151
|
Wang H, Jin Y, Wang C, Li B, Jiang C, Sun Z, Zhang Z, Kong F, Zhang H. Fasciclin-like arabinogalactan proteins, PtFLAs, play important roles in GA-mediated tension wood formation in Populus. Sci Rep 2017; 7:6182. [PMID: 28733593 PMCID: PMC5522414 DOI: 10.1038/s41598-017-06473-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 06/14/2017] [Indexed: 11/11/2022] Open
Abstract
In Populus, the transcripts of fasciclin-like arabinogalactan proteins (FLAs) are accumulated in tension wood (TW) xylem, however their biological functions in TW formation are largely unknown. In this work, we demonstrated that PtFLA6, one of poplar TW-associated PtFLAs, was abundantly expressed in TW, and mainly localized in differentiating G-fibers. The bended stems of PtFLA6 antisense transgenic poplar showed decreased transcripts of PtFLAs, including PtFLA6, and reduced PtFLA6 like proteins, leading to inhibited TW differentiation and formation. We also showed that gibberellin A3 (GA3) was enriched in the xylem of TW side, accompanied with a lowered level of PtRGA1, a poplar DELLA protein. When GA3 biosynthesis was restrained in the bended poplar stems by a GA biosynthesis inhibitor (daminozide), TW formation was obviously repressed, as a result of restricted PtRGA1 degradation, and reduced PtFLA6 like proteins and PtFLA expression. Further studies indicated that PtFLAs were negatively regulated by PtRGA1. This study suggests that PtFLAs play important roles in the poplar TW formation, possibly regulated by GA signaling.
Collapse
Affiliation(s)
- Haihai Wang
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Yanli Jin
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| | - Cuiting Wang
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| | - Bei Li
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China
| | - Chunmei Jiang
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| | - Zhencang Sun
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China
| | - Zhiping Zhang
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| | - Fanjing Kong
- Institute of Mineral Resources, CAGS, MLR Key Laboratory of Saline Lake Resources and Environments, Beijing, 100037, China
| | - Hongxia Zhang
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China.
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China.
| |
Collapse
|
152
|
Lo S, Ho TD, Liu Y, Jiang M, Hsieh K, Chen K, Yu L, Lee M, Chen C, Huang T, Kojima M, Sakakibara H, Chen L, Yu S. Ectopic expression of specific GA2 oxidase mutants promotes yield and stress tolerance in rice. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:850-864. [PMID: 27998028 PMCID: PMC5466439 DOI: 10.1111/pbi.12681] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 11/21/2016] [Accepted: 11/25/2016] [Indexed: 05/02/2023]
Abstract
A major challenge of modern agricultural biotechnology is the optimization of plant architecture for enhanced productivity, stress tolerance and water use efficiency (WUE). To optimize plant height and tillering that directly link to grain yield in cereals and are known to be tightly regulated by gibberellins (GAs), we attenuated the endogenous levels of GAs in rice via its degradation. GA 2-oxidase (GA2ox) is a key enzyme that inactivates endogenous GAs and their precursors. We identified three conserved domains in a unique class of C20 GA2ox, GA2ox6, which is known to regulate the architecture and function of rice plants. We mutated nine specific amino acids in these conserved domains and observed a gradient of effects on plant height. Ectopic expression of some of these GA2ox6 mutants moderately lowered GA levels and reprogrammed transcriptional networks, leading to reduced plant height, more productive tillers, expanded root system, higher WUE and photosynthesis rate, and elevated abiotic and biotic stress tolerance in transgenic rice. Combinations of these beneficial traits conferred not only drought and disease tolerance but also increased grain yield by 10-30% in field trials. Our studies hold the promise of manipulating GA levels to substantially improve plant architecture, stress tolerance and grain yield in rice and possibly in other major crops.
Collapse
Affiliation(s)
- Shuen‐Fang Lo
- Institute of Molecular BiologyAcademia SinicaNankangTaipeiTaiwan, ROC
- Agricultural Biotechnology CenterNational Chung Hsing UniversityTaichungTaiwan, ROC
| | - Tuan‐Hua David Ho
- Agricultural Biotechnology CenterNational Chung Hsing UniversityTaichungTaiwan, ROC
- Institute of Plant and Microbial BiologyAcademia SinicaTaipeiTaiwan, ROC
- Department of Life SciencesNational Chung Hsing UniversityTaichungTaiwan, ROC
| | - Yi‐Lun Liu
- Institute of Molecular BiologyAcademia SinicaNankangTaipeiTaiwan, ROC
- Agricultural Biotechnology CenterNational Chung Hsing UniversityTaichungTaiwan, ROC
| | - Mirng‐Jier Jiang
- Institute of Molecular BiologyAcademia SinicaNankangTaipeiTaiwan, ROC
- Agricultural Biotechnology CenterNational Chung Hsing UniversityTaichungTaiwan, ROC
| | - Kun‐Ting Hsieh
- Institute of Molecular BiologyNational Chung Hsing UniversityTaichungTaiwan, ROC
| | - Ku‐Ting Chen
- Institute of Molecular BiologyAcademia SinicaNankangTaipeiTaiwan, ROC
| | - Lin‐Chih Yu
- Institute of Molecular BiologyAcademia SinicaNankangTaipeiTaiwan, ROC
| | - Miin‐Huey Lee
- Department of Plant PathologyNational Chung Hsing UniversityTaichungTaiwan, ROC
| | - Chi‐yu Chen
- Department of Plant PathologyNational Chung Hsing UniversityTaichungTaiwan, ROC
| | - Tzu‐Pi Huang
- Department of Plant PathologyNational Chung Hsing UniversityTaichungTaiwan, ROC
| | - Mikiko Kojima
- RIKEN Center for Sustainable Resource ScienceYokohamaKanagawaJapan
| | | | - Liang‐Jwu Chen
- Agricultural Biotechnology CenterNational Chung Hsing UniversityTaichungTaiwan, ROC
- Institute of Molecular BiologyNational Chung Hsing UniversityTaichungTaiwan, ROC
| | - Su‐May Yu
- Institute of Molecular BiologyAcademia SinicaNankangTaipeiTaiwan, ROC
- Agricultural Biotechnology CenterNational Chung Hsing UniversityTaichungTaiwan, ROC
- Department of Life SciencesNational Chung Hsing UniversityTaichungTaiwan, ROC
| |
Collapse
|
153
|
Ravid J, Spitzer-Rimon B, Takebayashi Y, Seo M, Cna'ani A, Aravena-Calvo J, Masci T, Farhi M, Vainstein A. GA as a regulatory link between the showy floral traits color and scent. THE NEW PHYTOLOGIST 2017; 215:411-422. [PMID: 28262954 DOI: 10.1111/nph.14504] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/31/2017] [Indexed: 06/06/2023]
Abstract
Emission of volatiles at advanced stages of flower development is a strategy used by plants to lure pollinators to the flower. We reveal that GA negatively regulates floral scent production in petunia. We used Agrobacterium-mediated transient expression of GA-20ox in petunia flowers and a virus-induced gene silencing approach to knock down DELLA expression, measured volatile emission, internal pool sizes and GA levels by GC-MS or LC-MS/MS, and analyzed transcript levels of scent-related phenylpropanoid-pathway genes. We show that GA has a negative effect on the concentrations of accumulated and emitted phenylpropanoid volatiles in petunia flowers; this effect is exerted through transcriptional/post-transcriptional downregulation of regulatory and biosynthetic scent-related genes. Both overexpression of GA20-ox, a GA-biosynthesis gene, and suppression of DELLA, a repressor of GA-signal transduction, corroborated GA's negative regulation of floral scent. We present a model in which GA-dependent timing of the sequential activation of different branches of the phenylpropanoid pathway during flower development may represent a link between the showy traits controlling pollinator attraction, namely color and scent.
Collapse
Affiliation(s)
- Jasmin Ravid
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, PO Box 12, Rehovot, Israel
| | - Ben Spitzer-Rimon
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, PO Box 12, Rehovot, Israel
| | - Yumiko Takebayashi
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Mitsunori Seo
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Alon Cna'ani
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, PO Box 12, Rehovot, Israel
| | - Javiera Aravena-Calvo
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, PO Box 12, Rehovot, Israel
| | - Tania Masci
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, PO Box 12, Rehovot, Israel
| | - Moran Farhi
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, PO Box 12, Rehovot, Israel
| | - Alexander Vainstein
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, PO Box 12, Rehovot, Israel
| |
Collapse
|
154
|
Wang L, Cao C, Zheng S, Zhang H, Liu P, Ge Q, Li J, Ren Z. Transcriptomic analysis of short-fruit 1 (sf1) reveals new insights into the variation of fruit-related traits in Cucumis sativus. Sci Rep 2017; 7:2950. [PMID: 28592854 PMCID: PMC5462832 DOI: 10.1038/s41598-017-02932-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 04/20/2017] [Indexed: 01/23/2023] Open
Abstract
Fruit size is an important quality trait in different market classes of Cucumis sativus L., an economically important vegetable cultivated worldwide, but the genetic and molecular mechanisms that control fruit size are largely unknown. In this study, we isolated a natural cucumber mutant, short fruit 1 (sf1), caused by a single recessive Mendelian factor, from the North China-type inbred line CNS2. In addition to significantly decreased fruit length, other fruit-related phenotypic variations were also observed in sf1 compared to the wild-type (WT) phenotype, indicating that sf1 might have pleiotropic effects. Microscopic imaging showed that fruit cell size in sf1 was much larger than that in WT, suggesting that the short fruit phenotype in sf1 is caused by decreased cell number. Fine mapping revealed that sf1 was localized to a 174.3 kb region on chromosome 6. Similarly, SNP association analysis of bulked segregant RNA-Seq data showed increased SNP frequency in the same region of chromosome 6. In addition, transcriptomic analysis revealed that sf1 might control fruit length through the fine-tuning of cytokinin and auxin signalling, gibberellin biosynthesis and signal transduction in cucumber fruits. Overall, our results provide important information for further study of fruit length and other fruit-related features in cucumber.
Collapse
Affiliation(s)
- Lina Wang
- State Key Laboratory of Crop Biology; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), Ministry of Agriculture; College of Horticulture Science and Engineering, Shandong Agricultural University, No.61 Daizong Road, Tai'an, Shandong, 271018, China
| | - Chenxing Cao
- State Key Laboratory of Crop Biology; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), Ministry of Agriculture; College of Horticulture Science and Engineering, Shandong Agricultural University, No.61 Daizong Road, Tai'an, Shandong, 271018, China
| | - Shuangshuang Zheng
- State Key Laboratory of Crop Biology; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), Ministry of Agriculture; College of Horticulture Science and Engineering, Shandong Agricultural University, No.61 Daizong Road, Tai'an, Shandong, 271018, China
| | - Haiyang Zhang
- State Key Laboratory of Crop Biology; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), Ministry of Agriculture; College of Horticulture Science and Engineering, Shandong Agricultural University, No.61 Daizong Road, Tai'an, Shandong, 271018, China
| | - Panjing Liu
- State Key Laboratory of Crop Biology; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), Ministry of Agriculture; College of Horticulture Science and Engineering, Shandong Agricultural University, No.61 Daizong Road, Tai'an, Shandong, 271018, China
| | - Qian Ge
- State Key Laboratory of Crop Biology; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), Ministry of Agriculture; College of Horticulture Science and Engineering, Shandong Agricultural University, No.61 Daizong Road, Tai'an, Shandong, 271018, China
| | - Jinrui Li
- State Key Laboratory of Crop Biology; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), Ministry of Agriculture; College of Horticulture Science and Engineering, Shandong Agricultural University, No.61 Daizong Road, Tai'an, Shandong, 271018, China
| | - Zhonghai Ren
- State Key Laboratory of Crop Biology; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), Ministry of Agriculture; College of Horticulture Science and Engineering, Shandong Agricultural University, No.61 Daizong Road, Tai'an, Shandong, 271018, China.
| |
Collapse
|
155
|
Acheampong AK, Zheng C, Halaly T, Giacomelli L, Takebayashi Y, Jikumaru Y, Kamiya Y, Lichter A, Or E. Abnormal Endogenous Repression of GA Signaling in a Seedless Table Grape Cultivar with High Berry Growth Response to GA Application. FRONTIERS IN PLANT SCIENCE 2017; 8:850. [PMID: 28596775 PMCID: PMC5442209 DOI: 10.3389/fpls.2017.00850] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 05/08/2017] [Indexed: 05/24/2023]
Abstract
Gibberellin (GA) application is routinely used in the table grape industry to increase berry size and cluster length. Although grapevine cultivars show a wide range of growth responsiveness to GA3 application, the reasons for these differences is unclear. To shed light on this issue, two commercial grapevine cultivars with contrasting berry response to GA were selected for comparative analysis, in which we tested if the differences in response: (1) is organ-specific or cultivar-related; (2) will be reflected in qualitative/quantitative differences in transcripts/proteins of central components of GA metabolism and signaling and levels of GA metabolites. Our results showed that in addition to the high response of its berries to GA, internodes and rachis of cv. Black finger (BF) presented a greater growth response compared to that of cv. Spring blush (SB). In agreement, the results exposed significant quantitative differences in GA signaling components in several organs of both cultivars. Exceptionally higher level of all three functional VvDELLA proteins was recorded in young BF organs, accompanied by elevated VvGID1 expression and lower VvSLY1b transcripts. Absence of seed traces, low endogenous GA quantities and lower expression of VvGA20ox4 and VvGA3ox3 were also recorded in berries of BF. Our results raise the hypothesis that, in young organs of BF, low expression of VvSLY1b may be responsible for the massive accumulation of VvDELLA proteins, which then leads to elevated VvGID1 levels. This integrated analysis suggests causal relationship between endogenous mechanisms leading to anomalous GA signaling repression in BF, manifested by high quantities of VvDELLA proteins, and greater growth response to GA application.
