151
|
Sah SK, Reddy KR, Li J. Abscisic Acid and Abiotic Stress Tolerance in Crop Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:571. [PMID: 27200044 PMCID: PMC4855980 DOI: 10.3389/fpls.2016.00571] [Citation(s) in RCA: 612] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 04/13/2016] [Indexed: 05/17/2023]
Abstract
Abiotic stress is a primary threat to fulfill the demand of agricultural production to feed the world in coming decades. Plants reduce growth and development process during stress conditions, which ultimately affect the yield. In stress conditions, plants develop various stress mechanism to face the magnitude of stress challenges, although that is not enough to protect them. Therefore, many strategies have been used to produce abiotic stress tolerance crop plants, among them, abscisic acid (ABA) phytohormone engineering could be one of the methods of choice. ABA is an isoprenoid phytohormone, which regulates various physiological processes ranging from stomatal opening to protein storage and provides adaptation to many stresses like drought, salt, and cold stresses. ABA is also called an important messenger that acts as the signaling mediator for regulating the adaptive response of plants to different environmental stress conditions. In this review, we will discuss the role of ABA in response to abiotic stress at the molecular level and ABA signaling. The review also deals with the effect of ABA in respect to gene expression.
Collapse
Affiliation(s)
- Saroj K. Sah
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State UniversityMississippi State, Mississippi, MS, USA
| | - Kambham R. Reddy
- Department of Plant and Soil Sciences, Mississippi State UniversityMississippi State, Mississippi, MS, USA
| | - Jiaxu Li
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State UniversityMississippi State, Mississippi, MS, USA
| |
Collapse
|
152
|
Perrella G, Carr C, Asensi-Fabado MA, Donald NA, Páldi K, Hannah MA, Amtmann A. The Histone Deacetylase Complex 1 Protein of Arabidopsis Has the Capacity to Interact with Multiple Proteins Including Histone 3-Binding Proteins and Histone 1 Variants. PLANT PHYSIOLOGY 2016; 171:62-70. [PMID: 26951436 PMCID: PMC4854681 DOI: 10.1104/pp.15.01760] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 03/02/2016] [Indexed: 05/20/2023]
Abstract
Intrinsically disordered proteins can adopt multiple conformations, thereby enabling interaction with a wide variety of partners. They often serve as hubs in protein interaction networks. We have previously shown that the Histone Deacetylase Complex 1 (HDC1) protein from Arabidopsis (Arabidopsis thaliana) interacts with histone deacetylases and quantitatively determines histone acetylation levels, transcriptional activity, and several phenotypes, including abscisic acid sensitivity during germination, vegetative growth rate, and flowering time. HDC1-type proteins are ubiquitous in plants, but they contain no known structural or functional domains. Here, we explored the protein interaction spectrum of HDC1 using a quantitative bimolecular fluorescence complementation assay in tobacco (Nicotiana benthamiana) epidermal cells. In addition to binding histone deacetylases, HDC1 directly interacted with histone H3-binding proteins and corepressor-associated proteins but not with H3 or the corepressors themselves. Surprisingly, HDC1 also was able to interact with variants of the linker histone H1. Truncation of HDC1 to the ancestral core sequence narrowed the spectrum of interactions and of phenotypic outputs but maintained binding to a H3-binding protein and to H1. Thus, HDC1 provides a potential link between H1 and histone-modifying complexes.
Collapse
Affiliation(s)
- Giorgio Perrella
- Plant Science Group, MCSB, MVLS, University of Glasgow, Glasgow G12 8QQ, United Kingdom (G.P., C.C., M.A.A.-F., N.A.D., K.P., A.A.); andBayer CropScience, B-9052 Ghent, Belgium (M.A.H.)
| | - Craig Carr
- Plant Science Group, MCSB, MVLS, University of Glasgow, Glasgow G12 8QQ, United Kingdom (G.P., C.C., M.A.A.-F., N.A.D., K.P., A.A.); andBayer CropScience, B-9052 Ghent, Belgium (M.A.H.)
| | - Maria A Asensi-Fabado
- Plant Science Group, MCSB, MVLS, University of Glasgow, Glasgow G12 8QQ, United Kingdom (G.P., C.C., M.A.A.-F., N.A.D., K.P., A.A.); andBayer CropScience, B-9052 Ghent, Belgium (M.A.H.)
| | - Naomi A Donald
- Plant Science Group, MCSB, MVLS, University of Glasgow, Glasgow G12 8QQ, United Kingdom (G.P., C.C., M.A.A.-F., N.A.D., K.P., A.A.); andBayer CropScience, B-9052 Ghent, Belgium (M.A.H.)
| | - Katalin Páldi
- Plant Science Group, MCSB, MVLS, University of Glasgow, Glasgow G12 8QQ, United Kingdom (G.P., C.C., M.A.A.-F., N.A.D., K.P., A.A.); andBayer CropScience, B-9052 Ghent, Belgium (M.A.H.)
| | - Matthew A Hannah
- Plant Science Group, MCSB, MVLS, University of Glasgow, Glasgow G12 8QQ, United Kingdom (G.P., C.C., M.A.A.-F., N.A.D., K.P., A.A.); andBayer CropScience, B-9052 Ghent, Belgium (M.A.H.)
| | - Anna Amtmann
- Plant Science Group, MCSB, MVLS, University of Glasgow, Glasgow G12 8QQ, United Kingdom (G.P., C.C., M.A.A.-F., N.A.D., K.P., A.A.); andBayer CropScience, B-9052 Ghent, Belgium (M.A.H.)
| |
Collapse
|
153
|
Pan L, Zhang X, Wang J, Ma X, Zhou M, Huang L, Nie G, Wang P, Yang Z, Li J. Transcriptional Profiles of Drought-Related Genes in Modulating Metabolic Processes and Antioxidant Defenses in Lolium multiflorum. FRONTIERS IN PLANT SCIENCE 2016; 7:519. [PMID: 27200005 PMCID: PMC4842912 DOI: 10.3389/fpls.2016.00519] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 04/01/2016] [Indexed: 05/21/2023]
Abstract
Drought is a major environmental stress that limits growth and development of cool-season annual grasses. Drought transcriptional profiles of resistant and susceptible lines were studied to understand the molecular mechanisms of drought tolerance in annual ryegrass (Lolium multiflorum L.). A total of 4718 genes exhibited significantly differential expression in two L. multiflorum lines. Additionally, up-regulated genes associated with drought response in the resistant lines were compared with susceptible lines. Gene ontology enrichment and pathway analyses revealed that genes partially encoding drought-responsive proteins as key regulators were significantly involved in carbon metabolism, lipid metabolism, and signal transduction. Comparable gene expression was used to identify the genes that contribute to the high drought tolerance in resistant lines of annual ryegrass. Moreover, we proposed the hypothesis that short-term drought have a beneficial effect on oxidation stress, which may be ascribed to a direct effect on the drought tolerance of annual ryegrass. Evidence suggests that some of the genes encoding antioxidants (HPTs, GGT, AP, 6-PGD, and G6PDH) function as antioxidant in lipid metabolism and signal transduction pathways, which have indispensable and promoting roles in drought resistance. This study provides the first transcriptome data on the induction of drought-related gene expression in annual ryegrass, especially via modulation of metabolic homeostasis, signal transduction, and antioxidant defenses to improve drought tolerance response to short-term drought stress.
Collapse
Affiliation(s)
- Ling Pan
- Department of Grassland Science, Sichuan Agricultural UniversityChengdu, China
| | - Xinquan Zhang
- Department of Grassland Science, Sichuan Agricultural UniversityChengdu, China
| | - Jianping Wang
- Agronomy Department, University of FloridaGainesville, FL, USA
| | - Xiao Ma
- Department of Grassland Science, Sichuan Agricultural UniversityChengdu, China
| | - Meiliang Zhou
- Department of Crop Molecular Breeding, Biotechnology Research Institute, Chinese Academy of Agricultural SciencesBeijing, China
| | - LinKai Huang
- Department of Grassland Science, Sichuan Agricultural UniversityChengdu, China
| | - Gang Nie
- Department of Grassland Science, Sichuan Agricultural UniversityChengdu, China
| | - Pengxi Wang
- Department of Grassland Science, Sichuan Agricultural UniversityChengdu, China
| | - Zhongfu Yang
- Department of Grassland Science, Sichuan Agricultural UniversityChengdu, China
| | - Ji Li
- Department of Grassland Science, Sichuan Agricultural UniversityChengdu, China
| |
Collapse
|
154
|
Mishra U, Rai A, Kumar R, Singh M, Pandey HP. Gene expression analysis of Solanum lycopersicum and Solanum habrochaites under drought conditions. GENOMICS DATA 2016; 9:40-1. [PMID: 27408808 PMCID: PMC4925881 DOI: 10.1016/j.gdata.2016.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 04/11/2016] [Indexed: 11/26/2022]
Abstract
Drought is one of the limiting environmental factors that affect crop production worldwide. Understanding the molecular mechanism of drought stress is the key to developing drought tolerant crop. In this experiment we performed expression profiling of tomato plants under water deficit conditions using microarray technology. The data set we generated (available in the NCBI/GEO database under GSE22304) has been analyzed to identify genes that are involved in the regulation of tomato's responses to drought.
Collapse
Affiliation(s)
- Upama Mishra
- National Research Center for Plant Biotechnology, IARI, New Delhi, India; Institute of Vegetable Research, Varanasi 221 305, India; Department of Biochemistry, Faculty of Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Ashutosh Rai
- Institute of Vegetable Research, Varanasi 221 305, India; Department of Biochemistry, Faculty of Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Rajesh Kumar
- Institute of Vegetable Research, Varanasi 221 305, India
| | - Major Singh
- Institute of Vegetable Research, Varanasi 221 305, India
| | - Hausila Prasad Pandey
- Department of Biochemistry, Faculty of Sciences, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
155
|
GOLDEN 2-LIKE transcription factors for chloroplast development affect ozone tolerance through the regulation of stomatal movement. Proc Natl Acad Sci U S A 2016; 113:4218-23. [PMID: 27035938 DOI: 10.1073/pnas.1513093113] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Stomatal movements regulate gas exchange, thus directly affecting the efficiency of photosynthesis and the sensitivity of plants to air pollutants such as ozone. The GARP family transcription factors GOLDEN 2-LIKE1 (GLK1) and GLK2 have known functions in chloroplast development. Here, we show that Arabidopsis thaliana (A. thaliana) plants expressing the chimeric repressors for GLK1 and -2 (GLK1/2-SRDX) exhibited a closed-stomata phenotype and strong tolerance to ozone. By contrast, plants that overexpress GLK1/2 exhibited an open-stomata phenotype and higher sensitivity to ozone. The plants expressing GLK1-SRDX had reduced expression of the genes for inwardly rectifying K(+) (K(+) in) channels and reduced K(+) in channel activity. Abscisic acid treatment did not affect the stomatal phenotype of 35S:GLK1/2-SRDX plants or the transcriptional activity for K(+) in channel gene, indicating that GLK1/2 act independently of abscisic acid signaling. Our results indicate that GLK1/2 positively regulate the expression of genes for K(+) in channels and promote stomatal opening. Because the chimeric GLK1-SRDX repressor driven by a guard cell-specific promoter induced a closed-stomata phenotype without affecting chloroplast development in mesophyll cells, modulating GLK1/2 activity may provide an effective tool to control stomatal movements and thus to confer resistance to air pollutants.
Collapse
|
156
|
Zhang W, Yang G, Mu D, Li H, Zang D, Xu H, Zou X, Wang Y. An Ethylene-responsive Factor BpERF11 Negatively Modulates Salt and Osmotic Tolerance in Betula platyphylla. Sci Rep 2016; 6:23085. [PMID: 26980058 PMCID: PMC4793294 DOI: 10.1038/srep23085] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 03/01/2016] [Indexed: 12/17/2022] Open
Abstract
Ethylene responsive factors (ERFs) play important roles in the abiotic stress; however, only a few ERF genes from woody plants have been functionally characterized. In the present study, an ERF gene from Betula platyphylla (birch), BpERF11, was functionally characterized in response to abiotic stress. BpERF11 is a nuclear protein, which could specifically bind to GCC boxes and DRE motifs. BpERF11-overexpressing and BpERF11 RNA interference (RNAi) knockdown plants were generated for gain- and loss-of-function analysis. BpERF11 negatively regulates resistance to salt and severe osmotic stress, and the transgenic birch plants overexpressing BpERF11 shows increased electrolyte leakage and malondialdehyde (MDA) contents. BpERF11 inhibits the expression of an AtMYB61 homologous gene, resulting in increased stomatal aperture, which elevated the transpiration rate. Furthermore, BpERF11 downregulates the expression of P5CS, SOD and POD genes, but upregulates the expression of PRODH and P5CDH, which results in reduced proline levels and increased reactive oxygen species (ROS) accumulation. BpERF11 also significantly inhibits the expression of LEA and dehydrin genes that involve in abiotic stress tolerance. Therefore, BpERF11 serves as a transcription factor that negatively regulates salt and severe osmotic tolerance by modulating various physiological processes.
Collapse
Affiliation(s)
- Wenhui Zhang
- State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry University, 150040 Harbin, China.,Agronomy College, Heilongjiang Bayi Agricultural University, 163319 Daqing, China
| | - Guiyan Yang
- State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry University, 150040 Harbin, China
| | - Dan Mu
- State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry University, 150040 Harbin, China
| | - Hongyan Li
- State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry University, 150040 Harbin, China
| | - Dandan Zang
- State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry University, 150040 Harbin, China
| | - Hongyun Xu
- State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry University, 150040 Harbin, China
| | - Xuezhong Zou
- State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry University, 150040 Harbin, China.,Liaoning Forestry Vocation-Technical College, 110101 Shenyang, China
| | - Yucheng Wang
- State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry University, 150040 Harbin, China
| |
Collapse
|
157
|
Huang PY, Catinot J, Zimmerli L. Ethylene response factors in Arabidopsis immunity. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:1231-41. [PMID: 26663391 DOI: 10.1093/jxb/erv518] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Pathogen attack leads to transcriptional changes and metabolic modifications allowing the establishment of appropriate plant defences. Transcription factors (TFs) are key players in plant innate immunity. Notably, ethylene response factor (ERF) TFs are integrators of hormonal pathways and are directly responsible for the transcriptional regulation of several jasmonate (JA)/ethylene (ET)-responsive defence genes. Transcriptional activation or repression by ERFs is achieved through the binding to JA/ET-responsive gene promoters. In this review, we describe the regulation and mode of action at a molecular level of ERFs involved in Arabidopsis thaliana immunity. In particular, we focus on defence activators such as ERF1, ORA59, ERF6, and the recently described ERF96.
