α (ACACA), LPL, FABP4, and GPX1. These changes in gene expression were most associated with arachidonic and α-linolenic acids and the ability of lipid sources and monensin to increase these fatty acids in tissues.
Collapse
Affiliation(s)
- D M Oliveira
- Department of Animal Science, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil, 37.200-000
| | - A Chalfun-Junior
- Department of Biology, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil, 37.200-000
| | - M L Chizzotti
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil, 36.570-000
| | - H G Barreto
- Department of Agricultural Sciences, Universidade Federal de Tocantins, Gurupi, Tocantins, Brazil, 77.402-970
| | - T C Coelho
- Department of Animal Science, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil, 37.200-000
| | - L V Paiva
- Department of Chemistry, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil, 37.200-000
| | - C P Coelho
- Department of Animal Science, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil, 37.200-000
| | - P D Teixeira
- Department of Animal Science, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil, 37.200-000
| | - J P Schoonmaker
- Department of Animal Science, Purdue University, West Lafayette, IN 47906
| | - M M Ladeira
- Department of Animal Science, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil, 37.200-000
| |
Collapse
|