Collapse
Affiliation(s)
- Atiako K. Acheampong
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization, Volcani CenterBet Dagan, Israel
- Department of Horticulture, Faculty of Agriculture Environment and Food Sciences, The Hebrew University of JerusalemRehovot, Israel
| | - Chuanlin Zheng
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization, Volcani CenterBet Dagan, Israel
| | - Tamar Halaly
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization, Volcani CenterBet Dagan, Israel
| | - Lisa Giacomelli
- Research and Innovation Centre-Fondazione Edmund MachSan Michele all’Adige, Italy
| | | | | | | | - Amnon Lichter
- Institute of Postharvest and Food Sciences, Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, Volcani CenterBet Dagan, Israel
| | - Etti Or
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization, Volcani CenterBet Dagan, Israel
| |
Collapse
|
156
|
Li Y, Wang H, Li X, Liang G, Yu D. Two DELLA-interacting proteins bHLH48 and bHLH60 regulate flowering under long-day conditions in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2757-2767. [PMID: 28591805 PMCID: PMC5853475 DOI: 10.1093/jxb/erx143] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 04/13/2017] [Indexed: 05/07/2023]
Abstract
Gibberellin (GA) regulates many developmental transitions in the plant life cycle. Although great progress has been made, the GA signaling pathways have not been fully elucidated. Identifying and characterizing new targets of DELLA proteins is an effective approach to reveal the complicated GA signaling networks. In this study, two novel DELLA-interacting transcription factors, bHLH48 and bHLH60, were identified. Their overexpression caused plants to flower early under long-day conditions, whereas their functional repression resulted in the opposite result. The constitutive expression of bHLH48 and bHLH60 upregulated the transcription of the FLOWERING LOCUS T (FT) gene. Chromatin immunoprecipitation experiments confirmed that bHLH48 bound to the promoter of FT and that GA promoted the DNA-binding activity of bHLH48. Genetic analyses indicated that the early flowering phenotype of plants overexpressing bHLH48 and bHLH60 depended on FT and that the overexpression of bHLH48 and bHLH60 could rescue the late-flowering phenotypes of RGL1 overexpressing plants. Transient expression assays suggested that RGL1 inhibited the transcription activation ability of bHLH48 and bHLH60. Taken together, this study confirmed that bHLH48 and bHLH60 positively regulate GA-mediated flowering.
Collapse
Affiliation(s)
- Yang Li
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Houping Wang
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoli Li
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Kunming, Yunnan, China
| | - Gang Liang
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Kunming, Yunnan, China
- Correspondence: ;
| | - Diqiu Yu
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Kunming, Yunnan, China
- Correspondence: ;
| |
Collapse
|
157
|
Zhao B, Li H, Li J, Wang B, Dai C, Wang J, Liu K. Brassica napus DS-3, encoding a DELLA protein, negatively regulates stem elongation through gibberellin signaling pathway. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:727-741. [PMID: 28093630 DOI: 10.1007/s00122-016-2846-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 12/22/2016] [Indexed: 05/20/2023]
Abstract
Identification and characterization of a semi-dwarfing gene ds-3 encoding a mutant DELLA protein regulating plant height through gibberellin signaling pathway. Lodging is one of the most important factors causing severe yield loss in oilseed rape. Utilization of semi-dwarf varieties has been proved the most effective way to increase lodging resistance and yield in many crops. To develop semi-dwarf germplasm in oilseed rape, we identified a semi-dwarf mutant ds-3 which showed a reduced response to phytohormones gibberellins (GAs). Genetic analysis indicated the dwarfism was controlled by a single semi-dominant gene, ds-3. The DS-3 gene was mapped to a genomic region on chromosome C07, which is syntenic to the region of a previously identified semi-dwarf gene ds-1 (BnaA06.RGA). In this region, DS-3 (BnaC07.RGA) gene was identified to encode a DELLA protein that functions as a repressor in GA signaling pathway. A substitution of proline to leucine was identified in ds-3 in the conserved VHYNP motif, which is essential for GA-dependent interaction between gibberellin receptor GID1 and DELLA proteins. Segregation analysis in the F2 population derived from the cross between ds-1 and ds-3 demonstrated that BnaA06.RGA displayed a stronger effect on plant height than BnaC07.RGA, indicating that different RGA genes may play different roles in stem elongation. In addition to BnaA06.RGA and BnaC07.RGA, two more RGA genes (BnaA09.RGA and BnaC09.RGA) were identified in the Brassica napus (B. napus) genome. Reverse-transcription polymerase chain reaction (RT-PCR) and yeast two-hybrid (Y2H) assays suggest that both BnaA09.RGA and BnaC09.RGA are transcribed in leaves and stems and can mediate GA signaling in vivo. These genes represent potential targets for screening ideal semi-dwarfing alleles for oilseed rape breeding.
Collapse
Affiliation(s)
- Bo Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Haitao Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Juanjuan Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bo Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Cheng Dai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kede Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
158
|
Schayek H, Shani E, Weinstain R. Highlighting Gibberellins Accumulation Sites in Arabidopsis thaliana Root Using Fluorescently Labeled Gibberellins. Methods Mol Biol 2017; 1497:91-97. [PMID: 27864761 DOI: 10.1007/978-1-4939-6469-7_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The physical location of plant hormones is an important factor in maintaining their proper metabolism, perception, and mediated developmental responses. Thus, unveiling plant hormones dynamics at the molecule's level is essential for a comprehensive, detailed understanding of both their functions and the regulative mechanisms they are subjected to. Here, we describe the use of fluorescently labeled, bioactive gibberellins (GAs) to highlight the dynamic distribution and accumulation sites of bioactive GAs in Arabidopsis thaliana roots by confocal microscopy.
Collapse
Affiliation(s)
- Hilla Schayek
- Department of Molecular Biology and Ecology of Plants, Life Sciences Faculty, Tel-Aviv University, PO Box 39040, 6997801, Tel-Aviv, Israel
| | - Eilon Shani
- Department of Molecular Biology and Ecology of Plants, Life Sciences Faculty, Tel-Aviv University, PO Box 39040, 6997801, Tel-Aviv, Israel
| | - Roy Weinstain
- Department of Molecular Biology and Ecology of Plants, Life Sciences Faculty, Tel-Aviv University, PO Box 39040, 6997801, Tel-Aviv, Israel.
| |
Collapse
|
159
|
Jiang K, Otani M, Shimotakahara H, Yoon JM, Park SH, Miyaji T, Nakano T, Nakamura H, Nakajima M, Asami T. Substituted Phthalimide AC94377 Is a Selective Agonist of the Gibberellin Receptor GID1. PLANT PHYSIOLOGY 2017; 173:825-835. [PMID: 27899534 PMCID: PMC5210710 DOI: 10.1104/pp.16.00937] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/27/2016] [Indexed: 05/27/2023]
Abstract
Gibberellin (GA) is a major plant hormone that regulates plant growth and development and is widely used as a plant growth regulator in agricultural production. There is an increasing demand for function-limited GA mimics due to the limitations on the agronomical application of GA to crops, including GA's high cost of producing and its leading to the crops' lodging. AC94377, a substituted phthalimide, is a chemical that mimics the growth-regulating activity of GAs in various plants, despite its structural difference. Although AC94377 is widely studied in many weeds and crops, its mode of action as a GA mimic is largely unknown. In this study, we confirmed that AC94377 displays GA-like activities in Arabidopsis (Arabidopsis thaliana) and demonstrated that AC94377 binds to the Arabidopsis GIBBERELLIN INSENSITIVE DWARF1 (GID1) receptor (AtGID1), forms the AtGID1-AC94377-DELLA complex, and induces the degradation of DELLA protein. Our results also indicated that AC94377 is selective for a specific subtype among three AtGID1s and that the selectivity of AC94377 is attributable to a single residue at the entrance to the hydrophobic pocket of GID1. We conclude that AC94377 is a GID1 agonist with selectivity for a specific subtype of GID1, which could be further developed and used as a function-limited regulator of plant growth in both basic study and agriculture.
Collapse
Affiliation(s)
- Kai Jiang
- Department of Applied Biological Chemistry, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan (K.J., M.O., H.S., J.-M.Y., S.-H.P., H.N., M.N., T.A.)
- Gene Discovery Research Group, Center for Sustainable Resource Science, RIKEN, Wako, Saitama 351-0198, Japan (T.M., T.N.)
- Department of Biochemistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia (T.A.); and
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan (T.A.)
| | - Masato Otani
- Department of Applied Biological Chemistry, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan (K.J., M.O., H.S., J.-M.Y., S.-H.P., H.N., M.N., T.A.)
- Gene Discovery Research Group, Center for Sustainable Resource Science, RIKEN, Wako, Saitama 351-0198, Japan (T.M., T.N.)
- Department of Biochemistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia (T.A.); and
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan (T.A.)
| | - Hiroaki Shimotakahara
- Department of Applied Biological Chemistry, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan (K.J., M.O., H.S., J.-M.Y., S.-H.P., H.N., M.N., T.A.)
- Gene Discovery Research Group, Center for Sustainable Resource Science, RIKEN, Wako, Saitama 351-0198, Japan (T.M., T.N.)
- Department of Biochemistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia (T.A.); and
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan (T.A.)
| | - Jung-Min Yoon
- Department of Applied Biological Chemistry, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan (K.J., M.O., H.S., J.-M.Y., S.-H.P., H.N., M.N., T.A.)
- Gene Discovery Research Group, Center for Sustainable Resource Science, RIKEN, Wako, Saitama 351-0198, Japan (T.M., T.N.)
- Department of Biochemistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia (T.A.); and
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan (T.A.)
| | - Seung-Hyun Park
- Department of Applied Biological Chemistry, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan (K.J., M.O., H.S., J.-M.Y., S.-H.P., H.N., M.N., T.A.)
- Gene Discovery Research Group, Center for Sustainable Resource Science, RIKEN, Wako, Saitama 351-0198, Japan (T.M., T.N.)
- Department of Biochemistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia (T.A.); and
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan (T.A.)
| | - Tomoko Miyaji
- Department of Applied Biological Chemistry, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan (K.J., M.O., H.S., J.-M.Y., S.-H.P., H.N., M.N., T.A.)
- Gene Discovery Research Group, Center for Sustainable Resource Science, RIKEN, Wako, Saitama 351-0198, Japan (T.M., T.N.)
- Department of Biochemistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia (T.A.); and
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan (T.A.)
| | - Takeshi Nakano
- Department of Applied Biological Chemistry, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan (K.J., M.O., H.S., J.-M.Y., S.-H.P., H.N., M.N., T.A.)
- Gene Discovery Research Group, Center for Sustainable Resource Science, RIKEN, Wako, Saitama 351-0198, Japan (T.M., T.N.)
- Department of Biochemistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia (T.A.); and
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan (T.A.)
| | - Hidemitsu Nakamura
- Department of Applied Biological Chemistry, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan (K.J., M.O., H.S., J.-M.Y., S.-H.P., H.N., M.N., T.A.)
- Gene Discovery Research Group, Center for Sustainable Resource Science, RIKEN, Wako, Saitama 351-0198, Japan (T.M., T.N.)
- Department of Biochemistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia (T.A.); and
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan (T.A.)
| | - Masatoshi Nakajima
- Department of Applied Biological Chemistry, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan (K.J., M.O., H.S., J.-M.Y., S.-H.P., H.N., M.N., T.A.)
- Gene Discovery Research Group, Center for Sustainable Resource Science, RIKEN, Wako, Saitama 351-0198, Japan (T.M., T.N.)
- Department of Biochemistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia (T.A.); and
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan (T.A.)
| | - Tadao Asami
- Department of Applied Biological Chemistry, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan (K.J., M.O., H.S., J.-M.Y., S.-H.P., H.N., M.N., T.A.);
- Gene Discovery Research Group, Center for Sustainable Resource Science, RIKEN, Wako, Saitama 351-0198, Japan (T.M., T.N.);
- Department of Biochemistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia (T.A.); and
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan (T.A.)
| |
Collapse
|
160
|
Zhang Y, Zhao G, Li Y, Mo N, Zhang J, Liang Y. Transcriptomic Analysis Implies That GA Regulates Sex Expression via Ethylene-Dependent and Ethylene-Independent Pathways in Cucumber ( Cucumis sativus L.). FRONTIERS IN PLANT SCIENCE 2017; 8:10. [PMID: 28154572 PMCID: PMC5243814 DOI: 10.3389/fpls.2017.00010] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 01/03/2017] [Indexed: 05/20/2023]
Abstract
Sex differentiation of flower buds is an important developmental process that directly affects fruit yield of cucumber (Cucumis sativus L.). Plant hormones, such as gibberellins (GAs) and ethylene can promote development of male and female flowers, respectively, however, the regulatory mechanisms of GA-induced male flower formation and potential involvement of ethylene in this process still remain unknown. In this study, to unravel the genes and gene networks involved in GA-regulated cucumber sexual development, we performed high throughout RNA-Seq analyses that compared the transcriptomes of shoot tips between GA3 treated and untreated gynoecious cucumber plants. Results showed that GA3 application markedly induced male flowers but decreased ethylene production in shoot tips. Furthermore, the transcript levels of M (CsACS2) gene, ethylene receptor CsETR1 and some ethylene-responsive transcription factors were dramatically changed after GA3 treatment, suggesting a potential involvement of ethylene in GA-regulated sex expression of cucumber. Interestingly, GA3 down-regulated transcript of a C-class floral homeotic gene, CAG2, indicating that GA may also influence cucumber sex determination through an ethylene-independent process. These results suggest a novel model for hormone-mediated sex differentiation and provide a theoretical basis for further dissection of the regulatory mechanism of male flower formation in cucumber. Statement: We reveal that GA can regulate sex expression of cucumber via an ethylene-dependent manner, and the M (CsACS2), CsETR1, and ERFs are probably involved in this process. Moreover, CAG2, a C-class floral homeotic gene, may also participate in GA-modulated cucumber sex determination, but this pathway is ethylene-independent.