Collapse
|
158
|
Zheng Y, Ding Y, Sun X, Xie S, Wang D, Liu X, Su L, Wei W, Pan L, Zhou DX. Histone deacetylase HDA9 negatively regulates salt and drought stress responsiveness in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:1703-13. [PMID: 26733691 DOI: 10.1093/jxb/erv562] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Histone modification is an important epigenetic regulation in higher plants adapting to environment changes including salt and drought stresses. In this report, we show that the Arabidopsis RPD3-type histone deacetylase HDA9 is involved in modulating plant responses to salt and drought stresses in Arabidopsis. Loss-of-function mutants of the gene displayed phenotypes (such as seedling root growth and seed germination) insensitive to NaCl and polyethylene glycol (PEG) treatments. HDA9 mutation led to up-regulation of many genes, among which those involved in response to water deprivation stress (GO: 0009414) were enriched. These genes were much more induced in the mutants than wild-type plants when treated with PEG and NaCl. In addition, we found that in the mutants, salt and drought stresses led to much higher levels of histone H3K9 acetylation at promoters of 14 genes randomly selected from those that respond to water-deprivation stress than in wild-type plants. Our study suggested that HDA9 might be a novel chromatin protein that negatively regulates plant sensitivity to salt and drought stresses by regulating histone acetylation levels of a large number of stress-responsive genes in Arabidopsis.
Collapse
Affiliation(s)
- Yu Zheng
- Institute for Interdisciplinary Research and Hubei Province Engineering Research Center of Legume Plants, Jianghan University, Wuhan 430056, China
| | - Yue Ding
- Institute for Interdisciplinary Research and Hubei Province Engineering Research Center of Legume Plants, Jianghan University, Wuhan 430056, China
| | - Xuan Sun
- Institute for Interdisciplinary Research and Hubei Province Engineering Research Center of Legume Plants, Jianghan University, Wuhan 430056, China
| | - Sisi Xie
- Institute for Interdisciplinary Research and Hubei Province Engineering Research Center of Legume Plants, Jianghan University, Wuhan 430056, China
| | - Dan Wang
- Institute for Interdisciplinary Research and Hubei Province Engineering Research Center of Legume Plants, Jianghan University, Wuhan 430056, China
| | - Xiaoyun Liu
- Institute for Interdisciplinary Research and Hubei Province Engineering Research Center of Legume Plants, Jianghan University, Wuhan 430056, China
| | - Lufang Su
- Institute for Interdisciplinary Research and Hubei Province Engineering Research Center of Legume Plants, Jianghan University, Wuhan 430056, China
| | - Wei Wei
- Institute for Interdisciplinary Research and Hubei Province Engineering Research Center of Legume Plants, Jianghan University, Wuhan 430056, China
| | - Lei Pan
- Institute for Interdisciplinary Research and Hubei Province Engineering Research Center of Legume Plants, Jianghan University, Wuhan 430056, China
| | - Dao-Xiu Zhou
- Institute of Plant Sciences Paris-Saclay, Université Paris-Sud, 91405 Orsay, France
| |
Collapse
|
159
|
Yang H, Liu X, Xin M, Du J, Hu Z, Peng H, Rossi V, Sun Q, Ni Z, Yao Y. Genome-Wide Mapping of Targets of Maize Histone Deacetylase HDA101 Reveals Its Function and Regulatory Mechanism during Seed Development. THE PLANT CELL 2016; 28:629-45. [PMID: 26908760 PMCID: PMC4826005 DOI: 10.1105/tpc.15.00691] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 02/21/2016] [Indexed: 05/03/2023]
Abstract
Histone deacetylases (HDACs) regulate histone acetylation levels by removing the acetyl group from lysine residues. The maize (Zea mays) HDACHDA101 influences several aspects of development, including kernel size; however, the molecular mechanism by which HDA101 affects kernel development remains unknown. In this study, we find that HDA101 regulates the expression of transfer cell-specific genes, suggesting that their misregulation may be associated with the defects in differentiation of endosperm transfer cells and smaller kernels observed in hda101 mutants. To investigate HDA101 function during the early stages of seed development, we performed genome-wide mapping of HDA101 binding sites. We observed that, like mammalian HDACs, HDA101 mainly targets highly and intermediately expressed genes. Although loss of HDA101 can induce histone hyperacetylation of its direct targets, this often does not involve variation in transcript levels. A small subset of inactive genes that must be negatively regulated during kernel development is also targeted by HDA101 and its loss leads to hyperacetylation and increased expression of these inactive genes. Finally, we report that HDA101 interacts with members of different chromatin remodeling complexes, such as NFC103/MSI1 and SNL1/SIN3-like protein corepressors. Taken together, our results reveal a complex genetic network regulated by HDA101 during seed development and provide insight into the different mechanisms of HDA101-mediated regulation of transcriptionally active and inactive genes.
Collapse
Affiliation(s)
- Hua Yang
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, PR China
| | - Xinye Liu
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, PR China
| | - Mingming Xin
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, PR China
| | - Jinkun Du
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, PR China
| | - Zhaorong Hu
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, PR China
| | - HuiRu Peng
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, PR China
| | - Vincenzo Rossi
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Unità di Ricerca per la Maiscoltura, I-24126 Bergamo, Italy
| | - Qixin Sun
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, PR China
| | - Zhongfu Ni
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, PR China
| | - Yingyin Yao
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, PR China
| |
Collapse
|
160
|
Li KQ, Xu XY, Huang XS. Identification of Differentially Expressed Genes Related to Dehydration Resistance in a Highly Drought-Tolerant Pear, Pyrus betulaefolia, as through RNA-Seq. PLoS One 2016; 11:e0149352. [PMID: 26900681 PMCID: PMC4762547 DOI: 10.1371/journal.pone.0149352] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 01/29/2016] [Indexed: 12/03/2022] Open
Abstract
Drought is a major abiotic stress that affects plant growth, development and productivity. Pear is one of the most important deciduous fruit trees in the world, but the mechanisms of drought tolerance in this plant are still unclear. To better understand the molecular basis regarding drought stress response, RNA-seq was performed on samples collected before and after dehydration in Pyrus betulaefolia. In total, 19,532 differentially expressed genes (DEGs) were identified. These genes were annotated into 144 Gene Ontology (GO) terms and 18 clusters of orthologous groups (COG) involved in 129 Kyoto Encyclopedia of Genes and Genomes (KEGG) defined pathways. These DEGs comprised 49 (26 up-regulated, 23 down-regulated), 248 (166 up-regulated, 82 down-regulated), 3483 (1295 up-regulated, 2188 down-regulated), 1455 (1065 up-regulated, 390 down-regulated) genes from the 1 h, 3 h and 6 h dehydration-treated samples and a 24 h recovery samples, respectively. RNA-seq was validated by analyzing the expresson patterns of randomly selected 16 DEGs by quantitative real-time PCR. Photosynthesis, signal transduction, innate immune response, protein phosphorylation, response to water, response to biotic stimulus, and plant hormone signal transduction were the most significantly enriched GO categories amongst the DEGs. A total of 637 transcription factors were shown to be dehydration responsive. In addition, a number of genes involved in the metabolism and signaling of hormones were significantly affected by the dehydration stress. This dataset provides valuable information regarding the Pyrus betulaefolia transcriptome changes in response to dehydration and may promote identification and functional analysis of potential genes that could be used for improving drought tolerance via genetic engineering of non-model, but economically-important, perennial species.
Collapse
Affiliation(s)
- Kong-Qing Li
- College of Rural Development, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiao-Yong Xu
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Xiao-San Huang
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
161
|
Qin LX, Nie XY, Hu R, Li G, Xu WL, Li XB. Phosphorylation of serine residue modulates cotton Di19-1 and Di19-2 activities for responding to high salinity stress and abscisic acid signaling. Sci Rep 2016; 6:20371. [PMID: 26829353 PMCID: PMC4734338 DOI: 10.1038/srep20371] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 12/21/2015] [Indexed: 11/09/2022] Open
Abstract
Di19 (drought-induced protein 19) family is a novel type of Cys2/His2 zinc-finger proteins. In this study, we demonstrated that cotton Di19-1 and Di19-2 (GhDi19-1/-2) proteins could be phosphorylated in vitro by the calcium-dependent protein kinase (CDPK). Mutation of Ser to Ala in N-terminus of GhDi19-1/-2 led to the altered subcellular localization of the two proteins, but the constitutively activated form (Ser was mutated to Asp) of GhDi19-1/-2 still showed the nuclear localization. GhDi19-1/-2 overexpression transgenic Arabidopsis seedlings displayed the hypersensitivity to high salinity and abscisic acid (ABA). However, Ser site-mutated GhDi19-1(S116A) and GhDi19-2(S114A), and Ser and Thr double sites-mutated GhDi19-1(S/T-A/A) and GhDi19-2(S/T-A/A) transgenic Arabidopsis did not show the salt- and ABA-hypersensitive phenotypes. In contrast, overexpression of Thr site-mutated GhDi19-1(T114A) and GhDi19-2(T112A) in Arabidopsis still resulted in salt- and ABA-hypersensitivity phenotypes, like GhDi19-1/-2 transgenic lines. Overexpression of GhDi19-1/-2 and their constitutively activated forms in Atcpk11 background could recover the salt- and ABA-insensitive phenotype of the mutant. Thus, our results demonstrated that Ser phosphorylation (not Thr phosphorylation) is crucial for functionally activating GhDi19-1/-2 in response to salt stress and ABA signaling during early plant development, and GhDi19-1/-2 proteins may be downstream targets of CDPKs in ABA signal pathway.
Collapse
Affiliation(s)
- Li-Xia Qin
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China.,Institute of Cotton, Shanxi Academy of Agricultural Sciences, Yuncheng 044000, China
| | - Xiao-Ying Nie
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Rong Hu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Gang Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Wen-Liang Xu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Xue-Bao Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
162
|
Amalraj A, Luang S, Kumar MY, Sornaraj P, Eini O, Kovalchuk N, Bazanova N, Li Y, Yang N, Eliby S, Langridge P, Hrmova M, Lopato S. Change of function of the wheat stress-responsive transcriptional repressor TaRAP2.1L by repressor motif modification. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:820-32. [PMID: 26150199 PMCID: PMC11629789 DOI: 10.1111/pbi.12432] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 06/04/2015] [Accepted: 06/12/2015] [Indexed: 06/04/2023]
Abstract
Plants respond to abiotic stresses by changes in gene regulation, including stress-inducible expression of transcriptional activators and repressors. One of the best characterized families of drought-related transcription factors are dehydration-responsive element binding (DREB) proteins, known as C-repeat binding factors (CBF). The wheat DREB/CBF gene TaRAP2.1L was isolated from drought-affected tissues using a dehydration-responsive element (DRE) as bait in a yeast one-hybrid screen. TaRAP2.1L is induced by elevated abscisic acid, drought and cold. A C-terminal ethylene responsive factor-associated amphiphilic repression (EAR) motif, known to be responsible for active repression of target genes, was identified in the TaRAP2.1L protein. It was found that TaRAP2.1L has a unique selectivity of DNA-binding, which differs from that of DREB activators. This binding selectivity remains unchanged in a TaRAP2.1L variant with an inactivated EAR motif (TaRAP2.1Lmut). To study the role of the TaRAP2.1L repressor activity associated with the EAR motif in planta, transgenic wheat overexpressing native or mutated TaRAP2.1L was generated. Overexpression of TaRAP2.1L under constitutive and stress-inducible promoters in transgenic wheat and barley led to dwarfism and decreased frost tolerance. By contrast, constitutive overexpression of the TaRAP2.1Lmut gene had little or no negative influence on wheat development or grain yield. Transgenic lines with the TaRAP2.1Lmut transgene had an enhanced ability to survive frost and drought. The improved stress tolerance is attributed to up-regulation of several stress-related genes known to be downstream genes of DREB/CBF activators.
Collapse
Affiliation(s)
- Amritha Amalraj
- Australian Centre for Plant Functional GenomicsSchool of Agriculture Food and WineUniversity of AdelaideGlen OsmondSAAustralia
| | - Sukanya Luang
- Australian Centre for Plant Functional GenomicsSchool of Agriculture Food and WineUniversity of AdelaideGlen OsmondSAAustralia
| | - Manoj Yadav Kumar
- Australian Centre for Plant Functional GenomicsSchool of Agriculture Food and WineUniversity of AdelaideGlen OsmondSAAustralia
- Present address:
Department of BiotechnologyCollege of AgricultureSardar Vallabhbhai Patel University of Agriculture & TechnologyMeerut250110India
| | - Pradeep Sornaraj
- Australian Centre for Plant Functional GenomicsSchool of Agriculture Food and WineUniversity of AdelaideGlen OsmondSAAustralia
| | - Omid Eini
- Australian Centre for Plant Functional GenomicsSchool of Agriculture Food and WineUniversity of AdelaideGlen OsmondSAAustralia
- Present address:
Department of Plant ProtectionSchool of AgricultureUniversity of ZanjanZanjan(313)Iran
| | - Nataliya Kovalchuk
- Australian Centre for Plant Functional GenomicsSchool of Agriculture Food and WineUniversity of AdelaideGlen OsmondSAAustralia
| | - Natalia Bazanova
- Australian Centre for Plant Functional GenomicsSchool of Agriculture Food and WineUniversity of AdelaideGlen OsmondSAAustralia
| | - Yuan Li
- Australian Centre for Plant Functional GenomicsSchool of Agriculture Food and WineUniversity of AdelaideGlen OsmondSAAustralia
| | - Nannan Yang
- Australian Centre for Plant Functional GenomicsSchool of Agriculture Food and WineUniversity of AdelaideGlen OsmondSAAustralia
| | - Serik Eliby
- Australian Centre for Plant Functional GenomicsSchool of Agriculture Food and WineUniversity of AdelaideGlen OsmondSAAustralia
| | - Peter Langridge
- Australian Centre for Plant Functional GenomicsSchool of Agriculture Food and WineUniversity of AdelaideGlen OsmondSAAustralia
| | - Maria Hrmova
- Australian Centre for Plant Functional GenomicsSchool of Agriculture Food and WineUniversity of AdelaideGlen OsmondSAAustralia
| | - Sergiy Lopato
- Australian Centre for Plant Functional GenomicsSchool of Agriculture Food and WineUniversity of AdelaideGlen OsmondSAAustralia
| |
Collapse
|
163
|
Zhao J, Li M, Gu D, Liu X, Zhang J, Wu K, Zhang X, Teixeira da Silva JA, Duan J. Involvement of rice histone deacetylase HDA705 in seed germination and in response to ABA and abiotic stresses. Biochem Biophys Res Commun 2016; 470:439-444. [PMID: 26772883 DOI: 10.1016/j.bbrc.2016.01.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 01/04/2016] [Indexed: 10/22/2022]
Abstract
Histone acetylation and deacetylation play crucial roles in the modification of chromatin structure and regulation of gene expression in eukaryotes. Histone acetyltransferases (HATs) and histone deacetylases (HDACs) assist to maintain the balance of chromatin acetylation status. Previous studies showed that plant HDACs are key regulators involved in response to development and stresses. In this study, we examined the expression pattern and function of HDA705, a member of the RPD3/HDA1-type HDAC in rice. Overexpression of HDA705 in rice decreased ABA and salt stress resistance during seed germination. Delayed seed germination of HDA705 overexpression lines was associated with down-regulated expression of GA biosynthetic genes and up-regulation of ABA biosynthetic genes. Moreover, overexpression of HDA705 in rice enhanced osmotic stress resistance during the seedling stage. Our findings demonstrate that HDA705 may play a role in regulating seed germination and the response to abiotic stresses in rice.