Collapse
Affiliation(s)
- Yan Zhang
- College of Horticulture, Northwest A&F UniversityYangling, China
- State Key Laboratory of Crop Stress Biology in Arid Region, Northwest A&F UniversityYangling, China
| | - Guiye Zhao
- College of Horticulture, Northwest A&F UniversityYangling, China
- State Key Laboratory of Crop Stress Biology in Arid Region, Northwest A&F UniversityYangling, China
| | - Yushun Li
- College of Horticulture, Northwest A&F UniversityYangling, China
- State Key Laboratory of Crop Stress Biology in Arid Region, Northwest A&F UniversityYangling, China
| | - Ning Mo
- College of Horticulture, Northwest A&F UniversityYangling, China
- State Key Laboratory of Crop Stress Biology in Arid Region, Northwest A&F UniversityYangling, China
| | - Jie Zhang
- College of Horticulture, Northwest A&F UniversityYangling, China
- State Key Laboratory of Crop Stress Biology in Arid Region, Northwest A&F UniversityYangling, China
| | - Yan Liang
- College of Horticulture, Northwest A&F UniversityYangling, China
- State Key Laboratory of Crop Stress Biology in Arid Region, Northwest A&F UniversityYangling, China
- *Correspondence: Yan Liang,
| |
Collapse
|
161
|
Regulation of Plant Cellular and Organismal Development by SUMO. SUMO REGULATION OF CELLULAR PROCESSES 2017; 963:227-247. [DOI: 10.1007/978-3-319-50044-7_14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
162
|
Liu B, De Storme N, Geelen D. Gibberellin Induces Diploid Pollen Formation by Interfering with Meiotic Cytokinesis. PLANT PHYSIOLOGY 2017; 173:338-353. [PMID: 27621423 PMCID: PMC5210705 DOI: 10.1104/pp.16.00480] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 09/05/2016] [Indexed: 05/06/2023]
Abstract
The plant hormone gibberellic acid (GA) controls many physiological processes, including cell differentiation, cell elongation, seed germination, and response to abiotic stress. In this study, we report that exogenous treatment of flowering Arabidopsis (Arabidopsis thaliana) plants with GA specifically affects the process of male meiotic cytokinesis leading to meiotic restitution and the production of diploid (2n) pollen grains. Similar defects in meiotic cell division and reproductive ploidy stability occur in Arabidopsis plants depleted of RGA and GAI, two members of the DELLA family that function as suppressor of GA signaling. Cytological analysis of the double rga-24 gai-t6 mutant revealed that defects in male meiotic cytokinesis are not caused by alterations in meiosis I (MI or meiosis II (MII) chromosome dynamics, but instead result from aberrations in the spatial organization of the phragmoplast-like radial microtubule arrays (RMAs) at the end of meiosis II. In line with a role for GA in the genetic regulation of the male reproductive system, we additionally show that DELLA downstream targets MYB33 and MYB65 are redundantly required for functional RMA biosynthesis and male meiotic cytokinesis. By analyzing the expression of pRGA::GFP-RGA in the wild-type Landsberg erecta background, we demonstrate that the GFP-RGA protein is specifically expressed in the anther cell layers surrounding the meiocytes and microspores, suggesting that appropriate GA signaling in the somatic anther tissue is critical for male meiotic cell wall formation and thus plays an important role in consolidating the male gametophytic ploidy consistency.
Collapse
Affiliation(s)
- Bing Liu
- Department of Plant Production, Faculty of Bioscience Engineering, University of Ghent, 9000 Ghent, Belgium
| | - Nico De Storme
- Department of Plant Production, Faculty of Bioscience Engineering, University of Ghent, 9000 Ghent, Belgium
| | - Danny Geelen
- Department of Plant Production, Faculty of Bioscience Engineering, University of Ghent, 9000 Ghent, Belgium
| |
Collapse
|
163
|
Nakayama H, Sinha NR, Kimura S. How Do Plants and Phytohormones Accomplish Heterophylly, Leaf Phenotypic Plasticity, in Response to Environmental Cues. FRONTIERS IN PLANT SCIENCE 2017; 8:1717. [PMID: 29046687 PMCID: PMC5632738 DOI: 10.3389/fpls.2017.01717] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 09/20/2017] [Indexed: 05/05/2023]
Abstract
Plant species are known to respond to variations in environmental conditions. Many plant species have the ability to alter their leaf morphology in response to such changes. This phenomenon is termed heterophylly and is widespread among land plants. In some cases, heterophylly is thought to be an adaptive mechanism that allows plants to optimally respond to environmental heterogeneity. Recently, many research studies have investigated the occurrence of heterophylly in a wide variety of plants. Several studies have suggested that heterophylly in plants is regulated by phytohormones. Herein, we reviewed the existing knowledge on the relationship and role of phytohormones, especially abscisic acid, ethylene, gibberellins, and auxins (IAA), in regulating heterophylly and attempted to elucidate the mechanisms that regulate heterophylly.
Collapse
Affiliation(s)
- Hokuto Nakayama
- Department of Plant Biology, University of California, Davis, Davis CA, United States
| | - Neelima R. Sinha
- Department of Plant Biology, University of California, Davis, Davis CA, United States
| | - Seisuke Kimura
- Department of Bioresource and Environmental Sciences, Kyoto Sangyo University, Kyoto, Japan
- Center for Ecological Evolutionary Developmental Biology, Kyoto Sangyo University, Kyoto, Japan
- *Correspondence: Seisuke Kimura,
| |
Collapse
|
164
|
Campanaro A, Battaglia R, Galbiati M, Sadanandom A, Tonelli C, Conti L. SUMO proteases OTS1 and 2 control filament elongation through a DELLA-dependent mechanism. PLANT REPRODUCTION 2016; 29:287-290. [PMID: 27761651 DOI: 10.1007/s00497-016-0292-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 10/13/2016] [Indexed: 05/12/2023]
Abstract
SUMOylation and anther growth. During fertilization, stamen elongation needs to be synchronized with pistil growth. The phytohormone gibberellic acid (GA) promotes stamen growth by stimulating the degradation of growth repressing DELLA proteins. DELLA accumulation is negatively regulated by GAs through the ubiquitin-proteasome system. In Arabidopsis thaliana, a proportion of DELLAs is also conjugated to the small ubiquitin-like modifier (SUMO) protein, which stabilizes DELLAs. Increased DELLA levels occur in the SUMO protease-deficient OVERLY TOLERANT TO SALT 1 and 2 (ots1 ots2) double mutants, especially under salt stress conditions. Here, we show that OTS genes play a redundant role in the control of plant fertility under non-stress conditions. Mutants of ots1 ots2 display reduced fertility compared with the wild type, owing to reduced stamen elongation. Stamen growth, pollination rate and seed production are restored in ots1 ots2 della mutants, thus linking OTS1 function to the control of DELLA activity in the context of filament elongation. OTS levels appear to be developmentally regulated as OTS1/2 transcript upregulation during stamen development overlaps with GAs accumulations. We propose that OTS genes enable synchronization of stamen development by facilitating DELLA degradation at a specific developmental stage.
Collapse
Affiliation(s)
- Alberto Campanaro
- Department of Biosciences, Università degli studi di Milano, Milan, Italy
- Biological and Biomedical Sciences, Durham University, Durham, DH1 3LE, UK
| | - Raffaella Battaglia
- Department of Biosciences, Università degli studi di Milano, Milan, Italy
- CREA - Genomics Research Centre, Fiorenzuola d'Arda, PC, Italy
| | - Massimo Galbiati
- Department of Biosciences, Università degli studi di Milano, Milan, Italy
| | - Ari Sadanandom
- Biological and Biomedical Sciences, Durham University, Durham, DH1 3LE, UK
| | - Chiara Tonelli
- Department of Biosciences, Università degli studi di Milano, Milan, Italy
| | - Lucio Conti
- Department of Biosciences, Università degli studi di Milano, Milan, Italy.
| |
Collapse
|
165
|
Luo X, Zheng J, Huang R, Huang Y, Wang H, Jiang L, Fang X. Phytohormones signaling and crosstalk regulating leaf angle in rice. PLANT CELL REPORTS 2016; 35:2423-2433. [PMID: 27623811 DOI: 10.1007/s00299-016-2052-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 08/31/2016] [Indexed: 05/14/2023]
Abstract
Leaf angle is an important agronomic trait in rice (Oryza sativa L.). It affects both the efficiency of sunlight capture and nitrogen reservoirs. The erect leaf phenotype is suited for high-density planting and thus increasing crop yields. Many genes regulate leaf angle by affecting leaf structure, such as the lamina joint, mechanical tissues, and the midrib. Signaling of brassinosteroids (BR), auxin (IAA), and gibberellins (GA) plays important roles in the regulation of lamina joint bending in rice. In addition, the biosynthesis and signaling of BR are known to have dominant effects on leaf angle development. In this review, we summarize the factors and genes associated with the development of leaf angle in rice, outline the regulatory mechanisms based on the signaling of BR, IAA, and GA, and discuss the contribution of crosstalk between BR and IAA or GA in the formation of leaf angle. Promising lines of research in the transgenic engineering of rice leaf angle to increase grain yield are proposed.
Collapse
Affiliation(s)
- Xiangyu Luo
- School of Life Sciences, Xiamen University, Xiamen, 361005, China
| | - Jingsheng Zheng
- School of Life Sciences, Xiamen University, Xiamen, 361005, China
| | - Rongyu Huang
- School of Life Sciences, Xiamen University, Xiamen, 361005, China
| | - Yumin Huang
- School of Life Sciences, Xiamen University, Xiamen, 361005, China
| | - Houcong Wang
- School of Life Sciences, Xiamen University, Xiamen, 361005, China
| | - Liangrong Jiang
- School of Life Sciences, Xiamen University, Xiamen, 361005, China.
| | - Xuanjun Fang
- Institute of Life Sciences, Jiyang College of Zhejiang, A&F University, Zhuji, 311800, China.
- Hainan Institute of Tropical Agricultural Resources, Sanya, 572025, China.
| |
Collapse
|
166
|
Gomez MD, Ventimilla D, Sacristan R, Perez-Amador MA. Gibberellins Regulate Ovule Integument Development by Interfering with the Transcription Factor ATS. PLANT PHYSIOLOGY 2016; 172:2403-2415. [PMID: 27794102 PMCID: PMC5129715 DOI: 10.1104/pp.16.01231] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 10/25/2016] [Indexed: 05/19/2023]
Abstract
Gibberellins (GAs) are plant hormones that regulate most plant life cycle aspects, including flowering and fruit development. Here, we demonstrate the implication of GAs in ovule development. DELLA proteins, negative GA response regulators, act as positive factors for ovule integument development in a mechanism that involves transcription factor ABERRANT TESTA SHAPE (ATS). The seeds of the della global mutant, a complete loss-of-function of DELLA, and the ats-1 mutant are remarkably similar, with a round shape, a disorganized testa, and viviparism. These defects are the result of an alteration in integuments that fail to fully develop and are shorter than in wild-type plants. ats-1 also shows some GA-related phenotypes, for example, higher germination rates and early flowering. In fact, ats-1 has elevated GA levels due to the activation of GA biosynthesis genes, which indicates that ATS inhibits GA biosynthesis. Moreover, DELLAs and ATS proteins interact, which suggests the formation of a transcriptional complex that regulates the expression of genes involved in integument growth. Therefore, the repression of GA biosynthesis by ATS would result in the stabilization of DELLAs to ensure correct ATS-DELLA complex formation. The requirement of both activities to coordinate proper ovule development strongly argues that the ATS-DELLA complex acts as a key molecular factor. This work provides the first evidence for a role of GAs in ovule and seed development.
Collapse
Affiliation(s)
- María Dolores Gomez
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain
| | - Daniel Ventimilla
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain
| | - Raquel Sacristan
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain
| | - Miguel A Perez-Amador
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain
| |
Collapse
|
167
|
Bellieny-Rabelo D, Alves Gamosa de Oliveira E, da Silva Ribeiro E, Pessoa Costa E, Elenir Amâncio Oliveira A, Motta Venancio T. Transcriptome analysis uncovers key regulatory and metabolic aspects of soybean embryonic axes during germination. Sci Rep 2016; 6:36009. [PMID: 27824062 PMCID: PMC5099898 DOI: 10.1038/srep36009] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/10/2016] [Indexed: 11/09/2022] Open
Abstract
Soybean (Glycine max) is a major legume crop worldwide, providing a critical source of protein and oil. The release of the soybean genome fuelled several transcriptome projects comprising multiple developmental stages and environmental conditions. Nevertheless, the global transcriptional patterns of embryonic axes during germination remain unknown. Here we report the analysis of ~1.58 billion RNA-Seq reads from soybean embryonic axes at five germination stages. Our results support the early activation of processes that are critical for germination, such as glycolysis, Krebs cycle and cell wall remodelling. Strikingly, only 3 hours after imbibition there is a preferential up-regulation of protein kinases and transcription factors, particularly from the LOB domain family, implying that transcriptional and post-transcriptional regulation play major roles early after imbibition. Lipid mobilization and glyoxylate pathways are also transcriptionally active in the embryonic axes, indicating that the local catabolism of oil reserves in the embryonic axes contributes to energy production during germination. We also present evidence supporting abscisic acid inactivation and the up-regulation of gibberellin, ethylene and brassinosteroid pathways. Further, there is a remarkable differential activation of paralogous genes in these hormone signalling pathways. Taken together, our results provide insights on the regulation and biochemistry of soybean germination.
Collapse
Affiliation(s)
- Daniel Bellieny-Rabelo
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Eduardo Alves Gamosa de Oliveira
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Elane da Silva Ribeiro
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
- Núcleo em Ecologia e Desenvolvimento Sócio-Ambiental de Macaé (NUPEM), Campus UFRJ Macaé, Macaé, Brazil
| | - Evenilton Pessoa Costa
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
- Unidade de Experimentação Animal, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Antônia Elenir Amâncio Oliveira
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Thiago Motta Venancio
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| |
Collapse
|
168
|
Buskila Y, Sela N, Teper-Bamnolker P, Tal I, Shani E, Weinstain R, Gaba V, Tam Y, Lers A, Eshel D. Stronger sink demand for metabolites supports dominance of the apical bud in etiolated growth. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5495-5508. [PMID: 27580624 DOI: 10.1093/jxb/erw315] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The potato tuber is a swollen underground stem that can sprout under dark conditions. Sprouting initiates in the tuber apical bud (AP), while lateral buds (LTs) are repressed by apical dominance (AD). Under conditions of lost AD, removal of tuber LTs showed that they partially inhibit AP growth only at the AD stage. Detached buds were inhibited by exogenous application of naphthaleneacetic acid (NAA), whereas 6-benzyladenine (6-BA) and gibberellic acid (GA3) induced bud burst and elongation, respectively. NAA, applied after 6-BA or GA3, nullified the latters' growth-stimulating effect in both the AP and LTs. GA3 applied to the fifth-position LT was transported mainly to the tuber's AP. GA3 treatment also resulted in increased indole-3-acetic acid (IAA) concentration and cis-zeatin O-glucoside in the AP. In a tuber tissue strip that included two or three buds connected by the peripheral vascular system, treatment of a LT with GA3 affected only the AP side of the strip, suggesting that the AP is the strongest sink for GA3, which induces its etiolated elongation. Dipping etiolated sprouts in labeled GA3 showed specific accumulation of the signal in the AP. Transcriptome analysis of GA3's effect showed that genes related to the cell cycle, cell proliferation, and hormone transport are up-regulated in the AP as compared to the LT. Sink demand for metabolites is suggested to support AD in etiolated stem growth by inducing differential gene expression in the AP.
Collapse
Affiliation(s)
- Yossi Buskila
- Department of Postharvest Science of Fresh Produce, The Volcani Center, ARO, Rishon LeZion, Israel The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot, Israel
| | - Noa Sela
- Department of Plant Pathology and Weed Science, The Volcani Center, ARO, Rishon LeZion, Israel
| | - Paula Teper-Bamnolker
- Department of Postharvest Science of Fresh Produce, The Volcani Center, ARO, Rishon LeZion, Israel
| | - Iris Tal
- The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Eilon Shani
- The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Roy Weinstain
- The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Victor Gaba
- Department of Plant Pathology and Weed Science, The Volcani Center, ARO, Rishon LeZion, Israel
| | - Yehudit Tam
- Department of Plant Pathology and Weed Science, The Volcani Center, ARO, Rishon LeZion, Israel
| | - Amnon Lers
- Department of Postharvest Science of Fresh Produce, The Volcani Center, ARO, Rishon LeZion, Israel
| | - Dani Eshel
- Department of Postharvest Science of Fresh Produce, The Volcani Center, ARO, Rishon LeZion, Israel
| |
Collapse
|
169
|
Simm S, Scharf KD, Jegadeesan S, Chiusano ML, Firon N, Schleiff E. Survey of Genes Involved in Biosynthesis, Transport, and Signaling of Phytohormones with Focus on Solanum lycopersicum. Bioinform Biol Insights 2016; 10:185-207. [PMID: 27695302 PMCID: PMC5038615 DOI: 10.4137/bbi.s38425] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/15/2016] [Accepted: 08/16/2016] [Indexed: 12/19/2022] Open
Abstract
Phytohormones control the development and growth of plants, as well as their response to biotic and abiotic stress. The seven most well-studied phytohormone classes defined today are as follows: auxins, ethylene, cytokinin, abscisic acid, jasmonic acid, gibberellins, and brassinosteroids. The basic principle of hormone regulation is conserved in all plants, but recent results suggest adaptations of synthesis, transport, or signaling pathways to the architecture and growth environment of different plant species. Thus, we aimed to define the extent to which information from the model plant Arabidopsis thaliana is transferable to other plants such as Solanum lycopersicum. We extracted the co-orthologues of genes coding for major pathway enzymes in A. thaliana from the translated genomes of 12 species from the clade Viridiplantae. Based on predicted domain architecture and localization of the identified proteins from all 13 species, we inspected the conservation of phytohormone pathways. The comparison was complemented by expression analysis of (co-) orthologous genes in S. lycopersicum. Altogether, this information allowed the assignment of putative functional equivalents between A. thaliana and S. lycopersicum but also pointed to some variations between the pathways in eudicots, monocots, mosses, and green algae. These results provide first insights into the conservation of the various phytohormone pathways between the model system A. thaliana and crop plants such as tomato. We conclude that orthologue prediction in combination with analysis of functional domain architecture and intracellular localization and expression studies are sufficient tools to transfer information from model plants to other plant species. Our results support the notion that hormone synthesis, transport, and response for most part of the pathways are conserved, and species-specific variations can be found.
Collapse
Affiliation(s)
- Stefan Simm
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany.; Cluster of Excellence Macromolecular Complexes, Institute for Molecular Cell Biology of Plants, Frankfurt am Main, Germany
| | - Klaus-Dieter Scharf
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany.; Cluster of Excellence Macromolecular Complexes, Institute for Molecular Cell Biology of Plants, Frankfurt am Main, Germany
| | - Sridharan Jegadeesan
- Department of Vegetable Research, Institute for Plant Sciences, Agricultural Research Organization, Volcani Centre, Bet Dagan, Israel.; The Robert H. Smith Faculty of Agriculture, Food and Environment, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Maria Luisa Chiusano
- Department of Soil, Plants Environmental and Animal Production Sciences, Laboratory of Computer Aided Biosciences, University of Studies of Naples Federico II, Portici, Naples, Italy
| | - Nurit Firon
- Department of Vegetable Research, Institute for Plant Sciences, Agricultural Research Organization, Volcani Centre, Bet Dagan, Israel
| | - Enrico Schleiff
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany.; Cluster of Excellence Macromolecular Complexes, Institute for Molecular Cell Biology of Plants, Frankfurt am Main, Germany
| |
Collapse
|
170
|
Ma X, Xu Q, Meyer WA, Huang B. Hormone regulation of rhizome development in tall fescue (Festuca arundinacea) associated with proteomic changes controlling respiratory and amino acid metabolism. ANNALS OF BOTANY 2016; 118:481-94. [PMID: 27443301 PMCID: PMC4998981 DOI: 10.1093/aob/mcw120] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/17/2016] [Accepted: 04/18/2016] [Indexed: 05/20/2023]
Abstract
BACKGROUND AND AIMS Rhizomes are underground stems with meristematic tissues capable of generating shoots and roots. However, mechanisms controlling rhizome formation and growth are yet to be completely understood. The objectives of this study were to investigate whether rhizome development could be regulated by cytokinins (CKs) and gibberellic acids (GAs), and determine underlying mechanisms of regulation of rhizome formation and growth of tall fescue (Festuca arundinacea) by a CK or GA through proteomic and transcript analysis. METHODS A rhizomatous genotype of tall fescue ('BR') plants were treated with 6-benzylaminopurine (BAP, a synthetic cytokinin) or GA3 in hydroponic culture in growth chambers. Furthermore, comparative proteomic analysis of two-dimensional electrophoresis and mass spectrometry were performed to investigate proteins and associated metabolic pathways imparting increased rhizome number by BAP and rhizome elongation by GA3 KEY RESULTS: BAP stimulated rhizome formation while GA3 promoted rhizome elongation. Proteomic analysis identified 76 differentially expressed proteins (DEPs) due to BAP treatment and 37 DEPs due to GA3 treatment. Cytokinin-related genes and cell division-related genes were upregulated in the rhizome node by BAP and gibberellin-related and cell growth-related genes in the rhizome by GA3 CONCLUSIONS: Most of the BAP- or GA-responsive DEPs were involved in respiratory metabolism and amino acid metabolism. Transcription analysis demonstrated that genes involved in hormone metabolism, signalling pathways, cell division and cell-wall loosening were upregulated by BAP or GA3 The CK and GA promoted rhizome formation and growth, respectively, by activating metabolic pathways that supply energy and amino acids to support cell division and expansion during rhizome initiation and elongation in tall fescue.
Collapse
Affiliation(s)
- Xiqing Ma
- College of Agro-grassland Science Nanjing Agricultural University, Nanjing 210095, PR China Department of Plant Biology and Pathology, Rutgers, the State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Qian Xu
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083, PR China
| | - William A Meyer
- Department of Plant Biology and Pathology, Rutgers, the State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Bingru Huang
- Department of Plant Biology and Pathology, Rutgers, the State University of New Jersey, New Brunswick, NJ 08901, USA
| |
Collapse
|
171
|
Chaiwanon J, Wang W, Zhu JY, Oh E, Wang ZY. Information Integration and Communication in Plant Growth Regulation. Cell 2016; 164:1257-1268. [PMID: 26967291 DOI: 10.1016/j.cell.2016.01.044] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Indexed: 12/20/2022]
Abstract
Plants are equipped with the capacity to respond to a large number of diverse signals, both internal ones and those emanating from the environment, that are critical to their survival and adaption as sessile organisms. These signals need to be integrated through highly structured intracellular networks to ensure coherent cellular responses, and in addition, spatiotemporal actions of hormones and peptides both orchestrate local cell differentiation and coordinate growth and physiology over long distances. Further, signal interactions and signaling outputs vary significantly with developmental context. This review discusses our current understanding of the integrated intracellular and intercellular signaling networks that control plant growth.
Collapse
Affiliation(s)
- Juthamas Chaiwanon
- Basic Forestry and Proteomics Center, Haixia Institute of Science and Technology (HIST), Fujian Agriculture and Forestry University (FAFU), Fuzhou 350002, China; Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA; Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Wenfei Wang
- Basic Forestry and Proteomics Center, Haixia Institute of Science and Technology (HIST), Fujian Agriculture and Forestry University (FAFU), Fuzhou 350002, China; Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Jia-Ying Zhu
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Eunkyoo Oh
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Zhi-Yong Wang
- Basic Forestry and Proteomics Center, Haixia Institute of Science and Technology (HIST), Fujian Agriculture and Forestry University (FAFU), Fuzhou 350002, China; Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA.
| |
Collapse
|
172
|
Lou X, Li X, Li A, Pu M, Shoaib M, Liu D, Sun J, Zhang A, Yang W. Molecular Characterization of Three GIBBERELLIN-INSENSITIVE DWARF2 Homologous Genes in Common Wheat. PLoS One 2016; 11:e0157642. [PMID: 27327160 PMCID: PMC4915692 DOI: 10.1371/journal.pone.0157642] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/02/2016] [Indexed: 01/01/2023] Open
Abstract
F-box protein is a core component of the ubiquitin E3 ligase SCF complex and is involved in the gibberellin (GA) signaling pathway. To elucidate the molecular mechanism of GA signaling in wheat, three homologous GIBBERELLIN-INSENSITIVE DWARF2 genes, TaGID2s, were isolated from the Chinese Spring wheat variety. A subcellular localization assay in onion epidermal cells and Arabidopsis mesophyll protoplasts showed that TaGID2s are localized in the nuclei. The expression profiles using quantitative real-time polymerase chain reaction showed that TaGID2s were downregulated by GA3. The interaction between TaGID2s and TSK1 (homologous to ASK1) in yeast indicated that TaGID2s might function as a component of an E3 ubiquitin-ligase SCF complex. Yeast two-hybrid assays showed that a GA-independent interaction occurred between three TaGID2s and RHT-A1a, RHT-B1a, and RHT-D1a. Furthermore, TaGID2s interact with most RHT-1s, such as RHT-B1h, RHT-B1i, RHT-D1e, RHT-D1f, etc., but cannot interact with RHT-B1b or RHT-B1e, which have a stop codon in the DELLA motif, resulting in a lack of a GRAS domain. In addition, RHT-B1k has a frame-shift mutation in the VHIID motif leading to loss of the LHRII motif in the GRAS domain and RHT-D1h has a missense mutation in the LHRII motif. These results indicate that TaGID2s, novel positive regulators of the GA response, recognize RHT-1s in the LHRII motif resulting in poly-ubiquitination and degradation of the DELLA protein.
Collapse
Affiliation(s)
- XueYuan Lou
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- Graduate University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Li
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - AiXia Li
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- Graduate University of Chinese Academy of Sciences, Beijing, 100049, China
| | - MingYu Pu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- Graduate University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Muhammad Shoaib
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - DongCheng Liu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - JiaZhu Sun
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - AiMin Zhang
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- The Collaborative Innovation Center for Grain crops in Henan, Henan Agricultural University, Zhengzhou, 450002, China
| | - WenLong Yang
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
173
|
Xiu Y, Iqbal A, Zhu C, Wu G, Chang Y, Li N, Cao Y, Zhang W, Zeng H, Chen S, Wang H. Improvement and transcriptome analysis of root architecture by overexpression of Fraxinus pennsylvanica DREB2A transcription factor in Robinia pseudoacacia L. 'Idaho'. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:1456-69. [PMID: 26806173 PMCID: PMC5066641 DOI: 10.1111/pbi.12509] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 10/27/2015] [Accepted: 11/06/2015] [Indexed: 05/04/2023]
Abstract
Transcription factors play a key role to enable plants to cope with abiotic stresses. DREB2 regulates the expression of several stress-inducible genes and constitutes major hubs in the water stress signalling webs. We cloned and characterized a novel gene encoding the FpDREB2A transcription factor from Fraxinus pennsylvanica, and a yeast activity assay confirmed its DRE binding and transcription activation. Overexpression of FpDREB2A in R. pseudoacacia showed enhanced resistance to drought stress. The transgenic plant survival rate was significantly higher than that of WT in soil drying and re-watering treatments. Transgenic lines showed a dramatic change in root architecture, and horizontal and vertical roots were found in transgenic plants compared to WT. The vertical roots penetrated in the field soil to more than 60 cm deep, while horizontal roots expanded within the top 20-30 cm of the soil. A physiological test demonstrated that chlorophyll contents were more gradually reduced and that soluble sugars and proline levels elevated more sharply but malondialdehyde level stayed the same (P < 0.05). Plant hormone levels of abscisic acid and IAA were higher than that of WT, while gibberellins and zeatin riboside were found to be lower. The root transcriptomes were sequenced and annotated into 2011 differential expression genes (DEGs). The DEGs were categorized in 149 pathways and were found to be involved in plant hormone signalling, transcription factors, stimulus responses, phenylalanine, carbohydrate and other metabolic pathways. The modified pathways in plant hormone signalling are thought to be the main cause of greater horizontal and vertical root development, in particular.
Collapse
Affiliation(s)
- Yu Xiu
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, China
| | - Arshad Iqbal
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, China
| | - Chen Zhu
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, China
| | - Guodong Wu
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, China
| | - Yanping Chang
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, China
| | - Na Li
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, China
| | - Yu Cao
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, China
| | | | - Huiming Zeng
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, China
| | - Shouyi Chen
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Huafang Wang
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, China
| |
Collapse
|
174
|
Dave A, Vaistij FE, Gilday AD, Penfield SD, Graham IA. Regulation of Arabidopsis thaliana seed dormancy and germination by 12-oxo-phytodienoic acid. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2277-84. [PMID: 26873978 PMCID: PMC4809285 DOI: 10.1093/jxb/erw028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
We previously demonstrated that the oxylipin 12-oxo-phytodienoic acid (OPDA) acts along with abscisic acid to regulate seed germination in Arabidopsis thaliana, but the mechanistic details of this synergistic interaction remain to be elucidated. Here, we show that OPDA acts through the germination inhibition effects of abscisic acid, the abscisic acid-sensing ABI5 protein, and the gibberellin-sensing RGL2 DELLA protein. We further demonstrate that OPDA also acts through another dormancy-promoting factor, MOTHER-OF-FT-AND-TFL1 (MFT). Both abscisic acid and MFT positively feed back into the OPDA pathway by promoting its accumulation. These results confirm the central role of OPDA in regulating seed dormancy and germination in A. thaliana and underline the complexity of interactions between OPDA and other dormancy-promoting factors such as abscisic acid, RGL2, and MFT.
Collapse
Affiliation(s)
- Anuja Dave
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Fabián E Vaistij
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Alison D Gilday
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Steven D Penfield
- Department of Crop Genetics, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Ian A Graham
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, United Kingdom
| |
Collapse
|
175
|
Yamaguchi I, Nakajima M, Park SH. Trails to the gibberellin receptor, GIBBERELLIN INSENSITIVE DWARF1. Biosci Biotechnol Biochem 2016; 80:1029-36. [PMID: 26927225 DOI: 10.1080/09168451.2016.1148575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The researches on the identification of gibberellin receptor are reviewed from the early attempts in 1960s to the identification of GIBBERELLIN INSENSITIVE DWARF1 (GID1) as the receptor in 2005. Unpublished data of the gibberellin-binding protein in the seedlings of adzuki bean (Vigna angularis) are also included, suggesting that the active principle of the gibberellin-binding protein was a GID1 homolog.