Collapse
Affiliation(s)
- Jinhui Zhao
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Mingzhi Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Dachuan Gu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Xuncheng Liu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Jianxia Zhang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Kunlin Wu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Xinhua Zhang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | | | - Jun Duan
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.
| |
Collapse
|
164
|
Genome-wide analysis of the AP2/ERF family in Musa species reveals divergence and neofunctionalisation during evolution. Sci Rep 2016; 6:18878. [PMID: 26733055 PMCID: PMC4702079 DOI: 10.1038/srep18878] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/09/2015] [Indexed: 01/07/2023] Open
Abstract
AP2/ERF domain containing transcription factor super family is one of the important regulators in the plant kingdom. The involvement of AP2/ERF family members has been elucidated in various processes associated with plant growth, development as well as in response to hormones, biotic and abiotic stresses. In this study, we carried out genome-wide analysis to identify members of AP2/ERF family in Musa acuminata (A genome) and Musa balbisiana (B genome) and changes leading to neofunctionalisation of genes. Analysis identified 265 and 318 AP2/ERF encoding genes in M. acuminata and M. balbisiana respectively which were further classified into ERF, DREB, AP2, RAV and Soloist groups. Comparative analysis indicated that AP2/ERF family has undergone duplication, loss and divergence during evolution and speciation of the Musa A and B genomes. We identified nine genes which are up-regulated during fruit ripening and might be components of the regulatory machinery operating during ethylene-dependent ripening in banana. Tissue-specific expression analysis of the genes suggests that different regulatory mechanisms might be involved in peel and pulp ripening process through recruiting specific ERFs in these tissues. Analysis also suggests that MaRAV-6 and MaERF026 have structurally diverged from their M. balbisiana counterparts and have attained new functions during ripening.
Collapse
|
165
|
Yamamuro C, Zhu JK, Yang Z. Epigenetic Modifications and Plant Hormone Action. MOLECULAR PLANT 2016; 9:57-70. [PMID: 26520015 PMCID: PMC5575749 DOI: 10.1016/j.molp.2015.10.008] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 09/27/2015] [Accepted: 10/22/2015] [Indexed: 05/18/2023]
Abstract
The action of phytohormones in plants requires the spatiotemporal regulation of their accumulation and responses at various levels. Recent studies reveal an emerging relationship between the function of phytohormones and epigenetic modifications. In particular, evidence suggests that auxin biosynthesis, transport, and signal transduction is modulated by microRNAs and epigenetic factors such as histone modification, chromatin remodeling, and DNA methylation. Furthermore, some phytohormones have been shown to affect epigenetic modifications. These findings are shedding light on the mode of action of phytohormones and are opening up a new avenue of research on phytohormones as well as on the mechanisms regulating epigenetic modifications.
Collapse
Affiliation(s)
- Chizuko Yamamuro
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; Horticultural Biology and Metabolomics Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, PRC.
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
| | - Zhenbiao Yang
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| |
Collapse
|
166
|
Han Z, Yu H, Zhao Z, Hunter D, Luo X, Duan J, Tian L. AtHD2D Gene Plays a Role in Plant Growth, Development, and Response to Abiotic Stresses in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2016; 7:310. [PMID: 27066015 PMCID: PMC4815178 DOI: 10.3389/fpls.2016.00310] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 02/29/2016] [Indexed: 05/20/2023]
Abstract
The histone deacetylases play important roles in the regulation of gene expression and the subsequent control of a number of important biological processes, including those involved in the response to environmental stress. A specific group of histone deacetylase genes, HD2, is present in plants. In Arabidopsis, HD2s include HD2A, HD2B, HD2C, and HD2D. Previous research showed that HD2A, HD2B, and HD2C are more related in terms of expression and function, but not HD2D. In this report, we studied different aspects of AtHD2D in Arabidopsis with respect to plant response to drought and other abiotic stresses. Bioinformatics analysis indicates that HD2D is distantly related to other HD2 genes. Transient expression in Nicotiana benthamiana and stable expression in Arabidopsis of AtHD2D fused with gfp showed that AtHD2D was expressed in the nucleus. Overexpression of AtHD2D resulted in developmental changes including fewer main roots, more lateral roots, and a higher root:shoot ratio. Seed germination and plant flowering time were delayed in transgenic plants expressing AtHD2D, but these plants exhibited higher degrees of tolerance to abiotic stresses, including drought, salt, and cold stresses. Physiological studies indicated that the malondialdehyde (MDA) content was high in wild-type plants but in plants overexpressing HD2D the MDA level increased slowly in response to stress conditions of drought, cold, and salt stress. Furthermore, electrolyte leakage in leaf cells of wild type plants increased but remained stable in transgenic plants. Our results indicate that AtHD2D is unique among HD2 genes and it plays a role in plant growth and development regulation and these changes can modulate plant stress responses.
Collapse
Affiliation(s)
- Zhaofen Han
- College of Life Science, Northwest A & F UniversityYangling, China
| | - Huimin Yu
- Department of E-A Information Engineering, Liaoning Institute of Science and TechnologyBenxi, China
| | - Zhong Zhao
- College of Forestry, Northwest A & F UniversityYangling, China
- *Correspondence: Zhong Zhao
| | - David Hunter
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-food CanadaLondon, ON, Canada
| | - Xinjuan Luo
- College of Life Science, Northwest A & F UniversityYangling, China
| | - Jun Duan
- Key Laboratory of South China Agricultural Plant Genetics and Breeding, South China Botanical Garden, Chinese Academy of SciencesGuangzhou, China
| | - Lining Tian
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-food CanadaLondon, ON, Canada
- Lining Tian
| |
Collapse
|
167
|
Mehdi S, Derkacheva M, Ramström M, Kralemann L, Bergquist J, Hennig L. The WD40 Domain Protein MSI1 Functions in a Histone Deacetylase Complex to Fine-Tune Abscisic Acid Signaling. THE PLANT CELL 2016; 28:42-54. [PMID: 26704384 PMCID: PMC4746680 DOI: 10.1105/tpc.15.00763] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 11/17/2015] [Accepted: 12/19/2015] [Indexed: 05/19/2023]
Abstract
MSI1 belongs to a family of histone binding WD40-repeat proteins. Arabidopsis thaliana contains five genes encoding MSI1-like proteins, but their functions in diverse chromatin-associated complexes are poorly understood. Here, we show that MSI1 is part of a histone deacetylase complex. We copurified HISTONE DEACETYLASE19 (HDA19) with MSI1 and transcriptional regulatory SIN3-like proteins and provide evidence that MSI1 and HDA19 associate into the same complex in vivo. These data suggest that MSI1, HDA19, and HISTONE DEACETYLATION COMPLEX1 protein form a core complex that can integrate various SIN3-like proteins. We found that reduction of MSI1 or HDA19 causes upregulation of abscisic acid (ABA) receptor genes and hypersensitivity of ABA-responsive genes. The MSI1-HDA19 complex fine-tunes ABA signaling by binding to the chromatin of ABA receptor genes and by maintaining low levels of acetylation of histone H3 at lysine 9, thereby affecting the expression levels of ABA receptor genes. Reduced MSI1 or HDA19 levels led to increased tolerance to salt stress corresponding to the increased ABA sensitivity of gene expression. Together, our results reveal the presence of an MSI1-HDA19 complex that fine-tunes ABA signaling in Arabidopsis.
Collapse
MESH Headings
- Abscisic Acid/metabolism
- Abscisic Acid/pharmacology
- Acetylation/drug effects
- Adaptation, Physiological/drug effects
- Adaptation, Physiological/genetics
- Arabidopsis/drug effects
- Arabidopsis/genetics
- Arabidopsis/metabolism
- Arabidopsis Proteins/chemistry
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/metabolism
- Chromatin/metabolism
- Gene Expression Regulation, Plant/drug effects
- Genes, Plant
- Histone Deacetylases/metabolism
- Histones/metabolism
- Lysine/metabolism
- Models, Biological
- Protein Binding/drug effects
- Protein Structure, Tertiary
- Protein Subunits/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Sodium Chloride/pharmacology
- Stress, Physiological/drug effects
- Stress, Physiological/genetics
- Up-Regulation/drug effects
Collapse
Affiliation(s)
- Saher Mehdi
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-75007 Uppsala, Sweden
| | - Maria Derkacheva
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-75007 Uppsala, Sweden Department of Biology and Zurich-Basel Plant Science Center, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Margareta Ramström
- Department of Chemistry, Analytical Chemistry and Science for Life Laboratory, Uppsala University, SE-75124 Uppsala, Sweden
| | - Lejon Kralemann
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-75007 Uppsala, Sweden
| | - Jonas Bergquist
- Department of Chemistry, Analytical Chemistry and Science for Life Laboratory, Uppsala University, SE-75124 Uppsala, Sweden
| | - Lars Hennig
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-75007 Uppsala, Sweden
| |
Collapse
|
168
|
Hou J, Bai L, Xie Y, Liu X, Cui B. Biomarker discovery and gene expression responses in Lycopersicon esculentum root exposed to lead. JOURNAL OF HAZARDOUS MATERIALS 2015; 299:495-503. [PMID: 26252993 DOI: 10.1016/j.jhazmat.2015.07.054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 07/09/2015] [Accepted: 07/19/2015] [Indexed: 06/04/2023]
Abstract
Gene expression analysis has shown particular promise for the identification of molecular biomarkers that can be used for further evaluation of potential toxicity of chemicals present in agricultural soil. In the study, we focused on the development of molecular markers to detect Pb toxicity in agricultural soil. Using the results obtained from microarray analysis, twelve Pb-responsive genes were selected and tested in different Pb concentrations to examine their concentration-response characteristics using real-time quantitative polymerase chain reaction (RT-qPCR). All the Pb treatments set in our study could generally induce the differential expression of the 12 genes, while the lowest observable adverse effect concentration (LOAEC) of Pb for seed germination, root elongation, biomass and structural modification derived from 1,297, 177, 177, and 1,297 mg Pb/kg soil, respectively, suggesting that the transcriptional approach was more sensitive than the traditional end points of death, growth, and morphology for the evaluation of Pb toxicity. The relative expression of glycoalkaloid metabolism 1 (P=-0.790), ethylene-responsive transcription factor ERF017 (P=-0.686) and CASP-like protein 4C2 (P=-0.652) demonstrates a dose-dependent response with Pb content in roots, implying that the three genes can be used as sensitive bioindicators of Pb stress in Lycopersicon esculentum.
Collapse
Affiliation(s)
- Jing Hou
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Lili Bai
- School of Safety and Environmental Engineering, Capital University of Economics and Business, Beijing 100070, China
| | - Yujia Xie
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xinhui Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Baoshan Cui
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
169
|
Wang L, Wang C, Qin L, Liu W, Wang Y. ThERF1 regulates its target genes via binding to a novel cis-acting element in response to salt stress. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:838-47. [PMID: 25641039 DOI: 10.1111/jipb.12335] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 01/25/2015] [Indexed: 05/03/2023]
Abstract
Ethylene responsive factors (ERFs) are plant-specific transcription factors that are involved in a variety of biological processes. We previously demonstrated that an ERF gene from Tamarix hispida, ThERF1, encodes a protein binding to GCC-box and DRE motifs and negatively modulates abiotic stress tolerance. In the present study, microarray analysis was performed to study the genes regulated by ThERF1 on a genomic scale. There were 154 and 307 genes (respectively representing 134 and 260 unique genes) significantly up- and downregulated by ThERF1 under salt stress conditions, respectively. A novel motif, named TTG, was identified to be recognized by ThERF1, which commonly presents in the promoters of ThERF1-targeted genes. The TTG motif is also bound by other ERFs of a different subfamily from T. hispida and Arabidopsis, indicating that it is commonly recognized by ERF proteins. The binding affinities of ERFs to the TTG motif are significantly induced by salt stress. The TTG motif is more enriched than the GCC-box and DRE motifs in the promoters of ThERF1-targeted genes. Taken together, these studies suggested that the TTG motif plays an important role in the gene expression regulated by ERFs in response to salt stress.
Collapse
Affiliation(s)
- Liuqiang Wang
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin, 150040, China
| | - Chao Wang
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin, 150040, China
| | - Liping Qin
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Wenjin Liu
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin, 150040, China
| | - Yucheng Wang
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
| |
Collapse
|
170
|
Sanyal SK, Pandey A, Pandey GK. The CBL-CIPK signaling module in plants: a mechanistic perspective. PHYSIOLOGIA PLANTARUM 2015; 155:89-108. [PMID: 25953089 DOI: 10.1111/ppl.12344] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 04/04/2015] [Accepted: 04/07/2015] [Indexed: 05/21/2023]
Abstract
In a given environment, plants are constantly exposed to multitudes of stimuli. These stimuli are sensed and transduced to generate a diverse array of responses by several signal transduction pathways. Calcium (Ca2+ ) signaling is one such important pathway involved in transducing a large number of stimuli or signals in both animals and plants. Ca2+ engages a plethora of decoders to mediate signaling in plants. Among these groups of decoders, the sensor responder complex of calcineurin B-like protein (CBL) and CBL-interacting protein kinases (CIPKs) play a very significant role in transducing these signals. The signal transduction mechanism in most cases is phosphorylation events, but some structural role for the pair has also come to light recently. In this review, we discuss the structural nature of the sensor-responder duo; their mechanism of substrate phosphorylation and also their structural role in modulating targets. Moreover, the mechanism of complex formation and mechanistic role of protein phosphatases with CBL-CIPK module has been mentioned. A comparison of CBL-CIPK with other decoders of Ca2+ signaling in plants also signifies the relatedness and diversity in signaling pathways. Further an attempt has been made to compare this aspect of Ca2+ signaling pathways in different plant species to develop a holistic understanding of conservation of stimulus-response-coupling mediated by this Ca2+ -CBL-CIPK module.
Collapse
Affiliation(s)
- Sibaji K Sanyal
- Department of Plant Molecular Biology, University of Delhi South Campus, Dhaula Kuan, New Delhi, 110021, India
| | - Amita Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Dhaula Kuan, New Delhi, 110021, India
| | - Girdhar K Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Dhaula Kuan, New Delhi, 110021, India
| |
Collapse
|
171
|
Meng LS, Wang ZB, Yao SQ, Liu A. The ARF2-ANT-COR15A gene cascade regulates ABA-signaling-mediated resistance of large seeds to drought in Arabidopsis. J Cell Sci 2015; 128:3922-32. [PMID: 26395398 DOI: 10.1242/jcs.171207] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 09/14/2015] [Indexed: 01/29/2023] Open
Abstract
Seedlings of large-seeded plants are considered to be able to withstand abiotic stresses efficiently. The molecular mechanisms that underlie the involved signaling crosstalk between the large-seeded trait and abiotic tolerance are, however, largely unknown. Here, we demonstrate the molecular link that integrates plant abscisic acid (ABA) responses to drought stress into the regulation of seed mass. Both loss-of-function mutants of the Auxin Response Factor 2 (ARF2 encoding a transcription factor) and lines overexpressing AINTEGUMENTA (ANT; a transcription factor) under the 35S promoter exhibited large seed and drought-tolerant phenotypes as a result of abnormal ABA-auxin crosstalk signaling pathways in Arabidopsis. The target gene COLD-REGULATED15A (COR15a) was identified as participating in the regulation of seed development with ABA signaling through a negative regulation mechanism that is mediated by ANT. The molecular and genetic evidence presented indicate that ARF2, ANT and COR15A form an ABA-mediated signaling pathway to link modulation of seed mass with drought tolerance. These observations indicate that the ARF2 transcription factor serves as a molecular link that integrates plant ABA responses to drought stress into the regulation of seed mass.