Collapse
Affiliation(s)
- Isomaro Yamaguchi
- a Department of Applied Biological Chemistry , The University of Tokyo , Tokyo , Japan
| | - Masatoshi Nakajima
- a Department of Applied Biological Chemistry , The University of Tokyo , Tokyo , Japan
| | - Seung-Hyun Park
- a Department of Applied Biological Chemistry , The University of Tokyo , Tokyo , Japan
| |
Collapse
|
176
|
Domingos S, Fino J, Cardoso V, Sánchez C, Ramalho JC, Larcher R, Paulo OS, Oliveira CM, Goulao LF. Shared and divergent pathways for flower abscission are triggered by gibberellic acid and carbon starvation in seedless Vitis vinifera L. BMC PLANT BIOLOGY 2016; 16:38. [PMID: 26832927 PMCID: PMC4736245 DOI: 10.1186/s12870-016-0722-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 01/21/2016] [Indexed: 05/03/2023]
Abstract
BACKGROUND Abscission is a highly coordinated developmental process by which plants control vegetative and reproductive organs load. Aiming at get new insights on flower abscission regulation, changes in the global transcriptome, metabolome and physiology were analyzed in 'Thompson Seedless' grapevine (Vitis vinifera L.) inflorescences, using gibberellic acid (GAc) spraying and shading as abscission stimuli, applied at bloom. RESULTS Natural flower drop rates increased from 63.1% in non-treated vines to 83% and 99% in response to GAc and shade treatments, respectively. Both treatments had a broad effect on inflorescences metabolism. Specific impacts from shade included photosynthesis inhibition, associated nutritional stress, carbon/nitrogen imbalance and cell division repression, whereas GAc spraying induced energetic metabolism simultaneously with induction of nucleotide biosynthesis and carbon metabolism, therefore, disclosing alternative mechanisms to regulate abscission. Regarding secondary metabolism, changes in flavonoid metabolism were the most represented metabolic pathways in the samples collected following GAc treatment while phenylpropanoid and stilbenoid related pathways were predominantly affected in the inflorescences by the shade treatment. However, both GAc and shade treated inflorescences revealed also shared pathways, that involved the regulation of putrescine catabolism, the repression of gibberellin biosynthesis, the induction of auxin biosynthesis and the activation of ethylene signaling pathways and antioxidant mechanisms, although often the quantitative changes occurred on specific transcripts and metabolites of the pathways. CONCLUSIONS Globally, the results suggest that chemical and environmental cues induced contrasting effects on inflorescence metabolism, triggering flower abscission by different mechanisms and pinpointing the participation of novel abscission regulators. Grapevine showed to be considered a valid model to study molecular pathways of flower abscission competence acquisition, noticeably responding to independent stimuli.
Collapse
Affiliation(s)
- Sara Domingos
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa (ULisboa), Lisbon, Portugal.
- Instituto de Investigação Científica Tropical, I.P. (IICT), Lisbon, Portugal.
| | - Joana Fino
- Instituto de Investigação Científica Tropical, I.P. (IICT), Lisbon, Portugal.
- Computational Biology and Population Genomics Group, Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal.
| | - Vânia Cardoso
- Instituto de Investigação Científica Tropical, I.P. (IICT), Lisbon, Portugal.
| | - Claudia Sánchez
- Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Oeiras, Portugal.
| | - José C Ramalho
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa (ULisboa), Lisbon, Portugal.
- Instituto de Investigação Científica Tropical, I.P. (IICT), Lisbon, Portugal.
- GeoBioTec, Faculdade de Ciências e Tecnolgia (FCT), Universidade Nova de Lisboa (UNL), Caparica, Portugal.
| | - Roberto Larcher
- FEM-IASMA, Fondazione Edmund Mach, Istituto Agrario di San Michele all'Adige, San Michele all'Adige, TN, Italy.
| | - Octávio S Paulo
- Computational Biology and Population Genomics Group, Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal.
| | - Cristina M Oliveira
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa (ULisboa), Lisbon, Portugal.
| | - Luis F Goulao
- Instituto de Investigação Científica Tropical, I.P. (IICT), Lisbon, Portugal.
- Present address: Colégio Food, Farming and Forestry, Universidade de Lisboa (ULisboa), Lisbon, Portugal.
| |
Collapse
|
177
|
Floss DS, Lévesque-Tremblay V, Park HJ, Harrison MJ. DELLA proteins regulate expression of a subset of AM symbiosis-induced genes in Medicago truncatula. PLANT SIGNALING & BEHAVIOR 2016; 11:e1162369. [PMID: 26984507 PMCID: PMC4883957 DOI: 10.1080/15592324.2016.1162369] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 02/26/2016] [Accepted: 03/01/2016] [Indexed: 05/26/2023]
Abstract
The majority of the vascular flowering plants form symbiotic associations with fungi from the phylum Glomeromycota through which both partners gain access to nutrients, either mineral nutrients in the case of the plant, or carbon, in the case of the fungus. (1) The association develops in the roots and requires substantial remodeling of the root cortical cells where branched fungal hyphae, called arbuscules, are housed in a new membrane-bound apoplastic compartment. (2) Nutrient exchange between the symbionts occurs over this interface and its development and maintenance is critical for symbiosis. Previously, we showed that DELLA proteins, which are well known as repressors of gibberellic acid signaling, also regulate development of AM symbiosis and are necessary to enable arbuscule development. (3) Furthermore, constitutive overexpression of a dominant DELLA protein (della1-Δ18) is sufficient to induce transcripts of several AM symbiosis-induced genes, even in the absence of the fungal symbiont. (4) Here we further extend this approach and identify AM symbiosis genes that respond transcriptionally to constitutive expression of a dominant DELLA protein and also genes that do respond to this treatment. Additionally, we demonstrate that DELLAs interact with REQUIRED FOR ARBUSCULE DEVELOPMENT 1 (RAD1) which further extends our knowledge of GRAS factor complexes that have the potential to regulate gene expression during AM symbiosis.
Collapse
Affiliation(s)
- Daniela S Floss
- a Boyce Thompson Institute for Plant Research , Tower Road, Ithaca , NY , USA
| | | | - Hee-Jin Park
- a Boyce Thompson Institute for Plant Research , Tower Road, Ithaca , NY , USA
| | - Maria J Harrison
- a Boyce Thompson Institute for Plant Research , Tower Road, Ithaca , NY , USA
| |
Collapse
|
178
|
Park H, Kim WY, Pardo J, Yun DJ. Molecular Interactions Between Flowering Time and Abiotic Stress Pathways. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 327:371-412. [DOI: 10.1016/bs.ircmb.2016.07.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
179
|
Wang GL, Que F, Xu ZS, Wang F, Xiong AS. Exogenous gibberellin altered morphology, anatomic and transcriptional regulatory networks of hormones in carrot root and shoot. BMC PLANT BIOLOGY 2015; 15:290. [PMID: 26667233 PMCID: PMC4678581 DOI: 10.1186/s12870-015-0679-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 12/07/2015] [Indexed: 05/23/2023]
Abstract
BACKGROUND Gibberellins stimulate cell elongation and expansion during plant growth and development. Carrot is a root plant with great value and undergoes obvious alteration in organ size over the period of plant growth. However, the roles of gibberellins in carrot remain unclear. RESULTS To investigate the effects of gibberelliins on the growth of carrot, we treated carrot plants with gibberellic acid 3 (GA3) or paclobutrazol (a gibberellin inhibitor). The results found that GA3 dramatically reduced the root growth but stimulated the shoot growth of carrot. It also significantly promoted xylem development in the tuberous root of carrot. In addition, transcript levels of genes related to gibberellins, auxin, cytokinins, abscisic acid and brassinolides were altered in response to increased or reduced gibberellins. CONCLUSIONS The inhibited tuberous root growth but enhanced shoot growth in plants treated with GA3 can be principally attributed to the changes in the xylem development of carrot roots. Negative feedback regulation mechanism of gibberellin biosynthesis also occurred in response to altered gibberellin accumulation. Gibberellins may interact with other hormones to regulate carrot plant growth through crosstalk mechanisms. This study provided novel insights into the functions of gibberellins in the growth and development of carrot.
Collapse
Affiliation(s)
- Guang-Long Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Feng Que
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Zhi-Sheng Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Feng Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
180
|
Regulatory Proteolysis in Arabidopsis-Pathogen Interactions. Int J Mol Sci 2015; 16:23177-94. [PMID: 26404238 PMCID: PMC4632692 DOI: 10.3390/ijms161023177] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 09/07/2015] [Accepted: 09/15/2015] [Indexed: 11/16/2022] Open
Abstract
Approximately two and a half percent of protein coding genes in Arabidopsis encode enzymes with known or putative proteolytic activity. Proteases possess not only common housekeeping functions by recycling nonfunctional proteins. By irreversibly cleaving other proteins, they regulate crucial developmental processes and control responses to environmental changes. Regulatory proteolysis is also indispensable in interactions between plants and their microbial pathogens. Proteolytic cleavage is simultaneously used both by plant cells, to recognize and inactivate invading pathogens, and by microbes, to overcome the immune system of the plant and successfully colonize host cells. In this review, we present available results on the group of proteases in the model plant Arabidopsis thaliana whose functions in microbial pathogenesis were confirmed. Pathogen-derived proteolytic factors are also discussed when they are involved in the cleavage of host metabolites. Considering the wealth of review papers available in the field of the ubiquitin-26S proteasome system results on the ubiquitin cascade are not presented. Arabidopsis and its pathogens are conferred with abundant sets of proteases. This review compiles a list of those that are apparently involved in an interaction between the plant and its pathogens, also presenting their molecular partners when available.
Collapse
|
181
|
OuYang F, Mao JF, Wang J, Zhang S, Li Y. Transcriptome Analysis Reveals that Red and Blue Light Regulate Growth and Phytohormone Metabolism in Norway Spruce [Picea abies (L.) Karst]. PLoS One 2015; 10:e0127896. [PMID: 26237749 PMCID: PMC4523189 DOI: 10.1371/journal.pone.0127896] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 04/20/2015] [Indexed: 12/22/2022] Open
Abstract
The mechanisms by which different light spectra regulate plant shoot elongation vary, and phytohormones respond differently to such spectrum-associated regulatory effects. Light supplementation can effectively control seedling growth in Norway spruce. However, knowledge of the effective spectrum for promoting growth and phytohormone metabolism in this species is lacking. In this study, 3-year-old Norway spruce clones were illuminated for 12 h after sunset under blue or red light-emitting diode (LED) light for 90 d, and stem increments and other growth traits were determined. Endogenous hormone levels and transcriptome differences in the current needles were assessed to identify genes related to the red and blue light regulatory responses. The results showed that the stem increment and gibberellin (GA) levels of the seedlings illuminated by red light were 8.6% and 29.0% higher, respectively, than those of the seedlings illuminated by blue light. The indoleacetic acid (IAA) level of the seedlings illuminated by red light was 54.6% lower than that of the seedlings illuminated by blue light, and there were no significant differences in abscisic acid (ABA) or zeatin riboside [ZR] between the two groups of seedlings. The transcriptome results revealed 58,736,166 and 60,555,192 clean reads for the blue-light- and red-light-illuminated samples, respectively. Illumina sequencing revealed 21,923 unigenes, and 2744 (approximately 93.8%) out of 2926 differentially expressed genes (DEGs) were found to be upregulated under blue light. The main KEGG classifications of the DEGs were metabolic pathway (29%), biosynthesis of secondary metabolites (20.49%) and hormone signal transduction (8.39%). With regard to hormone signal transduction, AUXIN-RESISTANT1 (AUX1), AUX/IAA genes, auxin-inducible genes, and early auxin-responsive genes [(auxin response factor (ARF) and small auxin-up RNA (SAUR)] were all upregulated under blue light compared with red light, which might have yielded the higher IAA level. DELLA and phytochrome-interacting factor 3 (PIF3), involved in negative GA signaling, were also upregulated under blue light, which may be related to the lower GA level. Light quality also affects endogenous hormones by influencing secondary metabolism. Blue light promoted phenylpropanoid biosynthesis, phenylalanine metabolism, flavonoid biosynthesis and flavone and flavonol biosynthesis, accompanied by upregulation of most of the genes in their pathways. In conclusion, red light may promote stem growth by regulating biosynthesis of GAs, and blue light may promote flavonoid, lignin, phenylpropanoid and some hormones (such as jasmonic acid) which were related to plant defense in Norway spruce, which might reduce the primary metabolites available for plant growth.
Collapse
Affiliation(s)
- Fangqun OuYang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy Forestry, Beijing, 100091, PR China
- National Engineering laboratory for Forest Tree Breeding, Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plant of Ministry of Education, College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, PR China
| | - Jian-Feng Mao
- National Engineering laboratory for Forest Tree Breeding, Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plant of Ministry of Education, College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, PR China
| | - Junhui Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy Forestry, Beijing, 100091, PR China
| | - Shougong Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy Forestry, Beijing, 100091, PR China
| | - Yue Li
- National Engineering laboratory for Forest Tree Breeding, Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plant of Ministry of Education, College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, PR China
| |
Collapse
|
182
|
Ljung K, Nemhauser JL, Perata P. New mechanistic links between sugar and hormone signalling networks. CURRENT OPINION IN PLANT BIOLOGY 2015; 25:130-7. [PMID: 26037392 DOI: 10.1016/j.pbi.2015.05.022] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 05/09/2015] [Accepted: 05/18/2015] [Indexed: 05/20/2023]
Abstract
Plant growth and development must be coordinated with metabolism, notably with the efficiency of photosynthesis and the uptake of nutrients. This coordination requires local connections between hormonal response and metabolic state, as well as long-distance connections between shoot and root tissues. Recently, several molecular mechanisms have been proposed to explain the integration of sugar signalling with hormone pathways. In this work, DELLA and PIF proteins have emerged as hubs in sugar-hormone cross-regulation networks.
Collapse
Affiliation(s)
- Karin Ljung
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, SLU, SE-901 83 Umeå, Sweden
| | | | | |
Collapse
|
183
|
E3 SUMO ligase AtSIZ1 positively regulates SLY1-mediated GA signalling and plant development. Biochem J 2015; 469:299-314. [PMID: 26008766 DOI: 10.1042/bj20141302] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 05/26/2015] [Indexed: 11/17/2022]
Abstract
Gibberellins affect various plant development processes including germination, cell division and elongation, and flowering. A large number of studies have been carried out to address the molecular mechanisms that mediate gibberellin signalling effects on plant growth. However, such studies have been limited to DELLA protein degradation; the regulatory mechanisms controlling how the stability and function of SLEEPY1 (SLY1), a protein that interacts with target DELLA proteins as components of the Skp, Cullin, F-box (SCF)(SLY1) complex, are modulated at the post-translational level have not been addressed. In the present study, we show that the E3 SUMO (small ubiquitin-related modifier) ligase AtSIZ1 regulates gibberellic acid signalling in Arabidopsis species by sumoylating SLY1. SLY1 was less abundant in siz1-2 mutants than in wild-type plants, but the DELLA protein repressor of ga1-3 (RGA) was more abundant in siz1-2 mutants than in wild-type plants. SLY1 also accumulated to a high level in the SUMO protease mutant esd4. Transgenic sly1-13 mutants over-expressing SLY1 were phenotypically similar to wild-type plants; however, sly1-13 plants over-expressing a mutated mSLY1 protein (K122R, a mutation at the sumoylation site) retained the mutant dwarfing phenotype. Over-expression of SLY1 in sly1-13 mutants resulted in a return of RGA levels to wild-type levels, but RGA accumulated to high levels in mutants over-expressing mSLY1. RGA was clearly detected in Arabidopsis co-expressing AtSIZ1 and mSLY1, but not in plants co-expressing AtSIZ1 and SLY1. In addition, sumoylated SLY1 interacted with RGA and SLY1 sumoylation was significantly increased by GA. Taken together, our results indicate that, in Arabidopsis, AtSIZ1 positively controls GA signalling through SLY1 sumoylation.
Collapse
|
184
|
Li J, Yu C, Wu H, Luo Z, Ouyang B, Cui L, Zhang J, Ye Z. Knockdown of a JmjC domain-containing gene JMJ524 confers altered gibberellin responses by transcriptional regulation of GRAS protein lacking the DELLA domain genes in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1413-26. [PMID: 25680796 PMCID: PMC4339600 DOI: 10.1093/jxb/eru493] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Plants integrate responses to independent hormonal and environmental signals to survive adversity. In particular, the phytohormone gibberellin (GA) regulates a variety of developmental processes and stress responses. In this study, the Jumonji-C (JmjC) domain-containing gene JMJ524 was characterized in tomato. JMJ524 responded to circadian rhythms and was upregulated by GA treatment. Knockdown of JMJ524 by RNAi caused a GA-insensitive dwarf phenotype with shrunken leaves and shortened internodes. However, in these transgenic plants, higher levels of endogenous GAs were detected. A genome-wide gene expression analysis by RNA-seq indicated that the expression levels of two DELLA-like genes, SlGLD1 ('GRAS protein Lacking the DELLA domain') and SlGLD2, were increased in JMJ524-RNAi transgenic plants. Nevertheless, only the overexpression of SlGLD1 in tomato resulted in a GA-insensitive dwarf phenotype, suggesting that SlGLD1 acts as a repressor of GA signalling. This study proposes that JMJ524 is required for stem elongation by altering GA responses, at least partially by regulating SlGLD1.
Collapse
Affiliation(s)
- Jinhua Li
- Key Laboratory of Horticultural Plant Biology (MOE), Huazhong Agricultural University, Wuhan 430070, China Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education; College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, P. R. China
| | - Chuying Yu
- Key Laboratory of Horticultural Plant Biology (MOE), Huazhong Agricultural University, Wuhan 430070, China
| | - Hua Wu
- Key Laboratory of Horticultural Plant Biology (MOE), Huazhong Agricultural University, Wuhan 430070, China
| | - Zhidan Luo
- Key Laboratory of Horticultural Plant Biology (MOE), Huazhong Agricultural University, Wuhan 430070, China
| | - Bo Ouyang
- Key Laboratory of Horticultural Plant Biology (MOE), Huazhong Agricultural University, Wuhan 430070, China
| | - Long Cui
- Key Laboratory of Horticultural Plant Biology (MOE), Huazhong Agricultural University, Wuhan 430070, China
| | - Junhong Zhang
- Key Laboratory of Horticultural Plant Biology (MOE), Huazhong Agricultural University, Wuhan 430070, China
| | - Zhibiao Ye
- Key Laboratory of Horticultural Plant Biology (MOE), Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
185
|
Saito H, Oikawa T, Hamamoto S, Ishimaru Y, Kanamori-Sato M, Sasaki-Sekimoto Y, Utsumi T, Chen J, Kanno Y, Masuda S, Kamiya Y, Seo M, Uozumi N, Ueda M, Ohta H. The jasmonate-responsive GTR1 transporter is required for gibberellin-mediated stamen development in Arabidopsis. Nat Commun 2015; 6:6095. [PMID: 25648767 PMCID: PMC4347201 DOI: 10.1038/ncomms7095] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 12/14/2014] [Indexed: 12/20/2022] Open
Abstract
Plant hormones are transported across cell membranes during various physiological events. Recent identification of abscisic acid and strigolactone transporters suggests that transport of various plant hormones across membranes does not occur by simple diffusion but requires transporter proteins that are strictly regulated during development. Here, we report that a major glucosinolate transporter, GTR1/NPF2.10, is multifunctional and may be involved in hormone transport in Arabidopsis thaliana. When heterologously expressed in oocytes, GTR1 transports jasmonoyl-isoleucine and gibberellin in addition to glucosinolates. gtr1 mutants are severely impaired in filament elongation and anther dehiscence resulting in reduced fertility, but these phenotypes can be rescued by gibberellin treatment. These results suggest that GTR1 may be a multifunctional transporter for the structurally distinct compounds glucosinolates, jasmonoyl-isoleucine and gibberellin, and may positively regulate stamen development by mediating gibberellin supply. GTR1 is known to transport glucosinolates in Arabidopsis. Here, Saito et al. show that GTR1 also transports the plant hormones jasmonate and gibberellin when heterologously expressed in Xenopus oocytes, and that gtr1 mutant plants show a gibberellin-related fertility phenotype.
Collapse
Affiliation(s)
- Hikaru Saito
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B65 Nagatsuta-cho Midori-ku, Yokohama 226-8501, Japan
| | - Takaya Oikawa
- Graduate School of Science, Tohoku University, 6-3, Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-0845, Japan
| | - Shin Hamamoto
- Graduate School of Engineering, Tohoku University, 6-6-07, Aobayama, Aoba-ku, Sendai 980-8579, Japan
| | - Yasuhiro Ishimaru
- Graduate School of Science, Tohoku University, 6-3, Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-0845, Japan
| | - Miyu Kanamori-Sato
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B65 Nagatsuta-cho Midori-ku, Yokohama 226-8501, Japan
| | - Yuko Sasaki-Sekimoto
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Tomoya Utsumi
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B65 Nagatsuta-cho Midori-ku, Yokohama 226-8501, Japan
| | - Jing Chen
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B65 Nagatsuta-cho Midori-ku, Yokohama 226-8501, Japan
| | - Yuri Kanno
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho Tsurumi-ku, Yokohama 230-0045, Japan
| | - Shinji Masuda
- 1] Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan [2] Center for Biological Resources and Informatics, Tokyo Institute of Technology, 4259-B65 Nagatsuta-cho Midori-ku, Yokohama 226-8501, Japan
| | - Yuji Kamiya
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho Tsurumi-ku, Yokohama 230-0045, Japan
| | - Mitsunori Seo
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho Tsurumi-ku, Yokohama 230-0045, Japan
| | - Nobuyuki Uozumi
- Graduate School of Engineering, Tohoku University, 6-6-07, Aobayama, Aoba-ku, Sendai 980-8579, Japan
| | - Minoru Ueda
- Graduate School of Science, Tohoku University, 6-3, Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-0845, Japan
| | - Hiroyuki Ohta
- 1] Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B65 Nagatsuta-cho Midori-ku, Yokohama 226-8501, Japan [2] Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| |
Collapse
|
186
|
Xu M, Lu Y, Yang H, He J, Hu Z, Hu X, Luan M, Zhang L, Fan Y, Wang L. ZmGRF, a GA regulatory factor from maize, promotes flowering and plant growth in Arabidopsis. PLANT MOLECULAR BIOLOGY 2015; 87:157-67. [PMID: 25477078 DOI: 10.1007/s11103-014-0267-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 11/13/2014] [Indexed: 05/26/2023]
Abstract
Transcription factors that act as positive regulators of gibberellin (GA) biosynthetic genes in plants are not well understood. A nuclear-localized basic leucine zipper transcription factor, ZmGRF, was isolated from maize. The core DNA sequence motif recognized for binding by ZmGRF was CCANNTGGC. ZmGRF overexpression in transgenic Arabidopsis plants promoted flowering, stem elongation, and cell expansion. Chromatin immunoprecipitation assays revealed that ZmGRF bound directly to the cis-element CCANNTGGC in the promoter of the Arabidopsis ent-kaurene oxidase (AtKO1) gene and promoted AtKO1 expression. GA4 content increased by 372-567% in transgenic Arabidopsis plants overexpressing ZmGRF compared to wild-type control plants. The GIBBERELLIN-INSENSITIVE DWARF1 gene, which encodes a GA receptor, was also upregulated and the growth-repressing DELLA protein gene GA INSENSITIVE was downregulated. Our results showed ZmGRF functioned through the GA-signaling pathway.
Collapse
Affiliation(s)
- Miaoyun Xu
- Biotechnology Research Institute, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
187
|
Wang GL, Xiong F, Que F, Xu ZS, Wang F, Xiong AS. Morphological characteristics, anatomical structure, and gene expression: novel insights into gibberellin biosynthesis and perception during carrot growth and development. HORTICULTURE RESEARCH 2015; 2:15028. [PMID: 26504574 PMCID: PMC4595985 DOI: 10.1038/hortres.2015.28] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 05/23/2015] [Accepted: 05/24/2015] [Indexed: 05/08/2023]
Abstract
Gibberellins (GAs) are considered potentially important regulators of cell elongation and expansion in plants. Carrot undergoes significant alteration in organ size during its growth and development. However, the molecular mechanisms underlying gibberellin accumulation and perception during carrot growth and development remain unclear. In this study, five stages of carrot growth and development were investigated using morphological and anatomical structural techniques. Gibberellin levels in leaf, petiole, and taproot tissues were also investigated for all five stages. Gibberellin levels in the roots initially increased and then decreased, but these levels were lower than those in the petioles and leaves. Genes involved in gibberellin biosynthesis and signaling were identified from the carrotDB, and their expression was analyzed. All of the genes were evidently responsive to carrot growth and development, and some of them showed tissue-specific expression. The results suggested that gibberellin level may play a vital role in carrot elongation and expansion. The relative transcription levels of gibberellin pathway-related genes may be the main cause of the different bioactive GAs levels, thus exerting influences on gibberellin perception and signals. Carrot growth and development may be regulated by modification of the genes involved in gibberellin biosynthesis, catabolism, and perception.
Collapse
Affiliation(s)
- Guang-Long Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Fei Xiong
- Key Laboratories of Crop Genetics and Physiology of the Jiangsu Province and Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Feng Que
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhi-Sheng Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- ()
| |
Collapse
|
188
|
Ravensdale M, Rocheleau H, Wang L, Nasmith C, Ouellet T, Subramaniam R. Components of priming-induced resistance to Fusarium head blight in wheat revealed by two distinct mutants of Fusarium graminearum. MOLECULAR PLANT PATHOLOGY 2014; 15:948-56. [PMID: 24751103 PMCID: PMC6638912 DOI: 10.1111/mpp.12145] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Two mutants (tri6Δ and noxABΔ) of the fungal pathogen Fusarium graminearum were assessed for their ability to prime immune responses in wheat (cv. Roblin) against challenge with pathogenic F. graminearum. Priming treatments generated Fusarium head blight (FHB)-resistant wheat phenotypes and reduced the accumulation of fungal mycotoxins in infected tissues. Microarray analysis identified 260 transcripts that were differentially expressed during the priming period. Expression changes were observed in genes associated with immune surveillance systems, signalling cascades, antimicrobial compound production, oxidative burst, secondary metabolism, and detoxification and transport. Specifically, genes related to jasmonate, gibberellin and ethylene biosynthesis exhibited differential expression during priming. In addition, the induction of the phenylpropanoid pathways that lead to flavonoid, coumarin and hydroxycinnamic acid amide accumulation was also observed. This study highlights the utility of nonpathogenic mutants to both elicit and delineate stages of defence responses in wheat.
Collapse
Affiliation(s)
- Michael Ravensdale
- Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada, K1A 0C6
| | | | | | | | | | | |
Collapse
|
189
|
Chai L, Li Y, Chen S, Perl A, Zhao F, Ma H. RNA sequencing reveals high resolution expression change of major plant hormone pathway genes after young seedless grape berries treated with gibberellin. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 229:215-224. [PMID: 25443848 DOI: 10.1016/j.plantsci.2014.09.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 09/15/2014] [Accepted: 09/21/2014] [Indexed: 05/19/2023]
Abstract
Seedless varieties are of particular importance to the table-grape and raisin industries. Gibberellin (GA) application is widely used in the early stages of seedless berry development to increase berry size and economic value. However, the underlying mechanism of GA induction of berry enlargement is not well understood. Here, RNA-sequencing analysis of 'Centennial Seedless' (Vitis vinifera L.) berries treated with GA3 12 days after flowering is reported. Pair-wise comparison of GA3-treated and control samples detected 165, 444, 463 genes with an over two-fold change in expression 1, 3, and 7 days after GA3 treatment, respectively. The number of differentially expressed genes increased with time after GA3 treatment, and the differential expression was dominated by downregulation. Significantly modulated expression included genes encoding synthesis and catabolism to manage plant hormone homeostasis, hormone transporters, receptors and key components in signaling pathways; exogenous GA3 induced multipoint cross talk with auxin, cytokinin, brassinosteroid, ABA and ethylene. The temporal gene-expression patterns of cell-wall-modification enzymes, cytoskeleton and membrane components and transporters revealed a pivotal role for cell-wall-relaxation genes in GA3-induced berry enlargement. Our results provide the first sequential transcriptomic atlas of exogenous GA3-induced berry enlargement and reveal the complexity of GA3's effect on berry sizing.