Collapse
Affiliation(s)
- Lai-Sheng Meng
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, People's Republic of China
| | - Zhi-Bo Wang
- School of Bioengineering and Biotechnology, Tianshui Normal University, TianShui City 741001, People's Republic of China
| | - Shun-Qiao Yao
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, People's Republic of China
| | - Aizhong Liu
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, People's Republic of China
| |
Collapse
|
172
|
Müller M, Munné-Bosch S. Ethylene Response Factors: A Key Regulatory Hub in Hormone and Stress Signaling. PLANT PHYSIOLOGY 2015; 169:32-41. [PMID: 26103991 PMCID: PMC4577411 DOI: 10.1104/pp.15.00677] [Citation(s) in RCA: 386] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 06/22/2015] [Indexed: 05/18/2023]
Abstract
Ethylene is essential for many developmental processes and a key mediator of biotic and abiotic stress responses in plants. The ethylene signaling and response pathway includes Ethylene Response Factors (ERFs), which belong to the transcription factor family APETALA2/ERF. It is well known that ERFs regulate molecular response to pathogen attack by binding to sequences containing AGCCGCC motifs (the GCC box), a cis-acting element. However, recent studies suggest that several ERFs also bind to dehydration-responsive elements and act as a key regulatory hub in plant responses to abiotic stresses. Here, we review some of the recent advances in our understanding of the ethylene signaling and response pathway, with emphasis on ERFs and their role in hormone cross talk and redox signaling under abiotic stresses. We conclude that ERFs act as a key regulatory hub, integrating ethylene, abscisic acid, jasmonate, and redox signaling in the plant response to a number of abiotic stresses.
Collapse
Affiliation(s)
- Maren Müller
- Department of Plant Biology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Sergi Munné-Bosch
- Department of Plant Biology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
173
|
Geilen K, Böhmer M. Dynamic subnuclear relocalisation of WRKY40 in response to Abscisic acid in Arabidopsis thaliana. Sci Rep 2015; 5:13369. [PMID: 26293691 PMCID: PMC4642543 DOI: 10.1038/srep13369] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 07/23/2015] [Indexed: 11/20/2022] Open
Abstract
WRKY18, WRKY40 and WRKY60 are members of the WRKY transcription factor family and function as transcriptional regulators in ABA signal transduction in Arabidopsis thaliana. Here we show that WRKY18 and WRKY40, but not WRKY60, co-localise with PIF3, PIF4 and PHYB to Phytochrome B-containing nuclear bodies (PNBs). Localisation to the PNBs is phosphorylation-dependent and is inhibited by the general Ser/Thr-kinase inhibitor Staurosporine. Upon ABA treatment, WRKY40 relocalises from PNBs to the nucleoplasm in an OST1-dependent manner. This stimulus-induced relocalisation was not observed in response to other abiotic or biotic stimuli, including NaCl, MeJA or flg22 treatment. Bimolecular fluorescence complementation experiments indicate that while PIF3, PIF4 and PHYB physically interact in these bodies, PHYB, PIF3 and PIF4 do not interact with the two WRKY transcription factors, which may suggest a more general role for these bodies in regulation of transcriptional activity.
Collapse
Affiliation(s)
- Katja Geilen
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität, Münster, Germany
| | - Maik Böhmer
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität, Münster, Germany
| |
Collapse
|
174
|
Hübner S, Korol AB, Schmid KJ. RNA-Seq analysis identifies genes associated with differential reproductive success under drought-stress in accessions of wild barley Hordeum spontaneum. BMC PLANT BIOLOGY 2015; 15:134. [PMID: 26055625 PMCID: PMC4459662 DOI: 10.1186/s12870-015-0528-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 05/20/2015] [Indexed: 05/20/2023]
Abstract
BACKGROUND The evolutionary basis of reproductive success in different environments is of major interest in the study of plant adaptation. Since the reproductive stage is particularly sensitive to drought, genes affecting reproductive success during this stage are key players in the evolution of adaptive mechanisms. We used an ecological genomics approach to investigate the reproductive response of drought-tolerant and sensitive wild barley accessions originating from different habitats in the Levant. RESULTS We sequenced mRNA extracted from spikelets at the flowering stage in drought-treated and control plants. The barley genome was used for a reference-guided assembly and differential expression analysis. Our approach enabled to detect biological processes affecting grain production under drought stress. We detected novel candidate genes and differentially expressed alleles associated with drought tolerance. Drought associated genes were shown to be more conserved than non-associated genes, and drought-tolerance genes were found to evolve more rapidly than other drought associated genes. CONCLUSIONS We show that reproductive success under drought stress is not a habitat-specific trait but a shared physiological adaptation that appeared to evolve recently in the evolutionary history of wild barley. Exploring the genomic basis of reproductive success under stress in crop wild progenitors is expected to have considerable ecological and economical applications.
Collapse
Affiliation(s)
- Sariel Hübner
- Department of Evolutionary and Environmental Biology, University of Haifa, Mt. Carmel 31905, Haifa, Israel.
- Current address: Department of Botany, University of British Columbia, Vancouver, Canada.
| | - Abraham B Korol
- Department of Evolutionary and Environmental Biology, University of Haifa, Mt. Carmel 31905, Haifa, Israel.
| | - Karl J Schmid
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, D-70593, Stuttgart, Germany.
| |
Collapse
|
175
|
Zhou X, Hao H, Zhang Y, Bai Y, Zhu W, Qin Y, Yuan F, Zhao F, Wang M, Hu J, Xu H, Guo A, Zhao H, Zhao Y, Cao C, Yang Y, Schumaker KS, Guo Y, Xie CG. SOS2-LIKE PROTEIN KINASE5, an SNF1-RELATED PROTEIN KINASE3-Type Protein Kinase, Is Important for Abscisic Acid Responses in Arabidopsis through Phosphorylation of ABSCISIC ACID-INSENSITIVE5. PLANT PHYSIOLOGY 2015; 168:659-76. [PMID: 25858916 PMCID: PMC4453773 DOI: 10.1104/pp.114.255455] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 04/04/2015] [Indexed: 05/18/2023]
Abstract
Abscisic acid (ABA) plays an essential role in seed germination. In this study, we demonstrate that one SNF1-related protein kinase3-type protein kinase, SOS2-like protein kinase5 (PKS5), is involved in ABA signal transduction via the phosphorylation of an interacting protein, abscisic acid-insensitive5 (ABI5). We found that pks5-3 and pks5-4, two previously identified PKS5 superactive kinase mutants with point mutations in the PKS5 FISL/NAF (a conserved peptide that is necessary for interaction with SOS3 or SOS3-like calcium binding proteins) motif and the kinase domain, respectively, are hypersensitive to ABA during seed germination. PKS5 was found to interact with ABI5 in yeast (Saccharomyces cerevisiae), and this interaction was further confirmed in planta using bimolecular fluorescence complementation. Genetic studies revealed that ABI5 is epistatic to PKS5. PKS5 phosphorylates a serine (Ser) residue at position 42 in ABI5 and regulates ABA-responsive gene expression. This phosphorylation was induced by ABA in vivo and transactivated ABI5. Expression of ABI5, in which Ser-42 was mutated to alanine, could not fully rescue the ABA-insensitive phenotypes of the abi5-8 and pks5-4abi5-8 mutants. In contrast, mutating Ser-42 to aspartate rescued the ABA insensitivity of these mutants. These data demonstrate that PKS5-mediated phosphorylation of ABI5 at Ser-42 is critical for the ABA regulation of seed germination and gene expression in Arabidopsis (Arabidopsis thaliana).
Collapse
Affiliation(s)
- Xiaona Zhou
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China (X.Z., H.H., Y.B., W.Z., F.Y., M.W., J.H., H.X., A.G., H.Z., C.C., C.G.X.);State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (Yu.Z., Y.Q., F.Z., Ya.Z., Y.Y., Y.G.); andSchool of Plant Sciences, University of Arizona, Tucson, Arizona 85721 (K.S.S.)
| | - Hongmei Hao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China (X.Z., H.H., Y.B., W.Z., F.Y., M.W., J.H., H.X., A.G., H.Z., C.C., C.G.X.);State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (Yu.Z., Y.Q., F.Z., Ya.Z., Y.Y., Y.G.); andSchool of Plant Sciences, University of Arizona, Tucson, Arizona 85721 (K.S.S.)
| | - Yuguo Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China (X.Z., H.H., Y.B., W.Z., F.Y., M.W., J.H., H.X., A.G., H.Z., C.C., C.G.X.);State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (Yu.Z., Y.Q., F.Z., Ya.Z., Y.Y., Y.G.); andSchool of Plant Sciences, University of Arizona, Tucson, Arizona 85721 (K.S.S.)
| | - Yili Bai
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China (X.Z., H.H., Y.B., W.Z., F.Y., M.W., J.H., H.X., A.G., H.Z., C.C., C.G.X.);State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (Yu.Z., Y.Q., F.Z., Ya.Z., Y.Y., Y.G.); andSchool of Plant Sciences, University of Arizona, Tucson, Arizona 85721 (K.S.S.)
| | - Wenbo Zhu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China (X.Z., H.H., Y.B., W.Z., F.Y., M.W., J.H., H.X., A.G., H.Z., C.C., C.G.X.);State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (Yu.Z., Y.Q., F.Z., Ya.Z., Y.Y., Y.G.); andSchool of Plant Sciences, University of Arizona, Tucson, Arizona 85721 (K.S.S.)
| | - Yunxia Qin
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China (X.Z., H.H., Y.B., W.Z., F.Y., M.W., J.H., H.X., A.G., H.Z., C.C., C.G.X.);State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (Yu.Z., Y.Q., F.Z., Ya.Z., Y.Y., Y.G.); andSchool of Plant Sciences, University of Arizona, Tucson, Arizona 85721 (K.S.S.)
| | - Feifei Yuan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China (X.Z., H.H., Y.B., W.Z., F.Y., M.W., J.H., H.X., A.G., H.Z., C.C., C.G.X.);State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (Yu.Z., Y.Q., F.Z., Ya.Z., Y.Y., Y.G.); andSchool of Plant Sciences, University of Arizona, Tucson, Arizona 85721 (K.S.S.)
| | - Feiyi Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China (X.Z., H.H., Y.B., W.Z., F.Y., M.W., J.H., H.X., A.G., H.Z., C.C., C.G.X.);State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (Yu.Z., Y.Q., F.Z., Ya.Z., Y.Y., Y.G.); andSchool of Plant Sciences, University of Arizona, Tucson, Arizona 85721 (K.S.S.)
| | - Mengyao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China (X.Z., H.H., Y.B., W.Z., F.Y., M.W., J.H., H.X., A.G., H.Z., C.C., C.G.X.);State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (Yu.Z., Y.Q., F.Z., Ya.Z., Y.Y., Y.G.); andSchool of Plant Sciences, University of Arizona, Tucson, Arizona 85721 (K.S.S.)
| | - Jingjiang Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China (X.Z., H.H., Y.B., W.Z., F.Y., M.W., J.H., H.X., A.G., H.Z., C.C., C.G.X.);State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (Yu.Z., Y.Q., F.Z., Ya.Z., Y.Y., Y.G.); andSchool of Plant Sciences, University of Arizona, Tucson, Arizona 85721 (K.S.S.)
| | - Hong Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China (X.Z., H.H., Y.B., W.Z., F.Y., M.W., J.H., H.X., A.G., H.Z., C.C., C.G.X.);State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (Yu.Z., Y.Q., F.Z., Ya.Z., Y.Y., Y.G.); andSchool of Plant Sciences, University of Arizona, Tucson, Arizona 85721 (K.S.S.)
| | - Aiguang Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China (X.Z., H.H., Y.B., W.Z., F.Y., M.W., J.H., H.X., A.G., H.Z., C.C., C.G.X.);State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (Yu.Z., Y.Q., F.Z., Ya.Z., Y.Y., Y.G.); andSchool of Plant Sciences, University of Arizona, Tucson, Arizona 85721 (K.S.S.)
| | - Huixian Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China (X.Z., H.H., Y.B., W.Z., F.Y., M.W., J.H., H.X., A.G., H.Z., C.C., C.G.X.);State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (Yu.Z., Y.Q., F.Z., Ya.Z., Y.Y., Y.G.); andSchool of Plant Sciences, University of Arizona, Tucson, Arizona 85721 (K.S.S.)
| | - Yang Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China (X.Z., H.H., Y.B., W.Z., F.Y., M.W., J.H., H.X., A.G., H.Z., C.C., C.G.X.);State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (Yu.Z., Y.Q., F.Z., Ya.Z., Y.Y., Y.G.); andSchool of Plant Sciences, University of Arizona, Tucson, Arizona 85721 (K.S.S.)
| | - Cuiling Cao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China (X.Z., H.H., Y.B., W.Z., F.Y., M.W., J.H., H.X., A.G., H.Z., C.C., C.G.X.);State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (Yu.Z., Y.Q., F.Z., Ya.Z., Y.Y., Y.G.); andSchool of Plant Sciences, University of Arizona, Tucson, Arizona 85721 (K.S.S.)
| | - Yongqing Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China (X.Z., H.H., Y.B., W.Z., F.Y., M.W., J.H., H.X., A.G., H.Z., C.C., C.G.X.);State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (Yu.Z., Y.Q., F.Z., Ya.Z., Y.Y., Y.G.); andSchool of Plant Sciences, University of Arizona, Tucson, Arizona 85721 (K.S.S.)
| | - Karen S Schumaker
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China (X.Z., H.H., Y.B., W.Z., F.Y., M.W., J.H., H.X., A.G., H.Z., C.C., C.G.X.);State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (Yu.Z., Y.Q., F.Z., Ya.Z., Y.Y., Y.G.); andSchool of Plant Sciences, University of Arizona, Tucson, Arizona 85721 (K.S.S.)
| | - Yan Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China (X.Z., H.H., Y.B., W.Z., F.Y., M.W., J.H., H.X., A.G., H.Z., C.C., C.G.X.);State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (Yu.Z., Y.Q., F.Z., Ya.Z., Y.Y., Y.G.); andSchool of Plant Sciences, University of Arizona, Tucson, Arizona 85721 (K.S.S.)
| | - Chang Gen Xie
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China (X.Z., H.H., Y.B., W.Z., F.Y., M.W., J.H., H.X., A.G., H.Z., C.C., C.G.X.);State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (Yu.Z., Y.Q., F.Z., Ya.Z., Y.Y., Y.G.); andSchool of Plant Sciences, University of Arizona, Tucson, Arizona 85721 (K.S.S.)
| |
Collapse
|
176
|
Wang X, Han H, Yan J, Chen F, Wei W. A New AP2/ERF Transcription Factor from the Oil Plant Jatropha curcas Confers Salt and Drought Tolerance to Transgenic Tobacco. Appl Biochem Biotechnol 2015; 176:582-97. [PMID: 25935218 DOI: 10.1007/s12010-015-1597-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 03/26/2015] [Indexed: 10/23/2022]
Abstract
Jatropha curcas L. is a drought and salt-tolerant oil plant widely used for various purposes and has considerable potential as a diesel/kerosene substitute or extender. Understanding the molecular mechanisms underlie that the response to various biotic and abiotic stresses of this plant could be important to crop improvement efforts. Here, a new AP2/ERF-type transcription factor gene, named JcERF2, was isolated from the leaves of J. curcas. Sequence analysis showed that the JcERF2 gene contains a 759-bp open reading frame encoding a polypeptide of 252 amino acids. The predicted JcERF2 protein contained a conserved DNA-binding domain (the AP2/ERF domain) with 58 amino acids. The JcERF2 protein is highly homologous with other ERFs. JcERF2 was localized in the nucleus by analysis with a JcERF2-green fluorescent protein (GFP) fusion protein. Quantitative polymerase chain reaction (qPCR) analysis showed that JcERF2 was induced by drought, salt, abscisic acid, and ethylene. Overexpression of JcERF2 in transgenic tobacco plants enhanced the expression of biotic and abiotic stress-related genes, increased the accumulation of free proline and soluble carbohydrates, and conferred tolerance to drought and salt stresses compared to the wild type (WT). Taken together, the JcERF2 gene is a novel AP2/ERF transcription factor involved in plant response to environmental factors, which can be used as a potential candidate gene for genetic engineering of crops.