Collapse
Affiliation(s)
- Lijuan Chai
- College of Agriculture and Biotechnology, China Agricultural University, Beijing 100193, China.
| | - Yanmei Li
- College of Agriculture and Biotechnology, China Agricultural University, Beijing 100193, China.
| | - Shangwu Chen
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Avihai Perl
- Department of Fruit Tree Breeding and Molecular Genetics, Agricultural Research Organization, The Volcani Center, Bet-Dagan 50250, Israel.
| | - Fengxia Zhao
- Tobacco Institute, Henan Academy of Agricultural Sciences, Xuchang 461000, China.
| | - Huiqin Ma
- College of Agriculture and Biotechnology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
190
|
Tan L, Rong W, Luo H, Chen Y, He C. The Xanthomonas campestris effector protein XopDXcc8004 triggers plant disease tolerance by targeting DELLA proteins. THE NEW PHYTOLOGIST 2014; 204:595-608. [PMID: 25040905 DOI: 10.1111/nph.12918] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 05/29/2014] [Indexed: 05/09/2023]
Abstract
Plants protect themselves from the harmful effects of pathogens by resistance and tolerance. Disease resistance, which eliminates pathogens, can be modulated by bacterial type III effectors. Little is known about whether disease tolerance, which sustains host fitness with a given pathogen burden, is regulated by effectors. Here, we examined the effects of the Xanthomonas effector protein XopDXcc8004 on plant disease defenses by constructing knockout and complemented Xanthomonas strains, and performing inoculation studies in radish (Raphanus sativus L. var. radiculus XiaoJinZhong) and Arabidopsis plants. XopDXcc8004 suppresses disease symptoms without changing bacterial titers in infected leaves. In Arabidopsis, XopDXcc8004 delays the hormone gibberellin (GA)-mediated degradation of RGA (repressor of ga1-3), one of five DELLA proteins that repress GA signaling and promote plant tolerance under biotic and abiotic stresses. The ERF-associated amphiphilic repression (EAR) motif-containing region of XopDXcc8004 interacts with the DELLA domain of RGA and might interfere with the GA-induced binding of GID1, a GA receptor, to RGA. The EAR motif was found to be present in a number of plant transcriptional regulators. Thus, our data suggest that bacterial pathogens might have evolved effectors, which probably mimic host components, to initiate disease tolerance and enhance their survival.
Collapse
Affiliation(s)
- Leitao Tan
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- Hainan Key Laboratory of Sustainable Utilization of Tropical Bioresources, Hainan University, Haikou, 570228, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Wei Rong
- Hainan Key Laboratory of Sustainable Utilization of Tropical Bioresources, Hainan University, Haikou, 570228, China
| | - Hongli Luo
- Hainan Key Laboratory of Sustainable Utilization of Tropical Bioresources, Hainan University, Haikou, 570228, China
| | - Yinhua Chen
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- Hainan Key Laboratory of Sustainable Utilization of Tropical Bioresources, Hainan University, Haikou, 570228, China
| | - Chaozu He
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- Hainan Key Laboratory of Sustainable Utilization of Tropical Bioresources, Hainan University, Haikou, 570228, China
| |
Collapse
|
191
|
Marín-de la Rosa N, Sotillo B, Miskolczi P, Gibbs DJ, Vicente J, Carbonero P, Oñate-Sánchez L, Holdsworth MJ, Bhalerao R, Alabadí D, Blázquez MA. Large-scale identification of gibberellin-related transcription factors defines group VII ETHYLENE RESPONSE FACTORS as functional DELLA partners. PLANT PHYSIOLOGY 2014; 166:1022-32. [PMID: 25118255 PMCID: PMC4213073 DOI: 10.1104/pp.114.244723] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 08/06/2014] [Indexed: 05/17/2023]
Abstract
DELLA proteins are the master negative regulators in gibberellin (GA) signaling acting in the nucleus as transcriptional regulators. The current view of DELLA action indicates that their activity relies on the physical interaction with transcription factors (TFs). Therefore, the identification of TFs through which DELLAs regulate GA responses is key to understanding these responses from a mechanistic point of view. Here, we have determined the TF interactome of the Arabidopsis (Arabidopsis thaliana) DELLA protein GIBBERELLIN INSENSITIVE and screened a collection of conditional TF overexpressors in search of those that alter GA sensitivity. As a result, we have found RELATED TO APETALA2.3, an ethylene-induced TF belonging to the group VII ETHYLENE RESPONSE FACTOR of the APETALA2/ethylene responsive element binding protein superfamily, as a DELLA interactor with physiological relevance in the context of apical hook development. The combination of transactivation assays and chromatin immunoprecipitation indicates that the interaction with GIBBERELLIN INSENSITIVE impairs the activity of RELATED TO APETALA2.3 on the target promoters. This mechanism represents a unique node in the cross regulation between the GA and ethylene signaling pathways controlling differential growth during apical hook development.
Collapse
Affiliation(s)
- Nora Marín-de la Rosa
- Instituto de Biología Molecular y Celular de Plantas, 46022 Valencia, Spain (N.M.-d.l.R., B.S., D.A., M.A.B.);Department of Forest Genetics and Plant Physiology, Umeå Plant Science Center, Swedish University of Agricultural Sciences, 90187 Umea, Sweden (P.M., R.B.);Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, United Kingdom (D.J.G., J.V., M.J.H.);Centro de Biotecnología y Genómica de Plantas, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Spain (P.C., L.O.-S.); andCollege of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia (R.B.)
| | - Berta Sotillo
- Instituto de Biología Molecular y Celular de Plantas, 46022 Valencia, Spain (N.M.-d.l.R., B.S., D.A., M.A.B.);Department of Forest Genetics and Plant Physiology, Umeå Plant Science Center, Swedish University of Agricultural Sciences, 90187 Umea, Sweden (P.M., R.B.);Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, United Kingdom (D.J.G., J.V., M.J.H.);Centro de Biotecnología y Genómica de Plantas, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Spain (P.C., L.O.-S.); andCollege of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia (R.B.)
| | - Pal Miskolczi
- Instituto de Biología Molecular y Celular de Plantas, 46022 Valencia, Spain (N.M.-d.l.R., B.S., D.A., M.A.B.);Department of Forest Genetics and Plant Physiology, Umeå Plant Science Center, Swedish University of Agricultural Sciences, 90187 Umea, Sweden (P.M., R.B.);Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, United Kingdom (D.J.G., J.V., M.J.H.);Centro de Biotecnología y Genómica de Plantas, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Spain (P.C., L.O.-S.); andCollege of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia (R.B.)
| | - Daniel J Gibbs
- Instituto de Biología Molecular y Celular de Plantas, 46022 Valencia, Spain (N.M.-d.l.R., B.S., D.A., M.A.B.);Department of Forest Genetics and Plant Physiology, Umeå Plant Science Center, Swedish University of Agricultural Sciences, 90187 Umea, Sweden (P.M., R.B.);Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, United Kingdom (D.J.G., J.V., M.J.H.);Centro de Biotecnología y Genómica de Plantas, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Spain (P.C., L.O.-S.); andCollege of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia (R.B.)
| | - Jorge Vicente
- Instituto de Biología Molecular y Celular de Plantas, 46022 Valencia, Spain (N.M.-d.l.R., B.S., D.A., M.A.B.);Department of Forest Genetics and Plant Physiology, Umeå Plant Science Center, Swedish University of Agricultural Sciences, 90187 Umea, Sweden (P.M., R.B.);Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, United Kingdom (D.J.G., J.V., M.J.H.);Centro de Biotecnología y Genómica de Plantas, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Spain (P.C., L.O.-S.); andCollege of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia (R.B.)
| | - Pilar Carbonero
- Instituto de Biología Molecular y Celular de Plantas, 46022 Valencia, Spain (N.M.-d.l.R., B.S., D.A., M.A.B.);Department of Forest Genetics and Plant Physiology, Umeå Plant Science Center, Swedish University of Agricultural Sciences, 90187 Umea, Sweden (P.M., R.B.);Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, United Kingdom (D.J.G., J.V., M.J.H.);Centro de Biotecnología y Genómica de Plantas, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Spain (P.C., L.O.-S.); andCollege of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia (R.B.)
| | - Luis Oñate-Sánchez
- Instituto de Biología Molecular y Celular de Plantas, 46022 Valencia, Spain (N.M.-d.l.R., B.S., D.A., M.A.B.);Department of Forest Genetics and Plant Physiology, Umeå Plant Science Center, Swedish University of Agricultural Sciences, 90187 Umea, Sweden (P.M., R.B.);Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, United Kingdom (D.J.G., J.V., M.J.H.);Centro de Biotecnología y Genómica de Plantas, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Spain (P.C., L.O.-S.); andCollege of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia (R.B.)
| | - Michael J Holdsworth
- Instituto de Biología Molecular y Celular de Plantas, 46022 Valencia, Spain (N.M.-d.l.R., B.S., D.A., M.A.B.);Department of Forest Genetics and Plant Physiology, Umeå Plant Science Center, Swedish University of Agricultural Sciences, 90187 Umea, Sweden (P.M., R.B.);Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, United Kingdom (D.J.G., J.V., M.J.H.);Centro de Biotecnología y Genómica de Plantas, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Spain (P.C., L.O.-S.); andCollege of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia (R.B.)
| | - Rishikesh Bhalerao
- Instituto de Biología Molecular y Celular de Plantas, 46022 Valencia, Spain (N.M.-d.l.R., B.S., D.A., M.A.B.);Department of Forest Genetics and Plant Physiology, Umeå Plant Science Center, Swedish University of Agricultural Sciences, 90187 Umea, Sweden (P.M., R.B.);Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, United Kingdom (D.J.G., J.V., M.J.H.);Centro de Biotecnología y Genómica de Plantas, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Spain (P.C., L.O.-S.); andCollege of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia (R.B.)
| | - David Alabadí
- Instituto de Biología Molecular y Celular de Plantas, 46022 Valencia, Spain (N.M.-d.l.R., B.S., D.A., M.A.B.);Department of Forest Genetics and Plant Physiology, Umeå Plant Science Center, Swedish University of Agricultural Sciences, 90187 Umea, Sweden (P.M., R.B.);Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, United Kingdom (D.J.G., J.V., M.J.H.);Centro de Biotecnología y Genómica de Plantas, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Spain (P.C., L.O.-S.); andCollege of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia (R.B.)
| | - Miguel A Blázquez
- Instituto de Biología Molecular y Celular de Plantas, 46022 Valencia, Spain (N.M.-d.l.R., B.S., D.A., M.A.B.);Department of Forest Genetics and Plant Physiology, Umeå Plant Science Center, Swedish University of Agricultural Sciences, 90187 Umea, Sweden (P.M., R.B.);Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, United Kingdom (D.J.G., J.V., M.J.H.);Centro de Biotecnología y Genómica de Plantas, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Spain (P.C., L.O.-S.); andCollege of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia (R.B.)
| |
Collapse
|
192
|
Fukazawa J, Teramura H, Murakoshi S, Nasuno K, Nishida N, Ito T, Yoshida M, Kamiya Y, Yamaguchi S, Takahashi Y. DELLAs function as coactivators of GAI-ASSOCIATED FACTOR1 in regulation of gibberellin homeostasis and signaling in Arabidopsis. THE PLANT CELL 2014; 26:2920-38. [PMID: 25035403 PMCID: PMC4145123 DOI: 10.1105/tpc.114.125690] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 06/11/2014] [Accepted: 06/25/2014] [Indexed: 05/19/2023]
Abstract
Gibberellins (GAs) are essential regulators of plant development, and DELLAs are negative regulators of GA signaling. The mechanism of GA-dependent transcription has been explained by DELLA-mediated titration of transcriptional activators and their release through the degradation of DELLAs in response to GA. However, the effect of GA on genome-wide expression is predominantly repression, suggesting the existence of unknown mechanisms of GA function. In this study, we identified an Arabidopsis thaliana DELLA binding transcription factor, GAI-ASSOCIATED FACTOR1 (GAF1). GAF1 shows high homology to INDETERMINATE DOMAIN1 (IDD1)/ENHYDROUS. GA responsiveness was decreased in the double mutant gaf1 idd1, whereas it was enhanced in a GAF1 overexpressor. GAF1 binds to genes that are subject to GA feedback regulation. Furthermore, we found that GAF1 interacts with the corepressor TOPLESS RELATED (TPR) and that DELLAs and TPR act as coactivators and a corepressor of GAF1, respectively. GA converts the GAF1 complex from transcriptional activator to repressor via the degradation of DELLAs. These results indicate that DELLAs turn on or off two sets of GA-regulated genes via dual functions, namely titration and coactivation, providing a mechanism for the integrative regulation of plant growth and GA homeostasis.
Collapse
Affiliation(s)
- Jutarou Fukazawa
- Department of Biological Science, Graduate School of Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8526, Japan RIKEN Plant Science Center, Tsurumi, Yokohama, Kanagawa 230-0045, Japan Department of Biological Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Hiroshi Teramura
- Department of Biological Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Satoru Murakoshi
- Department of Biological Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Kei Nasuno
- Department of Biological Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Naotaka Nishida
- Department of Biological Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Takeshi Ito
- Department of Biological Science, Graduate School of Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Michiteru Yoshida
- Department of Biological Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Yuji Kamiya
- RIKEN Plant Science Center, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | | | - Yohsuke Takahashi
- Department of Biological Science, Graduate School of Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| |
Collapse
|
193
|
Zhang Y, Zhang X, Liu B, Wang W, Liu X, Chen C, Liu X, Yang S, Ren H. A GAMYB homologue CsGAMYB1 regulates sex expression of cucumber via an ethylene-independent pathway. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:3201-13. [PMID: 24790111 PMCID: PMC4071842 DOI: 10.1093/jxb/eru176] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Cucumber (Cucumis sativus L.) is a typical monoecious vegetable with individual male and female flowers, and has been used as a model plant for sex determination. It is well known that sex differentiation of cucumber can be regulated by phytohormones, such as gibberellic acid (GA) and ethylene. The molecular mechanism of female sex expression modulated by ethylene has been widely understood, but how GA controls male sex expression remains elusive. In hermaphroditic Arabidopsis and rice, GA can regulate stamen and anther development via the transcriptional regulation of GAMYB. Here we characterized a GAMYB homologue CsGAMYB1 in cucumber. We found that CsGAMYB1 is predominantly expressed in male flower buds, where its expression is upregulated by GA3 treatment. CsGAMYB1 protein is localized in the nucleus. CsGAMYB1 can partially rescue stamen development and fertility phenotypes of an Arabidopsis myb33 myb65 double mutant. However, constitutive overexpression of CsGAMYB1 in wild-type Arabidopsis resulted in male sterility, which mimics the effect of GA overdose in flower development. Knockdown of CsGAMYB1 in cucumber decreases the ratio of nodes with male and female flowers, and ethylene is not involved in this process. Our data suggest that CsGAMYB1 regulates sex expression of cucumber via an ethylene-independent pathway.