Collapse
Affiliation(s)
- Xuehua Wang
- School of Life Sciences and Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Sichuan University, Chengdu, China
| | | | | | | | | |
Collapse
|
177
|
Dong L, Cheng Y, Wu J, Cheng Q, Li W, Fan S, Jiang L, Xu Z, Kong F, Zhang D, Xu P, Zhang S. Overexpression of GmERF5, a new member of the soybean EAR motif-containing ERF transcription factor, enhances resistance to Phytophthora sojae in soybean. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2635-47. [PMID: 25779701 DOI: 10.1093/jxb/erv078] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Phytophthora root and stem rot of soybean [Glycine max (L.) Merr.], caused by Phytophthora sojae Kaufmann and Gerdemann, is a destructive disease throughout the soybean planting regions in the world. Here, we report insights into the function and underlying mechanisms of a novel ethylene response factor (ERF) in soybean, namely GmERF5, in host responses to P. sojae. GmERF5-overexpressing transgenic soybean exhibited significantly enhanced resistance to P. sojae and positively regulated the expression of the PR10, PR1-1, and PR10-1 genes. Sequence analysis suggested that GmERF5 contains an AP2/ERF domain of 58 aa and a conserved ERF-associated amphiphilic repression (EAR) motif in its C-terminal region. Following stress treatments, GmERF5 was significantly induced by P. sojae, ethylene (ET), abscisic acid (ABA), and salicylic acid (SA). The activity of the GmERF5 promoter (GmERF5P) was upregulated in tobacco leaves with ET, ABA, Phytophthora nicotianae, salt, and drought treatments, suggesting that GmERF5 could be involved not only in the induced defence response but also in the ABA-mediated pathway of salt and drought tolerance. GmERF5 could bind to the GCC-box element and act as a repressor of gene transcription. It was targeted to the nucleus when transiently expressed in Arabidopsis protoplasts. GmERF5 interacted with a basic helix-loop-helix transcription factor (GmbHLH) and eukaryotic translation initiation factor (GmEIF) both in yeast cells and in planta. To the best of our knowledge, GmERF5 is the first soybean EAR motif-containing ERF transcription factor demonstrated to be involved in the response to pathogen infection.
Collapse
Affiliation(s)
- Lidong Dong
- Soybean Research Institute, Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Yingxin Cheng
- Soybean Research Institute, Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Junjiang Wu
- Soybean Research Institute, Heilongjiang Academy of Agricultural Sciences; Collaborative Innovation Center of Grain Production Capacity Improvement in Heilongjiang Province, Harbin, Heilongjiang 150086, PR China
| | - Qun Cheng
- Soybean Research Institute, Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Wenbin Li
- Soybean Research Institute, Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Sujie Fan
- Soybean Research Institute, Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Liangyu Jiang
- Soybean Research Institute, Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Zhaolong Xu
- Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, PR China
| | - Fanjiang Kong
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, Heilongjiang 150081, PR China
| | - Dayong Zhang
- Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, PR China
| | - Pengfei Xu
- Soybean Research Institute, Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Shuzhen Zhang
- Soybean Research Institute, Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| |
Collapse
|
178
|
Li J, Cai W. A ginseng PgTIP1 gene whose protein biological activity related to Ser(128) residue confers faster growth and enhanced salt stress tolerance in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 234:74-85. [PMID: 25804811 DOI: 10.1016/j.plantsci.2015.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 02/06/2015] [Accepted: 02/08/2015] [Indexed: 05/14/2023]
Abstract
Water movement across cellular membranes is mostly regulated by aquaporins. A tonoplast intrinsic protein PgTIP1 from Panax ginseng has been found to play an important role in plant growth and development, and also in the response of plants to abiotic stress. However, the regulation of its function and activity remains unknown. To answer this question, mutated forms of PgTIP1 were made by replacing Ser(128) with Ala (named S128A) or Asp (named S128D), and also by replacing Thr(54) with Ala (named T54A) or Asp (named T54D). Then, wild type or mutated PgTIP1 was expressed in yeast and water transport was monitored in protoplasts. The substitution of Ser(128) abolished the water channel activity of PgTIP1, while the substitution of Thr(54) did not inhibit its activity. Moreover, the overexpression of PgTIP1 but not S128A or S128D in Arabidopsis significantly increased plant growth as determined by biomass production, it also had a beneficial effect on salt stress tolerance. Importantly, the overexpression of PgTIP1 led to the altered expression of stress-related genes, which made the plants more tolerant to salt stress. Our results demonstrated that PgTIP1 conferred faster growth and enhanced tolerance to salt in Arabidopsis, and that its biological activity related to Ser(128) residue.
Collapse
Affiliation(s)
- Jia Li
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China.
| | - Weiming Cai
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China.
| |
Collapse
|
179
|
Tian Z, He Q, Wang H, Liu Y, Zhang Y, Shao F, Xie C. The Potato ERF Transcription Factor StERF3 Negatively Regulates Resistance to Phytophthora infestans and Salt Tolerance in Potato. PLANT & CELL PHYSIOLOGY 2015; 56:992-1005. [PMID: 25681825 DOI: 10.1093/pcp/pcv025] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 02/07/2015] [Indexed: 05/07/2023]
Abstract
Ethylene response factors (ERFs) are unique to the plant kingdom and play crucial roles in plant response to various biotic and abiotic stresses. We show here that a potato StERF3, which contains an ERF-associated amphiphilic repression (EAR) motif in its C-terminal region, negatively regulates resistance to Phytophthora infestans and salt tolerance in potato. The StERF3 promoter responds to induction by salicylic acid, ABA ethylene and NaCl, as well as P. infestans, the causal agent of potato late blight disease. StERF3 could bind to the GCC box element of the HIS3 promoter and activate transcription of HIS3 in yeast cells. Importantly, silencing of StERF3 in potato produced an enhanced foliage resistance to P. infestans and elevated plant tolerance to NaCl stress accompanied by the activation of defense-related genes (PR1, NPR1 and WRKY1). In contrast, StERF3-overexpressing plants showed reduced expression of these defense-related genes and enhanced susceptibility to P. infestans, suggesting that StERF3 functions as a negative regulator of downstream defense- and/or stress-related genes in potato. StERF3 is localized to the nucleus. Interestingly, yeast two-hybrid assay and a bimolecular fluorescence complementation (BiFC) test clarified that StERF3 could interact with other proteins in the cytoplasm which may lead to its re-localization between the nucleus and cytoplasm, revealing a novel means of StERF3 regulation. Taken together, these data provide new insights into the mechanism underlying how StERF3 negatively regulates late blight resistance and abiotic tolerance in potato and may have a potential use in engineering late blight resistance in potato.
Collapse
Affiliation(s)
- Zhendong Tian
- Key Laboratory of Horticultural Plant Biology (HAU), Ministry of Education, National Center for Vegetable Improvement (Central China), Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Qin He
- Key Laboratory of Horticultural Plant Biology (HAU), Ministry of Education, National Center for Vegetable Improvement (Central China), Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Haixia Wang
- Key Laboratory of Horticultural Plant Biology (HAU), Ministry of Education, National Center for Vegetable Improvement (Central China), Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Ying Liu
- Key Laboratory of Horticultural Plant Biology (HAU), Ministry of Education, National Center for Vegetable Improvement (Central China), Huazhong Agricultural University, Wuhan, Hubei, 430070, China Present address: Science and Technology School of Shiyan City, Danjiangkou, Shiyan City, Hubei Province, 442701, China
| | - Ying Zhang
- Key Laboratory of Horticultural Plant Biology (HAU), Ministry of Education, National Center for Vegetable Improvement (Central China), Huazhong Agricultural University, Wuhan, Hubei, 430070, China Present address: Shanghai ChemPartner Co., LTD., Shanghai, 201203, China
| | - Fang Shao
- Key Laboratory of Horticultural Plant Biology (HAU), Ministry of Education, National Center for Vegetable Improvement (Central China), Huazhong Agricultural University, Wuhan, Hubei, 430070, China Present address: Agricultural Bureau of the Laiwu City, Shandong Province, 271100, China
| | - Conghua Xie
- Key Laboratory of Horticultural Plant Biology (HAU), Ministry of Education, National Center for Vegetable Improvement (Central China), Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| |
Collapse
|
180
|
Yang CL, Liang S, Wang HY, Han LB, Wang FX, Cheng HQ, Wu XM, Qu ZL, Wu JH, Xia GX. Cotton major latex protein 28 functions as a positive regulator of the ethylene responsive factor 6 in defense against Verticillium dahliae. MOLECULAR PLANT 2015; 8:399-411. [PMID: 25704161 DOI: 10.1016/j.molp.2014.11.023] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 11/06/2014] [Accepted: 11/12/2014] [Indexed: 05/19/2023]
Abstract
In this study, we identified a defense-related major latex protein (MLP) from upland cotton (designated GhMLP28) and investigated its functional mechanism. GhMLP28 transcripts were ubiquitously present in cotton plants, with higher accumulation in the root. Expression of the GhMLP28 gene was induced by Verticillium dahliae inoculation and was responsive to defense signaling molecules, including ethylene, jasmonic acid, and salicylic acid. Knockdown of GhMLP28 expression by virus-induced gene silencing resulted in increased susceptibility of cotton plants to V. dahliae infection, while ectopic overexpression of GhMLP28 in tobacco improved the disease tolerance of the transgenic plants. Further analysis revealed that GhMLP28 interacted with cotton ethylene response factor 6 (GhERF6) and facilitated the binding of GhERF6 to GCC-box element. Transient expression assay demonstrated that GhMLP28 enhanced the transcription factor activity of GhERF6, which led to the augmented expression of some GCC-box genes. GhMLP28 proteins were located in both the nucleus and cytoplasm and their nuclear distribution was dependent on the presence of GhERF6. Collectively, these results demonstrate that GhMLP28 acts as a positive regulator of GhERF6, and synergetic actions of the two proteins may contribute substantially to protection against V. dahliae infection in cotton plants.
Collapse
Affiliation(s)
- Chun-Lin Yang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Plant Genomics, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shan Liang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Plant Genomics, Beijing 100101, China
| | - Hai-Yun Wang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Plant Genomics, Beijing 100101, China
| | - Li-Bo Han
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Plant Genomics, Beijing 100101, China
| | - Fu-Xin Wang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Plant Genomics, Beijing 100101, China
| | - Huan-Qing Cheng
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Plant Genomics, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Min Wu
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Plant Genomics, Beijing 100101, China
| | - Zhan-Liang Qu
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Plant Genomics, Beijing 100101, China
| | - Jia-He Wu
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Plant Genomics, Beijing 100101, China.
| | - Gui-Xian Xia
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Plant Genomics, Beijing 100101, China.
| |
Collapse
|
181
|
Li N, Sun L, Zhang L, Song Y, Hu P, Li C, Hao FS. AtrbohD and AtrbohF negatively regulate lateral root development by changing the localized accumulation of superoxide in primary roots of Arabidopsis. PLANTA 2015; 241:591-602. [PMID: 25399352 DOI: 10.1007/s00425-014-2204-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 11/04/2014] [Indexed: 05/06/2023]
Abstract
NADPH oxidase AtrbohD an d AtrbohF negatively modulate lateral root development by changing the peroxidase activity and increasing the local generation of superoxide in primary roots of Arabidopsis in an auxin-independent manner. NADPH oxidase subunits AtrbohD and AtrbohF play pivotal roles in regulating growth, development and stress responses in Arabidopsis. However, whether they modulate lateral root (LR) formation has not yet been addressed, and the detailed mechanisms underlying the process remain unanswered. Here, we show that two null double mutants atrbohD1/F1 and atrbohD2/F2, in which both AtrbohD and AtrbohF genes are disrupted, had remarkably higher LR density than wild-type (WT), or the single mutant atrbohD1 and atrbohF1. Compared to WT, the double mutants exhibited early emerged LRs and enhanced density of lateral root primordia (LRP). Unexpectedly, the production of superoxide (O2 (-)), but not hydrogen peroxide, in the mature area of the primary root containing LRs significantly increased in the double mutants relative to that in WT. Further experiments revealed that the local accumulation of O2 (-) led to the enhancement of LR density in the double mutants. Moreover, the deficiency of AtrbohD and AtrbohF caused a marked increase in peroxidase activity in the mature root zone, which contributed to the localized accumulation of O2 (-) and the elevated LR density in the double mutants. Furthermore, the double mutants were not sensitive to exogenous auxin naphthalene acetic acid or auxin transport inhibitor 1-N-naphthylphthalamic acid in terms of LR formation. The auxin response of LRP in vivo in atrbohD1/F1 was also similar to that in WT. Taken together, these results suggest that AtrbohD and AtrbohF negatively modulate LR development by controlling the local generation of superoxide in an auxin-independent manner. These findings provide new insights into the mechanisms of NADPH oxidase-mediated regulation of LR branching in Arabidopsis.