Collapse
Affiliation(s)
- Yan Zhang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, P. R. China Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R. China
| | - Xiaolan Zhang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, P. R. China Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R. China
| | - Bin Liu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, P. R. China Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R. China
| | - Wenjiao Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, P. R. China Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R. China
| | - Xingwang Liu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, P. R. China Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R. China
| | - Chunhua Chen
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, P. R. China Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R. China
| | - Xiaofeng Liu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, P. R. China Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R. China
| | - Sen Yang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, P. R. China Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R. China
| | - Huazhong Ren
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, P. R. China Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
194
|
Zhang Y, Zhang X, Liu B, Wang W, Liu X, Chen C, Liu X, Yang S, Ren H. A GAMYB homologue CsGAMYB1 regulates sex expression of cucumber via an ethylene-independent pathway. JOURNAL OF EXPERIMENTAL BOTANY 2014. [PMID: 24790111 DOI: 10.1093/jxb/eru1764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Cucumber (Cucumis sativus L.) is a typical monoecious vegetable with individual male and female flowers, and has been used as a model plant for sex determination. It is well known that sex differentiation of cucumber can be regulated by phytohormones, such as gibberellic acid (GA) and ethylene. The molecular mechanism of female sex expression modulated by ethylene has been widely understood, but how GA controls male sex expression remains elusive. In hermaphroditic Arabidopsis and rice, GA can regulate stamen and anther development via the transcriptional regulation of GAMYB. Here we characterized a GAMYB homologue CsGAMYB1 in cucumber. We found that CsGAMYB1 is predominantly expressed in male flower buds, where its expression is upregulated by GA3 treatment. CsGAMYB1 protein is localized in the nucleus. CsGAMYB1 can partially rescue stamen development and fertility phenotypes of an Arabidopsis myb33 myb65 double mutant. However, constitutive overexpression of CsGAMYB1 in wild-type Arabidopsis resulted in male sterility, which mimics the effect of GA overdose in flower development. Knockdown of CsGAMYB1 in cucumber decreases the ratio of nodes with male and female flowers, and ethylene is not involved in this process. Our data suggest that CsGAMYB1 regulates sex expression of cucumber via an ethylene-independent pathway.
Collapse
Affiliation(s)
- Yan Zhang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, P. R. China Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R. China
| | - Xiaolan Zhang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, P. R. China Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R. China
| | - Bin Liu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, P. R. China Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R. China
| | - Wenjiao Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, P. R. China Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R. China
| | - Xingwang Liu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, P. R. China Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R. China
| | - Chunhua Chen
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, P. R. China Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R. China
| | - Xiaofeng Liu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, P. R. China Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R. China
| | - Sen Yang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, P. R. China Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R. China
| | - Huazhong Ren
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, P. R. China Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
195
|
Zhang Y, Liu B, Yang S, An J, Chen C, Zhang X, Ren H. A cucumber DELLA homolog CsGAIP may inhibit staminate development through transcriptional repression of B class floral homeotic genes. PLoS One 2014; 9:e91804. [PMID: 24632777 PMCID: PMC3954735 DOI: 10.1371/journal.pone.0091804] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 02/13/2014] [Indexed: 01/12/2023] Open
Abstract
In hermaphroditic Arabidopsis, the phytohormone gibberellin (GA) stimulates stamen development by opposing the DELLA repression of B and C classes of floral homeotic genes. GA can promote male flower formation in cucumber (Cucumis sativus L.), a typical monoecious vegetable with unisexual flowers, and the molecular mechanism remains unknown. Here we characterized a DELLA homolog CsGAIP in cucumber, and we found that CsGAIP is highly expressed in stem and male flower buds. In situ hybridization showed that CsGAIP is greatly enriched in the stamen primordia, especially during the hermaphrodite stage of flower development. Further, CsGAIP protein is located in nucleus. CsGAIP can partially rescue the plant height, stamen development and fertility phenotypes of Arabidopsis rga-24/gai-t6 mutant, and ectopic expression of CsGAIP in wide-type Arabidopsis results in reduced number of stamens and decreased transcription of B class floral homeotic genes APETALA3 (AP3) and PISTILLATA (PI). Our data suggest that monoecious CsGAIP may inhibit staminate development through transcriptional repression of B class floral homeotic genes in Arabidopsis.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Vegetable Science, College of Agronomy and Bio-technology, China Agricultural University, Beijing, P.R. China; Department of Vegetable Science, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, P.R. China
| | - Bin Liu
- Department of Vegetable Science, College of Agronomy and Bio-technology, China Agricultural University, Beijing, P.R. China; Department of Vegetable Science, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, P.R. China
| | - Sen Yang
- Department of Vegetable Science, College of Agronomy and Bio-technology, China Agricultural University, Beijing, P.R. China; Department of Vegetable Science, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, P.R. China
| | - Jingbo An
- Department of Vegetable Science, College of Agronomy and Bio-technology, China Agricultural University, Beijing, P.R. China; Department of Vegetable Science, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, P.R. China
| | - Chunhua Chen
- Department of Vegetable Science, College of Agronomy and Bio-technology, China Agricultural University, Beijing, P.R. China; Department of Vegetable Science, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, P.R. China
| | - Xiaolan Zhang
- Department of Vegetable Science, College of Agronomy and Bio-technology, China Agricultural University, Beijing, P.R. China; Department of Vegetable Science, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, P.R. China
- * E-mail: (XZ); (HR)
| | - Huazhong Ren
- Department of Vegetable Science, College of Agronomy and Bio-technology, China Agricultural University, Beijing, P.R. China; Department of Vegetable Science, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, P.R. China
- * E-mail: (XZ); (HR)
| |
Collapse
|
196
|
El-Sharkawy I, Sherif S, El Kayal W, Mahboob A, Abubaker K, Ravindran P, Jyothi-Prakash PA, Kumar PP, Jayasankar S. Characterization of gibberellin-signalling elements during plum fruit ontogeny defines the essentiality of gibberellin in fruit development. PLANT MOLECULAR BIOLOGY 2014; 84:399-413. [PMID: 24142379 DOI: 10.1007/s11103-013-0139-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 10/03/2013] [Indexed: 05/11/2023]
Abstract
Fruit growth is a coordinated, complex interaction of cell division, differentiation and expansion. Gibberellin (GA) involvement in the reproductive events is an important aspect of GA effects. Perennial fruit-trees such as plum (Prunus salicina L.) have distinct features that are economically important and provide opportunities to dissect specific GA mechanisms. Currently, very little is known on the molecular mechanism(s) mediating GA effects on fruit development. Determination of bioactive GA content during plum fruit ontogeny revealed that GA1 and GA4 are critical for fruit growth and development. Further, characterization of several genes involved in GA-signalling showed that their transcriptional regulation are generally GA-dependent, confirming their involvement in GA-signalling. Based on these results, a model is presented elucidating how the potential association between GA and other hormones may contribute to fruit development. PslGID1 proteins structure, Y2H and BiFC assays indicated that plum GA-receptors can form a complex with AtDELLA-repressors in a GA-dependent manner. Moreover, phenotypical-, molecular- and GA-analyses of various Arabidopsis backgrounds ectopically expressing PslGID1 sequences provide evidence on their role as active GA-signalling components that mediate GA-responsiveness. Our findings support the critical contribution of GA alone or in association with other hormones in mediating plum fruit growth and development.
Collapse
Affiliation(s)
- Islam El-Sharkawy
- Department of Plant Agriculture, University of Guelph, 4890 Victoria Av. N., P.O. Box 7000, Vineland Station, ON, L0R 2E0, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
197
|
Plackett ARG, Ferguson AC, Powers SJ, Wanchoo-Kohli A, Phillips AL, Wilson ZA, Hedden P, Thomas SG. DELLA activity is required for successful pollen development in the Columbia ecotype of Arabidopsis. THE NEW PHYTOLOGIST 2014; 201:825-836. [PMID: 24400898 PMCID: PMC4291109 DOI: 10.1111/nph.12571] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 09/15/2013] [Indexed: 05/18/2023]
Abstract
Excessive gibberellin (GA) signalling, mediated through the DELLA proteins, has a negative impact on plant fertility. Loss of DELLA activity in the monocot rice (Oryza sativa) causes complete male sterility, but not in the dicot model Arabidopsis (Arabidopsis thaliana) ecotype Landsberg erecta (Ler), in which DELLA function has been studied most extensively, leading to the assumption that DELLA activity is not essential for Arabidopsis pollen development. A novel DELLA fertility phenotype was identified in the Columbia (Col-0) ecotype that necessitates re-evaluation of the general conclusions drawn from Ler. Fertility phenotypes were compared between the Col-0 and Ler ecotypes under conditions of chemical and genetic GA overdose, including mutants in both ecotypes lacking the DELLA paralogues REPRESSOR OF ga1-3 (RGA) and GA INSENSITIVE (GAI). Ler displays a less severe fertility phenotype than Col-0 under GA treatment. Col-0 rga gai mutants, in contrast with the equivalent Ler phenotype, were entirely male sterile, caused by post-meiotic defects in pollen development, which were rescued by the reintroduction of DELLA into either the tapetum or developing pollen. We conclude that DELLA activity is essential for Arabidopsis pollen development. Differences between the fertility responses of Col-0 and Ler might be caused by differences in downstream signalling pathways or altered DELLA expression.
Collapse
Affiliation(s)
- Andrew R G Plackett
- Plant Biology and Crop Science Department, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Alison C Ferguson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Stephen J Powers
- Biomathematics and Bioinformatics Department, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Aakriti Wanchoo-Kohli
- Plant Biology and Crop Science Department, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Andrew L Phillips
- Plant Biology and Crop Science Department, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Zoe A Wilson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Peter Hedden
- Plant Biology and Crop Science Department, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Stephen G Thomas
- Plant Biology and Crop Science Department, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| |
Collapse
|
198
|
Leivar P, Monte E. PIFs: systems integrators in plant development. THE PLANT CELL 2014; 26:56-78. [PMID: 24481072 PMCID: PMC3963594 DOI: 10.1105/tpc.113.120857] [Citation(s) in RCA: 404] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Revised: 01/03/2014] [Accepted: 01/14/2014] [Indexed: 05/17/2023]
Abstract
Phytochrome-interacting factors (PIFs) are members of the Arabidopsis thaliana basic helix-loop-helix family of transcriptional regulators that interact specifically with the active Pfr conformer of phytochrome (phy) photoreceptors. PIFs are central regulators of photomorphogenic development that act to promote stem growth, and this activity is reversed upon interaction with phy in response to light. Recently, significant progress has been made in defining the transcriptional networks directly regulated by PIFs, as well as the convergence of other signaling pathways on the PIFs to modulate growth. Here, we summarize and highlight these findings in the context of PIFs acting as integrators of light and other signals. We discuss progress in our understanding of the transcriptional and posttranslational regulation of PIFs that illustrates the integration of light with hormonal pathways and the circadian clock, and we review seedling hypocotyl growth as a paradigm of PIFs acting at the interface of these signals. Based on these advances, PIFs are emerging as required factors for growth, acting as central components of a regulatory node that integrates multiple internal and external signals to optimize plant development.
Collapse
|
199
|
Floss DS, Levy JG, Lévesque-Tremblay V, Pumplin N, Harrison MJ. DELLA proteins regulate arbuscule formation in arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci U S A 2013; 110:E5025-34. [PMID: 24297892 PMCID: PMC3870710 DOI: 10.1073/pnas.1308973110] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Most flowering plants are able to form endosymbioses with arbuscular mycorrhizal fungi. In this mutualistic association, the fungus colonizes the root cortex and establishes elaborately branched hyphae, called arbuscules, within the cortical cells. Arbuscule development requires the cellular reorganization of both symbionts, and the resulting symbiotic interface functions in nutrient exchange. A plant symbiosis signaling pathway controls the development of the symbiosis. Several components of the pathway have been identified, but transcriptional regulators that control downstream pathways for arbuscule formation are still unknown. Here we show that DELLA proteins, which are repressors of gibberellic acid (GA) signaling and function at the nexus of several signaling pathways, are required for arbuscule formation. Arbuscule formation is severely impaired in a Medicago truncatula Mtdella1/Mtdella2 double mutant; GA treatment of wild-type roots phenocopies the della double mutant, and a dominant DELLA protein (della1-Δ18) enables arbuscule formation in the presence of GA. Ectopic expression of della1-Δ18 suggests that DELLA activity in the vascular tissue and endodermis is sufficient to enable arbuscule formation in the inner cortical cells. In addition, expression of della1-Δ18 restores arbuscule formation in the symbiosis signaling pathway mutant cyclops/ipd3, indicating an intersection between DELLA and symbiosis signaling for arbuscule formation. GA signaling also influences arbuscule formation in monocots, and a Green Revolution wheat variety carrying dominant DELLA alleles shows enhanced colonization but a limited growth response to arbuscular mycorrhizal symbiosis.
Collapse
|
200
|
Kim HJ, Tang Y, Moon HS, Delhom CD, Fang DD. Functional analyses of cotton (Gossypium hirsutum L.) immature fiber (im) mutant infer that fiber cell wall development is associated with stress responses. BMC Genomics 2013; 14:889. [PMID: 24341782 PMCID: PMC3904472 DOI: 10.1186/1471-2164-14-889] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 12/07/2013] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Cotton fiber maturity is an important factor for determining the commercial value of cotton. How fiber cell wall development affects fiber maturity is not well understood. A comparison of fiber cross-sections showed that an immature fiber (im) mutant had lower fiber maturity than its near isogenic wild type, Texas marker-1 (TM-1). The availability of the im mutant and TM-1 provides a unique way to determine molecular mechanisms regulating cotton fiber maturity. RESULTS Transcriptome analysis showed that the differentially expressed genes (DEGs) in the im mutant fibers grown under normal stress conditions were similar to those in wild type cotton fibers grown under severe stress conditions. The majority of these DEGs in the im mutant were related to stress responses and cellular respiration. Stress is known to reduce the activity of a classical respiration pathway responsible for energy production and reactive oxygen species (ROS) accumulation. Both energy productions and ROS levels in the im mutant fibers are expected to be reduced if the im mutant is associated with stress responses. In accord with the prediction, the transcriptome profiles of the im mutant showed the same alteration of transcriptional regulation that happened in energy deprived plants in which expressions of genes associated with cell growth processes were reduced whereas expressions of genes associated with recycling and transporting processes were elevated. We confirmed that ROS production in developing fibers from the im mutant was lower than that from the wild type. The lower production of ROS in the im mutant fibers might result from the elevated levels of alternative respiration induced by stress. CONCLUSION The low degree of fiber cell wall thickness of the im mutant fibers is associated with deregulation of the genes involved in stress responses and cellular respiration. The reduction of ROS levels and up-regulation of the genes involved in alternative respirations suggest that energy deprivation may occur in the im mutant fibers.
Collapse
Affiliation(s)
- Hee Jin Kim
- Cotton Fiber Bioscience Research Unit, USDA-ARS-SRRC, 1100 Robert E, Lee Blvd,, New Orleans, LA 70124, USA.
| | | | | | | | | |
Collapse
|