Collapse
Affiliation(s)
- Ning Li
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, College of Life Sciences, Henan University, Jinming Street, Kaifeng, 475004, Henan, China
| | | | | | | | | | | | | |
Collapse
|
182
|
An X, Chen J, Zhang J, Liao Y, Dai L, Wang B, Liu L, Peng D. Transcriptome profiling and identification of transcription factors in ramie (Boehmeria nivea L. Gaud) in response to PEG treatment, using illumina paired-end sequencing technology. Int J Mol Sci 2015; 16:3493-511. [PMID: 25658800 PMCID: PMC4346909 DOI: 10.3390/ijms16023493] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 01/26/2015] [Accepted: 01/28/2015] [Indexed: 12/04/2022] Open
Abstract
Ramie (Boehmeria nivea L. Gaud), commonly known as China grass, is a perennial bast fiber plant of the Urticaceae. In China, ramie farming, industry, and trade provide income for about five million people. Drought stress severely affects ramie stem growth and causes a dramatic decrease in ramie fiber production. There is a need to enhance ramie’s tolerance to drought stress. However, the drought stress regulatory mechanism in ramie remains unknown. Water stress imposed by polyethylene glycol (PEG) is a common and convenient method to evaluate plant drought tolerance. In this study, transcriptome analysis of cDNA collections from ramie subjected to PEG treatment was conducted using Illumina paired-end sequencing, which generated 170 million raw sequence reads. Between leaves and roots subjected to 24 (L2 and R2) and 72 (L3 and R3) h of PEG treatment, 16,798 genes were differentially expressed (9281 in leaves and 8627 in roots). Among these, 25 transcription factors (TFs) from the AP2 (3), MYB (6), NAC (9), zinc finger (5), and bZIP (2) families were considered to be associated with drought stress. The identified TFs could be used to further investigate drought adaptation in ramie.
Collapse
Affiliation(s)
- Xia An
- Key Laboratory of Crop Ecophysiology and Farming Systems in the Middle Reaches of the Yangtze River, Ministry of Agriculture, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jie Chen
- Key Laboratory of Crop Ecophysiology and Farming Systems in the Middle Reaches of the Yangtze River, Ministry of Agriculture, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jingyu Zhang
- Key Laboratory of Crop Ecophysiology and Farming Systems in the Middle Reaches of the Yangtze River, Ministry of Agriculture, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yiwen Liao
- Key Laboratory of Crop Ecophysiology and Farming Systems in the Middle Reaches of the Yangtze River, Ministry of Agriculture, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Lunjin Dai
- Key Laboratory of Crop Ecophysiology and Farming Systems in the Middle Reaches of the Yangtze River, Ministry of Agriculture, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Bo Wang
- Key Laboratory of Crop Ecophysiology and Farming Systems in the Middle Reaches of the Yangtze River, Ministry of Agriculture, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Lijun Liu
- Key Laboratory of Crop Ecophysiology and Farming Systems in the Middle Reaches of the Yangtze River, Ministry of Agriculture, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Dingxiang Peng
- Key Laboratory of Crop Ecophysiology and Farming Systems in the Middle Reaches of the Yangtze River, Ministry of Agriculture, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
183
|
Wang HLV, Dinwiddie BL, Lee H, Chekanova JA. Stress-induced endogenous siRNAs targeting regulatory intron sequences in Brachypodium. RNA (NEW YORK, N.Y.) 2015; 21:145-63. [PMID: 25480817 PMCID: PMC4338343 DOI: 10.1261/rna.047662.114] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Exposure to abiotic stresses triggers global changes in the expression of thousands of eukaryotic genes at the transcriptional and post-transcriptional levels. Small RNA (smRNA) pathways and splicing both function as crucial mechanisms regulating stress-responsive gene expression. However, examples of smRNAs regulating gene expression remain largely limited to effects on mRNA stability, translation, and epigenetic regulation. Also, our understanding of the networks controlling plant gene expression in response to environmental changes, and examples of these regulatory pathways intersecting, remains limited. Here, to investigate the role of smRNAs in stress responses we examined smRNA transcriptomes of Brachypodium distachyon plants subjected to various abiotic stresses. We found that exposure to different abiotic stresses specifically induced a group of novel, endogenous small interfering RNAs (stress-induced, UTR-derived siRNAs, or sutr-siRNAs) that originate from the 3' UTRs of a subset of coding genes. Our bioinformatics analyses predicted that sutr-siRNAs have potential regulatory functions and that over 90% of sutr-siRNAs target intronic regions of many mRNAs in trans. Importantly, a subgroup of these sutr-siRNAs target the important intron regulatory regions, such as branch point sequences, that could affect splicing. Our study indicates that in Brachypodium, sutr-siRNAs may affect splicing by masking or changing accessibility of specific cis-elements through base-pairing interactions to mediate gene expression in response to stresses. We hypothesize that this mode of regulation of gene expression may also serve as a general mechanism for regulation of gene expression in plants and potentially in other eukaryotes.
Collapse
Affiliation(s)
- Hsiao-Lin V Wang
- School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri 64110, USA
| | - Brandon L Dinwiddie
- School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri 64110, USA
| | - Herman Lee
- School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri 64110, USA
| | - Julia A Chekanova
- School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri 64110, USA
| |
Collapse
|
184
|
Wang X, Liu S, Tian H, Wang S, Chen JG. The Small Ethylene Response Factor ERF96 is Involved in the Regulation of the Abscisic Acid Response in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2015; 6:1064. [PMID: 26635862 PMCID: PMC4659910 DOI: 10.3389/fpls.2015.01064] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 11/16/2015] [Indexed: 05/22/2023]
Abstract
Ethylene regulates many aspects of plant growth and development including seed germination, leaf senescence, and fruit ripening, and of plant responses to environmental stimuli including both biotic and abiotic stresses. Ethylene response factors (ERFs) are plant-specific transcription factors and are a subfamily of the AP2 (APETALA2)/ERF transcription factor family. The function of many members in this large gene family remains largely unknown. ERF96, a member of the Group IX ERF family transcription factors, has recently been shown to be a transcriptional activator that is involved in plant defense response in Arabidopsis. Here we provide evidence that ERF96 is a positive regulator of abscisic acid (ABA) responses. Bioinformatics analysis indicated that there are a total four small ERFs in Arabidopsis including ERF95, ERF96, ERF97, and ERF98, and that ERF96 forms a cluster with ERF95 and ERF97. By using quantitative RT-PCR, we found that ERF96 is expressed in all tissues and organs examined except roots, with relatively high expression in flowers and seeds. Results from the protoplast transfection assay indicated that the EDLL motif-containing C-terminal domain is responsible for ERF96's transcriptional activity. Although loss-of-function mutant of ERF96 was morphologically similar to wild type plants, transgenic plants overexpressing ERF96 had smaller rosette size and were delayed in flowering time. In ABA sensitivity assays, we found that ERF96 overexpression plants were hypersensitive to ABA in terms of ABA inhibition of seed germination, early seedling development and root elongation. Consistent with these observations, elevated transcript levels of some ABA-responsive genes including RD29A, ABI5, ABF3, ABF4, P5CS, and COR15A were observed in the transgenic plants in the presence of ABA. However, in the absence of ABA treatment, the transcript levels of these ABA-responsive genes remained largely unchanged. Our experiments also showed that water loss in ERF96 overexpression plants was slower than that in Col wild type plants. Stomatal closure assays indicated that ERF96 overexpression plants had reduced stomatal aperture in the presence of ABA. Taken together, our results suggest that ERF96 positively regulates ABA responses in Arabidopsis.
Collapse
Affiliation(s)
- Xiaoping Wang
- Key Laboratory of Molecular Epigenetics of Ministry of Education and Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Shanda Liu
- Key Laboratory of Molecular Epigenetics of Ministry of Education and Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Hainan Tian
- Key Laboratory of Molecular Epigenetics of Ministry of Education and Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Shucai Wang
- Key Laboratory of Molecular Epigenetics of Ministry of Education and Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
- *Correspondence: Shucai Wang,
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| |
Collapse
|
185
|
Zhang YX, Yu D, Tian XL, Liu CY, Gai SP, Zheng GS. Differential expression proteins associated with bud dormancy release during chilling treatment of tree peony (Paeonia suffruticosa). PLANT BIOLOGY (STUTTGART, GERMANY) 2015; 17:114-22. [PMID: 25091021 DOI: 10.1111/plb.12213] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 04/14/2014] [Indexed: 05/06/2023]
Abstract
Endo-dormant flower buds of tree peony must have sufficient chilling duration to reinitiate growth, which is a major obstacle to the forcing culture of tree peony in winter. We used a combination of two-dimensional gel electrophoresis (2-DE) and matrix-assisted laser desorption/ionisation time of flight/time of flight mass spectrometry (MALDI-TOF/TOF MS) to identify the differentially expressed proteins of tree peony after three different chilling treatments: endo-dormancy, endo-dormancy release and eco-dormancy stages. More than 200 highly reproducible protein spots were detected, and 31 differentially expressed spots (P < 0.05) were selected for further analysis. Finally, 20 protein spots were confidently identified from databases, which were annotated and classified into seven functional categories: response to abiotic or biotic stimulus (four), metabolic processes (four), other binding (three), transcription or transcription regulation (two), biological processes (one), cell biogenesis (one) and unclassified (five). The results of qPCR of five genes were mainly consistent with that of the protein accumulation analysis as determined by 2-DE. This indicated that most of these genes were mainly regulated at transcriptional level. The activity of nitrate reductase and pyruvate dehydrogenase E1 was consistent with the 2-DE results. The proteomic profiles indicated activation of citrate cycle, amino acid metabolism, lipid metabolism, energy production, calcium signalling and cell growth processes by chilling fulfilment to facilitate dormancy release in tree peony. Analysis of functions of identified proteins will increase our knowledge of endo-dormancy release in tree peony.
Collapse
Affiliation(s)
- Y X Zhang
- College of Life Sciences, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao Agricultural University, Qingdao, China
| | | | | | | | | | | |
Collapse
|
186
|
Abstract
Plant kinases are one of the largest protein families in Arabidopsis. There are almost 600 membrane-located receptor kinases and almost 400 soluble kinases with distinct functions in signal transduction. In this minireview we discuss phylogeny and functional context of prominent members from major protein kinase subfamilies in plants.
Collapse
Affiliation(s)
- Monika Zulawski
- Max Planck Institute of molecular Plant Physiology, 14470, Potsdam, Germany
| | | |
Collapse
|
187
|
Vargas L, Santa Brígida AB, Mota Filho JP, de Carvalho TG, Rojas CA, Vaneechoutte D, Van Bel M, Farrinelli L, Ferreira PCG, Vandepoele K, Hemerly AS. Drought tolerance conferred to sugarcane by association with Gluconacetobacter diazotrophicus: a transcriptomic view of hormone pathways. PLoS One 2014; 9:e114744. [PMID: 25489849 PMCID: PMC4260876 DOI: 10.1371/journal.pone.0114744] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 11/13/2014] [Indexed: 11/19/2022] Open
Abstract
Sugarcane interacts with particular types of beneficial nitrogen-fixing bacteria that provide fixed-nitrogen and plant growth hormones to host plants, promoting an increase in plant biomass. Other benefits, as enhanced tolerance to abiotic stresses have been reported to some diazotrophs. Here we aim to study the effects of the association between the diazotroph Gluconacetobacter diazotrophicus PAL5 and sugarcane cv. SP70-1143 during water depletion by characterizing differential transcriptome profiles of sugarcane. RNA-seq libraries were generated from roots and shoots of sugarcane plants free of endophytes that were inoculated with G. diazotrophicus and subjected to water depletion for 3 days. A sugarcane reference transcriptome was constructed and used for the identification of differentially expressed transcripts. The differential profile of non-inoculated SP70-1143 suggests that it responds to water deficit stress by the activation of drought-responsive markers and hormone pathways, as ABA and Ethylene. qRT-PCR revealed that root samples had higher levels of G. diazotrophicus 3 days after water deficit, compared to roots of inoculated plants watered normally. With prolonged drought only inoculated plants survived, indicating that SP70-1143 plants colonized with G. diazotrophicus become more tolerant to drought stress than non-inoculated plants. Strengthening this hypothesis, several gene expression responses to drought were inactivated or regulated in an opposite manner, especially in roots, when plants were colonized by the bacteria. The data suggests that colonized roots would not be suffering from stress in the same way as non-inoculated plants. On the other hand, shoots specifically activate ABA-dependent signaling genes, which could act as key elements in the drought resistance conferred by G. diazotrophicus to SP70-1143. This work reports for the first time the involvement of G. diazotrophicus in the promotion of drought-tolerance to sugarcane cv. SP70-1143, and it describes the initial molecular events that may trigger the increased drought tolerance in the host plant.
Collapse
Affiliation(s)
- Lívia Vargas
- Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | - Ailton B. Santa Brígida
- Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | - José P. Mota Filho
- Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | - Thais G. de Carvalho
- Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | - Cristian A. Rojas
- Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ, Brazil
- Universidade Federal da Integração Latino-Americana, Foz do Iguaçu, PR, Brazil
| | - Dries Vaneechoutte
- Department of Plant Systems Biology, VIB, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| | - Michiel Van Bel
- Department of Plant Systems Biology, VIB, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| | | | - Paulo C. G. Ferreira
- Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | - Klaas Vandepoele
- Department of Plant Systems Biology, VIB, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| | - Adriana S. Hemerly
- Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
188
|
Marín-de la Rosa N, Sotillo B, Miskolczi P, Gibbs DJ, Vicente J, Carbonero P, Oñate-Sánchez L, Holdsworth MJ, Bhalerao R, Alabadí D, Blázquez MA. Large-scale identification of gibberellin-related transcription factors defines group VII ETHYLENE RESPONSE FACTORS as functional DELLA partners. PLANT PHYSIOLOGY 2014; 166:1022-32. [PMID: 25118255 PMCID: PMC4213073 DOI: 10.1104/pp.114.244723] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 08/06/2014] [Indexed: 05/17/2023]
Abstract
DELLA proteins are the master negative regulators in gibberellin (GA) signaling acting in the nucleus as transcriptional regulators. The current view of DELLA action indicates that their activity relies on the physical interaction with transcription factors (TFs). Therefore, the identification of TFs through which DELLAs regulate GA responses is key to understanding these responses from a mechanistic point of view. Here, we have determined the TF interactome of the Arabidopsis (Arabidopsis thaliana) DELLA protein GIBBERELLIN INSENSITIVE and screened a collection of conditional TF overexpressors in search of those that alter GA sensitivity. As a result, we have found RELATED TO APETALA2.3, an ethylene-induced TF belonging to the group VII ETHYLENE RESPONSE FACTOR of the APETALA2/ethylene responsive element binding protein superfamily, as a DELLA interactor with physiological relevance in the context of apical hook development. The combination of transactivation assays and chromatin immunoprecipitation indicates that the interaction with GIBBERELLIN INSENSITIVE impairs the activity of RELATED TO APETALA2.3 on the target promoters. This mechanism represents a unique node in the cross regulation between the GA and ethylene signaling pathways controlling differential growth during apical hook development.
Collapse
Affiliation(s)
- Nora Marín-de la Rosa
- Instituto de Biología Molecular y Celular de Plantas, 46022 Valencia, Spain (N.M.-d.l.R., B.S., D.A., M.A.B.);Department of Forest Genetics and Plant Physiology, Umeå Plant Science Center, Swedish University of Agricultural Sciences, 90187 Umea, Sweden (P.M., R.B.);Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, United Kingdom (D.J.G., J.V., M.J.H.);Centro de Biotecnología y Genómica de Plantas, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Spain (P.C., L.O.-S.); andCollege of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia (R.B.)
| | - Berta Sotillo
- Instituto de Biología Molecular y Celular de Plantas, 46022 Valencia, Spain (N.M.-d.l.R., B.S., D.A., M.A.B.);Department of Forest Genetics and Plant Physiology, Umeå Plant Science Center, Swedish University of Agricultural Sciences, 90187 Umea, Sweden (P.M., R.B.);Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, United Kingdom (D.J.G., J.V., M.J.H.);Centro de Biotecnología y Genómica de Plantas, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Spain (P.C., L.O.-S.); andCollege of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia (R.B.)
| | - Pal Miskolczi
- Instituto de Biología Molecular y Celular de Plantas, 46022 Valencia, Spain (N.M.-d.l.R., B.S., D.A., M.A.B.);Department of Forest Genetics and Plant Physiology, Umeå Plant Science Center, Swedish University of Agricultural Sciences, 90187 Umea, Sweden (P.M., R.B.);Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, United Kingdom (D.J.G., J.V., M.J.H.);Centro de Biotecnología y Genómica de Plantas, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Spain (P.C., L.O.-S.); andCollege of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia (R.B.)
| | - Daniel J Gibbs
- Instituto de Biología Molecular y Celular de Plantas, 46022 Valencia, Spain (N.M.-d.l.R., B.S., D.A., M.A.B.);Department of Forest Genetics and Plant Physiology, Umeå Plant Science Center, Swedish University of Agricultural Sciences, 90187 Umea, Sweden (P.M., R.B.);Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, United Kingdom (D.J.G., J.V., M.J.H.);Centro de Biotecnología y Genómica de Plantas, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Spain (P.C., L.O.-S.); andCollege of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia (R.B.)
| | - Jorge Vicente
- Instituto de Biología Molecular y Celular de Plantas, 46022 Valencia, Spain (N.M.-d.l.R., B.S., D.A., M.A.B.);Department of Forest Genetics and Plant Physiology, Umeå Plant Science Center, Swedish University of Agricultural Sciences, 90187 Umea, Sweden (P.M., R.B.);Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, United Kingdom (D.J.G., J.V., M.J.H.);Centro de Biotecnología y Genómica de Plantas, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Spain (P.C., L.O.-S.); andCollege of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia (R.B.)
| | - Pilar Carbonero
- Instituto de Biología Molecular y Celular de Plantas, 46022 Valencia, Spain (N.M.-d.l.R., B.S., D.A., M.A.B.);Department of Forest Genetics and Plant Physiology, Umeå Plant Science Center, Swedish University of Agricultural Sciences, 90187 Umea, Sweden (P.M., R.B.);Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, United Kingdom (D.J.G., J.V., M.J.H.);Centro de Biotecnología y Genómica de Plantas, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Spain (P.C., L.O.-S.); andCollege of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia (R.B.)
| | - Luis Oñate-Sánchez
- Instituto de Biología Molecular y Celular de Plantas, 46022 Valencia, Spain (N.M.-d.l.R., B.S., D.A., M.A.B.);Department of Forest Genetics and Plant Physiology, Umeå Plant Science Center, Swedish University of Agricultural Sciences, 90187 Umea, Sweden (P.M., R.B.);Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, United Kingdom (D.J.G., J.V., M.J.H.);Centro de Biotecnología y Genómica de Plantas, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Spain (P.C., L.O.-S.); andCollege of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia (R.B.)
| | - Michael J Holdsworth
- Instituto de Biología Molecular y Celular de Plantas, 46022 Valencia, Spain (N.M.-d.l.R., B.S., D.A., M.A.B.);Department of Forest Genetics and Plant Physiology, Umeå Plant Science Center, Swedish University of Agricultural Sciences, 90187 Umea, Sweden (P.M., R.B.);Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, United Kingdom (D.J.G., J.V., M.J.H.);Centro de Biotecnología y Genómica de Plantas, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Spain (P.C., L.O.-S.); andCollege of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia (R.B.)
| | - Rishikesh Bhalerao
- Instituto de Biología Molecular y Celular de Plantas, 46022 Valencia, Spain (N.M.-d.l.R., B.S., D.A., M.A.B.);Department of Forest Genetics and Plant Physiology, Umeå Plant Science Center, Swedish University of Agricultural Sciences, 90187 Umea, Sweden (P.M., R.B.);Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, United Kingdom (D.J.G., J.V., M.J.H.);Centro de Biotecnología y Genómica de Plantas, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Spain (P.C., L.O.-S.); andCollege of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia (R.B.)
| | - David Alabadí
- Instituto de Biología Molecular y Celular de Plantas, 46022 Valencia, Spain (N.M.-d.l.R., B.S., D.A., M.A.B.);Department of Forest Genetics and Plant Physiology, Umeå Plant Science Center, Swedish University of Agricultural Sciences, 90187 Umea, Sweden (P.M., R.B.);Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, United Kingdom (D.J.G., J.V., M.J.H.);Centro de Biotecnología y Genómica de Plantas, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Spain (P.C., L.O.-S.); andCollege of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia (R.B.)
| | - Miguel A Blázquez
- Instituto de Biología Molecular y Celular de Plantas, 46022 Valencia, Spain (N.M.-d.l.R., B.S., D.A., M.A.B.);Department of Forest Genetics and Plant Physiology, Umeå Plant Science Center, Swedish University of Agricultural Sciences, 90187 Umea, Sweden (P.M., R.B.);Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, United Kingdom (D.J.G., J.V., M.J.H.);Centro de Biotecnología y Genómica de Plantas, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Spain (P.C., L.O.-S.); andCollege of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia (R.B.)
| |
Collapse
|
189
|
Wang L, Qin L, Liu W, Zhang D, Wang Y. A novel ethylene-responsive factor from Tamarix hispida, ThERF1, is a GCC-box- and DRE-motif binding protein that negatively modulates abiotic stress tolerance in Arabidopsis. PHYSIOLOGIA PLANTARUM 2014; 152:84-97. [PMID: 24479715 DOI: 10.1111/ppl.12159] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 12/10/2013] [Accepted: 12/22/2013] [Indexed: 05/24/2023]
Abstract
Ethylene-responsive factor (ERF) family is one of the largest families of plant-specific transcription factor that can positively or negatively regulate abiotic stress tolerance. However, their functions in regulating abiotic stress tolerance are still not fully understood. In this study, we characterized the functions of an ERF gene from Tamarix hispida, ThERF1, which can negatively regulate abiotic stress tolerance. The expression of ThERF1 was induced by salinity, PEG-simulated drought and abscisic acid (ABA) treatments. ThERF1 can specifically bind to GCC-box and DRE motifs. Overexpression of ThERF1 in transgenic Arabidopsis plants showed inhibited seed germination, and decreased fresh weight gain and root growth compared with wild-type (WT) plants. In addition, the transcript levels of several superoxide dismutase (SOD) and peroxidase (POD) genes in transgenic plants were significantly inhibited compared with in WT plants, resulting in decreased SOD and POD activities in transgenic plants under salt and drought stress conditions. Furthermore, the reactive oxygen species (ROS) levels, malondialdehyde (MDA) contents and cell membrane damage in ThERF1-transformed plants were all highly increased relative to WT plants. Our results suggest that ThERF1 negatively regulates abiotic stress tolerance by strongly inhibiting the expression of SOD and POD genes, leading to decreased ROS-scavenging ability.
Collapse
Affiliation(s)
- Liuqiang Wang
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | | | | | | | | |
Collapse
|
190
|
Upadhyay RK, Gupta A, Ranjan S, Singh R, Pathre UV, Nath P, Sane AP. The EAR motif controls the early flowering and senescence phenotype mediated by over-expression of SlERF36 and is partly responsible for changes in stomatal density and photosynthesis. PLoS One 2014; 9:e101995. [PMID: 25036097 PMCID: PMC4103849 DOI: 10.1371/journal.pone.0101995] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Accepted: 06/13/2014] [Indexed: 12/29/2022] Open
Abstract
The EAR motif is a small seven amino acid motif associated with active repression of several target genes. We had previously identified SlERF36 as an EAR motif containing gene from tomato and shown that its over-expression results in early flowering and senescence and a 25-35% reduction of stomatal density, photosynthesis and stomatal conductance in transgenic tobacco. In order to understand the role of the EAR motif in governing the phenotypes, we have expressed the full-length SlERF36 and a truncated form, lacking the EAR motif under the CaMV35S promoter, in transgenic Arabidopsis. Plants over-expressing the full-length SlERF36 show prominent early flowering under long day as well as short day conditions. The early flowering leads to an earlier onset of senescence in these transgenic plants which in turn reduces vegetative growth, affecting rosette, flower and silique sizes. Stomatal number is reduced by 38-39% while photosynthesis and stomatal conductance decrease by about 30-40%. Transgenic plants over-expressing the truncated version of SlERF36 (lacking the C-terminal EAR motif), show phenotypes largely matching the control with normal flowering and senescence indicating that the early flowering and senescence is governed by the EAR motif. On the other hand, photosynthetic rates and stomatal number were also reduced in plants expressing SlERF36ΔEAR although to a lesser degree compared to the full- length version indicating that these are partly controlled by the EAR motif. These studies show that the major phenotypic changes in plant growth caused by over-expression of SlERF36 are actually mediated by the EAR motif.
Collapse
Affiliation(s)
- Rakesh Kumar Upadhyay
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute (Council of Scientific and Industrial Research), Lucknow, India
- Sustainable Agricultural Systems Laboratory, USDA-ARS, Beltsville Agricultural Research Center, Beltsville, Maryland, United States of America
- Department of Biology, Pennsylvania State University, Harrisburg, Pennsylvania, United States of America
| | - Asmita Gupta
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute (Council of Scientific and Industrial Research), Lucknow, India
| | - Sanjay Ranjan
- Department of Plant Physiology, CSIR-National Botanical Research Institute (Council of Scientific and Industrial Research), Lucknow, India
| | - Ruchi Singh
- Department of Plant Physiology, CSIR-National Botanical Research Institute (Council of Scientific and Industrial Research), Lucknow, India
| | - Uday V. Pathre
- Department of Plant Physiology, CSIR-National Botanical Research Institute (Council of Scientific and Industrial Research), Lucknow, India
| | - Pravendra Nath
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute (Council of Scientific and Industrial Research), Lucknow, India
| | - Aniruddha P. Sane
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute (Council of Scientific and Industrial Research), Lucknow, India
| |
Collapse
|
191
|
Schenke D, Cai D, Scheel D. Suppression of UV-B stress responses by flg22 is regulated at the chromatin level via histone modification. PLANT, CELL & ENVIRONMENT 2014; 37:1716-21. [PMID: 24450952 DOI: 10.1111/pce.12283] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 01/06/2014] [Accepted: 01/13/2014] [Indexed: 05/23/2023]
Abstract
Genes of the flavonol pathway are activated by UV-B, but suppressed by concomitant flg22 application in Arabidopsis. Analysis at the metabolite level suggested that this regulation allows the plant to focus its secondary metabolism on the plant defence towards pathogen attack. We now demonstrate by chromatin immunoprecipitation followed by quantitative PCR, that this antagonistic gene regulation is mediated at the chromatin level by differential regulation of histone 3 lysine 9 acetylation (H3K9ac), which is a hallmark for gene activation. Since H3K9ac levels were altered at least at four independent gene loci, namely, chalcone synthase, chalcone-flavone isomerase, flavanone 3-hydroxylase and the positive regulator MYB12, which correlates with the observed gene activation/suppression reported previously, it appears that this process is mediated by chromatin remodelling. Since suppression of H3K9ac prevents gene expression, we conclude H3K9ac is rather cause than consequence of gene activation. This finding allows us also to extend our working model, involving the two opposing MYB transcription factors of the flavonol pathway, MYB12 (being UV-B-activated and flg22-suppressed) and MYB4 (a negative regulator, which is activated by both flg22 and UV-B stress).
Collapse
Affiliation(s)
- Dirk Schenke
- Department of Molecular Phytopathology and Biotechnology, Christian-Albrechts University Kiel, Hermann-Rodewald Strasse 9, Kiel, 24118, Germany
| | | | | |
Collapse
|
192
|
Ryu H, Cho H, Bae W, Hwang I. Control of early seedling development by BES1/TPL/HDA19-mediated epigenetic regulation of ABI3. Nat Commun 2014; 5:4138. [PMID: 24938150 DOI: 10.1038/ncomms5138] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 05/16/2014] [Indexed: 12/23/2022] Open
Abstract
Seed germination and young seedling establishment should be tightly regulated to maximize plant survival and thereby enable successful propagation. Plants have evolved developmental signalling networks to integrate environmental cues for proper control of these critical processes, in which brassinosteroids are known to attenuate ABA-mediated arrest of early seedling development; however, the underlying regulatory mechanism remains elusive. Here we reveal that a BES1/TPL/HDA19 repressor complex mediates the inhibitory action of brassinosteroids on ABA responses during early seedling development. BR-activated BES1 forms a transcriptional repressor complex with TPL-HDA19, which directly facilitates the histone deacetylation of ABI3 chromatin. This event leads to the transcriptional repression of ABI3 and consequently ABI5, major ABA signalling regulators in early seedling development. Our data reveal that the BR-activated BES1-TPL-HDA19 repressor complex controls epigenetic silencing of ABI3 and thereby suppresses the ABA signalling output during early seedling development.
Collapse
Affiliation(s)
- Hojin Ryu
- 1] Department of Life Sciences, POSTECH Biotech Center, Pohang University of Science and Technology, Pohang 790-784, Korea [2] Division of Agricultural Microbiology, National Academy of Agricultural Science, RDA, Suwon 441-707, South Korea
| | - Hyunwoo Cho
- Department of Life Sciences, POSTECH Biotech Center, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Wonsil Bae
- Department of Life Sciences, POSTECH Biotech Center, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Ildoo Hwang
- Department of Life Sciences, POSTECH Biotech Center, Pohang University of Science and Technology, Pohang 790-784, Korea
| |
Collapse
|
193
|
Kanwar P, Sanyal SK, Tokas I, Yadav AK, Pandey A, Kapoor S, Pandey GK. Comprehensive structural, interaction and expression analysis of CBL and CIPK complement during abiotic stresses and development in rice. Cell Calcium 2014; 56:81-95. [PMID: 24970010 DOI: 10.1016/j.ceca.2014.05.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 05/13/2014] [Accepted: 05/27/2014] [Indexed: 12/25/2022]
Abstract
Calcium ion is involved in diverse physiological and developmental pathways. One of the important roles of calcium is a signaling messenger, which regulates signal transduction in plants. CBL (calcineurin B-like protein) is one of the calcium sensors that specifically interact with a family of serine-threonine protein kinases designated as CBL-interacting protein kinases (CIPKs). The coordination of these two gene families defines complexity of the signaling networks in several stimulus-response-coupling during various environmental stresses. In Arabidopsis, both of these gene families have been extensively studied. To understand in-depth mechanistic interplay of CBL-CIPK mediated signaling pathways, expression analysis of entire set of CBL and CIPK genes in rice genome under three abiotic stresses (salt, cold and drought) and different developmental stages (3-vegetative stages and 11-reproductive stages) were done using microarray expression data. Interestingly, expression analysis showed that rice CBLs and CIPKs are not only involved in the abiotic stress but their significant role is also speculated in the developmental processes. Chromosomal localization of rice CBL and CIPK genes reveals that only OsCBL7 and OsCBL8 shows tandem duplication among CBLs whereas CIPKs were evolved by many tandem as well as segmental duplications. Duplicated OsCIPK genes showed variable expression pattern indicating the role of gene duplication in the extension and functional diversification of CIPK gene family in rice. Arabidopsis SOS3/CBL4 related genes in rice (OsCBL4, OsCBL5, OsCBL7 and OsCBL8) were employed for interaction studies with rice and Arabidopsis CIPKs. OsCBLs and OsCIPKs are not only found structurally similar but likely to be functionally equivalent to Arabidopsis CBLs and CIPKs genes since SOS3/CBL4 related OsCBLs interact with more or less similarly to rice and Arabidopsis CIPKs and exhibited an interaction pattern comparable with Arabidopsis SOS3/CBL4.
Collapse
Affiliation(s)
- Poonam Kanwar
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi 110021, India.
| | - Sibaji K Sanyal
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi 110021, India.
| | - Indu Tokas
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi 110021, India.
| | - Akhilesh K Yadav
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi 110021, India.
| | - Amita Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi 110021, India.
| | - Sanjay Kapoor
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi 110021, India.
| | - Girdhar K Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi 110021, India.
| |
Collapse
|
194
|
Grandperret V, Nicolas-Francès V, Wendehenne D, Bourque S. Type-II histone deacetylases: elusive plant nuclear signal transducers. PLANT, CELL & ENVIRONMENT 2014; 37:1259-69. [PMID: 24236403 DOI: 10.1111/pce.12236] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 11/04/2013] [Accepted: 11/10/2013] [Indexed: 05/20/2023]
Abstract
Since the beginning of the 21st century, numerous studies have concluded that the plant cell nucleus is one of the cellular compartments that define the specificity of the cellular response to an external stimulus or to a specific developmental stage. To that purpose, the nucleus contains all the enzymatic machinery required to carry out a wide variety of nuclear protein post-translational modifications (PTMs), which play an important role in signal transduction pathways leading to the modulation of specific sets of genes. PTMs include protein (de)acetylation which is controlled by the antagonistic activities of histone acetyltransferases (HATs) and histone deacetylases (HDACs). Regarding protein deacetylation, plants are of particular interest: in addition to the RPD3-HDA1 and Sir2 HDAC families that they share with other eukaryotic organisms, plants have developed a specific family called type-II HDACs (HD2s). Interestingly, these HD2s are well conserved in plants and control fundamental biological processes such as seed germination, flowering or the response to pathogens. The aim of this review was to summarize current knowledge regarding this fascinating, but still poorly understood nuclear protein family.
Collapse
Affiliation(s)
- Vincent Grandperret
- Pôle Mécanisme et Gestion des Interactions Plantes-microorganismes - ERL CNRS 6300, Université de Bourgogne, UMR 1347 Agroécologie, 17 rue Sully, BP 86510, Dijon cedex, 21065, France
| | | | | | | |
Collapse
|
195
|
Hanano A, Almousally I, Shaban M. Phytotoxicity effects and biological responses of Arabidopsis thaliana to 2,3,7,8-tetrachlorinated dibenzo-p-dioxin exposure. CHEMOSPHERE 2014; 104:76-84. [PMID: 24275148 DOI: 10.1016/j.chemosphere.2013.10.060] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 10/02/2013] [Accepted: 10/16/2013] [Indexed: 05/20/2023]
Abstract
Dioxins are persistent organic pollutants. Their bioaccumulation in the food chain makes dioxins a considerable risk for human health. The use of plants for removing toxic organic compounds, including dioxins, is a safe and efficient strategy. Herein we studied the toxicity effects and the biological responses in Arabidopsis thaliana to 2',3',7',8'-tetrachlorinated dibenzo-p-dioxin (TCDD) exposure. First, TCDD-induced toxicity was demonstrated using several parameters including, a decrease in seed germination, a loss in fresh weight with a striking decrease in chlorophyll content, but not in carotenoids, and an augmentation in the biomass of the lateral roots system, but not in the elongation of the primary root. Uptake of TCDD by Arabidopsis was confirmed. Responses to TCDD-exposure were marked by an enhanced level of hydrogen peroxide H2O2 production and a massive stimulation of anti-oxidative enzyme activities. Moreover, a significant variation in the transcript level of transcription factor genes, bHLH, MYB and AP2-EREBP was detected in Arabidopsis shoot and an up-regulation of WRKY, MYB and IAA was observed in the root. Our results illustrate the TCDD-induced toxicity effects and the biological responses of Arabidopsis to TCDD. Better understanding of the plants ability to detoxifydioxins would help to improve their use as a safe bioremediators.
Collapse
Affiliation(s)
- Abdulsamie Hanano
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), B.P. Box 6091, Damascus, Syria.
| | - Ibrahem Almousally
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), B.P. Box 6091, Damascus, Syria
| | - Mouhnad Shaban
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), B.P. Box 6091, Damascus, Syria
| |
Collapse
|
196
|
Lim SD, Lee C, Jang CS. The rice RING E3 ligase, OsCTR1, inhibits trafficking to the chloroplasts of OsCP12 and OsRP1, and its overexpression confers drought tolerance in Arabidopsis. PLANT, CELL & ENVIRONMENT 2014; 37:1097-113. [PMID: 24215658 DOI: 10.1111/pce.12219] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 10/07/2013] [Accepted: 10/07/2013] [Indexed: 05/20/2023]
Abstract
Plant growth under low water availability adversely affects many key processes with morphological, physiological, biochemical and molecular consequences. Here, we found that a rice gene, OsCTR1, encoding the RING Ub E3 ligase plays an important role in drought tolerance. OsCTR1 was highly expressed in response to dehydration treatment and defense-related phytohormones, and its encoded protein was localized in both the chloroplasts and the cytosol. Intriguingly, the OsCTR1 protein was found predominantly targeted to the cytosol when rice protoplasts transfected with OsCTR1 were treated with abscisic acid (ABA). Several interacting partners were identified, which were mainly targeted to the chloroplasts, and interactions with OsCTR1 were confirmed by using biomolecular fluorescence complementation (BiFC). Interestingly, two chloroplast-localized proteins (OsCP12 and OsRP1) interacted with OsCTR1 in the cytosol, and ubiquitination by OsCTR1 led to protein degradation via the Ub 26S proteasome. Heterogeneous overexpression of OsCTR1 in Arabidopsis exhibited hypersensitive phenotypes with respect to ABA-responsive seed germination, seedling growth and stomatal closure. The ABA-sensitive transgenic plants also showed improvement in their tolerance against severe water deficits. Taken together, our findings lend support to the hypothesis that the molecular functions of OsCTR1 are related to tolerance to water-deficit stress via ABA-dependent regulation and related systems.
Collapse
Affiliation(s)
- Sung Don Lim
- Department of Applied Plant Sciences, Kangwon National University, Chuncheon, 200-713, Korea
| | | | | |
Collapse
|
197
|
Liu X, Yang S, Zhao M, Luo M, Yu CW, Chen CY, Tai R, Wu K. Transcriptional repression by histone deacetylases in plants. MOLECULAR PLANT 2014; 7:764-72. [PMID: 24658416 DOI: 10.1093/mp/ssu033] [Citation(s) in RCA: 158] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Reversible histone acetylation and deacetylation at the N-terminus of histone tails play crucial roles in regulation of eukaryotic gene activity. Acetylation of core histones usually induces an 'open' chromatin structure and is associated with gene activation, whereas deacetylation of histone is often correlated with 'closed' chromatin and gene repression. Histone deacetylation is catalyzed by histone deacetylases (HDACs). A growing number of studies have demonstrated the importance of histone deacetylation/acetylation on genome stability, transcriptional regulation, and development in plants. Furthermore, HDACs were shown to interact with various chromatin remolding factors and transcription factors involved in transcriptional repression in multiple developmental processes. In this review, we summarized recent findings on the transcriptional repression mediated by HDACs in plants.
Collapse
Affiliation(s)
- Xuncheng Liu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | | | | | | | | | | | | | | |
Collapse
|
198
|
Mehrotra R, Bhalothia P, Bansal P, Basantani MK, Bharti V, Mehrotra S. Abscisic acid and abiotic stress tolerance - different tiers of regulation. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:486-96. [PMID: 24655384 DOI: 10.1016/j.jplph.2013.12.007] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 12/12/2013] [Accepted: 12/13/2013] [Indexed: 05/21/2023]
Abstract
Abiotic stresses affect plant growth, metabolism and sustainability in a significant way and hinder plant productivity. Plants combat these stresses in myriad ways. The analysis of the mechanisms underlying abiotic stress tolerance has led to the identification of a highly complex, yet tightly regulated signal transduction pathway consisting of phosphatases, kinases, transcription factors and other regulatory elements. It is becoming increasingly clear that also epigenetic processes cooperate in a concerted manner with ABA-mediated gene expression in combating stress conditions. Dynamic stress-induced mechanisms, involving changes in the apoplastic pool of ABA, are transmitted by a chain of phosphatases and kinases, resulting in the expression of stress inducible genes. Processes involving DNA methylation and chromatin modification as well as post transcriptional, post translational and epigenetic control mechanisms, forming multiple tiers of regulation, regulate this gene expression. With recent advances in transgenic technology, it has now become possible to engineer plants expressing stress-inducible genes under the control of an inducible promoter, enhancing their ability to withstand adverse conditions. This review briefly discusses the synthesis of ABA, components of the ABA signal transduction pathway and the plants' responses at the genetic and epigenetic levels. It further focuses on the role of RNAs in regulating stress responses and various approaches to develop stress-tolerant transgenic plants.
Collapse
Affiliation(s)
- Rajesh Mehrotra
- Department of Biological Sciences, Birla Institute of Technology & Sciences, Pilani, Rajasthan 333031, India; G(o) Unit, Okinawa Institute of Science and Technology, 1919-1, Onnason, Okinawa, Japan
| | - Purva Bhalothia
- Department of Biological Sciences, Birla Institute of Technology & Sciences, Pilani, Rajasthan 333031, India
| | - Prashali Bansal
- Department of Biological Sciences, Birla Institute of Technology & Sciences, Pilani, Rajasthan 333031, India; Cancer Science Institute, National University of Singapore, Singapore, Singapore
| | - Mahesh Kumar Basantani
- Division of Endocrinology, University of Pittsburgh, 200 Lothrop Street, BST E1140, Pittsburgh, PA 15261, USA
| | - Vandana Bharti
- Department of Biotechnology, St. Columba's College, Vinoba Bhave University, Hazaribagh, India
| | - Sandhya Mehrotra
- Department of Biological Sciences, Birla Institute of Technology & Sciences, Pilani, Rajasthan 333031, India.
| |
Collapse
|
199
|
Bai L, Ma X, Zhang G, Song S, Zhou Y, Gao L, Miao Y, Song CP. A Receptor-Like Kinase Mediates Ammonium Homeostasis and Is Important for the Polar Growth of Root Hairs in Arabidopsis. THE PLANT CELL 2014; 26:1497-1511. [PMID: 24769480 PMCID: PMC4036567 DOI: 10.1105/tpc.114.124586] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 03/30/2014] [Accepted: 04/09/2014] [Indexed: 05/19/2023]
Abstract
Ammonium (NH4+) is both a necessary nutrient and an important signal in plants, but can be toxic in excess. Ammonium sensing and regulatory mechanisms in plant cells have not been fully elucidated. To decipher the complex network of NH4+ signaling, we analyzed [Ca2+]cyt-associated protein kinase (CAP) genes, which encode signaling components that undergo marked changes in transcription levels in response to various stressors. We demonstrated that CAP1, a tonoplast-localized receptor-like kinase, regulates root hair tip growth by maintaining cytoplasmic Ca2+ gradients. A CAP1 knockout mutant (cap1-1) produced elevated levels of cytoplasmic NH4+. Furthermore, root hair growth of cap1-1 was inhibited on Murashige and Skoog medium, but NH4+ depletion reestablished the Ca2+ gradient necessary for normal growth. The lower net NH4+ influx across the vacuolar membrane and relatively alkaline cytosolic pH of cap1-1 root hairs implied that mutation of CAP1 increased NH4+ accumulation in the cytoplasm. Furthermore, CAP1 functionally complemented the npr1 (nitrogen permease reactivator protein) kinase yeast mutant, which is defective in high-affinity NH4+ uptake via MEP2 (methylammonium permease 2), distinguishing CAP1 as a cytosolic modulator of NH4+ levels that participates in NH4+ homeostasis-regulated root hair growth by modulating tip-focused cytoplasmic Ca2+ gradients.
Collapse
Affiliation(s)
- Ling Bai
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng 475001, China
| | - Xiaonan Ma
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng 475001, China
| | - Guozeng Zhang
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng 475001, China
| | - Shufei Song
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng 475001, China
| | - Yun Zhou
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng 475001, China
| | - Lijie Gao
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng 475001, China
| | - Yuchen Miao
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng 475001, China
| | - Chun-Peng Song
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng 475001, China
| |
Collapse
|
200
|
Min JH, Ju HW, Yang KY, Chung JS, Cho BH, Kim CS. Heterologous expression of the gourd E3 ubiquitin ligase gene LsRZF1 compromises the drought stress tolerance in Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 77:7-14. [PMID: 24525351 DOI: 10.1016/j.plaphy.2014.01.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 01/18/2014] [Indexed: 05/28/2023]
Abstract
Protein ubiquitination is one of the major regulatory processes used by eukaryotic cells. The ubiquitin E3 ligase acts as a main determinant of substrate specificity. However, the precise roles of E3 ligase in plants to drought stress are poorly understood. In this study, a gourd family (Lagenaria siceraria) ortholog of Arabidopsis thaliana RING Zinc Finger 1 (AtRZF1) gene, designated LsRZF1, was identified and characterized. LsRZF1 was reduced by abscisic acid (ABA), osmotic stress, and drought conditions. Compared to wild type, transgenic Arabidopsis plants ectopic expressing LsRZF1 were hypersensitive to ABA and osmotic stress during early seedling development, indicating that LsRZF1 negatively regulates drought-mediated control of early seedling development. Moreover, the ectopic expression of the LsRZF1 gene was very influential in drought sensitive parameters including proline content, water loss, and the expression of dehydration stress-related genes. Furthermore, ubiquitin E3 ligase activity and genetic data indicate that AtRZF1 and LsRZF1 function in similar pathway to control proline metabolism in Arabidopsis under drought condition. Together, these results suggest that the E3 ligase LsRZF1 is an important regulator of water deficit stress during early seedling development.
Collapse
Affiliation(s)
- Ji-Hee Min
- Department of Plant Biotechnology, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Hyun-Woo Ju
- Department of Plant Biotechnology, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Kwang-Yeol Yang
- Department of Plant Biotechnology, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Jung-Sung Chung
- Department of Agronomy, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Baik-Ho Cho
- Department of Plant Biotechnology, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Cheol Soo Kim
- Department of Plant Biotechnology, Chonnam National University, Gwangju 500-757, Republic of Korea.
| |
Collapse
|